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ABSTRACT: Through rocks and concrete, batteries, and bone,
porous media represent a wide class of materials whose chemical
makeup and reactivity directly impact their behavior at multiple
scales. While various theoretical and computational models have
been implemented to capture the chemical behavior of these
systems, none have investigated how the very geometry of porous
media, the structures that make these materials porous and define
the interfaces between solids and fluids, affects these behaviors.
Through this work, we explored Minkowski functionals−geometric
morphometers that describe the spatial and topological features of
a convex space−to investigate how microstructural morphology
affects systemic chemical performance. Using a novel asynchro-
nous cellular automaton known as a surface chemical reaction network (CRN) to model chemical behavior, linkages were found
between Minkowski functionals and equilibrium constant, as well as properties related to the dynamics of the microstructure’s
reaction quotient. These quantities, in turn, give insight into how morphology affects bulk porous media properties, such as Gibbs’
free energy.

■ INTRODUCTION
While ubiquitous, from bone to rock to fuel cells, porous media
represent a wide class of materials that remain challenging to
fully characterize in terms of multiscale effects. Their properties
at the microstructural level have been shown to be intrinsically
linked to mesoscale behavior, yet the exact nature of this scaling
has proven to be highly elusive due to the complicated nature of
modeling multiscale phenomena.1,2 In order to link these effects,
one approach has been to use geometric morphometers as a
basis for deriving energetic relationships from microstructural
form to porous media behavior.3−5 A class of geometric
morphometers of particular interest is Minkowski functionals,
which have been shown to be powerful descriptors as a basis for
linking form to function in many important properties of porous
media, from resistivity to permeability.6−8

Minkowski functionals are geometric morphometers, charac-
terizing both morphology and topology of spatial patterns, that
are conceptualized from the field of statistical physics.9 They
have seen wide application in describing phenomena from the
spin of galaxies10 to the permeability of porous media.6 The use
of these functionals as a descriptor for mesoscale systems is
supported by Hadwiger’s theorem,11 which guarantees that for a
polyconvex, isotropic body of dimension D, D + 1 Minkowski
functionals can be used to sufficiently describe the behavior of
the system. In particular, Minkowski functionals have been
shown to have a powerful connection between geometry and
free energy, creating an important linkage between structural
and energetic properties of materials.11

One property of porous media that is of particular interest, yet
is notoriously challenging to link to multiple scales, is the
quantification of chemical behavior.12−15 Chemical activity in
porous media drives both immediate behavior16,17 and long-
term performance,18−20 and is an important factor in modeling
pollutant transport,21,22 flows of nutrients in cells,23,24 and
carbon sequestration.25,26 Unfortunately, while the need for
understanding chemical behavior in porous media is essential,
the means to do so are heavily complicated due to porous
media’s inherent interfacial nature, leading to divergence from
classical, well-mixed models.27,28 In the world of modeling well-
mixed systems, the classic approach to homogenization is
through chemical reaction networks.29,30 Chemical reaction
networks (CRNs) are graph-based models of dynamic chemical
interactions that typically organize chemical species as functions
f(x) and their evolution ẋ to form a continuous autonomous
dynamic system of the form ẋ = f(x). These models provide
powerful tools in identifying reaction steady states,31 steady state
stability,32 persistence,33 existence of stable periodic solutions,34

and performing model reduction.35,36
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While these models are quite powerful in driving the
understanding of these complex dynamic systems, there are
certain assumptions of a traditional CRN that limit their ability
to fully characterize interfacial complexes such as porous media.
Namely, CRN models typically assume a well-mixed arrange-
ment of comparable density across the entire domain.37 To
address this limitation, Qian and Winfree proposed a novel
method for implementing a CRN on a surface, applying a graph
structure to a geometric boundary with CRN-like kinetics.38

This method, known as a surface CRN, is implemented as an
asynchronous cellular automaton with probabilistic transition
rules that mimic a continuous-time Markov chain process.
Through Qian and Winfree’s work, as well as advancements
from Clamons et al., surface CRNs have demonstrated the
ability to form dynamic spatial patterns, operate as DNA circuits,
and model adsorption and desorption behavior on a surface.38,39

Through this work, we extend the implementation of these
models to solid−fluid interfacial behavior on a porous
microstructure, with a linkage back to Minkowski functionals
for a succinct characterization of macroscale microstructural
performance via microscale properties.

■ METHODS
Surface CRNs. In order to model chemical behavior, surface

CRNs were selected as the simulation medium. A surface CRN
resembles the rules of a classic CRN modeling approach but
crucially imposes spatial constraints on the manner in which
reactions can occur. By definition, a surface CRN is an
asynchronous, stochastic cellular automaton with CRN-like
transition rules.38 Informally, this can be seen as a CRN where
individual chemical species are localized to sites on a specific
surface and may only interact with neighboring molecules.39 On
a technical level, a surface CRN is a continuous-time Markov
chain defined by a lattice L of connected sites i∈ Lwith each site
defined by a state si and each site defined as i. The ability to
switch states is determined by a set of unimolecular or
bimolecular transition rules r ∈ R, where each reaction is
defined as A → B or A + B → C + D, with the rate of each
reaction as λr. As an asynchronous cellular automaton, each
reaction occurs independently, with the ordering of these
reactions processed via a queuing system. Essentially, at each
frame of the simulation, the simulation grid is queried for all
potential reactions that may occur based on each node’s
neighbors, and each potential reaction has the time for its
occurrence drawn from an exponential distribution. This time to
next reaction Δt is calculated as follows:

=t
x

log
1

rand( )
1

r

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz (1)

with rand(x) serving as a random draw from a uniform
distribution bounded between 0 and 1. After each time to next
reaction is calculated for all candidate nodes, each node has its
corresponding reaction scheduled for time t +Δt and pushed to
a priority heap queue. From here, the first reaction from the
queue is popped and processed, changing the respective
reactants to products. With the new map in place, the current
time of the simulation is set to t = t +Δt, and all reactions in the
queue involving sites changed in the aforementioned step are
removed. The new site species are checked for any potential
reactions, and these are added to the queue as previously
described, and this is repeated until a stop condition is met.
Simplified, this can be seen as

1. Initialize with a global state grid at time t = 0.
2. Scan each node for potential reactions that can occur,
calculate the time to the next reaction t +Δt, and add it to a
priority heap queue.

3. Pop the first reaction in the queue and process reactants to
products, setting the new time as t = t + Δt.

4. Remove all reactions involving the same sites as the
current reaction site in question from the queue.

5. Scan the products in the current site for new potential
reactions, and recalculate and add to the queue as in step
2.

6. Continue from step 3 until a stop condition (such as the
maximum duration of the simulation being reached or an
empty queue) has been met.

As described in Clamons et al.,39 the total time complexity of the
simulation isO(n + rlog w), where n is the number of sites in the
surface or the CRN, r is the total number of reaction events
simulated, and w is the maximum number of reactions in the
queue at any given time.39

Although surface CRN reactions may only take transition
rules as chemical reactions, other surface/species behavior may
be emulated using the relative flexibility of what is defined as a
“reaction”. For example, by default, surface CRNs do not allow
for the diffusion of molecules. However, in this work, diffusion of
molecules is simulated using reactions of the form

+ +X E E X
k

, where X is the diffusing species in question,
E represents an exmpy site that said species can travel to, and k
controls the rate of diffusion.
While qualitative in nature, surface CRNs provide a simple

and straightforward model of CRN-like chemistry that accounts
for the geometric considerations of an interface-sensitive
chemical system that a typical CRN model cannot provide.
Compared to other discrete stochastic reaction-diffusion
models, such as Kinetic Monte Carlo (KMC) and stochastic
reaction-diffusion simulations, surface CRNs come with a host
of advantages and trade-offs. The primary difference between
surface CRNs and other models is the requirement for species to
exist in discrete spaces compared to continuous positions of
species.40 This allows surface CRNs to naturally capture
macromolecular crowding behavior, as well as to preserve the
local geometry of chemical reactions.41 The relative simplicity of
calculating surface CRN switching rules also makes them highly
parallelizable; every reaction occurs in a queue and is processed
one-at-a-time. One could easily segment a space into multiple
surface CRNs, allowing for rapid parallel processing of large-
system behavior.
For this study, a dissolution reaction was studied to

understand the linkage between Minkowski functionals and,
by extension, microstructural geometry and chemical behavior.
The dissolution reaction is of the form:

F+A B P2 (2)

with A defined as a reactive solid species, B as a reactive liquid,
and P as a reaction liquid product. This reaction is a generic form
of a reversible fluid-release reaction where no solids are
produced in the forward reaction and the liquid products are
not mixed with preexisting fluids. This makes the transition rules
of the reaction at a solid−liquid interface straightforward, since
no solid is retained. Indeed, this is reflected in Table 1 which lists
the input transition rules for the surface CRN simulator. It is to
be noted that this choice of interface reaction is constraining the
conclusions of the present study to nonmixing fluid-release
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reactions rather than to any generic interfacial reaction. This
class of reaction resembles the behavior of any solid dissolving
readily in an environment of excess fluid.
Minkowski Functionals. With a means to simulate

chemical behavior defined, the linkage of these chemical results
to microstructural morphology must be quantified. Minkowski
functionals are geometric and topological descriptors derived
from integral geometry used to describe spatial patterns.42 For a
domain of dimension D, D + 1 functionals are required to
describe it. In the case of a 2D body with a surface Ω and a
smooth boundary δΩ, the required functionals are defined as

=

=

= =

M A

M L

M k L

( ) d

( )
1
2

d

( )
1
2

( )d

0

1

2 (3)

where dA is defined as a surface element, dL is a line element,
and k(Ω) is the signed curvature. For our 2D system, M0
corresponds to the surface area of the porous domain,M1 as the
perimeter, and M2 as the signed curvature, which is directly
proportional to the Euler characteristic χ via the Gauss−Bonnett
theorem.5 For any functional M(Ω) that is additive, motion-
invariant, and continuous, per Hadwiger’s theorem,11 this
functional can be described as a linear combination of
Minkowski functionals Mn(Ω) as follows:

=
=

M c M( ) ( )
n

d

n n
0 (4)

Keq Selection. In order to study the effect microstructural
morphology characterized by Minkowski functionals has on
chemical reaction behavior, a simple dissolution reaction, as
described in eq 2 was studied. The global chemical response is
classically characterized through a measure of the total extent of
the reaction determined by the reaction quotientQr and its value
at steady-state called the equilibrium constantKeq for nonmixing
systems.
These descriptors will form the basis of a relationship between

Minkowski functionals and the change in Gibbs free energyΔG,
as seen in the thermodynamic relation:

=G RT
Q

K
ln r

eq (5)

withR as the universal gas constant andT being the temperature.
This quantity not only gives information as to what direction a
reversible reaction occurs but also plays into the maximumwork
evolved from thermodynamic processes in a system. An
important quantity related to the change in Gibbs free energy
of a system is the change in the standard free energy of a system
(ΔG0), defined by the relation:

=G RT Kln0
eq (6)

ΔG and ΔG0 are linked via the expression

= +G G RT Qln0
r (7)

ΔG0 is the change in Gibbs free energy of a substance at 1 bar
of pressure and a temperature of 25 °C.
In classical mixing systems, the forms of Keq and Qr for the

dissolution reaction described in eq 2 are derived from the law of
mass action based on the reaction coefficients of each species, as
follows:

=
[ ]

[ ][ ]

= [ ]
[ ][ ]

K
P

A B

Q P
A B

eq
eq

2

eq eq

r

2

(8)

Equilibrium values used to calculate Keq take the mean of the
last few values of the species concentrations at steady state,
reducing the overall noise for the calculations. In order to
meaningfully calculate the entire Q evolution without over-
propagation of noise, a Whittaker−Eilers filter was applied, as
detailed in Appendix I.
From the work of Boelens and Tchelepi,42 an agreement

between Minkowski functionals and the change in Gibbs free
energy of the following form is expected based on additive
concepts of thermodynamics:

= = + +G RT
Q

K
M M Mln

eq
0 1 2

(9)

Based on this relation, a linear combination of Minkowski
functionals in an exponential distribution would describe the
dynamic energetics of the bulk microstructure.
However, nonmixing systems have been shown for over 50

years to deviate from the law of mass action.43 The burgeoning
work of surface chemistry energetics has added a new
perspective on these considerations, suggesting that the
traditional law of mass action described in eq 8 is not accurate
in systems with multiple state phases.44−46 Bauermann et al.44

instead define Keq as a relationship between stoichiometric
coefficients, activity coefficients, and reference chemical
potentials, suggesting slower versions of Keq for nonmixing
interface reactions based on these metrics. Unfortunately, in this
synthetic dissolution reaction, these considerations are not
readily applicable since energetic terms like chemical potential
and activity coefficients are assigned a priori in the form of
transition rule rates and diffusion rates, respectively. As a result,
we can only homogenize numerically, and thus, three Keq
formulations will be tested, those from eq 8 and two slower
versions defined as

=
[ ]

[ ][ ]
=K

R

Q A
n, 1; 3/2; 2R

n

eq
eq

eq eq

n

(10)

The results from these varying KeqR d

n

calculations will inform an
ultimate selection for the Keq criteria on which Minkowski
functional analysis will be based. Further to the extent of the
reaction, its equivalent rate will be represented through a
characteristic time of the reaction to reach its maximum rate,

Q
t
d

d max
, through the value Δτ. These will both, in turn, be

Table 1. Transition Rules for the Benchmark Diffusion
Reaction

transition rule reaction rate

A + B → P + P 0.4
P + P → A + B 0.1
P + B → B + P 1.0
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investigated as a function of Minkowski functionals of an
assumed form:

=Q
t

f c M
d

d
( )n n

max (11)

and

= f c M( )n n (12)

These quantities and how they are represented in the sCRN
simulation can be viewed in Figure 1.

Surface CRN Qualitative Validity. Surface CRNs are
designed to represent chemical behavior. The rules on reaction
rates mirror actual chemical reaction forward and backward
rates, and the inherent spatial dependence of the system is
representative of real-life chemical systems that are contact- and
interface-dependent. The expected analytic behavior of the
dissolution reaction described in Table 1 and eq 2 is expressed
through the following system of equations:

=

=

=

A
t

k P k AB

B
t

k P k AB

C
t

k AB k P

d
d

2

d
d

2

d
d

2

r f

r f

f r (13)

with kr and kf representing the forward and backward rates of
reaction. Solved analytically and compared to the surface CRN
results seen in Figure 2, we see that qualitatively, the surface
CRN chemical evolution follows the expected behavior, albeit
with differing time and concentration scalings. This further
matches the behavior expected of reaction concentration
evolution found in the analytical chemistry literature.

■ SIMULATIONS ON SYNTHETIC
MICROSTRUCTURES
Microstructure Selection.While real-world porous micro-

structures are highly stochastic with vastly complicated pore
networks, separating the effects of individual microstructural
morphological features is highly challenging due to the inherent
interconnected nature of Minkowski functionals. For example, it
is incredibly difficult to take a fully stochastic microstructure and
vary its porosity without also changing its surface area and Euler
characteristic. Indeed, while these functionals are by definition
linearly independent, it is quite difficult to create a schema to
generate microstructures that only vary one functional while
fixing the others. To address this, we opted for a unit cell
approach to approximate porous microstructure features,
preserving the solid-void interplay of porous materials while
keeping the geometry as controlled as possible for functional
isolation. For that purpose, we designed three types of
microstructures.
Figure 3 displays the first microstructural design, a periodic

unit cell representing a close idealization of a porous granular
material. Each unit cell is designed as an N × N pixels square
with four circles of equal radius r at each corner. White pixels
represent solid species, while black pixels represent voids for
fluid species to diffuse. Each edge of the unit cell is a periodic

Figure 1. Summary diagram of the quantities measured and how they
are mapped to a typical sCRN simulation for dissolution. (A) Initiation
phase of the reaction, with almost no product created. (B) Point of the
reaction with the greatest amount of reactant being produced at any
givenmoment, denoted by Q

t
d
d max

, and the time to reach this point asΔτ.

(C) Reaction eventually reaching equilibrium, or Keq.

Figure 2. Surface CRN chemical species evolution vs the analytic solution of the system of chemical equations found in eq 13. (A) Computational
solution via surface CRNs, while (B) represents the analytic solution solved.
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boundary, allowing chemical reactions to occur from one end of
the cell to the other. To generate unit cells of differing
Minkowski functionals, the unit cell bounding box is fixed at side
length N as r is varied. While eq 3 holds as the basis for
calculating Minkowski functional values, M0 and M1 are
nondimensionalized by the reference length N of the bounding
box. Thus, Minkowski functionals are calculated as follows:

=M
r

N
10

2

2 (14)

=M r
N

2
1 (15)

= +M V E F2 (16)

with V, E, and F of eq 16 representing the vertices, edges, and
faces of the microstructure, respectively. Note that eq 14 is
calculated as the porosity of the microstructure (fraction of void
to the total box size). For unit cell tests,M2 is held constant (χ =
1 for a circle split into four slices) while M0 and M1 vary with r.
In order to separate the effects ofM0 andM1, a second test was

designed to holdM0 andM2 constant while only varyingM1. In
Figure 4, an example of the microstructure is shown. The

interface between the solid region and the void region of the
microstructure has a periodic wave applied to it. The perimeter
of the interface can be varied while keeping the same area ratio
from the solid to fluid regions. The number of waves on the
perimeter is denoted by the wavenumber ν. The perimeter and
area of the wavy interface are calculated in a similar manner to

that of an ellipse; thus, a and b represent shape measures for
calculating wave area and perimeter. Because of the periodic
nature of the wave,M0 andM2 remain constant while a, b, and ν
are varied (assuming ν remains an even number). Based on the
Ramanujan approximation for the perimeter of an ellipse, M1 is
calculated as

= + +
+

=
+

M
a b h

h

h
a b
a b

( )
2

1
3

10 4 3

( )
( )

1

2

2

i
k
jjjj

y
{
zzzz

(17)

The final microstructural design aims to maintain constantM0
and M1 while varying M2. This test matches the method used
from ref 42 for varying Euler Characteristic while maintaining
constant porosity and surface area. Figure 5 represents how this
test was performed with a circle of solid material immersed in a
bounding cell of fluid. As pixel-sized holes are added to the
circle, χ, and therefore M2, decreases. Due to the small size of
these holes, M0 and M1 change negligibly through the test.
Resolution Convergence. In order to assess the validity of

surface CRNs as a modeling tool for chemical behavior, a
resolution convergence study is performed to verify that Keq
values scale directly with simulation resolution but converge to a
stable value at high resolution.
For this resolution convergence study, repeated simulations

were performed in the periodic unit cell, varying the side length
of the cellNwhile keeping the ratio of side length to circle radius
r in a consistent 4:1 ratioN:r. This ratio was selected because it is
in the middle of the range of cell-to-circle ratios, allowing for
maximum generalizability in the range of resolutions tested. At
low porosities (about a 2:1 ratio), the unit cell is not sufficiently
saturated with reactive fluid, considerably changing the surface
CRN behavior. In essence, at this point of subsaturation, there
are not enough nodes for the reactive fluid in the unit cell to fully
dissolve the solid structure, making the reactivity of the material
bottlenecked by the diffusivity of the surrounding fluid. We
chose porosity ranges away from this effect to negate this
diffusion bottleneck and thus chose a mesh convergence analysis
point away from this limit. Due to increased resolution, dynamic
effects in the unit cell would need to be scaled via the transition
rule rate laws to remain consistent, as the increased resolution
would effectively increase the “distance” each set of molecules
would need to travel due to the fixed grid nature of surface CRN
simulations. For this reason, we only compare steady-state
solutions and look at the convergence of KeqR with resolution.
As seen in Figure 6, Keq values show a clear exponential

decrease with increasing resolution, converging at a stable
solution at about N = 200, and this is the resolution used for all
simulations.
Rate Effects. According to the work of Boelens and

Tchelepi,42 the primary discrepancy in Keq values found in
interfacial, nonmixed systems compared to well-mixed systems
manifests from differing reaction rates, both within the separate
phases but also in the transition from one phase to another.
Essentially, the additional phase change adds an energetic hurdle
for the dissolution reaction to occur, changing the overall
reaction rate of the forward reaction and thus lowering the
overall equilibrium coefficient. In surface CRN simulations,
these discrepancies can manifest in the a priori transition rule
rates, as well as the assigned diffusion rate for “mobile” species in
the simulation space. The changing diffusion rate of the surface

Figure 3. Example of a unit cell microstructure. The radius of the circles
at the corners is varied per individual unit cell designs. The boundary of
the unit cells is periodic, allowing for chemical reactions to occur from
one edge to another.

Figure 4. Example of a perimeter test microstructure. a and b control
the wave properties along the perimeter, varyingM1 while maintaining a
constantM0. One periodic wave is highlighted in the red bounding box,
with the wavenumber of the cell defined as ν.
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CRNmirrors this behavior to an extent. At higher diffusion rates,
reacted products of the surface CRN reaction are much more
likely to leave sites adjacent to nonreacted nodes, allowing for
more chemical reactions to occur. This effectively increases the
forward rate of the reaction, thus increasing the Keq value of the
system. Figure 7 demonstrates how an increasing diffusion rate
increases Keq consistently across varying methods for the Keq
calculation. All of these increases are closely matched to a power
law, with consistent power scaling across all three calculation
schemes. The primary difference in each curve comes from the
order of magnitude of [R] at a consistent linear scaling.
A similar study was conducted by comparing the reaction rate

in transition rules. As detailed in eq 2, the diffusion reaction is a
reversible reaction that in its initial form favors a forward
reaction. For this study, the ratio of forward reaction kf to reverse
reaction kr was varied, as shown in Figure 8. Similar to the
behavior exhibited in Figure 7, Keq calculations varied
consistently across the same order of power law, modulating
by constant orders of magnitude per the Keq formulation.
Both rate effect studies shared consistent results in terms of

the scalability ofKeq calculations across various rate schemes and
diffusion rules. The influence of these varying rates points to the
validity of Boelens’ work, as the kinetics of the varying phases of

the reaction, both chemically and physically, have a direct
influence on the overall steady state behavior of the system.

■ RESULTS
Effects of Microstructure Geometry. Through the course

of this study, microstructural geometry and morphology had a
visible effect on the chemical behavior of the porous micro-
structure. This is seen through the thermodynamic properties of
Keq, as well as the quantities

Q
t
d

d max
and Δ. Results relevant to the

main conclusions of this manuscript are discussed in the
following sections, while the full set of results relevant to each
Minkowski functional and each thermodynamic quantity can be
found in the article’s Supporting Information.
Unit Cell. As discussed above, when investigating the effects

of Minkowski functionals on the chemical properties of the
system, a clear definition ofKeq must be selected. In Figure 9, it is
clear that depending on the selected scheme of calculatingKeq, as
highlighted in eq 10, the reference scaling and relational
behavior with regard to radius changes dramatically. Figure 9B
shows a weak linear, bordering on trivial, relationship between
radius and KeqR . Figure 9C, on the other hand, shows a strong
linear relationship between radius and KeqRd

3/2

. Finally, Figure 9D

Figure 5. Euler characteristic test. All microstructures are circles of constant radius with pixel-sized holes added. Each hole lowers χ by 1, at a negligible
change in porosity and perimeter.

Figure 6. Resolution convergence study, varying unit box size.
Figure 7. Effect of diffusion rate on the Keq of the system for each Keq
formulation.
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Figure 8. Effect on the reaction rate ratio for the forward and reverse reaction on Keq for each Keq formulation.

Figure 9. Comparing the effect of radius on various Keq calculation schemes. (A) All three schemes of KeqR , KeqR d

3/2

, KeqR d

2

, (B) plots KeqRd

2

as a function of

radius, (C) plots KeqR d

3/2

as a function of radius, and (D) plots KeqR as a function of radius.
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shows a strong exponential relationship between the radius and
KeqR . Note that the differentiation in these schemes only appears
in the calculation of Keq itself, but not in other kinetics-related
factors such as Δτ.
From these results, KeqR was selected as the reaction Keq

criteria, as the exponential relationship between Keq and the
radius, a direct indicator of M0 and M1, fits the expected
energetic relationship between Minkowski functionals and

Gibbs’ free energy described in eq 9. This is because an
exponential relationship resolves the left side of eq 9 to a linear
form, allowing for the relationship described in Boelens et al. on
the right side to hold true.
In examining the unit cell behavior of the benchmark

dissolution reaction, a range of radii from 10 to 40% of the
unit cell edge length was tested. In terms ofM0, this resulted in a
porosity range of 0.5 to 0.95. As shown in Figure 10, an

Figure 10. KeqR values for unit cell reactions of a benchmark dissolution reaction. (A) Plots of the evolution of KeqR as a function of unit cell radius. (B)
Plots of the evolution of KeqR as a function of M0.

Figure 11. QR values for unit cell reactions of a benchmark dissolution reaction. (A) Plots of the evolution of QR as a function of unit cell radius over

time for all test systems. (B) Plots of the evolution of the first derivative of QR, Q
t

d
d

R
as a function of unit cell radius.

Figure 12. Q
t

d
d max

R
values for dissolution reaction tests. (A) Plots of the maximum Q

t
d

d

R
as a function ofM0. (B) Plots of

Q
t

d
d max

as a function ofM1. (C)

Plots of Q
t

d
d max

as a function of M2.
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exponential relationship was found between the terms and KeqR ,
with a negative exponential found relating to radius, which
corresponds to a positive exponential with respect to M0. The
greatest deviation from this trend in the plot can be found at the
largest radius (and thus lowest porosity) of the unit cell. This is
likely due to the chemical bearing capacity of the unit cell itself.
Without a transport means for chemical species to exit the unit
cell, lower porosity unit cells likely experience greater chemical
exclusion effects due to the spatial nature of surface CRNs.
When plotting the entire QR profile, as seen in Figure 11, the

exponential relationship between the radius of the unit cell and
the steady state of the system is made clear. There is also a visible
relationship between the maximum Q

t
d

d

R
and the overall radius of

the circles in the unit cell, as seen in Figure 12. This is due to the
larger radius of the unit cell providing more potential reaction
sites at any given time step, leading to a faster reaction occurring.

Notably, while the maximum Q
t

d
d

R
varies significantly with radius

and porosity, no clear relationship in the time to reach the

maximum Q
t

d
d

R
, or Δτ, is found, with results visible in the

Supporting Information of this text.
Perimeter. Perimeter, or M1, was varied, as described in

Section 2 via a 1D diffusive reaction cell. In this reaction cell
design, the wave parameters a and b were varied to generate
testing samples with different perimeter value, as seen in Figure
4. Ultimately, these results were combined to draw overall
conclusions surrounding the effect ofM1 on the microstructural
chemical performance.
From Figure 13, in all cases of perimeter, Keq is unchanged

outside of minor fluctuations expected of the stochastic nature of
Surface CRN experiments. However, in the Q

t
d
d
plots in Figure

13B,D, a clear hierarchy is seen through the relationship of
perimeter to Q

t
d
d
behavior visible in the differing slopes of the QR

lines. This is further examined in Figure 12, where the

Figure 13. Plots ofQR evolution through varying perimeter tests. (A) Overall evolution ofQR at different perimeters, controlled by varying a. (B) Q
t

d
d
at

different perimeters, also through varying a. (C) Overall evolution ofQR at different perimeters, controlled by varying b. (D) Q
t

d
d
at different perimeters,

also through varying b.
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relationship between M1 and the maximum
Q
t

d
d
is shown via

quantification of the maximum derivative values. Figure 14

demonstrates this relationship in time to maximum Q
t

d
d
(Δτ). In

both cases, an exponential relationship is fitted, where the
relationship between M1 and maximum Q

t
d
d

is positive
exponential, while the relationship between M1 and Δτ is
negative exponential. This behavior follows the same reasoning
as described for the slope of the periodic unit cell, where an
increased perimeter leads to more reaction sites, leading to a
faster overall reaction. The exponential nature is expected from
the log-normal distribution of Minkowski functionals in porous
media.5,1

Euler Characteristic. As in the preceding sections, the
dissolution chemical reaction from eq 2 was applied to the Euler
characteristic χ testing scheme described in the methods section.
Figure 15A demonstrates that the KeqR of the reaction system
seems largely unaffected by the variations of the Euler
characteristic. This is further corroborated in Figure 15B,
where the overall Q profile of each test varies minimally as χ
changes.
While there is no clear relationship between KeqR and χ, a

negative exponential relationship was observed between χ and

the maximum Q
t

d
d
as seen in Figure 12, although this is a rather

weak relationship in terms of order of magnitude. There was no
visible relationship between χ and Δτ.

■ DISCUSSION AND CONCLUSIONS
Dependency of Reaction to Morphometers. The data

extracted from the various unit tests, as shown in Table 2,
describes the relationships between the morphometers and
chemical reaction properties:

In all cases, exponential relationships were found. Ultimately,
the only morphometer with a direct, tangible impact on Keq was
M0. This is likely due to the adjustment of M0 modulating the
ratio of reactants available (i.e., a greaterM0 would decrease the
amount of reactive solid A and increase the amount of reactive
fluid ). However, while M1 and M2 had a minimal effect on
equilibrium behavior, both functionals affected the dynamics of
the system− Q

t
d
d max

andΔτ. These effects are likely due toM1 and

M2 dictating the number of available reaction sites available; that
is, the perimeter determines the number of potential interfacial
nodes, while χ is a measure of the topological connectivity of the
solid phase. In both cases for these dynamic measures,M0 would
be relevant simply for adding more potentially reactive sites to
the graph network and more initially reactive species.
Linkage to Gibbs Free Energy. From the scaling laws

linking the Minkowski functionals to the extent of the chemical
reaction that we obtained numerically, the following mathe-
matical relationships can be derived. For the equilibrium
definition of the standard Gibbs’ free energy ΔG0, the following
relationship is defined:

=G RT Kln0
eq (18)

When examining the relationships between Minkowski
functionals and Keq, we can define Keq as a function of M0 in
the following form:

=K K eaM
eq 0

0 (19)

Figure 14. Effect of M1 on Δτ, demonstrating the exponential
relationship between M1 and the time to maximum

Q
t

d
d
.

Figure 15. KeqR and QR values for the Euler characteristic χ study of a dissolution reaction. (A) No relationship between KeqR and χ, while (B)
corroborates the overall profile of QR.

Table 2. Reaction Properties and Their Associated
Morphometers

KeqR
Q
t

d
d max

Δτ
Relevant Morphometers M0 M0, M1, M2 M1
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for some constants K0 and a, with both being scaling constants
linking morphometric relationships derived above to Gibbs free
energy linearly. In a similar vein, Δτ can be seen as a function of
M1 in the form:

= z ebM
0

1 (20)

with b and z0 being scaling constants. Finally, this methodology
can be applied to Q

t
d
d max

for its relationship withM − 0,M1, and

M2. This takes the form of

=

=

=

=

Q
t

Q M M e

Q Q M e

Q Q e

Q
t

Q e

d
d

( , )

( )

d
d

cM

dM

fM

cM dM fM

max
0 1 2

0 1 2

1 2

max
2

0

1

2

0 1 2

(21)

with c, d, f, Q0, Q1, and Q2 being linear scaling constants.

In order to assess the validity of this model, Minkowski
functionals for all previous unit cell tests were fed into the model
from eq 21, where the predicted Q

t
d

d max
values were compared

against the simulation Q
t
d

d max
values. Similar additive relationships

were also examined, namely, a linear and additive log
relationship. These relationships are represented as

= + + +Q
t

Q gM hM jM
d
d max

1 0 1 2 (22)

and

= + + +Q
t

Q k M m M n M
d
d

log( ) log( ) log( )
max

1 0 1 2 (23)

respectively, with constants g, h, j, k, m, and n representing
various linear scaling constants.
From the parity plots in Figure 16, it is clear that not only is

the exponential model from eq 21 a substantially more accurate
model than that of eqs 22 and 21, its R2 value of 0.96 shows that
it is quite strong as a predictor on its own. This follows the
combination of predicted linear and exponential properties

Figure 16. Parity values for the model are described in eq 21. This figure compares simulation results to those predicted from the model and their
corresponding R2 values. (A) Compares the linear, exponential, and log fits tested. (B) Parity of predicted values to the exponential fit in eq 21. (C)
Parity of predicted values to the linear fit in eq 22. (D) Shows the parity of predicted values to the log fit in eq 23.
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discussed earlier. The values that differed the most, namely at
the extreme ranges of Q

t
d

d max
values correspond with low and high

M0 and M1 values. These stem from the results of the periodic
unit cell test, where low porosity samples begin to overcrowd
due to missing the number of nodes needed for the reaction to
fully progress, lowering the overall maximum rate of the
reaction. A similar situation happens at high porosity, where the
rate of diffusion of nodes near future reactive sites becomes a
bottleneck for the reaction to proceed forward due to low
porosity microstructures having very few adjacent reactive nodes
to solids. However, despite these edge cases, the model derived
in eq 21 appears to be valid for a thermodynamic relationship
derived from Minkowski functionals.
Minkowski functionals have shown promise in their ability to

describe geometrially influenced complex mesoscale phenom-
ena in porous media. Through the use of surface CRNs, a unique
model of asynchronous cellular automata, to model dissolution
behavior in chemical systems, the effects of Minkowski
functionals on the chemical behavior were extracted. Due to
the challenges of modeling and characterizing interfacial
chemical reactions, the effects of individual simulation hyper-
parameters were first examined to understand their impact on
equilibrium metrics, namely Keq. Reaction rate scaling showed a
simple log−linear relationship in dictating Keq behavior, and the

dissolution rate appeared to have a direct effect on Keq. This
verifies previous literature that has shown discrepancies in the
classical Law of Mass Action and true Keq values of nonwell-
mixed systems, with these discrepancies related to energetic
considerations tied directly to interphase behavior and reaction
rates. Beyond the modeled chemistry influence on Keq valuation,
unique artifacts of the surface CRN simulator must also be taken
into account. Specifically, the nature of the reaction selected
introduces a branching interface diffusion phenomenon even in
models of no assigned chemical diffusion, detailed in Appendix
II. This adds an additional layer of slow manifold evolution that
must be noted when considering long-term equilibrium
behavior. However, as referenced in Appendix II, the fast time
scale effects of this diffusion are negligible.
These findings also match the intuition of what is known

about dissolution reactions in chemistry, that increasing surface
area increases the speed of reaction and increasing the number of
reactants in a system decreases the equilibrium constant. While
this intuition is well-known in practical applications of
chemistry, Minkowski functionals offer a potential quantifica-
tion for this phenomenon from a geometric perspective.
Ultimately, exponential relationships were found betweenKeq,

Q
t

d
d max

, and Δτ and extracted Minkowski functionals. With this

linkage found and the appropriate scaling quantified, this work

Figure 17. Comparison of filter results on a sample Q calculation over 14.7 million data points, comparing a moving average series calculated with a
window size of 1,000,000 and a Whittaker−Eilers series with λ = 80,000. Note the time to completion of the smoothing algorithms, with the
Whittaker−Eilers smoothing function calculating at a speed 106 times faster.
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stands as an important step in further understanding how
Minkowski functionals influence microstructural behavior.

■ APPENDIX I: WHITTAKER−EILERS FILTER
Due to the inherent stochasticity of a surface CRN simulation,
data generated by these simulations is inevitably noisy, even at a
steady state. While the system may have settled into a state of
relatively constant concentration, the frequent movement of
species due to stochastic switching can lead to small variations in
overall species counts. As more species or faster reactions are
added to the regime relative to the overall duration of the
simulation, the number of concentrations calculated increases
dramatically. This compounds the noisy data problem to be
incredibly dense, making sensitive calculations of values such as
Keq and QR messy. In order to properly calculate those global
descriptors such as Keq and Q, chemical data must be smoothed
in order to eliminate noise propagation in results. One method
for addressing this is through the Whittaker−Eilers smoother, a
smoother based on penalized least squares. Extremely fast
compared to classic data smoothing techniques like the Savitzky-
Golay filter and moving averages, the Whittaker−Eilers filter
gives continuous smoothness control as well as automatic
interpolation and fast leave-one-out cross-validation. Figure 17
compares the curve generation of theWhittaker-Eilers smoother
on noisy Q data, showing a marked reduction in data noise
similar to that of a moving average calculation, albeit at a fraction
of the time to calculate.
Given a set of noisy data y, there is a series z that is believed to

be the optimal smoothness of y. As z increases in smoothness,
the residual between z and y increases. This residual ϵ is
calculated as

= y z( )
i

i i
2

(24)

and the smoothness s of the data is calculated as

= =s z z z( ) ( )
i

i i
i

1
2 2

(25)

To balance the ϵ and s is tuned by the user through the
smoothing parameter λ, with the relationship between this
quantity represented as q:

= +q s (26)

Ultimately, the Whittaker−Eilers smoother finds the series z
that minimizes q. Combining the above expressions and defining
y and z as vectors y and z as well as a differential matrix D, the
expression for q evolves to

= | | + | |q y z Dz2 2 (27)

Minimizing q via setting the gradient of q to 0, we arrive at the
following expression:

+ =I D D z y( )T (28)

with I defined as the identity matrix. eq 28 is of the form Az = y
and can thus be solved via matrix decomposition to find z.

■ APPENDIX II: INTERFACE DIFFUSION
PHENOMENON AS INTERNAL BRANCHING

While the kinetics of the system have direct, tangible effects on
the overall behavior of the Keq calculation, another important
area of consideration is the idiosyncrasies of the simulation
medium used in this study. While surface CRNs possess
advantages compared to other discrete stochastic simulators,
given their inherent spatial sensitivity due to their usage of fixed
nodes as well as their simple solving scheme, unexpected
secondary behavior may arise depending on the nature of the
reaction rules given. In the case of this reaction, a slow but
noticeable phenomenon of diffusion was observed to occur,
even in models where no diffusion amongst fluids was
prescribed.
Typically, in a system where diffusion is disabled (in our case,

the rate of the diffusion transition rule is set to 0), chemical
reactions occur almost instantaneously at the solid-fluid
interface and then stop, creating a layer of product at the
boundary. This is because, without some form of transport,
reacting species may only form a layer at the surface boundary
before the subsequent product shields further reactions from
occurring, ultimately terminating the surface CRN simulation
early due to the reaction queue collapsing. However, in the case
of the class of reaction discussed in this work, the fact that the
product of the reversible reaction is two of the same species
creates a unique scenario where a slow diffusion manifold is
allowed to propagate. As shown in Figure 18, this slow self-
propagating diffusion manifold, or internal branching diffusion,
is tied directly to the probabilistic nature of asynchronous
cellular automata.

Figure 18. Diagramatic description of branching diffusion.
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After the initiation of a chemical reaction on a surface that
generates two identical product species with the contact of a
reactive fluid in the presence of a reactive solid A, the surface
CRN faces a conundrum for its next step: how to resolve the two
identical species with the potential for the reverse reaction. As
the surface CRN scans each newly generated node species for
potential chemical reactions, it finds that both R product species
are eligible for a subsequent chemical reaction to occur. Thus,
both reaction sites draw a random Δt that dictates which of the
two sites initiates a reaction first. Depending on which site draws
a faster reaction, of which both sites have an equal probability of
this occurring, the reverse reaction may assign either site to
revert to either or A. If this reversibility goes back to the
direction of the initial propagation, the reaction oscillates at the
boundary between products and reactants. However, if the order
of the and A reactive sites flips, the dynamics of the reactions
change, as now there are sites inside of the solid past the initial
boundary that are in contact with reactive nodes. At each step of
this flip occurring, new internal potential reaction sites are
exposed, propagating the initial reaction through the solid phase.
This effect is bidirectional, as these flips may occur in the other
direction to move species at the original solid-fluid boundary
outward, essentially mirroring a slow diffusion process. With
these dynamics incorporated, even with no diffusion prescribed
in the transition rules, the ultimate fate of the system at steady
state eventually sees the entire solid state dissolve into product,
which is dispersed evenly throughout the reacting cell as seen in
Figure 19.
While this phenomenon occurs at an incredibly slow rate, with

convergence to steady state occurring 30 orders of magnitude in
time further than models with even the slowest diffusion
constant, this slow manifold directly influences the rate and
availability of the reactions in this chemical system and should be
noted.
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