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Abstract

The CSD650 is the largest cutter suction dredger produced by Damen Dredging Equipment (DDE)
in Nijkerk. To provide for a wider range of clients, the CSD will be used in more coastal conditions.
Therefore, it is important to study the behaviour of a cutter suction dredger in waves.

In this context the following research question is formulated: ’What are the operational limits of a
CSD650 in waves and, how do harsh environmental conditions affect the important structural parts of
a CSD650 over time?’ To be able to answer these research questions, the possible failure mechanisms
are stated.

Secondly, a linear frequency domain model is build that incorporates all forces acting on the CSD. A
twelve degree of freedom model is built in MATLAB and uses DELFRAC potential software to calculate
the frequency dependent added mass, damping and wave forces. All the other forces on the CSD are
stated as linearized inertia, damping or reaction forces. The ladder of the CSD is treated as a Morison
element to calculate the wave forces on the ladder as for the hydrodynamic forces. When the whole
equation of the system is known, the equation of motion can be solved to get the Response Amplitude
Operators of the system.

Using transformation matrices the RAOs of the centre of gravity of the barge can be transformed to
the RAOs of the spud cage. When the mechanical properties of the spud pole and soil interaction are
known, the relation between spud motions and stresses can be determined. This relation allows for
calculating a stress RAO for the spud pole. In combination with any given wave spectra, so called
stress spectra can be determined.

Using the statistical characteristics of these stress spectra, important statistical quantities for the stress
response can be derived. Firstly, the probability that a stress cycle amplitude exceeds the yield stress
which leads to plastic deformation of the spud pole. With the help of fatigue curves and the Miner rule
the fatigue damage, caused by different combinations of significant wave height and peak period, can
be calculated with this spectral method. However the model seems to overestimate the values of the
fatigue damage and yield stress exceedance probability. It is therefore advised to validate the model
with real life measurements.

Figure 1: ”the CSD650”
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1
Introduction

This document is the report of the graduation thesis of Richard de Reus for the Msc Offshore and Dredg-
ing Engineering of the TU Delft. The research is be done at and in corporation with Damen Dredging
Equipment in Nijkerk the Netherlands. Formerly de Groot Nijkerk became part of the Damen Shipyard
group in 1988. But not until 2004 the name was changed in to Damen Dredging Equipment(DDE).
DDE makes a range of standardized dredging equipment, including Trailing Suction Hopper Dredgers,
Cutter Suction Dredgers, Submersible Dredge Pumps and more.

1.1. Problem Definition
The CSD650 is the biggest CDS produced here in Nijkerk. To provide for a wider range of clients
this CDS is certified for coastal area’s. This certification heavily influenced the design of the CSD650.
However the certification rules are based mainly on seaworthiness and not based on operational limits.
Therefore proper investigation of the dynamical behaviour of a CSD650 has never been done at DDE.
Due to lack of this investigation the operational limits of the CSD are unknown and it is not sure if the
current design of the CSD650 is the most economical. It is thus unsure what the effect of harsh wind
wave and current conditions are on the structural parts of the CSD and what these effects are over a
long period of operating time. A great opportunity to combine a graduation thesis with added value to
DDE.

1.2. Objective
The objective of this research is to gain insight in the behaviour of a CSD in waves and the long time
structural effects. This objective is achieved by looking closely at the forces on the dredger for the
verification of the design with possible recommendations.

1.3. Thesis Question

”What are the operational limits of a CSD650 in waves and how do harsh environ-
mental conditions effect the important structural parts of an CSD650 over time?”

Through this objective some possible research questions can be formulated.

• What are the operational limits of an CSD650?

• Which sea states lead to these motions and forces?

• What is the fatigue life of a CSD650 in different wave conditions?

• How can the operability be improved from a design point of view?

1
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Approach To be able to answer these research questions a mathematical model is needed to in-
corporate all forces acting on the CSD. This model must calculate the motions and reaction forces of
the suction dredger operating in waves. Although some commercial software is available, it is chosen
to develop an algorithm in Matlab. First of all this gives Damen Dredging Equipment the flexibility to
develop the algorithm further and apply it to their whole range of CSDs. And second it gives the writer
an opportunity to gain in depth knowledge of all the hydrodynamic behaviour of a complex system
such as a CSD in the context of the Msc. Offshore and Dredging Engineering. When looking for the
limiting forces and motions on a CSD the following parts must be investigated.

• Spud pole

• Spud keeper

• Ladder

• Ladder hinge

1.4. Description of the CSD650
In this section a general description is given about the main case study, the CSD650. Because Damen
delivers this type of CSD with many different options these numbers can vary. However the numbers
mentioned here are used for further calculation in this study.

Figure 1.1: ”The Damen CSD650”

1.4.1. General

General parameters of the CSD650
Mass ≈ 580 Tonnes
length over all (inc. spud keeper) = 60 m
length over pontoons = 49.3 m
Beam = 10 m
Depth = 2.5 m
Draught = 1.4 m

Table 1.1: General parameters of the CSD650

1.4.2. Barge and ladder
The numerical value’s of the inertia’s and masses of the barge and ladder are presented in table 1.2.
The numbers are expressed in the units Metric Tonnes and Metric Tonnes per square meter.
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Parameters of the CSD650
Parameter Barge Ladder unit
Mass 520 60 MTonnes
Mass moment of inertia roll 41736 80 Tonnes⋅𝑚
Mass moment of inertia pitch 10442 4000 Tonnes⋅𝑚
Mass moment of inertia yaw 112028 4032 Tonnes⋅𝑚

Table 1.2: Barge and Ladder

The numbers for the ladder are taken from the CSD650 model from ANSYS software. and are taken
with respect to the centre of gravity as further clarified in section 3.1.

1.4.3. Segmented spud pole
The spud pole is the most important mooring system that keeps the CSD in place during operations.
After arriving at the dredging location the spud is dropped in to the soil to make sure the penetration
is deep enough to ensure station keeping.The spud pole is a thin walled tube welded together from
multiple sections with different thickness. It’s most important feature is its bending stiffness. To
account for the different sections a weighted average for the thickness is calculated.

Section Length [mm] Fraction of length[-] Thickness [mm] Weighted thickness [mm]
1 3000 0.11 35 3.89
2 3000 0.11 40 4.44
3 5400 0.20 35 7.00
4 4600 0.17 32 5.47
5 11000 0.41 19 7.74
Sum 2700 1.00 28.53

Table 1.3: Spud pole

For further calculations a thickness of 28.53 mm is used

Figure 1.2: ”Spud Pole”
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1.4.4. Spud keeper
The spud keeper is the part of the CSD that connects the spud pole with the hull of the ship. the spud
is able to move freely in the vertical direction. Only the upper and lower spud door guide the vertical
forces and moments from the ship to the spud pole and vice versa.

Figure 1.3: ”Spud Keeper”

For further purposes the spud and spud keeper are modeled clamped but free sliding in vertical
direction as shown below.

Figure 1.4: ”Spud keeper model”

1.4.5. Cutter ladder
The cutter ladder is the part of the CSD that connects the cutterhead with the barge. It contains
the suction pipe and the sheaves that connect to the A-frame through the hoisting wires. It is also
connected to the side wires. These side wires are on one side connected to the anchors that enable
the swiveling motion around the spud pole. These motions are powered by the winches on the barge.
The motions and forces of the side wires are not taken in to account in this document and model.

Overall length = 25 𝑚
Centre of gravity from hinge = 14 𝑚
Hoisting wire from centre of gravity = 4 𝑚
Mass = 61.7 Mtonnes
Mass moment of inertia roll = 80 Ton 𝑚
Mass moment of inertia Pitch = 4000 Ton 𝑚
Mass moment of inertia Yaw = 4032 ton 𝑚

Table 1.4: Ladder
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Figure 1.5: ”cutter ladder”

1.5. Operational limits
The operational limits of the CSD are mainly decided by the operator of the CSD. When deciding to
abandon operations he must consider the safety, of his own and of his personnel, he must consider the
integrity of the dredger and the efficiency of the dredging process.The dangers of on-board personnel
could be:

• Water on deck

• Integrity of the dredger

– Floating pipeline

– Cutter teeth

– Spud pole

– Hoisting wires

Efficiency of the dredging process

– Cutter out of the breach

– Swing motion impossible





2
Failure mechanisms

To investigate the operational limits and to be able to improve the design, various failure mech-
anisms must first be investigated. Experience learns us that the spud pole is most prone to
failure.

2.1. Plastic deformation
When the stress in the out-most fibres of the spud cross-section becomes to large plastic defor-
mation of the spud pole occurs. When the bending moment results in a stress higher than the
yield strength of the steel type used. In this case the standard construction steel is uses s355.
Which means that is has a yield strength of 355 . A highly plastic deformed spud pole can
get stuck in the spud cage. The spud can be removed by opening the spud cage door but the
spud still must be replaced.

Figure 2.1: ”Deformed spud pole”

7
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2.2. Soil failure
The spud pole is the most important mooring system that the CSD has. This means that when
the dredger is not able to maintain its position, the spud pole fails. This is also possible when the
soil that the spud pole is subjected to, fails. However due to all the different soil types a dredger
can work in, this is outside the scope of this study.

2.3. Pin tube failure
When the spud pole is in the upward position is is maintained in this position by a pin through the
spud pole. These pins are guided by a tube from one side to the other 2.2. However when the
spud pole is subjected to a perpendicular force, the tube elastically deforms into an oval shape.
This results in a high tensile force in the weld of the tubes. When these welds fail the spud is
still usable however it will fill with water and be to heavy to lift also the same consequences
mentioned in 2.4 will apply.

Figure 2.2: ”Spud Pole with Pinholes”

2.4. Segment welds failure
As stated in 1.4.3 the spud pole is divided in 5 different segments. These segments are V-joint but
welded together. This means that both segments are only beveled on one side [1]. This results
in a v-shaped weld like in in figure 2.3. Due to the fact that this weld can only be performed from
the outside of the spud pole one of the main failure mechanisms is that when cracks in the weld
appear. When cracks in he weld appear the spud pole might be still usable. However the spud
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will fill with water and make hoisting the spud pole either impossible due to the weight increase,
or time consuming when waiting for the water to exit at the bottom.

Figure 2.3: ”Single V-shape weld[1]”





3
Model

In this chapter the most important elements of the model will be described. At first a short
introduction will be given to clarify the key decisions about the model and especially the overall
equation of motion. In section 3.3 all the kinematics that govern the model are described. Then
in succession the inertia, drag, spring and coupling terms of the model are discussed. To complete
the equation of motion the external forces are treated in section 3.8. Throughout the chapter
reference is made to Diffraction theory 3.9 and Morison 3.10.

3.1. Axes
To be able to describe the motions of a CSD in waves in a mathematical sense, and to ensure
that motions in one direction do not get confused with another direction, a strict definition of the
axes is needed. These axes are conveniently linked with the degrees of freedom of a floating
object. These degrees of freedom are:

Degree of
freedom

direction /
about axis

name Forces and
moments

Linear and
angular dis-
placements

Positions
and Euler
Angles

1 x Surge 𝑓 x x
2 y Sway 𝑓 y y
3 z Heave 𝑓 z z
4 about x Roll 𝑀 𝜙 𝜙
5 about y Pitch 𝑀 𝜃 𝜃
6 about z Yaw 𝑀 𝜓 𝜓

Table 3.1: Definitions

The degrees of freedom from table 3.1 are visualized in figure 3.1.

The conventions in figure 3.2 make the system a 2 mass spring system with 12 degrees of
freedom. Three translations and three rotations for the barge and ladder. The motions of these
masses are described around their own centres of gravity.

11
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Figure 3.1: ”Degrees of freedom”

Figure 3.2: ”Axes definition in 2-D”
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3.2. Waves
When using potential theory to describe waves it will be necessary to assume that the water
surface slope is very small. This means that the wave steepness is so small that terms in the
equations of the waves with a magnitude in the order of the steepness-squared can be ignored.
Using the linear theory holds here that harmonic displacements, velocities and accelerations of
the water particles and also the harmonic pressures will have a linear relation with the wave
surface elevation. [2].

𝜂(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜖) (3.1)

This gives a smooth wave shape with;
𝜂 = Wave elevation [m]
𝐴 = Amplitude of the wave [m]
𝜔 = Angular velocity [rad/s]
𝑡 = Time [s]
𝜖 = Phase [radians]

However when one looks at the sea at any given moment in time it does not appear to be a
harmonic wave. So to get a mathematical description of a ’random’ wave one must use the
summation of many harmonic waves to create a random sea surface. This is done with randomly
chosen amplitudes and phases.

𝜂(𝑡) =∑𝐴 cos(𝜔 𝑡 + 𝜖 ) (3.2)

Figure 3.3: ”The sum of a large number of harmonic wave components”

3.2.1. Frequencies
To simulate the irregular wave pattern as described in section 3.2 a infinite amount of regular
waves would give the best results. However for numerical purposes a finite number of frequencies
is needed. The more frequencies are included the better the irregular wave pattern is represented.
However for every frequency the calculations must be done. Hence it is key to select the right
amount of frequencies to on the one side get a good representation of the wave forces and
on the other side avoid unnecessary calculations. The lower limit of the frequency span is 0
radians per second. When a wave is 0 radians per second there is not a wave at all. The upper
limit is more a consideration between definition of result and computer time. For this model a
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upper limit of 2 radians per second is chosen. This is due to the fact that the waves with higher
frequencies than 2 radians per second carry very little energy as seen in wave spectra.5.8 This
frequency is divided in 40 different frequencies in this way the energy of the wave spectrum is
best represented without losing information.

3.2.2. Directions
Goal of this model is to calculate the effects sea states have on the important elements of the CSD.
This means that the input is given as a description of a sea state as a wave spectrum or a scatter
diagram. Responses are calculated for 24 wave directions 3.4 and 40 different frequencies. The
model must translate this to stress responses for certain parts of the cutter, spud pole, ladder
hinge, etc.

Figure 3.4: ”Directions of incoming waves”

3.2.3. Assumptions
In the model several assumptions are made, but the most important are.

– The barge and ladder are considered rigid body’s
– Small angles of rotation to maintain linear
– Airy wave theory (inviscid, incompressible and irrotational)

Further assumptions and simplifications are made and are explained throughout the text.

3.2.4. Time vs frequency domain
For the modeling of the cutter suction dredger there are two flavours two chose from. These
flavours are the frequency domain and the time domain. The time domain modeling is when the
variation of the stress amplitude is calculated over time. In the frequency domain the system is
analyzed according to it’s response for different frequencies. Frequency domain analysis is more
suitable as it enables a long term and and statistical information about the system rather than
looking at every individual stress variation. However calculations in the frequency domain must
remain linear at all times. However when this assumption holds the calculations remain relatively
simple in comparison to the time domain an enables the writer of this document to build the
model in MATLAB.
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3.2.5. Equation of motion
The equation of motion is based on Newtons law of dynamics, it is given by :

𝑚 ⋅ �̈� = 𝐹 (3.3)

For the system of one degree of freedom is given below:

𝑚�̈� = −𝑎 (𝜔) ⋅ �̈� − 𝑏 (𝜔) ⋅ �̇�⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝ −𝑐 ⋅ 𝑥+⏝⎵⎵⏟⎵⎵⏝ 𝐹 𝑠𝑖𝑛(𝜔𝑡 + 𝜀 )⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝ (3.4)

In which:

𝑚 = Mass of the dredger
𝑎 (𝜔) = Added mass at frequency 𝜔
𝑏 (𝜔) = Potential damping at frequency 𝜔
𝑐 = Linear restoring coefficient due to the hydrostatics and the mooring system.
𝐹 (𝜔) = Amplitude of the steady oscillatory wave exciting force at frequency 𝜔
𝜀 = Phase angle with regard to wave elevation 𝜁

3.3. Kinematics
Kinematics is the branch of classical mechanics which describes the motion of points (alternatively
”particles”), bodies (objects), and systems of bodies without consideration of the masses of those
objects nor the forces that may have caused the motion. [3]

3.3.1. Transformation of displacements
In order to transform the displacements of the centre of gravity to the displacements of any other

point within the same rigid body, transformation matrix 𝐿 is needed and obtained as follows:

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

𝑧 𝜃 − 𝑦 𝜓
−𝑧 𝜙 + 𝑥 𝜓
𝑦 𝜙 − 𝑥 𝜃

0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 𝑧 −𝑦
0 1 0 −𝑧 0 𝑥
0 0 1 𝑦 −𝑥 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

Please note that only small rotations are considered as an example the transformation to the
spud is used.

𝑥 = 𝐿 𝑥 (3.5)

Figure 3.5: ”Transformation of displacements”

3.3.2. Virtual work
The principle of virtual work with deformable bodies is that the virtual work is the same as
the virtual change in strain energy. It is often stated as that, external virtual work is equal to
internal virtual work when forces and stresses in equilibrium undergo unrelated but consistent
displacements and strains. In this next example the principle of virtual work is used to get the
K matrix of a wire working between to points a and b, r is the vector of this wire and 𝑙 is the
length of the wire in equilibrium. 𝑒 is the unit vector. The internal virtual work = external virtual
work [4]

𝛿𝑥 𝑓 = 𝛿𝜖 𝜎 (3.6)
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𝐵 = [− ⋅ 0 − ⋅ ⋅ 0 ⋅ ] (3.7)

𝐵 is the relationship between the displacements of the points and the strain. The displacements
of the two points are;

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝑥
𝑦
𝑧

⎤
⎥
⎥
⎥
⎥
⎦

Hence
𝜖 = 𝐵 ⋅ 𝑥

Virtual work done by the strain
𝛿𝜖 = 𝐵𝛿𝑥

𝛿𝜖 = 𝛿𝑥 𝐵
Transposed to be substituted in to equation 3.6.

𝛿𝑥 𝑓 = 𝛿𝜖 𝜎 = 𝛿𝑥 𝐵 𝑆𝐵𝑥

𝛿𝑥 𝑓 = 𝛿𝑥 𝐵 𝑆𝐵 𝑥
Since the spring constant is defined as;

𝑓 = 𝐾𝑥
Hence;

𝐾 = 𝐵 𝑆𝐵

3.3.3. Checking the virtual work with the transformation of forces
In order to transform the forces that act on the spud keeper tot the centre of gravity, the trans-

posed matrix of 𝐿 is needed.

𝑓 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓
𝐾
𝑀
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝑧 𝑦 1 0 0
𝑧 0 −𝑥 0 1 0
−𝑦 𝑥 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓
𝐾
𝑀
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

𝑓 = 𝐿 𝑓 (3.8)

3.3.4. Check
In order to transform the forces that act on the spud keeper tot the centre of gravity, the trans-

posed matrix of 𝐿 is needed.

𝑓 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓
𝐾
𝑀
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝑧 𝑦 1 0 0
𝑧 0 −𝑥 0 1 0
−𝑦 𝑥 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓
𝐾
𝑀
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

𝑓 = 𝐿 𝑓 (3.9)
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3.3.5. Tansformation of stiffness matrix
In the equation of motion all the forces are considered in the centre of gravity this is why the
stiffness matrix derived from the spud pole must be transformed to a stiffness matrix acting on
the CoG.

𝑓 = 𝐾 ⋅ 𝑥

𝑥 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

𝑥 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]

To derive the stiffness matrix of the spud pole translated to the CoG the energy relation of a
spring is used. Work done by a linear spring is ⋅distance ⋅ force. In the case of the spud pole
this is:

1
2 ⋅ 𝑥 ⋅ 𝑓 (3.10)

with
𝑓 = 𝐾 ⋅ 𝑥 (3.11)

Substitute in to 3.10.

1
2𝑥 ⋅ 𝐾 ⋅ 𝑥 (3.12)

with

𝑥 = 𝐿 ⋅ 𝑥
The transposed of a multiplication is the multiplication of the transposed.

𝑥 = (𝐿 ⋅ 𝑥 ) = 𝐿 ⋅ 𝑥
Combinding equation 3.10 and 3.11.

1
2𝑥 ⋅ 𝐿 ⋅ 𝐾 ⋅ 𝐿⏝⎵⎵⎵⏟⎵⎵⎵⏝ ⋅𝑥

Hence

𝐾 , = 𝐿 ⋅ 𝐾 ⋅ 𝐿

3.4. Inertia
The equation of motion is basically the balancing of forces over time or frequency. For an object
to accelerate a force is needed. This connection is made by Newtons second law, force is the
objects mass times its acceleration.

𝐹 = 𝑀 ⋅ 𝑎 (3.13)

In this section all the inertia terms of the equation of motion are treated. This means all the
terms that are multiplied with the acceleration to get a force.
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3.4.1. Barge
The mass matrix of the barge looks as follows:

⎡
⎢
⎢
⎢
⎢
⎣

𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼 0 0
0 0 0 0 𝐼 0
0 0 0 0 0 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

𝑚 = Mass of the dredger
𝐼 = ∫𝜌(𝑦 + 𝑧 )𝑑𝐴
𝐼 = ∫𝜌(𝑥 + 𝑧 )𝑑𝐴
𝐼 = ∫𝜌(𝑥 + 𝑦 )𝑑𝐴

Numeric values the numeric values for the ladder mass are:

𝑚 = 520 𝑡
𝐼 = 4173 𝑡 ⋅ 𝑚
𝐼 = 10442 𝑡 ⋅ 𝑚
𝐼 = 112030 𝑡 ⋅ 𝑚

Added mass
In fluid mechanics, added mass or virtual mass is the inertia added to a system because an
accelerating or decelerating body must move (or deflect) some volume of surrounding fluid as
it moves through it. This mass, that is added to the mass of the moving body, is calculated
with diffraction software treated in section 3.10. The added mass is different for every degree of
freedom and for every frequency of oscillation.

3.4.2. Ladder
The mass matrix of the ladder is in principle the same as the mass matrix of the barge with
different numeric values. However the added mass is calculated with a simpler approach. For
the added mass the Morison equation is used.

Numeric values the numeric values for the ladder mass are:

𝑚 = 62 𝑡
𝐼 = 80 𝑡 ⋅ 𝑚
𝐼 = 4000 𝑡 ⋅ 𝑚
𝐼 = 4032 𝑡 ⋅ 𝑚

Addedmass with Morison The added mass of the ladder is calculated with Morison 3.10. For
the inertia term a linearisation step is not needed. In the model the translations are calculated
with

𝐹 = ∫ 𝜋
4𝜌 [

𝐷∗
𝐷
𝐷∗
] 𝐶 [

�̈�
�̈�
�̈�
] 𝑑𝑧 (3.14)

and for the rotations the calculation is somewhat complicated. For every part of the ladder the
velocity relative to the water particles are different and the same rules do not apply to every
rotation. For example with roll. This is a motion about the x axis. if �̈� = 1 𝑟𝑎𝑑/𝑠 then the
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absolute acceleration in the 𝑥 and 𝑥 are the same as the x coordinate due to the 45
degrees ladder angle.

𝐹 = ∫ 𝜋
4𝜌𝐷 𝐶 [

�̈�
�̈�
�̈�
] 𝑑𝑧 (3.15)

3.5. Damping
In this section all the damping terms of the equation of motion are discussed. This means all
the terms that are multiplied with the velocity to get a force. These terms are called damping
coefficients.

3.5.1. Barge
Potential damping
When a object oscillates in still water, waves are created that travel from the object outwards.
These waves take energy out of the oscillating object. This type of energy dissipation is called
potential damping or free surface wave damping. This damping is dependent of the frequency
of the oscillation and for every degree of freedom different. To determining these coefficients
diffraction software is used, this software is clarified more in section 3.9

Viscous roll damping
Due to the fact that potential software does not take viscous effects in to account the damping
coefficient for roll damping is underestimated. The damping due to viscous effects must be added
to the already calculated damping coefficient by the potential software. Chakrabarti [2001] [5]
suggest an empirical calculation method which is used below.

𝐵 = 𝐵 + 𝐵 + 𝐵 + 𝐵 + 𝐵 (3.16)

in which:
𝐵 = Hull friction damping
𝐵 = Hull eddy shedding damping
𝐵 = Free surface wave damping
𝐵 = Lift force damping
𝐵 = Bilge keel damping

For the case of the CSD, there is no forward speed hence 𝐵 = 0. There is no bilge keel hence
𝐵 = 0. And the free surface wave damping is already calculated by the potential software.

𝐵 = 4
3 ⋅ 𝜋𝜌𝑆𝑟 𝑅 𝐶 𝜔 (3.17)

Where S is the wetted surface calculated with:

𝑆 = 𝐿(1.7𝐷 + 𝐶 𝐷) (3.18)

𝜌 is the density of the water in which the friction coefficient Cf is given by:

𝐶 = 1.328[ 2𝜋𝜈
3.22𝑟 𝑅 𝜔] (3.19)

With the effective bilge radius is computed from:

𝑟 = 1
𝜋[(0.887 + 0.145𝐶 )𝑆𝐿 − 2𝑂𝐺] (3.20)
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𝑅 is the amplitude of the roll motion. However this amplitude is only known when the viscous roll
damping is already calculated. For the first calculations a roll amplitude of 5 degrees is estimated.
However after multiple iteration steps the final value for 𝑅 is 30 degrees. OG is in this case the
same as the draft of the ship.

For the eddy shedding damping coefficient:

𝐵 = 2
𝜋𝜌𝐿𝐷 (𝐻 + 1 − 𝑂𝐺/𝐷)[𝐻 + (1 − 𝑂𝐺/𝐷) ]𝑅 𝜔) (3.21)

𝐻 = 𝐵
2 ⋅ 𝐷 (3.22)

Figure 3.6: ”viscous roll damping”
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Figure 3.7: ”Potential vs viscous roll damping”

3.5.2. Ladder

To calculate the total force on the ladder the Morison force must be integrated of the length of
the ladder. In the following calculations a linearized form of the Morison equation is used. For
the linearisation steps the reader referred to section 3.10.2 For the three translations:

𝐹 , = ∫ 1
2𝜌𝐷𝐶 [ 83𝜋 [

𝑥
𝑦
𝑧
]] [
�̇�
�̇�
�̇�
] 𝑑𝑧 (3.23)

For the three rotations:

𝐹 , = ∫ 1
2𝜌𝐷𝐶 [ 83𝜋 [

𝜙
𝜃
𝜓
]] [
�̇�
�̇�
�̇�
] /(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝐶𝑜𝐺)𝑑𝑧 (3.24)

where the index a means amplitude of the motion.
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Figure 3.8: ”Morison in still water”

The drag force over the length of the spud is:

𝐹 , = ∫ 1
2𝜌𝐷𝐶 [ 83𝜋𝑢 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑧𝑑𝑧 (3.25)

3.6. Spring
In this section all the spring terms of the equation of motion are treated. This means all the
terms that are multiplied with the displacement to get a force. These terms are called spring
coefficients. First the spring terms working on the barge are discussed and then the spring terms
of the ladder.

3.6.1. Barge
Hydrostatics
The most important spring term of the barge are the hydrostatics. Due to the hydrostatic forces
the barge is floating, upright and stable. In heave direction the spring term is determined with
Archimedes law.

𝐹 = 𝜌𝑔𝐴 ⋅ Δ𝑧 (3.26)

𝐾 , = 𝜌𝑔𝐴 (3.27)

For surge and sway no restoring forces exist. For roll and pitch the restoring forces are calculated
with use of the following parameters

KG = Distance from keel to centre of gravity
KB = Distance from keel to centre of buoyancy
Iy = Bending moment of inertia of the water cutting surface in y direction
Ix = Bending moment of inertia of the water cutting surface in x direction

𝐵𝑀 =
𝐼
∇ (3.28)
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𝐺𝑀 = 𝐾𝐵 + 𝐵𝑀 − 𝐾𝐺 (3.29)

𝑘 , = 𝜌𝑔∇ ⋅ 𝐺𝑀 (3.30)
𝑘 , = 𝜌𝑔∇ ⋅ 𝐺𝑀 (3.31)

Spud
In next section the stiffness matrix of the spud pole is determined. It is assumed that the spud
pole is prismatic and it is considered to be clamped in the soil.

𝑓 = 𝐾 𝑥
The displacement and rotation of the spud pole are:

𝑢 = 𝑓 𝑙
3𝐸𝐼 +

𝑀𝑙
2𝐸𝐼

𝜃 = 𝑓 𝑙
2𝐸𝐼 +

𝑀𝑙
𝐸𝐼 = 0

In matrix notation this gives:

[𝑢𝜃] =
1
𝐸𝐼 [ ] [𝑓𝑀]

[𝑓𝑀] =
12𝐸𝐼
𝑙 [ 𝑙 −

− ] [𝑥𝜃]

= 𝐸𝐼
𝑙 [ 12 −6𝑙

−6𝑙 4𝑙 ] [
𝑥
𝜃]

[
𝑓
𝑓
𝑀
] = 𝐸𝐼

𝑙 [
12 0 −6𝑙
0 0 0
−6𝑙 0 4𝑙

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

[
𝑢
𝑤
𝜃
]

Since the x and y direction are symmetrical so equation becomes:

⎡
⎢
⎢
⎢
⎢
⎣

𝑓
𝑓
𝑓
𝑀
𝑀
𝑀

⎤
⎥
⎥
⎥
⎥
⎦

= 𝐸𝐼
𝑙

⎡
⎢
⎢
⎢
⎢
⎣

12 0 0 0 −6𝑙 0
0 12 0 −6𝑙 0 0
0 0 0 0 0 0
0 −6𝑙 0 4𝑙 0 0
−6𝑙 0 0 0 4𝑙 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

(3.32)

Figure 3.9: ”Displacement of the spud”
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Spud K The stiffness matrix of the spud pole when hinging is analyzed in the same fashion
and also reference is made to [Wichers1980][6].

[
𝑓
𝑓
𝑀
] = 3 ⋅ 𝐸𝐼𝑙 [

1 0 −𝑙
0 0 0
−𝑙 0 𝑙

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

[
𝑢
𝑤
𝜃
] (3.33)

Numeric values 𝑘 Examples of values of the spud stiffness clamped from direction x resulting
in a force in direction y.

𝑘 = 7.6951 ⋅ 10
𝑘 = 7.6951 ⋅ 10

3.6.2. Ladder
Cutter head

The last reaction force for the displaced cutter ladder are the soil reaction forces on the cutter
head. Damen Dredging Equipment is very experienced in dealing with these forces. When
the reaction forces of springs work on the cutterhead. The stiffness of the springs are highly
dependant on the soil conditions the dredger is working in. For further purposes a spring stiffness
of 600 kN/m is used. Please note that the soil conditions have a large influence on the way that
the spud pole is supported. This means that these parameters can not be varied individually.

3.7. Coupling
Hinge

When determining a local stiffness matrix only the translational coefficients have to be considered.
Rotations are transformed from the centre of gravity to translations at the hinge location.

[
𝐾 0 0
0 𝐾 0
0 0 𝐾

]

The bending of two hinge pins in x and z direction.

𝐾 = 𝐾 = 2 ⋅ 48 ⋅ 𝐸𝐼𝐿

With

𝐼 = 𝜋
4 ⋅ 𝑟

For y direction the bending of two plates determines the stiffness.

𝐾 = 2 ⋅ 3𝐸𝐼𝐿
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Figure 3.10: ”Ladder hinge”

Hoisting wire
The force that acts on the body’s from the hoisting wires is dependant of the elongation of the
hoisting wire with respect to its equilibrium length. [4]

𝑓 = 𝐸𝐴
𝑙 ⋅ Δ𝑙 (3.34)

The relationship between the displacements of the two points of the hoisting wire and the elon-
gation is stated as B=𝐵

Δ𝑙 = 𝐵 ⋅ 𝑥 = [cos 𝛼 0 sin 𝛼 0 − cos 𝛼 0 − sin 𝛼 0 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.35)

To get the force vector this is the elongation times the elasticity times the normalized direction.

𝑓 = Δ𝑙 ⋅ 𝐸𝐴𝑙 ⋅ 𝑙 ,
𝑙 (3.36)

For further notation of the relation of the elongation and force is:

𝐿⋆ = 𝐸𝐴
𝑙 ⋅ 𝑙 ,

𝑙 (3.37)

To be able to get the hoisting wire vector a transformation of the 𝑥 that is is the reference
frame of the ladder to 𝑥 that is in the reference frame of the barge.

𝑥 = 𝑥 − 𝑥 + 𝑥 (3.38)
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Then vector of the hoisting wire is:

𝑙 = 𝑥 − 𝑥 (3.39)

The elongation of the hoisting wire is the difference between the length of the vector and the
original length of the loaded hoisting wire in equilibrium.

Δ𝑙 = 𝑙 − 𝑙 , (3.40)

Since these displacements are not the displacement in the CoG, transformation matrices are
needed.

Δ𝑙 = 𝐵 [𝑥𝑥 ] = 𝐵 [𝐿 0
0 𝐿

] [𝑥𝑥 ] (3.41)

𝑓 = 𝐿⋆ 𝐵𝐿 𝑥 (3.42)

To transform the forces to the CoGs the principle of virtual work is used

𝛿𝑥 𝑓 = 𝛿𝑥 𝑓 (3.43)

This means that the local virtual work done by the hoisting wire must be the same as the global
virtual work. This gives:

𝛿𝑥 𝑓 = 𝛿𝑥 𝐿⋆𝐵𝑥 (3.44)

𝛿𝑥 𝑓 = 𝛿𝑥 𝐿 𝐿⋆ 𝐵𝐿 𝑥 (3.45)

𝑓 = 𝐿 𝐿⋆ 𝐵𝐿 𝑥 (3.46)

Due to the assumption of only small rotations, a simplification is made to calculate the forces in
the hoisting wire due to its difference in length with respect to its equilibrium length. However,
the change in direction of the force is not taken in to account under the assumption that these
changes are very small. An highly exaggerated example is show in figure 3.11. The hoisting wire
in equilibrium is shown as blue line 1. The elongated wire is shown as 2. The forces acting in
situation 2 are drawn as dark blue lines.
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Figure 3.11: ”Direction of hoisting wire force”

Steel cables

The hoisting wire of a CSD650 consists of a galvanized stranded steel wire. Due to the fact it is
stranded. This means that the steel wire has a reduced elasticity modulus. Where normal steel
has an 𝐸 = 210 ⋅ 10 𝑁/𝑚𝑚 for the steel wire this is 105 ⋅ 10 𝑁/𝑚𝑚 [7]. This means that the
steel wire stiffness is reduced by a factor 0.5. Not only the Young’s modulus is reduced by the
stranded wire. Due to fact that a stranded wire consists of multiple steel wire’s the cross section
of the wire is not completely filled with steel as seen in 3.12. This means that the use of the area
of a circle will not suffice. In industry catalogues like [8] a steel wire is described of an outside
diameter of 38𝑚𝑚 = 𝜋 ⋅ ( ) = 1134𝑚𝑚 has an effective metallic cross section of 664 𝑚𝑚 .
Reducing the area of an 36𝑚𝑚 = 1017𝑚𝑚 with the same factor yields a metallic cross section
of 610𝑚𝑚
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Figure 3.12: ”6x36 SW steel core”

3.8. External forces
In this section all the external forces on the system will be discussed. External forces on the
system are forces that are not dependent on the acceleration velocity or displacement of the
barge or ladder.

3.8.1. Barge
The most important wave force on the barge are the wave forces. These are the forces that are
calculated from the undisturbed wave i.e. the Froude-Krylov force. These forces are calculated
with diffraction software discussed in section 3.9.

3.8.2. Ladder
To calculate the wave forces on an inclined ladder in waves, for forty different frequencies and
twenty for different wave directions the following approach is used:

At first the orbital velocity is calculated for the current water depth 18 m with 3.52. This gives
us the horizontal particle velocities over the depth with intervals of 0.1 m. considering that the
seabed is flat this particle velocity will be the same for every wave direction. Then velocity in
every direction can be decomposed in to a velocity in the x and y direction of the ladder axis
system.

𝑢 = cos 𝜃 ⋅ 𝑢(𝑤𝑑,𝜔) (3.47)

𝑢 = sin 𝜃 ⋅ 𝑢(𝑤𝑑,𝜔) (3.48)

Where;

𝑣 = Particle velocity in x direction
𝜃 = Wavedirection
𝑣(𝑧, 𝜔) = Particle velocity for over the depth and frequencies

When the x and y velocity’s are known, the Morison equation can be used to compute the forces
on the ladder can be calculated for every 0.1 m. However the Morison equation in this form
is only valid for vertical cylindrical piles. However in the case of an inclined cylinder the cross
section in horizontal direction appears to be elliptical. This is why two different diameters must
be used when with Morison. For the inertia term the diameter transverse to the flow direction
must be used, and for the drag term the diameter parallel to the flow direction must be used.
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in x direction
Inertia = D
Drag = 𝐷∗

in y direction
Inertia = 𝐷∗
Drag = D

Then using the linear Morison equation 3.68. The forces in x and y direction for all the different
wave direction and for all the 180 different water depths are known. When summing all these
forces over the depth the total force in x and y direction are known.

total force in x direction ∫ 𝑓 𝑑𝑧
total force in y direction ∫ 𝑓 𝑑𝑧
total force in z direction ∫ 𝑓 𝑑𝑧 = always 0

With the distances from every 0.1 segment to the CoG of the ladder known the moments working
on the ladder can also be calculated:
total moment about the x axes ∫ 𝑓 ⋅ |𝑧|𝑑𝑧
total moment about the y axes ∫ 𝑓 ⋅ |𝑧|𝑑𝑧
total moment about the z axes ∫ 𝑓 ⋅ |𝑥|𝑑𝑧

Figure 3.13: ”Numerical treatment of the ladder”

Figure 3.14: ”Modeling of the cutterhead reaction forces”
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D = The equivalent hydrodynamical diameter = 1.4 m
𝐷∗ = sin 𝛼
𝛼 = Ladder angle

3.9. Diffraction theory
Diffraction theory is used to calculate wave forces on an arbitrarily shaped, fixed or free-floating
body. It uses a right-handed, earth bound axis system 𝑆(𝑥 , 𝑦 , 𝑧 ) with its origin at the mean
water level and 𝑧 axis vertically upwards. In accordance to linear potential theory, the potential of
the dredger is a superposition of the potentials due to the diffraction of the undisturbed incoming
wave on the fixed body Φ , the potentials due to the undisturbed incoming wave Φ and the
radiation potentials due to the six body motions Φ [2].

Φ =∑Φ +Φ +Φ (3.49)

The boundary conditions are:

– La place equation

– Sea bed boundary condition

– Free surface boundary condition

– Kinematic boundary condition on the oscillating body surface

– Radiation condition

– Symmetric or anti-symmetric condition

Φ (𝑥, 𝑦, 𝑧) = 1
4𝜋 ∬ 𝜎 (𝑥, , ) ⋅ 𝐺(𝑥, 𝑦, 𝑧, 𝑥, , ) ⋅ 𝑑𝑆 (3.50)

for j = 1,...7

Where:

– Φ (𝑥, 𝑦, 𝑧) = the potential function on the mean wetted body surface 𝑆
– 𝜎 (𝑥, , ) = is the complex source strength in a point on the mean wetted body surface 𝑆 .
– 𝐺(𝑥, 𝑦, 𝑧, 𝑥, , ) is the Green’s function. Describes the influence of the source 𝜎 (𝑥, , ) in a point
located at (𝑥, , ) on the potential Φ (𝑥, 𝑦, 𝑧) in a point located at (𝑥, 𝑦, 𝑧).

3.10. Morison
For hydrodynamic forces on slender vertical tubular structures often the Morison equation is used
as follows[2]:

𝐹(𝑡) = 1
2𝜌𝐷𝐶 �⃗�(𝑡)|𝑢(𝑡)| + 𝜋4𝜌𝐷 𝐶 �⃗�(𝑡) (3.51)

With:
𝜌 = Density of seawater
𝐶 = Drag coefficient
𝐶 = Inertia coefficient
𝐷 = Diameter
�⃗�(𝑡) = Particle velocity

As stated in Keuning [1984] [9], schematization of the ladder to a closed, cylindrical construction
will be acceptable. If the diameter/wavelength ration does not exceed a value of about 0.15. and
the wave height/diameter ratio is less than 1. the diffraction forces become negligible and the
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Morison equation can be used. For the cutter ladder an equivalent diameter of 1.4 m is chosen.
The minimum wavelength is 15.41 as shown in table 3.2. this ratio does not exceed 0.15.

Although the Morison equation is applicable for all cylindrical structures is does have some limi-
tations:

– Diameter of the cylinder must be much smaller than the wavelength.

– Keulegan–Carpenter numbers

– When extended to orbital flow which is a case of non uni-directional flow, for instance
encountered by a horizontal cylinder under waves, the Morison equation does not give a
good representation of the forces as a function of time.

3.10.1. Particle velocity
This section considers a still ladder subjected to undisturbed wave forces. the flow velocity around
the ladder is determined by the orbital velocity. This flow velocity is calculated with the dispersion
equation

According to the velocity potential the amplitude of the flow velocity is[2]:

𝑢 = 𝜔𝑎𝑐𝑜𝑠ℎ[𝑘(𝑑 + 𝑧)]𝑠𝑖𝑛ℎ(𝑘𝑑) (3.52)

𝑢 = 𝜔𝑎𝑠𝑖𝑛ℎ[𝑘(𝑑 + 𝑧)]𝑠𝑖𝑛ℎ(𝑘𝑑) (3.53)

Figure 3.15: ”Particle velocity”

With the dispersion equation [10]:

𝜔 = 𝑔 ⋅ 𝑘 ⋅ tanh 𝑘𝑑 (3.54)

Which must be solved iteratively for each 𝜔. Given a water depth of 18 m and a wave height of
1 m the wavelengths are:
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Frequency [rad/s] Wave number [rad/m] Wavelength [m] Wave period [s]
0.05 0.0038 1668.59 125.664
0.10 0.0075 832.38 62.83
0.15 0.0114 552.79 41.89
0.20 0.0152 412.35 31.42
0.25 0.0192 327.58 25.13
0.30 0.0232 270.63 20.94
0.35 0.0274 229.59 17.95
0.40 0.0317 198.48 15.71
0.45 0.0361 174.00 13.96
0.50 0.0408 154.16 12.57
0.55 0.0456 137.70 11.42
0.60 0.0508 123.78 10.47
0.65 0.0562 111.81 9.67
0.70 0.0620 101.39 8.98
0.75 0.0681 92.22 8.38
0.80 0.0747 84.07 7.85
0.85 0.0818 76.79 7.39
0.90 0.0894 70.25 6.98
0.95 0.0976 64.35 6.61
1.00 0.1065 59.02 6.28
1.05 0.1159 54.21 5.98
1.10 0.1260 49.86 5.71
1.15 0.1368 45.93 5.46
1.20 0.1482 42.39 5.24
1.25 0.1603 39.20 5.03
1.30 0.1730 36.33 4.83
1.35 0.1862 33.74 4.65
1.40 0.2001 31.40 4.49
1.45 0.2145 29.29 4.33
1.50 0.2295 27.38 4.19
1.55 0.2450 25.65 4.05
1.60 0.2610 24.07 3.93
1.65 0.2775 22.64 3.81
1.70 0.2946 21.33 3.70
1.75 0.3122 20.13 3.59
1.80 0.3303 19.02 3.49
1.85 0.3489 18.01 3.40
1.90 0.3680 17.07 3.31
1.95 0.3876 16.21 3.22
2.00 0.4077 15.41 3.14

Table 3.2: Frequency Wave number and Wavelength at 18 m water depth

3.10.2. Linear Morison
This form of Morison is not suitable for FD analysis due to the non linearities. But by stating that
the linear form must dissipate equal amounts of energy as the linearized form. With power being
force times velocity.

𝑃 = 𝐹 ⋅ 𝑢 (3.55)

Using the the nonlinear drag force,

𝐹 = 1
2𝜌𝐷𝐶 𝑢|𝑢| (3.56)

Substituting in to equation 3.55

𝑃 = 1
2𝜌𝐷𝐶 ⋅ 𝑢 |𝑢| (3.57)
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The linear drag force is:
𝐹 = 𝐶 ⋅ 𝑢 (3.58)

with 𝐶 to be determined and multiplied with the velocity to get the power.

𝑃 = 𝐶 ⋅ 𝑢 (3.59)

with the particle velocity over time
𝑢 = 𝑢 cos𝜔𝑡 (3.60)

The dissipated energy must be the same over an entire period.

∫ 𝑃 d𝑡 = ∫ 𝑃 d𝑡 (3.61)

is

∫ 1
2𝜌𝐷𝐶 𝑢 cos𝜔𝑡|𝑢 cos𝜔𝑡| cos𝜔𝑡 d𝑡 = ∫ 𝐶 ⋅ 𝑢 cos 𝜔𝑡 d𝑡 (3.62)

∫ cos𝜔𝑡| cos𝜔𝑡| cos𝜔𝑡 d𝑡 = 3
8 (3.63)

∫ cos 𝜔𝑡 d𝑡 = 𝜋 (3.64)

using the result of 3.64 and 3.63

1
2𝜌𝐷𝐶 𝑢 3

8 = 𝑢 𝐶 𝜋 (3.65)

𝐶 = 1
2𝜌𝐷𝐶

3
8𝜋𝑢 (3.66)

Substitute in equation 3.62 to get the

𝐹 (𝑡) = 1
2𝜌𝐷𝐶 [ 83𝜋𝑢 ] ⋅ 𝑢 (3.67)

The total linearised drag force becomes.

�⃗� (𝑡) = 1
2𝜌𝐷𝐶 [ 83𝜋𝑢 ] ⋅ 𝑢 +

𝜋
4𝜌𝐷 𝐶 𝑢 (3.68)

This is confirmed in literature for example in [11]

3.10.3. Phase
To incorporate the forces in the model correctly the phase differences between the wave forces
on the centre of gravity of the barge and the centre of gravity of the ladder must be known. To
calculate them the following steps are undertaken.

– First the distance between the CoG of the barge and the CoG of the ladder projected on the
flow direction must be known. For example this will be the full distance for waves in 0 and
180 degrees and will be 0 for the waves from 90 and 270 degrees.

– Then for every frequency that has its own wavelength see tabular 3.2. That wavelength
corresponds to a full 2𝜋 phase.

– After that every wavelength must be divided by the distance between the CoGs for that wave
direction.

– The important part of that division is the number after the decimal sign. When this number
is multiplied by 2𝜋 the phase difference between the CoG of the barge and ladder is known.
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Figure 3.16: ”Calculating the phase difference”



4
Algorithm and Implementation

In chapter 3 all the forces on the CSD are discussed. All the information to fill in the complete
equation of motion are in place and all further calculation steps to answer the research questions
are discussed in the following chapter.

4.1. Equation of motion
The total equation of motion now becomes: Cummins[1962] [12]: [13]

|𝑀 + 𝐴 , 0
0 𝑀 + 𝐴 ,

| |�̈��̈� |

+ |𝐾 + 𝐾 + 𝐾 , + 𝐾 , 𝐾 , + 𝐾 ,
𝐾 , + 𝐾 , 𝐾 + 𝐾 , + 𝐾 ,

| |𝑥𝑥 |

= |𝐹 , , 0
0 𝐹 , ,

| − 𝐹

(4.1)

and in frequency domain (FD)

{ − 𝜔 ⋅ |𝑀 + 𝐴 , 0
0 𝑀 + 𝐴 ,

|

+𝑖𝜔 ⋅ |𝐵 , 0
0 𝐵 ,

|

+ |𝐾 + 𝐾 + 𝐾 , + 𝐾 , 𝐾 , + 𝐾 ,
𝐾 , + 𝐾 , 𝐾 + 𝐾 , + 𝐾 ,

| } |𝑋𝑋 |

= |𝐹 , , 0
0 𝐹 , ,

|

(4.2)

4.2. Frequency domain
In only one degree of freedom the FD analysis goes as follows:

[𝑘 − 𝜔 𝑚 + 𝑖𝜔𝑏]𝑋 = 𝐻 𝑍 (4.3)

Giving

35
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𝐹(𝑠)
𝑋(𝑠) = −𝜔 (𝑀 + 𝐴) + 𝑖𝜔(𝐵 + 𝐵 ) + 𝐾 (4.4)

This ratio is a so called transfer function, it gives the ratio between the incoming wave height
and the resulting force. When for every frequency and in every direction the transfer function is
known, the wave elevation can be multiplied with the transfer function for that frequency.

𝑋
𝑍 = 𝐻 (𝛼,𝜔)

−𝜔 (𝑀 + 𝐴(𝜔)) + 𝑖𝜔(𝐵(𝜔) + 𝐵 ) + 𝐾 (4.5)

𝐹(𝜔, 𝑡) = (𝑀 + 𝐴(𝜔))�̈� + (𝐵(𝜔) + 𝐵 )�̇�(𝑡) + 𝐾𝑥(𝑡) (4.6)

�̈�(𝑡) = 𝐹(𝑡) − (𝐵(𝜔) + 𝐵 )�̇�(𝑡) + 𝐾𝑥(𝑡)
𝑀 + 𝐴(𝜔) (4.7)

4.3. Stress in spud pole
When the motions of the CoG are determined in the FD analysis the stresses in the spud pole
can be calculated. First the motions of the CoG 𝑥 must be transformed to motion in the spud

pole 𝑥 by means of the transformation matrix 𝐿 .

𝑥 = 𝐿 𝑥 (4.8)

When the motions of the spud barge at the spud pole are known, the relation between spud
motions and maximum stress in the spud is needed.

The maximum stress in the out most fibre of the spud pole is:

𝜎 = 𝑀 ⋅ 𝑟
𝐼 (4.9)

The moment in the spud pole in lateral direction when assuming a clamped spud pole is caused
by a lateral force and a moment from the barge to the spud pole. These are related as followes:

For the rotation:

𝜙 = 𝑀 ⋅ 𝑙
𝐸𝐼 + 𝐹𝑙

2 ⋅ 𝐸𝐼 (4.10)

and the translation:

𝑥 = 𝑀 ⋅ 𝑙
2 ⋅ 𝐸𝐼 +

𝐹𝑙
3 ⋅ 𝐸𝐼 (4.11)

𝜃 ⋅ 2 ⋅ 𝐸𝐼𝑙 = 𝑀 + 𝐹𝐿 (4.12)

𝑥 ⋅ 6 ⋅ 𝐸𝐼𝑙 = 3 ⋅ 𝑀 + 2 ⋅ 𝐹𝐿 (4.13)

Since the max moment in the spud is caused by 𝐹 ∗ 𝑙 and M.

𝑀 = 𝑥 ⋅ 6 ⋅ 𝐸𝐼5 ⋅ 𝑙 + 𝜃 ⋅ 𝐸𝐼𝑙 (4.14)

and
𝑀 = 𝑦 ⋅ 6 ⋅ 𝐸𝐼5 ⋅ 𝑙 + 𝜙 ⋅ 𝐸𝐼𝑙 (4.15)

𝑀 = 𝑅𝐴𝑂 ⋅ 6 ⋅ 𝐸𝐼5 ⋅ 𝑙 + 𝑅𝐴𝑂 ⋅ 𝐸𝐼𝑙 (4.16)
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and
𝑀 = 𝑅𝐴𝑂 ⋅ 6 ⋅ 𝐸𝐼5 ⋅ 𝑙 + 𝑅𝐴𝑂 ⋅ 𝐸𝐼𝑙 (4.17)

in vector matrix notation this gives:

𝑀 = [ ⋅
⋅ 0 0 0 0]

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

(4.18)

for transversal direction:

𝑀 = [0 ⋅
⋅ 0 0 0]

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

(4.19)

The moment in the spud pole in lateral direction assuming the spud pole is hinged in the soil:

Substituting the moments into equation 4.9 gives 𝐻 , or 𝐻 , the relation between the
motions of the spud cage and the maximum stress in the spud pole. However the stress in lateral
and transversal direction are not of a lot of interest. Most important is the maximum stress over
the entire cross section of the spud pole 4.1.

Figure 4.1: ”Stress in spudpole”

Hinging spud pole
For the hinging example a different relation between the motions and moments is needed. The
relation between the motion and maximum moment is different. The bending moment is derived
by using the local stiffness matrix in 3.33.

𝑀 = [ ⋅ 0 0 0 − 0]

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

(4.20)
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symbol dimensions for
𝐻 𝑧 = [6x1] 𝜔,𝛼
𝐿 = [6x6]
𝐴 ,𝐵 = [6x6] 𝜔
M,K = [6x6]
𝐻 , = [2x6]
𝐻 , = [2x6]
𝐾 , = [6x6]

for transversal direction

𝑀 = [0 ⋅ 0 − 0 0]

⎡
⎢
⎢
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝜙
𝜃
𝜓

⎤
⎥
⎥
⎥
⎥
⎦

(4.21)

4.4. Stress response amplitude operators
Using Σ for the 𝜎 in frequency domain, everything needed to get to so called spud stress
RAO:

Σ
𝑍 =

𝐻 , 𝐿 𝐻 (𝛼, 𝜔)
−𝜔 (𝑀 + 𝐴(𝜔)) + 𝑖𝜔(𝐵(𝜔) + 𝐵 ) + 𝐾 (4.22)

𝐻 , = 𝐻 , ⋅ 𝐾 , (4.23)

𝐻 = [𝜎 ,
𝜎 ,

] = [
0 0 0 ∗ . 0 0
0 0 0 0 ∗ . 0] (4.24)

4.5. Wave spectrum
For further analysis of the behavior of a CSD in waves a wave spectrum must be given. For the
purpose of this thesis the JONSWAP spectrum is chosen. However in the model any given wave
spectrum can be chosen.[2]

𝑆 (𝜔) =
320 ⋅ 𝐻 /

𝑇 ⋅ 𝜔 ⋅ 𝑒𝑥𝑝{−1950𝑇 ⋅ 𝜔 } ⋅ 𝛾 (4.25)

4.6. Stress spectrum
If we want to devise the stress spectrum for a particular part of the CSD we first need the spectra
for each motion. To get to these, the wave spectrum 𝑆 (𝜔) and the the response amplitude
operators are needed. These RAOs are calculated using equation 4.5. For example the motion
spectrum of heave is calculated as [2]:

𝑆 (𝜔) ⋅ 𝑑𝜔 = 1
2𝜁 (𝜔) (4.26)

from a wave spectrum to a heave spectrum:

𝑆 (𝜔) ⋅ 𝑑𝜔 = 1
2𝑧 (𝜔) (4.27)
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𝑆 ⋅ 𝑑𝜔 = |𝑧𝜁 (𝜔)| ⋅ 12𝜁 (𝜔) (4.28)

𝑆 ⋅ 𝑑𝜔 = |𝑧𝜁 (𝜔)| ⋅ 𝑆 (𝜔) ⋅ 𝑑𝜔 (4.29)

𝑆 (𝜔) = 𝑅𝐴𝑂 ⋅ 𝑆 (𝜔) (4.30)

By multiplying the spectral wave height by the square of the unit response at the same fre-
quency, we get 𝑚 𝑠𝑒𝑐 plotting these for the full range of frequencies we get the particular motion
spectrum[14]. Since the relation between motions and stress in the spud pole is calculated in
4.22 stress spectrum can be devised resulting in 4.31.

𝑆 = 𝑅𝐴𝑂 ⋅ 𝑆 (𝜔) (4.31)

4.7. Yield stress Exceedance
Within the frequency domain it is not possible to calculate the maximum stress in the spud pole
during a certain time with constant sea state. However it is possible to calculate the chance
of exceeding a certain stress value from the stress spectrum. This method is analogue to the
calculation of the wave crest exceedance chance described by Holthuijsen [2007] [10].

𝑃{𝜂 > 𝜂} =
𝑓
𝑓
= 𝑒𝑥𝑝( − 𝜂

2𝑚 ) (4.32)

Equation 4.32 calculates the probability of one wave crest being higher than a certain threshold
value under the assumption of a Reighley distribution of the wavelength. With �is the threshold
value and 𝑚 the zeroth spectral moment of the wave spectrum. Assuming the stress response
has the same Reighley distribution the same steps can be done for the stress spectra. In equation
4.33 the threshold value 𝜎 is the yield stress of the steel. Stresses higher will lead to plastic
deformation.

𝑃{𝜎 > 𝜎 } =
𝑓
𝑓
= 𝑒𝑥𝑝( −

𝜎
2𝑚 ) (4.33)

𝑓 = 1
2𝜋√

𝑀
𝑀 (4.34)

To get the yield stress exceedance probability not only the exceedance probability of one single
stress cycle must be known. The number of stress cycles within a period of time is needed. This
is the cycle frequency and is calculated according to Holthuijsen [2007] [10] in equation 4.34. To
calculate the total YSEP for a certain period of time the probabilities of each individual cycle can
be superimposed as in equation 4.35

𝑃 = 𝑇 ⋅ 𝑓 ⋅ 𝑃{𝜎 > 𝜎 } (4.35)

4.8. Fatigue
Fatigue is the progressive, localized and permanent structural change that occurs ins a material
subjected to repeated or fluctuating strains at nominal stresses that have maximum values less
than (and often much less than) the tensile strength of the material. Fatigue may culminate into
crack and cause fracture after a sufficient number of fluctuations. [15]
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4.8.1. S-N Curves
When the results of fatigue tests are plotted as the stress amplitude S versus the number of
cycles, N to fracture. The resulting curve plotted through data points is called an S-N curve[15].
The data is obtained by subjecting smooth or notched specimens to a certain cyclic stress. At
first cyclic stresses with high peak stresses near the yield stress are applied. With these high
peak stresses failure is expected in a short number of cycles. The stress is decreased until the
specimens can reach 10 cycles. The stress at witch this first occurs is called the fatigue limit.
An example of a S-N curve is shown in figure 4.2 from [16].

Low cylce 0.5 < N ≤ 10
Medium cycle 10 < N ≤ 10
High cycle 10 < N ≤ 10

Table 4.1: Cycle ranges

The NEN-EN 1993-1-9 norm [17] gives the SN curves for welded steel members as shown in
figure 4.2. The horizontal axis shows the number of cycles on a logarithmic scale. The vertical
axis shows the stress range. The numbers on the lines indicate which line to use for different
welds and structure types.

Figure 4.2: ”SN Curves for fatigue of steel structures”

To get a structure specific SN Curve the detail category Δ𝜎 and 𝐾 are needed.

Δ𝜎 , = 𝐾 Δ𝜎 (4.36)
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Table 8.3 of the NEN gives for a transverse butt welds welded from one side the detail category
of 71 and a size effect for t > 25 mm.

𝐾 = (25𝑡 )
.

(4.37)

The NEN norm gives for the constant amplitude fatigue limit Δ𝜎𝐷 and for the cut off limit of
𝑁 = 2𝑒 at Δ𝜎 .

Δ𝜎 = (25) Δ𝜎 = 0.737Δ𝜎 (4.38)

and

Δ𝜎 = ( 5
100) Δ𝜎 = 0.549Δ𝜎 (4.39)

For stress spectra with stress ranges above and below the constant amplitude fatigue limit Δ𝜎
the fatigue strength should be bases don the extended fatigue strength curve:

Δ𝜎 𝑁 = Δ𝜎 ⋅ 2 ⋅ 10 (4.40)
with m = 3 for 5 ⋅ 10 ≥ N

Δ𝜎 𝑁 = Δ𝜎 ⋅ 5 ⋅ 10 (4.41)
with m = 5 for 10 ≥ N ≥ 5 ⋅ 10
In comparison with the normal SN curve formula which is:

𝑁 = 𝐾 ⋅ 𝑆 (4.42)

This gives values of:
𝐾 = Δ𝜎 ⋅ 2 ⋅ 10 (4.43)

with m = 3 for 5 ⋅ 10 ≥ N
𝐾 = Δ𝜎 ⋅ 5 ⋅ 10 (4.44)

with m = 5 for 10 ≥ N ≥ 5 ⋅ 10

4.8.2. Long term stress distribution
Since the relationship between the wave height and stress is known as in section 4.3. This
transfer function 𝐻 (𝜔) can be used to calculate the stress spectrum of the spud pole. This
stress spectrum 𝑆(𝜔) can be obtained as found in Bai[2003] [18]:

𝑆(𝜔) = |𝐻 (𝜔)| ⋅ 𝑆 (𝜔) (4.45)

The 𝑛 spectral moment of this stress response is:

𝑚 = ∫ 𝜔 ⋅ 𝑆 (𝜔)d𝜔 (4.46)

The average stress cycle period is thus:

𝑇 = 2𝜋√
𝑚
𝑚 (4.47)

Nonlinear effects due to large amplitude motions and large waves can be neglected in the fa-
tigue assessment since the stress ranges at lower load levels contribute relatively more to the
cumulative fatigue damage. In cases where linearization is required, it is recommended that the
linearization is performed at a load level representative of the stress ranges that contribute the
most to fatigue damage, i.e. stresses at probability levels of exceedance between 10 to 10 .
The stress range response may be assumed to be Rayleigh distributed within each sea state as:

𝐹(𝑆) = 1 − 𝑒𝑥𝑝( − 𝑆
8𝑚 ) (4.48)
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4.8.3. Miner’s rule
A structural part is subjected to a variable amplitude load is subjected to fatigue. The structural
is at his percentage of fatigue lifetime according to the Miner’s rule [19]:

∑ 𝑛
𝑁 = 1 (4.49)

In which
𝑛 = Number of cycles of stress level i
𝑁 = Number of cycles of stress level i that leads to failure

This rule can be applied to the stress spectrum created for the stress amplitude in the spud pole.
To get a idea of how much of the fatigue lifetime a spud pole has used we first take a look at
the stress spectrum. At every frequency band the stress spectrum has a certain stress value. For
every stress value the number of cycles until most probable failure of that stress range can be
determined through the corresponding SN curve. These values can be used in the denominator
of the Miner’s rule. However for the numerator part the number of cycles within the chosen time
span is not known. These number of cycles can be determined using the dispersion equation.
Every frequency has its own period at a certain water depth. If this period of every stress is known
in second, divided by the time span of the certain sea state and wave direction in seconds. This
is how the number of cycles of every frequency is determined. When over a certain period of
time all the factors of the Miner’s rule can be summed up to get the factor of the fatigue lifetime
the spud has used.

Figure 4.3: ”Using the Miner’s rule”

4.8.4. Fatigue damage calculation
Following the Miner’s rule, the accumulated damage of a sea state may be expressed in the
continuous form.

𝐷 = ∫ 𝑛(𝑆)
𝑁(𝑆)𝑑𝑆 (4.50)
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Where 𝑛(𝑆)𝑑𝑆 represents the number of stress ranges between S and S+dS. If a stationary
response process of duration 𝑇 is assumed, the total number of stress cycles will be:

𝑛(𝑆)𝑑𝑆 = 𝜈 𝑇 𝑝(𝑆)𝑑𝑆 (4.51)

The average frequency of response will be:

𝜈 = 1
2𝜋√

𝑚
𝑚 (4.52)

The total short term fatigue damage calculation becomes:

𝐷 = 𝜈 𝑇 ∫ 𝑝(𝑆)
𝑁(𝑆)𝑑𝑠 =

𝜈 𝑇
𝐾 ∫ 𝑆

( )

4𝜎 𝑒𝑥𝑝(− 𝑆
8𝜎 )𝑑𝑠 (4.53)

Γ(1 + 𝑚2 ) = ∫ 𝑒 𝑥 𝑑𝑥 (4.54)

𝐷 =
𝜈 𝑇
𝐾 ⋅ (8𝑚 ) ⋅ Γ(1 + 𝑚2 ) (4.55)

4.8.5. Wave scatter
Where the wave spectrum provides a short term description of the sea state. The wave scatter
provides a long term description in figure 4.4 an example is shown.

Figure 4.4: ”Wave scatter for the North-sea”

For a whole year at a certain interval the significant wave height and the average zero up crossing
period is measured at a location. The vertical axes shows the significant wave heights from 0 to
11 m. The horizontal axes gives the average zero crossing period from 0 to 12 seconds. At every
combination of wave height and period a number is shown. This number corresponds with at
how many intervals this combination is measured in parts per thousand. This gives a good view
of the wave climate of that location in one year.
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However the values 𝐻 and 𝑇 are input variables for the JONSWAP wave spectrum. Assuming a
wave buoy did a thousand measurements in the course of a year. With 8760 hours in a year and
we assume that the sea state is the same between each measurement. Roughly one can state
that the wave climate remains the same over the course of 9 hours. Section 4.8.4 covers the
calculation of the fatigue damage over one wave spectrum. Adding all these fatigue damages
gives the fatigue damage over one year for a working dredger. However a CSD will only be work
in 60 % of the time. And during significant wave heights higher than 𝐻 the dredger will not
operate.

4.8.6. Long term fatigue damage calculation
To be able to calculate the long term fatigue damage the long term sea states have to be known.
This is for example done with a wave scatter diagram discussed in section 4.8.5. This wave
diagram gives the number of occurrences of a certain sea state defined by a significant wave
height and a period. Using all these wave heights and periods for every type of sea state a
JONSWAP spectrum can be generated. Using the methods discussed in section 4.5. For every
sea state a stress spectra and by extension zeroth and second order moments of these sea states.
To combine the these different stress spectra’s, moments and the fatigue characteristics of the
spud pole. Reference is made to the DNV notes 30.7. Fatigue assessment of ship structures.
There a fatigue damage calculation is proposed incorporating all these factors:

𝑁 = 𝐾 ⋅ 𝑆 (4.56)

𝐷 = 𝑣 𝑇 ∑
,
𝑟 (

(2√2𝑀 )
𝐾 )Γ(1 + 𝑚2 ; (

𝑆
2√2𝑀

) )

+ (
(2√2𝑚 )

𝐾 )𝛾(1 + 𝑚2 ; (
𝑆

2√2𝑚
) )

(4.57)

𝐷 = 𝑓 ⋅ 𝑇 ⋅((2√2𝑀 )
𝐾 )Γ(1 + 𝑚2 ; (

𝑆
2√2𝑀

) )

+ ((2√2𝑀 )
𝐾 )𝛾(1 + 𝑚2 ; (

𝑆
2√2𝑀

) )
(4.58)

Equation 4.58 incorporates three different aspects of fatigue at once.

– The long term wave statistics represented by the wave scatter diagram
𝑝 = Chance of occurrence sea state i j.

𝑣 = √ Response zero crossing frequency for sea state i j.

𝑣 = ∑𝑝 ⋅ 𝑣 Long term average zero crossing frequency.
𝑟 = Relative number of stress cycles in short term condition.

⋄⋄⋄⋄– The short term response of the sea states represented by the zeroth spectral moment.

⋄ 𝑀 = ∫ 𝜔 ⋅ 𝑆 (𝜔)𝑑𝜔
⋄ 𝑀 = ∫ 𝜔 ⋅ 𝑆 (𝜔)𝑑𝜔

– And the SN curve of the welded spud pole represented by the 𝐾 , 𝐾 , 𝑎 and 𝑎 .
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Runs and Results

To be able to understand why and how the spud poles fail it is necessary to look at the two
most important failure mechanisms yield stress and fatigue. Therefore the calculation methods
discussed in chapter 4 are used. In this chapter all the results of these calculation are shown.

First the wave forces that are the DELFRAC input are shown, then the motion RAOs of the barge
are discussed. These are the result of solving the equation of motion in the frequency domain.
These motions can be translated to the motion of the spud cage. From there the stress in the
spud pole as a consequence of the motions.

In section 5.4 the stress spectra are presented from which further statistical analyses can be
done. From these stress spectra the probability of yield stress is calculated 5.5. In practice the
user of a CSD650 would like to know what the probabilities of failure are of the spud pole within
every sea state.

The users can now decide in what sea states they will allow their dredger to operate. However
the stress cycles under the yield stress may not permanently deform the spud pole but do inflict
a certain damage to the spud pole this damage is calculated in section . Unless stated otherwise
the characteristics of the runs are set to the following:

– Ladder angle 45 degrees

– Water depth 18 m

– wave spectrum JONSWAP 𝐻 = 1 m 𝑇 = 6 s

– Normal stiffness spud pole EI = 2.7 ⋅ 10 𝑘𝑁𝑚

5.1. Wave forces

The wave forces on the barge in the six degrees of freedom are shown in figure 5.1. These are
the addition of the Froude-Krylov and diffraction forces. [20]. Please note that wave forces are
cyclic and the figure shows the amplitudes for different frequencies.

45
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Figure 5.1: ”Waver forces calculated by DELFRAC”

5.1.1. Verification
To verify these results with easy to do formulas we can calculate the Froude-Krylof wave force.
The Froude–Krylov force does, together with the diffraction force, make up the total non-viscous
forces acting on a floating body in regular waves. The diffraction force is due to the floating body
disturbing the waves. [21]. The pressure pf a undisturbed wave on a object in finite water depth
is according to [Journee] [2]:

𝜌 ⋅ 𝑔 ⋅ 𝜁 ⋅ cosh 𝑘(ℎ + 𝑧)sinh 𝑘 ⋅ ℎ ⋅ cos 𝑥𝑘 − 𝜔𝑡 (5.1)

h = water depth
k = wave number
z = vertical distance of the concidered point below mean water level
𝜔 = radial frequency
𝜌 = density of water
g = gravitational acceleration
𝜁 = wave height

Since we want to know the force subjected on the body we must calculate the difference between
the pressure on the front an at the back. At t=0 and for x = length of the ship we get the amplitude
of the FK force equation 5.2

𝐹𝐾
𝜁 = 𝐷 ⋅ 𝐵𝜌 ⋅ 𝑔 ⋅ cosh 𝑘(ℎ + 𝑧)sinh 𝑘 ⋅ ℎ ⋅ cos 𝑥𝑘 (5.2)

The results of the calculations are shown in figure 5.4. For comparison the results of the wave
forces determined with DELFRAC are shown.

5.2. Motion RAOs
One of the most important graphs are the response amplitude operators. In figure 5.2 six graphs
are shown representing the six motions of the barge. On the horizontal axes the 40 different
frequencies are shown in radians per second. On the vertical axes the 24 wave directions from 0
to 360 degrees are shown.
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Table 5.1: ”Barge RAO’s wavedir 180 degrees”

DOF\Omega [rad/s] 0.25 0.5 0.75 1 1.25 1.5
1 0.58 1.30 2.39 2.65 0.32 0.18
2 0.01 0.08 0.01 0.00 0.00 0.00
3 0.96 0.82 0.54 0.11 0.09 0.06
4 0.00 0.01 0.00 0.00 0.00 0.00
5 0.02 0.05 0.07 0.06 0.01 0.00
6 0.00 0.01 0.00 0.00 0.00 0.00

The first thing that strikes are the amplitudes of the sway and yaw motions at low frequencies.
Due to these spikes the scaling of the plots does not show any more information. These spikes
are probably caused by high wave forces at wave directions of 270 and 90 degrees. However
when limiting the upper color boundary to 10 more information in the rest of the plot becomes
visible 5.2.

Figure 5.2: ”Barge RAO”

Now the RAOs of the centre of gravity of the barge are known. It is translated to the motions
of centre of the spud cage with a transformation matrix discussed in 3.3.1. The only difference
between the RAOs of the barge and the spud is found in the heave motions in figure 5.3. This
is because only the x coordinate of the spud cage differs significantly from that of the CoG.
(𝑥, 𝑦, 𝑧) = (0, 0, 0) − (−25.5, 0, −0.6). This means that only the heave motion will be amplified by
the distance.

5.2.1. Verification
To verify that the model is a representation of the CSD650 some simple verification checks can
be done.

• surge

– Surge should be maximum at wave direction 0 or 180

– Surge should be 0 at wave direction 90 or 270

• sway
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– Sway should be 0 at wave direction 0 or 180

– Sway should be maximum at wave direction 90 or 270

• heave

– Heave should be 0 at high frequencies

– Heave should be 1 at low frequencies

–

• roll

– Should be maximum when at the wave direction 90 and 270.

– and maximum at which the wavelength corresponds with half the width of the ship. The
maximum is at 1.7 rad/s ant this is about 20m.

• pitch

– Should be maximum at wave direction 180.

– Should be maximum when wavelength corresponds with half the length. The maximum is
at about 0.6 rad per second and corresponds with 120 m.

This list applies to the RAOs of the barge CoG in figure 5.2.

Figure 5.3: ”RAO of the spud cage”

Some simple checks can also help to verify the calculation method, in figure 5.4 in the top graph,
three different motions are shown over the frequencies. First is the blue line representing the horizontal
amplitude of the motion of a water particle in a unit wave. The orange line represents a one degree
of freedom system in surge direction with normal spud stiffness but without any damping. Due to the
fact that there is no damping the eigenfrequency is clearly visible around the 1.3 rad/s. The yellow line
is the surge RAO of the 6 DOF system with the coefficients calculated by DELFRAC.

𝑋
𝜁 = 𝑘 − 𝜔 (𝑚 + 𝑎) (5.3)

With
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𝑚 + 𝑎 = 𝑚 ⋅ 1.15
𝑘 = ∗

= From equation 5.2

Figure 5.4: ”wave force calculations”

5.3. Stress responses

Now the motions of the spud cage are known we can establish the link between these motions and
the stresses in the spud pole. This link is discussed in 4.3. The RAO shown in figure 5.5 represents the
amplitude response function of incoming waves for different frequencies and wave directions and the
stress amplitude in the spud pole in y direction. The peak of the stress amplitude is easily recognised
at about 0.5 rad/s and a wave direction of 45, 135 and 225, 315 degrees. In these wave directions the
contributions of roll and sway are the largest.
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Figure 5.5: ”Spud Stress RAOs in y direction”

To put these amplitudes in perspective the amplitudes are divided by the yield stress of the used
construction steel 355 𝑁/𝑚𝑚 . In figure 5.7 it is clear that the maximum stress in the spud pole due
to regular waves in the steady state is nearly half the yield stress of the steel.

Figure 5.6: ”Factorised Spud Stress RAOs in y direction”
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Figure 5.7: ”Factorised Spud Stress RAOs in x direction”

5.4. Spectrum

The waves to which the CSD are subjected in this model are assumed to be of the JONSWAP spectrum.
This spectrum is treated in section 4.5. It is easy to see that the peak lies at a slightly higher frequency
than 1 rad/s. This corresponds with a period of 6 seconds through the dispersion equation see 3.2

Figure 5.8: ”JONSWAP spectrum for 1 m 6 sec ”

Combining the wave spectra and the stress RAOs as explained in section 4.6. Striking is that the
peak of the stress spectra are a lot higher that the yield stress of the construction steel. In Figure 5.9.
The stress spectra of the first twelve wave directions are shown.
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Figure 5.9: ”Stress spectrum for the first 12 wave directions”

5.5. Yield stress exceedance
With these stress spectra, a lot of information about the stress response is available using the method
described in section ??. This is the probability that the amplitude of one response cycle exceeds the
yield stress. To be able to calculate the exceedance probability in 3 hours, the frequency of a response
cycle is needed.

𝑃{𝜎 > 𝜎 } =
𝑓
𝑓
= 𝑒𝑥𝑝( −

𝜎
2𝑚 ) (5.4)

for example a wave spectrum with the following:

𝐻 = 0.5 m
𝑇 = 4 s
Wave direction = 180 degrees
𝜎 = 355 kN/mm
This gives a probability of 0.82 that the stress response is higher than the yield stress and the spud

pole will fail due to plastic deformation for every cycle. To calculate the number of stress cycle during
a 3 hour sea state we need equation 5.5

𝑓 = √(𝑀𝑀 ) = 0.1249 (5.5)

A frequency of about a 8 seconds for every cycle is twice the peak period of 4 seconds. With a
3 hours weather condition (10800 seconds) this would mean about 1350 cycles. The total probability
of exceeding the yield stress would then be 1.96 ⋅ 10 percent. This is not a satisfactory result and
probably not true. It would be unacceptable for normal use of the CSD650. For normal use of the
CSD650 users are looking for probability of yield stress exceedance of around a value of 10 .

However looking at the dispersion equation a 8 seconds period the wavelength is about 84 meters.
This is 24 longer than the ships length and should not be causing these high YSEP.

To get insight in which sea states cause the most probability of exceeding the yield stress, the
calculations are done for a range of sea states. It is easy to see that a higher wave height will lead to
higher wave forces and YSEP. In figure 5.10 it is visible that the highest YSEP is near the sea states
with an average peak period of 3 seconds.
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Figure 5.10: ”Yield Stress Exceedance Probability in x direction”

These results suggest that the dredger can be used in all sea states ranging up to 3.5 m 𝑇 . In the
sea states up to 1 m 𝐻 the average peak periods larger than 3 seconds should be avoided.

5.6. Fatigue
In this section a fatigue analysis is done with all the available information possible. First the fatigue
resistance of the spud pole against cyclic stresses must be discusses in section5.6.1. Then the current
industry to predict fatigue damage using spectral analysis on specific sea state in section 5.6.2.

5.6.1. SN curve
To determine the proper fatigue resistance for the spud pole of the cutter suction dredger use is made
of SN curves. these SN curves are documented in Eurocode 3: Design of steel structures - Part 1-9:
Fatigue [17]. In this document SN curves are given for different types of welds.

Figure 5.11: ”Table 8.3 of NEN 1993 1-9 transverse butt welds”

The butt welded segments of the spud pole have a detail category of 112. This 112 corresponds to
the Δ𝜎 of equation 4.40 and equation 4.41. However to use these SN curves for the fatigue calculation
described in the DNV classification notes no. 30.7 [22]. Since the thickness of the spud pole is smaller
than 25 mm no size effect is added.

log𝑁 = log 𝑎 − 𝑚 log Δ𝜎 (5.6)
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Comparing equations 4.40, equation 4.41 with equation 5.6:

𝑎 = 112 ⋅ 10 (5.7)

𝑎 = 112 ⋅ 10 (5.8)

5.6.2. Short term fatigue calculation
The short term fatigue calculations are based on the Miner’s rule for variable amplitude loading. Com-
bining this with the bi-linear SN curve and the stress spectrum equation in equation 4.55. In the
following example short term fatigue calculations will be done for one sea state that lasts 3 hours:

for example a wave spectrum with the following
𝐻 = 0.5 m
𝑇 = 6 s
Wave direction = 180 degrees
𝜎 = 355 kN/mm
This gives a fatigue damage of 1.85 ⋅ 10 . Since a fatigue damage 1 is considered completely

damaged and a 90 % probability of failure [16], it seems that this sea state is very sensitive to fatigue
damage. However this result is expected. From earlier results it can be seen that in this sea state the
yield stress of the spud pole will be exceeded. When this happens the fatigue damage is accumulated
in only one cycle.

for
𝐻 = 1 m
𝑇 = 4 s

This gives a fatigue damage of 1.27 ⋅ 10 . However one can argue how often this type of sea
state is seen in practice. In figure 5.12 the 3 hour fatigue damage of different sea states are shown
surrounding the most common sea states in the North sea as seen coastal working conditions of the
CSD650.

Figure 5.12: ”Fatigue Damage”

5.7. Varying spud stiffness
In this section the effect of spud stiffness is investigated. First a description of the intermediate steps
that change will discussed and after that intermediate results are shown. When the Stiffness of the
spud pole of the system is reduced with a factor 2. In the equation of motion described in

First the effect of the spud flexibility is investigated on the probability of yield stress exceedance
adn fatigue. Calculating the over a 3 hours sea state with a stiffness ranging from 0.25 of the normal
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EI up to 100 % of the normal EI. These are done for Hs = 0.5 m and Tp = 6 sec.

EI factor 0.25 0.5 0.75 1
𝑃 1.4 ⋅ 10 1.5 ⋅ 10 1.7 ⋅ 10 1.7 ⋅ 10
𝐷 4.3 ⋅ 10 1.2 ⋅ 10 1.85 ⋅ 10 9.86 ⋅ 10

Table 5.2: ”probability of exceedance for varying EI”





6
Conclusions and Recommendations

6.1. Conclusion
Looking at the results of section 5 the behavior of the CSD can be calculated by a frequency domain
model. Even if this means that all non linearities must be neglected or linearised. When accepting
a failure probability of 1 of the spud pole by yield stress exceedance. The operational limits of the
CSD650 are according to the frequency domain model are that the dredger should not operate in sea
states with longer wave periods than about 2.5 seconds.

These are very limiting conditions and are hardly seen in coastal conditions like the North sea, according
to the frequency domain analysis and assessment of the fatigue life using SN curves as in the NEN
documents, the sea states that cause the most damage are the wave spectra with periods from 7 until
9 seconds. These periods cause stress cycles with high stress amplitudes and ’hurt’ the spud pole the
most. When looking at stiffness or flexibility of the spud pole the model predicts that a more flexible
spud pole leads to significant longer fatigue life. However this will affect the spud poles ability to control
the position of the CSD.

6.2. Discussion
Following the results in chapter 5 and the conclusions in section 6.1 it seems that the model overes-
timates the yield stress exceedance probability and fatigue damage within one sea state. In normal
practice Damen Dredging Engineering advises its clients not to use the CSD650 in sea states with waves
higher than 0.8 meter.

The model shows that a during a JONSWAP sea state with 𝐻 of 0.8 and a 6 seconds period, the spud
pole would probably fail due to fatigue within one stress cycle and would be plastic deformed. The
model seems to be able to predict the operational limits to a very precise wave height. However the
wave height is not measured very accurately and even more important, not predicted very accurately.

Furthermore, the model assumes that the spud pole is fully clamped in the spud cage. However this
is not completely true. The spud cage is almost 2 cm wider than the outer diameter of the spud pole.
This means the stress in the spud pole will be showing non linear behavior. This behavior is impossible
to incorporate in the frequency domain model. One of the assumptions is, that the spud pole is fully
clamped in the soil. However this is not necessarily true. Only in the case of very deep penetration of
the spud pole in the soil will this be approximated. In normal practice, the spud can act as anything
ranging from a hinge to fully clamped. This changes the place and amplitude of the maximum bending
moment in the spud pole and therefore the operational limits and fatigue damage. In the model the
forces from the cutterhead of the dredger are incorporated in the equation of motion by adding a spring
term in the x and z direction.

However, cutter forces appear to be highly non linear when operating [6]. For the long term fatigue
damage the only wave scatter shown in this report is a wave scatter on a location in the North sea with
unknown water depth. Nevertheless, it is important to note that waves are influenced by water depth.

57
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Since the CSD650 will only operate in limited water depth it is essential to select an appropriate wave
scatter diagram.

6.3. Recommendation
Following the discussion of section 6.2 there is still a lot of research needed. It is important to be able
to validate the model with real life measurements. Adding stress gauges at key locations of the spud
pole, the stresses measured from these gauges could give stress spectrum of the spud pole over longer
periods of time. Furthermore information about failing spud poles in practice would be of great help
understanding more about how and why they fail.

Combining this data with wave measurements and comparison with this model would give more insight
in the validation of the model and the fatigue damage of the spud pole. Also, the validity of the
cutterhead forces being modeled as a reaction of spring force must be investigated.

Finally, implementation in MATLAB has proven to be complex and arduous increasing possible errors. It
is likely that the large overestimation of the YSEP and fatigue damage is caused by either programming
or implementation errors. Countless efforts are made to check and verify the working of the model.
However within the time frame of this thesis, the writer was unable to eliminate them all.
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