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Abstract

Because of the increasing influence of greenhouse gases on the environment, the world is
transitioning from fossil fuels to renewable energy sources. Among these renewable energy
sources, wind energy is one of the biggest contributors to the current power network. With the
increasing use of wind energy as a power source, new challenges arise. One of these challenges
is maintaining a stable power grid. On the power grid, the amount of energy generated and
consumed should be in balance. As wind power has a unpredictable and fluctuating nature,
it is presumable that its increasing use makes it problematic to maintain this balance. As
most wind energy is generated at sites consisting of multiple wind turbines, called wind farms,
this thesis focuses on these sites to overcome this problem. In this thesis model predictive
control (MPC) strategies are introduced that not only stabilize the power produced by wind
farms, but also create the possibility to perform power reference tracking with wind farms.
With power reference tracking, it is possible for grid operators to adapt the power production
to a change in the power demand and to counteract fluctuations introduced by other power
generators. The model used within these controllers, is a control-oriented low-fidelity wind
farm model, that is developed in this thesis. In this control model, the wake dynamics are
taken into account. Wakes are areas downwind from turbines with decreased wind speed and
increased turbulence. These wakes cause the wind turbines within a wind farm to influence
each other. It is envisioned that taking these effects into account, will benefit the tracking
quality of the controller. Because with centralized MPC it becomes problematic to provide
real-time control for large wind farms due to the large order of the controller model required for
such wind farms, also distributed controllers are proposed within this thesis. With distributed
control, the central control problem is divided into smaller local control problems that will be
solved on local controllers that communicate with each other. This makes it possible to also
solve large complex control problems in real-time. An additional benefit of distributed control,
is that if one of the local controllers fails, the rest of the wind farm can still be controlled. This
makes the system more fail-safe. The control model and controllers introduced in this thesis
are validated in a medium-fidelity wind farm model called WindFarmSimulator (WFSim) [1].
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Chapter 1

Introduction

With the increasing influence of greenhouse gases on the environment around the world, it
is important to make the switch from fossil fuels to renewable energy sources. According
to data from Eurostat [3], some countries, such as the Netherlands, still have a lot of work
to do to make this switch. In 2016 only 6% of the Dutch gross final production of energy
was from renewable sources. Fortunately, a lot of countries are on the way to become less
dependent on fossil fuels. Among the renewable energy sources, wind energy is one of the
biggest contributors to the current power network. In the EU-28 in 2016, 9.6 % of the
electricity was produced from wind power [3]. Only hydro power had a bigger share with
10.8% [3].

The Need for Active Power Control (APC)

With wind power becoming a bigger source of energy, new challenges arise. As explained by
the North American Electric Reliability Corporation (NERC) [4], the power demand on the
electricity grid is constantly fluctuating. Power sources and loads should be able to counteract
such fluctuations in order to keep the power line frequency constant. This is called frequency
control. According to the NERC, for most sources it is easy to provide frequency control
services. However, as stated by Ela et al. [5], for wind turbines it is more difficult. The
amount of power they supply is dependent on the wind speed. They explain that, because of
the fluctuating nature of the wind speed, the available power at wind turbines is constantly
fluctuating. Because of this, it is not only difficult for wind turbines to provide frequency
control services, but they even increase the instability on the grid [5]. Ela et al. state that,
with the current share of electricity from wind turbines, this is not yet a problem. However,
with the increasing amount of wind turbines, this can become a problem in the future [5]. A
solution is not only stabilizing the power output from wind turbines, but even letting wind
farms provide frequency control services via (advanced) control methods. Methods that strive
to do this by controlling the power output, are called active power control (APC) methods.
According to Ela et al., APC can cause wind energy to become a more attractive source of
energy. However, such APC architectures can be difficult to design. This is not only caused
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2 Introduction

by the fluctuating nature of the available power at the turbines, but also because most wind
turbines are placed together in so called wind farms. In Europe these wind farms nowadays
consist of up to 175 turbines [6]. In these wind farms the wind turbines influence each other
via their wakes as can be seen in figure 1-1. Wakes are regions, which can be found downwind
the turbines, having increased turbulence and decreased wind speed, also called wind speed
deficit. Modeling these wakes is an active field of research since not all wake dynamics are
precisely known yet. These wakes make the dynamics within a wind farm complex and make
it challenging to design an APC controller for wind farms. More research is needed in order
to design a proper functioning APC controller for wind farms.

Figure 1-1: Photography of Horn Rev 1 offshore wind farm [2].

Because of these reasons, this thesis will focus on APC or more specifically wind farm power
reference tracking.

Literature on APC

Multiple papers have been written in which APC controllers are designed. Hierarchical control
is among the popular choices. In these controllers a central controller will generate a control
signal that is equal to the total desired power output of the wind farm. This control signal is
divided over the individual wind turbines. At these turbines local controllers will make sure
that the control signals are tracked by the wind turbines.

One of such controllers is designed by A.D. Hansen et al. [7]. In this controller the control
signal, coming from a central proportional-integral (PI) controller, is distributed over the
wind turbines proportional to the available power at each wind turbine. The available power
is the maximum amount of energy that can be generated at a given wind speed. Similar
controllers have been designed by H. Badihi et al. [8]. H. Badihi et al. proposed both a
fuzzy gain scheduled PI and an adaptive pole placement controller as central controller to
account for the non-linear behavior of wind farms. Another hierarchical controller has been
designed by J.W. van Wingerden et al. [9]. Here the control signal is divided equally over the
wind turbines. The central controller is a gain scheduled PI controller of which the gain is
increased when turbines reach their maximum available power. In this way the other turbines
will compensate for the lower power production of these turbines. All of these controllers
have been tested successfully in simulation models.

V. van de Scheur Master of Science Thesis



3

Another popular control architecture for power reference tracking in wind farms is model
predictive control (MPC). MPC relies on models of the to be controlled subject, in order
to find optimal control actions. An advantage of such a controller is that it is possible to
apply constraints on control signals and states. Furthermore, it is possible to put a weight
on different variables such that one controller can focus on multiple goals. Additionally, as
it takes time for wake effects to travel from wind turbine to wind turbines, the dynamics
between the wind turbines are delayed. As MPC can cope well with such delayed dynamics,
it is possible to take the interaction between the wind turbines into account by including
a wake model in the controller model. It is envisioned that taking these interactions into
account will be beneficial for the tracking quality of the controller. Because of these reasons,
MPC is seen as a very promising control technique for APC in wind farms.
One of such controllers has been designed by S. Boersma et al. [10]. This controller consists
of two control loops. One focuses on maximizing the available energy in the wind farm by
yawing the rotors, whilst using the wind farm model called FLOw Redirection and Induction
in Steady-state (FLORIS). This model takes the steady-state wake effects into account [11].
The other loop focuses on power reference tracking, whilst keeping the change in trust force
to a minimum to reduce the fatigue damage. This second loop does not utilize a wake model,
but models the farm with uncoupled parameter varying wind turbine models with the wind
as scheduling variable. This controller has been validated in a Large Eddy Simulation (LES)
study. Also S. Siniscalchi-Minna et al. [12] designed a control scheme utilizing MPC. This
MPC scheme focuses on both maximizing the available power in the wind farm and minimizing
the tracking error. This controller has been applied to a simplified wind farm model. However,
both controllers do not utilize a wake model to obtain the optimal control sequence that will
minimize the reference tracking error. This means that the interaction between the wind
turbines is not taken into account.
Because it is interesting to research if taking the wake dynamics into account will improve
the tracking quality of the controller, C.R. Shapiro et al. designed a MPC scheme in which
a wake model is used for reference tracking [13]. This controller was tested successfully in a
high fidelity model. With this controller the wind farm was able to temporally produce more
power than it would have produced when all the turbines would operate at their individual
theoretical optimum, i.e. the so called Betz limit. This amount of power will be denoted by
P greedy. Before a reference exceeds this Pgreedy, the controller decreases the power extraction
of the upwind turbines and increases the power extraction of the downwind turbines. In
this way, more wind power will flow into the farm. This power will then be available to the
downwind turbines at the time at which Pgreedy is exceeded. Because of this, less de-rating
is needed with this controller. However, also controllers without wake models, for example
the controllers by S. Boersma, were able to exceed this limit for a limited amount of time.
More research is needed to prove that including the wake effects in the controller will lead
to a controller that requires less de-rating and is better able to follow reference signals that
exceed P greedy. Interesting to point out is that C.R. Shapiro et al. also designed a MPC
in which the rotational kinetic energy of the rotors is modeled [14]. This makes it possible
for wind turbines to store energy in their rotors. It is expected that doing so will cause the
wind farm will be able to exceed P greedy even more, such that even less de-rating is needed.
Unfortunately, this controller has only been tested in the same model as the controller model
[14].
In the controllers mentioned above centralized control is used. According to T. Knudsen et
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al. [15], it is interesting to use distributed control in wind farms, as for large wind farms
centralized control can become too computationally complex for real-time applications. It is
stated that distributed control can reduce the complexity of the global control problem. The
problem is separated over multiple controllers, thus requiring less computational resources per
controller. Furthermore, distributed control is more fail safe [15]. With centralized control,
if the central controller fails, the entire system fails. If one of the distributed controllers
fails, the system can still be controlled. Also distributed controlled wind farms are easier
to expand [15]. However, the performance of distributed control can be worse than that of
centralized control [16]. Therefore, it is important that, if distributed control is used, this
loss in performance is kept to an acceptable limit. Because of the reasons mentioned above,
also multiple controllers using distributed control can be found in literature.

One such controller is a distributed H2 controller designed by M. Soleimanzadeh et al. The
controller has been tested in the same model that is used to synthesize the controller. Stronger
conclusions can be made on the performance of the control architecture, if the controller is
tested in a different model. However, the model did perform well in the model in which it
was tested.

In multiple papers on APC, distributed model predictive control (DMPC) is used. H. Zhao
et al. proposed a DMPC control scheme for a wind farm equipped with an energy storage
system. A disadvantage of such a system, is that an energy storage system can be a costly and
environmentally unfriendly factor. V. Spudić et al. [17] has also proposed a DMPC scheme.
In this scheme no energy storage system was used. In both the controller by H.Zhao et al. and
V. Spudić et al. no wake model has been included, which means that the interaction between
the turbines is not taken into account. In a paper by C.J. Bay et al., a distributed controller
that does take these effects into account has been designed. This controller has been tested
in a low fidelity wind farm model. In these simulations, tracking errors were noticed. The
validity of the wake model used in the controller may be compromised by the approximations
and assumptions made to derive it. As the controller has only been tested in a low fidelity
wind farm model, it is hard to make conclusions on the performance in real life conditions.

Goal of This Thesis

As stated above, previously a distributed model predictive control (DMPC) architecture that
incorporates a dynamic wake model has been designed. However, to the best knowledge of
the author of this thesis, no such controller has been designed that is successfully tested in
a medium or high fidelity model. Therefore and because of the reasons stated above, this
thesis will focus on designing such a controller and validating it in a medium or high fidelity
model. Furthermore, it is also desired by the author of this thesis that the controller is able
to provide real-time control. In the context of this thesis, real-time means that the time to
update the control signals is smaller than the sample time of the controller.

To achieve this goal, in this thesis, not only the controller is designed, but also the controller
model used in this controller. This model is a low-fidelity control-oriented wind farm model.
This model is tested against data from the medium fidelity model called WindFarmSimulator
(WFSim) [1]. This model will be used as a controller model in a centralized and distributed
model predictive controller. These controllers are also validated in WFSim.
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In chapter 2, the wind farm model is derived and validated, in chapter 3, the controllers are
designed, in chapter 4 the controllers are tested in WFSim and compared to a MPC controller
designed by S. Boersma et al. [10], in chapter 5 the conclusions that can be drawn from this
the results are stated and, finally, in chapter 6 the proposed controller model and controller
are discussed and recommendations are made.
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Chapter 2

Wind Farm Model

As model predictive control (MPC) utilizes a controller model to estimate future system
outputs in order to obtain optimal control sequences, a wind farm model is needed to create a
MPC architecture for active power control (APC) in wind farms. In this chapter such a model
is sought. First of all, requirements are set on the controller model. After this, it is researched
if a controller model that conforms to these requirements can be found in literature or that a
new control-oriented model needs to be developed. Through this research, it is decided that
a new control-oriented model will be developed. The rest of this chapter will focus on the
development and validation of this model.

Requirements

Certain requirements are set on the controller model. First of all, the model is preferred
to be linear, as this would create the opportunity to use linear MPC techniques. These are
generally computationally faster than non-linear MPC techniques [18]. Because the goal of the
thesis is to achieve real-time control, the computational speed of the algorithm is important.
Also, linear MPC techniques are able to guarantee global optimality, whereas non-linear MPC
techniques are generally not able to do so.

To achieve real-time control, the controller should be computationally fast. Since the con-
troller contains a controller model, consequently also this model should be fast. Wind farm
models can be classified into low, medium and high fidelity models, low fidelity meaning least
precise and high fidelity meaning most precise. As high fidelity models have simulation times
in the order of hours, medium fidelity in the order of seconds to minutes and low fidelity in
the order of milliseconds to seconds, a low fidelity model is required for real-time control. Low
computational complexity implies that the amount of states in the model should be limited.
Also sparsity of used state-space matrices can contribute to low computational complexity.

Also, within a wind farm the air flow is mostly dynamic, i.e the wakes are under constant
influence of wake meandering and turbulence. Furthermore, it takes time for the wake effects
to travel through the wind farm, i.e. there is a time delay in the interaction between the wind
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8 Wind Farm Model

turbines. It is envisaged that the MPC controller can take advantage of dynamic these effects
as shown in a paper by Shapiro et al. [13]. In this paper a controller is developed that takes
the wake dynamics into account. This controller down-regulates the upwind turbines in the
farm before an increase in the reference signal. In this way the wind speed in the wakes of the
wind turbines will be higher, and thus more power will flow to the downwind turbines. As it
takes time for the wakes to travel through the wind farm, this power will be available to the
downwind turbines when the increase in the reference happens. Most low fidelity wind farms
models, however, assume steady state conditions and, thus, include none of these dynamic
effects. To take advantage of the wake dynamics in the same way as is done in the paper
by Shapiro et al., it is deemed important that at least the time delay in these interaction is
taken into account in the controller model.

In addition, as the goal of this thesis is to accurately track a power reference, it is necessary
to have the power as the output of the model. Furthermore, were in reality mostly the blade
pitch angle and the generator torque are used to control wind turbines, in this thesis, it is
required that the input to the model is either the thrust coefficient CT or the power coefficient
CP , as defined in the Actuator Disk Model (ADM) [19]. This will reduce the complexity of the
problem at hand. Also, as shown by L.A. Martínez et al. in a Large Eddy Simulation (LES)
study, the ADM model performs well on simulating far wake dynamics [20]. As the influence
that the wind turbines within a wind-farm exert on each other is governed by the far wake
dynamics, the ADM will be sufficient for this project. It is possible to see the controllers
developed in this thesis as wind farm level controllers that work on top of local controllers
that steer the turbines to the demanded CT or CP . A disadvantage to this, is that using CT or
CP as input implies that the turbine dynamics can not be used to work in favor of the power
tracking performance of the wind farm. An example of how the turbine dynamics could be
used in such a way is given in a paper by Shapiro et al. [14]. In the controller developed in
this paper, kinetic energy is stored in the rotors of the wind turbines to be able to temporally
increase the power production of the wind farm when needed. Nevertheless, as the focus of
this project is the effect of a wake model on the controller performance, it is chosen to use
the ADM model. Future research could focus on also incorporating turbine dynamics in the
wind farm controller. Lastly, the model should be able to give estimates of the power outputs
that are accurate enough such that a MPC scheme, in which the model is used, can provide
proper reference tracking.

Models Found in Literature

A low fidelity wind farm model is FLOw Redirection and Induction Dynamics (FLORIDyn)
designed by P.M.O. Gebraad and J.W. van Wingerden based on the Jensen’s model [21]
and a wake deflection model introduced by Jiménez et al. [22, 23]. This model is able to
capture the dynamical behavior of the air flow with the use of operational points. This
model was validated against LES data for a 2 by 3 turbine wind farm. A dynamical wind
farm model developed by C.R. Shapiro et al. is also based on the Jensen’s model [13]. Also
this model has been validated in against LES data for a wind farm consisting of 14 by 10
turbines. Another model developed by Soleimanzadeh et al. [24] is based on the spatial
discretization of the linearized Navier-stokes equations. This model is able to approximate
measurements taken from a real 1x5 wind farm. Unfortunately, all of these models contain
non-linearities. Therefore, other models were sought However, models that complied with all
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2-1 Model development 9

of the set requirements were not found. Because of this reason it has been decided to develop
a new low fidelity linear dynamical wind farm model that can be employed in an MPC that
can provide APC.

In section 2-1, this linear control-oriented model is developed. In section 2-2 the model is
compared to WindFarmSimulator (WFSim), which is a medium-fidelity, control-oriented wind
farm model based on Navier-Stokes equations [1]. WFSim is easily obtainable via GitHub,
requires little computational power and it is validated successfully against LES data. WFSim
itself is unfortunately too computational complex to use in the MPC scheme, as a farm of
9 turbines already uses up to 1000 states, which is high for a control-oriented model. The
model will be used in a MPC algorithm for APC to achieve secondary frequency control on
the electricity grid as will be detailed in chapter 3.

2-1 Model development

In this section, the control-oriented model will be introduced. The model will consist of a flow
model and a turbine model. The flow model models the flow of air through the wind farm and
the turbine model models the behavior of the wind turbine and the interaction with the air
flow. The flow model is based on the Frandsen’s flow model [25]. For the turbine model, the
ADM [19] is used. The model is linearized and made dynamic using Taylor’s frozen turbulence
hypothesis [26]. The flow model is developed in subsection 2-1-1 and the turbine model in
subsection 2-1-2. In subsection 2-1-3 the flow model and turbine model are combined. Finally,
in 2-1-4 the model is written in a state-space notation that can be decomposed into smaller
state-space systems to be used in the distributed controllers designed in chapter 3.

2-1-1 Flow model

First the flow model will be defined. The flow model is based on the Frandsen’s model [25].

Row m

Column n

V

Figure 2-1: A wind farm can be divided into rows m and columns n. The wind turbines are
depicted by the vertical black lines.

The model is defined for rectangular wind farms consisting of M parallel and equal rows and
N parallel and equal columns of wind turbines as can be seen in figure 2-1. The wind turbines
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Figure 2-2: Close up on row of wind turbines in high waking conditions.

are depicted by the vertical black lines. The total number of wind turbines in the farm is
denoted by G = N ·M . The rows are indexed with m, where {m ∈ Z|1 ≤ m ≤M}, and the
columns with n, where {n ∈ Z|1 ≤ n ≤ N}. The wind turbines Ti, {i ∈ Z|1 ≤ i ≤ G}, are
numbered consecutively starting at the top row as can be seen in figure 2-1.

Within the proposed model, the interaction between the rows is ignored. Because of this, a
separate model can be defined for each row m. These separate models can then be stacked
together to form a model for the complete wind farm. Below the model will be defined for a
single row m.

In figure 2-2, a close up of a part of one row is given. The wake zone is depicted as the area
within the dotted black lines. The inflow wind speed into each wind turbine is given by Vi.
This wind speed is defined as the wind speed just in front of the rotors, i.e. Vi = VRi/(1−ai),
where VRi is the inflow wind speed defined at the rotor of turbine Ti and ai is the induction
factor at turbine Ti. V∞ is the free-stream wind speed, i.e. the wind speed far in front of the
wind farm. δVi is the wind speed deficit (the amount by which the wind speed is decreased in
the wake) between turbine Ti and Ti+1, i.e. δVi = Vi − Vi+1. Dr is the diameter of the rotors
and δxr is the distance between the turbines. As can be seen the wake zone diameter Dw(x)
gets wider over distance x with a certain slope. This slope increases after each wind turbine
depending on the local turbine setting, i.e. the thrust coefficients CT i.

The wind speed Vi at each downwind turbine in the row will be calculated as follows. The
wind speed at the most upwind turbine, V1, will be taken equal to V∞ and is assumed to be
known. From this wind speed the sum of the wind speed deficits created by all the turbines
upwind form turbine Ti in the row is subtracted:

Vi = V∞ −
i−1∑
j=1

δVj . (2-1)
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To make this equation dependent on time, the Taylor frozen turbulence hypothesis [26] will
be used:

δtj,i = xj,i
V∞

, (2-2)

in which δtj,i is the time it takes for the wake effects to travel from turbine Tj to turbine Ti
and xj,i is the distance between turbine Tj and Ti. Using this assumption, equation 2-1 can
be made dependent on time:

Vi(t) = V∞(t− δt1,i)−
i−1∑
j=1

δVj(t− δtj,i). (2-3)

It can be observed that also V∞ became dependent on time. This can be problematic. Within
MPC future output trajectories are approximated using the controller model. This means
that, it would be necessary to know future values of V∞. It is, however, difficult to make
predictions on V∞. Therefore, it is chosen to assume laminar inflow conditions, which is
equal to making V∞ constant over time. This means that equation 2-3 will transform into

Vi(t) = V∞ −
i−1∑
j=1

δVj(t− δtj,i). (2-4)

With this simplification, the model can be seen as an averaged model, i.e., it provides the
averaged wind speeds. A possible way to also account for turbulent inflow conditions, is to
model V∞ as a stochastic variable. By doing so stochastic MPC strategies can be used as
done in a paper by S. Boersma et al. [27]. This is, however, not considered in this thesis.

In discrete time, equation 2-4 can be written as

Vi[k] = V∞ −
i−1∑
j=1

δVj [k − dj,i], (2-5)

where the difference between time instance k and k + 1 is equal to sample time h, δVj [k] =
Vj [k] − Vj+1[k] and dj,i is the number of samples it takes for the wake effects to travel from
turbine Tj to Ti, i.e.

dj,i = round
(
δtj,i
h

)
. (2-6)

The wind speed deficit δVj [k] will be calculated with the Frandsen’s model [25]. This model
will be linearized to get the linearized wind speed deficit δV̂j [k]. In the Frandsen’s model, the
wind speeds are determined by

Vj+1
V∞

= 1−
(

Aj
Aj+1

(
1− Vj

V∞

)
+ 1

2
AR
Aj+1

CT j
Vj
V∞

)
, (2-7)

where AR is the rotor area, given by AR = π
4D

2
R and Aj is the cross sectional area of the

wake just in front of turbine Tj , which is calculated with Aj = π
4Dw(xj)2, where xj is chosen

just in front of turbine Tj . The formula can be rewritten as

Vj+1 = V∞ −
(

Aj
Aj+1

(V∞ − Vj) + 1
2
AR
Aj+1

CT jVj

)
. (2-8)
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12 Wind Farm Model

Then, when adding time indices and using the definition for the wind speed deficit δVj [k] =
Vj [k]− Vj+1[k], it can be derived that

δVj [k] = Vj [k]− Vj+1[k]

= Vj [k]− V∞[k] + Aj [k]
Aj+1[k] (V∞[k]− Vj [k]) + 1

2
AR

Aj+1[k]CT j [k]Vj [k].
(2-9)

In the Frandsen’s model, the difference in Aj between two wind turbines is given by

δAj = Aj+1 −Aj = 1
2AR

cw
1− cw

CT j , (2-10)

where cw = Vi
V∞

∣∣∣
i→∞

, which is the wind speed at the most downwind turbine in an infinitely
large row of wind turbines relative to the free stream wind speed V∞. This value tends to
converge asymptotically to a constant value and is only marginally dependent on the free
stream wind speed. cw can be determined for a specific wind farm by comparing the model
against test data from that wind farm.

Equation 2-10 can be rewritten as

1− Aj
Aj+1

= 1
2
AR
Aj+1

cw
1− cw

CT j →

Aj
Aj+1

= 1− 1
2
AR
Aj+1

cw
1− cw

CT j ,

(2-11)

Substituting this into equation 2-9, gives

δVj [k] = Vj [k]− V∞[k] +
(

1− 1
2

AR
Aj+1[k]

cw
1− cw

CT j

)
(V∞[k]− Vj [k]) + 1

2
AR

Aj+1[k]CT j [k]Vj [k]

= Vj [k]− V∞[k] + V∞[k]− Vj [k] + 1
2

AR
Aj+1[k]CT j [k]

(
Vj [k]− cw

1− cw
(V∞[k]− Vj [k])

)
= 1

2
AR

Aj+1[k]CT j [k]
(
Vj [k]− cw

1− cw
(V∞[k]− Vj [k])

)
.

(2-12)

Aj+1[k] in this equation can be calculated using the relation

Aj+1[k] = AR +
j∑
l=1

δAl(k − dl,j)

= AR + 1
2AR

cw
1− cw

j∑
l=1

CT l(k − dl,j).

(2-13)

It is chosen not to substitute this equation into equation 2-12, as this would create the
necessity to differentiate with respect to the delayed thrust coefficients of all turbines upwind
from turbine Tj+1 in order to linearize δVj [k]. This would result in a more complicated
equation. Instead, it is chosen differentiate equation 2-12 with respect to Vj [k], CT j [k] and
Aj+1, i.e.
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δV̂j [k] = δVj,0 + ∂δVj
∂Vj

∣∣∣
x0

∆Vj [k] + ∂δVj
∂CT j

∣∣∣
x0

∆CT j [k] + ∂δVj
∂Aj+1

∣∣∣
x0

∆Aj+1[k]

= δVj,0 + 1
2

AR
Aj+1,0

CT j,0

(
1 + cw

1− cw

)
∆Vj [k]

+ 1
2

AR
Aj+1,0

(
Vj,0 −

cw
1− cw

(V∞ − Vj,0)
)

∆CT j [k]

− 1
2

AR
A2
j+1,0

CT j,0

(
Vj,0 −

cw
1− cw

(V∞ − Vj,0)
)

∆Aj+1[k],

(2-14)

where x0 is the linearization point, δV̂j [k] is the linearized version of δVj , ∆Vj is the deviation
from the linearization point Vj,0, i.e. ∆Vj [k] = Vj [k]−Vj,0, ∆CT j [k] is the deviation from the
linearization point CT j,0, i.e. ∆CT j [k] = CT j [k]−CT j,0 and ∆Aj+1 is the deviation from the
linearization point Aj+1,0, i.e. using equation 2-13

∆Aj+1[k] = Aj+1 −Aj+1,0

= AR + 1
2AR

cw
1− cw

j∑
l=1

CT l(k − dl,j)−Aj+1,0,

in which AR is equal to A1,0

Equation 2-14 and the linear version of equation 2-5, i.e.

V̂i[k] = V∞ −
i−1∑
j=1

ˆδV j [k − dj,i], (2-15)

together form the flow model for a single row of wind turbines.

2-1-2 Turbine model

Now that the flow model is defined and linearized, a turbine model is needed to model the
interaction between the turbines and the air flow. It is chosen to use the ADM. This model
approximates the power output of a wind turbine with:

Pi[k] = 1
2ρV

3
i [k]ARCP i[k], (2-16)

where ρ is the air density and CP i[k] is the power coefficient of turbine Ti at time instance
k. However, since in the flow model CT i[k] and not CP i[k] is used, it is practical to adapt
equation 2-16. In the ADM it is stated that CP = CT (1− a), where a is the axial induction
factor. Using this relation it can be concluded that

Pi[k] = 1
2ρV

3
i [k]ARCT i[k](1− ai[k]), (2-17)

where ai[k] is the induction factor at turbine Ti at time instant k.
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ai[k] is taken as a constant equal to the value it has at the linearization point. Then, by
differentiating equation 2-17 with respect to Vi[k] and CT i[k], the next equation is found:

P̂i[k] =Pi,0 + ∂δPi
∂Vi

∣∣∣
x0

∆Vi[k] + ∂δPi
∂CT i

∣∣∣
x0

∆CT i

=Pi,0 + 3
2ρV

2
i,0ARCT i,0(1− ai,0)∆Vi[k]

+ 1
2ρV

3
i,0AR(1− ai,0)∆CT i[k],

(2-18)

in which P̂i is the linear version of Pi and Pi,0 and ai,0 are the linearization points of Pi and
ai.

As can be seen, the input CT i[k] influences the output P̂i[k] directly, i.e. no turbine dynamics
are taken into account. Following W. Munters and J. Meyers [28], in order to add an approx-
imation of the turbine dynamics and to smooth the input signal a first order filter is added
to the system:

τ
dC̃T i[t]
dt

+ C̃T i[t] = CT i[t], (2-19)

in which τ is a time constant and C̃T i[t] is the filtered version of CT i[t]. When discretized
using a zero order hold, the filter is equal to

C̃T i[k + 1] = e−
1
τ
hC̃T i[k] +

(
1− e−

1
τ
h
)
CT i[k]. (2-20)

This filter, the turbine model and the flow model will be combined in the next subsection.

2-1-3 Combining the flow and turbine model

In this subsection, the flow model and turbine model will be put together. First, to account
for mismatches between the model and reality, the tuning variables cV V , cV CT , cV A, cPV and
cPCT are added to the partial fractions from equations 2-14 and 2-18:

∂δVj
∂Vj

∣∣∣
x0

= 1
2cV V

AR
Aj+1,0

CT j,0

(
1 + cw

1− cw

)
∂δVj
∂CTj

∣∣∣
x0

= 1
2cV CT

AR
Aj+1,0

(
Vj,0 −

cw
1− cw

(V∞ − Vj,0)
)

∂δVj
∂Aj+1

∣∣∣
x0

= −1
2cV A

AR
A2
j+1,0

CT j,0

(
Vj,0 −

cw
1− cw

(V∞ − Vj,0)
)

∂δPi
∂Vi

∣∣∣
x0

= 3
2cPV ρV

2
i,0ARCT i,0 (1− ai,0)

∂δPi
∂CT i

∣∣∣
x0

= 1
2cPCT ρV

3
i,0AR (1− ai,0) .

(2-21)

Now, by combining the definitions ∆Vi[k] = Vi[k]− Vi,0, ∆CT i[k] = CT i[k]− CT i,0 and

∆Ai+1[k] = AR + 1
2AR

cw
1− cw

i∑
l=1

CT l(k − dl,i)−Ai+1,0

V. van de Scheur Master of Science Thesis



2-1 Model development 15

with equations 2-14, 2-15, 2-18 and 2-20, the total model becomes:

V̂i[k] = V∞,0 −
i−1∑
j=1

δV̂j [k − dj,i]

δV̂j [k] = ∂δVj
∂Vj

∣∣∣
x0
V̂j [k] + ∂δVj

∂CT j

∣∣∣
x0
C̃T j [k] + ∂δVj

∂Aj+1

∣∣∣
x0

1
2AR

cw
1− cw

j∑
l=1

C̃T l(k − dl,j)

+ cδV j

P̂i[k] = ∂δPi
∂Vi

∣∣∣
x0
V̂i[k] + ∂δPi

∂CT i

∣∣∣
x0
C̃T i[k] + cP i

C̃T i[k + 1] = e−
1
τ
hC̃T i[k] + (1− e−

1
τ
h)CT i[k],

(2-22)

where the partial fractions are given by equation 2-21 and the constant biases cδV j and cP i
are given by:

cδV j = δVj,0 −
∂δVj
∂Vj

∣∣∣
x0
Vj,0 −

∂δVj
∂CT j

∣∣∣
x0
CT j,0 + ∂δVj

∂Aj+1

∣∣∣
x0
A1,0 −

∂δVj
∂Aj+1

∣∣∣
x0
Aj+1,0

and

cP i = Pi,0 −
∂δPi
∂Vi

∣∣∣
x0
Vi,0 −

∂δPi
∂CT i

∣∣∣
x0
CT i,0.

Equation 2-22 gives the model for a single row m of wind turbines within a wind farm. To
make the system valid for wind farms with an arbitrary number of rows, it is necessary to
create such a system for each row m within the wind farm. As the dynamics between the
rows of turbines is not considered, these systems can just be stacked together to form a model
for the complete wind farm.

2-1-4 State-Space Model

To use the model within the MPC, it should be transformed into state-space notation. Because
the model will also be used in a distributed MPC, it is important that it is possible to
decompose it into smaller local subsystems. To achieve this goal, the notation as proposed in
the book written by S. Li and Y. Zheng will be used [16]. First, separate state-space notations
for the local subsystems, consisting of single turbines, will be derived. These state-space
notations, together, form the so called decomposed state-space notation. These state-space
notations can then be stacked together to form the centralized state-space notation, i.e. the
state-space notation of the model of the complete system.

Lets call the complete system developed in the previous section S. If each wind turbine, Ti,
is taken as a subsystem, it can be said that the system S consists of G = N ·M subsystems
Si. Here, as explained before, M is the total number of rows and N is the total number of
columns of wind turbines in the wind farm (see figure 2-1). The rows are indexed by m and
the columns by n. As explained in subsection 2-1-1, the turbines and thus the subsystems
are numbered consecutively starting at the top row. The most upwind subsystem in each
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16 Wind Farm Model

row m will be denoted Sum and the most downwind Sdwm . This means that in a wind farm
with 3 rows and 8 columns of turbines, the subsystems in the first row will be S1 till S8, in
the second row S9 till S16 and in the third row S17 till S24, where Su1 = S1, Su2 = S9 and
Su3 = S17 are the most upwind subsystems and Sdw1 = S8, Sdw2 = S16 and Sdw3 = S24 are
the most downwind subsystems.

The subsystems interact with each other via their states. To explain these interactions, two
new terms are introduced: downstream and upstream. It is important to note that these
terms are different from downwind and upwind. If the states of subsystem Sj are directly
affected by subsystem Si, it is said that subsystem Sj is downstream of subsystem Si and
subsystem Si is upstream of subsystem Sj . Note the difference between the terms downstream
and upstream and the terms downwind and upwind. All the turbines in a row m that are
located behind a turbine Ti in the direction of the air flow are located downwind from Ti.
For example, in figure 2-1, turbines T12 until T16 are located downwind from T11. This does,
however, not mean that the states of all the subsystems downwind from Si are directly affected
by Si. This depends on how the states in the state-space system are designed. Thus, not all
the subsystems downwind from Si are necessarily downstream from Si. It can be said that all
the turbines behind a turbine are downwind and only the ones in that set that are affected
are downstream. θ−i will denote the set of subsystems downstream of Si, θ+i will denote the
set of subsystems upstream of Si and θi = θ+i∪θ−i. Using these sets it is possible to describe
the subsystem Si in state space notation as

xi[k + 1] = Ai,ixi[k] +BiCT i[k] +
∑
j∈θ+i

Ai,jxj [k] + cxi

P̂i[k] = Cixi[k] + cP i,

(2-23)

where xi are the states of subsystem Si, Ai,i ∈ Rnxi×nxi , Bi ∈ Rnxi×1 and Ci ∈ R1×nxi are
the system matrices of subsystem Si that connect the states xi[k] and inputs CT i[k] to the
states xi[k + 1] and outputs P̂i[k]. nxi is the amount of states defined for subsystem Si.
Ai,j ∈ Rnxi×nxj connects the states of subsystems Sj ∈ θ+i to Si. No Bi,j and Ci,j are defined
for j 6= i, because, in the control model defined in this chapter, the inputs and outputs of
the subsystems do not interact directly with the states of other subsystems. cxi and cP i are
constant biases for Si. The states, system matrices and constant biases are defined in detail
in appendix A.

Now the sets θ+i will be defined for each subsystem Si. None of the most upwind subsystems,
Sum ∀{m ∈ Z|1 ≤ m ≤ M}, are affected by any other subsystem. This means that it is
possible to state that θ+um = ∅ ∀{m ∈ Z|1 ≤ m ≤ M}. Because of the way that the states,
xi, of the other subsystems, Si ∀{i ∈ Z|1 ≤ i ≤ G, i 6= um∀m}, are defined in appendix A,
each of these subsystems are only directly affected by the subsystems directly upwind from
it. This means that θ+i = Si−1 ∀{i ∈ Z|1 ≤ i ≤ G, i 6= um∀m}. An visual representation
of an example of such sets is also given in figure 2-3 (Θ+i and Θ−i in this figure are defined
later in this chapter). Using these sets, equation 2-23 can be transformed into

xum [k + 1] = Aum,umxum [k] +BumCT um [k] + cxum

P̂um [k] = Cumxum [k] + cP um
(2-24)

for the most upwind subsystem, Sum , in each row m, where {m ∈ Z|1 ≤ m ≤M}. For all the

V. van de Scheur Master of Science Thesis



2-1 Model development 17

other subsystems, Si, equation 2-23 can be transformed into

xi[k + 1] =Ai,ixi[k] +Ai,i−1xi−1[k] +BiCT i[k] + cxi

P̂i[k] =Cixi[k] + cP i,
(2-25)

where {i ∈ Z|1 ≤ i ≤ G, i 6= um∀m}. This finalizes the derivation of the decomposed
state-space notation.

These state-space notation can be stacked together to form the centralized state-space nota-
tion, i.e. the state space notation of the complete system S:

x[k + 1] = Ax[k] +BCT [k] + cx

P̂ [k] = Cx[k] + cy,
(2-26)

where

x[k] =


x1[k]
x2[k]
...

xG[k]

 , CT [k] =


CT 1[k]
CT 2[k]

...
CTG[k]

 , P̂ [k] =


P̂1[k]
P̂2[k]
...

P̂G[k]

 , B =


B1,1 0 · · · 0

0 B2,2 · · · 0
...

... . . . ...
0 0 · · · BG,G

 ,

C =


C1,1 0 · · · 0

0 C2,2 · · · 0
...

... . . . ...
0 0 · · · CG,G

 , cx =


cx1 0 · · · 0
0 cx2 · · · 0
...

... . . . ...
0 0 · · · cxG

 , cP =


cP 1 0 · · · 0
0 cP 2 · · · 0
...

... . . . ...
0 0 · · · cPG


and

A =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · AM

 ,
in which Am is a submatrix containing the submatrices Ai,j for all the subsystems Si within
the row of turbines m. This matrix is defined as:

Am =



Aum,um 0 · · · 0 0 0
Aum+1,um Aum+1,um+1 · · · 0 0 0

0 Aum+2,um+1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · Adwm−2,dwm−2 0 0
0 0 · · · Adwm−1,dwm−2 Adwm−1,dwm−1 0
0 0 · · · 0 Adwm,dwm−1 Adwm,dwm


.

Note that Ai,j = 0 for all Ai,j for which Sj /∈ θ+i and j 6= i. B and C are diagonal matrices,
because, as explained above, within the controller model the outputs and inputs of subsystems
do not interact directly with the states of other subsystems. This finalizes the derivation of
the centralized state-space notation.
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18 Wind Farm Model

To design the controllers, it is necessary to explore the interaction between the subsystems
more thoroughly. It is possible to create a so called adjacency matrix Aadj as described by S.
Li and Y. Zheng [16]:

Aadj =


Aadj1 0 · · · 0

0 Aadj2 · · · 0
...

... . . . ...
0 0 · · · AadjM

 , (2-27)

where Aadjm is a N ×N matrix and is defined for each row m as

Aadjm =



∗ 0 0 · · · 0 0 0
∗ ∗ 0 · · · 0 0 0
0 ∗ ∗ · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · ∗ 0 0
0 0 0 · · · ∗ ∗ 0
0 0 0 · · · 0 ∗ ∗


. (2-28)

An ∗ in the ith row and j column expresses that Si is directly impacted by Sj and, thus, that
Si is downstream from Sj and Si ∈ θ−j .

So far, it has only been investigated if subsystems impact each other directly. It is also
possible that subsystems impact each other indirectly via the states of other subsystems. If
Sj can impact Si directly and/or indirectly, it is said that Sj is accessible to Si. The systems
that are accessible to Si will be denoted by Θ+i, the systems to which Si is accessible will
be denoted by Θ−i and Θi = Θ+i ∪ Θ−i. Note that θ+i ∈ Θ+i, θ−i ∈ Θ−i and θi ∈ Θi. As
described by S. Li and Y. Zheng [16], it is possible to determine these sets by looking at the
powers of Aadj , i.e. the accessible relations are described by the accessibility matrix:

Aacc = Aadj ∪ · · · ∪AG−1
adj . (2-29)

This results in the accessibility matrix

Aacc =


Aa1 0 · · · 0

0 Aa2 · · · 0
...

... . . . ...
0 0 · · · AaM

 , (2-30)

where Aaccm is a N ×N matrix and is defined for each row m within the windfarm as

Aaccm =


∗ 0 · · · 0 0
∗ ∗ · · · 0 0
...

... . . . ...
...

∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ ∗

 . (2-31)

It can be deduced from this accessibility matrix that a subsystem Si is directly and/or indi-
rectly affected by all subsystems in the same row of turbines m that are located upwind from
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2-2 Model validation 19

Si. Thus Θ+i contains all subsystems upwind from Si that are located in the same row of
turbines as Si. In figure 2-3 a visual representation of an example of the sets θ+i, θ−i, Θ+i
and Θ−i is given for a wind farm consisting of 8 turbines in a single row.

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8
V

Θ+4 Θ−4

𝜃+4 𝜃−4

Figure 2-3: Visual representation of sets θ+4, θ−4, Θ+4 and Θ−4 in a 1x8 wind farm.

2-2 Model validation

The model has been implemented and tested in MATLAB and has been compared with data
from WFSim. WFSim is a medium-fidelity, control-oriented wind farm model based on the
two-dimensional Navier-Stokes equations. [1]

The controller model will be tested in a setup with G = 10 turbines. The 10 turbine (10T)
setup can be seen in figure 2-4. The wind farm consists of M = 2 rows and N = 5 columns of
turbines. The turbines have a diameter, Dr, of 90 meters. The distance between the turbines
in the direction of the wind, δxr, is 630 meters. This is equal to 7 turbine diameters, which is a
common choice in wind farms. The distance between the turbines perpendicular to the wind,
δyr, is 378 meters. The free-stream wind speed, V∞, is 7.5 m/s. Taking already into account
the signals that will be tracked later, a sample period of h = 1 seconds is chosen. It is chosen
to take τ = 5, following W. Munters et al. [28]. The tuning variables, cV V , cV CT , cV A, cPV
and cPCT , are tuned by putting a step change on the turbines and comparing the simulation
results between the proposed model and WFSim. This resulted in the tuning variables that
can be found in table 2-1. In this same table also the settings stated above and the settings
used in WFSim can be found.

Figure 2-4: Visual representation of wind speed in 5x2 wind farm in WFSim.

For the validation of the model, different data sets and test signals are used than for the
tuning. The proposed model will be compared with WFSim using the root mean square
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20 Wind Farm Model

Table 2-1: Simulation case details and settings for 10 turbine (10T).

Variable Value

W
in
df
ar
m

Se
tu
p G 10

M 5
N 2
δxr 630 m
δyr 378 m
Dr 90 m
V∞ 7.5 m/s

M
od

el
Se

tt
in
gs

C
on

tr
ol

cw 0.68
cV V 1.0
cV CT 1.0
cV A 0.9
cPV 1.0
cPCT 1.1
τ 5
h 1

Variable Value

W
FS

im
Se

tt
in
gs

type ’lin’
Lx 3500
Ly 778
Nx 100
Ny 50

powerscale 1
forcescale 1.25

mu 0
Rho 1.2
u_Inf 7.5
v_Inf 0
p_init 0
lmu 2

turbul true
n 2
m 6

error (RMSE), i.e.

RMSE =
∑Ns
k=1(P [k]− P̂ [k])2

Ns
, (2-32)

in which Ns is the total number of samples in the simulation, P [k] is the total power output
predicted by WFSim and P̂ [k] is the total power output predicted by the model introduced
in this chapter at sample time k.

In the simulation case, the thrust coefficients, CT i, of the turbines, Ti, are initially kept
constant. At 100 seconds there is a step change in CT 1 and CT 6. Then, at 300 seconds there
is a step change in CT 2 and CT 7. Finally, at 500 seconds there is a step change in CT 4 and
CT 8.

In figure 2-5, 2-6 and 2-7 the results of this simulation can be witnessed. The RMSE is 0.15
MW. It can be concluded that although the predicted power output from both models is not
identical, the proposed model is able to give an estimation of the power output of a wind
farm simulated in WFSim. Propagating the system one time step takes 3.1 ·10−04 seconds on
a single core of the 2.3 GHz Intel(R) Core(QM) i7-3610QM. In chapter 4, the controller, in
which the proposed controller model is used, is test. From these results it can be concluded
that the controller is accurate and fast enough to be used within a MPC architecture.

In appendix B the model has also been compared to data from Parallelized Large-Eddy
Simulation Model (PALM), which is a high-fidelity three-dimensional LES model. [29]
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2-2 Model validation 21

Figure 2-5: Comparison of power outputs of turbines in row 1 predicted by the proposed model
(blue) compared to WFSim (red dashed) with validation data. The used input signals can be
found in the bottom figures.
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22 Wind Farm Model

Figure 2-6: Comparison of power outputs of turbines in row 2 predicted by the proposed model
(blue) compared to WFSim (red dashed) with validation data. The used input signals can be
found in the bottom figures.
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Figure 2-7: Comparison of total power output predicted by the proposed model (blue) compared
to WFSim (red dashed) with validation data. The used input signals can be found in the bottom
figures.
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2-3 Summary 23

2-3 Summary

In this chapter, a linear, dynamic and fast controller model has been proposed. The model
uses the power of the turbines as output and the thrust coefficients as inputs and it consists
of a flow model and a turbine model. The flow model is based on the Frandsen’s model
that is linearized and made dynamic using the Taylor frozen turbulence hypothesis. The
turbine model is formed by linearizing the ADM. State-space notations of the model, given in
equations 2-24 and 2-25, are formed for local subsystems that consist of a single wind turbine.
These notations are used in distributed model predictive control (DMPC) architectures in
chapter 3. The local state-space notations can be stacked together to form a state-space
system for the entire wind farm, given in equation 2-26. This notation is used within a
centralized MPC in chapter 3. The model has been validated against the medium fidelity
wind farm model WFSim.
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Chapter 3

Control Architecture

In this chapter, model predictive control (MPC) algorithms for active power control (APC)
will be introduced. In the context of this thesis, MPC is an algorithm that will search for the
most optimal control sequence that steers the output of a system to a given reference signal
by minimizing a cost function, whilst keeping constraints into account. To do so, it will use a
control model (here the wind farm model introduced in chapter 2) and the current state of the
system. At time instance k, measurements are taken from the real system (here represented
by WindFarmSimulator (WFSim)), such that the control model can be initialized. After this,
the cost function is minimized over the prediction horizon H, thus until time instance k+H.
Then, only the first instance of the found control sequence is applied. This sequence repeats
itself every sample time.

Both a centralized and distributed MPC algorithms will be designed. In the centralized
control architecture, measurements from all wind turbines in the wind farms are sent to a
centralized controller. In this controller, all optimal control actions are determined and send
to the wind turbines. A problem with this way of controlling, is that calculating the optimal
control actions can be very computationally heavy if the wind farm is large. This means that
it is a major challenge to provide real-time control for large wind farms with centralized MPC.
Distributed controllers can be a solution to this problem. In the distributed controller, the
centralized control problem will be divided into smaller sub-problems. These sub-problems
will be solved in parallel on separate controllers, that share information with each other.
With this way of controlling, it will be possible to provide real-time control for large wind
farms. Another advantage of distributed control is that it is more fail safe. With centralized
control, if the centralized controller fails, the entire farm fails. With distributed control, if
one of the controllers fails, the rest of the farm can still be controlled. In the controllers, the
wind farm model developed in chapter 2 will be used as controller model. To provide offset
free tracking despite model mismatches and (unknown) disturbances, integral action will be
added to the controllers. This will be done by rewriting the wind farm model in the velocity
form as described by L. Wang and M.A. Stephens et al. [30, 31].

In the coming sections both the centralized and the distributed controllers will be developed.
The centralized controller will be developed in section 3-1 and in section 3-2 the distributed
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controller will be developed. In the next chapter, chapter 4, the proposed controllers will be
tested in WFSim, a medium fidelity wind farm model introduced in chapter 2.

3-1 Centralized Model Predictive Controller

As explained above, in the centralized control architecture, a centralized controller will deter-
mine the optimal control actions using a controller model and the measured power outputs,
thrust coefficients and wind speeds. These optimal control actions are send to all the wind
turbines. In figure 3-1 a schematic representation of the proposed control loop is given.
Pref [k] is the reference for the total power output of the wind farm. CT [k] is a vector that
contains the desired thrust coefficients, i.e. CT [k] =

[
CT 1 CT 2 · · · CTG

]T
[k], where, G is

the total amount of wind turbines in the farm. ym[k] are measurements taken from WFSim
containing the power outputs, the actual thrust coefficients and the wind speeds just in front
of the wind turbines. This is enough information to update and initialize the model given in
chapter 2. As it is relatively easy to measure the power outputs of the turbines, it is valid to
assume they are known. For the wind speed and the actual thrust coefficients, this is more
difficult. Research suggests using LIght Detection And Ranging of Laser Imaging Detection
And Ranging (LIDAR) to measure the flow field in front of wind turbines [32]. From this
data it is possible to estimate the wind speeds and thrust coefficients using the Actuator Disk
Model (ADM) [19]. Another possibility would be to use observers as proposed in literature
[33]. This is however not considered in this thesis.

MPC WFSim
ym[k]CT[k]

Pref[k]

External 
condi�ons

Figure 3-1: Schematic representation of centralized MPC loop.

In this centralized controller, the state-space notation for the complete system S as given in
equation 2-26 will be used. Due to model mismatches and unknown disturbances, offset free
tracking can not be ensured. A way to overcome this problem is by adding integral action to
the controller by reformulating the controller model in the velocity form [30, 31]. This will
be done in the first subsection 3-1-1. In the second subsection 3-1-2, the centralized control
problem will be defined

3-1-1 Reformulating Centralized Model in Velocity Form

In this subsection, the model given in equation 2-26, will be rewritten in velocity form.
This means that the model will be reformulated such that instead of the absolute input
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3-1 Centralized Model Predictive Controller 27

CT [k], the incremental input ∆CT [k] = CT [k] − CT [k − 1] is used [30, 31, 34]. By defining
∆x[k] = x[k]− x[k − 1], the state update defined in equation 2-26 can be transformed into

∆x[k + 1] = A(x[k]− x[k − 1]) +B(CT [k]− CT [k − 1]) + cx − cx
= A∆x[k] +B∆CT [k].

(3-1)

Note that the constant vector cx is eliminated from the equation. To relate the output
P̂ [k] =

[
P̂1 P̂2 · · · P̂G

]T
[k] to ∆x[k] the next definition is derived

∆P̂ [k + 1] = C∆x[k + 1] + cy − cy
= CA∆x[k] + CB∆CT [k],

(3-2)

where ∆P̂ [k] = P̂ [k]− P̂ [k− 1]. By defining the new state xI [k] =
[
P̂ T [k] ∆xT [k]

]T
, a new

state space system can be derived:[
P̂ [k + 1]

∆x[k + 1]

]
=
[
I CA
0 A

]
︸ ︷︷ ︸

AI

[
P̂ [k]

∆x[k]

]
+
[
CB
B

]
︸ ︷︷ ︸
BI

∆CT [k]

P̂ [k] =
[
I 0

]
︸ ︷︷ ︸
CI

[
P̂ [k]

∆x[k]

]
,

(3-3)

with the identity matrix I ∈ RG×G. This state space system is the velocity form of the
controller model introduced in chapter 2. This system will from now on be denoted by

xI [k + 1] = AIxI [k] +BI∆CT [k]
P̂ [k] = CIxI [k].

(3-4)

3-1-2 Centralized Control Problem

With velocity form of the controller model defined, the control problem can be formulated.
The total power output of the wind farm will be steered to the reference signal by solving the
optimization objective

min
∆U [k]

q2
H∑
i=1

 G∑
j=1

P̂j [k + i]− Pref [k + i]

2

+
H−1∑
i=0

∆CTT [k + i]RTR∆CT [k + i]

 ,
(3-5)

where ∆U [k] =
[
∆CT [k] ∆CT [k + 1] · · · ∆CT [k +H − 1]

]T
is the optimal control se-

quence and P̂j [k + i] are the predicted power outputs of the wind turbines, contained in the
output vector P̂ [k + i], i.e. P̂ [k + i] =

[
P̂1[k + i] P̂2[k + i] · · · P̂N [k + i]

]T
. Pref [k + i] is

the reference for the total power output of the wind farm, q is the weight that is put on the
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tracking error and R = r · I ∈ RG×G is the weighting matrix on ∆CT [k + i]. Choices have to
be made regarding the weights q and r and the prediction horizon H.

It is important to note that the behavior of the controller is influenced by the ratio between
q and r. Therefore the easiest way to tune both values, is to make q equal to 1 and try
different values for r. Increasing the weight, r, on ∆CT [k+ i] will lead to a more conservative
controller that will react less to disturbances and will provide smoother and less fluctuating
input signals. Smooth control actions can be desirable, as it is possible that real life wind
turbines will not be able to follow large and fast changes in CT . Furthermore, abrupt changes
in the input signal can create large stresses in the wind turbines resulting in more fatigue
damage. Lastly, heavy varying input signals will also result in an increase of turbulence in
the wakes, which will in turn increase the fatigue damage to downwind turbines. However, a
too conservative controller will also result in poor tracking. The weights, q and r, must be
tuned in order to achieve a stable controller with a balanced trade-off between smooth input
signals and proper tracking. It is possible that different conditions require different settings.

For choosing the prediction horizon H, a trade-off has to be made as well. H should be
large enough for the controller to be stable and, preferable, to include the dominant plant
dynamics [30]. This last requirement can be achieved by taking the maximum amount of
time samples it takes for the wake effects to travel from the most upwind turbine Tum to
the most downwind turbine Tdwm in any of the rows m. This is equal to maxm dum,dwm . To
this dτ/he should be added. dum,dwm and the time constant τ were introduced in chapter
2. The time constant, τ , is used to filter the control actions CT . dum,dwm is equal to the
number of time samples it takes for the wakes to get from the most upwind turbine Tum
to the most downwind turbine Tdwm in row m. This variable is dependent on the distance
between the wind turbines and the free stream wind speed V∞,0. This means that the chosen
prediction horizon is also dependent on V∞,0. Increasing H will, unfortunately, require more
computational effort, resulting in a slower controller from a computational point of view. To
provide real-time control, the controller should be able to solve the optimization objective
within one sample time of length h.

Besides the optimization objective, also constraints have to be defined for the MPC. Theo-
retically, the maximum amount of energy is subtracted from a flow of air by a single wind
turbine when the thrust coefficient is at the Betz’s limit of CT i = 8/9 [35]. If the wind turbine
exceeds this Betz’s limit, the rotor will rotate faster, but less energy is subtracted from the
flow of air. In chapter 2 it was decided not to model this behavior above the Betz’s limit.
Therefore, if any CT i were to exceed the Betz’s limit of CT i = 8/9, the developed model will
not be valid. For this reason, it is decided to set the constraint that CT i should not exceed
CTmax = 8/9 for all {i ∈ Z|1 ≤ i ≤ G}. Also, a common requirement is that the wind
turbines should not shut down completely. Therefore, it is decided that CT i[k] should not
become smaller than CTmin = 0.01 for all {i ∈ Z|1 ≤ i ≤ G}.

In equation 3-3, the increments of the thrust coefficients, ∆CT i, and not of the absolute
values of the thrust coefficients, CT i, are being used as input. Hence, it is not possible to
put direct constraints on CT i. This can be solved by realising that CT i[k+ j] = CT i[k− 1] +∑j
l=0 ∆CT i[k + l]. Because at sample time k, CT i[k − 1] is known, it is possible to write the
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constraints for the complete prediction horizon as

CTmin ≤ CT i[k − 1] + ∆CT i[k] ≤ CTmax
CTmin ≤ CT i[k − 1] + ∆CT i[k] + ∆CT i[k + 1] ≤ CTmax

...
CTmin ≤ CT i[k − 1] +

∑H−1
j=0 ∆CT i[k + j] ≤ CTmax

∀{i ∈ Z|1 ≤ i ≤ G},

(3-6)
which can be rewritten as

S1
(
CTmin − CTT [k − 1]

)
≤ S2∆U [k] ≤ S1

(
CTmax − CTT [k − 1]

)
, (3-7)

where ≤ is defined as an element-wise inequality and S1 and S2 are given by

S1 =
[
1 · · · 1

]T
∈ RH×1

S2 =


1 0 · · · 0 0
1 1 · · · 0 0
...

... . . . ...
...

1 1 · · · 1 0
1 1 · · · 1 1

 ∈ RH×H .
(3-8)

This leads to the complete centralized optimization problem that is solved in for each time
step:

min
∆U [k]

q2
H∑
i=1

 G∑
j=1

P̂j [k + i]− Pref [k + i]

2

+
H−1∑
i=0

∆CTT [k + i]RTR∆CT [k + i]


s.t. xI [k + 1] = AIxI [k] +BI∆CT [k], P̂ [k] = CIxI [k] and

S1
(
CTmin − CTT [k − 1]

)
≤ S2∆U [k] ≤ S1

(
CTmax − CTT [k − 1]

)
.

(3-9)

This finalizes the design of the centralized controller. This controller is implemented in Gurobi
8.1.0 in MATLAB 2019a.

3-2 Distributed Model Predictive Controller

In the distributed controllers, the centralized control problem is divided into smaller local
control problems. By solving these local control problems and by sharing information, the
local controllers will, together, find the most optimal control actions for the entire wind farm.
To achieve this goal, two different distributed controllers based on the Jacobi algorithm as
defined by A.N. Venkat et al. [36] are developed. It is chosen to use this algorithm, because it
is possible to solve a large part of the control algorithm in parallel, making it computationally
fast.
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In this section these distributed controllers are developed and explained in more detail. First,
in subsection 3-2-1, the decomposed state-space notation given in equations 2-24 and 2-25
is transformed into the velocity form to add integral action. Then, in subsection 3-2-2, the
control problem formed with this decomposed state-space notation, is transformed into a
coupled cost decoupled constraint (CCDC) problem, as is necessary for the Jacobi algorithm.
Lastly, in subsection 3-2-3, the two distributed control algorithms are defined.

3-2-1 Reformulating Distributed Model in Velocity Form

In this subsection, to ensure offset free tracking, integral action is added to the controller
by transforming the decomposed controller model given in equations 2-24 and 2-25 into the
velocity form following the same method as for the centralized controller. By defining ∆xi[k] =
xi[k]− xi[k − 1] and ∆CT i[k] = CT i[k]− CT i[k − 1] it is possible to state that

∆xum [k + 1] =Aum,um(xum [k]− xum [k − 1]) +Bum(CT um [k]− CT um [k − 1])
+ cx,um − cx,um

=Aum,um∆xum [k] +Bum∆CT um [k],
(3-10)

for the most upwind subsystem, Sum , in each row m, where {m ∈ Z|1 ≤ m ≤M}. Here, um
is the index of the most upwind subsystem in row m as defined in chapter2. For all the other
subsystems, Si, it is possible to state, using the same definitions for ∆xi[k] and CT i[k], that

∆xi[k + 1] =Ai,i(xi[k]− xi[k − 1]) +Ai,i−1(xi−1[k]− xi−1[k − 1])
+Bi(CT i[k]− CT i[k − 1]) + cx,i − cx,i

=Ai,i∆xi[k] +Ai,i−1∆xi−1[k] +Bi∆CT i[k],
(3-11)

where {i ∈ Z|1 ≤ i ≤ G, i 6= um ∀m}. Using this result and by defining ∆P̂i[k] = P̂i[k] −
P̂i[k − 1] it follows that

∆P̂um [k + 1] = Cum∆xum [k + 1] + cy,um − cy,um
= CumAum,um∆xum [k] + CumBum∆CT um [k]

(3-12)

for all {m ∈ Z|1 ≤ m ≤M} and

∆P̂i[k + 1] =Ci∆xi[k + 1] + cy,i − cy,i
=CiAi,i∆xi[k] + CiAi,i−1∆xi−1[k] + CiBi∆CT i[k]

(3-13)

for all {i ∈ Z|1 ≤ i ≤ G, i 6= um ∀m}. Notice that the terms Ai,i−1∆xi−1[k] in equation 3-11
and CiAi,i−1∆xi−1[k] in equation 3-13 define the interactions between the subsystems Si and
Si−1.

By defining the new state xI i[k] =
[
P̂ Ti [k] ∆xTi [k]

]T
, the previous equations can be rewritten

to form the decomposed state space system in velocity form:[
P̂um [k + 1]

∆xum [k + 1]

]
=
[
I CumAum,um
0 Aum,um

]
︸ ︷︷ ︸

AIum,um

[
P̂um [k]

∆xum [k]

]
+
[
CumBum
Bum

]
︸ ︷︷ ︸

BIum

∆CT um [k]

P̂um [k] =
[
I 0

]
︸ ︷︷ ︸
CIum

[
P̂um [k]

∆xum [k]

] (3-14)
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for all {m ∈ Z|1 ≤ m ≤M} with the identity matrix I ∈ R1×1 and[
P̂i[k + 1]

∆xi[k + 1]

]
=
[
I CiAi,i
0 Ai,i

]
︸ ︷︷ ︸

AI i,i

[
P̂i[k]

∆xi[k]

]
+
[
0 CiAi,i−1
0 Ai,i−1

]
︸ ︷︷ ︸

BI i,i−1

[
P̂i−1[k]

∆xi−1[k]

]

+
[
CiBi
Bi

]
︸ ︷︷ ︸
BI i

∆CT i[k]

P̂i[k] =
[
I 0

]
︸ ︷︷ ︸
CI i

[
P̂i[k]

∆xi[k]

]
(3-15)

for all {i ∈ Z|1 ≤ i ≤ G, i 6= um∀m} with the identity matrix I ∈ R1×1. This can be written
more compact as

xIum [k + 1] = AIum,umxIum [k] +BIum∆CT um [k]
P̂um [k] = CIumxIum [k]

(3-16)

for all {m ∈ Z|1 ≤ m ≤M} and

xI i[k + 1] = AI i,ixI i[k] +AI i,i−1xI i−1[k] +BI i∆CT i[k]
P̂i[k] = CI ixI i[k]

(3-17)

for all {i ∈ Z|1 ≤ i ≤ G, i 6= um∀m}. These two sets of equations together form the
decomposed state-space system in velocity form.
Using this new state-space system, the centralized control problem given in equation 3-9 can
be rewritten in the distributed form as

min
∆U1,···,∆UG

q2
H∑
l=1

(
G∑
i=1

P̂i[k + l]− Pref [k + l]
)2

+ r2
G∑
i=1

H−1∑
l=0

∆CT i[k + l]2

 ∀{i ∈ Z|1 ≤ i ≤ G}

s.t. xIum [k + 1] = AIum,umxIum [k] +BIum∆CT um [k] and
P̂um [k] = CIumxIum [k] ∀m,
xI i[k + 1] = AI i,ixI i[k] +AI i,i−1xI i−1[k] +BI i∆CT i[k] and
P̂i[k] = CI ixI i[k] ∀{i ∈ Z|1 ≤ i ≤ G, i 6= um∀m} and
S1 (CTmin − CT i[k − 1]) ≤ S2∆Ui ≤ S1 (CTmax − CT i[k − 1])
∀{i ∈ Z|1 ≤ i ≤ G},

(3-18)

where ∆Ui =
[
CT i[k] CT i[k + 1] · · · CT i[k +H − 1]

]T
and {m ∈ Z|1 ≤ m ≤M}

3-2-2 Coupled Cost Decoupled Constraints Problem

To solve the control problem via the Jacobi algorithm, it is necessary that the control problem
is only coupled via the cost function and not via the constraints [36]. That means that it should
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be a so called coupled cost decoupled constraint (CCDC) problem. Decoupled, here, means
that it is possible to split the cost function or the constraints into cost functions or constrains
that are independent from each other. For example, the decoupled cost function f(y1, y2, y3) =
y1 + y2 + y3 can be split into the cost functions f(y1) = y1, f(y2) = y2 and f(y3) = y3, such
that f(y1, y2, y3) = f(y1)+f(y2)+f(y3). For coupled cost functions or constraints this is not
possible. Note that in the control problem given in equation 3-18, the subsystems are coupled
via the cost function because of the part q2∑H

t=1

(∑G
i=1 P̂i[k + t]− Pref [k + t]

)2
and via the

constraints because of the part xI i[k + 1] = AI i,ixI i[k] + AI i,i−1xI i−1[k] + BI i∆ui[k]. This
means that, to be able to solve the control problem via the Jacobi algorithm, it is necessary
to rewrite the control problem. In the coming part, the control problem will be transformed
into a CCDC problem by incorporating the coupled constraints, that represent the control
model, into the cost function.

First, for simplicity, a wind farm consisting of 1 row with a minimum of 3 three wind turbines
is considered. It is possible to calculate the predicted future state variables for the most
upwind subsystem with

x1[k + 1] =AI1,1x1[k] +BI1∆u1[k]
x1[k + 2] =AI1,1x1[k + 1] +BI1∆u1[k + 1]

=AI2
1,1x1[k] +AI1,1BI1∆u1[k] +BI1∆u1[k + 1]

...
x1[k +H] =AIH1,1x1[k] +AI

H−1
1,1 BI1∆u1[k] +AI

H−2
1,1 BI1∆u1[k + 1]

+ · · ·+BI1∆u1[k +H − 1].

This set of equations can be written in matrix form as

X1 = Fx1x1[k] + Φx1∆U1,

where

Xi =


xi[k + 1]
xi[k + 2]

...
xi[k +H]

 , Fxi =


AI i,i
AI

2
i,i

AI
3
i,i
...

AI
H
i,i

 , Φxi =


BI i 0 0 · · · 0

AI i,iBI i BI i 0 · · · 0
AI

2
i,iBI i AI i,iBI i BI i · · · 0
...

...
... . . . ...

AI
H−1
i,i BI i AI

H−2
i,i BI i AI

H−3
i,i BI i · · · BI i

 .
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For the second subsystem in the row it is possible to state that

x2[k + 1] =AI2,2x2[k] +BI2∆u2[k] +AI2,1x1[k]︸ ︷︷ ︸
effects T1

x2[k + 2] =AI2,2x2[k + 1] +BI2∆u2[k + 1] +AI2,1x1[k + 1]
=AI2

2,2x2[k] +AI2,2BI2∆u2[k] +BI2∆u2[k + 1] +AI2,2AI2,1x1[k] +AI2,1x1[k + 1]︸ ︷︷ ︸
effects T1

...
x2[k +H] =AIH2,2x2[k]

+AI
H−1
2,2 BI2∆u2[k] +AI

H−2
2,2 BI2∆u2[k + 1] + · · ·+BI2∆u2[k +H − 1]

+AI
H−1
2,2 AI2,1x1[k] +AI

H−2
2,2 AI2,1x1[k + 1] + · · ·+AI2,1x1[k +H − 1]︸ ︷︷ ︸

effects T1

.

This set of equations can be written in matrix form as

X2 =Fx2x2[k] + Φx2∆U2 + Ξ2,1 (L1X1 +W1x1[k])︸ ︷︷ ︸
effects T1

=Fx2x2[k] + Φx2∆U2 + Ξ2,1
(

(L1Fx1 +W1)x1[k] + L1Φx1∆U1
)

︸ ︷︷ ︸
effects T1

,

where

Ξi,i−1 =


AI i,i−1 0 0 · · · 0

AI i,iAI i,i−1 AI i,i−1 0 · · · 0
AI

2
i,iAI i,i−1 AI i,iAI i,i−1 AI i,i−1 · · · 0

...
...

... . . . ...
AI

H−1
i,i AI i,i−1 AI

H−2
i,i AI i,i−1 AI

H−3
i,i AI i,i−1 · · · AI i,i−1

 ,

Li =
[
0 0
I 0

]
∈ R(nxiH)×(nxiH),

with identity matrix I ∈ R(nxi(H−i))×(nxi(H−i)) and nxi is the number of states in xi and

Wi =
[
I
0

]
∈ R(nxiH)×nxi ,

with identity matrix I ∈ Rnxi×nxi . Then, for the third subsystem in the row it holds that

X3 =Fx3x3[k] + Φx3∆U3 + Ξ3,2

(
(L2Fx2 +W2)x2[k] + L2Φx2∆U2︸ ︷︷ ︸

effects T2

+ L2Ξ2,1
(

(L1Fx1 +W1)x1[k] + L1Φx1∆U1
)

︸ ︷︷ ︸
effects T1

)
.

This can be extended for wind farms with an arbitrary number of rows and columns for any
arbitrary subsystem Si, {i ∈ Z|1 ≤ i ≤ G} as

Xum = Fxumxum [k] + Φxum∆Uum ∀m (3-19)
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and

Xi =Fxixi[k] + Φxi∆Ui + Ξi,i−1

(
(Li−1Fxi−1 +Wi−1)xi−1[k] + Li−1Φxi−1∆Ui−1︸ ︷︷ ︸

effects Ti−1

+ Li−1Ξi−1,i−2

(
(Li−2Fxi−2 +Wi−2)xi−2[k] + Li−2Φxi−2∆Ui−2︸ ︷︷ ︸

effects Ti−2

+ . . .

+ Lum+1Ξum−1,um

(
(LumFxum +Wum)xum [k] + LumΦxum∆Uum

)
︸ ︷︷ ︸

effects Tum

. . .

))

∀{i ∈ Z|1 ≤ i ≤ G, i 6= um ∀m}.

(3-20)

Notice that in this last equation all the subsystems that are accessible to Si, i.e., all subsystems
within Θ+i as defined in subsection 2-1-4, are taken into account. This is, however, not
necessary. It takes time for the wake effects to travel from a wind turbine Tj to a downwind
turbine Ti. This amount of time was defined as dj,i in chapter 2. If the wind farm is large
and/or if the chosen prediction horizon H is low, there will be wind turbines upwind from Ti
of which the wake effects will not reach Ti within the prediction horizon H, i.e. turbines Tj for
which dj,i > H. A visual representation of such a case is given in figure 3-2. For subsystem
Si it is not necessary to take the dynamics of these wind turbines into account. Following the
same line of thought, it is also not necessary to take the effects into account that subsystem
Si has on downwind subsystems that are not reached by the wake of Ti within the time
horizon H, i.e. turbines Tj for which di,j > H. To include these insights into the controller,
new sets are introduced. From now on, the set ΘH

+i will contain all the subsystems within
Θ+i that are accessible to Si within the prediction horizon H, i.e. the set ΘH

+i contains all
subsystems {Sj ∈ Θ+i|dj,i ≤ H}. The set ΘH

−i will contain all the subsystems within Θ−i to
which Si is accessible within the prediction horizon H, i.e. the set ΘH

−i contains all subsystems
{Sj ∈ Θ−i|di,j ≤ H}. Again, see figure 3-2 for a visual representation of an example of these
sets. By incorporating only the interactions between the subsystem Si and the subsystems
within ΘH

+i and ΘH
−i in the local controller of subsystem Si, the computational load on this

controller becomes lower, without losing performance. Even more, no matter how big the
wind farm, a local subsystem Si will never have to take more interactions into account than
it has with the subsystems within ΘH

+i and ΘH
−i. This means that, the local controllers have a

maximum computational complexity that is independent of the size of the wind farm. Thus,
if the local control problems are solved in parallel on separate processors and if the prediction
horizon H is kept equal, the total control problem will be solved in the same amount of time,
no matter how large the wind farm. That is, if the communicational delays between the
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subsystems are disregarded. For these reasons, equation 3-20 is changed into

Xi =Fxixi[k] + Φxi∆Ui + Ξi,i−1

(
(Li−1Fxi−1 +Wi−1)xi−1[k] + Li−1Φxi−1∆Ui−1

+ Li−1Ξi−1,i−2

(
(Li−2Fxi−2 +Wi−2)xi−2[k] + Li−2Φxi−2∆Ui−2 + . . .

+ Lj+1Ξj+1,j
( (
LjFxj +Wj

)
xj [k] + LjΦxj∆Uj

)
. . .

))
∀{i ∈ Z|1 ≤ i ≤ G, i 6= um ∀m},

(3-21)

where j is the index of the most upwind turbine within ΘH
+i.

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8
V

H H

Θ+4
H Θ−4

H

d1,4

Figure 3-2: Visual representation of the sets ΘH
+4 = {Si|di,4 ≤ H} and ΘH

−4 = {Si|d4,i ≤ H}
in an 1x8 wind farm in which d1,4 > H and H < d4,7 < d4,8.

Using equations 3-21 and 3-19 it is possible to state for the output of any subsystems Si that

Yum = Fumxum [k] + Φum∆Uum ∀m (3-22)

and

Yi =Fixi[k] + Φi∆Ui + CIiΞi,i−1

(
(Li−1Fxi−1 +Wi−1)xi−1[k] + Li−1Φxi−1∆Ui−1

+ Li−1Ξi−1,i−2

(
(Li−2Fxi−2 +Wi−2)xi−2[k] + Li−2Φxi−2∆Ui−2 + . . .

+ Lj+1Ξj+1,j
( (
LjFxj +Wj

)
xj [k] + LjΦxj∆Uj

)
. . .

))
∀{i ∈ Z|1 ≤ i ≤ G, i 6= um ∀m},

(3-23)

where Yi =
[
P̂i[k + 1] P̂i[k + 2] · · · P̂i[k +H]

]T
, Fi = CIiFxi, Φi = CIiΦxi, FΘH+i =

CIiFx
ΘH+i , ΦΘH+i = CIiΦx

ΘH+i and

CIi =


CI i 0 · · · 0
0 CI i · · · 0
...

... . . . ...
0 0 · · · CI i

 .
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Using this result, the objective can be rewritten as

min
∆U1,···,∆UG


(

G∑
i=1

Yi − Yref

)T
QTQ

(
G∑
i=1

Yi − Yref

)
+

G∑
i=1

∆UTi RTR∆Ui


s.t. S1 (CTmin − CT i[k − 1]) ≤ S2∆Ui ≤ S1 (CTmax − CT i[k − 1])

∀{i ∈ Z|1 ≤ i ≤ G},

(3-24)

where Yref =
[
Pref [k + 1] Pref [k + 2] · · · Pref [k +H]

]T
, Q = q · I ∈ RH×H and R =

r · I ∈ RH×H with q > 0 and r > 0. Note that this control problem is now no longer coupled
via the constraints, but only via the cost. This means that it is now a CCDC problem that
can be solved by the Jacobi algorithm as explained before. For simplicity and future use, a
shorter notation for the same objective is given:

min
∆U1∈ ¯

¯
∆U1,···,∆UG∈ ¯

¯
∆UG

f(∆U1, · · · ,∆UG), (3-25)

where the set ¯
¯

∆U i represents the constraint S1
(
CTmin − CT Ti [k − 1]

)
≤ S2∆Ui[k] ≤

S1
(
CTmax − CT Ti [k − 1]

)
and

f(∆U1, · · · ,∆UG) = q2
(

G∑
i=1

Yi − Yref

)2

+
G∑
i=1

∆UTi RTR∆Ui.

3-2-3 Distributed Control Algorithms

Because the control problem is now transformed into a CCDC problem, it can be solved using
the Jacobi algorithm. As has been stated before, two different distributed controllers will be
developed using this algorithm. One controller will use the Jacobi algorithm as described
by A.N. Venkat et al. [36]. This controller will be called the normal Jacobian distributed
controller (NJDC). The second controller is based on a modification of this algorithm. This
controller will be called the modified Jacobian distributed controller (MJDC).

In the NJDC, at each iteration, local control problems are solved in which the most optimal
control actions are sought for a single subsystem Si, whilst the control actions of all other
subsystem are kept equal to the ones calculated at the previous iteration. The solutions of
these control problems are then combined with the solution of the previous iteration using a
weight. This update procedure is described in the next equation:

∆U∗p+1
i = arg min

∆Ui∈ ¯
¯

∆U i
f(∆Up1 , · · · ,∆U

p
i−1,∆Ui,∆U

p
i+1, · · · ,∆U

p
G),

∆Up+1
i =w∆U∗(p+1)

i + (1− w)∆U (p)
i ,

∀{i ∈ Z|1 ≤ i ≤ G},

(3-26)

where ∆U∗p+1
i is the solution to the local control problem of subsystem Si at iteration p+ 1

and ∆Upi are the control actions for subsystem Si calculated at iteration p. As can be seen, the
control actions ∆Up+1

i are updated by combining ∆U∗p+1
i with ∆Upi using weight w = 1/G.
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The MJDC works similar as the NJDC, but with a modification. In the MJDC, at each
iteration, local control problems are solved in which the most optimal control actions are
sought not only for a single subsystem, but for multiple subsystems at the same time. The
control actions of all other subsystems are kept equal to the ones calculated at the previous
iteration. The solutions of all these control problems are combined using a weight. The idea
behind this is, that, in this way, the effect that a subsystem has on downwind subsystems
will be taken better into account by the controller. Notice that this, on it’s own, is not a
modification to the Jacobi algorithm yet. The subsystems used in the Jacobi algorithm can
be chosen freely. Thus, if the subsystems were to consist of multiple wind turbines, the NJDC
would be similar to the MJDC algorithm described here. However, in the MJDC, the sets of
subsystems for which the control actions are solved in the same local control problem, will
be overlapping. Best results are achieved if in the local control problems the control actions
of subsystem Si and all subsystems within ΘH

−i are updated simultaneously. These control
problems are formulated for each subsystem Si, except for the subsystems more downwind in
the farm. More precise, local control problems are formulated for each subsystem Si, except
for the subsystems Si for which the time it takes for the wake to travel to the most downwind
turbine is lower than the prediction horizon H. Thus, except for subsystems Si for which
di,dwm < H. dwm is, as defined in chapter 2, the index of the most downwind turbine within
row m, where, here, m is the row in which turbine Si is located. The idea behind this, is that
these subsystems will already be included in the control problems of the subsystems upwind
from these subsystems. The local control problems in the MJDC are defined as follows

∆Up+1
i
...

∆Up+1
j

 = arg min
∆Ui∈ ¯

¯
∆U i,...,∆Uj∈ ¯

¯
∆Uj

f(∆Up1 , . . . ,∆U
p
i−1,∆Ui, . . . ,∆Uj ,∆U

p
j+1, . . . ,∆U

p
G)

∀{i ∈ Z|(dwm|Sdwm ∈ Θ−i)[di,dwm ≥ H]},

(3-27)

where j is the index of the most downwind subsystem within ΘH
−i. Note that the sets of

subsystems used within this notation are overlapping. To clarify, an example is given. For a
wind farm with one row of G turbines, where ΘH

−i = 1 for all i except for the most downwind
turbines, the next control problems would be formulated:[

∆U∗p+1
1

∆U∗p+1
2

]
= arg min

∆U1∈ ¯
¯

∆U1,∆U2∈ ¯
¯

∆U2

f(∆U1,∆U2,∆Up3 , · · · ,∆U
p
G)

[
∆U∗p+1

2
∆U∗p+1

3

]
= arg min

∆U2∈ ¯
¯

∆U2,∆U3∈ ¯
¯

∆U3

f(∆Up1 ,∆U2,∆U3,∆Up4 , · · · ,∆U
p
G)

[
∆U∗p+1

3
∆U∗p+1

4

]
= arg min

∆U3∈ ¯
¯

∆U3,∆U4∈ ¯
¯

∆U4

f(∆Up1 ,∆U
p
2 ,∆U3,∆U4,∆Up5 , · · · ,∆U

p
G)

...[
∆U∗p+1

G−1
∆U∗p+1

G

]
= arg min

∆UG−1∈ ¯
¯

∆UG−1,∆UG∈ ¯
¯

∆UG
f(∆Up1 , · · · ,∆U

p
G−2,∆UG−1,∆UG)

As can be seen, the sets of subsystems for which the local control problems are solved, are
overlapping. To combine the results from these overlapping control problems, it is necessary
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to make a modification to the update rule described in equation 3-26. The weight, w, will
now be defined as w = 1/Ns, where Ns is the number of subproblems defined by equation
3-27, which is equal to the number of subsystems in {Si|(dwm|Sdwm ∈ Θ−i)[di,dwm ≥ H]}.
The results of the local control problems can then be combined in a linear way using the next
rule:


∆Up+1

1
...

∆Up+1
G

 =
∑

{i∈Z|(dwm|Sdwm∈Θ−i)[di,dwm≥H]}
w



∆Up1
...

∆Upi−1
∆U∗p+1

i
...

∆U∗p+1
j

∆Upj+1
...

∆UpG



, (3-28)

where j again is defined as the index of the most downwind turbine within ΘH
−i. To clarify the

update rule given above, an example is given. For a wind farm with one row of G turbines,
where ΘH

−i = 1 for all i except for the most downwind turbines, this rule translates to



∆Up+1
1

∆Up+1
2

∆Up+1
3
...

∆Up+1
G


= w


∆U∗p+1

1
∆U∗p+1

2
∆Up3
...

∆UpG

+ w



∆Up1
∆U∗p+1

2
∆U∗p+2

3
∆Up4
...

∆UpG


+ · · ·+ w



∆Up1
∆Up2
∆Up3
...

∆UpG−2
∆U∗p+1

G−1
∆U∗p+1

G


. (3-29)

The complete update procedure for the MJDC is given by equations 3-27 and 3-28. These
equations are combined in the next equation set:

∆Up+1
j
...

∆Up+1
i

 = arg min
∆Uj∈ ¯

¯
∆Uj ,...,∆Ui∈ ¯

¯
∆U i

f(∆Up1 , . . . ,∆U
p
j−1,∆Uj , . . . ,∆Ui,∆U

p
i+1, . . . ,∆U

p
G)

∀{i ∈ Z|(dwm|Sdwm ∈ Θ−i)[di,dwm ≥ H]},


∆Up+1

1
...

∆Up+1
G

 =
∑

{i∈Z|(dwm|Sdwm∈Θ−i)[di,dwm≥H]}
w



∆Up1
...

∆Upj−1
∆U∗p+1

j
...

∆U∗p+1
i

∆Upi+1
...

∆UpG



(3-30)
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The update procedures for the NJDC and the MJDC are repeated until the difference between
the control actions calculated at p+ 1 and p is smaller than a certain threshold {ε ∈ R|ε > 0}
for all subsystems Si. The precision of the algorithm is determined by this threshold. The full
NJDC algorithm is given in algorithm 3.1 and the full MJDC algorithm is given in algorithm
3.2. It is possible to do part of these algorithm in parallel for each subproblem. By doing
so, assuming that a processor core is available for each subproblem, it is envisioned that the
algorithm will be equally fast regardless the size of the wind farm. In both the algorithms,
the local optimization problems will be solved using Gurobi 8.1.0 in MATLAB 2019a.

Algorithm 3.1 Normal Jacobian Algorithm
1: Given i ∈ Z|1 ≤ i ≤ G, ui[k − 1] ∀i, Yref , H, q > 0, R = r · I ∈ RH×H , r >

0, S1, S2, CTmin, CTmax, ∆U0
i = 0 ∀i, wi > 0 ∀i, while

∑
wi = 1, pmax > 0 and ε > 0

2: p← 0, ei ← Γε, Γ > 1
3: while ei > ε ∃i and p ≤ pmax do
4: for all {i ∈ Z|1 ≤ i ≤ G} do . Do this in parallel
5: ∆U∗p+1

i = arg min∆Ui∈ ¯
¯

∆U i
f(∆Up1 , · · · ,∆U

p
i−1,∆Ui,∆U

p
i+1, · · · ,∆U

p
G)

6: ∆Up+1
i = wi∆U∗(p+1)

i + (1− wi)∆U (p)
i

7: ei =
∥∥∥∆Up+1

i −∆Upi
∥∥∥

8: Calculate Yi using equation 3-22 or 3-23.
9: Share Yi with all other subsystems.

10: Share ∆Up+1
i with all subsystems within ΘH

i

11: end for
12: p← p+ 1
13: end while
14: ∆Upi is the optimal control sequence ∀Si {i ∈ Z|1 ≤ i ≤ G}

The local control problems will be solved with these algorithms every time step k, after which
the first control actions of the optimal control sequences ∆Up−1

i ∀{i ∈ Z|1 ≤ i ≤ G} are
applied, the states xi[k] are measured and the procedure is repeated.

Note that in both algorithms Yi is shared with all the other subsystems, but ∆Up+1
i is only

shared with the subsystems within ΘH
i . For the MJDC, a central agent is needed to combine

the results from the local control problems. For the NJDC no such central agent is needed.

3-3 Summary

In this chapter both a centralized and distributed MPC’s have been designed using the model
developed in chapter 2. To account for model mismatch and disturbances, integral action has
been added to the controller by writing the model in velocity form. The objective function
of the centrallized MPC, given in equation 3-9, is solved in Gurobi 8.1.0. The distributed
MPC is solved using two different versions of the Jacobi algorithm, in which the local control
objectives, given in equation 3-24, are also solved using Gurobi 8.1.0. The controllers are
tested in chapter 4.
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Algorithm 3.2 Modified Jacobian Algorithm
1: Given i ∈ Z|1 ≤ i ≤ G, ui[k − 1] ∀i, Yref , H, q > 0, R = r · I ∈ RH×H , r >

0, S1, S2, CTmin, CTmax, ∆U0
i = 0 ∀i, wi > 0 ∀i, while

∑
wi = 1, pmax > 0 and ε > 0

2: p← 0, ei ← Γε, Γ > 1
3: while ei > ε ∃i and p ≤ pmax do
4: for all {i ∈ Z|(dwm|Sdwm ∈ Θ−i)[di,dwm ≥ H]} do . Do this in parallel
5: Solve local control problem given in equation 3-27
6: end for
7: Combine the results with the rule given in equation 3-28
8: for all {i ∈ Z|1 ≤ i ≤ G} do . Do this in parallel
9: Share ∆Up+1

i with Si and all subsystems within ΘH
i

10: ei =
∥∥∥∆Up+1

i −∆Upi
∥∥∥

11: Calculate Yi using equation 3-22 or 3-23.
12: Share Yi with all other subsystems.
13: end for
14: p← p+ 1
15: end while
16: ∆Upi is the optimal control sequence ∀Si {i ∈ Z|1 ≤ i ≤ G}
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Chapter 4

Simulation Results

In this chapter the controllers introduced in chapter 3 will be tested in the medium fidelity
model WindFarmSimulator (WFSim) [1] on a single core of a 2.3 GHz Intel(R) Core(QM) i7-
3610QM processor. The controllers will be compared with the model predictive control (MPC)
algorithm proposed by S. Boersma that was mentioned earlier in chapter 1 [10]. This controller
will, from now on, be denoted as the baseline controller. The control model within this
controller does not take the wake effects into account. By comparing the proposed controllers
with this controller, it is possible to make conclusions about the advantages of including wake
effect in the controller model. First, in section 4-1, the settings for the simulation cases will
be defined. Next, in section 4-2, the results for the centralized controller will be given. After
this, in section 4-3, the same will be done for the the distributed controllers. Lastly, in section
4-4, a summary of the results will be given. Conclusions drawn from the results will be given
in chapter 5.

4-1 Simulation Settings

The controllers will be tested in setups with G = 10 and G = 64 turbines. The 10 turbine
(10T) case is the same as used in chapter 2 for the validation for the controller model and
can be seen in figure 2-4. The 64 turbine (64T) case can be seen in figure 4-1. The 10T case
consists of M = 2 rows and N = 5 columns of turbines. The 64T case consists of M = 8
rows and N = 8 columns of turbines. The turbines have a diameter, Dr, of 90 meters. The
distance between the turbines in the direction of the wind, δxr, is 630 meters. This is equal
to 7 turbine diameters, which is a common choice in wind farms. The distance between the
turbines perpendicular to the wind, δyr, is 378 meters. The free-stream wind speed, V∞, is
7.5 m/s. All these settings can also be found in table 4-1. The tuning variables and settings
for the controller model, WFSim and the controller can also be found in table 4-1. The
tuning variables for the control model for the 10T case are the same as for the 10T case in
section 2-2. The tuning variables for the 64 turbine case are found in the same way as for
the 10 turbine case. The chosen sample time, h = 1, is chosen according to the relatively
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fast changing reference signal. The weights q and r are found by taking q equal to 1 and
trying different values for r, whilst taking the trade-off described in subsection 3-1-2 into
account. The reasons for the choices made for the values of CTmax and CTmin are also given
in subsection 3-1-2. The settings pmax and ε are only used for the distributed controller and
defined in subsection 3-2-3 and algorithms 3.1 and 3.2. For the prediction horizon, H, a
variety of choices will be made to customize the controller to the needs of different simulation
cases.

In the simulation, both laminar and turbulent inflow conditions are considered. This turbu-
lence is modelled by adding Gaussian noise on the boundaries within WFSim. It is important
to note that this will differ from real life turbulence. It is, however, interesting for testing
purposes and it will give an indication as to how the controllers will react to real-life turbulent
inflow conditions.

Figure 4-1: Visual representation of layout of 8x8 wind farm in WFSim.

Two different reference signals will be used. One reference signal will start at 0.8Pgreedy and
will have a filtered step change at 400 seconds to 1.1Pgreedy. Pgreedy is the power that the wind
farm would produce if all its turbines would operate at the so called Betz limit. A turbine, Ti,
reaches the Betz limit if its thrust coefficient, CT i is equal to 8/9. At this thrust coefficient,
the turbine will extract the theoretical maximum amount of energy from the airflow. This
kind of control, where each turbine operates at its individual optimal settings, is called greedy
control. Pgreedy can be seen as the maximum steady-state power output of the wind farm.
The other reference signal will be in the form

Pref [k] = 0.8Pgreedy + γPgreedyδP [k], (4-1)

where δP [k] is a normalized RegD type AGC signal as defined by PJM [37] and γ is a
variable for which different values will be used to obtain different simulation cases. If γ is
chosen smaller than 0.2, Pref will not exceed Pgreedy and if γ is chosen bigger than 0.2, Pref
will exceed Pgreedy.
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Table 4-1: Simulation case details and settings for 10 turbine (10T) and 64 turbine (64T) case.

Variable Value
10T Case 64T Case

W
in
df
ar
m

Se
tu
p G 10 64

M 5 8
N 2 8
δxr 630 m 630 m
δyr 378 m 378 m
Dr 90 m 90 m
V∞ 7.5 m/s 7.5 m/s

M
od

el
Se

tt
in
gs

C
on

tr
ol

cw 0.68 0.31
cV V 1.0 0.1
cV CT 1.0 0.6
cV A 0.9 0.8
cPV 1.0 0.9
cPCT 1.1 1.1
τ 5 5
h 1 1

Se
tt
in
gs

C
on

tr
ol

q 1 1
r 0.4 0.4

CTmax 8/9 8/9
CTmin 0.01 0.01
pmax 200 200
ε 1 · 10−2 1 · 10−2

Variable Value
10T Case 64T Case

W
FS

im
Se

tt
in
gs

type ’lin’ ’lin’
Lx 3500 5200
Ly 778 3146
Nx 100 80
Ny 50 40

powerscale 1 1
forcescale 1.25 1.25

µ 0 0
ρ 1.2 1.2
u∞ 7.5 7.5
v∞ 0 0
pinit 0 0
lmu 2 2

turbul true true
n 2 2
m 6 6

4-2 Centralized Controller

In this section, the centralized controller will be tested for the 10 turbine case and the 64
turbine case. First, in subsection 4-2-1, the controller will first be tested for the 10T case under
laminar inflow conditions, then, in subsection 4-2-2, for the 10T case under turbulent inflow
conditions and lastly, in subsection 4-2-3, for the 64T case under laminar inflow conditions.

4-2-1 Laminar 10 Turbine Case

Before the controller can be tested, a choice has to be made regarding the prediction horizon
H found in objective function 3-9. The choice for the prediction horizon is influenced by the
layout of the wind farm. The time it takes for the wake effects to travel from the most upwind
turbine to the most downwind turbine in 10T case is equal to maxm dum,dwm = 304 seconds
and the sample time is h = 1 second. Therefore, H should be bigger than 304 to include all
the dynamics within the wind farm. Because of this reason, as an initial choice, H = 310 is
used. It will, however, be shown that this makes the controller too computationally slow for
real-time control. Therefore, the controller will also be tested with a lower prediction horizon,
i.e. H = 160.
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Normalized RegD AGC signal with γγγ equal to 0.2

First, the centralized controller will be tested with the reference signal

Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k].

Note that Pref will not exceed Pgreedy as γ = 0.2. The results of this simulation for H = 310
can be seen in the left two plots in figure 4-2. As can be seen, the controller is able to properly
track the reference signal. The root mean square error (RMSE) as defined in equation 2-32
and the time to update the control actions for one time step are given in table 4-2. The RMSE
is equal to 0.010 MW and it takes averagely 8.13 seconds to update the control actions for
one time step. This is longer than the sample time of 1 second, meaning that the controller
is not fast enough for real-time control with these settings.

Figure 4-2: Tracking results with 10 turbine (10T) case with Pref [k] = 0.8Pgreedy +
0.2PgreedyδP [k] for centralized controller with H = 310 (left), H = 160 (middle) and the
baseline controller (right). In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy

(black dashed) can be seen. In the bottom figures CT max = 8/9 (dashed black) and CT i∀i (see
legend) can be seen.

A way to make the controller faster, is to lower the prediction horizon. The prediction horizon
is lowered until the controller is fast enough for real-time control. This results in H = 160.
Since it takes 152 seconds for the wake effects to travel down two columns of wind turbines,
this prediction horizon is big enough include the interactions between three consecutive wind
turbines. With these settings, as shown in table 4-2, it takes 0.76 seconds to calculate the
optimal control actions for one time step. This is smaller than the sample time of h = 1
second. Thus, with H = 160 the controller is fast enough to provide real-time control. The
results with H = 160 can be seen in the middle two plots in figure 4-2. As can be seen, there
is barely a difference in the tracking performance compared to when H = 310 is used. The
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Table 4-2: RMSE and calculation time for control update achieved with centralized controllers
in WFSim for 10 turbine (10T) case for different prediction horizons H and reference Pref [k] =
0.8Pgreedy + 0.2δP [k] under laminar inflow conditions. Lower values are better.

RMSE [MW] Time [s]

Controller
Centralized H = 310 0.010 8.13

H = 160 0.010 0.76

Controller
Baseline N/A 0.077 N/A

RMSE is 0.010 MW, which is equal to the RMSE that was achieved when H = 310 was used.
Later in this chapter, it will be shown that the prediction horizon becomes more important
if the reference exceeds Pgreedy.

In the right two plots, the results with the baseline controller can be seen. There seems to
be only a slight difference in tracking behaviour. Looking at the RMSE makes the difference
more evident. The baseline controller results in a RMSE of 0.077 MW, as shown in table 4-2.
This is still marginal compared to the order of magnitude of the reference signal, but it is
more than 7 times higher then with the controller proposed in this thesis.

Note that in table 4-2 the calculation time for the baseline controller is omitted. This is be-
cause this controller is written in YALMIP [38] in MatLab, which is a program that translates
a given optimization problem to notation that can be used by a solver such as Gurobi. This
gives a lot of overhead, compared to if the program was written directly in the used solver.
Because of this, no fair estimate can be given about the speed of the baseline controller
compared to the controllers proposed in the thesis.

Normalized RegD AGC signal with γγγ equal to 0.3

It is interesting to see how the controller will function if Pref will exceed Pgreedy. Therefore,
in figure 4-3 the tracking results are shown for the reference

Pref [k] = 0.8Pgreedy + 0.3PgreedyδP [k]. (4-2)

It can be seen that the centralized controller with H = 160 and H = 310 and the baseline
controller are able to temporally exceed Pgreedy. However, after a certain amount of time,
the available energy in the wind farm becomes too low and the controllers cease to be able to
follow the reference. Looking closely at the figure, it possible to see a difference in tracking
behavior between t = 400 and t = 450. With H = 310, the central controller can follow the
reference signal slightly longer than with H = 160. The baseline controller is able to follow
the reference signal even shorter. Looking at the RMSE’s given in table 4-3, the difference is
evident. With H = 160 a RMSE of 0.067MW is achieved, compared to a RMSE of 0.055MW
with H = 310 and a RMSE of 0.137MW. Interesting is the difference in the control signals.
The proposed centralized controller decreases CT for the upwind turbines and increases CT
for the downwind turbines before the surge in the reference signal that exceeds Pgreedy. With
H = 310 this behavior is stronger and starts earlier than with H = 160. In the baseline
controller no such behavior is observed due to the lack of a wake model in the controller.
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Figure 4-3: Tracking results in 10 turbine (10T) case with Pref [k] = 0.8Pgreedy +
0.3PgreedyδP [k] for centralized controller with H = 310 (left), H = 160 (middle) and the
baseline controller (right). In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy

(black dashed) can be seen. In the bottom figures CT max = 8/9 (dashed black) and CT i∀i (see
legend) can be seen.

Table 4-3: RMSE achieved with centralized controllers in WFSim for 10 turbine (10T) case
for different prediction horizons H and reference Pref [k] = 0.8Pgreedy + 0.3δP [k] under laminar
inflow conditions. Lower values are better.

RMSE [MW]

Controller
Centralized H = 310 0.055

H = 160 0.067

Controller
Baseline N/A 0.137
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Normalized RegD AGC signal with variety of values for γγγ
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Figure 4-4: RMSE 10 turbine (10T) case with Pref [k] = 0.8Pgreedy +γPgreedyδP [k] for different
values of γ for centralized controller with H = 160 and H = 310.

In figure 4-4 the RMSE for different values of γ in the reference signal

Pref [k] = 0.8Pgreedy + γPgreedyδP [k]

can be seen for both H = 160 and H = 310. Until γ = 0.26 there is almost no difference
between the results for H = 160 and H = 310. For γ > 0.26, the controller achieves better
tracking results with H = 310 than with H = 160. In this figure also the RMSE for the
baseline controller for different values of γ is shown. It can be seen that the RMSE of that
controller is higher for all the values of γ and that for γ ≤ 0.26, the RMSE increases slightly
more with higher values of γ than the proposed controller.

Reference with step change

To make the way in which the proposed controller anticipates surges in the reference signal
that exceed Pgreedy more clear, this controller is also tested with a reference signal that starts
at 0.8Pgreedy and increases to 1.1Pgreedy after 400 seconds. The results for the controller with
H = 310, H = 160 and the baseline controller can be seen in figure 4-5. In this figure, the
difference between the output signals is not clear. However, the difference between the input
signals is. It can clearly be seen that the controller proposed in this thesis decreases CT of
the upwind turbines and increases CT of the downwind turbines before the surge happens.
It can also be seen that the controller starts doing this 310 seconds in advance to the surge
when H = 310 and 160 seconds in advance when H = 160. In the baseline controller no such
behavior is visible, due to the lack of a wake model in the controller.

Figure 4-6 zooms in on the part where the outputs exceed Pgreedy. In this figure, the difference
in the output signals is more evident. As can be seen, with both H = 310 and H = 160,
the power outputs reach 1.1Pgreedy. With H = 160, the power output declines faster after
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Figure 4-5: Tracking results for 10 turbine (10T) case with reference signal that starts at
0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds for centralized controller with H = 310 (left),
H = 160 (middle) and the baseline controller (right). In the top figures P ref (red dashed),∑G

i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In the bottom figures CT max = 8/9
(dashed black) and CT i∀i (see legend) can be seen.

reaching its top power output, than withH = 310. The power output of the baseline controller
does not reach 1.1Pgreedy and also declines faster after reaching its top power output. To get
a better understanding of the performance of the controllers, the sum of the power outputs
minus Pgreedy from 400 seconds till 900 seconds is taken, i.e.

∑900
k=400 h(P [k]− Pgreedy). This

is equal to the area between the power outputs and Pgreedy from t = 400 till the end of the
simulation. Note that the result of this summation is an amount of energy. More precise, it
results in the amount of energy that the wind farm will produce more than when the power
output is equal to Pgreedy during this time window. The values of this sum for the different
controllers can be found in table 4-4. These values make the difference between the controllers
even more evident. With H = 310 this value is 33% higher than with the baseline controller
and with H = 160 this value is 22% higher.

Table 4-4:
∑900

k=400 h(P [k] − Pgreedy) achieved with centralized controller in WFSim for 10
turbine (10T) case for different values of prediction horizons H and a reference signal that starts
at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds. Higher values are better.∑900

k=400 h(P [k]− Pgreedy) [MJ]

Controller
Centralized H = 160 128

H = 310 140

Controller
Baseline N/A 105
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Figure 4-6: Tracking results for 10 turbine (10T) case with reference signal (red dashed) that
starts at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds for centralized controller with H = 310
(red), H = 160 (blue) and the baseline controller (yellow). This figure zooms in on the part where
the power outputs exceed Pgreedy (black dashed).

4-2-2 Turbulent 10 Turbine Case

It is also studied how the controller behaves under turbulent inflow conditions. As explained
in the introduction of this chapter, the turbulent inflow behavior is approximated by adding
Gaussian noise to the boundaries in WFSim.

For this simulation the prediction horizon will be taken equal to H = 160 to achieve real-time
control. The results with these settings and the reference signal

Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k]

can be seen in the left two plots of figure 4-7. As stated in table 4-5, the RMSE is 0.049 MW.
It can be seen that the power output oscillates a lot around the power reference, but that
the mean of the power output is still correct. Also the input signals oscillate; the controller
is amplifying the disturbance. It is researched how this behavior is influenced by the weight
on the change in the control signal, r. To this end, r is increased from r = 0.4 to r = 1.0.
The results with these new settings can be seen in the right two figures in figure 4-7. It can
be seen that both the output signals and the input signals oscillate less. As shown in table
4-5, the RMSE is 0.040, which is less then with r = 0.4.

Table 4-5: RMSE achieved with centralized controller in WFSim for 10 turbine (10T) case for
different values of weight r and reference Pref [k] = 0.8Pgreedy + 2δP [k] under turbulent inflow
conditions. Lower values are better.

RMSE [MW]
r = 0.4 0.049
r = 1.0 0.040
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Figure 4-7: Tracking results with ’turbulence’ for 10 turbine (10T) case with centralized controller
with Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k] and H = 160. In the left two plots r = 0.4 is used
and in the right two plots r = 1.0. In the top figures the power reference, the total power output
and Pgreedy can be seen. In the bottom figures the inputs used to achieve this tracking can be
seen.

4-2-3 Laminar 64 Turbine Case

Lastly, it is interesting to see how the centralized controller performs in a bigger wind farm.
The controller has been tested on the 64 turbine case with

Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k].

To include the interaction between all the turbines in the wind farm. the prediction horizon
would need to be bigger than maxm dum,dwm = 543 seconds. This will, however, result in a
very high computational costs. Therefore, instead, it is chosen to keep H = 160. Laminar
inflow conditions are considered. The tracking results are shown in the left two plots of figure
4-8. As shown in table 4-6, the RMSE is 0.020 MW. Thus, also for big wind farms, the
centralized controller can achieve proper tracking. The time to calculate the optimal control
actions for one time step is 6.65 seconds. This means that it is not possible to do real-time
control in a large wind farm with the centralized controller with these settings. Therefore,
the distributed controller, which will be tested in the following section, was introduced.

In the right two plots of figure 4-8, the results for a 64T wind farm with the baseline controller
is shown. When looking at the figure, the tracking results look equal as to the proposed
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controller. However, the RMSE of 0.22 MW is 11 times higher than with the proposed
controller.
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Figure 4-8: Tracking results for 64 turbine (64T) case with Pref [k] = 0.8Pgreedy +
0.2PgreedyδP [k] for centralized controller with H = 160 (left) and the baseline controller (right).
In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.

Table 4-6: RMSE and calculation time for control update achieved with centralized controller
and the baseline controller in WFSim for 64 turbine (10T) case for prediction horizon H = 160
and reference Pref [k] = 0.8Pgreedy + 0.2δP [k] under laminar inflow conditions. Lower values are
better.

RMSE [MW] Time [s]

Controller
Centralized

H = 160 0.020 6.65

Controller
Baseline N/A 0.22
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4-3 Distributed Controller

In this section, the results of testing the two developed distributed controllers will be given.
Also these controllers will be compared against the centralized controller and the active power
control (APC) designed by S. Boersma et al. [10] that is taken as baseline controller. Both
the 10 turbine and 64 turbine cases under laminar inflow conditions will be considered. The
controllers are tested with both a prediction horizon ofH = 160 andH = 310. The parameters
for both controllers defined in algorithm 3.1 and 3.2 can be found in table 4-7. The rest of
the parameters can be found in table 4-1.

Variable Value
pmax 200
ε 1 · 10−2

Table 4-7: Parameter choices for algorithms 3.1 and 3.2

As no computer with 64 cores is available to the author of this thesis, lines 4 until 11 in
algorithm 3.1 and lines 4 until 6 and 8 until 13 in algorithm 3.2 will not be solved in parallel.
However, it is still possible to give a indication for the time it would take to solve the controller
problem if these lines were solved in parallel. This can be done by taking the maximum time
that the algorithm spends on these lines for any of the sub-problems and adding this to the
time it takes to run the rest of the controller. It is important to take the maximum time and
not the mean time, because the algorithm has to wait until the parallel lines are performed
for all of the subsystems before it can continue. This means that if this part of the algorithm
is solved in parallel, it will take as long as the slowest controller.

4-3-1 Laminar 10 Turbine Case

First, the 10 turbine case under laminar inflow conditions is discussed for different reference
signals.

Reference with step change

The results for the reference that starts at 0.8Pgreedy and goes to 1.1Pgreedy for both controllers
with H = 160 can be seen in figure 4-9. As can be seen, just as with the centralized controller,
both controllers lower the CT of the upwind turbines and increase the CT of the downwind
turbines before the surge in the reference signal. This behavior is stronger in the modified
Jacobian distributed controller (MJDC) than in the normal Jacobian distributed controller
(NJDC). With the method explained before, it is approximated that, if the algorithms would
be solved in parallel, the NJDC would take around 0.09 seconds to calculate the optimal
control actions for a single time step and the MJDC around 0.92 seconds. The NJDC is
faster than the MJDC and both controllers are fast enough to provide real-time control, as
the calculation times are lower than the sample time h = 1 second.

Figure 4-10 zooms in on the part where the power outputs exceed Pgreedy. To get a better
comparison, in this figure also the tracking results for the centralized controller with H = 160
and the baseline controller is shown. As can be seen, both the centralized controller and
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the MJDC perform equally well. The NJDC performs a little less, but still outperforms the
baseline controller. Also note that both the NJDC and MJDC oscilate a little bit and that
this behavior is stronger for the NJDC. As shown in table 4-8, for the MJDC

∑900
k=400 h(P [k]−

Pgreedy) = 129MJ and for the NJDC
∑900
k=400 h(P [k]− Pgreedy) = 121MJ . This value is 23%

higher for the MJDC compared to the baseline controller and 15% higher for the NJDC.
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Figure 4-9: Tracking results for 10 turbine (10T) case with NJDC (left) and MJDC (right) with
H = 160 and a reference that start at 0.8Pgreedy and goes to 1.1Pgreedy after 400 seconds. In
the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.

Both controllers are also tested for the same test signal whilst using H = 310. The results
can be seen in figure 4-11. As can be seen both controller now start to change the CT of the
turbines 310 seconds ahead of the surge in the reference. If the algorithms would be solved in
parallel, the NJDC would take approximately 0.52 seconds to calculate the optimal control
actions for the next time step and the MJDC 18 seconds. This means that the NJDC is still
able to provide real time control with H = 310 and h = 1, but the MJDC is not. Figure
4-12 zooms in on the part where the power outputs exceed Pgreedy. As can be seen, again
the MJDC performs equally as well as the centralized controller with H = 310. The NJDC
still performs a little less, but the difference seems to be smaller. Also note that both the
controllers oscillate a little and that this behavior is still stronger for the NJDC. As stated in
table 4-8, for the MJDC

∑900
k=400 h(P [k]− Pgreedy) = 140MJ , which is 33% higher than with

the baseline controller and for the NJDC
∑900
k=400 h(P [k] − Pgreedy) = 137MJ , which is 30%

higher than with the baseline controller.
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Figure 4-10: Tracking results for 10 turbine (10T) case with reference signal (red dashed) that
starts at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds for NJDC (yellow), MJDC (blue) and
centralized controller (green) with H = 160 and the baseline controller (purple). This figure
zooms in on the part where the power outputs exceed Pgreedy (black dashed).

Table 4-8:
∑900

k=400 h(P [k] − Pgreedy) and time to update control actions for single time step
with distributed controllers in WFSim for 10 turbine (10T) case for different values of prediction
horizons H and a reference signal that starts at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds.
Higher values of the sum are better. ∑900

k=400 h(P [k]− Pgreedy) [MJ] Time [s]

NJDC H = 160 121 0.09
H = 310 137 0.52

MJDC H = 160 129 0.92
H = 310 140 18

Controller
Baseline N/A 105
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Figure 4-11: Tracking results for 10 turbine (10T) case with NJDC (left) and MJDC (right)
with H = 310 and a reference that start at 0.8Pgreedy and goes to 1.1Pgreedy after 400 seconds.
In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.
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Figure 4-12: Tracking results for 10 turbine (10T) case with reference signal (red dashed) that
starts at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds for NJDC (yellow), MJDC (blue) and
centralized controller (green) with H = 310 and the baseline controller (purple). This figure
zooms in on the part where the power outputs exceed Pgreedy (black dashed).
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Normalized RegD AGC signal with γγγ equal to 0.2

The controllers are also tested with the RegD AGC signal:

Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k].

The MJDC is only tested with H = 160, as the version with H = 310 is not able to achieve
real-time control. The results can be found in figure 4-13 and table 4-9. As can be seen,
all the distributed controllers are able to track the reference properly. For all three versions
of the distributed controller the RMSE is 0.017 MW. The difference between the controllers
is more apparent when Pref exceeds Pgreedy. The RMSE is higher than for the centralized
controller, but still marginal compared to the order of magnitude of the reference signal.

Figure 4-13: Tracking results for 10 turbine (10T) case with NJDCwith H = 160 (left) and H =
310 (middle) and with MJDC with H = 160 (right) with Pref [k] = 0.8Pgreedy +0.2PgreedyδP [k].
In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.

Table 4-9: RMSE achieved with distributed controllers in WFSim for 10 turbine (10T) case
for different values of prediction horizons H and the reference signal Pref [k] = 0.8Pgreedy +
0.2PgreedyδP [k]. Lower values are better.

RMSE [MW]

NJDC H = 160 0.017
H = 310 0.017

MJDC H = 160 0.017

Controller
Baseline N/A 0.077
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Normalized RegD AGC signal with γγγ equal to 0.3

To explore how the distributed controller behaves when the reference signal exceeds Pgreedy,
the next reference signal is used:

Pref [k] = 0.8Pgreedy + 0.3PgreedyδP [k].

The results are shown in figure 4-14. As can be seen, the distributed controllers are able to
track a reference signal that exceeds Pgreedy for a certain amount of time. Form the plot it is
hard to tell the difference between the tracking quality of the three controllers. For the NJDC
with H = 160 the RMSE is 0.079MW, for the same controller with H = 310 it is 0.078MW
and for the MJDC with H = 160 it is 0.065MW. Here the difference between the RMSE of
the two versions of the NJDC really small. Even more interesting is that the MJDC with
H = 160 here outperforms the NJDC with H = 310. This might be due to the fact that the
output signals of the NJDC sometimes oscillates. This increases the RMSE. Both RMSE are,
however, still marginal and really close to the RMSE of the centralized controller and smaller
than the RMSE of 0.137MW achieved with the baseline controller.

Figure 4-14: Tracking results for 10 turbine (10T) case with NJDC with H = 160 (left) and H =
310 (middle) and with MJDC with H = 160 (right) with Pref [k] = 0.8Pgreedy +0.3PgreedyδP [k].
In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.
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Table 4-10: RMSE achieved with distributed controllers in WFSim for 10 turbine (10T) case
for different values of prediction horizons H and the reference signal Pref [k] = 0.8Pgreedy +
0.3PgreedyδP [k]. Lower values are better.

RMSE [MW]

NJDC H = 160 0.079
H = 310 0.078

MJDC H = 160 0.065

Controller
Baseline N/A 0.137

4-3-2 Laminar 64 Turbine Case

To test how the distributed controllers behave in larger wind farms, they have also been tested
in the 64 turbine wind farm. The controllers have been tested with the reference signal

Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k].

The results can be seen in figure 4-15 and table 4-11. As can be seen all the controllers
are able to track the reference signal properly. The RMSE with both versions of the NJDC
is 0.042 MW and thus 2 times as big as with the centralized controller for the 64 turbine
case. It is, however, still marginal in contrast to the reference signal. The MJDC scores even
closer to the centralized controller with a RMSE of 0.033. The small difference between the
two distributed controller is probably, again, caused by the fact that the output of the NJDC
oscillates a bit more. The time it approximately takes to calculate the optimal control actions
for a single time step if the algorithm is run in parallel within the NJDC with H = 160 is 0.11
seconds for the 64T case, compared to 0.09 seconds in the 10T case. For the same controller
with H = 310, this is 0.58 seconds for the 64T case, compared to 0.52 seconds in the 10T
case. For the MJDC with H = 160 this is 1.06 seconds for the 64T case, compared to 0.92
seconds for the 10T case. Notice that these times are slightly higher for the 64T case than for
the 10T case and that this goes against the idea that the controllers would be equally fast,
regardless of the size of the wind farm. The difference is, however, small and it is primarily
caused by data handling in the controller. When just looking at the time that the controllers
would approximately spend on the lines 4 until 11 in algorithm 3.1 and lines 4 until 6 and
8 until 13 in algorithm 3.2 if they would be calculated in parallel, the NJDC with H = 160
takes 0.08 seconds in both the 10T and 64T case. For the same controller with H = 310
this is 0.51 seconds for the 10T case and 0.53 seconds for the 64T case and for the MJDC
with H = 160 this is 0.91 seconds for the 10T case and 0.94 seconds for the 64T case. The
differences between these times are substantially smaller.

V. van de Scheur Master of Science Thesis



4-3 Distributed Controller 59

Figure 4-15: Tracking results for 64 turbine (64T) case with NJDC with H = 160 (left) and H =
310 (middle) and with MJDC with H = 160 (right) with Pref [k] = 0.8Pgreedy +0.3PgreedyδP [k].
In the top figures P ref (red dashed),

∑G
i=1 Pi (blue) and Pgreedy (black dashed) can be seen. In

the bottom figures CT max = 8/9 (dashed black) and CT i∀i can be seen.

Table 4-11: RMSE and time to update control actions with distributed controllers in WFSim
for 64 turbine (64T) case for different values of prediction horizons H and the reference signal
Pref [k] = 0.8Pgreedy + 0.2PgreedyδP [k]. Lower values are better.

RMSE [MW] Time [s]

NJDC H = 160 0.043 0.11
H = 310 0.043 0.58

MJDC H = 160 0.033 1.06

Controller
Baseline N/A 0.137
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4-4 Summary

In this chapter the centralized and distributed controllers have been tested in the medium-
fidelity wind farm model WFSim with a variety of simulation cases. The results are summa-
rized in tables 4-12, 4-13 and 4-14. The most important results are:

All proposed controller are able to properly track the given reference signals. All
controllers are able to track the reference signals with RMSE values smaller than the
baseline controller with which the results are compared.

The proposed controllers decrease the input signals of the upwind turbines and
increase the input signals of the downwind turbines before a reference ex-
ceeds Pgreedy. How far ahead this happens, depends on the prediction horizon. For the
distributed controllers, this behavior is more apparent in the MJDC than in the NJDC

The proposed controllers are able to exceed Pgreedy more and longer than the
baseline controller. This is especially evident when looking at the RMSE’s and the
sums

∑900
k=400 h(P [k]− Pgreedy).

The centralized controller becomes computationally slower for bigger wind farms.
For the 10 turbine case, the centralized controller was able to compute the control actions
for a single time step faster than the sample time of h = 1 second. For the 64 turbine
case, the centralized controller was substantially slower.

The distributed controllers stay approximately equally computationally fast, re-
gardless of the size of the wind farm. That is, if it is assumed that a separate
processor core is available for each control problem. The NJDC was able to update the
control signals for a single time step in a time smaller than the sample time of h = 1
second. The MJDC was slower. For this controller it takes around 1 second to update
the control actions for a single time step.

The proposed controllers also work under turbulent inflow conditions. By increas-
ing the weight on the change in the control signals, r, the controller reacts less to the
turbulent inflow conditions. Within WFSim turbulent inflow conditions are approxi-
mated by adding Gaussian noise to the boundaries.
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Table 4-12: RMSE achieved and calculation time [s] to update control actions with centralized
and distributed controllers in WFSim for 10 turbine (10T) and 64 turbine (64T) cases for different
prediction horizons H and different values of γ in reference Pref [k] = 0.8Pgreedy + γδP [k] under
laminar inflow conditions. Lower values are better.

RMSE [MW] Time [s]

γ = 0.2
10T

γ=0.3
10T

γ = 0.2
64T 10T 64T

Controller
Centralized H = 160 0.010 0.067 0.020 0.76 6.65

H = 310 0.010 0.055 N/A 8.13 N/A

NJDC H = 160 0.017 0.079 0.043 0.09 0.11
H = 310 0.017 0.078 0.043 0.52 0.58

MJDC H = 160 0.017 0.065 0.033 0.92 1.06

Controller
Baseline N/A 0.077 0.137 0.22 N/A N/A

Table 4-13: RMSE achieved with centralized controller in WFSim for 10 turbine (10T) case for
different values of weight r and reference Pref [k] = 0.8Pgreedy + 2δP [k] under turbulent inflow
conditions. Lower values are better.

RMSE [MW]
r = 0.4 0.049
r = 1.0 0.040

Table 4-14:
∑900

k=400 h(P [k] − Pgreedy) achieved with centralized and distributed controllers in
WFSim for 10 turbine (10T) case for different values of prediction horizons H and a reference
signal that starts at 0.8Pgreedy and goes to 1.1Pgreedy at 400 seconds. Higher values are better.∑900

k=400 h(P [k]− Pgreedy) [MJ]

Controller
Centralized H = 160 128

H = 310 140

NJDC H = 160 121
H = 310 137

MJDC H = 160 129
H = 310 140

Controller
Baseline N/A 105
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Chapter 5

Conclusions

As the share of electrical power produced by wind farms increases, it is presumable that it
becomes problematic to maintain a stable power grid. On the power grid, the amount of
energy generated and consumed should be in balance. As wind power has a unpredictable
and fluctuating nature, its increasing use can make it problematic to maintain this balance.
To overcome this problem, this thesis focused on designing a control architecture that not
only stabilizes the power output of wind farms, but is also able to provide real-time power
reference tracking. With power reference tracking, it is possible for grid operators to adapt the
power production to a change in the power demand and to counteract fluctuations introduced
by other power generators. It is chosen to use model predictive control (MPC), such that the
(delayed) wake dynamics within the wind farm can be taken into account. Wakes are areas
downwind from turbines with decreased wind speed and increased turbulence. These wakes
cause the wind turbines within a wind farm to influence each other. It is envisioned that
taking these effects into account will create more freedom to temporally operate above the
theoretical steady-state maximum power output, Pgreedy.

MPC requires a controller model that is able to simulate the behavior of the wind farm.
Therefore, in this thesis, a new control-oriented low-fidelity wind farm model that takes the
wake dynamics into account, is developed. The model is based on the Frandsen’s model and
the Actuator Disk Model (ADM). The model is made dynamic by using the Taylor frozen
turbulence hypothesis. The resulting model is validated against data from the medium fidelity
wind farm model called WindFarmSimulator (WFSim) [1].

The developed model is used within a centralized MPC architecture. In this controller, the
model is rewritten in the so called ’velocity form’ to incorporate integral action. This is nec-
essary to ensure tracking despite model mismatches and (unknown) disturbances. Although
this controller was able to provide real-time control for small (2x5 turbine) wind farms, for big
wind farms the order of the model becomes to large to provide real-time control. Therefore,
in this thesis, two different distributed MPC architectures are proposed. With distributed
control, the central control problem is divided into smaller local control problems that will
be solved on local controllers that communicate with each other. This makes it possible to
also solve large complex control problems in real time. An additional benefit of distributed
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control, is that if one of the local controllers fails, the rest of the wind farm can still be con-
trolled. This makes the system more fail-safe. Also in these distributed controllers, the model
is rewritten in the ’velocity form’ to incorporate integral action. The distributed controllers
are based on the Jacobi algorithm as defined by A.N. Venkat et al. [36]. One controller (the
normal Jacobian distributed controller (NJDC)) uses this algorithm exactly as defined in [36],
the other (the modified Jacobian distributed controller (MJDC) uses the same algorithm but
with a modification as explained in chapter 3.

The developed controllers are tested in chapter 4 in a medium fidelity wind farm model called
WFSim [1]. From these simulations, the next conclusions about the developed wind farm
model and controllers can be made:

Taking wake effects into account in a MPC for APC in a wind farm gives more
freedom to temporally exceed Pgreedy. The proposed controllers were compared to
a MPC developed by Boersma et al. [10] in which the wake effects are not taken into
account. This controller was taken as the baseline controller. It was shown in chapter
4 that the proposed controllers were able to exceed Pgreedy more and longer than the
baseline controller. This is especially evident when looking at figures 4-6, 4-10 and 4-12
and table 4-14. The controllers anticipate the surge in the reference signal by decreasing
CT for the upwind turbines and increasing CT for the downwind turbines. By doing so,
the upwind turbines will let more wind power flow into the farm. As it takes time for
air to travel through the wind farm, this extra power will be available to the downwind
turbines at a later time, such that Pgreedy can be exceeded longer. This effect can be
seen more clear in the MJDC than in the NJDC. In the baseline controller no such
behavior was witnessed. Also interesting to note, is that the prediction horizon H has
influence on how much and long Pgreedy can be exceeded. If the prediction horizon is
larger, the controller will start to anticipate the surge in the reference signal earlier.

The proposed distributed controllers are able to provide real-time control in large
wind farms. That is, if it is assumed that a processor core is available for each sub-
problem. Here, each sub-problem consists of a single turbine in the NJDC and a cluster
of turbines in the MJDC. It was shown that, under this assumption, the time it takes to
calculate the control actions for a single time step stays approximately equal regardless
of the size of the wind farm. For the NJDC this time was lower than the sample time
of h = 1 second with the used settings, meaning that this controller is fast enough for
real-time control. The MJDC took around 1 second to calculate the control inputs for
a single time step. This means that the MJDC is too slow to provide real-time control.
It is however really close to providing real-time control. A solution would be to update
the control actions every two seconds. Other solutions would be increasing the sample
time and/or decreasing the prediction horizon.

The centralized controller is not able to provide real-time control in large wind
farms. For the centralized controller, the time to calculate the control settings for a
single time step increased with the size of the wind farm. For large wind farms, the
centralized controller will take longer to update the control actions than the sample
time of h = 1 seconds. This means that it will not be fast enough to provide real-time
control in these wind farms. For a small 2x5 turbine wind farm, the calculation time
was 0.76 seconds. For a large 8x8 turbine wind farm, this time was 6.65 seconds.
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Adding integral action by rewriting the model in the velocity form causes the
controller to compensate for model mismatches. In chapter 2 it was shown that
there were model mismatches between the proposed controller model and the simulation
model WFSim. In chapter 4 it was shown that, despite these mismatches, the controllers
were able to properly follow a reference signal.

Of the two developed distributed controllers, the MJDC is able to exceed Pgreedy
longer and more than the NJDC. This can be concluded from the results shown
in table 4-8. Also, the way in which the controllers anticipate a surge in the reference
that exceeds Pgreedy by decreasing the CT at the upwind turbines is more noticeable in
the MJDC than in the NJDC.

The controllers are able to properly track under turbulent inflow conditions,
although laminar inflow conditions are assumed in the controller model.
This can be concluded from the results presented in figure 4-7. The controller amplifies
the effects of the turbulence. Increasing the weight, r, on the change of the input signals
reduced this effect. Turbulent inflow conditions were approximated by adding Gaussian
noise to the boundaries.

The proposed controller model is fast and accurate enough to function in a MPC
algorithm for active power control (APC) in wind farms. That is, if integral
action is added to the controller to account for model mismatches. In chapter 2, it was
already shown that the model is able to give an estimate for the power output of a wind
farm. In chapter 4 it was shown that the controllers in which the model was used, were
able to properly track reference signals. The model was also able to predict whether
the available power in the wind farm will be too low to follow a given reference signal.
Because of this, the controller is able to anticipate this by decreasing CT for the upwind
turbines and increasing CT for the downwind turbines.

Summarizing, it can be concluded that the goal of creating a distributed MPC that can
provide real-time power reference tracking in wind farms whilst taking the wake dynamics
into account was successfully reached in this thesis.
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Chapter 6

Discussion and Recommendations

In this chapter the proposed controller model and controllers are discussed and recommenda-
tions are made.

First of all, it is interesting to note that, although within the controller model laminar inflow
conditions are assumed, the controllers are still able to properly track reference signals in
approximated turbulent inflow conditions. Nonetheless, tracking results and/or robustness
for turbulent inflow conditions might improve if turbulent inflow conditions were assumed
in the controller model. It is, however, debatable whether it would be possible to simulate
turbulent inflow conditions in a control oriented low-fidelity wind farm model. Simulating
turbulence is generally computationally heavy. Though, it should be possible to address
turbulent inflow conditions using stochastic control such as proposed in a paper by Boersma
et al. [27]. This is interesting for future research.

Moreover, it is interesting to note that besides creating the possibility to exceed Pgreedy more
and longer, taking the wake dynamics into account also makes it possible to provide additional
information to the grid operators. With the control architectures proposed in this thesis, it is
possible to predict whether certain reference signals can or can not be tracked by a wind farm
depending on the maximum available energy. This is useful information for grid operators.

Furthermore, the simulations presented in this thesis show that the developed concepts work.
But, to further validate controllers, the controllers should also be tested in high-fidelity and,
eventually, in a wind tunnel scale model and/or a real wind farm. It is possible to do this in
future work.

To add, future work could also focus on extending the controller model to work for wind
farms with non-rectangular layouts and arbitrary wind directions.

One thing that is debatable, is whether it is possible for grid operators to accurately predict
the energy demand. This was assumed to be possible to provide the reference signal to the
wind farm that extends into the future as far as the used prediction horizons in the controllers.
It should, however, be possible for grid operators to give an estimate for the future energy
demand. Short term load forecasting is an existing and developing field of research and should
be able to provide such estimates [39].
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Furthermore, in the controller model and the controllers, CT is used as the input signal, as
is a common choice within wind farm control. This choice is made to simplify the problem
at hand. It is, however, not possible to control CT directly. As proposed before, a possibility
is to use the controllers proposed in this thesis as wind farm level controllers and let local
controllers steer the wind turbines to the demanded CT . Another possibility is to use a turbine
model that uses the yaw, pitch and generator torque as inputs. A advantage of this solution
is that it creates the opportunity to use the wind turbine dynamics to further exceed Pgreedy
as shown in [14]. A drawback from this way of working is that it makes the control problem
more complex. These two solutions could be further explored in future work.

Also, it is interesting to use true parallel processing to solve the used distributed control
algorithms. Because not enough processor cores were available on the computer used for the
simulations, these algorithms were run sequentially. In the introduction of section 4-3 it is
explained how the time is calculated that it would take to update the control actions if the
algorithms were solved in parallel. With this method, the communicational delay between
the processor cores and the overhead are not taken into account. Also the communicational
delay between the controller and the turbines is not taken into account. This means that, in
reality, each update cycle will take a certain amount of time ε longer.

Lastly, it is interesting to including dynamic axial induction control and/or wake redirection
via yawing into the proposed controllers, such that Pgreedy can be exceeded further. This
could also be done in future work. It is shown that dynamic axial induction control can
increase the maximum available energy in a wind farm in multiple papers by Munters et al.
and Frederik et al. [28, 40, 41, 42]. In a paper by Boersma et al. wake redirection is used in
combination with a active power control (APC) scheme to increase the available power in a
wind farm [10].
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Appendix A

Vectors and Sub-Matrices of
State-Space Notation of Proposed

Wind Farm Model

In this appendix the vectors and sub-matrices of the state-space notation of the proposed wind
farm model are given. They are given for a wind farm with a single row m of turbines. For
wind farms with multiple rows of wind turbines, these vectors and matrices can be defined for
each row in the same way as described in this appendix. They can than be stacked together
as explained in chapter 2. Notation used within this appendix is defined in chapter 2.

The states xn, {n ∈ Z|1 ≤ n ≤ N} for each subsystem Sn, {n ∈ Z|1 ≤ n ≤ N} are given by

x1[k] =

 ˆδV d,1
C̃T d,1
C̃T 1

 , xN−1 =

 V̂N−1
ˆδV d,N−1
C̃TN−1

 , xN =
[
V̂N
C̃TN

]

and

xn =


V̂n
ˆδV d,n

C̃T d,n
C̃T n

∀{n ∈ Z|2 ≤ n ≤ N − 1},

where

ˆδV d,1 =


ˆδV 1[k − 1]
ˆδV 1[k − 2]

...
ˆδV 1[k − d1,2 + 1]

 ,
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ˆδV d,n =



∑n−1
i=1

(
ˆδV i[k − di,n] + ∂δVn

∂An+1

∣∣∣
x0

1
2AR

cw
1−cw C̃T i[k − di,n]

)
∑n
i=1

ˆδV i[k − di,n − 1]∑n
i=1

ˆδV i[k − di,n − 2]
...∑n

i=1
ˆδV i[k − di,n+1 + 1]


∀{n ∈ Z|2 ≤ n ≤ N − 1},

C̃T d,1 =


C̃T 1[k − 1]
C̃T 1[k − 2]

...
C̃T 1[k − d1,2 + 1]



and

C̃T d,n =



∑n−1
i=1 C̃T i[k − di,n]∑n−1

i=1 C̃T i[k − di,n − 1]∑n−1
i=1 C̃T i[k − di,n − 2]

...∑n−1
i=1 C̃T i[k − di,n+1 + 1]

∀{n ∈ Z|2 ≤ n ≤ N − 2}.

Such that the subsystems Sn, {n ∈ Z|1 ≤ n ≤ N} can be expressed by

x1[k + 1] =


A ˆδV d,1 ˆδV d,1 0 A ˆδV d,1C̃T 1

0 AC̃T d,1C̃T d,1 AC̃T d,1C̃T 1

0 0 AC̃T 1C̃T 1


︸ ︷︷ ︸

A1,1

x1[k] +

 0
0

BC̃T 1CT 1


︸ ︷︷ ︸

B1

CT 1[k]

+

Cx ˆδV d,1CT 0,1
Cx ˆδV d,1δV0,1

Cx ˆδV d,1A0,1
Cx ˆδV d,1A0,2

0 0 0 0
0 0 0 0



CT 0,1
δV0,1
A0,1
A0,2


︸ ︷︷ ︸

cx1

,

P̂1[k] =
[
0 0 CP̂1C̃T 1

]
︸ ︷︷ ︸

C1

x1[k] +
[
CyP̂1CT 0,1

CyP̂1P0,1

] [CT 0,1
P0,1

]
︸ ︷︷ ︸

cy1

,

(A-1)
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xN−1[k + 1] =

 0 0 0
A ˆδV d,N−1V̂N−1

A ˆδV d,N−1 ˆδV d,N−1
A ˆδV d,N−1C̃TN−1

0 0 AC̃TN−1C̃TN−1


︸ ︷︷ ︸

AN−1,N−1

xN−1[k]

+

0 AV̂N−1 ˆδV d,N−2
0 0

0 A ˆδV d,N−1 ˆδV d,N−2
A ˆδV d,N−1C̃T d,N−2

0
0 0 0 0


︸ ︷︷ ︸

AN−1,N−2

xN−2[k]

+

 0
0

BC̃TN−1CTN−1


︸ ︷︷ ︸

BN−1

CTN−1[k]

+



0 C
x

ˆ
δV̂d,N−1CT 0,N−1

0 0
CxV̂N−1V0,1

0 0 0
0 Cx ˆδV d,N−1V0,N−1

0 0
0 Cx ˆδV d,N−1δV0,N−1

0 0
0 Cx ˆδV d,N−1A0,1

0 0
0 Cx ˆδV d,N−1A0,N

0 0



T 

CT 0,N−1
V0,1
V0,N−1
δV0,N−1
A0,1
A0,N


︸ ︷︷ ︸

cxN−1

,

P̂N−1[k] =
[
CP̂N−1V̂N−1

0 CP̂N−1C̃TN−1

]
︸ ︷︷ ︸

CN−1

xN−1[k]

+
[
CyP̂N−1CT 0,N−1

CyP̂N−1P0,N−1
CyP̂N−1V0,N−1

] CT 0,N−1
P0,N−1
V0,N−1


︸ ︷︷ ︸

cyN−1

,

(A-2)

xN [k + 1] =
[
0 0
0 AC̃TN C̃TN

]
︸ ︷︷ ︸

AN,N

xN [k] +
[
0 AV̂N ˆδV d,N−1

0
0 0 0

]
︸ ︷︷ ︸

AN,N−1

xN−1[k]

+
[

0
BC̃TNCTN

]
︸ ︷︷ ︸

BN

CTN [k] +
[
CxV̂NV0,1

0

] [
V0,1

]
︸ ︷︷ ︸

cxN

,

P̂N [k] =
[
CP̂N V̂N CP̂N C̃TN

]
︸ ︷︷ ︸

CN

xN [k] +
[
CyP̂NCT 0,N

CyP̂NP0,N
CyP̂NV0,N

] CT 0,N
P0,N
V0,N


︸ ︷︷ ︸

cyN

(A-3)

and ∀{n ∈ Z|2 ≤ n ≤ N − 2}
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xn[k + 1] =


0 0 0 0

A ˆδV d,nV̂n A ˆδV d,n ˆδV d,n 0 A ˆδV d,nC̃T n
0 0 AC̃T d,nC̃T d,n AC̃T d,nC̃T n
0 0 0 AC̃T nC̃T n


︸ ︷︷ ︸

An,n

xn[k]

+

0 AV̂n ˆδV d,n−1
0 0

0 A ˆδV d,n ˆδV d,n−1
A ˆδV d,nC̃T d,n−1

0
0 0 0 0


︸ ︷︷ ︸

An,n−1

xn−1[k]

+


0
0
0

BC̃T nCT n


︸ ︷︷ ︸

Bn

CT n[k]

+



0 Cx ˆδV d,nCT 0,n
0 0

CxV̂nV0,1
0 0 0

0 Cx ˆδV d,nV0,n
0 0

0 Cx ˆδV d,nδV0,n
0 0

0 Cx ˆδV d,nA0,1
0 0

0 Cx ˆδV d,nA0,n+1
0 0



T 

CT 0,n
V0,1
V0,n
δV0,n
A0,1
A0,n+1


︸ ︷︷ ︸

cxn

,

P̂n[k] =
[
CP̂nV̂n 0 0 CP̂nC̃T n

]
︸ ︷︷ ︸

Cn

xn[k]

+
[
CyP̂nCT 0,n

CyP̂nP0,n
CyP̂nV0,n

] CT 0,n
P0,n
V0,n


︸ ︷︷ ︸

cyn

,

(A-4)

where

A ˆδV d,nV̂n =



0
∂δVn
∂Vn

∣∣∣
x0

0
...
0


∈ Rdn,n+1×1 {n ∈ Z|2 ≤ n ≤ N − 1},

A ˆδV d,1 ˆδV d,1 =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 ∈ R(d1,2−1)×(d1,2−1),
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A ˆδV d,n ˆδV d,n =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 ∈ R(dn,n+1)×(dn,n+1) ∀{n ∈ Z|2 ≤ n ≤ N − 1},

A ˆδV d,1C̃T 1
=


∂δV1
∂CT 1

∣∣∣
x0

+ ∂δV1
∂A2

∣∣∣
x0

1
2AR

cw
1−cw

0
...
0

 ∈ R(d1,2−1)×1,

A ˆδV d,nC̃T n
=



0
∂δVn
∂CT n

∣∣∣
x0

+ ∂δVn
∂An+1

∣∣∣
x0

1
2AR

cw
1−cw

0
...
0


∈ R(dn,n+1)×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},

AC̃T d,1C̃T d,1 =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 ∈ R(d1,2−1)×(d1,2−1),

AC̃T d,nC̃T d,n =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 ∈ R(dn,n+1)×(dn,n+1) ∀{n ∈ Z|2 ≤ n ≤ N − 2},

AC̃T d,1C̃T 1
=


1
0
...
0

 ∈ R(d1,2−1)×1,

AC̃T d,nC̃T n =


0
1
0
...
0

 ∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 2},

AC̃T nC̃T n = e−
1
τ
h ∀{n ∈ Z|1 ≤ n ≤ N},

AV̂2 ˆδV d,1 =
[
0 · · · 0 −1

]
∈ R1×(d1,2−1),
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AV̂n ˆδV d,n−1
=
[
0 · · · 0 −1

]
∈ R1×dn−1,n ∀{n ∈ Z|3 ≤ n ≤ N},

A ˆδV 2 ˆδV d,1 =


0 · · · 0 1
0 · · · 0 0
... . . . ...

...
0 · · · 0 0

 ∈ Rd2,3×(d1,2−1),

A ˆδV n ˆδV d,n−1
=


0 · · · 0 1
0 · · · 0 0
... . . . ...

...
0 · · · 0 0

 ∈ Rdn,n+1×dn−1,n ∀{n ∈ Z|3 ≤ n ≤ N − 1},

A ˆδV d,2C̃T d,1
=


0 · · · 0 ∂δV2

∂A3

∣∣∣
x0

1
2AR

cw
1−cw

0 · · · 0 0
... . . . ...

...
0 · · · 0 0

 ∈ Rd2,3×(d1,2−1),

A ˆδV d,nC̃T d,n−1
=


0 · · · 0 ∂δVn

∂An+1

∣∣∣
x0

1
2AR

cw
1−cw

0 · · · 0 0
... . . . ...

...
0 · · · 0 0

 ∈ Rdn,n+1×dn−1,n ∀{n ∈ Z|3 ≤ n ≤ N − 1},

BC̃T nCT n = 1− e−
1
τ
h ∀{n ∈ Z|1 ≤ n ≤ N}

Cx ˆδV d,1CT 0,1
=


− ∂δV1
∂CT 1

∣∣∣
x0

0
...
0

 ∈ R(d1,2−1)×1,

Cx ˆδV d,nCT 0,n
=



0
− ∂δVn
∂CT n

∣∣∣
x0

0
...
0


∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},

CxV̂nV0,1
= 1 ∀{n ∈ Z|2 ≤ n ≤ N},

Cx ˆδV d,nV0,n
=



0
−∂δVn

∂Vn

∣∣∣
x0

0
...
0


∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},
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Cx ˆδV d,1δV0,1
=


1
0
...
0

 ∈ R(d1,2−1)×1,

Cx ˆδV d,nδV0,n
=


0
1
0
...
0

 ∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},

Cx ˆδV d,1A0,1
=


∂δV1
∂A2

∣∣∣
x0

0
...
0

 ∈ R(d1,2−1)×1,

Cx ˆδV d,nA0,1
=



0
∂δVn
∂An+1

∣∣∣
x0

0
...
0


∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},

Cx ˆδV d,1A0,1
=


−∂δV1
∂A2

∣∣∣
x0

0
...
0

 ∈ R(d1,2−1)×1,

Cx ˆδV d,nA0,1
=



0
− ∂δVn
∂An+1

∣∣∣
x0

0
...
0


∈ Rdn,n+1×1 ∀{n ∈ Z|2 ≤ n ≤ N − 1},

CP̂nV̂n = ∂δPn
∂Vn

∣∣∣
x0
∀{n ∈ Z|2 ≤ n ≤ N},

CP̂nC̃T n
= ∂δPn
∂CT n

∣∣∣
x0
∀{n ∈ Z|1 ≤ n ≤ N},

CyP̂nCT 0,n
= − ∂δPn

∂CT n

∣∣∣
x0
∀{n ∈ Z|1 ≤ n ≤ N},

CyP̂nP0,n
= 1 ∀{n ∈ Z|1 ≤ n ≤ N}
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and

CyP̂nV0,n
= −∂δPn

∂Vn

∣∣∣
x0
∀{n ∈ Z|2 ≤ n ≤ N}.
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Appendix B

Validation of model with PALM

In this appendix the proposed controller model is compared with data from Parallelized
Large-Eddy Simulation Model (PALM). PALM is a high-fidelity three-dimensional Large
Eddy Simulation (LES) model. For the comparison a wind farm with three turbines in a row
parallel to the wind speed is used. A visual representation of this farm can be found in figure
B-1. The diameter of the rotors is 90 meters and the spacing between the wind turbines is
540 meters. Laminar inflow conditions with a free stream wind speed of 8m/s are considered.
The sample time h = 1 seconds. The chosen decision variables for the proposed model can
be found in table B-1.

In figures B-2, B-3 and B-4 power outputs of the turbines predicted by the proposed model
compared to PALM for three different reference signals can be seen. From these figures it
can be concluded that the proposed model is able to also properly track the mean behaviour
of the power output compared to PALM. In figure B-5 the total power output of the wind
farm for simulation cases 1, 2 and 3 is shown. Also from this figure it can be concluded that
the mean behaviour of the power output is tracked properly. Table B-2 gives the root mean
square error (RMSE) for the different simulation cases.

Figure B-1: Layout of wind farm used for comparison with PALM data.
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Figure B-2: Comparison of power outputs predicted by the proposed model (red) compared to
PALM (black dotted) with a step change in the thrust coefficient of turbine number 1.
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Figure B-3: Comparison of power outputs predicted by the proposed model (red) compared to
PALM (black dotted) with a step change in the thrust coefficient of turbine number 2.
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Figure B-4: Comparison of power outputs predicted by the proposed model (red) compared to
PALM (black dotted) with a step change in the thrust coefficient of turbine number 3.
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Figure B-5: Comparison of total power output predicted by the proposed model (red) compared
to PALM (black dotted) for cases 1, 2 and 3.
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Table B-1: Chosen decision variables for proposed model

Variable Value
cw 0.15
cV V 2.1
cV CT 1.52
cV A 1
cPV 1.2
cPCT 0.8
τ 5

Table B-2: RMSE for different simulation cases.

Case RMSE [MW]
1 0.046
2 0.025
3 0.003
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Glossary

List of Acronyms

ADM Actuator Disk Model

MPC model predictive control

DMPC distributed model predictive control

WFSim WindFarmSimulator

PALM Parallelized Large-Eddy Simulation Model

LES Large Eddy Simulation

RMSE root mean square error

MPC model predictive control

APC active power control

LIDAR LIght Detection And Ranging of Laser Imaging Detection And Ranging

NERC North American Electric Reliability Corporation

APC active power control

PI proportional-integral

FLORIS FLOw Redirection and Induction in Steady-state

FLORIDyn FLOw Redirection and Induction Dynamics

CCDC coupled cost decoupled constraint

NJDC normal Jacobian distributed controller

MJDC modified Jacobian distributed controller
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