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Abstract
Achieving high azimuth resolution is one of the main bottleneck for automotive radars, which generally demands a large
aperture of antenna array. However, building an automotive radar system with a large antenna array is a very challenging task
from the perspective of both technological readiness and cost. To circumvent this problem, we propose to fuse signals from
multiple small automotive radars placed over the facade of a car as an alternative solution with low system complexity, where
each radar with a small Multiple-Input Multiple-Output (MIMO) array operate independently without accurate synchronization.
To (partially) coherently process the measurements from all the radars, a 2-D MUltiple Signal Classification (MUSIC) based
algorithm is proposed for joint Direction-of-Arrival (DOA)-range estimation of targets in which spatial smoothing technique
is exploited to tackle highly correlated signals. Taking advantage of the proposed estimation approach and multiple radars, it
significantly improves the azimuth resolution of the system compared to that of a single MIMO radar. The performance of the
proposed method is demonstrated through both numerical simulations and experimental results.

1 Introduction

Due to its advantages of day-and-night all-weather sensing
capabilities, automotive radar plays an increasingly key role
in Advanced Driver Assistance Systems(ADAS)/autonomous
driving. To precisely detect and classify different targets in the
environment, high spatial resolutions, including both down-
range and (azimuth and elevation) angular resolutions, are of
highly demand for automotive radars. To achieve high-range
resolution, wideband (up-to 4 GHz bandwidth) signals can be
used. Meanwhile, for high angular resolution, antenna arrays
of large apertures are theoretically required; however, to build
automotive radars with large antenna arrays is still a great
challenge in terms of both technical feasibility and system
cost. Although Multiple-Input-Multiple-Output (MIMO) array
technique is used to reduce the complexity and cost of the
radar system, the limited number of transmitting and receiving
channels (i.e., 2×4 or 3×4) of the state-of-the-art automotive
radar chips substantially constrains the achievable effective
aperture of antenna arrays, leading to low angular resolution,
i.e., > 10◦.

To overcome the technical bottleneck of angular resolutions
of automotive radars, designing sophisticated MIMO arrays
with increased number of transmitting and receiving channels
combined with advanced super-resolution algorithms devel-
opment for Direction-of-Arrival (DOA) estimation is the key

solution. To increase the number of transmitting and receiving
channels of the radar systems, one common idea in industry
is to cascade multiple radar chips as a large system; thus,
by fully exploiting the increased transmitting and receiving
channels, MIMO arrays with a large effective aperture can
be designed to achieve high-angular resolution. However,
the chip cascading increases system complexity of the radar
system and requires complicated calibration for coherent radar
measurement, which proposes a great challenge to massive
production. In addition, such radars do not fit easily in the
modern autos’ facade.

Accounting for the current angular-resolving challenge of
automotive radars as well as the fact that multiple radars, at
least two corner radars and one forward-looking radar, would
be equipped along the facade of autonomous vehicles, we
propose to fuse the signals from the multiple radars to enhance
the angular resolution, especially, the azimuth resolution. To
our best knowledge, the signal fusion of multiple MIMO radars
for high-resolution DOA estimation has scarcely been reported
in open literature. Hence, in this paper, the signal fusion of
multiple automotive radars is studied.

Although some super-resolution approaches, such as MUl-
tiple Signal Classification (MUSIC)-based approaches [1]–[3],
Discrete-Fourier Transform (DFT)-MUSIC based methods [4],
[5], Estimation of Signal Parameters via Rotational Invariance
Technique (ESPRIT)-based method [6], [7], have been devel-
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oped for targets’ DOA estimation/localization with MIMO-
array based radars, they are mainly applicable to the radar
systems with a single antenna array. For the radar systems
consists of multiple MIMO antenna arrays, data association
is required after targets’ localization with respect to each
individual array, which is generally not an easy task.

Meanwhile, for passive locally coherent arrays, General-
ized MUSIC (GMUSIC) method proposed in [8] estimates
source positions through synthesizing signal subspaces of
all arrays in together. The number of targets is required as
prior information. This method can resolve ambiguities in
source localization compared with the decentralized MUSIC
algorithm introduced in [9]. The direct position determination
(DPD) method ( [10], [11]) utilize observations from all
arrays together, and the cost function only depends on source
positions. Initially, [10] proposed the DPD algorithm based on
maximum likelihood (ML), after that [11] combined DPD with
MUSIC to save computational cost. However, this method is
not suitable for chirp signals.

So, to fill the gap of signal fusion of multiple automotive
radars, a novel super-resolution approach based on the MUSIC
technique is developed to jointly estimate the DOAs and
ranges of multiple targets. The proposed approach is gener-
ally applicable to fuse signals from multiple MIMO arrays
arranged with a general topology.

The rest of the paper is organized as follows. In section 2,
the FMCW radar system model is introduced, subsequently,
signal model for monostatic configuration is analyzed. In
section 3, the generalized 2D-MUSIC algorithm is developed.
The performance of the proposed algorithm is analyzed via
numerical simulations in section 4. Conclusions are drawn in
section 5.

2 System Model

2.1 Geometrical Configuration

Without loss of generality, assume that there are Nr = 2M +
1 identical FMCW MIMO radars in the system, where each
radar has a MIMO array with NTx transmit and NRx receive
antenna elements [12]. They are uniformly placed along the
azimuth, as illustrated in Fig. 1. Within each small MIMO
array, the inter-element spacing of receive antennas is dRx =
λ/2 (λ is the wavelength of the centre frequency) while the
spacing between transmit antennas is dTx = NRxdRx; thus the
aperture size of the virtual array of a single MIMO array is
(NTxNRx − 1)dRx. Besides, the distance between two adjacent
MIMO radars is ds = Δ · dRx, where ds � dRx. For the
convenience of notation, we use the MIMO radar in the middle
(indexed as the 0th radar in Fig. 1) as a reference unit of the
system. The small MIMO radar units in the system operate
without synchronization.

For a typical automotive radar unit, the effective aperture
size of the small MIMO array is just a few wavelength
of the centre frequency (i.e., 77GHz). Thus, the far-field
assumption of the wave field radiation is generally used for
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Fig. 1 Illustration of the geometrical model of the radar system

targets in a moderate distance, for instance, of dozens to
hundreds of meters. However, when multiple MIMO radars
are arranged as in Fig. 1, the aperture size formed by them
significantly increases. Specifically, if the aperture size of one
meter is formed for a radar system at 77GHz, the far field
approximation to the wavefront of the antenna array would
be only valid beyond a distance of half a kilometer, which is
much larger than the typical detection range of an automotive
radar. So, for accurate estimation of targets’ positions, we
suggest using the near-field radiation model for the whole
radar system while keep the far-field assumption for small
MIMO arrays related to each radar unit. That is to say, the
wavefronts of back-scattered signals are spherical from the
system perspective, while they would be approximately treated
as plane waves for each MIMO [13].

Assume that K stationary or slow moving point targets are
located in the observation region and they can be observed
by all radar units within the system. Targets’ locations are
parameterized with their ranges and DOAs relative to the
reference radar unit as

r = [r1, r2, . . . , rK ] (1)
θ = [θ1, θ2, . . . , θK ] (2)

The ranges and DOAs of all targets relative to the mth MIMO
radar unit is denoted as

r(m) =
[
r
(m)
1 , r

(m)
2 , . . . , r

(m)
K

]
(3)

θ(m) =
[
θ
(m)
1 , θ

(m)
2 , . . . , θ

(m)
K

]
(4)

where m = −M, . . . ,M and k = 1, . . . ,K denote the indices
of the MIMOs and indices of the targets, respectively.
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According to the geometry in Fig. 1, the distance r
(m)
k

between the kth target and the mth MIMO can be written as

r
(m)
k =

√
r2k + (mds)2 − 2rkmds sin (θk) (5)

and the corresponding direction of departure (DOD) ψ(m)
k and

DOA θ
(m)
k are

ψ
(m)
k = θ

(m)
k = arcsin

(
rk sin (θk)−mds

r
(m)
k

)
(6)

where θk ∈ [−π/2, π/2].

2.2 Signal Model

For an FMCW radar with the deramping receiver, the acquired
beat signal from the K stationary/slow-moving point targets
in the illuminated scene can be expressed as:

x(t) =

K∑
k=1

γk exp

[
j2π

(
μτkt− f0τk − 1

2
μτ2k

)]
+w(t) (7)

where γk is the complex amplitude of the signal reflected
by the kth target. τk = 2rk/c is the roundtrip time delay
induced by the wave propagation between the kth target and
the antenna with a distance of rk. f0 is the initial frequency
of the FMCW sweep and μ = B/Ts is the chirp rate of the
FMCW sweep with the bandwidth B and the sweep duration
Ts. w(t) ∼ CN (0, σ2) is the complex additive white Gaussian
noise (AWGN) with the variance σ2.

The beat signal in (7) is generally sampled by an Analogy
to Digital Converter (ADC) at the sampling rate of fs, and
then the acquired discrete signal in a single sweep is given by

x[n] =

K∑
k=1

γk exp

[
j2π

(
μτk

n

fs
− f0τk − 1

2
μτ2k

)]
+ w[n]

(8)
where n = 0, . . . , N − 1, and N = �Ts · fs� is the number of
samples in a sweep, where �a� denotes the maximum integer
that is not larger than a.

Considering the technological difficulty of phase synchro-
nization among the multiple MIMO radar units, here we
consider that each MIMO radar unit within the system oper-
ates separately in the monostatic configuration. Namely, each
MIMO radar unit measures the scattered signals resulting
from its own transmissions. The virtual antenna array of
each MIMO radar unit is a uniform linear array (ULA) with
P = NTxNRx elements, and the spacing between two adjacent
elements is d = dRx [14]. Hence, the time delay varies linearly
for consecutive elements in the virtual ULA. Since the MIMO
radar unit used in the experiment has an even number of
receiving antennas, we assume that P = 2Q, but the system
model is also applicable if P = 2Q + 1. Fig. 2 shows the
virtual ULA geometry of each MIMO, where the 0th antenna
is the reference antenna.

Taking advantage of the virtual array of each MIMO unit,
the signals acquired by a small MIMO array is equivalent
to that measured by the corresponding virtual ULA. So the

0 1-1 2-2 Q-Q-1 x

d

Fig. 2 Virtual ULA geometry of a MIMO

received signal by the qth element of the virtual array of the
mth MIMO, in a single sweep duration, can be represented as

xm[q, n] =

K∑
k=1

γk exp

[
j2π

(
μτ

(m)
k

n

fs
− f0τ

(m)
k

− 1

2
μ
(
τ
(m)
k

)2

+ f0
qd sin (θ

(m)
k )

c

)]
+ wm[q, n]

(9)

where q = −Q − 1, . . . , 0, . . . , Q, and τ
(m)
k = 2r

(m)
k /c

represents the roundtrip time delay caused by the distance r(m)
k

between the mth MIMO and the kth target. Parameterizing
the location of the kth target with rk and θk relative to the
reference MIMO, then r

(m)
k and θ

(m)
k can be obtained from

rk and θk through (5) and (6). Stacking all the measurements
in (9), we get a data matrix Xm ∈ C

P×N that is given by

Xm = [xm[−Q− 1], xm[−Q], · · · , xm[Q]]
T (10)

where

xm[k] = [xm[k, 0], xm[k, 1], · · · , xm[k,N − 1]]
T ∈ C

N .

3 Generalized 2D-MUSIC Algorithm for Joint
Range-DOA Estimation

3.1 Joint Range-DOA Estimation with Single MIMO Radar

For the mth MIMO radar, its acquired signal can be stacked in
a data matrix Xm ∈ C

P×N (as shown in Fig. 3), and then it is
used as the input for range and angular estimation. However,
when received signals are highly correlated or coherent, the
rank of signal subspace would be deficient. To restore the rank
of the signal covariance matrix, the forward-backward spatial
smoothing (FBSS) technique [15] is generally employed. As
the virtual array of each MIMO radar in the monostatic
configuration is a ULA and the signal samples are sampled
uniformly within each sweep (i.e., fast time), 2D-FBSS is
applied along both spatial and time dimensions for each
ULA. We define a window of dimensions [l1 × l2], where
K < l1 < P and K < l2 < N , and then scan the data
matrix in all possible positions (see Fig. 3). Then, we have
p1 = P − l1+1 sliding positions in the spatial dimension and
p2 = N − l2 + 1 sliding positions in the time dimension.

For each sliding position p̃ = (p̃1, p̃2), the sub-matrix
Dm ∈ C

l1×l2 is

Dm(p̃) = [xm(p̃2),xm(p̃2 + 1), · · · ,xm(p̃2 + l2 − 1)] (11)
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Fig. 3 Data matrix of the mth MIMO with sliding window

where p̃1 = 0, 1, · · · , P − l1, p̃2 = 0, 1, . . . , N − l2 and

xm(p̃2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

xm(p̃1 −Q− 1, p̃2)
...

xm(p̃1, p̃2)
...

xm(p̃1 + l1 −Q− 2, p̃2)

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ C

l1×1 (12)

Each sub-matrix is reshaped into a vector of l1l2 × 1 by
stacking its columns one by one, as

dm(p̃) = vec(Dm(p̃))

=
[
xm(p̃2)

T,xm(p̃2 + 1)T, · · · ,xm(p̃2 + l2 − 1)T
]T

(13)

and then collected into a new data matrix D̃m ∈ C
l1l2×p1p2 .

Then, the smoothed covariance matrix Rm ∈ C
l1l2×l1l2 can

be obtained as [1]

Rm =
1

2p1p2

[
D̃mD̃H

m + J(D̃mD̃H
m)∗J

]
= A(m)

s R(m)
s (A(m)

s )H + σ2I

(14)

where J ∈ C
l1l2×l1l2 is a reflection matrix

J =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 1
... 0 1 0

0 . .
.

0
...

1 0 · · · 0

⎤
⎥⎥⎥⎥⎦ , (15)

R
(m)
s ∈ C

K×K is the covariance matrix of received signals
(excluding noise), and columns of A

(m)
s ∈ C

l1l2×K contain
steering vectors of all targets

A(m)
s = [am(r1, θ1), · · · ,am(rK , θK)] (16)

The steering vector of the kth target relative to the mth MIMO
can be expressed as

am(rk, θk) = a(r)m

(
r
(m)
k

)
⊗ a(θ)m

(
θ
(m)
k

)
(17)

where rk and θk describes the location of the kth target relative
to the reference MIMO. a(r)m ∈ C

l2×1 and a
(θ)
m ∈ C

l1×1 are
steering vectors of the range r

(m)
k and DOA θ

(m)
k for the

kth target relative to the mth MIMO radar, respectively. The
relations between r

(m)
k , θ

(m)
k and rk, θk are given by (5) and

(6).

From the signal model in (9), we can write the range and
DOA steering vectors a

(r)
m and a

(θ)
m in (17) as

a(r)m

(
r
(m)
k

)
=

[
1, · · · , exp

(
j2πμ

2r
(m)
k

c

l2 − 1

fs

)]T
(18)

a(θ)m

(
θ
(m)
k

)
=

[
exp

(
j2πf0

(−Q− 1)d sin (θ
(m)
k )

c

)
,

· · · , exp

(
j2πf0

(l1 −Q− 2)d sin (θ
(m)
k )

c

)]T
(19)

Applying eigenvalue decomposition (EVD) or singular
value decomposition (SVD) to the smoothed covariance matrix
Rm, one can get

Rm = U(m)
s Σ(m)

s

(
U(m)

s

)H

+U(m)
n Σ(m)

n

(
U(m)

n

)H

(20)

where U
(m)
s ∈ C

l1l2×K is the signal subspace that contains
eigenvectors of the K largest eigenvalues Σ(m)

s ∈ C
K×K , and

U
(m)
n ∈ C

l1l2×(l1l2−K) is the noise subspace which includes
eigenvectors of the (l1l2 − K) smallest eigenvalues Σ

(m)
n ∈

C
(l1l2−K)×(l1l2−K).
The columns of A

(m)
s in (14) span the same space as the

columns of signal subspace U
(m)
s in (20). However, A

(m)
s

and U
(m)
n are not perfectly orthogonal to each other due to

the influence of noise. Thus, targets’ positions are generally
estimated by minimizing the following objective function,

argmin
r,θ

aHm(r, θ)U(m)
n

(
U(m)

n

)H

am(r, θ) (21)

To address the minimization problem in (21), grid search
can be used. A search grid can be defined over the domain
of possible targets’ locations (i.e., range-angular domain) with
respect to the reference MIMO radar. Then, the search grid for
each MIMO radar can be obtained through (5) and (6). After
that, using the principle of MUSIC approach, the minimization
problem in (21) for joint range-DOA estimation can be con-
verted to evaluate the following 2D pseudo-spectrum fm(r, θ)
for the mth MIMO radar

fm(r, θ) =
1

aHm(r, θ)U
(m)
n

(
U

(m)
n

)H

am(r, θ)

(22)

where am(r, θ) is the steering vector for a possible target’s
position to the mth MIMO, which is defined in (17). Through
the grid search, the associated parameters of the spikes of
fm(r, θ) indicates the estimated positions of targets.

3.2 Signal Fusion of Multiple MIMO Radars for Super-
resolution Range-DOA Estimation

In this subsection, signal fusion of multiple MIMO radars
is discussed to improve the (azimuth) angular resolution of
targets’ position estimation. For a radar system consisting
of Nr identical small MIMO arrays (as shown in Fig. 1),
the phase histories of scattered signals acquired by each
MIMO arrays are connected via their geometrical relations;
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thus, one can take advantage of the relations among scattered
signals acquired by each MIMO radar and jointly construct the
noise subspace and steering vectors for high-resolution DOA
estimation [8].

Since the system contains Nr identical MIMOs, we have
to integrate estimation results of all virtual arrays to obtain
the final result. The same search grid is applied to all virtual
arrays to maintain geometrical constraints, which includes all
potential targets’ positions parameterized with the range r and
DOA θ relative to the reference MIMO. Then the search grid
can be transferred for each MIMO via (5) and (6).

Virtual arrays in the system do not share measured data
samples with one another, which means every virtual array can
do estimation individually. Nevertheless, our main objectives
are to improve azimuth resolution and get robust estimation
result by jointly using multiple MIMOs. We prefer to coher-
ently integrate all virtual arrays during the search stage instead
of fusing individual estimation results. Therefore, we jointly
constructs the noise subspace and steering vectors based on
the geometrical relations among different MIMOs [8].

The generalized 2D-MUSIC spatial spectrum function for
integrating all virtual arrays in monostatic configuration can
be written as

f(r, θ) =
1

aH(r, θ)UnUH
na(r, θ)

(23)

where a(r, θ) ∈ C
Nrl1l2×1 and Un ∈ C

Nrl1l2×Nr(l1l2−K)

are joint steering vector and noise subspace of the system,
respectively.

The joint steering vector a(r, θ) can be expressed as:

a(r, θ) = [a−M (r, θ); . . . ;am(r, θ); . . . ;aM (r, θ)] (24)

The joint noise subspace Un is constructed as:

Un =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U
(−M)
n 0 · · · · · · 0

0
. . .

. . .
...

... 0 U
(m)
n 0

...
...

. . .
. . . 0

0 · · · · · · 0 U
(M)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where m = −M, . . . ,M .
Simplifying (23), one can get

f(r, θ) =

(
M∑

m=−M

am(r, θ)HU(m)
n (U(m)

n )Ham(r, θ)

)−1

=

(
M∑

m=−M

f−1
m (r, θ)

)−1

(26)

where fm(r, θ) is defined in (22).
Note that when there is only a single MIMO, (26) is

simplified to the traditional 2D-MUSIC algorithm.

4 Numerical Simulations

To emulate the forward-looking radar and two corner radars
in the facade of an autonomous vehicle, an automotive radar
system consisting of three small identical coherent FMCW
MIMO radar is considered. The three MIMO radars are placed
along a line with inter-spacings of ds = 0.5m and operate in
the monostatic configuration. Each small MIMO radar operates
at the centre frequency of fc = 76.5GHz and has two
transmitters and four receivers, which results in a virtual ULA
with the inter-element spacings of d = λ/2. Without explicit
declariation, the configurations of radar system above are used
for both point and extended target simulations below.

4.1 Point Targets Simulations

Point targets simulation is presented in this section. The signal
bandwidth of the FMCW radars is B = 600MHz and the
sweep duration is T = 60μs. In each sweep, N = 372 time
samples are acquired with sampling frequency fs = 6.2MHz.
Three point targets are set in the observation scene, where
two of them are placed in the same range while two of
them locates in the same bearing direction relative to the
composed radar system. Targets’ ranges and azimuth angles
are (19.95m,−2.4◦), (19.95m, 3◦) and (20.2m, 3◦). The
synthetic radar data is generated with the signal to noise rate
(SNR) of 15 dB in all simulations.

By taking advantage of the generalized 2-D MUSIC algo-
rithm with the search grid of ΔR = 0.02m and Δθ = 0.02◦,
respectively, in range and azimuth dimensions, the joint es-
timations of range and DOA of targets are obtained. Fig. 4
displays the pseudo spectra obtained with both a single MIMO
and the composed system with three MIMO radars in the
monostatic configuration. In both case, 2D-FBSS with sliding
window size of [5× 100] is employed along both spatial and
time dimensions. Comparing Fig. 4 (a) with (b), one can see
that azimuth resolution clearly improves with the composed
system of three MIMO radars in the monostatic configuration
(i.e., by fusing the signals from three MIMO radars). For better
illustration, the angular slice of the pseudo-spectrum of the two
point targets in the same range bin is shown in Fig. 5.

Meanwhile, Fig. 6 shows the range slice of the pseudo-
spectrum of the two targets in the range bearing direction
relative to the radar system. It is clear that both the single
MIMO radar and the composed radar system achieve better
down-range resolution compared with the Rayleigh range
resolution (δR = 0.25m).

4.2 Electromagnetic Simulation of Extended Target

A numerical experiment for an extended target is demonstrated
in this section. The FMCW MIMO radar signal is generated
in the frequency domain with the electromagnetic simulation
software HFSS SBR+ with a full-scale car CAD model as an
object. The radar signal bandwidth is set to be B = 1GHz,
the frequency step is Δf = 2MHz and the sweep duration is
T = 0.5μs. After modulating the generated data with proper
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Fig. 4 Pseudo spectrum of three point targets when SNR is
15dB. (a) a single MIMO, (b) the composed radar system.
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Fig. 5 Slices of pseudo spectra of a single MIMO and the
composed radar system. Black line represents ground truth
of targets’ locations. The blue line represents slice of pseudo
spectrum of the composed radar system. The purple dashed
line represents slice of pseudo spectrum of a single MIMO.

group-time delays, the synthetic data is converted into the time
domain to get targets’ echo of FMCW radar. The equivalent
sampling rate is fs = 154GHz and then the downsampling
factor is set to 100. Then the number of samples per chirp
after downsampling is N = 770.

Fig. 7 illustrates the simulation setup of the extended
target together with the radar system. The simulation scenario
consists of a full-scale car CAD model and the ground.
The relative down-range distance between the car and radar
system is 20m. The inter-MIMO spacing is 0.5m. Elevation
and azimuth beamwidths of each antenna are 20◦ and 120◦,
respectively.

Fig. 8 displays the pseudo spectrum of the generalized 2D-
MUSIC algorithm with a single MIMO and the monostatic
configuration of the radar system. Although the 3D extended
target is considered, the estimation results are, for convenience,
displayed in a 2D coordinate. As the target is far away
from the radar system, top view of the extended target can
approximately describe the size of target indicated by the blue
box in each plot. In addition, we set −25 dB as the threshold
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Fig. 6 Slices of pseudo spectra of a single MIMO and the
composed radar system. Black line represents ground truth
of targets’ locations. The blue line represents slice of pseudo
spectrum of the composed radar system. The purple dashed
line represents slice of pseudo spectrum of a single MIMO.
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Fig. 7 Ground truth of an extended target with the radar
system: (a) top view, (b) right view.

for the normalized singular values to estimate the number of
targets for each virtual ULA. Then the maximum value is
selected as the estimated number of targets. Strong reflection
points are corresponding to the front side and wheels of the
car. Fig. 8 indicates that the composed radar system with
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Fig. 8 Estimation results of an extended target with ground:
(a) a single MIMO, (b) the composed radar system.

three MIMO arrays is helpful to extract more strong reflection
points, and then the estimation obtains a better profile of the
target.

5 Conclusions

In this paper, a novel methodology to improve the azimuth
angular resolution of automotive radar is proposed by fusing
the signals from multiple small MIMO radar systems placed
along the facade of a vehicle. A generalized 2D-MUSIC
algorithm is developed to fuse signals for super-resolution
estimation of targets’ DOAs. This proposed approach is also
applicable for multistatic configuration of the radar system.
Although the estimation accuracy of the proposed generalized
2-D MUSIC, similar to MUSIC, depends on the search grid,
it can be improved by applying an iterative grid refinement
method. In the implementation, the computational speed of
the proposed approach can be significantly accelerated via
proper parallel computing of the pseudo-spectrum related to
each steering vector, which is attractive for practical usage of
automotive radars.
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