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Graphene Nanoribbon based McCulloch-Pitts Neural Network

F.-S. Dumitru1, M. Enachescu2, A. M. Antonescu3, N. Cucu-Laurenciu4, S. D Cotofana5

Abstract— In the context of an artificial intelligence and
machine learning landscape that is evolving at an unprece-
dented pace, we propose a low power, high-speed, mixed-
signal graphene nanoribbon-based (GNR) McCulloch-Pitts neu-
ron (MCPN) implementation featuring programmable synaptic
weights and inhibitory inputs. By definition, a generic MCPN
is comprised of two parts, a weighted summation element
and a decision element, called a soma. Our summation ele-
ment implementation uses three distinct non-rectangular GNR
devices, biased under specific conditions, to fulfill the roles
of current source, low-side and high-side switches. The pro-
grammable excitatory and inhibitory synapses were obtained
leveraging GNR SRAM cells and logic gates, hence providing
the flexibility needed by real-world applications. The decision
element’s threshold activation function was implemented using
a chain of GNR inverter structures which manifest the func-
tion’s characteristic in the analog domain. Modulation of the
decision element’s threshold is achieved indirectly by means of a
configurable resistive load which is varied depending on the con-
figuration stored in SRAM. Our benchmark results, obtained
using a generic 5 by 5 pixel pattern recognition application,
reveal that the GNR-based implementation achieves 3.5× less
power consumption, 20× higher speed, while occupying 3×
less active area when compared to its FinFET analog circuit
counterpart.

I. INTRODUCTION

The human brain acts as an energy efficient, high-
performance chip capable of comprehending, processing,
and storing data. It features parallelism, plasticity, pattern
recognition, learning, memory, and fault tolerance. Numer-
ous attempts were made to create bio-inspired artificial
neuromorphic systems with the aforestated properties [1].

In these brain-chips, billions of neurons serving as the core
processing unit and the trillions of synapses that interconnect
them require integration. Complex CMOS circuitry is mostly
used in state-of-the-art neuromorphic architectures to build
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neurons and synapses [2]. However, their relatively high
supply voltage and high-power consumption limit the archi-
tecture’s scalability and integration density. Recently, CMOS
neurons and nanoscale resistive (or memristive) synapses,
or even resistive switching memory device-based neurons
have been proposed due to their reconfigurability, state
retention, and good scalability [3]. Nevertheless, they are
subject to variability-induced unpredictable behavior, which
could potentially destabilize the neuromorphic system.

Graphene has been identified as a high potential material
for nano-electronics due to its exceptional characteristics
such as ballistic transport, flexibility, and bio-compatibility
[4]. These appealing attributes have led to the development of
graphene-based Boolean logic gates [5] and implementations
of spiking neurons and synapses [6–9]. Specifically, work
in [5] has compared GNR-based logic gates (GNR-L) with
7 nm FinFET CMOS counterparts and proved via simulation
results that GNR-L could achieve 2 orders of magnitude
lower power consumption, 6× smaller propagation delay, and
2 orders of magnitude smaller active area.

The basic building blocks of neural networks are artificial
neurons and synapses. These serve as essential processing
units and act as communication links between neurons.
Hence, the first step was designing a low-voltage, low-area,
5-bit GNR-based current digital to analog converter (DAC)
in [10] to confirm the feasibility of the GNR-based pro-
grammable synapses necessary for a MCPN implementation.

In this paper, we design and implement the complete
MCPN functionally using GNR structures. Firstly, we present
a configurable GNR-based summation element’s implemen-
tation, realized by integrating a 5-bit DAC’s unit current
sources, high-side and low-side switches, logic gates, load
resistor, and SRAM cells. Secondly, we demonstrate the op-
eration of the graphene MCPN realized by merging the GNR-
based summation element with our GNR-based decision
element. Finally, we demonstrate the detection capabilities
of the proposed design by considering a one layer neural
network consisting of 5 neurons configured to recognize the
vowels “A”, “E”, “I”, “O”, and “U” (and variations of them)
represented using a 5 by 5 black and white pixel matrix.

The rest of this paper has the following structure: Section
II presents an overview of the MCPN model, related work
on GNR circuits, and GNR simulation framework. Section
III describes the GNR-based neuron implementation and the
neural network used for bench-marking. Section IV presents
the results of our simulations for the GNR and FinFET
MCPN networks and compares their performance. Finally,
the paper ends with concluding remarks in Section V.

2024 IEEE 24th International Conference on Nanotechnology (NANO)
July 8-11, 2024. Gijón, Spain

979-8-3503-8624-0/24/$31.00 ©2024 IEEE 592

20
24

 IE
EE

 2
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 N
an

ot
ec

hn
ol

og
y 

(N
AN

O
) |

 9
79

-8
-3

50
3-

86
24

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
N

AN
O

61
77

8.
20

24
.1

06
28

80
1

Authorized licensed use limited to: TU Delft Library. Downloaded on September 16,2024 at 06:38:15 UTC from IEEE Xplore.  Restrictions apply. 



II. BACKGROUND

A. McCulloch-Pitts neuron model

The McCulloch-Pitts neuron is considered one of the sim-
plest neuron models, it simulates a binary decision-making
unit, thus emulating the behavior of a biological neuron.
Eq. 1 describes the output of a McCulloch-Pitts neuron
model featuring only excitatory inputs, where xi = {0, 1}
represent the values of the excitatory inputs, each input
having a corresponding weight wi = {0, 1}. If the sum of
the weighted inputs, xi·wi, exceeds the neuron’s threshold,
θ, then the output of the neuron will be 1, otherwise it will
be 0.

f(x1, . . . , xn) =

1 if
n∑

i=1

wi·xi ≥ θ

0 otherwise
(1)

The complete McCulloch-Pitts neuron model expands Eq.
1 by accounting for the existence of inhibitory inputs and
is described in Eq. 2, where yi = {0, 1} represent the
inhibitory inputs. We remark that triggering even a single
of the inhibitory inputs will force the neuron’s output to 0.

f̃ (x1, . . . , xn; y1, . . . , ym) = f(x1, . . . , xn) ·
m∏
j=1

(1− yj)

(2)
We chose to implement the model from Eq. 2, because the
model from Eq. 1, lacking inhibitory inputs, can be forced
to falsely trigger by setting all excitatory inputs, xi to 1.

B. GNR-based DAC for programmable synaptic weights

Configuring the geometrical parameters of the generic
GNR-based device, illustrated in Figure 1, allows us to
achieve analog behaviors ranging from current sources [10]
to low-side and high-side analog switches, as shown later
in this paper. Programmable synaptic weights can be im-
plemented using the unit current source device, GNRISRC ,
from a GNR-based current DAC [10] featuring the geometri-
cal parameters listed in Table I, and resulting in the topology
shown in Figure 2a. The transfer and output characteristics
of this current source device are similar to a CMOS device’s
saturation region [10].

Fig. 1: GNR Geometry Description Parameters [11].

C. GNR-based SRAM cells and Boolean gates

A compact, power efficient, SRAM cell implementation
is essential for the development of neural networks due to
the inherent need to have synapses that are individually
reconfigurable. Although the schematic of the GNR-based
SRAM resembles its CMOS counterpart, it offers superior

performance in several key areas. The GNR-based SRAM
proposed in [5] achieves 3.6× smaller delay, 2 orders of
magnitude less power consumption, and 1 order of magnitude
smaller active area. Due to these advantages we chose
GNR-based SRAM as the volatile medium for storing our
network’s configuration information.

With CMOS scaling to sub-10nm technology node, tem-
perature variations significantly affect the reliability and
performance of traditional logic gates [12]. The temperature
effects on both CMOS and GNR gates have been thoroughly
investigated in [13] and [11] and even in the worst-case
condition they outperform their CMOS FinFET 7nm counter-
parts. For instance, the INV case showed 1.6× smaller delay
and 185× less power consumption. These findings suggest
that the GNR-based gates hold significant potential as basic
building blocks for future reliable, low-power, carbon-based
nano-electronics.

D. Simulation framework
The assessment of the McCulloch-Pitts neuron circuit

(GNR-MCPN) is done through a hybrid simulation frame-
work that integrates Cadence Spectre’s mixed-signal en-
vironment with Matlab’s parallel computing toolbox. This
co-simulation methodology allows for the execution of
SPICE-level circuit simulations in conjunction with precise
atomistic-level GNR computations within Matlab. At the in-
terface between these two environments we have a Verilog-A
model which exchanges data between the SPICE simulation
and the Matlab model.

To calculate the GNR’s electronic transport properties,
the tight-binding Hamiltonian approach is used to char-
acterize the GNR structure. Additionally, we apply the
Non-Equilibrium Green Function (NEGF) quantum transport
model to solve the Schrödinger equation and the Landauer
formalism, to compute the GNR’s conductance [14] as:

G =
q ·

∫ +∞
−∞ T (E) · (f0(E − µ1)− f0(E − µ2))dE

h · (Vd − Vs)
, (3)

where q is the electron charge, h is the Planck constant,
T (E) is the transmission function, f0(E) is the Fermi-Dirac
distribution function at temperature T , and µ1,2 denote the
Fermi energy of the source and drain contacts.

The current through the GNR is illustrated by Eq. 4 as:

I(d, s) = V (d, s) ·G. (4)

The quantum capacitance, Cq is calculated by integrating
the product of the density of states, DOS(E), and the
thermal broadening function, FT (E), over all energy levels,
where E represents the energy [15, 16]. This results in the
quantum capacitance of our GNR device as a function of the
distribution of the available energy states.

Cq = q2
∫ +∞

−∞
DOS(E) · FT (E − (µ1 − µ2)) dE (5)

By propagating the results of the conductance and quantum
capacitance computations using our Verilog-A model we are
able to accurately simulate the time dependent switching
behavior occurring in the proposed McCulloch-Pitts neuron.
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III. GNR-BASED MCCULLOCH-PITTS NEURAL
NETWORK

A. GNR-based configurable synapses

Each synapse of our MCPN implementation can find itself
in one of the following three states: a) excitatory input with
weight 0, b) excitatory input with weight 1, or c) inhibitory
input. Therefore, storing their configuration will require two
bits for each synapse. The first bit models the weight for
cases a) and b), while the second bit models whether the
synapse is an inhibitory input or not for case c).

The configuration data is initially loaded into SRAM at
power on, an approach frequently seen in FPGA designs, and
subsequently updated at any point when the neural network
requires adjustment of its weights.

The proposed GNR-based configurable synapse is shown
in the green rectangle in Figure 5, containing three GNR
devices. From bottom to top these are the low-side switch,
GNRDOWN , the current source, GNRISRC , and the high-
side switch, GNRUP . The proposed GNRDOWN and
GNRUP devices, have their geometries summarized in Table
I, are represented in Figures 2b and 2c, and are characterized
using their transfer and output characteristics in Figure 3.

The GNRUP resembles a PMOS switch, exhibiting high
resistance when the gate is driven to VDD and low resistance
when it is driven to GND. Device GNRUP ’s gate is driven
by a GNR-based 2 input NAND gate whose inputs are a)
the pixel’s state and b) synaptic weight stored in GNR-based
SRAM array. If both the pixel’s output signal and the weight
value stored in SRAM are a logical ’1’, then the GNRUP

switch will be closed, otherwise it will be open.
Similarly, the GNRDOWN device resembles an NMOS

switch, exhibiting high resistance when the gate is driven to
GND and low resistance when it is driven to VDD. Device
GNRDOWN ’s gate is driven by a GNR-based 2 input AND
gate whose inputs are a) the pixel’s state and b) inhibitory
configuration bit stored in a GNR-based SRAM array. If
both the pixel’s output signal and the weight value stored
in SRAM are a logical ’1’, the GNRDOWN switch will be
closed, otherwise it will be open.

(a) GNRISRC (b) GNRDOWN (c) GNRUP

Fig. 2: Graphene-based device topologies

B. GNR-based summation element

A simplified, one pixel row, representation of the proposed
GNR-based summation element and its FinFET counterpart
is illustrated in Figure 4. The nominal voltage of the devices
in the GNR-based circuit translates into a VDD of 0.2 V,
while in the FinFET circuit’s case the VDD is 0.7 V. In
the GNR-based implementation each pixel is handled by the

previously described group of three devices with analog roles
and two logic gates, this arrangement is repeated 5 times to
handle one 5 pixel row of the 5 by 5 pixel arbitrary symbol
we are monitoring with our analog neuron. We remark that
the FinFET counterpart shown in Figure 4b has a similar im-
plementation, except for requiring a diode connected PMOS
device biased at a constant current to act as reference for
the current source PMOS devices. The GNRISRC device
behaves similarly to a current source when the gate is driven
to VDD and enters a high resistance state when the gate is
driven to GND. The geometry of the GNRISRC device is
represented in Figure 2a. The high resistance state exhibits a
leakage current in the order of several tens of nA, leading us
to insert the previously described GNRUP device in series
so as to reduce the off-state current of the GNRISRC device.
By contrast with a CMOS current source, the GNRISRC

device does not require a reference device for biasing and
can be driven using a logic gate or hardwired to VDD.

The function of the summation element, when dealing only
with excitatory inputs, can be implemented as the addition of
the currents of each individual synapse of weight ’1’ with an
active pixel. The total current resulting from this summation
then flows through resistor RLOAD and determines the value
of the voltage of net SOMMAOUT .

However, if any of the synapses are configured to be
inhibitory and their pixel becomes active, they will shunt
the RLOAD resistor and prevent net SOMMAOUT from
exceeding the threshold of the activation function, as the
threshold is calibrated to only be reached when all the pixels
of the symbol match. Thus, any shunting of the RLOAD

resistor prevents neuron the output going high.
The simplicity of this analog approach takes advantage

of the proven high-speed GNRs and will translate into a fast
response time MCPN. By contrast, other GNR-based spiking
neurons implementation report times in the range of ms [6,
8, 9] before triggering spikes.

TABLE I: Dimensions of GNR-based Neuron Structures

(W ,L) (Wc,Lc) (Wb, Lb) (PVG
, WVG

)

GNRISRC (41, 27
√
3) (8, 4

√
3) (0, 0) (2

√
3, 6

√
3)

GNRUP (41, 27
√
3) (14, 8

√
3) (9, 2

√
3) (12

√
3, 6

√
3)

GNRDOWN (41, 27
√
3) (8, 8

√
3) (0, 0) (3

√
3, 6

√
3)

C. GNR-based activation function circuit

In our analog implementation we use the structure shown
in Figure 5b), resembling a chain of inverters, to achieve the
threshold activation function. Ideally, the threshold function
is a step function, where the output is 1 if the weighted sum
exceeds a threshold, θ, and 0 otherwise. We see that the
input signal (red) and the output signal (blue) are in phase
and measure a delay of approximately 4 ps.

The ability to trigger the MCPN for symbols comprised of
different numbers of active pixels necessitates a configurable
activation function threshold, θ. Since the activation function
element’s implementation shown in Figure 5b, has a fixed
threshold, configurability must be achieved indirectly.
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Fig. 3: Transfer and output characteristics for GNRDOWN (left) and GNRUP (right) devices

Fig. 4: Analog summation element implementation handling a single row of 5 pixels a) GNR (left) b) FinFET (right)

Noting that the neuron triggers when SOMMAOUT =
ITOT ·RLOAD is equal to θ, we use the fact that modulating
RLOAD is equivalent with modulating θ to achieve a config-
urable threshold. The configurable RLOAD is implemented
by reusing the thermometric decoder from [10] and applying
it to a string of resistors. A GNRDOWN switch is inserted
between GND and each intermediate net of the resistive
string, resulting in a linearly configurable RLOAD.

D. GNR-based neuron implementation

The complete GNR-MCPN implementation is shown in
Figure 5. As each neuron features 25 synapses connected
to the SOMMAOUT net and two SRAM cells, one for the
excitatory weight bit and one for the inhibitory configuration
bit, 50 SRAM cells are required for every neuron.

In Figure 5 it also becomes clear that the neuron will
trigger once enough excitatory input synapses of weight 1
are activated such that their total current, ITOT multiplied
by RLOAD exceeds the activation function’s θ. At the same
time, the neuron’s output will be forced to zero if any of the
inhibitory inputs are triggered.

While the McCulloch-Pitts neuron comes with clear lim-
itations due to having only binary inputs and weights, for
certain applications, such as black and white pattern detec-
tion it can be an adequate solution. On the other hand, we

remark that having 5-bit synapse weights would translate into
having to store 1550 bits for a single 25 synapse neuron.

E. GNR-based neural network

The proposed neural network shown in Figure 6 features
one fully-connected layer of 5 neurons, each neuron being
configured to detect the pattern associated with a vowel.
Due to it being a fully-connected one layer network, our
neurons perform this simple form of detection independently
of each other. The recognition quality is inherently limited
due to the simple topology of the neural network, but
is sufficient to demonstrate the GNR-MCPN’s ability to
recognize characters.

IV. SIMULATION RESULTS

To demonstrate the suitability of the proposed reconfig-
urable GNR-based McCulloch-Pitts neural network (GNR-
MCP-NN) architecture for various application scenarios, and
to validate the synaptic weight training approach effective-
ness, we have tailored a GNR-MCPN for character recogni-
tion, mapped it on the proposed reconfigurable GNR-MCP-
NN architecture, and evaluated it using SPICE simulations.

A. GNR-based single Neuron Behavior Evaluation

To validate the operation of the proposed GNR-MCPN,
a SPICE simulation was run on a neuron with its synapses
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Fig. 5: GNR-based McCulloch-Pitts neuron

Fig. 6: McCulloch-Pitts neural network
configured to detect the vowel ’U’, as shown in Figure 7.

The neuron’s configuration bits are represented on the left
side in Figure 7. Here, the pixel array labeled Weight rep-
resents the excitatory inputs, where a green pixel represents
a weight of 1 and a white pixel represents a weight of 0.
Similarly, the pixel array labeled Inhibitors represents the
inhibitory inputs, where an orange pixel represents a weight
of 1 and a white pixel represents a weight of 0.

The input pattern applied to the 5 by 5 array of pixels
goes through 9 phases illustrated at the top of the figure.
This pattern gradually increases the analog output of the
summation element during the first 7 patterns, as seen on
traces SommaoutGNR and SommaoutFinFET . At the
6th pattern θ is exceeded, causing NeuronoutGNR and
NeuronoutFiNFET to toggle high at 11 active pixels. The
7th and 9th patterns hit inhibitory pixels which cause the
output of the summation element to get pulled down. The
8th pattern doesn’t trigger any inhibitory pixel but is at the
threshold of detection with only 10 active pixels. Therefore,
the threshold for letter ’U’ pattern is between 9 and 10 pixels
of the 11 pixels that constitute the letter.

B. GNR vs FinFET neural network performance

We validate the behavior of the neural network shown in
Figure 6 by applying an alternating series of vowels and

intermediate symbols updated every 1 ns as shown in Figure
8. We note that while the GNR-based neuron’s output toggles
very fast with the change of the inputs, taking 8−20 ps, the
FinFET implementation takes 140 − 360 ps. Therefore, in
terms of speed the GNR-based variant is approximately 20×
faster.

Since static power dominates this current source approach
and equal bias currents of the GNR-based and FinFET
current sources were used, we achieve about 3.5× better
power efficiency due to the lower operating voltage.

In terms of the occupied area, we will separately evaluate
the analog and the SRAM and digital parts of the implemen-
tation. The analog portion of the GNR-based design occupied
approximately 3× less active area, while the SRAM and
control logic occupied approximately 9× less active area.

V. CONCLUSIONS

In this paper, we investigated the potential of GNR devices
to implement a configurable analog MCPN. The proposed
MCPN was evaluated using both GNR-based and 7 nm
FinFET technologies within a generic neural network symbol
recognition application where it achieved 3.5× less power
consumption, 20× higher speed, while occupying 3× less
active area when compared to the FinFET analog implemen-
tation, and 9× less active area when comparing the SRAM
and logic gates.
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