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Three-Dimensional Displacement
Fields from InSAR through Tikhonov Regularization
and Least-Squares Variance Component Estimation

Hamid Mehrabi1; Behzad Voosoghi2; Mahdi Motagh3; and Ramon F. Hanssen4

Abstract: Synthetic aperture radar interferometry (InSAR)measures the projection of three-dimensional (3D) ground displacement in the range
direction and in the azimuth direction through image processing. The incapability of InSAR in measuring the 3D displacements restricts its
capability for assessing real Earth surface deformation. The near-polar orbiting characteristics of InSAR missions reduce the sensitivity of line-
of-sight (LOS) displacements significantly to the north-south components of the real 3D displacement fields and weaken the geometric strength
of a given configuration. Applying range measurements from various missions to address 3D displacement leads to an ill-posed inverse problem
that needs to be regularized.Moreover, it needs appropriate weighting of the observations to give proper estimates of the parameters. In this study,
we propose Tikhonov regularization (TR) and least-squares variance component estimation (LS-VCE) methods for retrieving 3D displacement
vectors from range and azimuth displacements. Depending on the functional degree of freedom (DoF) of the inverse problem, the TR and LS-
VCEmethods are applied in determined and overdetermined equation systems, respectively, to stabilize the ill-conditioned models and estimate
the variance components of observations. These methods were evaluated by two synthetic data sets and a real data set from the Sentinel-1 terrain
observation by progressive scan (TOPS) and ALOS-2 phased array type L-band synthetic aperture radar (PALSAR-2) missions in 2015 of the
MW ¼ 8.3 Illapel earthquake in Chile. Results indicate more than 40% improvement in both the precision and accuracy of retrieving 3D
deformation fields when the regularized LS-VCE (RLS-VCE) is adopted instead of the conventional method (CM) that considers primary
weighting for observations. Applying the range and azimuth InSAR displacements together with adopting the LS-VCE method reveal a north-
south convergent borderline near 31:2� S in the 2015 Illapel earthquake. DOI: 10.1061/(ASCE)SU.1943-5428.0000289. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Three-dimensional (3D) displacement fields; Differential synthetic aperture radar interferometry (D-InSAR); Least-
squares variance component estimation; Tikhonov regularization method.

Introduction

Synthetic aperture radar interferometry (InSAR) has become a
widely applied technique for precise and detailed mapping of the
Earth’s surface deformation. The range displacement is derived from
conventional interferometry, while azimuth displacement can be
retrieved from multiaperture interferometry (MAI) or offset track-
ing. Providing the range and azimuth displacements instead of three-
dimensional (3D) measurements is one of the main shortcomings of
InSAR. Retrieving 3D surface displacement maps from InSAR is
important for constraining sources of deformation in geophysical

phenomena (Lu and Dzurisin 2014). Reconstruction of 3D dis-
placement vectors from range and azimuth measurements is a chal-
lenging issue (Hu et al. 2014b) and several approaches have been
proposed in this regard. These include (1) pure InSAR-based meth-
ods with combining the multipass range and azimuth measurements
without an a priori model (Fialko et al. 2001; Wright et al. 2004; Hu
et al. 2014a; Grandin et al. 2016) and assessing the alternative ac-
quisition geometries from different look or heading angles (Wright
et al. 2004; Ansari et al. 2016); (2) fusion of InSAR and global
navigation satellite system (GNSS) data (Samsonov et al. 2008; Hu
et al. 2012a); and (3) InSAR-based methods using a priori model and
a hypothesis such as geophysical models (Samieie-Esfahany et al.
2009; Motagh et al. 2010; Guglielmino et al. 2011; Shamshiri et al.
2014; Li et al. 2015; Liu et al. 2018).

From a geometric point of view, it is sufficient that the three
range or azimuth displacements be available in at least two inde-
pendent geometries to retrieve the components of the 3D surface
displacement field (Rocca 2003). This can be achieved with the
images of ascending and descending orbits of a mission and one
acquisition from another mission. However, the viewing geometries
of SAR satellites are nearly the same; all fly in a near-polar orbit and
they are always right-looking. In this situation, the look and inci-
dence angles and line-of-sight (LOS) directions of two SAR mis-
sions will be very close together. This limited angular diversity
between the SAR acquisitions in multiple missions (e.g., Sentinel-1
and ALOS-2) weakens the strength of the constructed configuration
of these multiple missions and the solution is extremely unstable in
that a small change in measurement can lead to an enormous change
in the estimated model. Moreover, the near-polar orbiting of SAR
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missions leads to low sensitivity of the north component with re-
spect to two other components (Rocca 2003; Wright et al. 2004).
For large displacement fields, range and azimuth measurements can
be combined to retrieve the 3D deformation (Neelmeijer et al.
2014). In the absence of azimuth measurement, however, it is
possible to stabilize the inversion process by imposing additional
constraints, a process that is generally referred to as regularization.

Another effective issue is the precision of the range and azimuth
measurements, which are proportional to various factors of radar
wavelength and signal coherence in particular (Bamler and Eineder
2005; Ansari et al. 2016; Yang and Peng 2016), and environmental
factors (Hanssen 2001; Hu et al. 2012b). The results of the least-
squares adjustment of InSAR measurements are directly influenced
by the weights assigned to the observations. The given analytic
error bounds in the literature are merely an estimation and predic-
tion of observation precision. To obtain the best linear unbiased
estimators (BLUEs) of the decomposed 3D displacements, a proper
stochastic model of the observables is required. Therefore, InSAR
measurements with different precision (weights) should adequately
contribute to the best solution. Determining the exact stochastic
model of InSAR observations is challenging due to inaccurate
knowledge of error sources (Hu et al. 2012a; Liu et al. 2018). The
proper estimation of the (co)variance components (VCs), and hence
the weights of observations, and utilization of all available infor-
mation are of the utmost importance (Grodecki 1998). Hence, the
use of the variance component estimations (VCEs) approach could
help determine the proper variances and stochastic model of InSAR,
in turn improving the retrieval of 3D displacements when hetero-
geneous data from multiple geometries and sensors need to be
combined.

Methods for estimating VCs have been and are being assessed
intensively in the statistical and geodetic literature by focusing on
relative weighting of heterogeneous data (Kusche 2003a). In these
methods, one variance factor is estimated for each category of ob-
servations. The Helmert method (Grafarend 2006), minimum norm
quadratic unbiased estimator (MINQUE) (Rao 1971), best invariant
quadratic unbiased estimation (BIQUE) (Koch 1978), restricted
maximum likelihood (REML) (Koch 1986), and least-squares
variance component estimation (LS-VCE) (Teunissen 1988; Teu-
nissen and Amiri-Simkooei 2008) are the most famous methods for
VCE. These methods are different in the applied estimation prin-
ciples, as well as the distributional assumptions that are to be made.
Previous studies applied the Helmert VCE to resolve the 3D dis-
placements of the InSAR technique (Xu et al. 2010; Hu et al. 2012a,
2014a; Liu et al. 2018). The contribution of the VCE in the im-
provement of precision strongly depends on our knowledge about
the reality of the InSAR turbulence errors. Every provided equation
for the InSAR measurement precision is the primary information. It
is usual to estimate the proper weights through a process that is
called VCE. However, according to the primary weights, the im-
provements may be significant or not.

In this study, the LS-VCE and Tikhonov regularization (TR)
methods are applied to dominate the relevant limitations of re-
trieving components of the 3D surface displacement field through
displacements of differential InSAR interferograms in zero and
positive functional degrees of freedom (DoFs).

Retrieving 3D Displacement Vectors from Range
and Azimuth Displacements through TR and LS-VCE

The functional model of linear Gauss-Markov equations is ex-
pressed mathematically for range, azimuth, and 3D displacement
vectors as follows (Plackett 1950; Grodecki 1997):

EðyÞ ¼ Ax and DðyÞ ¼ Cy ð1Þ

where x ¼ Ue Un Uu½ �T are the retrieved eastern, northern, and
vertical components of the 3D displacement vector in the local
surface coordinate system; y is the n� 1 vector of observables; Cy

is the n� n variance–covariance matrix of observables; A is the
n� 3 design matrix; n ¼ number of observables made at the re-
flection points (pixel by pixel); and the operators D and E are the
dispersion and mathematical expectation operands, respectively.
The rows of matrix A for range and azimuth displacements are as
follows (Fialko et al. 2001):

Arange¼ � cos a sin k sin a sin k cos k½ � ð2Þ

Aazimuth¼ sin a cosa 0½ � ð3Þ

where a and k ¼ azimuth of the satellite heading (positive clock-
wise from the north) and incidence angles, respectively. The vector
of 3D displacement and its variance–covariance matrix ðCx̂Þ can be
retrieved through weighted least-square (WLS) adjustment as fol-
lows (Mikhail and Ackermann 1982):

x̂ ¼ ðATPAÞ�1ATPy and Cx̂ ¼ r20ðATPAÞ�1 ð4Þ

where P is the n� n weight matrix of observations; and
r20 ¼ primary variance factor, usually assumed as r20 ¼ 1. The root
square of the diagonal elements of Cx̂ yields the standard deviation
of the estimated parameters and is an appropriate measure in pa-
rameters’ precision. Retrieving the 3D displacement vector with
primary standard deviations, as described by Bamler and Eineder
(2005), will be called the conventional method (CM) subsequently.
The LS-VCE is adopted to deal with the estimation of different
variance components to assign appropriate variances for each cat-
egory of measurements. Since LS-VCE is based on the least-
squares principle, it inherits all the well-known properties of a least-
squares estimator. Moreover, it works with a user-defined weight
matrix (Amiri-Simkooei 2007). Variance components are the un-
knowns of the equations. Therefore, applying the LS-VCE method
needs to have redundant observations and positive DoFs for both
functional and stochastic models (Teunissen and Amiri-Simkooei
2008).

LS-VCE Method

When attempting to integrate the various range and azimuth displace-
ments with different radar wavelengths (e.g., Sentinel-1, ALOS-2)
for 3D displacement vectors’ extraction, heterogeneous observations
with different precisions come across. For estimating the unknown
parameters through heterogeneous data, choosing the proper weights
is necessary (Koch and Kusche 2002; Kusche 2003b). The proper
weight matrix could be achieved by applying the LS-VCEmethod in
which different noise components are estimated properly. In applying
the LS-VCE method, the homogenous observations on the basis of
their statistical properties are categorized in one set with their own
unknown variance components (Teunissen and Amiri-Simkooei
2008). Here, we consider the stochastic part of the linearized Gauss-
Markov model of observations as the following equation:

DðyÞ ¼ Cy¼ C0 þ
Xp

k¼1

rkCk ð5Þ

where Ck; k ¼ 1; . . . ; p, are some n� n symmetrical primary
known covariancematrices described by Bamler and Eineder (2005)

© ASCE 04019011-2 J. Surv. Eng.
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and Ansari et al. (2016); and rk ¼ corresponding unknown variance
components that should be estimated through LS-VCE for p cate-
gories of data. The symmetrical matrix C0 is assumed to be the
known part (if it exists) of the stochastic model. The p vector of
unknown variance components are calculated as follows:

r̂ ¼ N�1l ð6Þ
where the entries of the p� p normal matrix N and the p� 1 vector
l are presented as

nij¼ 1
2
tr CiC

�1
y Pt

A CjC
�1
y Pt

A

� �
ð7Þ

and

li¼ 1
2
êTC�1

y CiC
�1
y ê � 1

2
tr C0C

�1
y Pt

A CiC
�1
y Pt

A

� �
ð8Þ

where j ¼ 1; . . . ; p; ê ¼ Pt
A l are the estimated residuals; and Pt

A
is the orthogonal projector presented as

Pt
A ¼ I � A ATC�1

y A
� ��1

ATC�1
y ð9Þ

Here, N�1 naturally becomes the variance–covariance matrix of the
variance components (i.e., Cr̂ ¼ N�1). The covariance matrix Cy

and the projector Pt
A are both functions of the unknown variance

components. Therefore, the process of estimating unknowns should
be iterated until the estimated values stop changing by further it-
erations (Amiri-Simkooei 2013). After estimating the proper vari-
ance components (i.e., r̂) and consequently the covariance matrix of
observations (i.e., Cy) through LS-VCE, these values are applied in
WLS [Eq. (4)] for constructing the 3D displacement vectors.

Occurrence of negative variance components is inevitable for
various reasons such as an insufficient number of observations in
the functional model and an improper structure of the stochastic
model (Sjöberg 1984). To ensure that the estimated variances are
nonnegative, one can impose the nonnegativity constraints r � 0ð Þ
to the linear (co)variance component model (Shaw and Geyer
1997). Teunissen (1988) suggested the reparameterization of the
model in a sense that the nonnegativity of the variance components
is automatically ensured, although this approach may turn a linear
LS-VCE problem into a nonlinear LS-VCE problem. Moghtased-
Azar et al. (2014) applied the positive-valued functions (PVFs)
concept for unknown variance components in a stochastic model
and the reparameterized approach on the REML with no effect
on the unbiasedness of the scheme. Amiri-Simkooei (2016) pre-
sented the nonnegative least-squares variance component estima-
tion (NNLS-VCE) based on standard theories on NNLS and
LS-VCE.

The DoFs of the functional model in Eq. (1) are df1¼ n� u,
where n and u are the numbers of InSAR displacements and
numbers of the unknown components of 3D displacements (i.e.,
u ¼ 3), respectively. In the stochastic models [Eq. (5)], the DoFs
are df2¼ ½df1ðdf1 þ 1Þ�=2� p, where p is the number of unknown
variances (Teunissen and Amiri-Simkooei 2008). Usually, the num-
ber of InSAR observations in relation to the three unknowns of 3D
displacements for each pixel is not enough to apply VCE. Therefore,
observations of some neighborhood cells are taken into account to
increase the redundancy of the stochastic model. A series of exper-
iments were carried out by Liu et al. (2018) with window sizes
ranging from 3�3 to 25�25 pixels for accessing the performance of
the strain model VCE. They showed that the root-mean-square errors
(RMSEs) of all three components decrease with the increase in the

window size. However, selecting the optimum size of the window is
a trade-off between the accuracies of 3D displacement estimations
and the burden of the computation. In this context, the blocks of
3�3, 5�5, and 7�7 cells, which are equivalent to 9, 25, and 49
neighboring cells, respectively, are assessed in the simulated data
sets. Consequently, a block of 3�3 cells is chosen as the optimum
size of the moving window due to the RMSEs comparison, con-
vergence threshold of repetition procedure of LS-VCE, and com-
putational burden. The DoFs of the equations system before ap-
plying the observations of the adjacent cells will be called the
primary DoFs. A schematic form of these adjacent pixels with their
three LOS displacements is shown in Fig. 1.

TR Method

In general, retrieving the 3D displacement vectors from range dis-
placements is an ill-posed inverse problem, where any small change
in measurement can lead to a great change in the estimated dis-
placements, especially when the functional primary DoF is zero.
Usually, it is possible to stabilize the inversion process truncating
the small singular values or imposing additional constraints gen-
erally referred to as regularization (Tikhonov 1963; Tikhonov et al.
1977; Schaffrin 1980; Xu 1992; Aster et al. 2013). Here, the TR
solution is applied due to its efficiency and low DoFs of the problem
in increasing the stability of normal equations. The regularization of
the inverse problem introduces a trade-off between the norms of the
regularized solutions and the observation residuals. This solution is
based on minimizing the following objective function (Hansen
1990):

min kAx� yk2L2 þ akxk2L2
� �

ð10Þ

where a ¼ positive regularization parameter; and k :kL2 is the Eu-
clidean L2 norm. The a parameter can be estimated through the
L-curve criterion (Hansen 1992, 2007), generalized cross validation
(Wahba 1976), and VCE (Arsenin and Krianev 1992). The regu-
larized solution of Eq. (10) and its variance–covariance matrix
ðxreg andCxregÞ would yield

xreg¼ ðATPAþ aIÞ�1ATPy and Cxreg ¼ ðATPAþ aIÞ�1 ð11Þ

where P and I are the weight and identity matrices, respectively.
Adding the regularization parameter biases the results of the un-
known parameters (Hoerl and Kennard 1970; Xu 1992; Xu et al.
2006; Shen et al. 2012) and the unbiased retrieved 3D displacements
are obtained as follows:

x̂reg¼ xreg þ aðATPAþ aIÞ�1xreg ð12Þ

provided that the inverse of the estimated covariance matrix of
observations [i.e., Eq. (5)] through the LS-VCE method is applied
as a weight matrix ðPÞ in the regularized solution. To be simple, the
term of regularized least-squares variance component estimation
(RLS-VCE) is applied subsequently to present the use of weights of
the LS-VCE method in retrieving the 3D displacement vectors
through Eq. (12).

Results and Discussion

The performance of our proposed methods in this research was
evaluated through two synthetic samples and one real data set. In
order to make a more realistic simulation, the parameters of the

© ASCE 04019011-3 J. Surv. Eng.
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samples were synthesized for Sentinel-1 and ALOS-2 missions,
resembling the real data set of the 2015 Illapel (Chile) earthquake.

In order to process the synthetic samples, the following complex
functions were assumed as a known 3D displacement field in local
surface coordinate system, the ðe; n; uÞ:

eðx; yÞ ¼ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; nðx; yÞ ¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð13Þ

uðx; yÞ ¼ xe�ðx2þy2Þ �2:5 � x � 2:5; �2:5 � y � 2:5

The vector of ðe; n; uÞ is the theoretical value of 3D displacement
for each pixel at ðx; yÞ coordinates. The samples with 500�500
pixels of eastern, northern, and vertical directions of synthesized
displacement components of Eq. (13) are illustrated in Fig. 2(a).
The known values of 3D displacements together with the synthe-
sized incidence and azimuth angles were applied in simulating the
range and azimuth displacements. For simplification and practical
purposes, the exact values of the synthesized displacements were
contaminated by spatially correlated noises, which were obtained
by bivariate Gaussian random numbers with zero mean and stan-
dard deviations of 2 and 3 cm for variables, respectively. The co-
variance of the variables was assumed to be 0.5 cm2. The simulated
errors were projected to azimuth and range directions on the entirety
of the images and added to the exact synthesized displacements.
The values of displacements in Eq. (13) are in meters; consequently,
the values of the color bars in Figs. 2 and 3 are in meters. For these
two figures, the horizontal and vertical axes represent the eastern
and northern directions, respectively.

Case I: Evaluation of the RLS-VCE Methods
through a Simulation Data Set

In this sample, three 500�500 pixel images were synthetized along
the range direction (LOS) of ascending and descending orbits of
Sentinel-1 and descending orbit of ALOS-2 based on the local in-
cidence and azimuth angles of the missions for the Illapel region. The
heading angle values varied from 188.7°, 194.8°, and 343.8° to
190.9°, 195.8°, and 344.7° for descending ALOS-2 and descending
and ascending Sentinel-1, respectively. The values of incidence angle
for these three missions varied from 38.2°, 31.7°, and 37.8° to 49.3°,
43.6°, and 45.7°, respectively. In this context each pixel was ob-
served with three independent geometries where the primary func-
tional DoF is zero and a block of 3� 3 cells including nine pixels
around the centered pixel was implemented in the stochastic model
for estimating the variance components of observations through LS-
VCE. The LOS displacements were applied to estimate the 3D dis-
placements through CM Eq. (4) and RLS-VCE method Eq. (12).

In this sample, the number of unknown parameters was five—
three for displacement components and two for variance compo-
nents of Sentinel-1 and ALOS-2—while the number of observa-
tions for LS-VCE was 27, that is, three independent observables for
nine cells. The results of CM and RLS-VCE in the three directions
of eastern, northern, and vertical directions are illustrated in
Figs. 2(b and c), respectively. The results indicate that the RLS-
VCE method retrieves the eastern, northern, and vertical compo-
nents better than CM. The overall root-mean-square errors (overall
RMSEs for all 3D components simultaneously) of conventional and
unbiased RLS-VCE methods with respect to known 3D values were

Fig. 1. A 3�3 moving window that includes nine adjacent pixels and the three related LOS InSAR displacements.

© ASCE 04019011-4 J. Surv. Eng.
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11.15% and 2.98 cm, respectively. This indicates approximately
73% improvement in the accuracy of estimating 3D displacement
vectors when the RLS-VCE method is implemented instead of CM.
The RMSEs of the eastern, northern, and vertical components were
0.49, 18.58, and 5.27 cm for CM and 0.24, 4.87, and 1.67 cm for
RLS-VCE, respectively; that is, improvements of about 51%, 74%,
and 68% for eastern, northern, and vertical directions when using
RLS-VCE instead of CM; the results are summarized in Table 1.
The expected fact that the northern displacement component is
extraordinarily more sensitive to the errors of the LOS measure-
ments of InSAR than the other two components is clearly visible in
the northern component in Fig. 2. Compared to the eastern and
vertical components, the northern component of the displacement
field is not well resolved when only LOS observations are used.

Case II: Evaluation of LS-VCE Method
through a Simulation Data Set

To evaluate the efficacy of the LS-VCEmethod, five 500�500 pixel
images of range and azimuth displacements in both ascending and

descending orbits of Sentinel-1 and descending range of ALOS-2
were synthetized according to Eq. (13). Therefore, the primary DoFs
of the functional model were 2. The incidence and azimuth angles of
Sentinel-1 and ALOS-2 were synthetized approximately similar to
the values of the Illapel region. These synthetized displacements
were applied in estimating the 3D displacements through theCM and
LS-VCE methods.

The results of CM and LS-VCE in three directions are shown in
Figs. 3(b and c), respectively. The overall RMSE of the CM and
LS-VCE methods with respect to known 3D values were 8.50 and
5.20 cm, respectively. Therefore, the use of the LS-VCE method
that estimates the best value of observational weights improves the
accuracy of retrieving 3D displacement vectors by approximately
39% compared to CM. The componential RMSEs of eastern,
northern, and vertical components were 0.4, 13.1, and 6.7 cm for
CM and 0.3, 8.5, and 2.9 cm for RLS-VCE, respectively; that is,
improvements of about 25%, 35%, and 57% for eastern, northern,
and vertical directions when using LS-VCE instead of CM; the
results are summarized in Table 1. The fact that adding the azi-
muth displacements drastically stabilizes the solution and leads

(a)

(b)

(c)

Fig. 2. (a) Images with 500�500 pixels for synthesized displacement for eastern (E-W), northern (N-S), and (U-D) vertical components from
Eq. (13); (b) retrieved eastern, northern, and vertical components through CM (when primary functional DoFs ¼ 0); and (c) retrieved eastern,
northern, and vertical components through RLS-VCE (when primary functional DoFs ¼ 0).
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to a better estimate of the northern component of displacement
is clearly highlighted in Fig. 3 (in comparison with Fig. 2), as well
as in the condition number (as a measure of the well-posedness)
of the normal matrix, which decreased from 5,000 to 5. Conse-
quently, the problem will be solved without any regularization
process.

Illapel 2015 Earthquake Data Set

In this section, the results of our methods for the 2015 MW 8.3
Illapel (Chile) earthquake are examined and discussed. This event
occurred on September 16, 2015 (22:54:33 GMT), 46 km offshore
from Illapel, Chile, at the depth of 25.0 km. The InSAR data for this
earthquake were obtained from a stack of three interferogram pairs
in the following sequence: (1) three adjacent descending frames of
terrain observation by progressive scan (TOPS) Sentinel-1, (2) two
adjacent ascending frames of TOPS Sentinel-1, and (3) a pair of
descending frames of phased array type L-band synthetic aperture
radar (PALSAR-2) ALOS-2 (Table 2).

The repeat-pass interferometry technique was applied to process
the SAR data. The small time span of the acquiring pairs, low levels
of precipitation, sparse vegetation, and magnitude of the deforma-
tion signal make a significant part of the interferometric phase co-
herent in the coseismic interferograms, except for the mountainous
area to the east.

The two adjacent ascending frames and three adjacent descend-

(a)

(b)

(c)

Fig. 3. (a) Images with 500�500 pixels for synthesized displacement for eastern (E-W), northern (N-S), and vertical (U-D) components from
Eq. (13); (b) retrieved eastern, northern, and vertical components through CM (when primary functional DoFs ¼ 2); and (c) retrieved eastern,
northern, and vertical components through LS-VCE (when primary functional DoFs ¼ 2).

Table 1. Results of the simulation data set

Case Method
Overall
RMSE

Componential RMSE

E-W N-S U-D

I CM 11.15 cm 0.49 cm 18.58 cm 5.27 cm
RLS-VCE 2.98 cm 0.24 cm 4.87 cm 1.67 cm
Improvement 73% 51% 74% 68%

II CM 8.5 cm 0.4 cm 1.31 cm 6.7 cm
LS-VCE 5.2 cm 0.3 cm 8.5 cm 2.9 cm
Improvement 39% 25% 35% 57%
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ing frames of Sentinel-1 were processed using GAMMA software.
The frames were first concatenated to produce long frames in as-
cending and descending orbits. Following this, wrapped and un-
wrapped interferograms of ascending and descending frames of
Sentinel-1 were constructed using a 30-m resolution Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) for
topography removal and geocoding. Moreover, the azimuth
components of displacements of ascending and descending di-
rections were deduced through burst overlap interferometry
through double difference between backward- and forward-
looking interferograms within the region of burst overlap (Grandin
et al. 2016). The PALSAR-2 ALOS-2 interferometric processing
was performed using ENVI SARscape software.

Different types of errors exist in the interferograms that make
undesired phases. Spatiotemporal variations of the atmosphere are
the main cause of the turbulent phase delay, which may be on the
order of several centimeters and often overwhelm the deformation
signal of interest (Hanssen 2001; Jolivet et al. 2014). The 3D dis-
placement vectors of GNSS stations allow detrending (unification

of the datum) of the InSAR-derived results from different pairs in
various environmental and geometric noises. Eliminating the long-
wavelength trend from the interferograms by fitting them to the
GNSS data yields a corrected result (Hanssen 2001; Normand and
Heggy 2015). The best-fitted surface among all the possible sur-
faces (linear or nonlinear) for detrending the InSAR results could be
obtained through the analysis of least-squares residuals (Samsonov
et al. 2008). In some cases, with or without GNSS data, this de-
trending could be made through data in the far fields of the inter-
ferograms, away from the deforming area (Wright et al. 2004;
Lindsey et al. 2015).

In this article, the GNSS displacement vectors of the Integrated
Plate Boundary Observatory Chile (IPOC) network have been ap-
plied. A total of 10 permanent GNSS displacement vectors sur-
rounding the Illapel earthquake epicenter were applied in this study,
as illustrated in Fig. 4.

The values of the GNSS displacement vectors were derived from
subtracting the recorded coordinates of stations on August 24, 2015,
and September 17, 2015, based on the acquisition date of the
Sentinel-1 and ALOS-2 missions covering the September 16, 2015,
Illapel earthquake. According to the time interval of data acquisition,
the applied displacement vectors contain co- and maybe postseismic
slips, which is not a matter of concern in this study. Fig. 5 illustrates
the coseismic interferograms associated with the 2015 Illapel earth-
quake. Each fringe in the TOPS Sentinel-1 corresponds to 2.8 cm of
LOS displacement [Figs. 5(a and b)], while each one corresponds to
11.8 cm of LOS displacement in PALSAR-2 ALOS-2 [Fig. 5(c)].

As shown in Figs. 5(a–c), the deformation field comprises dense,
concentric semicircular fringes that are convex toward the east;
closer to the coast, fringes become more dense, which implies in-
creasing deformation gradients. The along-track displacements of

Table 2. Characteristics of InSAR data set

Mission Orbit direction Acquisition date Track
No. of
frames

Sentinel-1 Descending August 24, 2015 156 3
September 17, 2015 156

Ascending August 26, 2015 18 2
September 19, 2015 18

ALOS-2 Descending July 30, 2015 130 1
September 24, 2015 130

(a) (b)

Fig. 4. Coseismic displacement of the 2015MW 8.3 Illapel (Chile) earthquake from GNSSmeasurement: (a) horizontal displacement; and (b) vertical
displacements.
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descending and ascending orbits of Sentinel-1, which were pro-
duced through burst overlap interferometry, are shown in Fig. 6.

After producing the unwrapped interferograms, the range and
azimuth displacements were used to decompose 3D displacement
vectors in two cases: first, when only the range displacements were
applied, and second, when the images of azimuth displacements
were added to the models. In the first case, the primary DoFs of the
functional model with three LOS measurements and three compo-
nents of displacements were zero. Consequently, the primary DoFs

of the stochastic model were�2 due to df1¼ 0 and the existence of
two unknown variance components (one for ALOS-2 and another
for Sentinel-1). In the second case, which includes three range and
two azimuth measurements, and three unknown variance compo-
nents (one for ALOS-2, one for range of Sentinel-1, and another for
azimuth of Sentinel-1 missions), the primary DoFs of the functional
and stochastic models were 2 and 0, respectively.

To check the validity of the results in each state, we compared
the result of our methods with displacement values of GNSS ob-

(a) (b)

(c)

Fig. 5. Coseismic interferogram of the 2015 MW 8.3 Illapel (Chile) earthquake: (a, b) wrapped Sentinel-1 interferogram with each fringe corre-
sponding to 2.8 cm of LOS motion; (c) wrapped PALSAR-2 ALOS-2 interferogram with each fringe representing 11.8 cm of LOS motion.
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servations. The values of range and azimuth displacements of
GNSS stations were extracted and applied to decompose 3D dis-
placement vectors for GNSS stations.

The LS-VCE is not applicable in the two aforementioned states
in a traditional manner for each pixel due to lack of redundancy. To
increase the redundancy of the stochastic model, the displacements
in a block of 3� 3 pixels surrounding the pixel of the GNSS station
were considered as the vectors of observations, as discussed in a
previous section (Fig. 1). The DoFs of the stochastic model in this
way increase manyfold in a significant manner, and consequently
the estimated values of variance components converge into a pre-
cise solution in the iterated process of LS-VCE.

First Scenario: Evaluation of RLS-VCE Methods
through Illapel 2015 Earthquake Data Set
When Primary DoFs 5 0

In this test, only range displacements of two ascending and de-
scending orbits of Sentinel-1 and descending orbit of ALOS-2 were
applied for producing 3D components of displacements. Therefore,
the primary DoFs of the functional model were zero (three LOS
displacements for 3D unknown displacements and two variance
components). The average condition number of the covariance ma-
trix of the parameters was about 75,000. The large condition numbers
indicate that the problem of retrieving 3D displacements is an ill-
posed problem. Therefore, the TRmethodwas applied to stabilize the
estimation process. In this context, these three displacements were
classified into two groups on the basis of their statistical properties.
The corresponding ascending and descending LOSs of Sentinel-1
were considered in the first group, while the descendingALOS-2was
in the second group.Moreover, to estimate the best values of weights
for observations, the RLS-VCE method was implemented in nine
neighborhood pixels. For this purpose, the regularization parameter
ðaÞ was estimated through the L-curve criterion for each even-
determined equation system of pixels. The condition number of the
covariance matrix of the TRmethod decreased to 50 from the 75,000
ofCMon average. The primary precision of the range observations of
ALOS-2 and Sentinel-1 were calculated with Bamler and Eineder’s
(2005) equation and the initial values of variance components were

assumed to be 1. The threshold of iterations, e ¼ 10�8, was used to
estimate the variance factors. The individual variances were esti-
mated through Eqs. (5)–(9); experimental iteration was up to 8 times.
The primary standard deviations of the Sentinel-1 and ALOS-2 range
displacements were approximately 0.58 and 1.61 cm, respectively.
The average standard deviations, after applying the LS-VCEmethod,
changed to 0.37 and 1.35 cm, respectively. This is what we would
expect because estimating two separate variance components for the
displacements of two missions will affect the contribution of the
observations on each axis to the final least-squares solution. The next
stage is regularizing the solution through TR. The L-curve method
was applied to compute the regularization parameter for each cell
solution. The result of the regularization parameter was 0.04 on av-
erage for the 10 cells of GNSS stations. The decomposed eastern,
northern, and vertical components of 3D displacement vectors are
shown in Figs. 7(a–c). Comparing the values of displacement in
Figs. 7(a–c) indicates that the dominant component of displacement
is westward with a maximum of 210 cm close to the coast. The
vertical displacement map shows uplift of about 30 cm along the
coast in an approximately circular region near the station CNBA,
surrounded by dominant subsidence of about 20 cm. The RMSEs
between the InSAR and GNSS were 0.5, 13.5, and 3.7 cm for the
eastern, northern, and vertical directions, respectively, in CM, while
they were 0.12, 7.8, and 1.3 cm in the RLS-VCEmethod. Comparing
these values indicates a 75%, 40%, and 65% improvement in esti-
mating the eastern, northern, and vertical components of the defor-
mation field, respectively. In particular, for the northern component a
decrease in error estimation from 13.5 to 7.8 cm was observed. The
overall RMSE of conventional, biased, and unbiased TR methods
with primary weights of measurements were 8.11, 5.76, and 5.26 cm,
respectively. Compared to CM, the overall RMSEs in the biased and
unbiased TR method show approximately 29% and 35% improve-
ment, respectively. After estimating the proper weights of measure-
ments through the LS-VCE method and applying the TR method
(i.e., applying the RLS-VCE method), the RMSEs decreased to 4.92
and 4.54 cm for biased and unbiased states, respectively, equivalent
to 39% and 44% improvement in retrieving the 3D displacement
vector (Table 3). The standard deviation of the eastern, northern, and
vertical components of GNSS stations retrieved through conven-

(a) (b)

Fig. 6. (a) Descending; and (b) ascending azimuth surface displacements of the 2015 Illapel (Chile) obtained through burst overlap interferometry.
(Reprinted from Grandin et al. 2016, with permission.)
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tional and RLS-VCEmethods were calculated through the stochastic
section of Eqs. (4) and (11), respectively. These componential pre-
cision results for each station and their related average standard de-
viations are given in Table 4. The average of the componential
standard deviation of the eastern, northern, and vertical components
were 0.7, 39.5, and 9 cm for CM, while these values were 0.1, 4.0,
and 0.9 cm in the RLS-VCEmethod. The results indicate 85%, 90%,
and 90% improvement in the precision of eastern, northern, and
vertical directions, respectively; consequently, the standard deviation
of the northern component decreased from 39.5 to 4.0 cm. The results
are listed in Table 3. Besides the standard deviations, comparing the
eigenvalues of the variance–covariance matrices of the retrieved 3D
displacements confirms the 75% improvement in the precision of the
LS-VCE method with respect to CM.

Fig. 7. Three-dimensional coseismic surface displacement fields of the 2015 Illapel (Chile) earthquake retrieved through the RLS-VCE method with
primary DoFs ¼ 0: (a) eastern; (b) northern; and (c) vertical components.

Table 3. RMSE results of the Kilauea volcano data set

Scenario Method
Overall

RMSE (cm)

Componential
RMSE (cm)

U-D N-S E-W

First scenario CM 8.11 0.51 13.52 3.71
Just VCE 7.45 0.48 12.44 3.32
Just TR 5.26 0.26 8.94 1.69
RLS-VCE 4.54 0.12 7.83 1.32

Second scenario CM 1.46 1.14 2.23 1.25
LS-VCE 1.34 1.01 1.97 1.13
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Table 4. Standard deviations of CM, RLS-VCE, and LS-VCE in the first and second scenarios at GNSS stations

No. Station

CM First scenario: RLS-VCE method Second scenario: LS-VCE method

E-W N-S U-D E-W N-S U-D E-W N-S U-D

1 LSCH 0.003 0.415 0.103 0.001 0.032 0.008 0.002 0.023 0.006
2 TOLO 0.015 0.485 0.118 0.001 0.035 0.008 0.001 0.019 0.012
3 BTON 0.004 0.374 0.091 0.001 0.037 0.009 0.001 0.020 0.006
4 OVLL 0.004 0.395 0.094 0.001 0.040 0.009 0.002 0.019 0.007
5 PFRJ 0.006 0.347 0.082 0.001 0.059 0.013 0.002 0.016 0.004
6 PEDR 0.018 0.464 0.108 0.002 0.044 0.010 0.002 0.016 0.013
7 CMBA 0.009 0.405 0.093 0.001 0.042 0.010 0.001 0.017 0.004
8 CNBA 0.003 0.345 0.078 0.001 0.056 0.012 0.002 0.020 0.009
9 SLMC 0.009 0.390 0.086 0.001 0.025 0.005 0.002 0.023 0.005
10 LVIL 0.004 0.326 0.072 0.002 0.034 0.007 0.002 0.016 0.005
Average values 0.0075 0.3946 0.0925 0.0011 0.0404 0.010 0.002 0.019 0.007

Fig. 8. Three-dimensional coseismic surface displacement fields of the 2015 Illapel (Chile) earthquake retrieved through the LS-VCE method
(at primary DoFs ¼ 2): (a) eastern; (b) northern (with a convergent border); and (c) vertical components.
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Second Scenario: Evaluation of LS-VCE Methods
through Illapel 2015 Earthquake Data Set
When Primary DoFs 5 2

In the second case, in which the azimuth displacements were in-
cluded in the model, the condition numbers of covariance matrices
dropped to about 5, indicating that adding the azimuth displace-
ments increases the geometric strength of the configuration of the
problem and changes it to a well-posed situation. Therefore, there is
no need to regularize the problem and LS-VCE would work.

The retrieved 3D displacement fields of the Illapel 2015 earth-
quake from displacements and the LS-VCE method are shown in
Fig. 8. In the case of five displacements for nine adjacent pixels, the
overall RMSE of CM with primary weights and the LS-VCE
method will be 1.46 and 1.34 cm, respectively. Deriving the overall
RMSEs shows approximately 8% improvement in the accuracy
achieved by the LS-VCE method in comparison with CM with
primary weights. The standard deviation of the componential dis-
placements through the LS-VCE method, in this scenario, are given
in Table 4. The GNSS displacement vectors, retrieved 3D dis-
placement vectors of GNSS stations with only range displacements
and retrieved 3D displacement vectors with both range and azimuth
displacements are shown in Fig. 9. Comparison of the arrows with
range displacements and those with both azimuth and range dis-
placements clearly shows the positive effect of adding the azimuth
displacements, where those with both azimuth and range displace-
ments are closer to the GNSS vectors than those with only range

displacement. In this case, the componential RMSE of northern
displacements decreased drastically to 2.2 cm from 13.5 cm (for
range displacements and primary weights). This is approximately
equivalent to 80% improvement in the accuracy of estimating the
northern component of displacement. Achieving this accuracy for
the northern component is of major interest for all disciplines of
geoscience dealing with 3D surface deformation analysis.

The primary standard deviations of range (ALOS-2) and range
and azimuth (Sentinel-1) measurements according to Bamler and
Eineder (2005) are equal to 0.97, 0.16, and 4.5 cm, respectively.
After estimating the proper weights of measurements through the
LS-VCE method, these values become 2.7, 0.05, and 0.4 cm on
average, respectively. These values so far are the best estimations
for the precision of ALOS-2 and Sentinel-1 in range and azimuth
modes. The RMSE of the RLS-VCE method decreased from
4.54 cm in the first scenario to 1.34 cm for the LS-VCE method in
the second scenario; almost a 70% increase in the accuracy of es-
timation when the azimuth displacements are incorporated in re-
trieving 3D displacement vectors without any regularization.

The smaller RMSE of the inversion with primary DoFs ¼ 2
compared to the case with primary DoFs ¼ 0 highlights the more
precise decomposition of the 3D displacements, in particular for the
northern component. We observed a clear northern-southern con-
vergent boundary around 31:2�S latitude, while in the first case it is
not possible to distinguish this boundary. This detected convergent
boundary line is shown in Fig. 8(b), which is clearly distinguishable
by considering the northern displacement of GNSS vectors, illus-

(a) (b)

Fig. 9. (a) GNSS horizontal displacement vectors; vectors correspond to original measurements, those retrieved through range displacements, and
those retrieved through range and azimuth displacements; and (b) close-up view of each station.
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trated in Fig. 10. Comparing Figs. 9 and 10 with Figs. 8(a–c) clearly
shows that the retrieved 3D displacement field of InSAR is con-
sistent with GNSS displacement vectors. Furthermore, displace-
ments of the deprecated InSAR (D-InSAR) technique provide a
great volume of information about ground motion in relation to
GNSS.

Conclusion

The 3D displacement vectors in InSAR measurements can be re-
trieved through multiple InSARmeasurements acquired from at least
three displacements in two independent imaging geometries in a
theoretical manner. However, this is a mathematically ill-posed in-
verse problem because SAR mission geometry renders poor sensi-
tivity of range direction interferometry to the northern component of
displacement compared to east–west and vertical. Therefore, the re-
trieval process of 3D displacements becomes more sensitive to ob-
servation errors.

Combining different data sets to resolve this issue requires proper
treatment of the weight of observations, which otherwise will have a
negative effect on both precision and accuracy of the estimated 3D
displacement field. The TR and LS-VCE methods were introduced
here to overcome the instability of the geometric configuration of the
multiple observations and to integrate heterogeneous data by as-
signing the proper variance components, respectively. Assigning
proper weight of observations through LS-VCE and RLS-VCE in-
stead of CM using primary weight improves the precision and ac-
curacy of the retrieved 3D displacement vectors.

Experimental results, obtained through synthetic and real data
sets, reveal the capabilities of the TR and LS-VCE methods in
improving the precision and accuracy of retrieving 3D displacement
vectors by up to 80% by combining range and azimuth displace-

ments of InSAR instead of only range displacements with primary
weights through CM.

Acknowledgments

The PALSAR-2 ALOS-2 and TOPS Sentinel-1 data sets applied
in this study were provided by the Japan Aerospace Exploration
Agency (JAXA) and the European Space Agency (ESA) Coper-
nicus, respectively. Interferometry processing was run through
ENVI SARscape and GAMMA software environment under the
licenses of Helmholtz Research Centre for Geosciences. The GNSS
displacement data available in IPOC (Chile) were provided by
Dr. Deng, GFZ Potsdam. We thank R. Grandin for sharing azimuth
displacements published in Grandin et al. (2016). Appreciation is
extended to the anonymous reviewers for their constructive com-
ments.

References

Amiri-Simkooei, A. R. 2007. “Least-squares variance component estima-
tion: Theory and GPS applications.” Ph.D. thesis, Dept. of Earth Ob-
servation and Space Systems, Delft Univ. of Technology.

Amiri-Simkooei, A. R. 2013. “Application of least squares variance com-
ponent estimation to errors-in-variables models.” J. Geod. 87 (10–12):
935–944. https://doi.org/10.1007/s00190-013-0658-8.

Amiri-Simkooei, A. R. 2016. “Non-negative least-squares variance com-
ponent estimation with application to GPS time series.” J. Geod. 90 (5):
451–466. https://doi.org/10.1007/s00190-016-0886-9.

Ansari, H., F. De Zan, A. Parizzi, M. Eineder, K. Goel, and N. Adam. 2016.
“Measuring 3-D surface motion with future SAR systems based on
reflector antennae.” IEEE Geosci. Remote Sens. Lett. 13 (2): 272–276.
https://doi.org/10.1109/LGRS.2015.2509440.

Fig. 10. Northern coseismic displacement retrieved from interpolation of GNSS observations.

© ASCE 04019011-13 J. Surv. Eng.

 J. Surv. Eng., 2019, 145(4): 04019011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
09

/3
0/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1007/s00190-013-0658-8
https://doi.org/10.1007/s00190-016-0886-9
https://doi.org/10.1109/LGRS.2015.2509440


Arsenin, V. Y., and A. Krianev. 1992. “Generalized maximum likelihood
method and its application for solving ill-posed problems.” In Ill-posed
problems in natural sciences, 3–12. Moscow: TVP Science.

Aster, R. C., B. Borchers, and C. H. Thurber. 2013. Parameter estimation
and inverse problems. Cambridge, MA: Academic Press.

Bamler, R., and M. Eineder. 2005. “Accuracy of differential shift estimation
by correlation and split-bandwidth interferometry for wideband and
delta-k SAR systems.” IEEE Geosci. Remote Sens. Lett. 2 (2): 151–155.
https://doi.org/10.1109/LGRS.2004.843203.

Fialko, Y., M. Simons, and D. Agnew. 2001. “The complete (3-D) surface
displacement field in the epicentral area of the 1999MW 7.1 Hector Mine
earthquake, California, from space geodetic observations.” Geophys.
Res. Lett. 28 (16): 3063–3066. https://doi.org/10.1029/2001GL013174.

Grafarend, E. W. 2006. Linear and nonlinear models: Fixed effects, random
effects, and mixed models. Berlin: de Gruyter.

Grandin, R., E. Klein, M. Métois, and C. Vigny. 2016. “Three-dimensional
displacement field of the 2015 MW8.3 Illapel earthquake (Chile) from
across-and along-track Sentinel-1 TOPS interferometry.” Geophys. Res.
Lett. 43 (6): 2552–2561. https://doi.org/10.1002/2016GL067954.

Grodecki, J. 1997. Estimation of variance–covariance components for
geodetic observations and implications on deformation trend analysis.
Technical Rep. No. 186. Fredericton, Canada: Univ. of New Brunswick.

Grodecki, J. 1998. On estimation of variance–covariance components for
geodetic observations and implications on deformation trend analysis.
Ph.D. thesis, Dept. of Geodesy and Geomatics Engineering, Univ. of
New Brunswick.

Guglielmino, F., G. Nunnari, G. Puglisi, and A. Spata. 2011. “Simultaneous
and integrated strain tensor estimation from geodetic and satellite defor-
mation measurements to obtain three-dimensional displacement maps.”
IEEE Trans. Geosci. Remote Sens. 49 (6): 1815–1826. https://doi.org/10
.1109/TGRS.2010.2103078.

Hansen, P. C. 1990. “Truncated singular value decomposition solutions to
discrete ill-posed problems with ill-determined numerical rank.” SIAM
J. Sci. Stat. Comput. 11 (3): 503–518. https://doi.org/10.1137/0911028.

Hansen, P. C. 1992. “Analysis of discrete ill-posed problems by means
of the L-curve.” SIAM Rev. 34 (4): 561–580. https://doi.org/10.1137
/1034115.

Hansen, P. C. 2007. “Regularization tools version 4.0 for MATLAB 7.3.”
Numer. Algorithms 46 (2): 189–194. https://doi.org/10.1007/s11075-007
-9136-9.

Hanssen, R. F. 2001. Radar interferometry: Data interpretation and error
analysis. New York: Springer.

Hoerl, A. E., and R. W. Kennard. 1970. “Ridge regression: Biased esti-
mation for nonorthogonal problems.” Technometrics 12 (1): 55–67.
https://doi.org/10.1080/00401706.1970.10488634.

Hu, J., Z. W. Li, X. L. Ding, J. J. Zhu, L. Zhang, and Q. Sun. 2012a. “3D
coseismic displacement of 2010 Darfield, New Zealand earthquake
estimated from multi-aperture InSAR and D-InSAR measurements.”
J. Geod. 86 (11): 1029–1041. https://doi.org/10.1007/s00190-012
-0563-6.

Hu, J., Z. W. Li, X. L. Ding, J. J. Zhu, L. Zhang, and Q. Sun. 2014a.
“Resolving three-dimensional surface displacements from InSAR
measurements: A review.” Earth-Sci. Rev. 133 (Jun): 1–17. https://doi
.org/10.1016/j.earscirev.2014.02.005.

Hu, J., Z.-W. Li, J. Li, L. Zhang, X.-L. Ding, J.-J. Zhu, and Q. Sun. 2014b.
“3-D movement mapping of the alpine glacier in Qinghai-Tibetan Pla-
teau by integrating D-InSAR, MAI and Offset-Tracking: Case study of
the Dongkemadi Glacier.” Global Planet. Change 118 (Jul): 62–68.
https://doi.org/10.1016/j.gloplacha.2014.04.002.

Hu, J., Z.-W. Li, Q. Sun, J.-J. Zhu, and X.-L. Ding. 2012b. “Three-
dimensional surface displacements from InSAR and GPS measurements
with variance component estimation.” IEEE Geosci. Remote Sens. Lett.
9 (4): 754–758. https://doi.org/10.1109/LGRS.2011.2181154.

Jolivet, R., P. S. Agram, N. Y. Lin, M. Simons, M. P. Doin, G. Peltzer, and
Z. Li. 2014. “Improving InSAR geodesy using global atmospheric
models.” J. Geophys. Res. Solid Earth 119 (3): 2324–2341. https://doi
.org/10.1002/2013JB010588.

Koch, K.-R. 1978. “Schätzung von varianzkomponenten.” Allg. Vermes-
sungs Nachr. 85: 264–269.

Koch, K. R. 1986. “Maximum likelihood estimate of variance components.”
Bull. Geodesique 60 (4): 329–338. https://doi.org/10.1007/BF02522340.

Koch, K.-R., and J. Kusche. 2002. “Regularization of geopotential deter-
mination from satellite data by variance components.” J. Geod. 76 (5):
259–268. https://doi.org/10.1007/s00190-002-0245-x.

Kusche, J. 2003a. “A Monte-Carlo technique for weight estimation in sat-
ellite geodesy.” J. Geod. 76 (11–12): 641–652. https://doi.org/10.1007
/s00190-002-0302-5.

Kusche, J. 2003b. “Noise variance estimation and optimal weight deter-
mination for GOCE gravity recovery.” Adv. Geosci. 1: 81–85. https://
doi.org/10.5194/adgeo-1-81-2003.

Li, Z. W., Z. F. Yang, J. J. Zhu, J. Hu, Y. J. Wang, P. X. Li, and G. L. Chen.
2015. “Retrieving three-dimensional displacement fields of mining
areas from a single InSAR pair.” J. Geod. 89 (1): 17–32. https://doi.org
/10.1007/s00190-014-0757-1.

Lindsey, E. O., R. Natsuaki, X. Xu, M. Shimada, M. Hashimoto, D. Melgar,
and D. T. Sandwell. 2015. “Line-of-sight displacement from ALOS-2
interferometry: MW 7.8 Gorkha earthquake and MW 7.3 aftershock.”
Geophys. Res. Lett. 42 (16): 6655–6661. https://doi.org/10.1002
/2015GL065385.

Liu, J.-H., J. Hu, Z.-W. Li, J.-J. Zhu, Q. Sun, and J. Gan. 2018. “A method
for measuring 3-D surface deformations with InSAR based on strain
model and variance component estimation.” IEEE Trans. Geosci.
Remote Sens. 56 (1): 239–250. https://doi.org/10.1109/TGRS.2017
.2745576.

Lu, Z., and D. Dzurisin. 2014. InSAR imaging of Aleutian volcanoes:
Monitoring a volcanic arc from space. Berlin: Springer.

Mikhail, E. M., and F. E. Ackermann. 1982. Observations and least
squares. New York: University Press of America.

Moghtased-Azar, K., R. Tehranchi, and A. R. Amiri-Simkooei. 2014. “An
alternative method for non-negative estimation of variance compo-
nents.” J. Geod. 88 (5): 427–439. https://doi.org/10.1007/s00190-014
-0693-0.

Motagh, M., B. Schurr, J. Anderssohn, B. Cailleau, T. R. Walter, R. Wang,
and J.-P. Villotte. 2010. “Subduction earthquake deformation associated
with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results
from InSAR and aftershocks.” Tectonophysics 490 (1–2): 60–68.
https://doi.org/10.1016/j.tecto.2010.04.033.

Neelmeijer, J., M. Motagh, and H.-U. Wetzel. 2014. “Estimating spatial and
temporal variability in surface kinematics of the inylchek glacier, central
Asia, using TerraSAR–X data.” Remote Sens. 6 (10): 9239–9259.
https://doi.org/10.3390/rs6109239.

Normand, J. C. L., and E. Heggy. 2015. “InSAR assessment of surface
deformations in urban coastal terrains associated with groundwater
dynamics.” IEEE Trans. Geosci. Remote Sens. 53 (12): 6356–6371.
https://doi.org/10.1109/TGRS.2015.2437368.

Plackett, R. L. 1950. “Some theorems in least squares.” Biometrika 37 (1–
2): 149–157. https://doi.org/10.2307/2332158.

Rao, C. R. 1971. “Estimation of variance and covariance components—
MINQUE theory.” J. Multivariate Anal. 1 (3): 257–275. https://doi.org
/10.1016/0047-259X(71)90001-7.

Rocca, F. 2003. “3D motion recovery with multi-angle and=or left right
interferometry.” In Proc., 3rd Int. Workshop on ERS SAR., edited by
H. Lacoste. Paris: European Space Agency.

Samieie-Esfahany, S., R. Hanssen, K. van Thienen-Visser, and A.
Muntendam-Bos. 2009. “On the effect of horizontal deformation on
InSAR subsidence estimates.” In Proc., Fringe 2009 Workshop. Paris:
European Space Agency.

Samsonov, S. V., K. F. Tiampo, and J. B. Rundle. 2008. “Application of
DInSAR-GPS optimization for derivation of three-dimensional surface
motion of the southern California region along the San Andreas fault.”
Comput. Geosci. 34 (5): 503–514. https://doi.org/10.1016/j.cageo.2007
.05.013.

Schaffrin, B. 1980. “Tikhonov regularization in geodesy, an example.” Boll.
Geod. Sci. Aff. 39: 207–216.

Shamshiri, R., M. Motagh, M. Baes, and M. A. Sharifi. 2014. “Deformation
analysis of the Lake Urmia causeway (LUC) embankments in northwest
Iran: Insights from multi-sensor interferometry synthetic aperture radar
(InSAR) data and finite element modeling (FEM).” J. Geod. 88 (12):
1171–1185. https://doi.org/10.1007/s00190-014-0752-6.

Shaw, F. H., and C. J. Geyer. 1997. “Estimation and testing in constrained
covariance component models.” Biometrika 84 (1): 95–102. https://doi
.org/10.1093/biomet/84.1.95.

© ASCE 04019011-14 J. Surv. Eng.

 J. Surv. Eng., 2019, 145(4): 04019011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
09

/3
0/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1109/LGRS.2004.843203
https://doi.org/10.1029/2001GL013174
https://doi.org/10.1002/2016GL067954
https://doi.org/10.1109/TGRS.2010.2103078
https://doi.org/10.1109/TGRS.2010.2103078
https://doi.org/10.1137/0911028
https://doi.org/10.1137/1034115
https://doi.org/10.1137/1034115
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/s00190-012-0563-6
https://doi.org/10.1007/s00190-012-0563-6
https://doi.org/10.1016/j.earscirev.2014.02.005
https://doi.org/10.1016/j.earscirev.2014.02.005
https://doi.org/10.1016/j.gloplacha.2014.04.002
https://doi.org/10.1109/LGRS.2011.2181154
https://doi.org/10.1002/2013JB010588
https://doi.org/10.1002/2013JB010588
https://doi.org/10.1007/BF02522340
https://doi.org/10.1007/s00190-002-0245-x
https://doi.org/10.1007/s00190-002-0302-5
https://doi.org/10.1007/s00190-002-0302-5
https://doi.org/10.5194/adgeo-1-81-2003
https://doi.org/10.5194/adgeo-1-81-2003
https://doi.org/10.1007/s00190-014-0757-1
https://doi.org/10.1007/s00190-014-0757-1
https://doi.org/10.1002/2015GL065385
https://doi.org/10.1002/2015GL065385
https://doi.org/10.1109/TGRS.2017.2745576
https://doi.org/10.1109/TGRS.2017.2745576
https://doi.org/10.1007/s00190-014-0693-0
https://doi.org/10.1007/s00190-014-0693-0
https://doi.org/10.1016/j.tecto.2010.04.033
https://doi.org/10.3390/rs6109239
https://doi.org/10.1109/TGRS.2015.2437368
https://doi.org/10.2307/2332158
https://doi.org/10.1016/0047-259X(71)90001-7
https://doi.org/10.1016/0047-259X(71)90001-7
https://doi.org/10.1016/j.cageo.2007.05.013
https://doi.org/10.1016/j.cageo.2007.05.013
https://doi.org/10.1007/s00190-014-0752-6
https://doi.org/10.1093/biomet/84.1.95
https://doi.org/10.1093/biomet/84.1.95


Shen, Y., P. Xu, and B. Li. 2012. “Bias-corrected regularized solution to
inverse ill-posed models.” J. Geod. 86 (8): 597–608. https://doi.org/10
.1007/s00190-012-0542-y.

Sjöberg, L. 1984. “Non-negative variance component estimation in the
Gauss-Helmert adjustment model.” Manuscripta Geod. 9: 247–280.

Teunissen, P. J.G. 1988.Towards a least-squares framework foradjustingand
testing of both functional and stochastic models. Mathematical geodesy
and positioning series. Delft, Netherlands: Delft Univ. of Technology.

Teunissen, P. J. G., and A. R. Amiri-Simkooei. 2008. “Least-squares var-
iance component estimation.” J. Geod. 82 (2): 65–82. https://doi.org/10
.1007/s00190-007-0157-x.

Tikhonov, A. 1963. “Solution of incorrectly formulated problems and the
regularization method.” Soviet Math. Dokl. 4: 1035–1038.

Tikhonov, A. N., V. I. A. k. Arsenin, and F. John. 1977. Solutions of ill-
posed problems. Washington, DC: Winston.

Wahba, G. 1976. A survey of some smoothing problems and the method of
the generalized cross-validation for solving them. Technical Rep. No.
457. Dept. of Statistics, Univ. of Wisconsin.

Wright, T. J., B. E. Parsons, and Z. Lu. 2004. “Toward mapping surface
deformation in three dimensions using InSAR.” Geophys. Res. Lett.
31 (1). https://doi.org/10.1029/2003GL018827.

Xu, C., Y. Liu, Y. Wen, and R. Wang. 2010. “Coseismic slip distribution of
the 2008Mw 7.9Wenchuan earthquake from joint inversion of GPS and
InSAR data.” Bull. Seismol. Soc. Am. 100 (5B): 2736–2749. https://doi
.org/10.1785/0120090253.

Xu, P. 1992. “Determination of surface gravity anomalies using gradio-
metric observables.” Geophys. J. Int. 110 (2): 321–332. https://doi.org
/10.1111/j.1365-246X.1992.tb00877.x.

Xu, P., Y. Shen, Y. Fukuda, and Y. Liu. 2006. “Variance component es-
timation in linear inverse ill-posed models.” J. Geod. 80 (2): 69–81.
https://doi.org/10.1007/s00190-006-0032-1.

Yang, H.-l., and J.-h. Peng. 2016. “Mapping three-dimensional co-seismic
deformations fields by combining multiple-aperture interferometry and
differential interferometric synthetic aperture radar techniques.” J. In-
dian Soc. Remote Sens. 44 (2): 243–251. https://doi.org/10.1007/s12524
-015-0484-y.

© ASCE 04019011-15 J. Surv. Eng.

 J. Surv. Eng., 2019, 145(4): 04019011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
09

/3
0/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1007/s00190-012-0542-y
https://doi.org/10.1007/s00190-012-0542-y
https://doi.org/10.1007/s00190-007-0157-x
https://doi.org/10.1007/s00190-007-0157-x
https://doi.org/10.1029/2003GL018827
https://doi.org/10.1785/0120090253
https://doi.org/10.1785/0120090253
https://doi.org/10.1111/j.1365-246X.1992.tb00877.x
https://doi.org/10.1111/j.1365-246X.1992.tb00877.x
https://doi.org/10.1007/s00190-006-0032-1
https://doi.org/10.1007/s12524-015-0484-y
https://doi.org/10.1007/s12524-015-0484-y

