

Delft University of Technology

Flip Flop Weighting
A technique for estimation of safety metrics in Automotive Designs
Augusto da Silva, Felipe; Bagbaba, Ahmet Cagri; Hamdioui, Said; Sauer, Christian

DOI
10.1109/IOLTS52814.2021.9486697
Publication date
2021
Document Version
Final published version
Published in
2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS)

Citation (APA)
Augusto da Silva, F., Bagbaba, A. C., Hamdioui, S., & Sauer, C. (2021). Flip Flop Weighting: A technique
for estimation of safety metrics in Automotive Designs. In 2021 IEEE 27th International Symposium on On-
Line Testing and Robust System Design (IOLTS) (pp. 1-7). Article 9486697 IEEE.
https://doi.org/10.1109/IOLTS52814.2021.9486697
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IOLTS52814.2021.9486697
https://doi.org/10.1109/IOLTS52814.2021.9486697

Flip Flop Weighting: A technique for estimation of safety metrics in
Automotive Designs

Felipe Augusto da Silva∗†, Ahmet Cagri Bagbaba∗, Said Hamdioui† and Christian Sauer∗

∗Cadence Design Systems †Delft University of Technology
Munich, Germany Delft, The Netherlands

Abstract—The requirements of ISO26262 for the development
of safety-critical Integrated Circuits (IC) demand substantial
efforts on fault analysis for safety metrics evaluation. Failing
to achieve the required conditions entails modifications to the
circuit, additional iterations through critical design phases, and
consequently extra costs and delays. For that reason, providing
accurate methods to estimate safety metrics is of great impor-
tance. This paper proposes a methodology that can efficiently
and precisely estimate the safety metrics of Automotive designs.
The technique is based on the characterization of a netlist
to determine how hardware components contribute to fault
propagation. Also, by examining the test stimuli applied during
simulation, we can rank Workloads/Testbenches according to
their fault detection coverage. The approach was verified running
fault injection campaigns on distinct gate-level hardware designs,
including an Automotive CPU. Our results show that the fault
detection coverage can be estimated with an average error rate
of 3% at up to 20X faster execution times when compared to
the traditional campaigns. Hence the methodology provides an
efficient and cost-effective mechanism to support engineers in a
confident design space exploration.

Keywords - ISO26262; Design Space Exploration; Fault Injec-
tion; Formal Methods; Simulation; Functional Safety; Verifica-
tion.

I. INTRODUCTION

The development of safety-critical applications, such as
autonomous driving, requires additional efforts to reduce the
risk of failures that can cause life-threatening situations. For
such applications, the system must include Safety Mechanisms
being able to detect up to 99% of the circuit random faults.
Functional Safety Verification, as defined by ISO26262, is
usually performed at later stages of the development cycle,
and failing to achieve the required safety-metrics demands
additional iterations through critical development and verifica-
tion phases. In other words, it has a high impact on costs and
development time. In a typical lifecycle, the safety concept
and architecture are established at the early development
stages, requiring engineers to estimate fault detection cover-
age without a proper evaluation methodology. A misleading
architecture decision before implementation will be exposed
only at the final stages of the development when modifications
are expensive. For that reason, there is a high demand for
techniques that can support safety-engineers with design space
exploration of safety features, increasing the confidence in
conceptual decisions, and avoiding rework.

Numerous works address the fault classification demands
of ISO26262. Fault Injection (FI) Simulation, as the method
recommended by ISO26262, is explored by several researchers

[1][2][3][4]. Also, alternative technologies, as formal, are
explored for the classification of faults. The ability of formal
techniques in analyzing the design behavior for all possible
combinations of inputs it’s a powerful tool for the identifica-
tion of Safe Faults [5][6][7]. The combination of FI Simulation
and formal methods is also examined [8][9][10]. The recent
advances in fault classification propose optimizations in fault
analysis and highlight the strengths of the different technolo-
gies. However, aspects of early design exploration are not
addressed, causing a gap in the development lifecycle. Design
space exploration refers to the activity of exploring design
alternatives before implementation. The concept is established
in several domains of IC development, like area, performance,
power consumption [11][12], high-level synthesis [13], deep
learning [14], among others. Nevertheless, to the best of
our knowledge, there are no methodologies for early design
space exploration targeting safety metrics for compliance with
ISO26262.

Our work introduces a methodology for the estimation of
safety metrics in Automotive designs. By allowing engineers
to estimate fault detection rates before the final development
stages, we provide a tool for the design space exploration of
safety architectures, improving the confidence in conceptual
decisions and decreasing the chances of rework. The method-
ology is based on the characterization of the netlist and of the
workload concerning fault propagation. First, we identify the
prime propagation nodes of the hardware design and designate
a weight that represents the faults in their Cone of Influence
(CoI). Next, we consider the impact of fault activation by
analyzing nodes that are constant during the simulation of the
workload. At this stage, we can rank the Workload/Testbench
by their fault detection rate potential. Finally, we perform
Fault Injection simulation on the prime propagation nodes to
estimate the fault propagation behavior of all faults in the
design. The compiled information allows an early assessment
of the Fault Injection campaign results. The main contributions
of this work are:

• A systematic approach for the estimation of safety metrics
of Automotive designs;

• An effective method to rank Workloads/Testbenches ac-
cording to their impact in the fault detection coverage;

• Validation of the methodology in real IPs, including an
Automotive CPU;

• The results show an estimation of the fault detection

	

978-1-6654-3370-9/21/$31.00 ©2021 IEEE

	

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

Ro
bu

st
 S

ys
te

m
 D

es
ig

n
(IO

LT
S)

 |
 9

78
-1

-6
65

4-
33

70
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IO
LT

S5
28

14
.2

02
1.

94
86

69
7

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

coverage with an average error of 3% at up to 20X faster
execution times.

The rest of the paper is organized as follows: Section II
introduces fault analysis techniques and illustrate how they
are deployed in this work. Section III describes the proposed
methodology. Section IV explains the validation process and
discusses our results. Section V concludes.

II. FAULT ANALYSIS TECHNOLOGIES

This section outlines the processes employed by Formal
Methods and Fault Injection Simulation targeting fault clas-
sification. Our work applies the strengths of both technologies
to examine the propagation of faults in a given design and
estimate the safety metrics.

A. Formal Methods

The formal analysis is one of the leading technologies for
the identification of Safe faults. Employing structural and
formal analysis, formal tools can verify a circuit in the global
scope, considering every evaluation context and test stimuli
[15]. Consequently, these tools can exhaustively prove that a
fault can never produce any failure.

1) Structural Analysis: The Structural Analysis aims to
determine the testability of faults. The testability of a fault
is determined by verifying the physical characteristics of the
design. Figure 1 illustrates the examination applied by the
Structural Analysis.

Figure 1 represents a circuit with combinational logic (g),
inputs (in), outputs (out) and fault targets (f). Considering this
circuit, it is possible to define the following fault behaviors by
applying Structural Analysis:

1) As the only Observation Point (strobe) configured for
the fault analysis is ’out0’, any fault that is outside of
its Cone of Influence is considered Untestable. For that
reason, any fault in ’f1’ is Structural-Safe as there is no
physical connection between the fault location and the
strobe.

2) Depending on the characteristics of ’g1’ drivers, it is
possible to define the activation of ’f2’. For example,
if ’g1’ always output the logic value one, ’f2’ would
not be activated for Stuck-at-1 faults. Consequently, a
Stuck-at-1 fault in ’f2’ would be Structural-Safe.

3) Characteristics of the combinational logic ’g2’ could
block propagation of a fault in ’f3’. If, for example,
’g2’ is an AND gate, with one of the inputs always set
with the logic value zero, the effect of a fault in ’f3’
would never propagate to ’out0’. Therefore, ’f3’ would
be Structural-Safe for Stuck-at-1 and Stuck-at-0 faults.

2) Formal Analysis: The formal analysis deploys formal
techniques to investigate the behavior of a design under fault.
The fundamental theory consists in creating a representation
of the boolean function implemented by the design under
test, where formal proves can be deployed. Modern formal
tools employ different formal techniques to achieve better

Fig. 1. Structural Analysis Example.

performance. Although details of implementation are not dis-
closed, common forms of design representation are Binary De-
cision Diagrams (BDDs) [16] and Multiway Decision Graphs
(MDGs) [17].

Two copies of the design model are built for formal analysis:
the Good Machine and the Bad Machine. The same inputs
and constraints are deployed on both models. Fault effects
are applied in the Bad Machine only and the Strobe point of
both copies are monitored. A difference in the Strobe Points
indicate the propagation of the fault.

The formal analysis deploys formal methods to determine
the Activation and Propagation of faults. Activation Analysis
indicates whether the fault can be functionally activated by any
combination of inputs. Propagation Analysis verifies if there is
a combination of inputs that provoke fault propagation. Formal
analysis will classify the faults, which were not previously
classified by the Structural Analysis, in three groups:

• Safe: Faults that cannot be activated or propagated.
• Dangerous: The tool identified at least one combination

of test inputs that results in fault propagation.
• Unknown: All the others.
Formal properties to perform the analysis are automatically

generated and verified with respect to all possible input stimuli.
The formal analysis relies on formal properties and verification
to prove the properties to be true.

The characteristics of Formal Methods analysis distinguish
critical behavioral information of a design under the effect
of faults. By investigating this data, we can understand the
fault propagation effects on the different parts of the hardware
design. These aspects are deployed for the netlist characteri-
zation, as described in Section III-A.

B. Fault Injection Simulation

Analysis of Fault Injection (FI) by Simulation is widely
used and available in a variety of tools. These tools are able to
analyze a Register Transfer Level (RTL) or Gate-Level (GTL)
descriptions of an IC and, based on given test inputs, simulate
their behavior. The effect that a fault produces in the design is
determined by comparing the behavior of the design with and
without faults. The flow implemented by FI Simulation Tools
is described below:

1) Elaboration of RTL/GTL design description.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

2) Fault List Generation: candidates for fault injection
are defined for each available fault model. The user
should define rules (e.g. all signals) to identify fault
node candidates and fault models (e.g. Stuck-at-0 (SA0)
and Stuck-at-1 (SA1)). Information is stored in a fault
database.

3) Fault List Optimization: Faults list is analyzed to identify
candidates for optimization. Based on the elaboration
results, tools can estimate the behavior of some faults
decreasing the number of faults to be simulated. Infor-
mation is updated on the fault database.

4) Good Simulation: fault-free behavior of design is simu-
lated. The user should define observation points in the
design to identify: (1) Fault propagation to a functional
output: functional strobes; (2) Activation of the Safety
Mechanism: checker strobes. The values of the Strobes
during good simulation are stored.

5) Fault Injection Simulation: For each fault in the fault
database, the design faulty behavior is simulated, and
the observation points compared against the reference
values from the Good Simulation. The behavior of the
design under each fault is analyzed and stored.

FI Simulation determines the behavior change provoked by
a fault when the effect is observable in one of the outputs
(strobes). If the fault effect is observed in a Functional Strobe,
the fault is considered Dangerous. If the effect is perceived
in a Safety Mechanism Strobe, the fault is classified as
Detected. Faults that don’t produce changes in the strobes are
classified as Undetected. This is considered a weak result of
the simulation, as a different test may cause fault propagation.

Differently from formal methods that only considers char-
acteristics of the netlist, the simulation also reflects the test
stimuli (workload deployed for simulation) effect for fault
behavior analysis. This property allows the characterization
of the workload concerning fault activation and propagation,
as described in Section III-B.

III. FLIP FLOP WEIGHTING METHODOLOGY

Fault analysis targeting ISO26262 compliance aims to
identify faults that can propagate to safe-related outputs of
the system. As these faults may disturb a Safety Goal, the
design should include mechanisms to detect and control them
maintaining a safe state. The propagation of the fault effect
depends on the hardware characteristics and the stimuli applied
to the netlist. These two aspects are fundamental to understand
the behavior of a design under the influence of faults.

Aiming to provide an estimation regarding the number
of Detected faults, without the need to execute a full Fault
Injection campaign, we propose the Flip Flop Weighting
methodology. Figure 2, illustrated the proposed flow. Initially,
weights for selected hardware nodes are calculated based
on the netlist characteristics. After, we cover the workload
contribution by analyzing fault activation and the propagation
of the selected hardware nodes to the circuit outputs. The
combination of netlist and workload characterization allows

Fig. 2. Flip Flop Weighting Methodology Flow.

the estimation of Detected faults for a given hardware netlist
and workload.

A. Netlist Characterization

The netlist characterization examines the number of faults
that can reach each sequential element of the design. Thus, we
can calculate a weight representing all fault nodes as a function
of the sequential elements. The netlist characterization is based
on the physical attributes of the hardware design and doesn’t
consider the influence of the workload. Formal Methods were
the selected technology to extract the required information
from the netlist. This work deploys the Functional Safety
Verification (FSV) application from Cadence®JasperGold (JG)
Formal Verification Platform.

As required by ISO26262, we must consider all cell ports
on the Gate-level representation of the design as fault nodes.
Therefore, the netlist characterization analyzes the results of
the elaboration of the Gate-level circuit description. All cell
ports are identified and included in the fault list as targets
for Stuck-at-0 and Stuck-at-1 fault models. Next, the fault list
is optimized with the results of the Structural Analysis, as
described in II-A1. Formal Methods can prove that Safe faults
cannot propagate to design outputs. Therefore, these faults can
be ignored during the netlist characterization reducing the fault
propagation estimation error.

The next step is the analysis of the Cone of Influence
(CoI) of each prime propagation node. The CoI is a list with
all the fault nodes with a physical connection to a given
hardware element. In general, the CoI analysis is based on the
primary outputs of the design, aiming to identify Safe faults.
However, this work deploys the CoI analysis to understand the
propagation of faults to particular hardware components. The
formal tool enables the identification of all sequential elements
in the hardware design. From these, we classify all Flip Flops
and primary output ports as prime propagation nodes. In this
context, the output ports are included with the Flip Flops to
cover any fault nodes with a direct connection to the primary
outputs. For each component classified as a prime propagation
node, the analysis continues as follows:

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Flip Flop Cone of Influence example.

1) Extract the fault nodes inside the CoI
2) Remove sequential elements as they are part of the prime

propagation nodes list
3) Compute all remaining fault nodes
After the analysis of all prime propagation nodes, we have

collected the required information for calculation of the Flip
Flop Weights. The FF Weight represents the number of faults
that can propagate to a given Flip Flop. A fault node that
propagates to only one FF has a weight contribution of one.
Faults nodes with a physical propagation path to multiple FFs,
need to have their weight contribution calculated based on the
number of FFs they can affect. Figure 3 illustrates the FF
Weight contribution on an example circuit.

Figure 3 shows an example design containing Flip Flops
(DFF) and gates (g). The figure also highlights the Cone of
Influence (CoI) of each FF. The solid pattern represents the
CoI of ’DFF1’, while the checkered pattern represents the
CoI of ’DFF2’. The gate ’g1’ is inside both CoI, implying
that a fault in its ports can affect both ’DFF1’ and ’DFF2’.
As previously described, a fault node that propagates to only
one FF has a weight contribution of one. Considering that
each gate (g) contains three fault nodes, we can calculate that
’DFF1’ has a starting weight of six, from the faults in ’g0’
and ’g2’, while ’DFF2’ has a starting Weight of 6, from the
faults in ’g3’ and ’g4’. To calculate the weight contribution
of ’g1’, as it is inside of multiple CoI, we need to divide the
number of fault nodes by the number of FF they can affect.
In the example, as ’g1’ is inside two CoI, any fault node in
the gate will have a weight contribution of 0,5. Consequently,
’g1’ will have an addition of 1,5 to ’DFF1’ and ’DFF2’. It
is important to highlight that this analysis should be repeated
to every analyzed fault model. Finally, considering a single
fault model, the netlist characterization of the example design
would result in a final FF Weight of 7,5 for both ’DFF1’ and
’DFF2’.

The netlist characterization will result in a representation
of the fault propagation potential of a given circuit, by only
their prime propagation nodes (flip flops and primary outputs).
Each prime propagation node will have a Weight that expresses
the number of faults factored by the node. Therefore, we can
estimate the classification of all fault targets in the design by

Fig. 4. Fault Activation and Propagation example.

analyzing fault effects in the prime propagation nodes. After
understanding how the physical characteristics of the circuit
impact in the fault behavior, it is necessary to compute the
contribution of the workload regarding fault activation and
propagation.

B. Workload Characterization

The workload has an essential role in fault classification
analysis. The stimuli applied by the Testbench for simulation
of the circuit behavior determine if a fault node will be
activated and also how a fault will propagate. The combination
of test inputs will determine the logic value on the gate ports.
In case this value is a constant, a stuck-at-fault with the same
logic value is never activated. Also, the test inputs can put the
design in a state that can mask the propagation of fault effects.
Therefore, the workload analysis is essential to understand
how a fault can affect the behavior of a given circuit.

The chosen technology for the analysis of the workload
is Fault Injection Simulation. By deploying FI Simulation, it
is possible to determine the effect that a fault produces by
comparing the behavior of the design with and without the
fault injection. Our work deploys Cadence®Xcelium™Fault
Simulator (XFS) as the representative of this technology.

1) Fault Activation: The test stimuli applied to the circuit
will determine if a fault will be activated. Hence, aiming to
identify fault nodes that are not stimulated by the current
workload, we need to analyze the inputs of the circuit during
the simulation.

The fault activation analysis starts by identifying test inputs
that are constant during the simulation of the design. Then, this
information is applied to perform the testability analysis. The
testability analysis identifies faults that are unobservable for
a given workload. Figure 4-a, illustrates an example of fault
activation analysis. In the example, a fault node ’fa’ depends
on the values ’in0’ and ’in1’ to be activated. Any combination
of the inputs that produce a logic value zero, in the output of
the gate ’g0’, results in an unobservable Stuck-at-0 fault in
’fa’. The same would be true for a Stuck-at-1 fault if ’g0’
outputs a constant logic value one.

By examining all test inputs and identifying signals that
are constants throughout the circuit, it is possible to classify

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

several fault nodes that are unobservable for a specific fault
model. As the workload never activates these fault nodes,
we can conclude that they will never propagate to circuit
outputs during Fault Injection Simulation. Therefore we can
determine that these faults will be Undetected when simulating
the current workload.

After identifying all unobservable fault nodes for a given
workload, we need to consider them for the Flip Flop Weight
calculation. All faults identified as unobservable will have a
Weight contribution of zero. Consequently, we can recalculate
the Flip Flop Weight from the netlist characterization step,
with the inputs from the activation analysis. The result Flip
Flop Weight is a representation of the circuit comprising the
workload stimuli information.

2) Fault Propagation: After calculating the fault weight
of each prime propagation node and optimizing the results
by computing the contribution of not activated faults, we
need to investigate the effects of fault propagation. The fault
propagation analysis starts by identifying a fault target for each
prime propagation node. In general, the fault targets will be
the output port of Flip Flops and the primary output ports of
the circuit. Next, the propagation of each prime propagation
node is determined by Fault Injection Simulation.

Figure 4-b illustrates the propagation of a fault ’fo’ injected
in the output port of ’DFF1’ to the circuit output ’out1’.
The observability of the effects of ’fo’ in ’out1’ depends on
the logic level of the gates ’g3’ and ’g5’. As the workload
is responsible for setting the logic level of these gates, the
simulation can confirm the propagation of the fault to the
output.

C. Estimation of Fault Injection Results

With the determination of the fault effects on the prime
propagation nodes, we can estimate the fault classification for
all faults in the circuit. For example, ’DFF1’ in Figure 4-b has
a final Flip Flop Weight of 9, and the fault classification of a
fault injected in ’DFF1’ output is Detected; in such a case, we
can conclude that the annotation Detected, is valid for the all
faults represented by ’DFF1’. By repeating this analysis to all
prime propagation nodes, we can estimate the classification of
all faults in the circuit.

IV. RESULTS

The validation of the proposed methodology consists of a
comparison between estimated fault classification results and
actual fault injection results on target designs. By incorporat-
ing the actual results, we can analyze the estimation error rate
and also the performance improvements achieved by the Flip
Flop Weighting. The selection of the target designs objects
to include circuits with different physical characteristics and
multiple simulation workloads. The ac97 is an Audio Codec
Controller IP compatible with a wishbone bus. It includes
a functional testbench that verifies all circuit functionalities
and an ATPG simulation environment [18]. The conmax is an
interconnect matrix IP core featuring a parameterized priority-
based arbiter, including a functional testbench [18]. Finally, the

TABLE I
DETAILED AUTOSOC WEIGHTING ANALYSIS

AutoSoC
Analysis (SA0/1)

Prime
Nodes

Total
Weight

Max
Weight

Average
Weight

Netlist
Characterization 4648 83427 1806,4 33,8

NL+WL
helloWorld 4648 66240 1232,2 26,8

NL+WL
calcPrime 4648 67314 1301,9 27,3

NL+WL
Test Library 4648 76110 1806,4 30,8

AutoSoC is an open-source initiative for an automotive SoC
benchmark suite. The AutoSoC CPU is based on an OpenRISC
implementation, it includes a full automotive SoC with several
simulation features and workloads [19].

Table I details the results of the netlist characterization and
the combination between netlist (NL) and workload (WL)
characterizations for the AutoSoC. The results from the netlist
characterization highlight the fault propagation potential of the
circuit. If a workload could activate and propagate all faults
in the design, the Total Weight would describe the number
of detected faults as it represents the total number of fault
nodes after the Structural Analysis optimizations. The column
Max Weight promotes the identification of critical nodes in the
design, as it illustrates the maximum weight in a single node.
The workload characterization step recalculates the parame-
ters considering the activation of fault nodes. Therefore, the
NL+WL rows represent the maximum fault detection coverage
when simulating the given workload. These parameters can
be applied to rank the workloads by their fault detection rate
potential. The workload with resulting parameters closest to
the netlist characterization parameters will be most likely to
have higher fault detection rates.

The FI Simulation employs SA0 and SA1 faults on every
cell port of the Gate-level representation of the hardware de-
signs. At the end of each campaign, we collect the actual fault
classification results for comparison with the estimated results
from the Flip Flop Weighting analysis. Table II summarizes
the results, the columns labeled as ”Actual” represents the
results from the FI Simulation, while the columns labeled as
”Estimated” outlines the results from the Flip Flop Weighting.
As illustrated in II-B, the classification of a fault depends on
the configuration of the strobes. To facilitate the evaluation
of the methodology, a single strobe type is declared in the
FI Simulation. Therefore, all fault effects observable in the
strobes are classified as Detected.

The execution time of the FI Simulation campaigns depends
on several factors. However, the most critical parameter is the
availability of resources for executing parallel simulations. For
the designs with a faster simulation time, the ac97 and the
conmax, the FI Simulation campaign is configured sequen-
tially, resulting in execution time in the granularity of days to a
week. For the AutoSoC, which contemplates the simulation of
a full SoC, the FI simulation is configured in concurrent mode,
executing up to 100 faults in parallel, resulting in execution

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RESULTS SUMMARY

Design Workload Total Faults
SA0/SA1

Actual
Detected

Actual
Detected (%)

Estimated
Detected

Estimated
Detected (%)

Estimation
Error

Exec. Time
Improvement

ac97 Funct TB 57220 39863 69,67% 42166 73,69% 4,02% 8,5X
ATPG TB 57220 57091 99,77% 56923 99,48% -0,29% 5,8X

conmax Funct TB 153454 123796 80,67% 133762 87,17% 6,49% 12,8X

autoSoC
helloWorld 96354 38964 40,44% 41109 42,66% 2,23% 17,8X
calcPrime 96354 45362 47,08% 46198 47,95% 0,87% 19,1X

Test Library 96354 61230 63,55% 67083 69,62% 6,07% 20,4X

times in the granularity of weeks to a month. In all cases,
the Flip Flop Weighting technique execution time is faster
than the FI Simulation campaigns. Table II highlights the main
achievements from the validation of the Flip Flop Weighting:

• Accuracy: The column ”Estimation Error” highlights the
difference between the Estimated fault detection rates and
the Actual fault detection;

• Efficiency: The column ”Exec. Time Improvement” notes
the performance gain when deploying the proposed
methodology.

As illustrated in Table II, the results achieved by the pro-
posed methodology are encouraging. The Flip Flop Weighting
estimates fault detection rates with an accuracy between 0,2%
and 6,4%, with an up to 20X faster execution times. These
figures allow for a confident design space exploration of a
hardware design concerning the safety metrics. By deploying
such a technique, safety-engineers can explore diverse archi-
tecture possibilities with a higher degree of certainty. Even
though the hardware design must undergo Functional Safety
verification at the final stages of development, the feasibility of
an early estimation of the safety-metrics sustains safety-related
architectural decisions. The next step of our work is to explore
alternatives for fault propagation analysis. Even though FI
Simulation is a powerful option, it demands long execution
times for gathering the classification of the prime propagation
nodes. An alternative technique could improve our efficiency,
enhancing the potential of the proposed methodology.

V. CONCLUSIONS

Functional safety verification is a critical step for ISO26262
compliance. At later stages of safety-critical systems develop-
ment, designers must analyze the behavior of the design under
the effect of faults to show conformity with the expected safety
metrics. Failing to achieve these conditions entails additional
iterations through critical development and verification phases.
Our work proposes a methodology for the design space
exploration of safety architectures. By allowing engineers to
estimate safety metrics before the final development stages,
we provide a tool for the investigation of safety architectures,
improving the confidence in conceptual decisions and decreas-
ing the chances of rework. Even though our work targets
Automotive applications, it also applies to other safety-critical
domains with similar requirements as Aviation, Medicine,
Space, among others. Our results demonstrate the accuracy of
the technique by providing an estimation of the fault detection
rate with an average error of 3%. Moreover, the methodology

results in an execution time up to 20X faster when compared
with the traditional Fault Injection campaigns.

ACKNOWLEDGMENT

This research was supported by project RESCUE funded
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sklodowaska-Curie grant
agreement No 722325.

REFERENCES

[1] A. Nardi and A. Armato, “Functional safety methodologies for auto-
motive applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, nov 2017.

[2] S. Pateras and T.-P. Tai, “Automotive semiconductor test,” in 2017
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT). IEEE, apr 2017.

[3] D. Alexandrescu, A. Evans, M. Glorieux, and I. Nofal, “EDA support
for functional safety — How static and dynamic failure analysis can
improve productivity in the assessment of functional safety,” in 2017
IEEE 23rd International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE, jul 2017.

[4] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu,
“Assessing automotive functional safety microprocessor with ISO 26262
hardware requirements,” in Technical Papers of 2014 International
Symposium on VLSI Design, Automation and Test. IEEE, 2014.

[5] F. Augusto da Silva, A. C. Bagbaba, S. Sartoni, R. Cantoro, M. S. Re-
orda, S. Hamdioui, and C. Sauer, “Determined-safe faults identification:
A step towards ISO26262 hardware compliant designs,” in 2020 IEEE
European Test Symposium (ETS). IEEE, may 2020.

[6] M. Syal and M. Hsiao, “New techniques for untestable fault identi-
fication in sequential circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1117–1131,
jun 2006.

[7] H.-C. Liang, C. L. Lee, and J. Chen, “Identifying untestable faults in
sequential circuits,” IEEE Design & Test of Computers, vol. 12, no. 3,
pp. 14–23, 1995.

[8] F. Augusto da Silva, A. C. Bagbaba, S. Hamdioui, and C. Sauer,
“Combining fault analysis technologies for ISO26262 functional safety
verification,” in 2019 IEEE 28th Asian Test Symposium (ATS). IEEE,
dec 2019.

[9] S. Marchese and J. Grosse, “Formal fault propagation analysis that scales
to modern automotive socs,” in 2017 Design and Verification Conference
and Exhibition (DVCon) Europe, 2017.

[10] A. Bernardini, W. Ecker, and U. Schlichtmann, “Where formal verifica-
tion can help in functional safety analysis,” in Proceedings of the 35th
International Conference on Computer-Aided Design - ICCAD. ACM
Press, 2016.

[11] E. Kang, E. Jackson, and W. Schulte, “An approach for effective design
space exploration,” in Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems. Springer Berlin
Heidelberg, 2011, pp. 33–54.

[12] S. Chtourou and O. Hammami, “SystemC space exploration of behav-
ioral synthesis options on area, performance and power consumption,”
in 2005 International Conference on Microelectronics. IEEE.

[13] B. C. Schafer, “Probabilistic multiknob high-level synthesis design space
exploration acceleration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 3, pp. 394–406, mar
2016.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

[14] K. Roy, H. T. Mert, and M. Swaminathan, “Preliminary application of
deep learning to design space exploration,” in 2018 IEEE Electrical
Design of Advanced Packaging and Systems Symposium (EDAPS).
IEEE, dec 2018.

[15] J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko, “Untestable fault
identification in sequential circuits using model-checking,” in 2008 17th
Asian Test Symposium. IEEE, nov 2008.

[16] G. Cabodi and M. Murciano, “BDD-based hardware verification,” in
Formal Methods for Hardware Verification. Springer Berlin Heidelberg,
2006, pp. 78–107.

[17] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Multiway
decision graphs for automated hardware verification,” Formal Methods
in System Design, vol. 10, no. 1, pp. 7–46, 1997.

[18] C. R. Berkeley, “International Workshop on Logic and Synthesis (IWLS)
2005 benchmarks,” Tech. Rep., 2005.

[19] F. Augusto da Silva, A. C. Bagbaba, A. Ruospo, R. Mariani,
G. Kanawati, E. Sanchez, M. Sonza Reorda, M. Jenihhin, S. Hamdioui,
and C. Sauer, “Special session: AutoSoC - a suite of open-source
automotive SoC benchmarks,” in 2020 IEEE 38th VLSI Test Symposium
(VTS). IEEE, apr 2020.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on August 09,2021 at 13:32:55 UTC from IEEE Xplore. Restrictions apply.

