
 
 

Delft University of Technology

A level set model for stress-dependent corrosion pit propagation

Dekker, Richard; van der Meer, Frans P.; Maljaars, Johan; Sluys, Lambertus J.

DOI
10.1002/nme.6614
Publication date
2021
Document Version
Final published version
Published in
International Journal for Numerical Methods in Engineering

Citation (APA)
Dekker, R., van der Meer, F. P., Maljaars, J., & Sluys, L. J. (2021). A level set model for stress-dependent
corrosion pit propagation. International Journal for Numerical Methods in Engineering, 122(8), 2057-2074.
https://doi.org/10.1002/nme.6614

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/nme.6614
https://doi.org/10.1002/nme.6614


Received: 9 September 2020 Revised: 14 December 2020 Accepted: 21 December 2020

DOI: 10.1002/nme.6614

R E S E A R C H A R T I C L E

A level set model for stress-dependent corrosion
pit propagation

Richard Dekker1 Frans P. van der Meer1 Johan Maljaars2,3 Lambertus J. Sluys1

1Faculty of Civil Engineering and
Geosciences, Delft University of
Technology, Delft, The Netherlands
2Faculty of Built Environment, Eindhoven
University of Technology, Eindhoven, The
Netherlands
3Structural Reliability, TNO, Delft, The
Netherlands

Correspondence
Richard Dekker, Faculty of Civil
Engineering and Geosciences, Delft
University of Technology, PO Box 5048,
Delft 2600, The Netherlands.
Email: r.dekker-2@tudelft.nl

Abstract
A numerical model for corrosion pit propagation under mechanical loading is
presented. The level set method is used for corrosion front tracking and also
enables the domain to be split into a solid and a pit domain. In the pit the diffu-
sion of atoms originating from the dissolution process occurring at the pit front
is simulated. The model is capable of automatically capturing lacy cover forma-
tion due to the inclusion of activation control, diffusion control, and passivation.
In the solid static equilibrium is solved to obtain strains and stresses. A param-
eter, dependent on the signs of the plastic strain increment and the back stress,
is introduced to define the influence of plasticity on the corrosion rate. The
model is used to study pit growth under electrochemical and mechanical load-
ing. Under activation control combined with an elastic material response, pits
propagate faster under constant loading than under cyclic loading. When plas-
tic deformation occurs, cyclic loading can significantly increase the pit growth
rate. Increasing the cyclic load frequency results in faster propagation due to
kinematic hardening. Under diffusion control, mechanical loading does not
influence the pit growth rate, given that the salt layer leading to diffusion control
remains intact.

K E Y W O R D S
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1 INTRODUCTION

Numerous metal structures are exposed to corrosion while simultaneously being subjected to mechanical loading. For
example, offshore wind turbine parks are becoming increasingly popular as a means of energy production without using
valuable space on land. The disadvantage is that the foundations of these structures, that is, the mono-pile or jacket
structure, are exposed to a more corrosive environment compared with onshore wind turbines. Unfortunately, the effect
of corrosion on the service lifetime is still relatively unknown, especially in the case of corrosion in combination with
mechanical loading. Novel computer models that can simulate the combination of electrochemical and mechanical
loading in metals could reduce this uncertainty, leading to more accurate lifetime predictions.

There are in general two major types of metal corrosion1 in open-air. The first type is uniform corrosion in which there
is a uniform loss in thickness over the surface exposed to the corrosive environment. The second type is local corrosion,
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which can occur in the form of pitting. Pitting corrosion is most common among stainless steels and aluminum alloys,2
but can also be found in nonstainless steels, for example in pipelines3 and offshore structures.4 pitting corrosion has
generally a significantly larger impact on the lifetime of a structure than uniform corrosion. Pits may grow rather quickly
and create stress concentration sites from which mechanically assisted cracks can initiate. To make things worse, the
speed of corrosion increases in the presence of mechanical stress.5 An additional challenge is posed by the fact that it is
not always straightforward to define the size of a pit, because a perforated cover, known as a lacy cover, might hide the true
pit size.6 pitting corrosion can be defined by three different stages, namely, breakdown of the passive layer, metastable
pit growth, and stable pit growth, where reaching stage three, stable pit growth, is most disastrous regarding structural
failure.2 This study focuses on the computational modeling of the stable pit growth stage.

Different methods can be found in literature to model stable corrosion pit propagation. These are finite volume
models,7,8 models that use the finite element method combined with adaptive meshing,9-11 models using the extended
finite element method (XFEM) combined with the level set method,12-14 phase field models,15-18 peridynamic models,19

and cellular automata (CA) models.20,21 Only two of these models considered lacy cover formation.9,19 Furthermore,
inclusion of the effect of a constant stress on the pit growth rate are included in a phase field model18,22 for an elastic
material and an elastic-plastic material,16 and in a CA model20 for an elastic-plastic material. Fatoba et al.21 developed
a CA model for corrosion that includes the effect of cyclic loading by using a cyclic stress–strain curve constructed from
stabilized hysteresis loops. For both CA models, the effect of plastic strain on the corrosion process is taken into account
by employing the Gutman equation23 using the effective plastic strain as a variable to quantify the influence of plasticity
on corrosion. However, a more general unified framework that can deal with pit growth under both constant and cyclic
loading for an elastic-plastic material has not been found by the authors.

In this study, the level set method24 is used in combination with the finite element method in order to simulate cor-
rosion pit propagation. It avoids the need of remeshing which was required in other methods.9-11 Furthermore, the level
set method enables the domain to be easily split into a pit domain and a solid domain. In each domain a different set of
equations is solved. In this study, it is shown that it is not required to use the full XFEM as was done in other studies
that used the level set method.12,13 Instead, a simple modification in integration scheme suffices, keeping the number of
degrees of freedom (DOFs) per node constant, which is more in line with the phantom node version of XFEM.25-27 This
approach ensures that the two domains can be considered separately and therefore, for example, no unnecessary diffu-
sion equations are solved in the solid domain. Furthermore, the influence of stress and strain on the pit growth velocity
is included, where an isotropic and kinematic hardening plasticity model is employed such that the effect of cyclic plas-
tic strain on the pit growth rate can be captured. For this a separate plasticity parameter is introduced that does not grow
indefinitely in a stabilized cyclic response, which is another novel contribution in this article.

The article starts by presenting the description of the multiphysics problem to be solved, followed by the treatment of
the mechanical behavior of the metal. Next, the corrosion behavior is discussed, in which activation controlled corrosion,
diffusion controlled corrosion and passivation are addressed. In addition, the new state variable to indicate the state
of plasticity is discussed. After that, the numerical framework is outlined with a description of the solution procedure.
Finally, four numerical examples are given: a diffusion controlled pencil test, a study on the influence of the initial pit
shape, a lacy cover formation problem and a study on the influence of mechanical loading on pit propagation.

2 PROBLEM DESCRIPTION

A corrosion pit as visualized in Figure 1 is considered. The problem consist of two domains with a moving boundary,
namely, the pit and the solid. The pit domain consists of an electrolyte which has the ability to transfer electrons. The pit
front moves into the solid due to anodic dissolution, which means that a metal atom, indicated with M, leaves the solid
and enters the pit solution while disposing itself of electrons. At the same time a cathodic reaction occurs that consumes
these electrons in which for example hydrogen anions are converted into hydrogen gas. In this study, it is assumed that
the cathodic reaction does not limit the rate of corrosion and thus only the anodic reaction is considered. Furthermore, a
mechanical load is applied on the solid, resulting in stresses and strains, which can influence the pit growth rate.

The solid domain is the part in which the applied load is transferred. Here, static equilibrium should hold, which in
the absence of any body forces, can be written as:

∇ ⋅ 𝝈 = 0, (1)

where 𝝈 is the mechanical stress and ∇ the differential operator.
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F I G U R E 1 Schematic picture of the pit domain, the solid
domain, and the pit front representing the corrosion process of a metal
M and the applied mechanical loading (arrows)

In the pit domain there is a diffusion of metal atoms that originate from the solid. The concentration of metal atoms is
therefore largest near the pit front and smallest near the pit boundary, which is the outside environment (Figure 1). The
diffusion equation, in the absence of any source, is defined as follows:

𝜕c
𝜕t

(x, t) + ∇ ⋅ J (x, t) = 0 (2)

in which c is the concentration of atoms/ions, J is the flux of atoms, x is the location in the domain, and t is time. In this
study, only the concentration of atoms of the metal itself is considered, however, inclusion of other species is possible as
well.11,28-30

The pit front is not fixed in space, but propagates through the domain. The equilibrium between the flux of dissolved
metal atoms and the velocity of the moving pit front is given by the Rankine–Hugoniot condition:7,31

{J (x, t) + [csolid − c (x, t)]V (x, t)} ⋅ n (x, t) = 0. (3)

Here, V is the front velocity, n is the unit normal vector that is perpendicular to the front, and csolid is the concentration
of atoms in the solid.

3 MECHANICAL BEHAVIOUR

The mechanical load can be applied with a constant magnitude or in a cyclic fashion. Therefore, a plasticity model that
includes both isotropic and kinematic hardening is used to capture plastic flow under cyclic loading. The elastic behavior
simply follows from Hooke’s law with Young’s modulus E and Poisson ratio 𝜈.

The Von Mises criterion is used to describe the yield surface:

fvm =
√

2
3
(s − 𝜷) ∶ (s − 𝜷) − 𝜎y, (4)

where s and 𝜷 are the deviatoric stresses and deviatoric back stresses, respectively. The yield stress 𝜎y is defined with a
nonlinear isotropic hardening rule:32

𝜎y = 𝜎0 + Q∞

(
1 − e−b𝜖p

)
, (5)

where 𝜎0 is the initial yield stress, Q∞ the limit value for the yield stress increase and b is a measure for the rate of change
of the yield surface. The increment in equivalent plastic strain d𝜖p is given as:

d𝜖p =
√

2
3

d𝝐p ∶ d𝝐p, (6)

where d𝝐p is the plastic strain increment. The kinematic hardening rule is given by Chaboche33:

d𝜷 = 2
3

Cd𝝐p − 𝛾𝜷d𝜖p, (7)

where C is the linear and 𝛾 is the nonlinear kinematic hardening coefficient.
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4 CORROSION BEHAVIOUR

A distinction between three different regimes can be made when looking at stable pitting corrosion. First,
there is activation controlled corrosion in which the corrosion speed is given and serves as a boundary con-
dition for the diffusion problem. The second regime occurs when a certain saturation concentration csat is
reached on the inside of the pit front at which point a salt layer forms on the front. The speed of the
corrosion process then depends on the speed with which the metal atoms diffuse away from the front sur-
face and it is therefore called diffusion controlled corrosion. The third option is simply passivation, which
means that the corrosion process has come to a halt. The three regimes, and how they use Equation (3), are
discussed next.

4.1 Activation control

In activation control the rate with which the pit grows depends on the rate of the corrosion reaction, which is defined
by the anodic current density ia. The Butlet–Volmer equation or the Tafel equation can be used to compute the current
density as function of the applied potential.7,8,12 However, in this study, the anodic current density is used as an input
instead of the applied potential. It is assumed that the current density acts perpendicular to the front, which means that
the following equation holds:

ia (x, t) = n (x, t) ia. (8)

The electric current at a dissolving electrode is proportional to the mass being dissolved per time instant as stated by
Faraday’s law:

ia (x, t) = V (x, t) csolidzF, (9)

where F is Faraday’s number and z the number of electrons involved. For a given ia this equation can be rewritten to
obtain an expression for the front velocity:

V (x, t) =
ian (x, t)
csolidzF

. (10)

It is assumed that movement of dissolved ions is diffusion dominated,34 which means that the flux is represented by Fick’s
law:

J (x, t) = −D∇c (x, t) , (11)

where D is the diffusion coefficient of the metal in the electrolyte. Substituting Equation (11) into Equation (3) gives

{−D∇c (x, t) + [csolid − c (x, t)]V (x, t)} ⋅ n (x, t) = 0, (12)

where the velocity V is given by Equation (10). Thus, in the case of activation control, the front condition acts as a mixed
or Robin boundary condition which depends on a front velocity that is known a priori.

4.1.1 Mechanical stress-dependent corrosion rate

According to Gutman,23 the anodic current density of a pure metal is influenced by the amount of plastic strain p and
hydrostatic stress 𝜎H through the following relation:

ia → ia

(
p
𝜖0

+ 1
)

exp
(|𝜎H|Vm

RT

)
, (13)
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where 𝜖0 is the initial yield strain, V m is the molar volume of the solid metal, R is the universal gas constant, and T the
temperature. According to this equation, an increase in the amount of plasticity or an increase in the absolute value of
the hydrostatic stress results in a faster corrosion rate. When considering a one-dimensional (1D) case, p is simply equal
to the plastic strain. In a multidimensional case, under a constant or an increasing applied stress, the equivalent plastic
strain 𝜖p could substitute p as in Reference 20.

However, there is a problem in using 𝜖p as indicator for the amount of plastic strain in the case of cyclic loading.
According to Gutman, an increase in dislocation density and in dislocation pile up, accelerates the corrosion rate. Due to
the combination of Equation (6), which states that the equivalent plastic strain cannot decrease in value, and the presence
of kinematic hardening, the equivalent plastic strain will keep on increasing whenever there is a plastic strain increment.
This means that 𝜖p increases in value even when the global cyclic response has stabilized. In reality, kinematic hardening
under cyclic loading represents dislocations moving back and forth,35 meaning that the largest pile up can decrease when
reversed loading starts. Therefore, under cyclic loading, 𝜖p from Equation (6) is not a correct measure for dislocation pile
up. Note that a previous numerical study on corrosion pit growth that only considered cyclic loading did not encounter
this problem because stabilized plasticity relations were used,21 although the physical meaning of 𝜖p in such equations is
debatable.

To ensure the presented plasticity relations can still be used, a new parameter, defined as the equivalent dislocation
strain 𝜖d, is introduced:

d𝜖d = ∫
d𝜖p

0
sgn

(
d𝝐p ⋅ 𝜷

)
dx. (14)

The parameter 𝜖d can, unlike 𝜖p, increase or decrease in magnitude. It decreases in value when the plas-
tic strain increment acts in the opposite direction of the back stress, which could occur under cyclic load-
ing. In the case of a monotonically increasing stress, 𝜖d is equal to 𝜖p. It should be emphasized that the
mechanical behavior is still determined by using 𝜖p, and is therefore not affected by 𝜖d. The parameter 𝜖d
is only used in Equation (13) as a substitute of p in order to compute the increase in the anodic current
density.

Figure 2 shows the evolution of 𝜖d and 𝜖p under monotonic and cyclic loading. For cyclic load the maximum value
of both parameters for each loading cycle is plotted against the number of loading cycles. Under monotonic load the
two plasticity measures remain exactly equal. However, there is a significant difference between the two when consid-
ering cyclic loading. 𝜖p∕𝜖0 reaches values of over 300, while 𝜖d∕𝜖0 reaches values of around 35 and remains relatively
constant after 50 cycles, which is the desired characteristic behavior for p in Equation (13) when the cyclic response
stabilizes.

(A) (B)

F I G U R E 2 Development of 𝜖d and 𝜖p for a single element test under (A) a monotonic applied load, and (B) under cyclic loading with a
maximum applied stress of 200 Mpa and a load ratio of −1. The material parameters can be found in Table 1
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4.2 Diffusion control

Diffusion control occurs once the saturation concentration csat is reached on the inside of the pit front, which leads to the
formation of a salt layer. Due to this salt layer, the concentration on the inside of the pit front remains constant at csat.
Therefore, this concentration is applied as a Dirichlet or essential boundary condition on the inside of the front, which
means that it has been assumed that the salt layer has zero thickness. Consequently, Equation (3) is no longer applied as
a boundary condition, but is used to determine the front velocity once the concentration distribution has been computed:

V (x, t) =
D∇c ⋅ n (x, t)

csolid − csat
. (15)

Note that in this case the front velocity is no longer dependent on ia and thus plastic strain and hydrostatic stress do
not influence the front velocity.

4.3 Passivation

In this study, a simple passivation model has been used in which corrosion process comes to a halt once the front con-
centration in the pit is smaller or equal to a passivation concentration cpas.6 In this case the front velocity is zero and
Equation (3) reduces to:

J (x, t) = 0. (16)

5 NUMERICAL FRAMEWORK

The mechanically assisted pitting corrosion process is simulated by combining the finite element method with the level
set method, which is visualized in Figure 3. In the level set method a front is tracked implicitly by assigning every node
a signed distance value 𝜙, of which the magnitude is equal to the shortest distance between the node and the front.
A positive value indicates that the node is present in the solid, while if the value is negative or equal to zero the node is
located in the pit.

The solid domainΩS and the pit domainΩP are constructed by taking elements located on respective sides of the front.
However, some elements are cut by the front and are thus present in both the pit and the solid domain. This is solved by
only integrating the area that is on the outside of the front (𝜙 > 0) for the solid domain and inside the front for the pit
domain. The specific integration areas are created by triangular partitioning as shown in Figure 3. The elements through
which a section of the front is present, are called the front elements. The nodes of these front elements are defined as
the front nodes. Furthermore, having the location of the front by means of the signed distance value, line elements can
be introduced in the elements that are crossed by the front. These line elements are assigned front integration points,
indicated with solid squares in Figure 3, at which the regime of corrosion, the local front velocity, the stresses, and the
strains are determined.

F I G U R E 3 A corrosion pit under mechanical stress in a finite element and level set method numerical framework. Elements cut by the
front are both present in the solid and the pit, but use different integration schemes depending on the domain
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F I G U R E 4 Flow diagram of the mechanically assisted pitting corrosion model

The solution is computed by means of a staggered approach in which there is a total of seven different steps. The
order of the steps are indicated in the flow diagram in Figure 4. For corrosion without an applied mechanical stress, the
mechanical problem step is simply skipped.

When considering cyclic mechanical loading, the solution procedure does not involve any additional step in the flow
diagram. However, the time increment is now coupled to the load cycle frequency and thus the mechanical load incre-
ment. For example, the fatigue cycle period is 10 s for a fatigue cycle frequency of 0.1 Hz. When using 10 load steps per
cycle for this given frequency, it means that the time increment per load step should be equal to 1 s. In the remainder of
this section, the different parts of the numerical framework are discussed in more detail.

5.1 Level set update

It is required that the velocity at the nodes is known in order to update the level set. For the very first level set update, the
velocity is simply zero. The level set is updated explicitly by means of the following equation:

𝜙t+Δt = 𝜙t − VnΔt. (17)

The time increment is defined by the Courant–Friedrichs–Lewy (CFL) condition to ensure stability of the solution.36 In
the case of cyclic loading, the time increment per load step should be lower than the CFL condition. If this is not the case,
the number of load steps per cycle simply has to be increased.

At each level set update, the front moves outward. This means that after every update the old front lines are removed
and new ones are introduced. Where necessary, concentration DOF are added on the nodes and displacement DOF
removed. In addition, the integration areas created by triangulation are updated.

5.2 Level set reinitialization

Reinitialization of the level set is performed to ensure that the signed distance property remains satisfied at every node.
This property is defined by the following relation, which is known as the Eikonal equation:

|∇𝜙| − 1 = 0. (18)

In this study, two different methods for reinitialization were considered. The first one uses the fast marching method36

which is a time efficient algorithm. However, this method, without the use of a shadow or dual mesh, can only be
employed for either a structured mesh or a mesh composed of linear triangular elements as done by van der Meer et al.37
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F I G U R E 5 Front and band elements around the pit front

The other method for reinitialization follows the procedure by Adams et al.,38 where the least square residual of
Equation (18) is minimized, followed by Picard linearization and then transformed to a weak form. The method of using
field equations for reinitialization can be used for any type of mesh. However, solving a system of equations is more
expensive than using a fast marching algorithm. Fortunately, the computation time can be significantly reduced by only
considering a band of elements around the pit front as is shown in Figure 5. In addition, it is generally not necessary
to perform the reinitialization of the level set every time the level set is updated, but this can be done every five or ten
steps, depending on the complexity of the front shape, to ensure that 𝜙 remains approximately equal to a signed distance
function.36 In this article it is assumed that the signed distance values at the nodes belonging to front elements 𝜙Front are
known and can therefore be used as Dirichlet boundary conditions. This simplifies the weak form significantly:

∫Ω𝜙

∇𝜙m ⋅ ∇𝜓dΩ = ∫Ω𝜙

∇𝜓 ⋅
∇𝜙m−1

|∇𝜙m−1|dΩ with 𝜙m = 𝜙Front on ΩFront, (19)

where 𝜓 is the test function, Ω𝜙 the domain of the band and Ωfront the domain of the front elements (Figure 5). The
superscript m indicates the unknown signed distance solution for the current iteration step and the superscript m− 1 from
the previous. Note that the size of the band depends on the reinitialization interval. The reinitialization equation is solved
iteratively until the signed distance value is converged. The resulting system of equations has a discretized elemental
reinitialization stiffness contribution that is given by:

Kre = ∫Ω𝜙

BTBdΩ, (20)

where B are the gradients of the shape functions N which are used to discretize the test function and the state variable.
The elemental reinitialization external vector contribution is defined as:

fre = ∫Ω𝜙

BT BT𝝓m−1

||BT𝝓m−1||dΩ. (21)

5.3 Mechanical problem

The mechanical problem solves the static equilibrium given in Equation (1), of which the weak form is defined as:

∫ΩS

𝜎 ∶ ∇𝜓dΩ = ∫S
𝜏 ⋅ 𝜓dS (22)

with prescribed displacements or tractions 𝜏 on the domain boundary Su or S𝜏 , respectively. This equation is solved only in
the solid domain with the nodal displacements as unknowns. Due to the inclusion of plasticity the mechanical problem is
solved with the Newton–Raphson method39-41 which minimizes the difference between the internal force vector fint

mech and
the external force vector fext

mech. The resulting system of equations consists of a discretized elemental stiffness contribution:

KMech = ∫ΩS

BTDstiffBdΩ, (23)
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where Dstiff is the consistent tangent stiffness. The discretized elemental external vector contribution is defined as:

fext
Mech = ∫S𝜏

NT𝝉dS (24)

and the elemental internal vector contribution is given by:

fint
Mech = ∫ΩS

BT𝝈dΩ. (25)

In order for the corrosion problem to use the mechanical result, 𝜎H and 𝜖d should be known at the front integra-
tion points. The value of these quantities can strongly depend on the mesh size. For example, decreasing the mesh size
around a stress concentration site significantly increases the stress as well as the amount of plastic strain. Consequently,
the corrosion speed up for a fine mesh is larger than for a coarser mesh. Therefore, a nonlocal approach is used to
compute these quantities in order to avoid a mesh dependency through local plastic behavior by introducing an extra
length-scale.42,43 The nonlocal quantities are computed as the weighted average values from solid bulk integration points
using the following weight function:

w = 1
(𝜋rw)2 exp

(
−

l2
w

2r2
w

)
, (26)

where lw is the distance between the bulk and front integration point, The length scale rw defines both the search radius
around a front integration point and the rate of decay of the weight function, and has generally a value of two to three
times the element size.

Note that the bulk integration scheme within a front element changes once the front moves. In order to transfer the
history data, the old integration points are first extrapolated to the nodes, followed by interpolation to the new integration
points.41

5.4 Diffusion/corrosion problem

As explained in Section 4, there are three regimes for corrosion, namely, activation control, diffusion control, and passi-
vation, where different points along the front can be in different regimes. The regime of corrosion is determined for each
time step according to the following scheme:

1. Set all the front integration points to activation control except the ones that were passivated in the previous time step
and are thus under passivation control. Include Equation (13) when mechanical loading is considered.

2. Solve for the concentrations in the pit domain given the current configuration of control of each front integration point.
3. Check the front concentration cfront for each front integration point.

• If cfront ≥ csat switch to diffusion control for the front integration point in consideration.
• If cfront ≤ cpas switch to passivation for the front integration point in consideration.

4. The final concentration solution is computed if the regime of corrosion is not changed for any of the front integration
points in step 3. If not, go back to 2 and repeat the process.

Each corrosion regime results in different boundary conditions, which result in extra stiffness and external load vector
terms. In activation control there is a Robin boundary condition, given in Equation (12), which can be rewritten to:

−J ⋅ n = csolidVn − cVn (27)

in which the following relation has been used:

V = Vnn. (28)
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In diffusion control a Dirichlet boundary condition is applied at the pit front, which in this article is done by using
Nitsche’s method for embedded surfaces.44 In the case of passivation, no special action is required.

The weak form of the diffusion equation given in Equation (2), extended with the Robin and Nitsche boundary
conditions, is given by:

∫ΩP

𝜓
𝜕c
𝜕t

dΩ + ∫ΩP

D∇c ⋅ ∇𝜓dΩ + ∫SA

cVn𝜓dS −∫SD

D𝜓∇c ⋅ ndS − ∫SD

D (c − csat) ∇𝜓 ⋅ ndS + ∫SD

𝜓𝛼diff (c − csat) dS

= −∫SJ

(J ⋅ n)𝜓dS + ∫SA

csolidVn𝜓dS (29)

with prescribed concentrations or prescribed flux as boundary conditions on Sc and SJ , respectively. Furthermore, SA and
SD indicate the pit front sections with activation and diffusion control, respectively, and 𝛼diff is a stabilization parameter,
which should be chosen sufficiently large.

In the case of implicit time integration, the discretized elemental stiffness contribution from domain ΩP is given by:

KDiff =
1
Δt∫ΩP

NTNdΩ + ∫ΩP

BTDBdΩ (30)

and the discretized element external vector contribution by:

fDiff =
1
Δt∫ΩP

(
NTN

)
ct−ΔtdΩ − ∫SJ

NTnTJdS, (31)

where ct−Δt is the concentration in the previous time step. The discretized Robin boundary elemental stiffness contribu-
tion is given by:

KRobin
Diff = ∫SA

NTNVndS (32)

and the Robin boundary external vector contribution is defined as:

fRobin
Diff = ∫SA

NTcsolidVndS. (33)

The discretized stiffness and external load vector contributions due to the Nitsche boundary are given by:

KFlux
Diff = −∫SD

DNTnTB + DBTnNdS, (34)

KStab
Diff = ∫SD

NT𝛼diffNdS, (35)

fFlux
Diff = −∫SD

DBTncsatdS, (36)

fStab
Diff = ∫SD

𝛼diffNTcsatdS. (37)

5.5 Velocity extension

For the velocity extension from the front to the nodes, the following equation should hold throughout the domain:

∇Vn ⋅ 𝜵𝜙 = 0. (38)

As indicated in the flow diagram in Figure 4, the velocity extension is done in two steps. First, the velocity from the front
is extended to the front nodes, followed by the velocity extension from the front nodes to the rest of the band domain.
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The reason for this is that there is a degree of nonuniqueness in the extension from the front to the front nodes, which
is minimized with applying the appropriate boundary conditions. Therefore, before applying the extension to the rest of
the domain, the velocity in the front nodes are checked to ensure that the velocity value lies within the velocity range of
the adjacent front segments. If this is not the case, it is assigned the maximum or minimum front velocity of the adjacent
segments.

For the velocity extension from the corrosion front to the front nodes, the penalty method is used to enforce the
boundary conditions on the front. The weak form of Equation (38) in combination with the penalty method becomes:

∫Ωint

(∇Vn∇𝜙) (∇𝜓∇𝜙) dΩ + ∫S
𝜓𝛼Vel (Vn − Vfront) dS = 0, (39)

where 𝛼Vel is the penalty parameter, which should be chosen sufficiently large, and V front is the front velocity which can
differ in value for each front integration point. Note that at this stage 𝜙 is a known quantity.

The discretized elemental contribution to the stiffness matrix and the external force vector belonging to velocity
extension with the penalty method are given by:

KVel = ∫Ωint

BT𝜵𝜙(𝜵𝜙)TBdΩ, (40)

KPen
Vel = ∫S

NT𝛼VelNdS, (41)

fPen
Vel = ∫S

𝛼VelNTVfrontdS. (42)

Due to the ability to have passivation, diffusion control and activation control at the same time at different front
integration points, velocity jumps along the front may occur. The front velocity is therefore smeared out by adding a
diffusive term to the velocity extension stiffness matrix to improve robustness45:

KSmear
vel = ∫S

𝜅h2BTssTBdS, (43)

where s is a unit vector perpendicular to n, 𝜅 is the front stabilization parameter and h is the size of a typical element.
The same field equation is solved once more, but now on the band domain Ω𝜙 instead of just Ωint and with the nodal

velocities in Ωint as Dirichlet boundary condition.

6 NUMERICAL EXAMPLES

Four different numerical examples are considered. First, a basic 1D pencil test is compared with an analytical model.
Second, two different initial notches are investigated for different current densities in a two-dimensional (2D) problem.
Third, lacy cover formation is modeled for a 2D pit. All these cases do not involve an applied mechanical load. The
fourth example shows the behavior of the numerical model when considering pit growth under various electrochemi-
cal and mechanical loading combinations. In all examples, the solid material is a 304L stainless steel, which has been
chosen because of the available experimental data in literature. Although this material is not used in offshore wind tur-
bines, the principles explained in this article are not material dependent, only the material parameters itself. The model
input parameters used throughout all of these examples are given in Table 1, where the values of csat and D belong to a
temperature of 288.15 K. The mechanical material parameters are taken from Antunes et al.46

6.1 1D pencil test

The specimen geometry and the boundary conditions used for the pencil are shown in Figure 6(A). Geometry and
boundary conditions are formulated such that this is a 1D problem, but to test the present framework, it is modeled
in 2D here. In this example, it is assumed that the pit front is moving solely under diffusion control, and therefore no
value of iA is required. A comparison in pit growth velocity between the numerical model and an analytical relation7
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T A B L E 1 Model parameters

csol
47 csat

9 D9 T R F

143 × 10−6 mol mm−3 4.22 × 10−6 mol mm−3 0.575 × 10−3 mm2/s 288.15 K 8.314 J K−1 mol−1 96485.3 C mol−1

z6 V m
6 E 𝝂 𝝈0 𝝐0 Q∞ b C 𝜸

2.19 7049.24 mm3/mol 200 GPa 0.29 117 MPa 0.585E-3 87 MPa 9 52.8 GPa 300

(A) (B)

F I G U R E 6 (A) One-dimensional pencil test geometry and boundary conditions and (B) comparison of pit growth velocity between the
numerical model and an analytical relation in the case of diffusion controlled corrosion

is given in Figure 6(B). It shows that the model prediction and the analytical relation are equal. The mesh size was
set to 2 μm.

6.2 Initial pit shape

A benefit of the level set method is that it can deal with sharp fronts, as well as merging and branching without any
special treatment. To illustrate this, two different initial pit shapes are considered: a sharp notch and a double circular
pit. The pit boundary nodes along the free surface are assigned a concentration of zero as a Dirichlet boundary condition.
Furthermore, the propagation of both initial shapes is studied for a current density of 1 mA mm−2 as well as 10 mA
mm−2 in order to show the difference in shape evolution between activation and diffusion control. Note that in these
analyses the possibility of passivation has been switched off. When there is both diffusion and activation control present,
Equation (43) has been used to avoid a velocity jump at the intersection of the two types of control. The specimen has a
height of 200 μm and a width of 400 μm. The mesh size was set to 2 μm.

Figure 7 shows the initial sharp notch, with a base of 20 μm and a height of 50 μm, and its evolution under the two
current densities. For the smaller current density, the corrosion process is under pure activation control, which is shown
in Figure 7(B). This means the front velocity is constant along the front and thus the notch shape remains relatively
constant. For the larger current density, of which the evolution of the shape is given in Figure 7(C), there is a combination
of activation and diffusion control. The transition between the two regimes of corrosion is clearly visible through the
overhang. Diffusion control is present along the bottom of the pit, at which the concentration is equal to csat, while the top
of the pit, which is in closer contact with the pit boundary, is under activation control. The front velocity for the diffusion
control part is largest near the transition point, because of the larger concentration gradients. This velocity is also larger
than the activation control velocity, which is the source of the overhang.
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F I G U R E 7 (A) Initial V notch and its shape evolution with atom concentration under (B) pure activation control
(

ia = 1 mA∕mm2)
and (C) a combination of activation and diffusion control

(
ia = 10 mA∕mm2)

F I G U R E 8 (A) Initial two pits and their shape evolution with atom concentration under (B) pure activation control
(

ia = 1 mA∕mm2)
and (C) a combination of activation and diffusion control

(
ia = 10 mA∕mm2)

The same type of behavior can be seen Figure 8, which shows the initial double pit shape, with radii 50 μm, and the
evolution under the two current densities. For the smaller current density there is again only activation control, which can
be seen from Figure 8(B) where csat is not reached at any point on the pit front. Furthermore, the line of merging is clearly
visible because of the sharp tip. For the larger current density, there is again a combination of activation and diffusion
control, as shown in Figure 8(C). The overhangs at the transition between the two regimes are not as pronounced as for
the sharp notch because of the presence of curvature. The sharp tip at the merging line is smeared out because of diffusion
control.

6.3 Lacy cover formation

The numerical model is compared against experimental data for a corrosion pit with lacy cover6 in terms of width and
depth. A 2D pit is considered with an initial radius Rinit of 20 μm as visualized in Figure 9(A). The initial concentration of
metal ions in the pit is equal to the saturation concentration. The pit boundary nodes are assigned a concentration of zero
as a Dirichlet boundary condition. Note that these are only the nodes for which 𝜙 < 0 holds. The anodic current density
is equal to iA = 38 mA∕mm2. The specimen has a height of 240 μm and a width of 800 μm. Only half of the domain of the
pit is modeled. In order to accurately capture the formation of the lacy cover, the mesh resolution should be sufficiently
small to reduce mesh sensitivity. An unstructured mesh was used with an element size of 0.5 μm at the top, which is
where the cover forms, and 2 μm at the bottom of the geometry.

In the numerical model, a lacy cover is automatically formed when including all three different regimes of corrosion
into the pit growth computation as is shown in Figure 9(B). The metal atom concentration near the upper part of the pit
is lower than the passivation concentration, which means that at these points the front does not propagate. However, at
some point deeper into the pit, the passivation criterion is not satisfied any longer. Consequently, the pit front propagates
underneath the surface until it reaches the outside environment again and a little island of metal remains. This process is
constantly repeated, which is the origin of the lacy cover as observed as a perforated surface layer seen in experiments.6

In order to obtain a good agreement with the experiment, it was found that cpas should be set equal to 3 mol L−1,
which falls within the range of 50%–80% of the saturation concentration as mentioned by Laycock and White.10 A lower
value for cpas results in a pit width that is too large and a higher value in a too small size. Figure 10(A) shows the com-
parison between the numerical model and the experimental data. The largest distance from the center line of the pit
to a point in the pit that is in contact with the outside environment is defined as the width of the pit. Furthermore,
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(A) (B)

F I G U R E 9 (A) Lacy cover specimen and (B) a zoomed in view of the automatic lacy cover formation

(A) (B)

F I G U R E 10 Comparison of (A) the width and (B) the depth of two-dimensional pit numerical analyses (Num) with passivation for
different cpas against experiment (Exp)

Figure 10(B) gives the comparison of the pit depth, which shows that there is a small dependency of the depth with respect
to cpas. A higher cpas reduces the metal concentration gradient and therefore the pit propagation speed at the bottom
of the pit.

6.4 Influence of mechanical load

The influence of mechanical loading on the pit growth behavior is studied using the specimen given in Figure 11 for which
the condition of plane stress has been used. The specimen width and height are equal to 800 and 400 μm, respectively.
Furthermore, the initial pit radius is 50 μm. The mesh size was set to 2 μm and the length scale rw from Equation (26) equal
to 4 μm. The dashed line, which indicates the presence of a notch, shows the general evolution of the shape of a pit under
mechanical loading having a circle as initial pit shape. The notch is formed at the bottom of the pit because it is subjected
to the highest amount of stress and thus experiences the highest increase in front velocity. Due to this notch, there is an
increase in stress concentration,48 which further accelerates the growth of the notch. Passivation is not considered in this
study.
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F I G U R E 11 Mechanical stress assisted pit growth specimen. The
dashed line indicates the evolution of the pit shape

(A) (B)

F I G U R E 12 (A) Pit depth and (B) equivalent dislocation strain over time for ia = 1mA∕mm2

Figure 12(A) shows the pit depth and Figure 12(B) the equivalent dislocation strain for simulations under a low current
density of iA = 1 mA∕mm2 in the case without mechanical loading (NL), constant applied loading (Const), and cyclic
loading (Cyclic) with a load ratio of −1 for different maximum loads and different cyclic load frequencies. The low (LL)
and high (HL) maximum loads are equal to 7 and 18 N mm−1, respectively. It can be seen that the pit without mechanical
loading is growing slowest. For the low applied load, plasticity is not present. In this case, the pit grows faster under a
constant applied loading as compared with cyclic loading, because the hydrostatic stress, which increases the corrosion
speed according to Equation (13), is always at its maximum, unlike under cyclic loading. Furthermore, for the low load
there is no difference in pit growth for different load frequencies, because the percentage of time that is spent at a certain
load is the same.

This is different for the high maximum applied load, due to the presence of plasticity. The high frequency cyclic load
case results in significantly faster pit growth compared with the low frequency cyclic load case and the constant load case.
This is due to the accumulation of the equivalent dislocation strain due to cyclic hardening. The effect becomes apparent
after around 200 s, when a notch starts to develop (see Figure 11) at the bottom of the pit which increases the stress
concentration.48 This increases the stress amplitude and therefore also the effect of kinematic hardening. Interestingly,
under a constant load case the pit grows faster than under a cyclic load with a low frequency. In the case of the low
frequency there is less time to available for 𝜖d to increase, because the material is already corroded before it can reach its
potential maximum. However, the low frequency cyclic load case comes closer to the constant load case over time. This
is explained again through the change in shape of the pit, the stress at the pit bottom increases and thus also the built up
of 𝜖d.

Note that 𝜖d is increasing and decreasing over time for the cyclic load cases according to its definition given in
Equation (14). In addition, for the high frequency cyclic load there is a change in behavior around 380 s, which is due
to the switch from activation to diffusion control at the bottom of the notch. As could be seen in Section 6.2, diffusion
control reduces the curvature of a pit. Consequently, a flatter pit means a smaller stress concentration and thus a decrease
of 𝜖d as the pit grows.
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F I G U R E 13 Shape of pit at t = 350 s for different load cases for
iA = 1 mA∕mm2

F I G U R E 14 Pit depth over time for iA = 10 mA∕mm2

A comparison between the shape of the pit for the high maximum applied load cases and without mechanical load
is given in Figure 13. The pits under a mechanical load develop a notch at the pit bottom. It is not difficult to imagine
that such notch is a precursor for crack initiation. Furthermore, it can be seen that for the high frequency cyclic load case
the notch forming grows faster with time. The cause is again kinematic hardening, which leads to earlier notch forming,
which results in a reduction in stress and therefore in corrosion rate at the rest of the pit front.

Finally, the simulations are repeated with a larger anodic current density of iA = 10 mA∕mm2. Figure 14 shows a com-
parison of the pit depth for the different load scenarios. For all simulations the bottom of the pit is under diffusion control,
which implies that mechanical loading does not affect the pit growth rate at these locations and results are the same.
However, it can be questioned whether this is realistic, because the salt layer, causing the diffusion control phenomenon,
might break down in the case of mechanical loading. Upon break down, larger pit growth rates may be expected as the
problem is no longer controlled by diffusion but by activation.

7 CONCLUSIONS

This study presented a numerical 2D model for corrosion pit propagation under mechanical loading. The level set method
was used to track the pit front and to split the domain into a solid domain and a pit domain. The field equations used for
the level set reinitialization as well as the velocity extension enable the model to be extended for the use of different mesh
types and also three-dimensional analyses.

In the pit domain the diffusion of the concentration of atoms is simulated. The atoms originate from the dissolution
process occurring at the pit front. The equilibrium between the propagation velocity of the pit front and the flux through
dissolution is defined by the Rankine-Hugoniot front condition. The implementation of the front conditions depends
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on the regime of corrosion, which can be activation control, diffusion control, or passivation. These three regimes are
required in order to simulate the formation of a lacy cover.

In the solid domain static equilibrium is solved to obtain the strains and stresses. Because the equivalent plastic strain
grows indefinitely under cyclic loading, which is physically unrealistic, a new parameter called the equivalent dislocation
strain, that depends on the signs of the plastic strain increment and the back stress, was introduced. The new state variable
shows a better match with theoretical understanding of how dislocation pile-ups evolve under cyclic loading. However,
it still needs to be validated quantitatively.

According to the implemented model a combination of activation control and an elastic material response, results
in faster pit propagation under constant amplitude loading than under cyclic loading given the same maximum load.
However, in the presence of plastic deformation, cyclic loading can significantly increase the pit growth rate. Further-
more, increasing the cyclic load frequency results in faster pit propagation as there are more cycles to built up plastic
strain to kinematic hardening before the material is dissolved into the pit. In the case of diffusion control, mechan-
ical loading does not influence the pit growth rate, provided that the salt layer leading to diffusion control remains
intact.
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