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Summary

There is a trend in the development of safety concepts as well as in economical approaches to
structural design to imply more probabilistic concepts. Recent developments were the introduc-
tion of partial safety concepts such as Load and Resistance Factor Design (semi-probabilistic)
or risk based approaches like the Dutch regulations for dike safety where a certain failure proba-
bility is assigned to each dike ring based on the potential consequences of dike failure. Also Life
Cycle Cost Assessment (LCCA) or maintenance strategies are based on structural reliability
considerations respectively the development of the structural reliability over time.

In this thesis an attempt is made to contribute to this development by describing how
structural reliability analysis can be carried out in geotechnics, a discipline that deals with
large uncertainties in the properties of its most important building material - the soil. As
specific subject the structural reliability of deep excavations was chosen. Several examples will
demonstrate the applicability of the presented theoretical framework. Furthermore, the Finite
Element Method, as state of the art structural analysis tool, will be applied for the reliability
assessment.

The combination of advanced models and relatively high parameter uncertainty makes the
use of reliability analysis methods in combination with the Finite Element method very attrac-
tive. It is a way of dealing with uncertainties and lack of knowledge in a rational manner and
of using advanced modelling techniques at the same time.

For the reliability analysis the program ProBox is used. It is being developed by TNO built
Environment and Geosciences and comprises probabilistic calculation techniques that can be
applied to all kinds of models. For the Finite Element calculations the program Plaxis 8.2 is
used, a code for 2D geotechnical problems. This way level II and level III reliability analysis
methods can be applied in combination with advanced structural analysis tools.

The underlying theory is explained followed by a description of the implementation of the
reliability analysis coupled with FEM. Finally calculation examples and case studies demonstrate
the applicability of the presented methodology. A goal is to show that fully probabilistic analysis
can be carried out in this manner.
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Chapter 1

Introduction

1.1 General Considerations

Probabilistic concepts have made their way into safety concepts as well as into economical
approaches to structural design. Recent developments are the introduction of partial safety con-
cepts such as Load and Resistance Factor Design (semi-probabilistic) or risk based approaches
like the Dutch regulations for dike safety where a certain failure probability is assigned to each
dike ring based on the potential consequences of dike failure. Also Life Cycle Costing or mainte-
nance strategies are based on structural reliability considerations respectively the development
of the structural reliability over time.

Probability and reliability theory form the foundation for these concepts. Furthermore, the
determination of the reliability of a structural design respectively a structure is an essential sub-
task within these ideas. In this thesis work an attempt is made to contribute to this development
by describing how structural reliability analysis can be carried out in geotechnics. This disci-
pline deals with large uncertainties in the properties and in the modelling of its most important
building material - the soil. As specific subject the structural reliability of deep excavations was
chosen, for which several examples will demonstrate the applicability of the presented theoretical
framework. The Finite Element Method, as state of the art structural analysis tool, is applied
for the reliability assessment.

The Finite Element Method has made complex analysis of geotechnical problems possible
and has lead to more insight into the soil behavior itself. There are plenty of material models
available that perform well in modelling specific material behavior aspects, such as creep, hard-
ening/softening or stress-dependent stiffness etc. Nevertheless the model error and the modelling
uncertainty, which is introduced by individual modelling choices, definitely have to be included
in the considerations. The main problem is that the parameter uncertainty is usually very high
due to the limited amount of soil investigation and the deficiencies of the soil investigation meth-
ods. As a consequence the use of reliability analysis methods in combination with the Finite
Element method becomes very attractive. It is a way of dealing with the uncertainties in a
rational manner, using advanced modelling techniques at the same time.

Current design codes are based on partial safety concepts. The load and material factors are
ideally calibrated by means of probabilistic analysis. These factors might be suitable for a wide

2



Structural Reliability Applied To Deep Excavations 3

range of typical applications, but they were certainly not defined for specific, e.g. extreme cases
like very deep excavations. Reliability analysis allows us in principle to determine the reliability
of any structure directly and , furthermore, the suitability of the prescribed partial safety factors
can be assessed.

In this thesis reliability methods will be coupled with Finite Element analysis. It will be
discussed, which information from the FEM-analyses can be used for the limit state functions in
the reliability analysis to obtain appropriate information about the reliability. The realization
of this coupling is one of the main goals. Furthermore, the target reliability levels of the design
codes will be compared with the reliability obtained by the analyses. The uncertainties involved
in the modelling process should be accounted for in an appropriate manner.

MSc thesis Timo Schweckendiek



4 Structural Reliability Applied To Deep Excavations

1.2 Probability and Statistics

Reliability analysis is based on the theory of probability. Elements of a system as well as the
load events that might occur can be modelled as stochastic quantities. Probability theory is
applied to obtain failure probabilities based on these uncertain load and strength conditions.

There are basically two ways to look at probability and statistics. One is the frequentist
approach which deals usually with long series of similar events, the other is the degree-of-belief
approach that treats uncertainties as the confidence one has in a certain ’state of the world’.

Uncertainties themselves can be subdivided in two basic categories. There are natural pro-
cesses with a variability that is practically unforeseeable. This kind of physical randomness can
be classified as aleatory uncertainty. On the other hand there are well defined states of the
world which we are just not able to describe precisely due to lack of knowledge. This kind of is
uncertainties is usually called epistemic. Often the first category is also referred to as random
whereas for the second category the term uncertain is used.

In geotechnics we mainly deal with processes or states that are not random, but we lack
the knowledge about their exact properties. The subsoil has certain properties which we are
not able to measure exactly and we measure them only in discrete points. From the discrete -
already uncertain - data we build averages for modelling the soil using homogeneous fields. Thus
we have to deal with epistemic uncertainty and we understand the outcome of our probabilistic
calculations as degree-of-belief. Furthermore we do not account for the natural spatial variability
of the soil properties by modelling the soil continuum with homogeneous layers. The treated
processes are assumed to be time-invariant and the expressed probabilities are therefore not to
be understood as referring to any time-fraction. Variability in time is thus not subject to this
research, however, it is implicitly considered in load and strength reduction assumptions.

In some situations, as for the case when spatial variability is modelled by heterogeneous
fields, we assume things to be random even though one could argue that the soil state, the
soil properties in a certain place, are deterministic. The randomness is in this case rather a
modelling assumption that allows us to use more effective tools for estimation and inference and
therefore to achieve more accurate outcomes.

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 5

1.3 Uncertainties in Geotechnical Design

Modelling and designing geotechnical structures involves three major classes of uncertainties
where a designer has to make decisions when he designs the structure deterministically. In
figure 1.1 1 these decisions and their influence are illustrated by means of a decision tree2.

Figure 1.1: Uncertainties in Geotechnical Design

It shows that the cumulation of modelling assumptions leads to a certain outcome for the
estimated failure probability as result of the design calculation. Pessimistic or conservative as-
sumptions lead to a high calculated failure probability and an under-estimation of the reliability
of the structure and vice versa.

The first of the three basic steps is the geometry discretization and the subsoil character-
ization using the data obtained during the site investigation. A major contribution to the
uncertainty in the system response is the uncertainty in the input parameters respectively in
the (soil) model parameters. The uncertainties especially in the soil parameters mainly derive
from:

• Spatial variability of soil properties

• Sample disturbance for laboratory tests

• Imprecision of insitu testing methods

• Imprecisions and differences in laboratory tests and equipment
1thanks to Ed Calle, figure slightly modified
2All the decisions made in figure 1.1 could be from a continuous range of possibilities, however, here they are

simplified as discrete options for sake of simplicity. The graph does not intend to show any quantitative relations
or dependencies between different paths.
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6 Structural Reliability Applied To Deep Excavations

Geotechnical structures are usually modelled with homogeneous layers and the statistics of
an ideally large number of tests are taken as characteristic for the whole layer being modelled.
The influence of the intrinsic variability of soil in space is hereby neglected in both, sample
interpretation and predictive modelling. To account for this aspect, the soil can be modelled
with heterogenous fields, which is commonly achieved by random fields. In that case the auto-
correlation in the soil properties and its length scale, commonly called spatial correlation length3

θ, have to be taken into account. If homogeneous soil layers are used for modelling the subsoil,
alternatively averaging effects can be accounted for depending on the correlation structure of
the soil and the mechanism.

The second step is modelling of the groundwater conditions respectively the pore pressure
field. The assumptions regarding ground water can be of large influence for calculated stability
and deformations. An illustrative example for this fact are the different possibilities of pore
pressure modelling for a simple excavation problem.

Figure 1.2: Pore Pressure Modelling for Excavations

The three examples of pore pressure models presented in figure 1.2 show that the resulting
effect of the pore pressure on the retaining wall can be significantly different in magnitude as
well as in distribution. In other words, the uncertainty in the system response can be to a
considerable amount due to the uncertainty in groundwater conditions, even though in this
example this is demonstrated by model and modelling uncertainty.

3The properties of two soil samples at distance larger than θ are practically statistically independent, for
shorter distances they are correlated.
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Finally, we make choices concerning the constitutive models, the calibration of parameters
is performed and the model is used for predictions of the system response. Also in this phase
uncertainties enter the modelling process. At first, constitutive models are developed in order
to reproduce and predict the behavior of a material as realistically as possible. However, they
never achieve this goal perfectly. This fact causes a model error that is difficult to quantify, but
should be taken into account as an uncertainty.

Furthermore, modelling assumptions that are made for example regarding the structural
members used, like plastic hinges etc, form part of the overall uncertainty. Modelling remains
an imperfect description of real world behavior. This is a result of model errors and subjective
choices in the modelling process.

1.4 Benefits of Uncertainty and Reliability Analysis

The stochastic analysis of uncertainties in a system’s response can be used for different purposes.
In the following list there are a number of categories of methods listed, each of them involving
uncertainties, but all with different goals:

1. Uncertainty Analysis:
Its aim is the description of the output distribution or at least its main characteristics,
like its first central moments, based on the input uncertainties.

2. Reliability Analysis:
The reliability of a system or process is analyzed using pre-defined failure criteria expressing
unwanted events. The result is commonly expressed in terms of a reliability index or a
probability of failure.

3. Risk Analysis:
Takes furthermore into account the possible consequences of certain actions. It is therefore
closely related to decision-making.

4. Probabilistic Design:
Supports decision-making by balancing investments and risks. It includes all the previous
ones extended by economically rational decision criteria.

This work mainly focuses on the first two types, especially on reliability analysis, but the results
can be used and are necessary for risk analysis and risk-based design approaches for the quan-
tification of risks. These approaches are rational concepts and should lead to more economic
design.

Furthermore, for extreme structures that go beyond past experience there are no design
codes or regulations where their design could be based upon. Nevertheless, their safety level has
to be assessed and it has to fulfill certain requirements. Probabilistic design approaches, such
as structural reliability analysis enable us to make these decisions and assessments on a solid
rational basis.

MSc thesis Timo Schweckendiek



8 Structural Reliability Applied To Deep Excavations

1.5 Outline

In part I the relevant literature on the subject is summarized, ranging from general structural
reliability theory over the use of the Finite Element Method within these concepts to the impli-
cations of the types of variability of the soil properties. Subsequently the theories of uncertainty
and reliability analysis are discussed. The focus is on structural reliability analysis methods
that are especially developed for efficiently determining the probability of failure of structural
elements or systems.

In part II the practical implementation of the combination between reliability concepts and
Finite Element Modelling is explained. The main tools that were used for this purpose are the
two-dimensional finite element code Plaxis 8.2 (Brinkgreve et al, 2004 [6]) and the program
ProBox, developed by TNO (Netherlands Institute for Applied Scientific Research), which is a
generic tool for probabilistic analysis. The relevant features of both programs and their coupling
are discussed. The main limit states are explained, also in the context of system behavior.

Part III contains simple calculation examples and a case study. The calculation examples
are simple and illustrative and demonstrate the application of the proposed methodology. The
case study treats an imaginary, but realistic deep excavation problem in soft soil. Ultimately
conclusions and recommendations are presented.

Part IV contains the appendices.
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Chapter 2

Literature Review

This literature overview resumes the recent developments in the field of reliability analysis using
finite element analysis for geotechnical applications. Chapter 4 is dedicated to explaining the
reliability methods themselves in detail, for which reason they are not included here.

Currently there are basically three types of approaches described in the literature that are
summarized in the following sections. Further subjects like inherent soil variability will not be
treated here, instead the references to the relevant literature are made in the corresponding
chapters.

2.1 Reliability Analysis With Deterministic Finite Elements

This approach is based on using deterministic Finite Element Analysis (FEA) for every eval-
uation of the limit state function within the framework of the reliability methods (see chapter
4). Some of these methods require partial derivatives of the limit state functions (LSF) that
have to be calculated numerically in this case. In this approach the soil is treated as variable
in its properties, but it is still modelled with homogeneous layers. This is also sometimes called
random average approach. Averaging effects of the soil properties can be important for the
modelling of the variance in the soil properties. These are addressed in section 2.4.

This kind of reliability analysis using deterministic finite element analysis involves an in-
teraction of the two analysis parts, reliability and FEA, via clearly defined interfaces. The
reliability analysis determines the input for the FEA, which then delivers the output of each
deterministic calculation. These outputs are used by the reliability analysis for evaluating the
LSF. The reliability tool works as a ’layer around the FEA’.

Overviews of available methods and their performances are given in the PhD-thesis of Paul
Waarts (2000) [45] and in the paper of Vrouwenvelder and Chryssantopoulos (2004) [44]. Waarts
[45] illustrates by means of a number of examples from structural and geotechnical engineering
the precision and efficiency of different reliability methods.

Waarts also uses artificial LSF with certain mathematical properties like strong non-linearity
and discontinuity or degenerated LSF with e.g. two branches. His conclusions for several tested
Level II and Level III methods are that FORM-ARS (First Order Reliability Method combined
with Adaptive Response Surfaces perform best within the class of Level II methods. The response
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10 Structural Reliability Applied To Deep Excavations

surfaces smoothen the LSF and avoid thereby problems of discontinuities and non-differentiable
points. FORM itself can deliver wrong answers for strongly curved or concave limit states.
It only finds global minimum design points in relatively flat limit states with certainty. Its
performance in terms of calculation time (number of iterations) is sensitive to the choice of
the starting point which implies that performance can be improved by the applying a priori
knowledge about the limit state. SORM (Second Order Reliability Method) encounters the
same problems as FORM, but can give better end results for curved LSF. If the LSF is very
strongly non-linear also SORM fails to deliver correct results.

The tested level III methods were Monte Carlo Sampling (MC), Monte Carlo Importance
Sampling (MCI), Directional Sampling (DS) and Directional Adaptive Response Surface Sam-
pling (DARS). While DS and MCI are sensitive to the number of dimensions, MC 1 is not and
DARS seems quite insensitive for the artificial LSF tested in Waarts [45]. Level III methods do
not exhibit any weaknesses when it comes to complex shaped LSF. The number of limit state
function evaluations (LSFE) depends on the number of random variables and/or the failure
probability. The shape of the limit state is irrelevant to the calculation effort.

For the type of problem treated in this thesis, which is a structural reliability problem, the
limit states are usually non-linear and multiple limit states are involved. Therefore care has to
be taken with FORM. Second order corrections by SORM or system reliability analysis might be
a way to overcome these deficiencies. As long as the LSF is still relatively flat, however, FORM
is very fast and especially attractive for LSFE that are expensive in terms of computation time.
DARS is the option of choice when prior knowledge is absent and system behavior might be
involved, since it gives very precise answers with still low number of LSFE.

Some more advanced methods are presented for example in Bucher et. al (2000) [7] and applied
to problems in structural engineering. The authors propose a ’weighted radii’ approximation
which is a local-global approximation strategy for the response surface method (see section
4.2.4).

Figure 2.1: Response Surfaces for the Weighted Radii Method for (a) linear weights and (b)
non-linear weights in two-dimensional u-space (from Bucher et al (2000))

Classical polynomial response surfaces have some drawbacks regarding their flexibility of
assuming certain shapes and polyhedral response surfaces need a rather high number of check
points for a safe domain. The authors state that most of these problems can be overcome using
the ’weighted radii’ approach.

In principle a number of check points in order to determine the radii are used for the response
surface (RS). The weights that are given to the radii are expressed as function of the angle

1See appendix C for expected number of realizations in Crude Monte Carlo.

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 11

that the RS-point makes with the adjacent sampling points. Two typical response surfaces are
presented in figure 2.1. For details refer to the original paper [7].

The application of reliability methods in geotechnics is extensively presented by Baecher and
Christian (2003) [2]. The book contains basically four parts about general probabilistic and
statistical questions, soil variability, reliability analysis and system reliability. The relevant
contents from this book are elaborated in the corresponding chapters 4 and 2.4.

A number of works have been published by the Geotechnics Group from Graz University.
Two of their recent PhD-theses deal with the use of finite elements in reliability analysis. Thurner
(2000) [39] uses the Point Estimate Method (according to Zhou / Nowak 1988 [46]) for slope
stability problems, retaining walls and tunnels for ULS and SLS criteria. As FEM tool the
finite element code Plaxis (see Brinkgreve et al. 2004 [6]) has been applied. The results were
produced by this particular PEM method and not checked or compared with results obtained
by other methods. There are especially doubts about the suitability and accuracy of PEM for
the investigated problems. PEM is explained in detail in section 4.4.3.

The second thesis dealt with an approach applying random set theory (see Peschl 2004 [30]).
It gives usually upper and lower bounds of the calculated probabilities of failure and is mainly
attractive, like PEM, due to the low number of calculations. The method differs considerably
from classical probabilistic approaches and due to its limited precision it is not considered in
this thesis any further.

For ULS-calculations several authors used a method that is implemented in Plaxis, the ’φ-c-
reduction technique’ (see Brinkgreve and Bakker 1991 [5]). The principle of this technique is to
reduce the strength properties of the soil, the friction angle φ and the cohesion c, proportionally
in small steps until the limit of equilibrium is reached. The ratio of the limit values and the
start values results in a reduction factor MSF that gives an idea of the ’distance’ to failure
like classical safety factors. For detailed information about this technique refer to appendix F.
Other authors like Lane and Griffiths (1997) [25] applied the same principle of reducing the
strength properties of the soil by a common factor in various publications about slope stability
analysis using FEM.

Another possibility of loading the structure until ’failure’ is, in contrast to the strength-
reduction in the previous method, the increase of the self weight of the structure by increasing
the gravity constant g stepwise. Swan and Seo (1999) [38] apply this method for slope stability
analysis in combination with an elasto-plastic constitutive model. These methods are especially
suited for failure mechanisms concerning the soil body, i.e. they indicate collapse of the ele-
ments representing the soil. For mixed structures like retaining walls, however, they can give
information about overall stability, which is just one failure mechanism. The correlation with
and the triggering of other failure mechanisms or limit states has to be controlled in that case.

The definition of failure in the FEM calculations is a difficult subject that is not extensively
discussed in the literature regarding geotechnical structures.

Oberguggenberger and Fellin (2002) [29] address the sensitivity of the reliability analysis
to the choice of the input distribution function and propose alternative methods using random
sets or fuzzy sets. Their conclusions are based on a foundation bearing capacity problem that
they approached comparing a design value obtained with the Austrian code B4435-2 with the
outcomes of a Monte Carlo simulation where the soil properties and the load were taken stochas-
tic in the Brinch-Hansen bearing capacity formula. This comparison showed large differences

MSc thesis Timo Schweckendiek



12 Structural Reliability Applied To Deep Excavations

in Pf for different distribution functions of the input that were all fitted to the same data set
and all passed the goodness-of-fit tests. Indeed, this is a good example for the problem that
distributions can show a good fit to the data, however, the choice of distribution has still to
be done carefully. More specifically, the authors found large differences for shifted distributions
(three-parametric lognormal) and non-shifted distributions (two-parametric lognormal). In this
case by shifting the distributions the friction angle was practically declared to be physically
impossible below a certain value (shift parameter). Of course, this choice is very questionable.
They also emphasize that the meaning of a calculated probability of failure cannot be a failure
frequency, but rather a degree of confidence as described in the introduction part of this thesis.

2.2 Random Finite Element Methods

So far, in the first category, the soil was modelled with homogeneous layers, i.e. with random
average properties. The realizations of these average properties are based on the statistics of
of the samples that were taken from the area and ideally refined by regional experiences. It
is questionable, if the variability that is represented by these random averages reflects also the
variability along a certain failure plane respectively mechanism adequately. The answer to this
question can be found by simulating the spatial variation of the soil properties by means of
random fields. This technique is the basis for the Random Finite Element Method. In the
following we give a summary of some results that can be found in the literature where this
approach was applied to investigate the influence of the phenomenon of the inherent spatial
variability of soil.

In the field of geotechnical engineering the works of Griffiths and Fenton are widely recognized
and are based on the PhD-thesis of Fenton (1990) [12] and the book of VanMarcke (1983) [43]
about procedures for the generation of random fields.

With a finite element code working with random simulated random fields they investigate
the influence of spatial variability of soil on a number of geotechnical design problems. The soil
strength properties are treated as random variables and the correlation pattern is modelled by
an autocorrelation function using the spatial correlation length Θ as characteristic parameter.
Their works are restricted to 2D-plane-strain problems and isotropic spatial variability.

Figure 2.2: Geometrical Setup Bearing Capacity Problem from Griffiths (2001)

One of the problems treated is the bearing capacity of a foundation (Griffiths (2001) [15]).
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The problem geometry is illustrated in figure 2.2. An infinitely long strip foundation of width B
is loaded by a point load Q and the soil is supposed to behave undrained. An elastic-perfectly
plastic stress-strain law with Tresca failure criterion is used where E and ν are held constant
and cu (undrained shear strength) is the only random variable. cu is furthermore modelled with
a lognormal distribution and therefore the value of the shear strength assigned to the ith element
in the random field can be described as:

cui = exp(µlncu + σlncugi) (2.1)

,where gi is the value of the previously generated standard normal Gaussian random field in the
ith element.

The random fields are generated via LAS (Local Average subdivision), as explained in Fenton
& Vanmarcke (1990) [14]. The spatial correlation was defined by a function applied to the
logarithm of cu:

ρ(|τ |) = exp(− 2
Θlncu

|τ |) (2.2)

describing the correlation ρ between two values of cu in points with a mutual distance τ .

In the parametric studies carried out by the authors the bearing capacity factor Nc = Q/B
cu

that
results from increasing Q until failure is compared to an Nc obtained by an analytical solution
by Prandtl. The main conclusions were:

• Probably for very small values of Θcu the response is as if it was homogeneous and that
the Nc converges to the value found by Prandtl.

• For values of Θcu of around half the foundation width B, a minimum was found for Nc. As
confirmed by other studies, if the spatial correlation length is in the order of magnitude
of the size of the structure, the largest influence is observed.

• The authors investigated the probability that an analytical design would give larger values
for the bearing capacity than computed with the presented approach. It was concluded
that for reasonable ranges of COV (Cu) and Θcu a safety factor of 3 would be necessary
on the strength side to essentially eliminate this ’probability of design failure’, i.e. to
have a sufficiently low probability that the deterministically determined bearing capacity
using homogenous soil properties exceeds the bearing capacity that is calculated using the
random field approach.

Another paper of the same authors treats the active soil pressure on a retaining wall (Fenton
(2005) [13]). The same approach as in the bearing capacity problem is followed by compar-
ing an analytical solution (with the assumption of homogeneity) with the outcomes of RFEM
calculations using an elastic-perfectly plastic constitutive model with Mohr-Coulomb failure
criterion. This time tanφ′ (friction angle) and γ (volumetric weight) were represented as log-
normally distributed quantities. Therefore two Gaussian random fields have been generated,
both independent and with positive correlation between the two variables. The expressions for
the transformation to x-space values 2 and for the spatial correlation length are equivalent to

2x-space: all values correspond to real world units (contrary: u-space: all values are transformed to standard-
normal space)
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14 Structural Reliability Applied To Deep Excavations

the ones from the preceding example. The setup is illustrated in figure 2.3 where also a typical
calculation outcome can be contemplated.

Figure 2.3: Setup and Typical Outcome Retaining Wall Problem from Fenton (2005)

Again conclusions were drawn from a number of parametric studies regarding the spatial
correlation length and variation coefficients of the stochastic quantities:

• The behavior of a heterogeneous soil formation is more complex than the simple assump-
tions that led to the analytical formulae of Rankine (max. shear stress according to
Mohr-Coulomb criterion) or Coulomb (sliding wedge moving towards the wall).

• The assumption of independence between friction angle and unit weight is conservative in
this case.

• Again the effect was largest for the spatial correlation length being in the order of magni-
tude of the size of the structure.

• A significant difference was observed for either modelling K0 dependent on φ′ (spatially
variable) or modelling K0 constant according to the mean value over the whole field. In
both cases totally different mechanisms are observed depending on the initial stress field.
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Also in a paper about probabilistic slope analysis (Griffiths (2004)) the authors conclude
that the assumption of perfect autocorrelation of the strength properties of the soil can lead to
unconservative results. Especially in this example the difference between pre-defined expected
failure surfaces, as is the for classical slope analysis with slip circles for example, and the FEA
where the failure mechanism is automatically determined by the weakest path.

Other works published by Hicks investigate the influence of soil heterogeneity on undrained
clay slope stability [17] and on a liquefaction problem [18]. In comparison to the previous
papers, Hicks introduces two features in his random field approach that include more realistic
soil property patterns, namely cross anisotropy of the spatial correlation length (Θvertical <
Θhorizontal) (see also figure 2.4) and a linear increase of the mean value of cu over depth.

Figure 2.4: Typical Random Fields from Hicks (2002) for (a) Θh/Θv = 1 and (b) Θh/Θv = 6

In this particular case the influence of cross-anisotropy was small and the linear increase of
the undrained shear strength over depth showed some influence. However, other works like by
Onisiphorou (2000) show that the influence can be significant, especially if the anisotropy occurs
under an angle where also the potential failure surfaces occur.

In most of the previously mentioned papers parameter studies have been carried out regarding
the influence of the variation coefficients of certain parameters and also their correlation. The
conclusions are usually restricted to the analysis response to these effects, not if these assump-
tions were realistic or reasonable. This thesis will follow similar approaches and assumptions
are made for reasonable parameter ranges. The determination of appropriate statistical input
is certainly subject to further research.

A drawback of the presented works is that in general it was not accounted for the influence of
the third dimension. The influence of this effect is probably considerable, especially for ultimate
limit state problems where the failure mechanisms are attracted by weak spots or surfaces.
However, there is not much known or published about the influence of the effects of the third
dimension considering random fields.

There is at least one thing that could be proven in all the presented works. The influence
of soil heterogeneity is not negligible and should be accounted for by proper modelling, either
directly by random fields or by using those for proper calibration of the averaging effects for the
corresponding mechanisms.
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2.3 Stochastic Finite Element Methods

The third and last category is the most sophisticated of this selection. Stochastic Finite Elements
account for the uncertainties in the input parameters implicitly within the Finite Element cal-
culation. A state-of-the-art report was written by Sudret and Der Kiureghian in 2000 [37]. The
authors refer to the Spectral Stochastic Finite Element Method (SSFEM), which was proposed
by Ghanem and Spanos (1990). In deterministic analysis a mechanical system Ω is characterized
by the loading, the geometry and the material properties. These systems are usually governed
by PDE (Partial Differential Equations). If there is no closed form of the solution of these PDE,
the system has to be discretized and solved numerically. In FEM the geometry of Ω is replaced
by a number of points x = x1, ..., xN that form the finite element mesh. The response of the
system is the displacement field u(x) and is gathered in the displacement vector U. The set of
PDE is transformed to a set of equations {ui}N

i=1.
If a soil property is now modelled as a random field, e.g. the Young’s modulus, the outcome

obtained by solving the stochastic set of PDE will be a displacement random field u(x, θ), where
θ denotes a basic outcome in the space of all possible outcomes. The discretization procedure
described previously, leads to an approximation of the response in form of a random nodal
displacement vector U(θ). The random variables ui(θ) are determined by all possible outcomes
of θ. This could be achieved by a finite set of points, e.g. by Monte Carlo strategies. However,
the strength of SSFEM lies in the fact that the above mentioned random discretization can be
done in a more efficient way using series expansion. Two methods are basically applied for that
purpose:

• Discretization of the random field by the truncated Karhunen-Loeve expansion

• Representation of the nodal displacements ui(θ) by its coordinates in an appropriate basis
of the space of random variables, namely the polynomial chaos.

The authors compared the proposed method to other methods that were directly coupled to
deterministic FEM-codes and found that the latter ones usually converged better and delivered
results with a higher accuracy. However, they tested the performance only using one example.
Therefore there could be applications where SSFEM outperforms other methods.

In this thesis this approach is not followed any further because the starting point was the
coupling of two existing codes (ProBox and Plaxis) and within this frame work SSFEM is not
applicable. It is however recommended to compare its performance with the results of this study
in further research.
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2.4 Soil Variability

There are several sources of uncertainty that pose difficulties for the proper modelling of a soil
body. Furthermore, there is an interaction between the following three aspects relative to the
determination of proper input statistics in a reliability approach:

• The model applied (e.g.characteristic average properties, random average properties, ran-
dom fields).

• The mechanism investigated (e.g. averaging effects depend on the mechanisms).

• The types of uncertainty / variability involved (e.g. measurement uncertainty, spatial
(inherent natural) variability, number of samples).

There are two information sources that give a good overview about the way soil properties
have to be described for probabilistic calculations and the modelling procedures themselves:

• ’Probabilistic Model Code’ [23] by the Joint Committee of Structural Safety (JCSS), sec-
tion 3.7: ’Soil Properties’.

• ’Reviewing Probabilistic Soils Modelling’ by Rackwitz (2000) [32].

A soil body can be described by a number of characteristics. These soil properties can be
subdivided into a number of groups that are classified according to the modelling purpose:

• Bulk respectively continuum properties:
These are physical and mechanical parameters describing the soil behavior or state pa-
rameters. They can refer to stiffness, strength, consolidation, permeability, porosity etc.

• Classification properties:
They are used for distinguishing between soil types and support the schematization of
the expected state of nature to be analyzed. Examples are color, grain size, mineral
composition, liquid/plasitc limits or organic contents. If there is information about the
soil type, usually also conclusions about its bulk properties can be drawn.

In this thesis work we will focus on the first type that is used for the models in the Finite
Elements analysis3, which is applied for the limit state function evaluation.

For modelling a geological formation for geotechnical purposes in a probabilistic manner
we usually use statistical data in order to determine the probabilistic input. In fact, there are
two basically different types of variability in our soil deposits that compose the overall variance
within our sample data. We have to distinguish:

1. Local Variation or Point Variation:
The local variations in a soil deposit derive from the fact that is is impossible to measure
the properties of the deposit continuously in every point. This epistemic uncertainty can
in principle be decreased by extending the soil investigation.

3Appendix J contains tables with typical values for soil properties and variation coefficients.
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2. Spatial Variation:
Soil is naturally spatially inhomogeneous. There are spatial fluctuations in the properties
due to the geological history of the deposit. This kind of uncertainty is inherent and can
be compared or modelled with a random process. Of course, we cannot influence this kind
of uncertainty.

For some problems for spatial variability an averaging effect will be observed, as for settlement
problems. For others like seepage problems the least conductive element is determinant. Also
for this type the spatial variability is an important aspect in the assessment.

Basically there are two classes of approaches to deal with the described phenomena. The
first is the random field approach, where the uncertainty is accounted for by a simulation, the
other is the adaptation of the input statistics in a ’random average’ approach accounting for the
averaging effects in the analyzed mechanisms. Both are discussed briefly.

Random Fields

The influence of the spatial variability of soil can be accounted for using random field theory. The
simulation of random fields is the generation of realizations of stochastic soil properties, variable
(and eventually correlated) in space. Fenton and Griffiths (2005) [13] have given an indication
in their paper that the soil heterogeneity has a considerable influence on the horizontal loads on
retaining walls. Their conclusions have to be treated carefully, since they used a plane-strain
model and 2D random fields, thereby neglecting the effect of the third dimension. There are
several possibilities of taking the third dimension into account. 3D random fields could be used
in combination with 3D-FEM models and it could be investigated how the spatial averaging
effects the results compared to the simplified 2D plane-strain assumption.

The approach that was used by Fenton and Griffiths in several papers and several by other
authors, is based on the concept of ’Local Average Subdivision’. It is described extensively in
Fenton and Vanmarcke (1990) [14]. Some examples have been presented in the previous section
in combination with the Random Finite Element Method (RFEM).

Spatial Averaging

In geotechnical analysis usually homogeneous soil clusters are modelled that refer to representa-
tive average quantities, i.e. a soil layer is contemplated as a homogeneous volume. The analyzed
deformations, sliding surfaces, rupture zones or deformed volumes are therefore also modelled
with these average quantities. If the size of such volumes or surfaces exceeds the spatial fluctu-
ation scale of the relevant soil properties significantly, averaging effects can occur.

For example the mean value of a soil property in a large volume is the average of the mean
values of its smaller subvolumes. However, the standard deviation in the large volume is smaller
than the standard deviation of the averages of the subvolumes. The structure and the scale of
the spatial variability have a major influence on this Spatial Averaging effect.

This implies that the variance within the affected volume or surface is likely to be smaller
than the variance that was determined for the whole field by small sample tests like triaxial tests
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or insitu tests like CPT.

A basic concept for working with spatial variability is the ’scale of fluctuation’ respectively
the autocorrelation length, within which a property in two contemplated points exhibits a con-
siderable correlation. In other words, the values in two points with a relatively short mutual
distance are likely to be of similar magnitude, whereas this likelihood decreases or vanishes with
increasing distance. In soil the autocorrelation length is larger in horizontal direction than in
vertical direction, i.e. the variability in vertical direction is higher than in horizontal direction,
which is due to the geological processes that formed the soil deposits.

Figure 2.5: Types of Autocorrelation (see [2])

In geotechnics often average properties are determinant. For slope stability problems for
example local weak spots are not sufficient to trigger failure or collapse. Stress redistribution
processes play an important role for this effect from the physical point of view.

In general it can be stated that, if the characteristic or activated length, surface or volume
(for example a slip surface in slope stability) is small compared to the autocorrelation length, the
local variability of the soil is determinant. On the contrary, if the structural dimensions are large
and the fluctuation ’wave length’ is even included several times in the size of the mechanism,
the average properties become more important. This also becomes obvious in figure 2.6.

To account for these effects a variance reduction factor Γu(V ) was defined as the ratio
between σuV (standard deviation of the average property) and σu (field standard deviation) and
is therefore dimensionless:

Γu(V ) = σuV /σu (2.3)

There are analytical 4 as well as numerical approaches 5 that suggest these spatial averaging
effects can be in the order of 0.95 to 0.4 for typical sliding surfaces in dikes or road embankments
in horizontal direction and even larger in vertical direction.

4see Probabilistic Model Code [23]
5see Vanmarcke 1977 [42]
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Figure 2.6: Local vs. Global Statistics (see [2])

For more detailed information one should refer to the ’Probabilistic Model Code’ [23], which
contains thorough elaborations on the subject.

Conclusions

For this thesis work some important consequences of this brief summary of the variability of soil
in all its forms can be pointed out:

• The determination of the stochastic model input, in this case mainly the soil parameters
is crucial for the results of the analysis. This input may be model dependent and also
dependent on the investigated mechanisms as well as the size of the mechanisms compared
to the property fluctuation scale. This should certainly be subject to further research.

• This thesis work will use the ’random average’ approach. For the analysis of structures
the variance reduction by averaging has to be taken into account in the model input
determination.

• The next step should be to verify by means of advanced methods, if the considerations
about averaging effects are reasonable. This could be achieved by means of random fields
for example.
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Chapter 3

Uncertainty and Sensitivity Analysis

When dealing with uncertain model input parameters, the central question is:

How does the uncertainty in the input parameters affect the uncertainty of the model
output?

To answer this question we have to propagate the uncertainties through the model (see fig. 3.1).

Figure 3.1: Propagation of Uncertainties Through a Model

Figure 3.1 shows that there are basically three steps in determining the uncertainty of the
model output:

1. Quantification of the uncertainties in the input / model parameters in terms of probability
distributions and their mutual dependence, usually by means of statistical analysis.

2. Propagation of the uncertainties through the model.

3. Evaluation of the model output uncertainties. How are they composed and what can be
done to decrease them?

The focus in this work will be on the second part of the process - the propagation of uncer-
tainties through the model. Since the outcomes of the calculations are used for determining the
reliability of structures, reliability methods will be applied, which imply uncertainty modelling
techniques and will be described in chapter 4.

Sensitivity analysis aims at identifying important parameters for the system response. This
can be helpful in both, pre-processing and post-processing. Before conducting an uncertainty
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or reliability analysis we normally want to filter out parameters of less significance in order
to reduce the modelling respectively computational effort. After obtaining the results of an
analysis, the sensitivity measures support our subsequent decisions. Usually investments are
needed either for reducing specific uncertainties or for modifications of the system. Sensitivity
analysis provides basic information about the expected benefits of these investments.

There are several possibilities to carry out sensitivity analysis and to express the ’importance’
of a variable for the system response. We can divide them into two categories, numerical and
graphical methods. The numerical methods can be subdivided into global and local sensitivity
measures.

The suitability of these methods is highly dependent on the problem to be analyzed. Some
are for example only suitable for (nearly) linear models, others only for monotonic behavior. As
a consequence there has to be already some knowledge about the characteristics of the problem
before adequate methods can be chosen.

3.1 Global Sensitivity Measures

Screening techniques are auxiliary methods for uncertainty analysis that aim to isolate the
variables that contribute most to the model outcome’s uncertainty. They are in fact sensitivity
analysis techniques and especially suited for problems with a large number of variables. The
following are some examples:

Individual Factor Variation

The simplest form of sensitivity analysis is the variation of individual factors (see e.g. Daniel,
1958 [9]). A reference calculation is carried out with nominal values for each variable. Sub-
sequently a series of calculations is carried out where for each only one individual variable is
changed once to a high extreme and another time to a low extreme value. The difference be-
tween each calculation and the reference result is called residual. According to the values of the
residuals the variables can be ranked with respect to their influence on the result.

Full Factorial Design

A drawback of the Individual Factorial Variation is that it does not give any information on the
interaction between individual variables. This problem can be overcome by full factorial design
(see e.g. Box et al, 1978 [3]) where e.g. k possible values are assigned to each of the n variables
and subsequently all nk model evaluations are carried out. This can lead to unpractically high
number of necessary calculations and is therefore not used often in this pure form. The following
methods are derived from the full factorial design and need less evaluations.

Fractional Factorial Design

According the variable interactions of most interest only part of the combination scheme of the
Full Factorial Design is carried out. This scheme can be designed especially for the desired
output and the rest of the method remains unchanged. (see e.g. Box et al, 1978 [3])
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Iterated Factorial Design

Iterated Factorial Design is another variant of Full Factorial Design, especially designed for
detecting the interaction between couples of two variables and with a relatively low number of
evaluations even for large numbers of variables. For details refer to Andres, 1997 [1].

Correlation Ratio

The problem of finding the most important parameters can be viewed as decomposing the
variance of the output according to the input variables. We would like to assign the uncertainty
of the output G that is caused by the contributions from uncertainties of the model inputs Xi

(i = 1, ..., n). Fixing Xi at a certain value and calculating how much the variance of G decreases,
gives us an indication about the importance of Xi. Therefore we consider the following quantity:

V ar(G|Xi = x∗i ) (3.1)

The question is which value x∗i should be chosen and, moreover, V ar(G|Xi = x∗i ) can be bigger
than V ar(G) for nonlinear models. One possible solution would be to average over all values of
Xi. Thus the following measure of importance of the variable Xi could be considered:

E[V ar(G|Xi)] (3.2)

where the expectation is calculated with respect to the distribution of Xi. The smaller 3.2, the
more important Xi. Another useful relation in this context is:

E[V ar(G|Xi)] + V ar(E[G|Xi]) = V ar(G) (3.3)

Therefore alternatively V ar(E[G|Xi]) can be used as importance measure and then holds that
the larger V ar(E[G|Xi]), the bigger the importance of Xi. From the above the following defini-
tion can be derived:

Correlation ratio 1:
For random variables G,X1, ...Xn, the correlation ratio of G with Xi is

CR(G,Xi) =
V ar(E[G|Xi])

V ar(G)
(3.4)

The correlation ratio is not symmetric (CR(G,X) 6= CR(X,G)).

1see Kurowicka (2005) [24]
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The correlation ratio is an important non-directional measure of uncertainty contribution. It
is always positive and does therefore not give any information about the direction of the influence.
Computing correlation ratios can be difficult, because it involves a conditional expectation which
is often not available in closed form. If it is possible to sample Y ′ from the conditional distribution
(Y |X) independently of Y , the following algorithm may be applied (here for two random
variables):

1. Sample (x, y) from (X,Y )

2. Compute G(x, y)

3. Sample y′ from (Y |X = x) independent of Y = y

4. Compute G′ = G(x, y′)

5. Store Z = G ∗G′

6. Repeat steps 1 to 5

The average value of Z is an approximation for E[E2[G|X]], from which the correlation ratio
may be computed as

E(E2(G|X))− E2(G)
σ2

G

(3.5)

If X and Y are dependent, it may be difficult to sample from (Y |X).

3.2 Local Sensitivity Measures

In contrast to the previously mentioned global sensitivity measures, the local ones do only give
information about the influence of a variable in a specific region. Examples for these are:

• the α-values in a FORM-calculation 2

• Local Probabilistic Sensitivity Measure 3 etc.

In fact, for reliability analysis the local sensitivities will be more important than global ones.
It cannot be ensured that all variables that are of significant influence in specific points, as e.g.
the so called design point, are identified by the global methods. Therefore attention will mainly
be paid to local sensitivity measures within the scope of this thesis.

The α-values in FORM are explained in section 4.4.1. For the other reliability methods
there are ways to approximate these α and this way comparable results can be achieved in the
reliability calculations.

2In fact these are partial correlation coefficients: αi = ρ(Z, Xi) = ∂iG(x∗) σi/σG
3Introduced by Cooke and Noortwijk (1998)
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3.3 Graphical Sensitivity Measures

In addition to the numerical methods there are very helpful graphical tools 4 tools that especially
allow us to control multi-dimensional problems, since the whole range of information can be
represented at once. Examples graphical representations of sensitivity are:

• Multiple Scatter Plots

• Cobweb Plots (conditional)

• Radar Plots etc.

Cobweb and Radar Plots allow us to visualize correlations between variables and other calculated
quantities. In both we can observe if for typically high/low values of one variable another variable

Figure 3.2: Typical Radar Plot of 16 Variables for Two Series

is also relatively high or low. Usually the ranges of the variables are normalized to this end.
The Cobweb plot tool, as e.g. implemented in UNICORN 5, gives furthermore the possibility
to conditionalize on a certain parameter range (normalized) of a variable. This feature is a
powerful tool for visual analysis of data sets with respect to dependencies (e.g. compare figures
3.3 and 3.4).

4for more information refer to Kurowicka and Cooke (2005) [24]
5Copyright 2005 TU Delft & HKV Consultants
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Figure 3.3: Cobweb Plot of a Dike Ring Reliability Analysis

Figure 3.3 shows the results of a MC-analysis of a dike ring reliability problem. Roughly
there are already some patterns in this graph that let us assume certain correlations between
the involved variables. In figure 3.4 the same data set has been conditioned on high values
of reliability (the very left column). This, for example, allows us to conclude that there is a
strong negative correlation with the third variable and positive correlation with the fifth one.
By conditioning and changing the order of variables (columns) these patterns can be identified
quite easily.

Figure 3.4: Cobweb Plot of the Same Analysis, Conditioned on High Reliability Values

(Both figures were taken from Kurowicka and Cooke (2005) [24])
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Chapter 4

Structural Reliability Analysis

4.1 Basics of Structural Design Philosophies

Most engineering problems can be reduced to two basic ingredients, supply and demand or,
more specific, load and resistance. The basic principle of structural design is that the resistance
needs to be larger than the load:

R > S (4.1)

where R is the resistance and S is the load (solicitation).

The primary task of design is to ensure that this performance criterion is ensured throughout the
life time of a structure. However, most of the quantities involved on both sides of the equation
are uncertain. The satisfactory performance according to the above mentioned criterion cannot
be assured absolutely. Instead, a probability of satisfying the criterion is to be evaluated. This
probabilistic way of assuring the performance is called reliability.

While reliability gives us the probability of non-failure under certain circumstances, often
the alternative way is chosen by looking at the probability of failure Pf . Both these terms
are complementary and their sum is therefore 1. Reliability is the probability of successful
performance.

4.1.1 Overall Safety Concepts

Traditionally the problem was approached using empirical safety factors that were based on
experience. It is important to notice that also safety factors cannot guarantee satisfactory per-
formance, neither do overall safety factors allow us to treat components of the system according
to their relative influence on the system performance.

Engineering design is usually an optimization problem with the two conflicting requirements
of maximizing safety and minimizing cost. Whereas classical safety factor design does not give us
any information about the relative importance of the parameters in this optimization problem,
probabilistic design methods do provide this information and allow us to design more rationally.
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Figure 4.1: Design with Overall Safety Factors

4.1.2 Load and Resistance Factor Design

A first step towards including probabilistic concepts in design methodologies is ’Load and Re-
sistance Factor Design’ (LRFD). Instead of using overall safety factors, partial safety factors
for load and resistance components of the system are used. These have to be established and
calibrated beforehand by fully probabilistic calculations and they account for the typical spread
(uncertainty) in the parameters and also for their relative influence on the system reliability.
The calibration is carried out with the constraint of a certain reliability level that is required
from the structure. LRFD allows us to design more rationally than using overall safety factors.

Referring back to the overall safety approach, the basic idea can be illustrated as shown
in figure 4.1. The ratio between estimated resistance and load has to fulfill a minimum value
considering ’best guesses’ for both quantities according to engineering judgement (or conservative
estimates alternatively):

R/S ≥ γ (4.2)

Figure 4.2: Design with Partial Safety Factors (LRFD)

When partial safety concepts like LRFD are applied, we use commonly high characteristic
values for the load parameters (Si,char) and low characteristic values for the resistance parame-
ters (Ri,char). These characteristic values are often chosen as the 95 % (non-)exceedance values
of the probability distribution of the respective parameter. In the following step the character-
istic values are multiplied with the aforementioned partial safety factors (γR, γS ≥ 1) and the
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following criterion has to be satisfied for satisfactory performance (see also figure 4.2):

Rchar

γR
≥ ScharγS (4.3)

As mentioned, LRFD is more rational than the use of overall safety factors. Its weakness
is, however, that there is a limited set of load and material (resistance) factors and this set
has to be calibrated in order to cover the majority of the cases that are likely to occur. As a
consquence it cannot be guaranteed that all the designs to which the set of factors is applied
result in the reliability level that was aimed for. Furthermore, a posterior check of the reliability
level is not an option, otherwise one would opt for fully probabilistic design approaches anyway.
The consequence is that usually it is chosen for a conservative calibration that is likely to
result in sufficient reliability for the cases that could be carried out within the scope of current
knowledge or the state of the art. This can lead to ’over-designed’ structures for a large number
of structures.

4.1.3 Probabilistic Design

The deficiencies of LRFD can be overcome by carrying out reliability analysis and thereby de-
termining the reliability of the structural design directly. This is the approach of probabilistic
design methods, which basically follow the steps mentioned earlier: uncertainty analysis, relia-
bility analysis, risk analysis, probabilistic design. In this work the focus will be on reliability
analysis and on the determination of the probability of failure Pf or its converse, the reliability
(probability of satisfactory performance).

Figure 4.3: Probability of Failure as Probability of the Load Exceeding the Resistance

Probabilistic design methods are not explained at this point in detail, but in essence fail-
ure probabilities and parameter sensitivities in combination with cost considerations regarding
failure (risk = probability of failure * cost associated with failure), maintenance or investments
are the basic variables in this approach. Therefore reliability analysis does not only give a more
rational measure of the structural safety level, but also parameters that are necessary for the
rational decision making and optimization processes, namely the failure probability and the
parameter sensitivities.
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4.2 Overview Reliability Analysis Methods

The standard reliability problem as schematized in section 4.1.3 can be characterized as follows.
A system can be in two states, the desired state and the undesired state which is complementary
to the desired one. A system in the undesired state is considered as failed. The boundary of
these two states is called limit state. Due to the uncertainties in the parameters characterizing
the system we cannot predict the state of the structure with absolute certainty, but we may
derive the probability of the system attaining the undesired state, the failure probability:

Pf =
∫

Z(x)≤0

fX(x)dx (4.4)

where X is the vector of random variables and Z(x) is the limit state function for the failure mode
considered. Negative values of Z correspond to failure, positive ones to satisfactory performance.
In fact this a k-dimensional integration problem with k as the number of random variables.

The reliability of a structure is often expressed by the reliability index β instead of the failure
probability:

β = −Φ−1(Pf ) (4.5)

with Φ−1 being the inverse of the standard normal cumulative distribution function.
The basic case for a reliability problem is the single mode failure with limit state function

Z where the probability of failure can be expressed as:

Pf = P (Z(X) < 0) (4.6)

It is usually convenient to transform all random variables X to the independent standard nor-
mal space, also called u-space. If independent random variables have to be transformed to
independent standard normally distributed variables we can use the simple relationship:

ui = Φ−1(FXi(Xi)) (4.7)

If the random variables are dependent, more complex transformation rules like the Rosenblatt
Transformation (Rosenblatt (1952) [33], Hohenbichler and Rackwitz (1981) [19]) have to be
applied.

The problem can now be rewritten in the form:

Pf = P (g(u) < 0) (4.8)

As stated before, the solution to this problem is basically the integration of the failure domain.
If the problem is solved numerically this might require a large number of limit state function
(LSF) evaluations, especially if the number of basic stochastic variables is high. If the LSF-
evaluations are ’cheap’ (low calculation time), this can still be feasible. However, if FEM-codes
are used for the LSF-evaluation, the calculation time can be considerable and usually at least
in the order of minutes. Therefore methods have been developed for reducing the calculation
effort, usually at the cost of accuracy.

In the following methods are presented that are commonly applied for this purpose. The suit-
ability of these methods will be investigated with respect to the particular calculation examples
and the case study.
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4.2.1 Level I Methods (semi-probabilistic)

Level I methods are usually applied in design codes for the verification of structures. They
can also be applied to obtain rough estimates of the reliability. In level I methods previous
knowledge is required about the basic random variables. It must be known, if they are of
load-type ∂g(u)/∂ui < 0 or of resistance-type ∂g(u)/∂ui > 0 in the whole parameter space
(u-domain). In this special case the reliability would be simply:

• U = |u| = β (for loads)

• U = |u| = −β (for resistances)

For an estimate of the reliability one can calculate the value of β for which g(u becomes zero.
The estimate is conservative as long as the limit state is not strongly non-linear. One way of
improving this estimate is giving weights to the different involved random variables according
to their influence on the limit state function, i.e. high weights close to one for dominant and
weights between zero and one to other variables. In fact, this effect is applied in the LRFD as
explained before and the partial factors are calibrated in probabilistic studies.

The Level I methods are only mentioned here for sake of completeness. They are not suit-
able for the investigated approach due to their low accuracy and especially because previous
knowledge about the influence of the random variables is required.

4.2.2 Level II Methods (fully probabilistic with approximations)

Level II methods take all the probabilistic properties of the random variables into account, but
they include approximations that at the same time can be severe limitations for their use in
specific problems. The following paragraphs give an overview of the basic ideas of this class
of methods, its (expected) calculation effort and its advantages and limitations. The methods
applied in this thesis are described more in detail in section 4.4.

First Order Reliability Method (FORM)

Hasofer and Lind (1974) [16] developed this approach that is based on the linearization of
the limit state function in u-space. It’s accuracy decreases with the degree of non-linearity of
the LSF in the regions of high probability density. A severe limitation is that FORM cannot
handle system behavior respectively multiple limit states. However there are possibilities to
treat the limit states separately and to combine them subsequently using system reliability
theory methods (see chapter 7). FORM should therefore only be used, when for a limit state is
known that neither non-linearities nor system effects have a significant impact on the result.

The applied algorithms (see 4.4.1) require the determination of partial derivatives that have
to be calculated numerically in case of using FEA for the LSF-evaluation. The algorithm imple-
mented in ProBox requires n+ 1 LSF-evaluations per iteration step. The number of iterations
is dependent on the smoothness and on the degree of linearity of the LSF. For the problems
considered the number of iterations needed to reach the convergence criteria should be in the
range of 5 to 20. The typical number of basic random variables to be treated in the problems
of this thesis will probably not exceed 20, also for reasons of interpretability of the results.

For a more detailed description of FORM see section 4.4.1.
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Second Order Reliability Method (SORM)

In SORM a second-order correction is carried out to account for the non-linearity of the limit
state. The success is dependent on the shape of the limit state. For non-linear, but smooth LSF
it will improve the result obtained by FORM by taking into account the second derivatives of
the LSF in the design point which are determined numerically. It can, however, also decrease
the accuracy of the result, if the LSF exhibits a ’rough’ surface and the second-order correction
is based on local curvatures that do not represent the general shape of the LSF (see figure 4.10).

SORM requires the same order of magnitude of LSF-evaluations like FORM, only an extra
determination of the local second derivatives. Depending on the implementation this can mean
only a few extra evaluations or roughly twice the evaluations compared with FORM.

For a more detailed description of SORM see section 4.4.2.

Point Estimate Method (PEM)

The method is essentially a weighted average method that works with sampling points and weight
factors, similar to numerical integration methods. The basic idea is to replace a given continuous
pdf by a discrete function with the same first three central moments (mean value µ, standard
deviation σ and skewness ν). The integration points and weights are chosen systematically
according to the input distributions. After propagating the integration points (points in pa-
rameter space are combinations of values of the basic random variables) through the model and
applying the according weights, the first two respectively three central moments of the response
are approximated.

This method is an uncertainty method by definition. In order to make it applicable for
reliability analysis we need more than an approximation of the central moments of the response.
In fact it is necessary to make some assumptions regarding the response distribution and its
parameters have to be fit to the obtained moments. Then this distribution is truncated at the
value describing the limit state to obtain the probability of failure. It is obvious that this method
is very sensitive to the choice of response distribution, since we are interested in the tail of the
distribution (low failure probabilities).

There is a plenty of variations of the PEM in the literature and the number of LSF-evaluations
varies between 2n and 2n, which is an attractively low number, especially when the number of
variables is low.

For a more detailed description of PEM see section 4.4.3.
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4.2.3 Level III Methods (fully probabilistic)

Level III methods are characterized as fully probabilistic and exact methods, exact in the sense
that no simplifying assumptions are implied. The accuracy of these methods can usually be
controlled by parameters like the variance of the resulting failure probability σPf

or step sizes
which also have an impact on the calculation time. The following paragraphs give an overview
over the basic ideas of some methods, their (expected) calculation effort, advantages and lim-
itations. The methods that are selected for application to the problem are described more in
detail in section 4.4.

Monte Carlo (MC) Methods are based on the statistical analysis of large numbers of model
outcomes, which are generated by randomly chosen values of the random variables. MC-methods
generally need large number of model evaluations depending on the calculated probability of
failure. In the following the basic Crude Monte Carlo as well as several other techniques are
presented that offer possibilities to decrease the number of calculations.

Numerical integration (NI) techniques approximate integrals usually by following their bound-
aries in small steps. In contrast to Monte Carlo the number of calculations is highly dependent
on the number of random variables.

Crude Monte Carlo Method

In the Crude Monte Carlo method random samples for each variable are taken and the model is
evaluated using these realizations of the random variables. The samples are taken using pseudo-
random number generators (PRNG) that generate uniformly distributed series of numbers that
exhibit serial independence. The uniform random numbers are transformed to the according
distributions by means of inversion or using other methods like e.g. the rejection method (see
Madras 2002 [26]), if the respective cdf is not invertible.

Figure 4.4: Generating Samples From a Distribution By Using Its Inverse CDF

If the model variables are independent, the samples can be taken from the marginal dis-
tributions. For dependent variables this can be the first step, but further transformations are
necessary.
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The obtained sample matrix

X =


x11 x12 . . . x1N

x21 x22 . . . x2N
...

...
. . .

...
xM1 xM2 . . . xMN

 (4.9)

has to be propagated through the model. Each of the N columns represents one realization of
the set of M model parameters. The N model outcomes according to these combinations can be
seen as one sample of the distribution of the model outcomes. This enables us to use standard
statistical techniques for the analysis of the model outcomes and its distribution as well as its
central moments.

For reliability analysis it is even simpler, because basically one only has to count the number
of times that a combination of parameters lead to failure and then use the following ratio for
the determination of the failure probability:

Pf =
number of calculations that lead to failure

total number of calculations
(4.10)

For Crude Monte Carlo the number of calculations is roughly inverse proportional to the
failure probability. Systems with a high target reliability require a large number of calculations
1 until the Pf shows a sufficiently low variance.

Stratified Sampling

Stratified Sampling aims for a more homogeneous distribution of the samples in the sample space.
To this end the sample space S is divided into non-overlapping subspaces Si, called strata. The
number of random samples taken from the subspaces Si corresponds to the probability mass in
the subspace Si/S (the probability that a sample is located in the subspace). The sampling is
carried out with distributions conditioned on the strata. This way a homogeneous distribution of
the samples even with relatively low numbers of samples can be achieved with a lower probability
of under-represented sample subspaces.

This method requires previous knowledge about the important sample regions to make a
good choice for the subdivision into strata. The improvement compared to Crude Monte Carlo
highly depends on this choice.

Quasi-Random Sampling (QRN)

Quasi-random number (QRN) sequences are presented as an alternative to pseudo-random num-
bers. They are generated with the purpose to cover the d-dimensional unit cube Id = [0, 1)d

more uniformly. Thus the rate of convergence is increased at the cost of serial independence
(compared to PRNG). A well-known generator was developed by Sobol (1967) [36]. It is based
on the concept of primitive polynomials.

1For an estimation method for the required number of calculations in Crude Monte Carlo see appendix C.
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Discrepancy (definition taken from [24])
The discrepancy of a quasi-random sequence is a measure of the uniformity of the
distribution of a finite number of points over the unit hypercube. Informally, a se-
quence of points is considered uniformly distributed in the d-dimensional unit cube
Id = [0, 1)d, if in the limit the fraction of points lying in any measurable set of Id is
equal to the area of that set.

Figure 4.5: Comparison Quasi Random Sample (left) with Pseudo Random Sample (right),
sample size: 1024 (from [24])

Referring to this definition, Quasi-Random Sampling is developed for decreasing the discrepancy.
Usually QRN yield more efficient estimators for a specific characteristic of a distribution like
in most cases the mean. They do not improve the efficiency of all estimators though, e.g. for
other central moments like the variance. For the approach of counting the number of failed
calculations this could mean that the estimate of the failure probability might be acceptable,
but we have the practical problem of lacking the possibility to use a convergence-criterion that
implies the variance of Pf .

Importance Sampling (IS)

When appropriately implemented, Importance Sampling can improve the efficiency of MC by
orders of magnitude. But again, previous knowledge about the function to be sampled is in-
dispensable and an inappropriate implementation can even decrease the efficiency by orders of
magnitude. The basic idea of the method is to sample from an ’artificial’ sampling distribution,
which is not the one given by the actual problem and chosen beforehand. A re-weighting of the
samples is carried out to get an unbiased estimate.
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Suppose, we want to estimate an integral I =
∫ 1
0 k(x)dx. The Crude Monte Carlo estimator

is based on the observation that I = E(k(U)) (with U ∼ U [0, 1] (uniformly distributed between
0 and 1)). Therefore our sampling estimator in Crude Monte Carlo is:

În =
1
n

n∑
i=1

k(Ui) (4.11)

For any pdf γ that is strictly positive on [0, 1] holds

I =
∫ 1

0

k(x)
γ(x)

γ(x)dx = E

[
k(X)
γ(X)

]
(4.12)

where X is a random variable with pdf γ. This leads us to the following estimator, which is
called importance sampling estimator based on γ:

Ĵ(γ)n =
1
n

n∑
i=1

k(Xi)
γ(Xi)

(4.13)

Equation 4.12 shows furthermore that Ĵ(γ)n is an unbiased estimator for I (E(Ĵ(γ)n) = I).

This is the basic idea of importance sampling and it can be implemented in many different
facets. Its benefit is that sampling from γ(x) will (probably) lead to faster convergence and
therefore to a smaller number of necessary calculations than for Crude Monte Carlo. Usually
we lack the knowledge about even approximate shapes of the LSF and therefore importance
sampling is considered to be unsuitable for the types of problem treated in this thesis.

Increased Variance Sampling (IVS)

Increased Variance sampling is a special case of Importance Sampling. It is especially suitable
for reliability analysis, since the only previous knowledge that is used for conditioning the sam-
pling pdf is that the limit state is ’far away’ from the origin of the sample-space. The variance
the input distribution is therefore increased. Thus more evaluations are carried out in, or close
to the failure domain. This results in an over-representation of the failure-domain, but it can
be corrected for the error in the way as explained for general importance sampling.

Quicker convergence can lead to a reduction of calculations compared to Crude MC. The
amount of reduction is uncertain and the number of LSF-evaluations is still considered to be in
the same order of magnitude as Crude Monte Carlo.
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Latin Hypercube Sampling (LHS)

In Latin Hypercube Sampling (LHS) (see Iman and Helton (1988) [22]; McKay et al. (1979) [27]),
which is a special case of stratified sampling, the domain of each random variable is subdivided
into N disjoint intervals with equal probability mass. From each interval one sample is generated
for the first variable and then these N samples are paired at random and without replacement
with N samples of the second variable. The procedure is repeated for all M variables. This way
the sample space is filled homogeneously and the number of samples can be reduced considerably
compared to e.g. Crude Monte Carlo. It gives an unbiased estimator of the mean, however the
estimator of the variance is biased, with a normally small but unknown magnitude of bias.

The method described above applies for mutually independent variables. In order to account
for correlations refer to [24] for general procedures and remarks. For the specific case of Latin
Hypercube Sampling Iman and Conover (1982) [21] propose the following procedure 2:

1. Draw N LHS samples of M variables.

2. Convert these to ranks and place them in an N M matrix.

3. Draw N samples from an M -dimensional joint normal distribution with correlation matrix
K.

4. Convert the normal variables to ranks.

5. Permute the columns of the LHS matrix so that the ranks in each column coincide with
those of the normal matrix.

6. Unrank the LHS variables.

Again, as in the case of PEM, we obtain results referring to the distribution of the response.
This approach does not lead directly to a probability of failure and further assumptions have to
be made (truncated response distribution).

4.2.4 Response Surface Techniques (RS)

This family of techniques uses response surfaces (RS)3, approximations of the model response
instead of the model itself. It cannot be classified within the level I to III classification system,
because RS can be combined with practically all the methods that have been presented so far.

Generally speaking, response surfaces are built using all kinds of interpolation methods (lin-
ear, quadratic, higher order, with/without cross-terms, splines) based on previously calculated
LSF-evaluations. Some methods apply the obtained RS for the integration of the (non-)failure
domain, in others like DARS they help decreasing the calculation effort by supporting the deci-
sion, if a certain parameter combination is worthwhile evaluating (see section 4.4.5).

RS are useful, especially in combination with FEM, for extrapolations into a failure domain
where FEM cannot return any results due to loss of equilibrium. They also smoothen the
responses, which helps the determination of partial derivatives of unstable LSF.

2The correlation between the random variables is accounted for via rank correlation.
3A general description of response surfaces is given in appendix B.
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For more information over response surface techniques refer to Box and Draper (1987) [4].
Waarts (2000) [45] uses a response surface approach (see also section 4.4.5) in combination with
Monte Carlo methods for reliability analysis.

4.3 Summary and Evaluation

The previously enumerated reliability methods are summarized in tables 4.1 and 4.2 evaluating
the following criteria:

1. The method should be as generic as possible. The precision of the answer should not
depend on choices that have to be made on the basis of previous knowledge about the
problem.

2. The precision of the method should be controllable and within an acceptable range. Usually
we can control this aspect by using the variance of the obtained results as convergence-
criterion or with the step size for classical numerical integration techniques.

3. The expected calculation time must remain within acceptable limits. One crucial aspect
for the choice of suitable methods is thus the required number of LSF-evaluations.

It should be stated that it is impossible to compare most of the criteria quantitatively or
in an objective way. For example the accuracy of the methods can usually be controlled by
certain convergence criteria (except PEM and LHS), but these are of different nature for level
II methods like FORM/SORM and the methods of the Monte Carlo family. They cannot be
compared directly. Also the number of calculations can only be known for PEM and LHS
beforehand, for the rest of the methods only expected numbers of calculations can be given
respectively orders of magnitude.
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The ultimate answer on the question, which methods are the best for the type of analysis
that is treated in this thesis, cannot be answered after this short evaluation yet. The answer is
problem dependent. In the overall performance considerations one should also take into account
that level III methods automatically account for system effects, i.e. the system reliability can
be determined directly whereas for level II methods additional analyses have to be carried out.

For this specific research the program ProBox will be used, which includes FORM, SORM,
Crude Monte Carlo, Numerical Integration, Directional Sampling, DARS, Increased Variance
Sampling and combinations. These will be tested depending on the problem at hand. Addition-
ally the PEM method is tested, because requires only a small number of calculations.

Furthermore, Latin Hypercube Sampling is a promising approach that should be subject
to further investigation. Due to time reasons it is not treated in this thesis. The same holds
for the combination of FORM with adaptive response surfaces (FORM-ARS). Since the FEM-
calculations can produce non-smooth response surfaces and since there are impossible domains
(equilibrium condition), ARS could be applied for mitigating these problems. For more details
refer to Waarts (2000) [45].

4.4 Detailed Description of Selected Reliability Methods

In the following sections the reliability analysis methods that will be applied in combination
with Finite Element Analysis are described in more detail.

4.4.1 First Order Reliability Method (FORM)

FORM stands for ’First Order Reliability Method ’ where the term ’First Order’ indicates that
the limit state function is linearized. The linearization of the limit state is carried out in the so
called ’Design Point ’, which is the point on the limit state (Z = 0) with the highest probability
density (see figure 4.6).

Figure 4.6: Design Point and Linearized Limit State for Two Dimensions in U-Space
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First Order Second Moment Method (FOSM)

The first approaches of the first order category were the First Order Second Moment (FOSM)
approaches. The original formulation by Cornell (1969) was based on two independent normally
distributed variables R (strength) and S (load). Since the performance function is Z = R − S,
failure is defined as R − S < 0 or R < S. The reliability index β then is the ratio of the mean
value of Z and its standard deviation and can be expressed as:

β =
µZ

σZ
=

µR − µS√
σ2

R + σ2
S

(4.14)

There are also other formulations based on Taylor expansions that can handle lognormal
distributions as well and more than two random variables. However, FOSM is limited to statis-
tically independent normally or lognormally distributed variables and it is only suitable for rough
estimations of the reliability level of a structure. It is also not indifferent to the formulation of
the limit state. Example given, FOSM will also not give the same results for LSF-formulations in
terms of safety factors (R/S < 1) and in terms of margins of safety (R−S < 0). In a simplified
numerical example this is illustrated in figure 4.7. For the same margin values, different factors
of safety could be found. Due to these severe limitations it is not suitable for our purpose and
we continue with more advanced first order methods.

Figure 4.7: Example for Margins and Safety Factors in FOSM
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Hasofer-Lind Method

This approach is probably the most wide-spread first order method and usually, when the term
FORM is used, one refers to ’Hasofer-Lind ’. The random variables are transformed to equivalent
standard normally distributed (Gaussian) variables and the whole procedure is carried out in
u-space. For variables with a normal distribution this step is simply:

ui =
xi − µxi

σxi

(4.15)

For other types of distributions there are procedures available for carrying out this transfor-
mation. The LSF Z(x) is rewritten in terms of u: Z(u).

The FORM-algorithms require the determination of partial derivatives of the LSF with
respect to x’. The following relation is can be used to this end:

dxi/dui = σxi (4.16)

therefore
∂Z

∂ui
=
∂Z

∂xi
· ∂xi

∂ui
=
∂Z

∂xi
· σxi (4.17)

The limit state function, only expressed in terms of R and S, becomes:

Z = R− S = σRuR − σSuS + µR − µS = 0 (4.18)

Since the origin of the u-space is the combination of the mean4 values of all basic random
variables the distance to the failure criterion in Rd can be described by:

d =
√
u2

1 + u2
1 + ...+ u2

n = (uTu)1/2 (4.19)

This distance has to be minimized in order to find the design point, β and Pf (see figure 4.6).
This minimization problem can be elaborated, e.g. using a Lagrangian Multiplier Approach or
a Taylor Series Approach5. Both lead to the same solution:

β =
µZ

σZ
= −

∑
ui ·

(
∂Z
∂ui

)
√∑(

∂Z
∂xi

)2
(4.20)

and we define the following terms which are commonly called the influence factors αi:

αi =

(
∂Z
∂ui

)
√∑(

∂Z
∂xi

)2
(4.21)

4To be precise it is the mean value for symmetrical and the median value for not symmetrical distributions
5for elaboration see e.g. Baecher (2003) [2]
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In order to tackle the solution with the help of the previous equations, the Rackwitz-algorithm
can be applied:

1. Guess values in the design point (e.g. mean values: ui → u′∗i ) 6

2. Compute Z and α (partial derivatives) at u∗i

3. compute the new DP7 - approximation: x∗i = µxi − αiσxiβ

4. Substitute the new u∗i into Z and solve for β.

5. Re-evaluate u∗i = −αiβ.

6. Repeat steps 2 to 5 until convergence criteria are fulfilled.

Figure 4.8: Graphical Representation of Rackwitz Algorithm (in brackets: iteration steps)

Other algorithms are available , e.g. Newton-Raphson schemes etc. The suitability of these
methods is determined usually by the shape of the LSF. Some algorithms are more efficient
in case of non-linearities than others. Another criterion for a good FORM-algorithm is its
capability of finding a global minimum instead of local minima.

After obtaining the results of the reliability analysis, the values for the design point can be
back-transformed to (original) x-space.

Note that FORM does not require any assumptions regarding the shape of the distribution
of the failure criterion (like e.g. PEM). Its limitations are mainly that it is only accurate for
linear limit state functions and that the degree of non-linearity of Z determines the magnitude
of the error.

Three types of problems can occur with FORM. The algorithm might not converge or con-
verge at a local instead of the global minimum or the accuracy is low due to the non-linearity
of the limit state.

6The star(*) indicates a (estimated) design point value.
7DP = design point
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4.4.2 Second Order Reliability Method (SORM)

SORM8 starts with a FORM-calculation as described in the preceding section. The method also
works in u-space and a second order correction is carried out in the design point determined by
FORM.

The linearized form of the LSF in the design point can be given expressed as:

Zlin = Z(u∗) +
∑

αi(ui − u∗i ) = 0 +
∑

αiui −
∑

−α2
i β = β +

∑
αiui (4.22)

The second derivatives of Z can be determined in the design point and with them we can
develop a second order expansion of the LSF:

Z2nd = β +
∑

αiui +
1
2

∑ ∑ ∂2Z

∂ui∂uj
(ui − u∗i )(uj − u∗j ) (4.23)

Subsequently a rotation of the coordinate system is carried out (transform ui to vi), where
the direction through the design point is chosen as the v1-direction. This transformation leads
to:

v∗1 = β whereas v∗k = 0 with k = 2, ..., n (4.24)

α1 = 1 whereas αk = 0 with k = 2, ..., n (4.25)

For the rotated coordinate system the LSF can be rewritten to:

Z2nd = β − v1 +
1
2

∑ ∑ ∂2Z

∂vi∂vj
(vi − v∗i )(vj − v∗j ) (4.26)

For the two-dimensional case there are ∂2Z
∂2v1

, ∂2Z
∂v1∂v2

= ∂2Z
∂v2∂v1

and ∂2Z
∂2v2

as terms for the second
derivatives. The last one is responsible for the curvature in the v1-v2-plane. Using this fact and
that v∗2 = 0 the LSF can be rewritten as:

Z2nd = β − v1 +
1
2
∂2Z

∂v2
2

v2
2 (4.27)

Knowing the radius of the LSF R22 (and therefore also the curvature κ = 1/R in the design
point, we can obtain the second derivative from:

∂2Z

∂v2
2

= − 1
R22

= −κ22 (4.28)

which inserted in the LSF gives:

Z2nd = β − v1 −
1
2
κ22v

2
2 (4.29)

8The version of SORM as implemented in ProBox is explained. There are other versions with different
approaches like the original version by Rackwitz.
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Figure 4.9: Transformation of Two-Dimensional Coordinate System in SORM

The failure probability can now be approximated by9:

P (Z2nd < 0) =
Φ(−β)√
1− βκ22

(4.30)

The problem can also be generalized for n dimensions. To this end we can define a matrix G as:

Gij =
∂2Z

∂vi∂vj
with i, j = 2, ..., n (4.31)

The main curvatures (stored in the vector κ) in v2, ..., vn-space are found by solving:

‖G− κI‖ = 0 with I = unity matrix (4.32)

Now the failure probability can be estimated with:

Pf = Φ(−β)
n∏

i=2

(1− βκi)−1/2 (4.33)

As mentioned before, this procedure is only applicable to a limited amount of curvature. Fur-
thermore it can lead to severe errors in case of irregularly shaped LSF when local curvatures
are applied as in the example illustrated in figure 4.10. The example shows that in principle the
SORM correction can decrease the accuracy of the FORM-result.

9The approximation is only reasonably accurate for βκ22 < 0.75.
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Figure 4.10: SORM Result for Arbitrary Irregular LSF

4.4.3 Point Estimate Method (PEM)

The method is essentially a weighted average method that works with sampling points and
weighting parameters, similar to numerical integration methods. The basic idea is to replace a
given continuous pdf by a discrete function with the same first three central moments (mean
value µ, standard deviation σ and skewness ν). The original version of Rosenblueth [34] is used
to illustrate the basic concept and some useful variants will be presented subsequently.

Mathematical Background

We have a set of random variables X, e.g. soil properties, and another variable Y, which is a
deterministic function of X, Y = g(X). This could be the factor or margin of safety or directly
our limit state function. The basic question is:

How to approximate the low-order moments of fY (y) using only the low-order mo-
ments of fX(x) and the function g(x)?

The PEM-approach replaces the continuous random variable X by a discrete random variable
whose pmf pX(x) has the same low-order moments as fX(x). Subsequently pX(x) is transformed
by Y = g(X) to another discrete function with the corresponding pmf pY (y), whose moments are
supposed to be approximations of the moments of the continuous distribution of the response
Y .

The first moment of fX(x) is the mean:

µX =
∫
x · fX(x) · dx (4.34)

The mth order moments of fX(x) are:

µm
X =

∫
(x− µX)m · fX(x) · dx (4.35)
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The corresponding moments of the discrete pmf pX(x) are:

µm
X =

∑
(x− µX)m · pX(x) (4.36)

General Formulation (Rosenblueth)

We use the following notation as introduced by Rosenblueth in his original paper in 1975:

E[Y m] ≈ P+y
m
+ + P−y

m
− (4.37)

in which: Y deterministic function Y = g(X)
E[Y m] expected value of Y raised to the power m
y+ value of Y evaluated in point x+ > µx

y− value of Y evaluated in point x− < µx

P+ and P− weights

Figure 4.11: PEM for univariate case

We can distinguish three cases:

1. Y is a function of one variable; mean, std and skewness are known.

2. Y is a function of one variable whose distribution is symmetrical and approximately Gaus-
sian.

3. Y is a function of n variables X1, X2, ..., Xn whose distributions are symmetrical and which
may be correlated.

The first two cases are special cases with significant simplifications, such as only one random
variable. For the problems to be studied they will be of little use and therefore we focus on the
third case whose most important simplification is that the skewness of the variables is neglected.
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For each variable we choose two points, each at a distance of one standard deviation below
and above the mean value. This gives a total of 2n points10 to be evaluated. The general form
of the weights can be described with:

Ps1s2...sn =
1
2n
·

1 +
n−1∑
i=1

n∑
j=i+1

(si)(sj)ρij

 (4.38)

where si is +1 for points one std above the mean and -1 for the opposite case.
The m-th moment is approximated by

E[Y m] ≈
∑

Piy
m
i (4.39)

In figure 4.12 the case of two correlated variables is illustrated.

Figure 4.12: PEM for bivariate case including correlation

Analogy to Numerical Integration

Rosenblueth’s method can be compared with the generalized method of numerical integration
with orthogonal polynomials that applies for any probabilistic distribution of X.

Gaussian quadrature is a numerical approximation to the integral

I =
∫
g(z) · f(z) · dz (4.40)

where g(x) function to be evaluated
f(x) weighting function

10A point is a parameter combination in this case.
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The approximate integral is
I =

∑
Hi · g(zi) (4.41)

where g(zi) function evaluated in point i
Hi weight of point i (assuming f(x) as normal distribution)

Rosenblueth’s third case is a similar extension of the one-dimensional Gaussian quadrature
points to a grid of higher dimensions. The general formulation of the point estimate method
allows incorporating the effect of different probabilistic variables from different distributions, as
long as their means and variances are known.

Limitations

1. For some cases two points are insufficient for estimating the moments of Y .

2. PEM should not be used for evaluating higher moments than second moment of Y .11

3. PEM should not be used for evaluating moments of higher order than the moments used
from the input variables.

4. Should be used cautiously, when the distribution is severely changed by function g.12

In the literature about geotechnical problems it was mostly applied for uncorrelated vari-
ables. However, the effort to account for correlation is insignificant which is one of the attractive
properties of the method.

The accuracy of the method is difficult to describe in general terms and therefore it is
preferred to study its performance for several cases.

Number of Computation Points

The classical method proposed by Rosenblueth requires 2n evaluations of the limit state function.
Since the computational effort for higher numbers of variables is considerable, other methods
have been developed that reduce this number to 2n respectively 2n + 1 by some simplifying
assumptions.

Harr’s Method (1989) (skewness = 0; correlated variables)

The method of Harr makes use of the eigenvalues and eigenvectors of correlation matrix K.
One has to calculate the values of Y in 2n points. These points are the intersections of the
eigenvectors with a hypersphere that goes through the corner points of the unit hypercube. The
weight of each value is the corresponding eigenvalue divided by 2n. The rest of the calculation
corresponds to the classical approach.

11E.g. the case 1 procedure returns always skewness of X instead of skewness of Y
12E.g. normal to lognormal with functions such as Y = eX
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Method by Zhou and Nowak (1988) (correlated variables, marginal distributions)

The method Zhou-Nowak is applied to geotechnical problems in several publications from Graz
University ([39], citeSch01). It uses 2n2 + 1 calculation points in u-space and seems for the
present purpose to be the best compromise between accuracy and computational effort of the
PEM-methods.

The idea is again to use numerical procedures to approximate themth moment of the response
g(X) to the random vector X whose exact formulation is:

E[gm(X)] =
∫ +∞

−∞
...

∫ +∞

−∞
fX(x1, ..., xn) · gm(x1, ..., xn) dx1...dxn (4.42)

Using the Gauss-Hermite formula we can approximate the mth moment of g for a single
standard normal variable z with the following integration formula:

E[gm(Z)] =
∫ +∞

−∞
φ(z)gm(z) dz ∼=

k∑
j=1

wjg
m(zj) (4.43)

in which φ is the standard normal pdf, and zj and wj are the integration points, the weights
of which are given in table 4.3.

Figure 4.13: Integration with Gauss-Hermite Quadrature Using 3 Points

For a single non-normally distributed variable X the same principle applies, only the trans-
formation from standard normal space to x-space is necessary:

E[gm(X)] ∼=
k∑

j=1

wjg
m(xj) =

k∑
j=1

wj g
m(F−1

X (Φ(zj))) (4.44)

These approximations are exact, if g is a polynomial of maximum (k-1)th degree (k is the
number of integration points).
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Table 4.3: Points and Weight Factors for Integration Formulae

Number of Points Points Weight factors
k zj wj

1 z1 = 0 w1 = 0
2 z1 = −1 w1 = 1

2
z2 = +1 w2 = 1

2

3 z1 = −
√

3 w1 = 1
6

z2 = 0 w2 = 4
6

z3 = +
√

3 w3 = 1
6

4 z1 = −
√

3 +
√

6 w1 = 3−
√

6
12

z2 = −
√

3−
√

6 w2 = 3+
√

6
12

z3 = +
√

3−
√

6 w3 = 3+
√

6
12

z4 = +
√

3 +
√

6 w4 = 3−
√

6
12

Zhou and Nowak (1988) [46] describe in their paper several possibilities, also for multivariate
cases, with and without known joint pdf. For the present purpose the methods for known
marginal distributions are preferred in combination with the Gauss quadrature rules and the
Gauss quadrature weight factors, where due to experience from the literature the integration
methods using k = 2n2 + 1 integration points are chosen (table 4.4):

E[gm(Z1, ..., Zn)] ∼=
k∑

j=1

wjg
m(z1j , ..., znj) (4.45)

Table 4.4: Points and Weight Factors for k = 2n2 + 1 Integration Formulae

Number of Points Points Weight factors
k (z1n, z2n..., zjn wj

2n2 + 1 Z = (0, 0, ..., 0) wj = 2
n+2

Z = (±
√
n+ 2, 0, ..., 0) a wj = 4−n

2(n+2)2

Z = (±
√

n+2
2 ,±

√
n+2

2 , ..., 0) a wj = 1
(n+2)2

aall possible permutations
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For a set of known marginal distributions and known correlation coefficients (correlation
matrix C) we can follow this procedure:

1. Calculate correlation matrix C0
13.

2. Determine L0 by Cholesky-decomposition of C0.

3. Determine the integration points in standard-normal space (see tables).

4. Calculate the correlated standard normal vectors Y = L0Z.

5. Perform the marginal transformation: Xi = F−1[Φ(yi)]

6. Calculate the first two moments of G using formula 4.45.

For statistically independent variables, the procedure reduces to the steps 3, 5 and 6. Step 6 uses
the following relations that relate to the integration formulae and known probabilistic relations:

µX = E[g(X)] ∼=
k∑

j=1

wjg
m(xj) (4.46)

σ2
X = E[g2(X)]− E2[g(X)] = E[g2(X)]− µ2

X with E[g2(X)] ∼=
k∑

j=1

wjg
2(xj) (4.47)

Application in Reliability Problems

With all the described PEM-variants we haven’t yet made the step to determine a reliability
level. We have only obtained the characteristics of a response in terms of its first two (eventually
three) central moments. One way to obtain a reliability level is to assume a distribution type
and choose the parameters according to these moments. The distribution is then truncated at
the limit state value.

Figure 4.14: Truncated Response Distribution Obtained in PEM

This part is the most significant weakness of the use of PEM for reliability problems. The
assumption of the distribution type can have a large influence on the shape of the response’s
tail and therefore especially in the low failure probability regions we usually operate in.

13Not elaborated here, for sake of simplicity we restrict ourselves in the tests to independent variables
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4.4.4 Directional Sampling

Directional Sampling belongs, as indicated earlier, to the category Monte Carlo methods. It is
carried out in u-space. That means that the random realizations of parameter combinations
are taken from an n-dimensional joint normal distribution. The method follows basically these
steps:

1. A mean (respectively median) value calculation in u = 0 is carried out.

2. A point in the parameter space is generated randomly. The vector u is defined as the vector
with the origin of the parameter space as starting point and the randomly generated point
as end point.

3. This vector is scaled to a predetermined length |u| = u0 (e.g. |u| = 1). In other words
we only keep the direction of the vector as information of the random realization. An
LSF-evaluation is carried out in this point.

Figure 4.15: Directional Sampling for Two-Dimensional Problem (steps 1 to 3)

4. An iteration method (e.g. bisection-method or Newton-Raphson) is used to determine the
scale factor λ (λ ≥ 0) that corresponds to Z = 0 (limit state) whilst the direction of u is
maintained14.

14The accuracy of the iteration method can be controlled by an accuracy parameter ε.
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Figure 4.16: Directional Sampling for Two-Dimensional Problem (step 4)

5.
∑n

i=1 λ
2
i is χ2-distributed with n degrees of freedom (number of basic random variables).

If λ was constant for all directions, the probability of failure could be written as:

Pf = 1− χ2(λ2, n) (4.48)

If we have N random realizations of u with different results for λ, we can compose the
failure probability as:

Pf =
1
N

N∑
j=1

(1− χ2(λ2
j , n)) (4.49)

The corresponding variance for N realizations is:

σ2
Pf

=
1

N(N − 1)

N∑
j=1

(Pj − Pf )2 with Pj = 1− χ2(λ2
j , n) (4.50)

6. The steps 1 to 5 are repeated until the convergence/stop criteria are reached, e.g. a
sufficiently low variance σ2

Pf
of the failure probability. Alternatively it is stopped after a

maximum number of calculations.

4.4.5 DARS

DARS (Directional Adaptive Response Surface Sampling) is a combination of Directional Sam-
pling (DS) and Adaptive Response Surface techniques (ARS). The response surfaces (see ap-
pendix B) serve in the current configuration of DARS as tool for deciding, if a directional sample
is worthwhile evaluating or not, i.e. wether a direction is important. The ARS are therefore not
used for integration of the safe/unsafe domain for example. The use of response surfaces is effi-
cient, when the LSF-evaluation is expensive in terms of calculation effort. The basic principles
of DS are introduced followed by the incorporation of ARS in this technique.
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Figure 4.17: Parameters and Steps of the DARS-method

As mentioned earlier, in DARS the response surfaces serve as tool for detecting ’important’
sampling regions, i.e. to decide wether a real LSF-evaluation is necessary or not. For the rest
DARS follows the principles of Directional sampling:

1. Sampling along the axes of the basic random variable space. Length of the vector uj =
duini.

2. Fitting initial response surface15.

3. Sample u as described in Directional Sampling → determine λ1. λmin = λ1.

4. Update response surface fit using the new information16.

5. Sample u according to Directional Sampling → determine expected λj,RS according to
ARS. If the expected λj,RS is smaller than λmin + ∆λ (∆λ: calculation sensitivity pa-
rameter), LSF calculations with the actual model are carried out and λj is determined.
Otherwise the contribution of this direction is considered negligible, thus Pj ≈ 0.

6. If λj < λmin, then λmin = λj .

7. Evaluate Pf and σ2
Pf

as in ordinary directional Sampling.

8. Repeat steps 4 to 7 until convergence/stop criteria are reached.

The important advantage of this method is, that a relatively large number of LSF-evaluations
will not have to be carried out based on the information obtained by the ARS. The performance
of DARS is difficult to predict. For complex LSF, it could be that the ARS changes considerably
after obtaining new information. The question arises, wether after updating the RS the previ-
ously as negligible considered points have to be re-evaluated. If there is no previous knowledge
at all about the LSF, this is strongly recommendable. In ProBox this can be done optionally.

15In ProBox: quadratic polynomial with/without cross-terms
16All LSF-evaluations carried out with the actual model are used as information for updating the ARS.
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Part II

Coupling of Reliability Analysis and
FEM For Geotechnical Structures
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Chapter 5

Problem Description and Approach

Part II of this thesis deals with the application of the reliability methods that were described
in part I to geotechnical problems. The limit state function evaluations (LSFE) will be carried
out with the Finite Element Analysis (FEA) software Plaxis 8.2, which is specifically designed
for 2D plane-strain or axisymmetric analysis in geotechnics. Using FEA for this purpose implies
that the limit state formulation is implicit and can only be solved numerically. For many of the
methods described in chapter 4 the evaluation of partial derivatives is required, for which no
analytical formulation is available in this approach.

5.1 Goals and Perspectives

The goal is to develop a methodology for assessing the reliability of geotechnical structures, in
particular deep excavations. Non-linear and plastic soil behavior and the system behavior of
the structure should be taken into account. Some of the presented reliability methods can deal
with system reliability problems directly, whilst for others additional methods are to be used
for combining the reliability information of singular limit states to obtain the system reliability
(estimates). However, in general it will be more important to determine the failure probabilities
for the mechanisms than for the complete system.

For each type of problem there are several relevant limit states, for which different consti-
tutive models could be considered as the most suitable. As in deterministic Finite Element
Analysis (FEA), the choice of constitutive models is always a compromise between modelling
performance respectively accuracy and modelling effort, i.e. the effort required for obtaining
sufficient information on the model parameters. The aim for the future should be to identify
suitable combinations of limit state descriptions and constitutive models. In this thesis a first
step is made by describing the constitutive model choice in general (see appendix F), but for
the calculations an elasto-plastic soil model with Mohr-Coulomb failure criterion will be used
for sake of simplicity.

This work also aims at demonstrating that reliability analysis can be carried out with rea-
sonable effort for specific structures whose system behavior is known. Also the potential benefits
of this approach over the classical design practice will be highlighted, especially by showing the
differences between the target reliability in deterministic design and the calculated reliability
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using the presented approach.

In recent actualizations of design codes and technical recommendations, such as relevant
for our case the ’CUR 166 - Damwandconstructies’1 it can be observed that guidelines for the
use of FEA have been implemented parallel to the existing analytical or empirical calculation
methods. FEA is this way more and more accepted as an alternative for SLS design and recently
also for ULS calculations. The complexity of FEA required some instructions for the designer
to properly model the structure and choose the corresponding parameters.

The vision is that a similar development could be initiated for reliability methods. An
approach on a more general scale has been undertaken by JCSS2 with the Probabilistic Model
Code (PMC) (see [23]) that was first published on internet in 2001 and gives recommendations
for modelling structural reliability problems. This kind of guidelines for reliability analysis could
be introduced in the design guidelines as an alternative to the partial safety factor design (LRFD
- Load and Resistance Factor Design) for those who want to refine or optimize their structure
or use the reliability results in more advanced probabilistic design concepts, i.e. as a design
alternative.

5.2 Approach and Structure

The coupling of Reliability Analysis and Finite Element Analysis requires interfaces for the
communication between both. In chapter 6 we will discuss how this was achieved for the specific
combination of ProBox and Plaxis. In appendix F an overview is given over the most relevant
constitutive models for soils and structural elements that are available in Plaxis and suitable
for problems involving deep excavations. Furthermore, several features and aspects related to
the Finite Element Method that are necessary or useful for application in combination with
reliability analysis are presented.

An approach for determining the (system) reliability of deep excavations is presented in
chapter 7. An inventory of the most relevant failure mechanisms is presented in form of a
fault tree. The fault tree also illustrates the interaction and the relations between the failure
mechanisms and modes. The treatment of these failure mechanisms is discussed in detail. These
refer to the structural members of deep excavations as well as to the soil as part of the system.
Soil has to be seen in this context as load and as resistance variable at the same time, which
requires a special treatment. The formulation of limit states is a main aspect in this chapter.

In part III the application of the presented coupled techniques is demonstrated using simple
examples beginning with chapter 8. The first example, a simple beam on two supports, is used in
comparison to exact analytical solutions. The second one, the classical bearing capacity problem,
deals with the description of soil shear failure. The third example is the first application to an
excavation problem. The failure mechanisms of an excavation with a non-anchored retaining
wall in homogeneous cohesionless soil are investigated.

The case study in chapter 9 demonstrates the applicability of the presented methodology to
1Dutch technical recommendation for sheet pile walls [8]
2Joint Committee for Structural Safety (http://www.jcss.ethz.ch/)
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a realistic respectively ’real world’ problem. It treats an excavation with one anchor layer in
typical Dutch (soft) soil conditions. Uncertainties in the soil properties, the phreatic levels and
also the corrosion of the sheet pile wall are accounted for.

Finally, in chapter 10 conclusions are drawn based on the results of this study and recom-
mendations for future research are formulated. A short outlook on the short and medium term
developments regarding this research concludes the report.

5.3 Limitations

The author is aware of the following limitations of this work, of which some could be subject to
further research:

• The conclusions that can be drawn from this research are limited to the input that was
used. The determination of proper input statistics, especially uncertainties in soil param-
eters are difficult to determine. The description of the input determination is not subject
of this work.

• For proper reliability analysis all uncertainties have to be quantified to obtain correct
results for the distribution of the system response and the failure probability. For most
of the investigated problems the uncertainties are reduced to the most important basic
random variables. Therefore there is an error involved that is, however, intended to be
kept acceptably small.

• The quantification of the model error will not be scope of this work. For the problems
investigated, proper constitutive models will be chosen based on experience in the liter-
ature. For the calculations it will either be assumed that the used models represent the
real world behavior perfectly or a standard model error can be assumed to estimate its
influence on the reliability. The determination of such a model error as well as eventu-
ally of a modelling error (subjective modelling choices) would have to be determined by
comparison of predictions and measurements.

• The research will be limited to a number of problem configurations and case studies.
Configurations substantially different to these could give different results and therefore
the conclusions and recommendations cannot be applied to these directly.

• A large number of structural failures are caused by unforeseen anomalies and human error.
These types of uncertainties are not taken into account.

• This work is restricted to plane-strain problems, however, the general approaches can be
applied also for three dimensions.

• Models are commonly calibrated for parameter ranges that are around the expectation
values. For reliability analysis we are, however, contemplating situations close to failure.
The validity of the model would have to be investigated for each limit state and this type
of model error would have to be quantified. This is beyond the scope of this thesis.

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 61

In fact, in this thesis work we do not go beyond the quantification of the output uncertainties
and the determination of exceedance probabilities, given a certain input uncertainty. That means
that we still lack model error and subjectivity considerations for the transferability to ’real world’
structural behavior. In deterministic design approaches these considerations are included either
in the partial safety concepts or in conservative target reliabilities. In probabilistic concepts
this could be achieved by appropriate model error and ’human error’ factors or alternatively by
increasing the target reliabilities.
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Chapter 6

Coupling Reliability Analysis and
FEM

This chapter deals with the coupling of reliability analysis and Finite Element Method as adopted
for this thesis work. The general aspects of such a combination are discussed as well as specific
aspects that refer to the coupling of the two programs that were used for this purpose - ProBox1

(reliability analysis) and Plaxis2 (FEM).

6.1 The Functionality of ProBox

The software package ProBox is still under development during the work on this thesis. At
present the following reliability methods are available:

• FORM / SORM

• Numerical Integration (NI)

• Crude Monte Carlo (CMC)

• Directional Sampling (DS)

• Directional Adaptive Response Surface Sampling (DARS)

• Increased Variance Sampling (IVS)

For all the methods the algorithms work with numerical differentiation or iteration methods.
Thus it is not necessary to have closed-form limit state formulations neither their derivatives.
This is important for the coupling with other programs that are used for the limit state function
evaluation.

1ProBox stands for Probabilistic Tool Box and was developed by TNO Built Environment and Geosciences,
Delft, The Netherlands.

2Plaxis Finite Element Code developed by Plaxis bv, Delft, The Netherlands.
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ProBox handles 14 types of distributions amongst which the most common ones, like the
Normal, Lognormal, Exponential and the Beta Distribution. Also extreme value distributions
are available and self-defined empirical distributions can be defined in table form.

Correlations are accounted for via a product moment correlation. Of course, this type of
correlation matrix has to be positive definite.

6.2 General Aspects of the Coupling

When a reliability tool is coupled with another software program, the reliability program carries
out the whole reliability analysis and it uses the other program only for the evaluation of the
limit state function. Limit state function evaluations may be necessary for the evaluation of
realizations of the random variables or for perturbation or iteration methods that are involved
in the numerical algorithms of the reliability methods.

Usually the influence on the routines of the evaluation program is limited. The communi-
cation of the programs is limited to modifying the input quantities for the limit state function
evaluation, starting the calculation and reading the relevant output quantities.

6.3 The Coupling ProBox-Plaxis

The coupling of ProBox and Plaxis is basically establishing an interface between the two pro-
grams that is capable of exchanging the data from the input and the output parameters. It was
chosen for implementing the respective routines in ProBox, i.e. ProBox has to be able to read
and amend data in Plaxis files that contain material parameters, groundwater information or
load definitions and to read the information of the calculation output (see fig. 6.1).

A basic Plaxis model has to be defined, e.g. using the mean values of the properties that
are to be treated as stochastic quantities. ProBox can read the input and output files of this
Plaxis model and make the accessible input parameters accessible. In principle one can assign
statistical distributions to each quantity. Sometimes it is necessary to use more external models
at the same time or to define additional relations internally (e.g. conversion rules for parameters).
Subsequently the limit state function is defined based on the available model output variables and
eventually on other self-defined variables. In this case this could be e.g. based on displacements,
forces or stresses obtained by the Plaxis-analysis. Then after defining the reliability method,
the calculation is started and ProBox enters a calculation loop.
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Figure 6.1: Coupling-Scheme Reliability Analysis ProBox-Plaxis

The input for each Plaxis calculation is a parameter set that is determined by the chosen
reliability method. The input files are amended and the calculation is carried out. The necessary
output data are extracted and the limit state function is evaluated. If the stop or convergence
criterion is satisfied, the results are presented by ProBox, otherwise the new input quantities are
determined and the procedure is repeated. Optionally, one can carry out a Plaxis calculation in
the design point to draw conclusions about the failure mechanism(s).

The information that can be amended or read from Plaxis for the use in reliability analysis
is summarized in the following sections. All this information can be either used as stochastic
input, for the formulation of the limit state(s) or both.
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Material Parameters

The material parameters are stored in the *.mat-files. These include the soil parameters as well
as the properties of beam/plate elements3, anchors/struts or geogrids (see table 6.1).

Table 6.1: Material Parameters In Plaxis For Use As Stochastic Variables
Category Variable Symbol Unit
Soil saturated volumetric weight γsat [kN/m3]
(Mohr-Coulomb) dry volumetric weight γunsat [kN/m3]

Young’s modulus Eref [kPa]
Poisson ratio ν [-]
angle of internal friction φ′ [deg]
cohesion c [kPa]
angle of dilation ψ [deg]
interface strength Rinter [-]

Plates/Beams normal stiffness EA [kN/m]
bending stiffness EI [kNm2/m]
equivalent thickness deq [m]
weight w [kN/m2]
Poisson ratio ν [-]
plastic bending moment Mp [kNm/m]
plastic normal force Np [kN/m]

Anchors normal stiffness EA [kN]
anchor spacing a [m]
tensile capacity Fmax,tens [kN]
compressive capacity Fmax,comp [kN]

Geogrids normal stiffness EA [kN/m]
tensile capacity Fmax,tens [kN/m]

Load Parameters

Several load types can be handled in Plaxis and manipulated by ProBox:

• Prescribed displacements:
Prescribed displacements for a series of nodes can be specified.

• Point Loads:
Point loads in a 2D-plane strain environment represent line loads in the 3D-environment.
The components of theses loads can be specified by their components in x- and y-direction.

• Distributed loads:
Distributed Loads in a 2D-plane strain environment represent surface loads in the 3D-

3For beam/plate elements the information is stored by Plaxis in terms of properties that correspond to an
equivalent rectangular cross-section. The details are explained in appendix M
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environment. The components of theses loads can be specified by their components in x-
and y-direction. They can be constant over their length or linearly increasing/decreasing.

Pore Pressures

The pore pressure fields can be generated in Plaxis basically in three different ways:

1. Pore pressure generation via pre-defined phreatic lines.

2. Pore pressure generation by flow-calculation.

3. User-defined pore pressures.

The generation of pore pressures is executed in the Plaxis Input module. During the auto-
mated calculations in the reliability analysis, only the Plaxis Calculation module can be used.
That means that variations of the pore pressure field, e.g. for stochastically defined phreatic
level, have to be carried out ’manually’. To this end a Matlab script was developed that is able
to recognize the spatial coordinates of the integration points and to overwrite the pore pressure
information according to a phreatic level that is defined by the reliability method in ProBox
(see figure 6.2).

Figure 6.2: Coupling-Sub-Scheme Pore Pressure Manipulation

Note that, compared to the scheme in figure 6.1, the pore pressure field is amended before
the calculation is carried out.

Calculation Information

The calculation information might be used for limit state definitions. In chapter 7.6, for exam-
ple, a limit state will be defined purely on the information, if the calculation was ’successful’
(equilibrium reached) or not. For more information refer to appendix F.

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 67

Nodes / Integration Points

The most important numerical results of a Finite Element analysis are the deformations of
the system and the new stress state in terms of effective stresses and pore pressures. This
information can be read from the calculation results in the nodes of the finite element mesh and
its integration points.

The information that is stored for nodes and integration points is listed in table 6.2.

Table 6.2: Output Quantities In Nodes And Integration Points
Category Variable Symbol Unit
Nodes vertical displacements uy [m]

horizontal displacements ux [m]
Integration vertical normal effective stress σyy [kPa]
Points horizontal normal effective stress σxx [kPa]

out-of-plane normal effective stress σzz [kPa]
shear stress τxy [kPa]
active pore pressures p [kPa]
excess pore pressures pexc [kPa]
vertical strain εyy [kPa]
horizontal strain εxx [kPa]
shear strain γxy [kPa]

Structural Elements

Plaxis uses several structural elements that can be applied for modelling typical elements of
geotechnical structures. The plate elements represent the retaining walls for the presently treated
excavation examples. Anchor elements can be used to represent anchors or struts and geogrids
might represent the grout bodies of tie-back anchors. The internal forces/moments of these
elements that are available for limit states are listed in table 6.3.

Table 6.3: Output Quantities Structural Elements
Category Variable Symbol Unit
Plates/Beams normal force FN [kN/m]

shear force FS [kN/m]
bending moment M [kNm/m]

Anchors x-component normal force Fa,x [kN/m]
y-component normal force Fa,y [kN/m]

Geogrids x-component normal force Fg,x [kN/m]
y-component normal force Fg,y [kN/m]
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Chapter 7

Failure Mechanisms and Limit States

For structural reliability calculations a system analysis is important for defining the relevant fail-
ure modes and the setup of the analysis. In the following the relevant failure modes for typical
retaining structures are identified and and their role in the system reliability is explained. Ad-
ditionally it will be explained how the system reliability can be determined by either combining
knowledge about the reliability of singular failure mechanisms or in a direct calculation.

7.1 System Analysis

For the system reliability analysis all the possible failure modes and mechanisms are listed up
and summarized in a fault tree. Figure 7.1 on page 69 shows a fault tree that contains the most
important failure modes for sheet pile supported excavations.

The unwanted top event is the failure of the retaining structure. The structure of the
fault tree is similar to the one suggested in CUR 166 [8] (part II), but is slightly modified
for convenience, taking the possibilities of the use of finite element analysis into account. The
failure probabilities of the mechanisms indicated in green can be determined directly by reliability
analysis, whereas knowing these Pf,i the yellow ones can be deduced or approximated.

Finally, two failure probabilities have to be calculated, Pf,SLS (failure Serviceability Limit
State due to excessive displacements) and Pf,ULS (failure Ultimate Limit State due to structural
failure). Since for both there are different requirements, they will not be combined to a total
failure probability. An upper limit for Pf,ULS can be obtained by assuming that all the three
contributions are uncorrelated:

Pf,ULS = Pf,sp + Pf,soil + Pf,supp (7.1)

where Pf,sp is the probability of sheet pile failure, Pf,soil is the probability of soil shear failure
and Pf,supp is the probability of support failure.
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Figure 7.1: Fault-Tree for Retaining Structures using Sheet Piles

When the failure probabilities of singular failure mechanisms are known, there are methods
for determining narrower lower and upper bounds or approximations of the system reliability.
One method is the one introduced by ’Hohenbichler’ (see appendix D) that uses the outcomes
of FORM-analyses (β’s and α’s) for an approximation of the failure probability. Also the well
known ’Ditlevsen Bounds’ (see appendix E) can be applied. If all the limit states are defined at
once, level III methods like DS can be applied.

7.2 Limit State Functions

This section is dedicated to the description and formulation of the limit states that are relevant
for retaining structures (see chapter 7.6). The possibilities and limitations due to the the use of
the coupled reliability-FEM analysis are considered.

Often the key to an efficient reliability analysis is an adequate limit state function formula-
tion. We will distinguish between limit states for Serviceability Limit State (SLS) criteria and
Ultimate Limit State (ULS) criteria. The focus in this thesis will be on ULS.
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For retaining structures there are basically four classes of structural elements, as illustrated
in the system fault tree in figure 7.1. For each of them the reliability respectively the probability
of failure is to be determined:

• retaining walls (sheet piles, diaphragm walls etc.)

• anchors or struts

• walings

• the soil

7.2.1 What is a Limit State?

Before going into detail we will revise shortly the function respectively the definition of a limit
state in the framework of reliability analysis.

Definition Limit State

The limit state (LS) is the border between the desired state (no failure) and the
undesired state (failure). The limit state itself belongs to the failure domain.

7.2.2 Limit State Function Definition

In reliability analysis Limit State Functions (LSF) are defined in order to have a mathematical
expression describing the state of a mechanism or structure with respect to a limit state. We
denote the limit state function as Z. It is a function of the basic random variables X:

Z = f(X) (7.2)

Three cases can be distinguished:

• Z > 0: desired state (no failure)

• Z = 0: limit state

• Z < 0: unwanted state (failure)

As explained in chapter 4 the task of reliability analysis is to integrate the joint probability
density over the failure domain (Z < 0) to obtain the probability of failure or its complement -
the reliability.

Pf =
∫

Z(X)≤0

fX(x)dx (7.3)

The techniques for solving this integration problem were discussed in detail in chapter 4.
For structural reliability problems often the more illustrative description

Z = R− S (7.4)

is used, where R is the resistance of a structure and S is the load. That means that failure
is defined in this case as the load exceeding the resistance and in the reliability analysis the
according exceedance probability is calculated.
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7.3 Serviceability Limit State

The SLS (Serviceability Limit State) is checked in design calculations in order to avoid excessive
deformations of a structure that could lead to the loss of functionality of the structure or
indirectly cause damage to other buildings or structures.

The general formulation of this limit state, directly using the requirements that are also
applicable for design calculations, would simply be to determine the exceedance probability of
the maximum admissible displacements. Therefore a convenient limit state formulation would
be:

Z = uadm − u (7.5)

where uadm is the maximum admissible displacement and u is the calculated displacement. This
formulation is the general form for displacement based criteria.

Figure 7.2: Sheet Pile Walls: a) Not Anchored b) Anchored (One Layer)

For each type of structure the determination of u requires some knowledge about the defor-
mation behavior. Considering for example the typical sheet pile structures in figure 7.2, we know
that the largest displacements for situation a) can be expected at the top of the wall in point A.
So for u simply the calculated displacements in A can be used. In situation b), however, there is
no point respectively node that clearly could be used as the one that determines the maximum
displacements. In this case, depending on the necessary degree of accuracy one can opt for either
calculating the maximum horizontal displacements of all nodes belonging to the sheet pile wall
(u = max(ux,i), where i is the node number) or, if convenient one chooses a number of relevant
points like in this case A, B and C and uses the maximum calculated displacement of these
(u = max(ux,A, ux,B, ux,C)).

In some cases the SLS-criteria are used to avoid damage to adjacent structures and to limit
the influence of a construction on the surroundings. For retaining structures there are hardly
any analytical relations for the effects of excavations on the surrounding soil that would allow
to calculate e.g. settlements next to a sheet pile wall as a function of the distance to the wall.
The Finite Element Method enables us to model these soil-structure interaction problems and
therefore also damage criteria for buildings could be used directly in the coupled reliability
analysis.
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Figure 7.3: Direct Damage Criteria vs. Indirect Deformation Criteria

Figure 7.3 illustrates how the horizontal deformations of a sheet pile wall lead to settle-
ments next to the excavation, which themselves affect an adjacent building. If the aim is to
avoid damage to the building, one could consider the following criteria instead of the horizontal
displacements of the retaining wall itself:

• Settlements at certain locations of the building1.

• Stresses in the walls of the building.

• Crack widths in the walls of the building etc.

The evaluation of these criteria would require very sophisticated models and is more a ques-
tion of deterministic FEM-modelling. The subject is not strictly related to reliability analysis
and is therefore not treated in this thesis. It is, however, demonstrated that the use of FEM in
reliability analysis has important advantages.

7.4 Ultimate Limit State for Structural Members

The Ultimate Limit State (ULS) describes structural failure respectively collapse. Convenient
limit state functions will be presented for each relevant structural component.

7.4.1 Retaining Walls

Sheet Piles

The most relevant failure mode for sheet piles is the exceedance of the yield strength respectively
the ultimate steel strength. Both are expressed in terms of stresses. We will focus on the
description for the yield strength. The description for the ultimate strength can be developed
accordingly.

1The critical settlements would have to be determined by a preceding damage analysis. They are thus also
indirect criteria in a strict sense.
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Figure 7.4: Loading of Sheet Piles

Figure 7.4 illustrates a typical loading situation for a sheet pile structure with one anchor
layer. It is demonstrated by means of typical FEA-outcomes that the maximum stresses in the
outer fibre of a retaining wall are composed of a bending moment and a normal force component2:

σ =
M(z)
Wel(z)

+
Fn(z)
ASP (z)

(7.6)

where Wel is the elastic section modulus and ASP the cross-sectional area of the sheet pile.

All four quantities on the right side of the equation can be variable over depth and are
therefore denoted as depth-dependent (z-direction). M and Fn can be roughly characterized
as the load variables in this LSF. They are determined mainly by the soil properties. Wel and
ASP are variables representing the structural resistance. The FEM has the advantage that also
second order effects are taken into account automatically, e.g. a stiffer structure will experience
higher bending moments than a more flexible one. That implies that the load variables have
to be determined together with the resistance variables in the same analysis and cannot be
determined separately due to the mutual influence.

According to the preceding considerations the limit state function can be defined as

Z = σy − σ = σy −
(
M(z)
Wel(z)

+
Fn(z)
ASP (z)

)
(7.7)

In words, the definition of the reliability problem would be to determine the probability
that the yield strength σy is exceeded in any point of the sheet pile wall3. Equation 7.7 is the
general form of this definition. It can account for variations in the geometrical properties of the
sheet piles over depth. That is necessary, when e.g. also corrosion of the piles is modelled in a
depth-dependent manner.

2Vertical anchor force component reduced by interaction with soil over depth.
3The according Eurocodes and the CUR 166 allow the use of plastic hinges (using Wpl) in special cases. The

limit state function can be adapted accordingly.
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Usually the geometrical properties are assumed to be constant over depth. If we additionally
assume the normal force contribution to the stresses to be negligible, the LSF can be reduced
to

Z = Md −Mmax (7.8)

where Md = Wel · σy is the design moment and Mmax = max[M(z)] is the maximum
calculated moment over depth. The design moment Md is usually also available in tables by the
suppliers.

Diaphragm Walls

For diaphragm walls we can use the simplified description that is also applicable for sheet piles:

Z = Md −Mmax (7.9)

where Md is to be determined in structural design calculations. One could also use formula-
tions that are based on the compression strength of concrete based on concrete structural design
considerations. The concrete-reinforcement interaction requires a more detailed analysis that is
not treated here in detail.

7.4.2 Anchors and Struts

Anchors are loaded by their reaction to the horizontal loads on the retaining walls. An anchor
can fail by failure of any of its components. We assume here that the connection between anchors
and the retaining wall can be realized with little investment in a very reliable manner and thus
the influence to be negligible. Also the slipping of a grout body is supposed to have a minor
contribution to the failure probability and this contribution is implicitly treated in section 7.5.
The focus in this section is on determining the failure probability of the steel members of anchors
(tubes, bars, cables, etc.) that are loaded by traction forces (see figure 7.5).

Figure 7.5: Loading of Anchors
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These steel members have a certain yield or ultimate strength and can therefore be treated
similarly as the sheet pile using a stress margin as limit state function:

Z = σy − σ = σy −
Fa

Aa(x, z)
(7.10)

where Fa is the calculated anchor force and Aa(x, z) is the cross sectional area of the anchor
that could be spatially variable, depending on the model used.

Assuming Aa to be constant the limit state function can be reduced to:

Z = Fa,d − Fa (7.11)

where Fa,d = σy ·Aa is the design value for the anchor force.

The approach for dealing with the reliability of struts as part of the support structure is similar
to the anchors. The strut force is assumed to be constant over the entire length and also in most
scenarios the geometrical properties will be constant. In contrast to the anchor, the design strut
force could be dominated by the buckling force instead of the maximum stresses in the steel
(yield strength). For approaches to determine Fstrut,d see for example van Baars (2003) [40].

Figure 7.6: Loading of Struts

Figure 7.6 illustrates the role of a strut in the retaining system. In contrast to anchors, struts
require an opposite support that is typically the opposite retaining wall. Struts are positioned
horizontally and do therefore not contribute to the normal forces in the retaining wall.

Their exposure to the outside temperature and to direct sunlight combined with their limited
extension in longitudinal direction lead to additional forces (temperature load). The tempera-
ture loading is difficult to account for because it is an interaction problem between the temper-
ature induced longitudinal extension and the reaction (horizontal displacements) of the wall. A
possible approach is illustrated in figure 7.7.

Then the temperature load can be approximated by:

∆Fstrut =
αT ∆TL

1/k + L/EA
(7.12)

where αT is a thermal expansion coefficient (for steel: αT = 1.2 · 10−5 [K−1]), ∆T [K] is the
temperature change and EA/L is the axial stiffness of the strut.
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Figure 7.7: Restrained Deformation due to Temperature Differences

The determination of the spring stiffness k can be achieved by an appropriate analysis, e.g.
also using FEM. Also empirical relations have been derived from measurements taking into
account circumstances such as exposure to sunlight etc. Using this information, the following
simplified relation can be used:

∆Fstrut = fTαT ∆TL (7.13)

where fT is an empirical reduction factor4. According to Moormann [28] this factor can be
reasonably assumed in a range between 0.2 ≤ fT ≤ 0.4.

The additional load can be implemented in the limit state function for struts and has therefore
not to be modelled in the FEA, even though in this case the second order affects are not accounted
for. A convenient limit state function would be:

Z = Fstrut,d − (Fstrut + Lstrut · fTαT ∆T ) (7.14)

Another possibility would be to model these temperature effects explicitly in the FEA, e.g.
by introducing the additional strut force ∆Fstrut in a second calculation loop or by prescribed
displacements of the strut that simulate its elongation (in axial direction).

Temperature influences can, according to measurements carried out in recent studies (see
[28]), lead to differences in the order of magnitude of 100% in the strut forces and should not
be neglected. This should, however, be subject to improvements in deterministic modelling.
At this stage it is solely shown that the influences can be accounted for in reliability analysis
approaches.

4The value is usually not constant for a project and depends on the range of expected temperature differences.
Also the sun exposure of the struts has an influence and low strut layers that are located in shadow areas are less
influenced. These effects are neglected for the time being.
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7.4.3 Walings

The waling is the element that transfers the loads from the retaining wall to the anchors or
struts. The loading of walings can be schematized as a continuous beam on several supports as
illustrated in figure 7.8.

Figure 7.8: Loading of Walings

The field moment in such a beam can be approximated by:

Mwaling =
Fa · L2

a

10
(7.15)

where Fa [kN/m] is the calculated anchor force per m in z-direction.

Therefore we could formulate the limit state function as:

Z = Mwaling,d −Mwaling = Mwaling,d −
Fa · L2

a

10
(7.16)

where Mwaling,d is the design moment of the waling.

For a sharp design of the waling the limit state will give the same failure probability as for
the anchor or strut force itself and for a conservative design the failure probability will be lower.
Therefore it will normally not be necessary nor helpful to carry out this analysis. The anchor
or strut failure will be the determinant mechanism.
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7.5 Ultimate Limit State for Soil Shear Failure

Soil failure can usually be classified as shear failure or tension failure. There are several fail-
ure mechanisms that are related to the shear strength of the soil. Using analytical or other
approximation methods (like Bishop’s slip circle analysis), these can be assessed. Using FEA
the ’most critical’ failure mechanism is determined automatically. This is for some applications
very useful, but it makes the assessment of other mechanisms impossible or at least difficult.

Some failure mechanisms for deep excavations are illustrated in figure 7.9:

Figure 7.9: Failure Mechanisms in the Soil For Anchored Retaining Walls

Mechanism a) describes the active failure. Displacements of the wall towards the excavation
lead to the development of active soil stresses σyy = σzz · Ka that are lower than the stresses
in neutral position σyy = σzz ·K0. The decrease in horizontal stresses leads at the same time
to a decrease in shear strength (considering the Mohr-Coulomb failure criterion). When the
shear stresses in the soil exceed the shear strength, a slip plane forms and a soil wedge collapses.
The result is an increased earth pressure on the wall for which it is not designed. Furthermore,
settlements next to the excavation are another undesired consequence.

In mechanism b) the passive soil resistance is exceeded by the horizontal loads. In this case the
shear strength is larger due to the deformation of the wall and the horizontal stresses increase
σyy = σzz · Kp (Ka < K0 < Kp). This failure mechanism usually occurs due to a under-
estimation of the sheet pile length. Also a preceding active failure and the subsequent increase
of the load on the wall can lead to passive failure.

The overall failure, as described in mechanism c), can occur when a slip plane occurs some-
where around the structure. The methods to check this stability are similar to slope stability
analysis. Usually deeper lying weak soil layers are a potential cause of this type of failure.

Furthermore, too short anchors could cause a soil block to collapse (’Kranz-stability’ ) or the
shear resistance of the soil around the anchor could be exceeded (’anchor pull-out’ ).
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These failure mechanisms are certainly correlated with each other, because certain parameter
combinations might trigger several of the mechanisms at once. Therefore the common failure
probability would be smaller than the sum of the singular probabilities:

Pf,soil <
n∑

i=1

Pf,i (7.17)

with Pf,soil being the total failure probability for soil related mechanisms and Pf,i being one
mechanism’s occurrence probability.

In the following sections it will be discussed how the total probability5 of soil shear failure
Pf,soil can be determined and several approaches for limit state formulations will be presented.
Not all of the approaches have proven to be successful, but they are mentioned in order to
present the general ideas, which could be useful in similar situations and with the necessary
refinements.

In all approaches the basic problem is to find a definition of failure that seems reasonable
and at the same time can be quantified using the outcomes and information obtained by Finite
Element Analysis.

7.5.1 Excessive Deformations

The first approach is to define structural failure, similarly to the ideas used in the SLS, by
deformations that are unacceptable. Deformations respectively displacements are direct FEM-
outcomes. Figure 7.10 shows some examples of displacement-based criteria that could be used
to detect structural failure.

Figure 7.10: Displacement-Criteria for Structural Failure

The indicated points A, B, C and D could give a clear indication of failure. The limit state
could be formulated for each point separately or ’observing’ all points together:

Z = ulimit −max[|uA|, |uB|, |uC |, |uD|] (7.18)

where the probability is calculated that the displacement of one of the selected nodes/points
exceeds the limit value ulimit. Usually it is advantageous to define limit values for each point

5The separate determination of the probability for each mechanisms proved to be not feasible using FEM.
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independently due to the nature of deformations that is expected. The the limit state can be
rewritten as:

Z = min[ulimit,A − |uA|, ulimit,B − |uB|, ulimit,C − |uC |, ulimit,D − |uD|] (7.19)

Tests with this approach exhibited several problems:

• The deformation behavior of the structure does not always show monotonous reactions of
the described limit state function to monotonous changes in the soil properties. The main
reason is that many of the described failure mechanisms are ’triggered’ suddenly. In other
words, there are no significant displacements observed before moving very close to failure.
This poses problems for many iterative procedures as used e.g. in FORM or Directional
Sampling.

• To obtain results in terms of nodal forces and displacements an FEM-calculation has to
reach an equilibrium state. If the limit displacements are larger than the ones that can be
calculated within the parameter range that leads to equilibrium, the FEA does not return
results.

• A practical problem is the definition of suitable limit displacements ulimit. They have to
be large enough to serve as failure criterion and at the same time they may not be larger
than the values that can be calculated within the limits of equilibrium. This requires
previous knowledge not only about the analyzed system, but also about the feasibility of
calculations in FEM particularly for the analyzed problem. In some cases it could even
occur that for the two conflicting requirements no suitable ulimit can be found.

The consequence is that even for relatively simple problems a lot of trial-and-error calcula-
tions have to be carried out, before a suitable or even feasible limit state function is defined.
Furthermore, some subjectivity is included in the limit state definition. Therefore this approach
is not elaborated any further in this thesis, even though for some problems it could be a good
choice.

7.5.2 φ-C-Reduction

A method for determining a sort of safety factor that is implemented in Plaxis is the φ-c-
reduction technique (see appendix F). This feature can also be used in reliability analysis.
Again we would obtain a reliability against failure in the soil body in general, be it active,
passive or overall failure. The LSF is simply:

Z = MSf − 1.0 (7.20)

where MSf is the so called Multiplier Safety Factor obtained by the φ-c-reduction. A safety
factor smaller than 1 (MSF < 1) is thus considered as failure and vice versa.
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From the LSF we see that the implementation of this approach is relatively straight forward.
There are, however some critical points:

• For non-linear limit states and system effects, there can be convergence problems for relia-
bility methods with iterative procedures, especially due to the fact that the φ-c-reduction
follows a certain path in the parameter space6.

• The safety factor MSf can be misleading in situations where parameters, other than the
soil strength properties could trigger a failure mechanism7.

• The method can be time-consuming and the outcome can be unstable8.

The application of this method is shown for an example in chapter 8, where it could be used
successfully. The more complex problems that are treated in the case study could not be solved
with this approach9.

7.5.3 Mobilized Shear Resistance

The performance of most of the applied reliability methods depends on the failure criterion re-
spectively the limit state function formulation. For example FORM or DS use iteration methods
for determining a point on the limit state (Z = 0). It is therefore desirable to use a an LSF
that is continuous with a monotonic and ideally linear behavior. It should give an indication for
the ’distance to failure’ in parameter space. The previously presented approaches did not fulfill
these requirements satisfactorily.

The idea of using the mobilized shear strength can be explained from a soil mechanics point
of view. Soil is a frictional material that ’fails’ under shear or tension loading. One of the
simplest, but still widely used yield criteria is the Mohr-Coulomb criterion (see appendix F). It
defines the maximum shear resistance before plastic yielding occurs for any given stress state. Of
course, the occurrence of plasticity is not directly failure of the structure and it will be impossible
to make this indicator generic. However, for specific problem configurations, as for the retaining
structures treated in this work, regions can be defined where the occurrence of plasticity and,
before that, the mobilized shear resistance can be a useful indicator for the ’distance’ to failure.

In fact, this approach can be seen as a classical comparison between load and strength,
averaged over a pre-defined region. The difference to the classical measures is that it is based
on internal loads and strength on the level of stresses in the soil continuum instead of external
loads and ’overall’ strength of the structure.

6Reduction of all soil strength properties by a common factor, see section F.2.
7For example the stiffness properties of the soil in deep excavations on the load side or the volumetric soil

weight in uplift problems.
8The calculations do not always converge and the results can be dependent on the number of calculation steps.
9To be clear, the applicability of the ’φ-c-reduction’ does not depend on the degree of complexity of the

structure, but on other properties that should still be defined in further research.
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In a plane-strain environment, the stress tensor is completely defined by:

σ =

 σxx τxy 0
τyx σyy 0
0 0 σzz

 with τxy = τyx (7.21)

Solving the Eigenvalue problem of this matrix we obtain:

σ1 =
σxx + σyy

2
+

√(
σxx − σyy

2

)2

+ τ2
xy (7.22)

σ2 = σzz (7.23)

σ3 =
σxx + σyy

2
−

√(
σxx − σyy

2

)2

+ τ2
xy (7.24)

(7.25)

Figure 7.11: Mohr’s Stress-Circle and Mohr-Coulomb Criterion

The maximum shear stress (radius of Mohr’s Circle) is thus:

τmax =

√(
σxx − σyy

2

)2

+ τ2
xy (7.26)

And the distance of the mean stress point to the yield surface, i.e. the shear resistance is
described by:

τyield =
σ1 + σ3

2
· sinφ+ c · cosφ =

σxx + σyy

2
· sinφ+ c · cosφ (7.27)

The mobilized shear resistance is thus the ratio of the two quantities10:

τmob =
τmax

τyield
=

2

√(
σxx−σyy

2

)2
+ τ2

xy

(σ1 + σ3) · sinφ+ c · cosφ
(7.28)

10Attention has to be paid to the sign conventions!
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The parameter τmob was presented as measure for a load-resistance ratio, i.e. an ’inverse
safety factor’. It can be determined in any integration point in the soil continuum. The questions
to be answered for the use this criterion are:

1. Where respectively in which integration point(s) do we have to monitor the parameter?

2. How do we combine the values of several integration points?

3. How do we determine the limit state criterion based on the monitored data?

These three problems have to be treated together and the solution applied in this thesis has
been found rather by trial and error than deductive reasoning. In fact, we can only describe a
procedure to find a suitable criterion, not give the LSF itself.

Coulomb’s theory for active and passive failure of the soil also helps us to get a first idea
about the according failure surfaces. In this simplified model for minimum active and maximum
passive horizontal soil pressure, it is assumed that wedges are kept in equilibrium by a shear
plane whose angle is θp = π

4 + φ
2 for the passive wedge and θa = π

4 −
φ
2 for the active one (see

fig. 7.12).

Figure 7.12: Angles of Shear Planes According To Coulomb Theory

In fact, after carrying out a ’φ-c-reduction’ for the problem of the case study11 in Plaxis we
observe a similar behavior (see fig. 7.13).

Figure 7.13: Displacement Field After φ-c-Reduction

11For a detailed description of the case study see chapter 9.
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According to figure 7.13 we can expect active/passive failure as the ’most likely’ failure
mechanism 12. Therefore we expect that around the clear visible shear planes the shear resistance
is fully mobilized.

Figure 7.14: Development of Mobilized Shear Strength During φ-c-Reduction

Figure 7.14 illustrates the development of the mobilized shear strength around the retaining
wall during a φ-c-reduction. The red / orange regions have a high mobilized shear strength
value, or in other words less remaining shear strength. The green/yellow regions have low values
of τmob. Picture 1 shows the situation in the final construction phase. Around the sheet pile
wall itself we see in the sequence of pictures that an active failure mechanism is forming from

12The term ’most likely’ is not to be interpreted in statistical sense here. It is the first mechanism that is
triggered by the φ-c-reduction method.
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the tip of the wall towards the surface under an angle that is comparable to what was defined
in figure 7.12. It is also remarkable that the passive failure on the excavation side of the wall
seems to follow the active failure, probably due to the increased loads on the active side.

Figure 7.15: Selected Points For Mobilized Shear Strength Development

In figure 7.15 the four points A to D are indicated. These points were selected to demonstrate
the development of τmob in several locations during the development of failure.

Figure 7.16: Mobilized Shear Strength During φ-c-Reduction

In figure 7.16 the development of τmob is shown over the calculation steps and phases13. The
impression in figure 7.14 is confirmed that the shear resistance is mobilized from the tip of the
wall towards the surface and to the right with a certain ’delay’.

13For detailed information see chapter 9.
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We have seen the qualitative development of active / passive failure for a specific calculation
example. The question remains how this information can be used in a limit state function, i.e.
the practical implementation in the reliability analysis. Basically two variants are feasible:

1. Single Point Observation:
A single point is defined for which the exceedance of a limit value τmob,limit is defined as
failure. The limit state function can be formulated as:

Z = τmob,limit − τmob (7.29)

where τmob is the calculated value for the mobilized shear strength in the selected point14.
In the presented example point D could be suitable for this purpose.

2. Cluster Observation:
A cluster15 is defined for which the average value of of the mobilized shear strength
τ̄mob,cluster is determined16. The exceedance of a limit value value is defined as failure
and the limit state function is:

Z = τmob,cluster,limit − τ̄mob,cluster (7.30)

where τmob,cluster,limit is the limit value for the cluster mobilized shear strength average.
According to the knowledge from the analysis presented in figure 7.14 we could choose the
area indicated in figure 7.17 as observed cluster for active failure.

Figure 7.17: Possible Choice For Cluster Observation

We have defined an observable quantity and a way of defining the limit state function. The
limit state criterion τmob,limit respectively τmob,cluster,limit is still to be determined. There might
be situations, where one can be sure that the value 1 is an appropriate choice. In many cases,
especially for the cluster averages however, failure might occur before the whole shear strength
in the observed region is mobilized. Given that FORM can be applied to the problem in general,
the scheme presented in figure 7.18 could be a solution.

14In case of multiple construction stages the maximum calculated value.
15Subset of the finite element mesh respectively the integrations points.
16In case of multiple construction stages the maximum calculated value.
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Figure 7.18: Iterative FORM Procedure For Mobilized Shear Strength Criterion

FORM can be used in an iterative way such that the limit value ( τmob,limit or τmob,cluster,limit)
is adapted gradually according to the results of the preceding analysis. The advantage using
FORM is that we do not have to carry out each analysis from the start, repeating already made
calculations. Instead the starting point of an analysis can be chosen as the design point of the
last successful calculation. A successful calculation is in this context, that a design point (DP)
could be determined in the non-failure domain. An unsuccessful calculation would probably
exhibit convergence problems, because the DP is situated in the failure domain17.

This procedure might not give the exact solution18 for the failure probability Pf , but it
delivers a conservative estimate, because the determined design point will remain in the non-
failure domain.

17In this case the FEA does not return results, because equilibrium is not reached in all calculation phases.
18Excact within the limits of linearization of the LS (FORM).
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Step Plan

The described method requires previous knowledge about the problem and the limit state func-
tion cannot be defined without a thorough preceding deterministic analysis. To carry out the
reliability analysis for soil shear failure with this approach, the following step plan can be fol-
lowed:

1. Identify the relevant failure mechanisms (as e.g. in figure 7.9).

2. Investigate the failure development in terms of τmob.

3. Define suitable integration points or clusters for the observation of τmob.

4. Define a suitable limit state criterion (function) for the analyzed mechanisms, if necessary
using an iterative procedure (as described e.g. using FORM).

Remarks

• The results of the procedure depend highly on the quality of the deterministic analysis
and the identification of the relevant failure mechanisms. If other mechanisms than the
expected ones play a role or the failure development is different, the results are question-
able.

• For certain failure mechanisms, no results will be obtained. Before the calculation reaches
the parameter space of interest, another failure mechanism can occur and no equilibrium
is reached. In fact, only the failure probability of the ’most likely’ mechanism can be
calculated and has to be used as an estimate for Pf,soil (lower bound).

• The procedure was discussed for active/passive failure. It can be applied also to other
failure types accordingly (e.g. anchor pull-out).

• The method requires previous knowledge and certainly several attempts to obtain a reliable
result. It is therefore not generic.

• In more complex problems it might be impossible to make a reasonably complete inventory
of failure mechanisms. In that case a more robust and generic measure is needed. Such an
approach is presented in the next section.
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7.5.4 Limit Equilibrium

From the previous section can be concluded that there is a need for a robust and generic criterion
for reliability analysis of soil shear failure mechanisms. In this section an approach that uses
the limit equilibrium concept is presented. As a matter of fact this concept is also used in some
deterministic approaches, e.g.:

• The earlier treated φ-c-reduction technique (see appendix F) uses the same criterion to
determine the value MSf .

• In the CUR 166 [8] in chapter 4 (design of sheet pile walls using FEM) the criterion is
used to determine wether the sheet pile wall is long enough. The practical implementation
is that, if using design values all calculation phases reach equilibrium, the safety against
passive failure is sufficient.

Generalizing these ideas, the following can be assumed:

• If a parameter combination / realization leads to equilibrium in all phases, the state of the
structure/mechanism can be classified as not failed → Z > 0 (non-failure domain).

• If equilibrium is not reached in one or more phases, the state of the structure/mechanism
can be classified as failed → Z < 0 (failure domain).

Using this definition, the reliability problem is the classical integration of the joint probability
density of the basic random variables over the failure domain to obtain the probability of failure
or vice versa:

Pf =
∫

Z(X)≤0

fX(x)dx (7.31)

Of course this problem could be solved by ’brute force’ using Crude Monte Carlo. How-
ever, the calculation effort can be reduced by using more advanced techniques. The presented
approach uses Directional Sampling for this purpose. The nature of the analyzed binary limit
state function (the only possible results are: failed ↔ not failed) required some amendments in
the iterative procedure.

To understand the following description we need to define the concept of the limit equilibrium:

The limit equilibrium is the hyperplane in parameter space (basic random variable
space) which describes the parameters sets that are on the border of leading to a
failed and a not failed FEM-calculation, where failure is defined as not reaching
equilibrium and vice versa.
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Figure 7.19: Directional Sampling For Binary Limit State Function

The application of Directional Sampling to such a binary limit state function is described
in figure 7.19. In general it is advantageous to use iterative procedures that make use of the
information about the gradient of the response (LSF) to determine the length λ (see section
4.4.4). In this case however, we lack information about the magnitude of the response. The
only information available is whether the LSF is positive or negative. In this case, as indicated
in figure 7.19 on the right-hand side, the choice was to use Z = 1 for not failed and Z = −1 for
failed results. Obviously no partial derivatives can be determined from this information.

The iteration procedure for determining λ is:

1. Evaluation (FEM-calculation) in the origin of the standard normal parameter space19

(u-space).

2. Evaluation in λini (maximum length, for larger λ the contribution of the direction to the
failure probability is negligible: Pi = 1− χ2(λ2

i , n)) � Pf ).

3. If Z = 1, calculate the next direction. / If Z = −1, start iteration process using the
midsection method. The precision of λ can be controlled by the number of iteration steps.
The vector length λi that determines the parameter combination for an iteration step is
determined by:

λj =
1
2

(max[λi|Z > 0 ∧ 1 ≤ i ≤ j − 1] +min[λi|Z < 0 ∧ 1 ≤ i ≤ j − 1]) (7.32)

(The midpoint between the maximum calculated λi where equilibrium was reached and
the minimum λi that lead to failure.)

4. Calculate the next direction.

The rest of the Directional Sampling procedure is carried out in the standard manner (see
4.4.4) and thus the probability of failure can be determined. For the problems that were analyzed
for this thesis, this approach proved to be more robust and reliable than the other approaches.

19Median Values for all basic random variables.
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The advantages, limitations and other aspects of this approach are:

• The presented approach accounts for non-linearities and system effects using a level III
method (Directional Sampling).

• The method is robust and not sensitive to non-linearities in the response due to its binary
limit state function.

• For further use of the results in the system reliability analysis it must be considered that for
level III methods like DS (no linearization) equivalent influence factors αi are determined,
the quality of which is uncertain with respect to the use in concepts such as Hohenbichler.
Further research is necessary for the quality of the equivalent αi used in first-order system
reliability concepts.

• In fact, the φ-c-reduction technique can be seen as a special case of directional sampling.
The reduction of the strength properties with a common factor MSf can be considered
as one direction in parameter space. This illustrates also the considerable advantages of
the presented approach. Not only the strength properties, but also stiffness parameters
and volumetric weights are varied. The statistical properties of the parameters as well as
correlations can be accounted for.

• It is expected that the performance of the method in terms of calculation effort can be im-
proved considerably using the information on important and less important directions that
is already available during the calculation process. Similarly to the response surface that
is used in DARS (see 4.4.5), a fit-function could be used to predict the vector length λi as
function of the direction. Due to time reasons this improvement could not be implemented
during this thesis work.
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7.6 System Reliability

As mentioned in section 7.1, the system reliability can be determined respectively approximated
in different ways. Subsequently two suggestions are discussed.

7.6.1 System Reliability by Using First-Order Reliability Results

If the influence coefficients 20 αij and reliability indices βi of each of the e.g. three dominant
failure (i = 1, 2, 3) modes are known, a better estimate of Pf,ULS can be obtained by applying the
theory presented by Hochenbichler in 1983 [20]21. Basically this method enables us to determine
the failure probability of a parallel system:

Pf = P (Z1 < 0 ∩ Z2 < 0) (7.33)

This makes also the determination of serial system failure probabilities possible:

Pf = P (Z1 < 0 ∪ Z2 < 0) = P (Z1 < 0) + P (Z2 < 0)− P (Z1 < 0 ∩ Z2 < 0) (7.34)

The procedure for calculating the failure probability of a serial (sub)system with two elements
can be summarized as:

1. Perform reliability analysis on each mechanism i to obtain Pf,i respectively βi and αij

(i=1,2 ; j=number of random variables).

2. Determine Pf = P (Z1 < 0 ∩ Z2 < 0) (parallel system failure probability).

3. Determine Pf = P (Z1 < 0 ∪ Z2 < 0) = P (Z1 < 0) + P (Z2 < 0) − P (Z1 < 0 ∩ Z2 < 0)
(serial system failure probability).

4. Determine the equivalent influence coefficients αe
j for the (sub)system.

The last step in this calculation procedure is usually only necessary, if the equivalent influence
coefficients are needed for further calculations. The calculation procedure can be applied to
an arbitrary number of limit states. Then the limits are joined one by one in couples of two
successively as indicated in figure 7.20.

In principle the elements can be joined in an arbitrary order, even though it is recommended
to join always the two mechanisms with the highest mutual correlation (see appendix D).

20Remark: The definition of the influence coefficients α is only meaningful and well defined in the context of
first-order (linearization) concepts. It is common practice to calculate also equivalent α-values in other reliability
methods (e.g. level III). If these equivalent approximations are used, one has to be aware of the way these have
been determined and the consequences for the use in the presented concept.

21The method of Hohenbichler is explained in detail in appendix D.
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Figure 7.20: Successive Determination of System Failure Probability with Hohenbichler

7.6.2 System Reliability for Multiple Failure Mechanisms

In section 7.5.4 the use of Directional Sampling in combination with the Limit Equilibrium
concept is described. In principle this method can also be applied to a problem with multiple
limit states.

The analyzed system can be defined as a serial system with three major components. That
means that the system failure probability is obtained by determining:

Pf = P (Z1 < 0 ∪ Z2 < 0 ∪ Z3 < 0) (7.35)

The same result can be obtained with the expression:

Pf = P (min[Z1, Z2, Z3] < 0) (7.36)

This fact can be used for the definition of a common limit state function that includes all three
major failure criteria in one formula. The general version of this LSF would be:

Z = min[Z1, Z2, Z3] (7.37)

For the adapted iterative procedures presented in section 7.5.4 it is advantageous to use a
binary limit state, such as:

• Zi = 1 for non-failure (Zi > 0)

• Zi = −1 for failure (Zi < 0)

If all three limit states (i = 1, ..., 3) are defined accordingly, it is also avoided that the iterative
procedure is influenced by differences in order of magnitude of the limit state functions values.

Using the described LSF and a level III method such as Crude Monte Carlo or Directional
Sampling22 the system failure probability can be determined in a single reliability analysis.

22Directional Sampling can only be used with iterative procedures for the determination of λi that do not use
the gradients of the limit state function. For more information see section 7.5.4.
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Chapter 8

Simple Calculation Examples

In this chapter the application of reliability methods to problems of structural mechanics or
geotechnics using finite element methods is illustrated with a few calculation examples. We
begin with a very simple example of a beam on two supports, followed by the classical Brinch-
Hansen bearing capacity problem and a simple excavation with a sheet pile wall.

8.1 Example 1 - Elastic Beam On Two Supports

The first example is the classical linear elastic beam on two supports, loaded by a vertical point
load acting in the center of the beam. The exceedance probability of a maximum admissible
displacement umax is to be determined. The results of the analytical solution are compared with
results obtained using an FEM-model.

8.1.1 Geometry and Material Properties

Figure 8.1: Elastic Beam On Two Supports

The spacing between the supports is L = 20 [m]. The cross sectional area of the beam
is A = 0.2 · 0.7 = 0.14 [m2] and the moment of inertia is I = 0.2·0.73

12 = 0.00572 [m4]. The
load P ∼ N(100/20) [kN ] is uncertain and described with a normal distribution. The stiffness
parameters for the linear elastic model are assumed to be typical concrete values. The Young’s
modulus E =∼ N(30 · 106/3 · 106) [kPa] is assumed to be normally distributed, whereas the
Poisson’s ratio is treated deterministically with ν = 0.15 [−].
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8.1.2 Limit State

The deflections of the beam in vertical direction uy may not exceed the admissible value umax.
Thus, the limit state function can be written as:

Z = umax − uy (8.1)

As value for umax often a fraction of the span length is handled. We arbitrarily choose
umax = L/100 as maximum deflection criterion.

The beam example is used to compare the results of different reliability methods for a problem
where the exact solution is known:

uy =
PL3

48EI
(8.2)

For some calculation methods it can make a difference, how the LSF is defined. For FORM,
for example, it is advantageous to formulate the limit state as linear as possible in the most
influential basic random variables. For the present problem the following expressions are equiv-
alent:

Z =
L

100
− PL3

48EI
⇔ Z = 0.48EI − PL2 (8.3)

8.1.3 Results with Analytical Solution

There are two basic random variables that are considered to be uncertain in this example, P and
E. The geometry is considered deterministic. The analytical solution is also used to illustrate
the efficiency of the different reliability methods.

FORM

The second formulation of the LSF in equation 8.3 has the advantage of being linear in both
basic random variables. Additionally, these are normally distributed, which enables us to even
find the solution with the FORM-algorithm analytically and ’by hand’ in one step:

1. Mean value calculation:
µZ = 0.48ÊI − P̂L2 = 0.48 · 3E + 7 · 0.00572− 100 · 202 = 42, 368

2. Partial derivatives:
∂Z
∂P = −L2 = −400 and ∂Z

∂E = 0.48 · I = 0.00275

3. Standard deviation of LSF:

σZ =

√∑n
i=1

(
∂X∗

i
∂Xi

σXi

)2
=

√
(−400 · 20)2 + (0.00275 · 3 · 106)2 = 11,492

4. Reliability index: β = µZ
σZ

= 42,368
11,492 ≈ 3.69

5. Probability of Failure: Pf = Φ−1(−β) = Φ−1(−3.69) = 1.1 · 10−4

6. Influence factors:
αP = ∂Z

∂P · σP /σZ = −0.71
αE = ∂Z

∂E · σE/σZ = +0.70
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Considering the properties of the FORM-method (see section 4.4.1), this solution is exact
and serves as reference. Evaluating the LSF in equation 8.3 in ProBox leads to the same answer,
for both LSF-formulations. In terms of calculation effort the second formulation (linear in both
random variables) performs better (13 LSFE for LSF type I / 7 LSFE for LSF type II).

Table 8.1: ProBox Results for Beam Problem with FORM

When only either P or E are treated as stochastic quantities1, we obtain the following results:

• P stochastic: β = 5.30 (LSFE in FORM: 5 with LSF type I / 5 with LSF type II)

• E stochastic: β = 5.14 (LSFE in FORM: 11 with LSF type I / 5 with LSF type II)

Of course, the reduction of uncertainty leads to an increase in reliability. Note that the used
FORM algorithm again performs better for the second formulation of the LSF.

SORM

We know beforehand that the problem is linear in the basic random variables and expect there-
fore no changes in the results. Table 8.2 confirms that the result is identical. The same holds,
when only one variable is stochastic, either E or P .

Table 8.2: ProBox Results for Beam Problem with SORM

1The other one is treated as deterministic value. The expectation µX is used in this case.

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 99

PEM

The Point Estimate Method is not implemented in ProBox. A spreadsheet has been developed
on basis of the variant Zhou-Nowak (see section 4.4.3). The detailed input and the results of
the calculations can be found in appendix G.

It turns out that, if the LSF is a linear combination of normally distributed random variables,
the assumption of a normally distributed response function leads to correct answers. This is
to be expected, since the sum of normally distributed variables is always normally distributed
itself. For the expression uy = PL3

48EI this is not the case. The response is inverse proportional
in E and therefore its distribution can only be approximated, e.g. by choosing a distribution
based on goodness-of-fit tests. The results in table 8.3 show that assuming a (two-parametric)
lognormal distribution does not lead to correct answers.

Table 8.3: Summary PEM Results for Example 1 (analytical solution)
Z ∼ N R ∼ N R ∼ LN

RV LSF β Pf β Pf β Pf exact β exact Pf

P and E 1 4.60 2.1 E-6 4.60 2.1 E-6 1.28 1.0 E-1 3.69 1.1 E-4
P and E 2 3.69 1.1 E-4 — — — — 3.69 1.1 E-4
P 1 5.30 5.9 E-8 5.30 5.9 E-8 1.30 9.6 E-2 5.30 5.9 E-8
P 2 5.30 5.9 E-8 — — — — 5.30 5.9 E-8
E 1 10.0 3.6 E-24 n.r. n.r. n.r. n.r. 5.14 1.4 E-7
E 2 5.14 1.4 E-7 — — — — 5.14 1.4 E-7

Table 8.3 shows for different combinations of stochastic variables the results for the following
assumptions: 1. normally distributed LSF, 2. normally distributed response and 3. lognormally
distributed response. LSF 1 is the first version of the limit state function in equation 8.3, whereas
LSF 2 is the second one which is linear in the random variables.

A disadvantage of PEM is that the influence factors of the random variables (αi) are not
assessed during the calculation like e.g. in FORM.

DARS

DARS calculates the correct result with about 600 LSF-evaluations for LSF 1 and about 300
LSF-evaluations for the linear versions (LSF 2).

Table 8.4: ProBox Results for Beam Problem with DARS (LSF2)
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Crude MC

For Crude Monte Carlo we apply the convergence criterion that the variation coefficient of Pf

must be smaller than 10%. We can use the following formula for estimating the necessary
number of samples (see [45]):

N >
1

COV (Pf )2

(
1
Pf

− 1
)

(8.4)

For the given situation our number of realizations should thus be larger than 9.1E + 5, thus
about 1 million. The number of calculations after which we reach this criterion in the simulations
varies considerably, but is in the expected order of magnitude. It should be noted that also the
approximations2 for αi used in ProBox are close to the exact values.

Table 8.5: ProBox Results for Beam Problem with Crude MC

DS

Directional Sampling gives the correct answer within the same accuracy criteria as for Crude
MC within a range of about 1000 to 2000 LSFE-evaluations. The efficiency is thus more than a
factor 500 higher than Crude MC for this example.

Table 8.6: ProBox Results for Beam Problem with DS

2The influence coefficients αi are in principle strictly connected to the linearization principles in FORM. Their
magnitude is, however, very useful for e.g optimization tasks. Therefore it is common to determine ’equivalent’
influence factors also from the results of other reliability methods. For the Monte-Carlo methods presented in
this work, the design point is always defined as the point on Z = 0 with the highest probability density. The
αi are determined assuming that the limit state is orthogonal to the vector between the origin of the parameter
space and the design point.
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IVS

The performance of Increased Variance Sampling depends highly on the factor with which the
variance is increased. In this example a factor 3 was applied. The number of LSF-evaluations is
in the range of about 15,000 to 20,000. The improvement in efficiency compared to Crude MC
is about a factor 50.

Table 8.7: ProBox Results for Beam Problem with IVS

8.1.4 Results with Finite Element Analysis

Since the programme Plaxis is developed for geotechnical applications, it does not handle one-
dimensional problems and for the simple beam a work-around in a 2d-plane strain environment
was used. Due to these modelling aspects the results were not 100% equal to the ones found
with the analytical solution, but within acceptable limits.

Figure 8.2: Plaxis Model For Beam On Two Supports

Naturally we expect the results obtained with the help of Finite Element Analysis (FEA) to
be congruent with the ones from the analytical solution (within reasonable limits of accuracy).
Nevertheless we have to deal with an implicit limit state formulation now. Each evaluation is
the result of a black box calculation and derivatives or roots can only be determined numerically.
The following calculations illustrate that in general handling of implicit limit states is feasible
with the coupling between ProBox and Plaxis and are carried out treating P and E as stochastic
variables.
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FORM / SORM

FORM and SORM both return the correct solution (considering the systematic model error).
Both need more LSFE compared to the analytical formula.

Table 8.8: ProBox Results for Beam Problem with FORM using FEM

PEM

The PEM calculations are not repeated with the FEM model. The results would be exactly
the same as for the first version of the LSF in the analytical section, since the method is not
altered. At this point it becomes obvious that one of the disadvantages for PEM in combination
with implicit limit state functions like FEA is that we do not know how a variable influences the
results and we cannot use tricks like re-formulating the LSF as in the explicit case. Therefore
the tested version of PEM would not even be suitable for the simple beam problem.

DARS

DARS also finds the ’correct’ solution and seems to be indifferent to small scale numerical
instabilities.

Table 8.9: ProBox Results for Beam Problem with DARS using FEA

The reliability methods with lower efficiency are not calculated using the finite element model
due to time restrictions. Consider that even for a LSFE time (basically the duration of the Plaxis
calculation) of 10 seconds, a Monte Carlo Simulation with one million LSFE would take more
than 115 days!

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 103

8.1.5 Conclusions

From the first simple beam example the following conclusions can be drawn:

1. Analytical Solution:

• For explicit analytical expressions it is worthwhile to transform the limit state function
in a way that it is as close to linear as possible in the basic random variables. Some
of the reliability methods perform significantly better this way (especially FORM,
SORM).

• The Point Estimate Method even exhibits erroneous results for LSF that are non-
linearly dependent on the basic variables. A possible improvement could be the
use of the third central moment (skewness) in order to achieve a better fit of the
response distribution using for example a three-parametric log-normal distribution
for improving the tail fit.

• DARS gives the correct answer, but it is not as efficient as the level II methods for
this simple example.

• Crude Monte Carlo needs a high number of LSF-evaluations to reach the convergence
criterion COV (Pf ) = 0.1. For problems with low failure probabilities it is not at-
tractive in combination with sophisticated models (e.g. FEM) due to the excessive
calculation effort.

• The efficiency of Crude MC or IVS might be less sensitive for changes in the type of
problem or the number of random variables, but even for this simple problem and a
typical value of Pf they need too many LSF-evaluations. DS is more efficient and the
use of response surfaces in DARS even improves the efficiency.

2. Finite Element Analysis:

• Crude Monte Carlo is already too time consuming for this type of problem, where
one LSF-evaluation takes about 10 sec.

• FORM and SORM perform efficiently on this type of simple problem.

• PEM exhibits problems especially with implicit LSF as described above.

• DARS has proven to find the correct answer with high efficiency considering that it is
a level III method. It will be increasingly attractive for more irregular or non-linear
problems.
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8.2 Example 2 - Foundation Bearing Capacity

This example treats the classical Brinch-Hansen bearing capacity problem. It is not directly
related to deep excavations, but it gives insight into the presented limit state formulations to
cope with soil shear failure. The bearing capacity that is calculated with the analytical Brinch-
Hansen formula is compared with the reliability results obtained by an FEM model.

Geometry and Material Properties

Figure 8.3: Calculation Example: Foundation Bearing Capacity

8.2.1 The Brinch-Hansen Formula

For infinitely long strip foundations an approximation of the bearing capacity p was developed by
Brinch-Hansen. It is an extension of a more general version by Prandtl. The version presented
here accounts for the friction angle φ, the cohesion c, the volumetric weight of the soil γ and a
uniform surcharge load q as well as for the width of the foundation strip B.

p = cNc + qNq +
1
2
γBNγ (8.5)

The dimensionless coefficients Nc, Nq and Nγ are defined as:

Nq =
1 + sinφ

1− sinφ
eπtanφ (8.6)

Nc = (Nq − 1)cotφ (8.7)
Nγ = 2(Nq − 1)tanφ (8.8)

That means that for any realization of the soil properties φ, c and γ a unique solution for
the bearing capacity p can be determined (within the physically possible parameter ranges).
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Given the distributions of the soil properties in figure 8.3 and using a safety factor of γm =
1.25 for the strength properties of the soil we obtain results for the expected, characteristic (95
%-limits) and design value with the Brinch-Hansen formula (see table 8.10).

Table 8.10: Deterministic Results With Brinch-Hansen

Mean Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] Nq [-] Nc [-] Nγ [-] p [kPa]
25 5 15 10.0 2.0 10.66 20.72 9.01 345.5
95% - Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] Nq [-] Nc [-] Nγ [-] p [kPa]
20.88 2.46 12.53 10.0 2.0 6.98 15.69 4.56 165.6
Design Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] Nq [-] Nc [-] Nγ [-] p [kPa]
16.97 1.97 12.53 10.0 2.0 4.76 12.31 2.29 100.5

We see that the use of characteristic values and material factors lowers the bearing capacity
value nearly by a factor 3.5. We investigate the exceedance probability of the calculated design
value, given the uncertainty in the soil parameters. The results for different reliability methods
are summarized in table 8.11.

Table 8.11: Reliability Results With Brinch-Hansen

FORM β Pf αφ αc αγ LSF-evaluations
3.95 3.9 · 10−5 0.92 0.38 0.06 20

SORM β Pf αφ αc αγ LSF-evaluations
4.23 1.2 · 10−5 0.92 0.38 0.06 38

DS β Pf αφ αc αγ LSF-evaluations
4.02 2.8 · 10−5 0.92 0.38 0.06 1,610

DARS β Pf αφ αc αγ LSF-evaluations
3.89 5.0 · 10−5 0.92 0.38 0.09 379

Crude MC β Pf αφ αc αγ LSF-evaluations
3.89 5.0 · 10−5 0.81 0.55 0.19 100,000

We can conclude that the safety concept, as assumed for this case with characteristic values
and material factor on the soil strength properties, would lead to acceptably low failure proba-
bilities. FORM performs well on this apparently almost linear limit state. In this configuration
the friction angle φ is the most influential parameter.
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The results of the Crude Monte Carlo analysis are represented in a histogram in figure 8.4.

Figure 8.4: Histogram Crude Monte Carlo Realizations p and Z

The limit state function was Z = p − 100.5 and therefore the histogram of the Z-values is
only shifted horizontally relative to the histogram of p. Only 5 values were smaller than the
design bearing capacity3.

8.2.2 Reliability Analysis With FEM-model

A main subjective of this thesis work is the reliability analysis using FEM. Therefore we will
try to evaluate the same bearing capacity problem using a Finite Element Model for the limit
state function evaluation. Some of the methods for dealing with this kind of soil shear failure
that were discussed in section 7.5 are applied to this example.

The finite element model uses a distributed load to simulate the foundation pressure and a
elasto-plastic continuum with Mohr-Coulomb failure criterion representing the soil (similar to
figure 8.3). The calculation phases are:

1. Gravity loading.

2. Activation of surcharge load: q = 10kPa.

3. Activation of foundation strip load (unit stress).

4. Increase of load using a Load Multiplier ’MLoad’.

In the last phase either the maximum bearing capacity for a parameter realization can be
determined by stepwise increasing the load until failure or the load is set to a predefined value
(e.g. design value) and it is checked, whether this load is borne by the soil or not. The choice
for either method depends on the limit state that is applied.

3The Monte Carlo analysis had not converged after the 100000 calculations for a required variation coefficient
on the failure probability of 1%.
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Deterministic Calculations

The same deterministic calculations as for Brinch-Hansen were carried out with the FEM-model
and the results are summarized in table 8.12.

Table 8.12: Deterministic Results With FEM-Model

Mean Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] p [kPa]
25 5 15 10.0 2.0 300.7
95% - Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] p [kPa]
20.88 2.46 12.53 10.0 2.0 151.7
Design Values —
φ [deg] c [kPa] γ [kN/m3] q [kPa] B [m] p [kPa]
16.97 1.97 12.53 10.0 2.0 98.6

The results show differences up to approximately 20 % with respect to the Brinch Hansen
formula. However, for low strength values the results show less differences. The fit around the
design value is quite good and therefore we can expect comparable outcomes for the reliability
analysis.

Load Multipliers

In this example the simplest and probably most efficient way to determine the probability that
the bearing capacity is lower than the design value is to determine the calculated bearing capacity
by means of the load multiplier MLoad. The limit state can in this case be formulated as:

Z = p− pd (8.9)

where p is the calculated and pd = 100.5kPa the design bearing capacity obtained by the
Brinch-Hansen formula.

The results for this approach are summarized in table 8.13.

Table 8.13: Reliability Results With Load Multiplier

FORM β Pf αφ αc αγ LSF-evaluations
3.75 9.0 · 10−5 0.84 0.54 ≈ 0.00 20

DARS β Pf αφ αc αγ LSF-evaluations
3.86 5.8 · 10−5 0.84 0.54 0.04 1,248

The reliability indices obtained with the finite element model show good agreement with
the ones determined with Brinch-Hansen. The influence factors indicate a slight shift from the
friction angle towards the cohesion. The soil weight is not very important in the design point.
These results will serve as benchmark for the other methods.
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Figure 8.5: Representation of DARS Results

Figure 8.5 shows the results of the DARS analysis. The calculated bearing capacities p
are plotted as blue dots over the two dominant parameters φ and c. The diagonal plane is a
two-dimensional fit (by regression analysis) that shows reasonable agreement with the response.
Thus, the limit state is almost linear. The horizontal plane represents the design bearing capacity
pd = 100.5 [kPa]. DARS was sampling almost exclusively in the important regions and many
points are situated around the intersection of the planes (Z = 0).

Remark : Unfortunately this approach is not applicable to the deep excavation problems, since
the load in that case is generated by the soil and cannot simply be controlled by a load multiplier.

φ-c-Reduction

In order to use the φ-c-reduction the following limit state function is applied (see section 7.5):

Z = MSf − 1 (8.10)

A deterministic calculation with the expected values leads to MSf = 1.69 and therefore to
Z = 0.69. A FORM analysis lead to the results summarized in table 8.14.

Table 8.14: Reliability Results With φ-c-Reduction

FORM β Pf αφ αc αγ LSF-evaluations
3.76 8.6 · 10−5 0.80 0.59 0.11 24
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The analysis performed very well with respect to the reference results. The φ-c-Reduction
seems well suited for this type of problem. In fact, the soil strength parameters are clearly the
dominant variables. It is questionable, if this approach is applicable for the excavation problems
treated in this thesis, where other parameters such as the volumetric weight and stiffness might
play a more important role.

Figure 8.6 shows the development of MSf over the calculation steps in the design point of
the FORM analysis.

Figure 8.6: MSf vs. Steps

Ideally the value MSf = 1 should be found. At the end of the calculation, indeed, MSf
converges to roughly one. The question is, if the preceding peak doesn’t represent the actual
bearing capacity. At least it can be stated that the approach is conservative, if the φ-c-reduction
behaves this way in the given problem. However, the fluctuations after the peak can represent
a problem for automatized calculations.

In figure 8.7 the DARS results were filtered and only the results close to the limit state
(p < 102 [kPa]) are displayed. In both subfigures the ellipses approximate the lines of equal
probability. In subfigure a) the path respectively direction of the φ-c-reduction is illustrated and
also the solution (design point) that should be found by FORM is indicated. In subfigure b) the
blue dots represent the filtered DARS-results and the arrows indicate the Directional Sampling
scheme. The results show that the limit state is almost linear, as indicated by the red line. In
this case the level III method confirms that the use of FORM is reasonable in this case. It is,
however, also obvious that for non-linear limit states Directional Sampling or DARS are more
appropriate. The path followed by the φ-c-reduction is not necessarily the one that leads to the
most probable failure mechanism, which is proven in this figure. Consequently the common idea
that ’a φ-c-reduction leads to the most probable failure mechanism’ is wrong, at least speaking
in terms of probability theory.
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Figure 8.7: φ-c-Reduction / FORM (a) vs. Directional Sampling / DARS (b)

Limit Equilibrium

At last also the limit equilibrium approach is tested for the bearing capacity problem. Remember
that the definition of the limit state function was:

• Z = 1, if all calculation phases reach equilibrium.

• Z = -1, otherwise.

That means that in the last calculation phase the design load is activated and it is checked
if the bearing capacity is sufficient or not. This approach is not as elegant as the previous
ones, because is neglects all the information that is available after the FEM-analysis except the
information about equilibrium. On the other hand it is very robust and it is expected to be
useful for cases where the previous methods are not applicable.

The results of the analysis are summarized in table 8.15.

Table 8.15: Reliability Results With Limit Equilibrium Approach

DS(modified) β Pf αφ αc αγ LSF-evaluations
3.97 3.7 · 10−5 0.81 0.57 -0.13 1,896

In figure 8.8 the end points of the vectors that were determined by the analysis are indicated
by the blue points. The problem was 3-dimensional, but the volumetric soil weight γ did not
show a considerable influence. Therefore only the φ-c-plane is displayed in real parameter space
(x-space) and in uncorrelated standard normal space (u-space). The red dots represent the
expected values respectively the determined design point. The dotted red lines indicate an
approximated limit state. It can be seen that the limit state is reasonably linear in the regions

MSc thesis Timo Schweckendiek



Structural Reliability Applied To Deep Excavations 111

Figure 8.8: DS-Results Limit Equilibrium Approach in X-Space (left) and U-Space(right)

of high probability density, whereas is shows non-linear behavior for the less-likely parameter
combinations. If the analysis was only carried out for the two displayed parameters, only dots
at the margins should be observed, but since also γ was involved we observe dots also inside
these limits. They are projections on the displayed plane.

The limit equilibrium approach yields basically the same results as the other methods. For
more complex problems it could be a suitable alternative.

8.2.3 Conclusions

The bearing capacity problem served as test for methods to determine the probability of soil
shear failure. The following conclusions can be drawn from the obtained results:

• The nature of the problem allowed us to use the load multiplier for the reliability analysis
successfully. Unfortunately, this approach can only be used as a reference for the other
attempts, since it is not applicable to retaining structures.

• The φ-c-reduction performed well. The applicability to problems, where also other param-
eters than the soil strength are influential, is questionable.

• The limit equilibrium approach is a robust method that has shown to yield ’correct’ results,
at least in the given example. It is expected to be a good option for more complex problems.

• There was a good agreement between the results of the Brinch-Hansen formula and the
FEM-model in terms of reliability, even though for higher values of soil strength there was
a difference up to 20% in the deterministic results.
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8.3 Example 3 - Sheet Pile Wall Without Support

This example is a deep excavation in sand with a sheet pile retaining wall. It is illustrated
how reliability methods can be applied in combination with FEM (Plaxis) to limit states that
are typical for deep excavations respectively retaining structures. The example properties, soil
parameters as well as structural dimensions, are chosen arbitrarily.

Geometry and Material Properties

Figure 8.9: Calculation Example: Sheet Pile Wall (Without Anchors)

Construction Stages

An excavation of 5.0 m depth is executed using a sheet pile wall without anchors or bottom
support in a homogeneous soil layer with uncertain ’average’ properties. Neither groundwater
nor external loads are present.

The calculation sequence is:

1. Gravity loading of the soil including the ’wished in place’ sheet pile.

2. Excavation until final level (-5.00m).
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Variable Distribution Mean Std COV
Eref [kPa] normal 75,000 15,000 25 %
Rinter [-] normal 0.5 0.1 20 %
φ′ [deg] lognormal 32.5 3.25 10 %
Wunsat [kN/m3] normal 18 0.9 5 %
ν [-] normal 0.3 0.03 10 %
ψ [deg] normal 3.25 0.16 5 %

Table 8.16: Basic Random Variables Example 3

A set of reasonable variation coefficients COV (Xi) is applied in combination with the mean
values µXi given in table 8.16.

The parameters used for the sheet pile wall correspond to a Larssen 24 profile and are treated
deterministically, i.e. uncertainties in the strength properties of the structure are neglected.

The following aspects will be subject to investigation in this example:

• Local sensitivity to the soil/model parameters

• Reliability against failure in the soil in general

• Reliability against yielding of the Sheet Pile Wall

• Reliability against excessive deformations

• Dependence of the displacement criterion on β

• Influence of the coefficient of variation of sin(φ)

• Influence of interface strength (Rinter) on the reliability index

We consider unacceptable states of the structural system as failure, like e.g. excessive defor-
mations or plastic yielding of structural members. Some of the investigated mechanisms do not
directly lead to a collapse of the system and the system would exhibit some residual strength,
even though it is already considered as failed. Considerations about residual strength are es-
pecially of interest for systems that might still fulfill their primary function after ’failing’. An
example are water retaining structures like dikes. A dike might still retain the water after partial
failure of the inner slope. In the present example, however, we consider residual strength to be
irrelevant. The functional requirements of the structure are expressed by the limit states and,
if they are not fulfilled, this is considered as failure.
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8.3.1 Displacement Top of the Sheet Pile Wall

The maximum horizontal displacement of the considered sheet pile will clearly occur at the top.
Typically values like 1% of the retaining height or 10cm are chosen as admissible deformations.
Using the calculated ux at the top of the wall the LSF is:

Z = ux,adm − ux (8.11)

A FORM-analysis with ux,adm = 10cm gives us an idea about the influence coefficients αi:

Table 8.17: Results Reliability and Sensitivity Analysis for Example 2 with FORM

From the results of this initial sensitivity analysis it can be concluded that the friction angle
φ′ of the sand is by far the most influential parameter in this example with αφ ≈ 0.94. The
other parameters are only of marginal influence for the reliability index (β = 2.33). To illustrate
the sensitivity of the reliability index to the reduction of uncertainty, the number of random
variables is reduced. Only the two most influential parameters, φ and Rinter (see section F.2),
are treated stochastically and the other parameters assume their mean values. The reliability
index increased only slightly to a value of β = 2.35. Even only considering φ′ as uncertain we
obtain β = 2.47. The deformation of the wall seems thus to be dominated by φ′.

Parametric Study on the influence of COV (φ)

As a consequence of the large influence of φ′ on the deformations, changing the amount of
uncertainty in this parameter is expected to have a considerable impact on the reliability. In
order to verify this a parametric study has been carried out for different values of COV φ′ ranging
from 2.5 % to 12.5% in steps of 2.5 %. The results are shown in figure 8.10.
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The results confirm that the reliability level decreases considerably with an increasing uncer-
tainty in the dominant input parameter φ. It is remarkable that within this reasonably realistic
range of the variation coefficient of 5 % to 12.5 % there are differences in the calculated failure
probability of a factor 1, 000.

Figure 8.10: Reliability Index and Failure Probability for Varying COV (φ)

Parametric Study on the influence of ux,max (LS-criterion)

The influence of ux,max is investigated by a parametric study where we combine different values
of ux,max with two different values of COV (sin(φ) (for comparison with COV (φ) see appendix
O). The reliability index β increases nearly linearly with the limit state criterion, whereas the
failure probability decreases almost logarithmically:

(a) Beta as function of ux,max (b) Pf as function of ux,max

Figure 8.11: Beta and Pf as function of ux,max
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The influence coefficients αi are reasonably constant over the whole contemplated range of
limit state deformations. There is one outlier for 40 mm, but this calculation did not converge
with FORM (it is very close to the mean value calculation).

Figure 8.12: α-values as function of the LSF-criterion

It can be concluded that the three parameters of main influence on the problem are the
angle of internal friction φ, the volumetric soil weight Wunsat and the interface strength ratio
Rinter, even for the whole investigated range of admissible displacements. The uncertainty of
the stiffness parameters Gref respectively Eref and ν can therefore be neglected and treated as
deterministic quantity (expectation or a conservative estimate).
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Parametric Study on the influence of Rinter

The FEM-model of the problem comprises interface elements (see appendix F) between the
retaining structure and the surrounding soil. Even though this modelling feature is often applied
and parameter values have to be chosen, like in this example the interface strength Rinter, there
is not much information available. The interface strength is neither a soil property nor a property
of the sheet pile steel. It is rather an interaction parameter between the two, for which values
based on experience are applied, because it is difficult to determine. Nevertheless it is an
uncertain parameter. The following parametric study gives an impression of its influence on the
results.

Figure 8.13: Beta and Pf as function of Rinter

In contrast to the fact that there is little attention paid to the properties of the interface
strength in the literature, there is a considerable effect of this parameter on the results, at least
for this non-anchored retaining wall. Therefore it is suggested to treat this variable as stochastic
quantity in the calculations of sheet pile structures, unless it can be shown that its influence is
negligible for the problem at hand, e.g. by means of sensitivity analysis.
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8.3.2 Exceedance of the Yield Strength in the Sheet Pile

The horizontal load on the sheet pile wall causes it to bend and thereby also a bending moment is
generated. Also normal forces can occur, especially if inclined anchors are involved. The stresses
in the steel should ideally not exceed the yield strength in order to remain in the elastic domain.
For a non-anchored structure the contribution of normal stresses is negligible. Therefore we
contemplate only the generated bending moments in this example.

Figure 8.14: Bending Moments in a Non-Anchored Retaining Wall

From the FEM-analysis an absolute maximum value of the bending moment Mmax is ob-
tained. For the limit state formulation the maximum admissible moment Md follows from the
relation:

σ =
M

W
↔M = σW (8.12)

with the deterministic design values σy,d and Wel. There fore the LSF could be:

Z = Md −Mmax = σy,d ·Wel −Mmax (8.13)

Sensitivity Analysis

We start again with a sensitivity analysis by means of FORM. The limit state criterion is
arbitrarily chosen as being Madm = 500 kNm/m and the LSF is simplified to:

Z = 500−Mmax [kNm/m] (8.14)

The results of this sensitivity analysis show that there are dominant and less dominant
influence variables. As can be seen from table 8.18 again the stiffness parameters and the dilation
angle are of minor influence. The friction angle φ seems to be the dominant variable, whilst
Rinter and γunsat represent a minor contribution to the uncertainty. This is not surprising, since
a linear-elastic model is used for the sheet pile itself and therefore the maximum displacements
and the maximum bending moments should also be linearly related. The αi should thus also be
comparable.
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Table 8.18: Results FORM Sensitivity Analysis for Maximum Bending Moments

Reduction Of Uncertainty By Reducing Random Variables

The less important variables E, ν and ψ are treated as deterministic variables with their ex-
pectations in order to see how this decrease of input uncertainty affects the reliability index.

Table 8.19: Results Maximum Bending Moments for Reduced Uncertainty

The reliability is increased from β = 3.85 to β = 3.89 and the low influence of these variables
is confirmed. A calculation reducing the input uncertainty to only the uncertainty in the friction
angle φ results in a reliability index of β = 4.14.

MSc thesis Timo Schweckendiek



120 Structural Reliability Applied To Deep Excavations

Parametric Study On Mmax (Limit State Criterion)

The limit state criterion Mmax is varied in a parametric study between 300 kNm/m and
550 kNm/m to investigate the influence on the failure probability and on the influence of
the variables.

Figure 8.15: Influence Factors for Varying Madm

The influence of the three mort important variables is nearly constant over the whole range
of limit state criteria. The strength parameter φ′ clearly dominates the problem.

Figure 8.16: Failure Probability for Varying Madm

The failure probability Pf decreases almost linearly with increasing Madm in the contem-
plated range. This fact can be used for design considerations, such as the choice the sheet pile
type.
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Influence of Rinter

For this limit state the influence of Rinter was assessed by a parametric study on the calculated
bending moment.

Figure 8.17: Influence of Rinter on the Calculated M

From the presented results we can conclude that the influence is considerable and it can be
expected that the influence in the reliability is similar as for the deformation criterion4.

8.3.3 Soil Shear Failure

For this simple example only the φ-c-reduction was applied for determining the soil shear failure.
It is the simplest approach and leads to results for this problem. The limit state function is
defined according to chapter 7:

Z = MSf − 1.0 (8.15)

The results were obtained using DARS. FORM showed convergence problems. The influence
factors αi in methods other than FORM are, as explained earlier, approximations and their
quality depends on the shape of the LS and the approximation method. Therefore the results
of this sensitivity analysis (see table 8.20) have to be treated carefully.

Based on the influences found in the sensitivity analysis, the variable set treated as stochastic
is reduced to the friction angle. The reliability changes only slightly to β = 4.11. The problem
is clearly dominated by the strength and the other uncertainties in the parameters contribute
only in a negligible way.

4These calculations could not be carried out due to time restrictions.
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Table 8.20: Results DARS for Soil Failure (Sensitivity Analysis)

8.3.4 Conclusions

The results obtained for the sensitivity and reliability analyses carried out on this example lead
to the following conclusions that are, of course, only applicable to similar problems of non-
anchored walls in homogeneous, cohesionless soil and to the given set of variation coefficients
COV (Xi):

• The deformation of the sheet pile wall and the bending moments are dominated by the
strength of the soil, thus, in this case only by the friction angle φ′.

• If we accept an accuracy of the reliability index of εβ = 1%, it is sufficient to consider the
variables φ′, Rinter and γunsat as random variables. For the other variables deterministic
conservative estimates can be used.

• The influence of the interface strength (Rinter) is, even though usually not much attention
is paid to it, considerable. Further investigation should be carried out to assess this
quantity and the existing recommendations about its application should be refined.

• The φ-c-reduction proved to be very convenient method for determining the common
failure probability of actually several failure mechanisms in this example. However, simple
methods, like FORM, were hardly applicable for this kind of problem and more advanced
methods like DARS had to be applied due to the apparently unstable limit state function5.

5Some deterministic studies revealed that the MSf that is obtained by φ-c-reduction lead to slightly instable
results. E.g. for small decreases of the strength sometimes small increases of the MSf were observed, whereas the
trend within a broader range was the expected ’monotonic’ decrease of the MSF for monotonically decreasing
strength properties.
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Chapter 9

Case Study 1 -
Anchored Retaining Wall

This case study illustrates the application of the methodology that was described in the preceding
chapters to an imaginary but realistic situation. The experiences with the calculation methods
presented are discussed and conclusions and recommendations will be given.

9.1 Case Description

Figure 9.1: Example Properties - Anchored Retaining Wall In Layered Soil

The example is an anchored sheet pile wall in layered soil. Groundwater is present and the
resulting pore pressure field is treated deterministically in first instance. We assume the structure
to be homogeneous in the third dimension, representing a railway tunnel for example. Therefore
a plane-strain model is applied. The soil layers are modelled using random average quantities,
for which the statistics respectively the variation coefficients are chosen arbitrarily, but in a
realistic range. As explained in section 2.4, in a real situation this approach would demand to
account for averaging effects in the soil variability. We suppose that the used statistics already
include these effects. It is, however, emphasized that the determination of the input statistics
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is a crucial part of the reliability analysis, even though it was not scope of this research.
A deterministic design (see section 9.1.3) of the retaining wall was made based on the recom-

mendations given in the CUR 166 [8] (chapter 4: Eindige Elementenmethode). The reliability
analysis is carried out for the Ultimate Limit State (ULS).

9.1.1 Parameters

The geometrical properties and the groundwater level are indicated in figure 9.1. The soil prop-
erties are taken from NEN6740-table 1 1 and summarized in table 9.2. Only the properties for the
use of an elastic-plastic model with Mohr-Coulomb yield criterion are presented. NEN6740-table
1 gives characteristic values and indications for the variation coefficients that should be handled
for each property. From these data, assuming the characteristic values to be 95 %-quantiles and
the variables to be normally distributed, we can calculate the corresponding first two central
moments (see appendix K):

µx =
qp̂

1 + Φ−1{P (X ≤ qp̂)} · COV (X)
(9.1)

σx = µx · COV (X) (9.2)

The distribution types2 that were chosen for the soil parameters in the reliability analysis are
based on knowledge about the physically possible ranges.3. The distributions of all parameters
were chosen as indicated in table 9.1.

Table 9.1: Soil Parameter Distributions
For all layers:
Parameter Symbol Distribution / Relation Unit
Saturated volumetric weight γsat Normal (µ, σ) [kN/m3]
Unsaturated volumetric weight γdry γdry = γsat − 1 [kN/m3]
Cohesion c Lognormal (µ, σ, 0) [kPa]
Friction angle φ′ Beta (µ, σ, 0, 45) [o]
Dilatation angle ψ ψ = φ− 30o [o]
Young’s modulus E Lognormal (µ, σ, 0) [kN/m2]
Poisson ratio ν Beta (µ, σ, 0.0, 0.5) [-]
Interface Strength Rinter Beta (µ, σ, 0.0, 1.0) [-]

The stochastic values for ν, ψ and Rinter are best guesses with respect to their uncertainty.
There is hardly any data available on these quantities. The sand as base layer has been calculated
with characteristic values. Only for soil failure mechanisms the friction angle of sand was
considered stochastic.

1Dutch code for geotechnical structures (see appendix I).
2Also stability aspects of the calculation process played a role in the choice of the distribution types.
3It is theoretically inconsistent to determine the moments of the distribution assuming a Normal Distribution

whilst for the calculations other distribution types are applied. In this case this was done for sake of comparability
and the error implied is negligible.
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Table 9.2: Soil parameters Calculation Example
PEAT, medium
Name Symbol 95%-Quantile COV Mean STD Unit
Saturated volumetric weight γsat 12 5% 13.1 0.65 [kN/m3]
Cohesion c 5 20% 7.5 1.5 [kPa]
Friction angle φ′ 15 10% 23.9 2.39 [o]
Dilatation angle ψ 0 0 0 0 [o]
Young’s modulus E 500 25% 850 212 [kN/m2]
Poisson ratio ν n.a. 10% 0.35 0.035 [-]
Interface Strength Rinter n.a. 20% 0.6 0.12 [-]
CLAY, medium
Name Symbol 95%-Quantile COV Mean STD Unit
Saturated volumetric weight γsat 17 5% 18.5 0.93 [kN/m3]
Cohesion c 10 20% 14.9 2.98 [kPa]
Friction angle φ′ 17.5 10% 20.9 2.09 [o]
Dilatation angle ψ 0 0 0 0 [o]
Young’s modulus E 2000 25% 3400 850 [kN/m2]
Poisson ratio ν n.a. 10% 0.35 0.035 [-]
Interface Strength Rinter n.a. 20% 0.6 0.12 [-]
SAND, dense
Name Symbol 95%-Quantile COV Mean STD Unit
Saturated volumetric weight γsat 19 5% - - [kN/m3]
Cohesion c 0 20% - - [kPa]
Friction angle φ′ 35 10% 35 3.5 [o]
Dilatation angle ψ 5 n.a. - - [o]
Young’s modulus E 125,000 25% - - [kN/m2]
Poisson ratio ν 0.35 n.a. 0.35 - [-]
Interface Strength Rinter n.a. n.a. 1.0 - [-]

.
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9.1.2 Finite Element Model

The structure has been modelled with the Finite Element code Plaxis 8.2 (2D, plane-strain).
The model and the automatically generated mesh (refined around the excavation area and grout
body) are presented in figure 9.2.

Figure 9.2: FEM-model and Mesh for Case 1

The sheet pile has been modelled with standard plate elements and the free anchor length
with node-to-node anchor elements using the parameters as indicated in table 9.4 and with
a Young’s modulus for steel of E = 210 [GPa]. The grout bodies were modelled by geogrid
elements using typical values for grout stiffness. The influence of these elements is expected
to be small and the anchors are modelled in a way that the grout bodies do not considerably
influence the other limit states. The slipping of the grout body is a difficult modelling issue and
should be subject to further research in deterministic FEM-modelling.
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9.1.3 Deterministic Design

The design of the retaining wall is based on the step plan of the CUR 1664 respectively on the
recommendations for design with the Finite Element method (chapter 4 of CUR 166).

Basic Assumptions

The structure is classified as ’safety class II’ and the geometrical properties are summarized in
figure 9.1.

The characteristic soil properties are taken from NEN 6740 - table 1 (see also table 9.2) for
the soil types:

1. Peat, medium

2. Clay, medium

3. Sand, dense

The mean groundwater level on the right side is at −2.0m. The first excavation level is
−1.00m and the anchor layer is situated at a level of −0.5m. The anchors are installed under
an angle of 45, their grout bodies have a length of 5m and these begin from a level of about
1.00m below the layer boundary between clay and sand. The anchors will are prestressed with
80kN/m. The final excavation is taken to a level of −5.00m and the groundwater level in the
pit is lowered to −5.50m below the surface level. A profile AZ 18 is chosen as sheet pile.

Design Values

The design values for the soil parameters5 are summarized in table 9.3:
The bending stiffness and axial stiffness EI and EA of the wall and the anchor stiffness EAa

are the expected values:

EI = 4.473E + 04 kNm2/m

EA = 3.129E + 06 kN/m
EAa = 5.880E + 04 kN

The surcharge load on the surface amounts 10 kPa with a width of 10 m next to the
excavation. The uncertainties in the excavation level are accounted for by an increase of 30 cm:

Dd = µD + 0.30 = 5.30 m

The design values for the water levels were determined by assumed variations in the water
levels and the according safety factors:

GWLd,exc = µ(GWLexc)− γ · σ(GWLexc) = −5.50− 1.7 · 0.20 = −5.84 m
GWLd,load = µ(GWLload) + γ · σ(GWLload) = −2.00 + 0.85 · 0.50 = −1.57 m

These values are applied in the critical last excavation phase.
4Dutch Technical Recommendation: CUR 166 - Damwandconstructies, 4e druk, 2005
5Scheme B was chosen, thus only design values for the stiffness parameters are applied and a φ-c-reduction is

used for representative values.
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Table 9.3: Soil parameters Calculation Example
PEAT, medium
Name Symbol Rep. Value Design Value Unit
Saturated volumetric weight γsat 12 n.a. [kN/m3]
Cohesion c 5 n.a. [kPa]
Friction angle φ′ 15 n.a. [o]
Dilatation angle ψ 0 0 [o]
Young’s modulus E 500 385 [kN/m2]
Poisson ratio ν 0.35 n.a. [-]
Interface Strength Rinter 0.6 n.a. [-]
CLAY, medium
Name Symbol Rep. Value Low/High Design Value Unit
Saturated volumetric weight γsat 17 n.a. [kN/m3]
Cohesion c 10 n.a. [kPa]
Friction angle φ′ 17.5 n.a. [o]
Dilatation angle ψ 0 0 [o]
Young’s modulus E 2,000 1,540 [kN/m2]
Poisson ratio ν 0.35 n.a. [-]
Interface Strength Rinter 0.6 n.a. [-]
SAND, dense
Name Symbol Rep. Value Low/High Design Value Unit
Saturated volumetric weight γsat 19 n.a. [kN/m3]
Cohesion c 0 n.a. [kPa]
Friction angle φ′ 35 n.a. [o]
Dilatation angle ψ 5 n.a. [o]
Young’s modulus E 125,000 96,150 [kN/m2]
Poisson ratio ν 0.3 n.a. [-]
Interface Strength Rinter 0.6 n.a. [-]

Construction Stages

The construction is modelled in 5 stages:

1. Gravity Loading. (Generation of Initial Stresses)

2. Excavation to −1.00m and activation of the load of 10kPa.

3. Installation of the anchor layer and prestressing of the anchors with 80kN/m.

4. Excavation to −5.00m (final depth).

5. (Determination MSf by φ-c-reduction.)
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Determination Sheet Pile Length

The sheet pile length is sufficient, if the φ-c-reduction gives a value larger than 1, 15. This
could be achieved for sheet pile lengths of about 8.00m, however it turned out that its vertical
displacements are unacceptable. Therefore the pile tip level is taken to 1.00m into the firm sand
layer, which leads to a total length L = 12.00m. This configuration leads to MSf = 1.61.

MSf = 1.61 > 1.15

Figure 9.3: Results Phi-C-Reduction (Low Soil Stiffness Design Values)

Bending Moment

The maximum moment is to be taken at a value of MSf = 1.15 that is reached in step 33 accord-
ing to figure 9.3. However, in this case the non-reduced strength parameters (final construction
stage) in combination with the low design values for the soil stiffness lead to the highest bending
moment in the sheet pile of M = 392.5kN/m.

Ms,d = 392.5 < 423 = Mr,d [kNm/m]

→ chosen profile: AZ18 with Mr,d = 423 [kNm/m]

Figure 9.4: Bending Moments Deterministic Design
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Anchor Force

The highest anchor force was observed for an MSf = 1.15 in combination with the low design
values for the soil stiffness: FA,max = 193.2kN/m ∗ 3.00m = 579.6kN .

Fs,a,st,d = 1.25 ∗ Fa,max = 724.5 < 880 = Fr,a,st,d [kN ]

→ chosen anchor configuration: 4-strand-anchor with cross sectional area Aa = 560mm2

and a design anchor capacity Fr,a,st,d = 880 [kN ] each at a mutual distance of a = 3.00m, steel
quality: S355 (σy = 355MPa).

Waling

The waling type is determined by the bending moment that is generated by the line load of the
sheet pile wall at anchor level (see section 7.4.3):

Ms,w,d =
1
8
Fs,w,d · a =

1
8
· 1.1 · 724.5 · 3.00 = 298.9 < 361.9 = Mr,w,d [kNm]

→ chosen profile: 2*UPE300 with Mr,d = 361.9 [kNm/m] (S355)

Overall Stability

The overall stability was implicitely checked in the φ-c-reduction with the result:

MSf = 1.61 > 1.15

Uplift / Piping

Piping is not likely to occur due to the thick clay layer. The vertical equilibrium between the
sand and the clay layer is given by:

17 kN/m3 · 5.7 m
(−1.57m− 5.84m) · 10 kN/m3

=
99.28kPa
42.7kPa

= 2.3 >> 1.1

→ sufficient safety against uplift

Serviceability Limit State

For the displacements of the sheet pile wall it may be assumed that the a calculation with charac-
teristic values gives a conservative estimate. In this case the maximum horizontal displacements
were:

ux,max = 0.046 < 0.05 =
1

100
5.00 =

1
100

D = ux,adm

→ The arbitrarily chosen displacements criterion of ux,adm = D/100 is fulfilled.

The outcomes of the calculations, i.e. the structural design parameters, are summarized in table
9.4.
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Table 9.4: Parameters of Structural Members
SHEET PILES
Property Symbol Value Unit
type - AZ 18 [−]
length L 12 [m]
elastic section modulus Wel 1,800 [cm3/m]
moment of inertia I 34,200 [cm4/m]
cross sectional area A 150 [mm2]
sheet pile thickness e 9.5 [mm]
mass m 118 [kg/m2]
yield stress σy 240 [MPa]
ANCHORS
Property Symbol Value Unit
type - 4-strand cable anchor [−]
free length La 15.5 [m]
bond length La, bond 6.0 [m]
angle δ 45 [deg]
anchor cross sectional area Aa 560 [mm2]
yield stress σy 1,570 [MPa]
mutual anchor distance da 3.0 [m]
WALING
Property Symbol Value Unit
Type - 2 x U 300 [−]
elastic section modulus Wel,w 521.5 [cm3]
moment of inertia Iw 7,823 [cm4]
yield stress σy 355 [MPa]

In the following sections the results of the reliability calculations will be presented. Three
variants are discussed:

1. Assessment of the reliability of the relevant limit states based on the deterministic design.
Stochastic soil properties, deterministic structural parameters, deterministic pore pressures
(design values for the phreatic levels, see section 9.1.3).

2. As 1, including stochastic pore pressures (normally distributed phreatic levels).

3. As 1, including uncertainties in the structural resistance due to corrosion.
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9.2 Variant 1 - Stochastic Soil Properties

The reliability analysis is carried out with random soil properties, such that for most of the limit
states the load is treated stochastically whereas the resistance is treated deterministically using
nominal values. Of course, the soil properties influence both, the load and the resistance side,
especially in case of soil shear failure.

The limit states are analyzed according to the descriptions in chapter 7. The results are
combined to a system reliability respectively system failure probability.

9.2.1 Mean Value Calculation

For the following structural reliability calculations, statistical distributions will be used to de-
scribe the uncertainty in the relevant parameters. So far, the results of the deterministic design
calculations included some ’bias’ in form of conservatism that was introduced by statistical
considerations (characteristic values), load and material factors (partial safety factors). Before
starting the probabilistic calculations that are to a certain extent ’black box’ processes, it is
important to carry out some deterministic calculations and eventually a sensitivity analysis to
get better insight into the problem. Some relevant results of the mean value calculation are pre-
sented. These respresent the expected behaviour of the structure (mean value = expectation).

Deformations

Whilst phase 1 creates only artificial deformations during the gravity loading6, in phase 2 the
top of the sheet pile wall deforms towards the excavation due to the decrease of support and
the activation of the surcharge load. These deformations are partially reversed by the anchor
pretension in the third phase. The largest deformations occur in the final excavation stage
(phase 4) where a typical deformation pattern of an anchored wall is observed7.

Figure 9.5: Deformations in Mean Value Calculation

6The displacements from the gravity loading phase are set to zero before starting the next phase.
7Note that almost no clamping occurs due to the small embedment depth in the firm sand layer. Possibly the

design could be optimized by lowering the bending moment through applying a larger embedment depth.
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The focus in this work is on the Ultimate Limit State. The Mohr-Coulomb model is used
for the calculations which is commonly accepted for this purpose and should give conservative
answers. It is however not very suitable for analyzing the soil deformations, like in this case the
heave of the bottom of the excavation or the settlements behind the retaining wall8.

The deformations that would occur due to the ’most likely’ soil shear failure mechanism can be
illustrated by carrying out a φ-c- reduction. Figure 9.6 shows that an active / passive failure
mechanism occurs where the wall practically turns around the anchored point.

Figure 9.6: Deformations After φ-c-Reduction (mean values)

Anchor Forces

The anchors are installed and prestressed in phase 3 and therefore their prestress level of 80
kN/m is automatically the anchor force in this phase. In phase 4 the anchor force increases.
For the mean values they increase to Fa = 157.9kN/m.

Bending Moments

By far, the largest bending moments are observed in the final excavation (phase 4). This bending
moment will also be decisive for the respective limit state.

Figure 9.7: Bending Moments in Mean Value Calculation

8The settlements can even be obtained with the opposite sign, i.e. heave instead of settlements.
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Shear Forces

The shear forces are not used in the following calculations, since their magnitudes show to be
small compared to the bending moments, which are determinant for the sheet pile design. For
sake of completeness, the shear force diagrams for phases 2 to 4 are shown in figure 9.8.

Figure 9.8: Shear Forces in Mean Value Calculation

Normal Forces

The normal forces FN contribute to the maximum stresses in the outer fibre of the sheet pile.
Therefore is interesting to see that in the expected situation high (almost maximum) values of
the normal forces coincide with the maximum bending moments with respect to the depth-level.

Figure 9.9: Normal Forces in Mean Value Calculation
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Effective Stresses

The effective stress field is shown in figure 9.10 (A) and one can see (the crosses indicate the
direction and magnitude of principle effective stresses) the passive soil behaviour on the exca-
vation side (σxx

σyy
� 1), whereas the oppsosite side shows an active behaviour (σxx

σyy
� 1). The

mobilized shear strength can be used for the soil shear failure limit state as discussed in section
7.5. In the clay layer on the right side of the wall, an arching effect is observed.

Figure 9.10: Effective Stresses in Mean Value Calculation

9.2.2 Limit State: Sheet Pile Failure

In this section we consider the strength properties of the structural members, here the sheet pile,
to be deterministic constants. Therefore the general formulation of the limit state (see section
7.4.1) could be reduced9 to:

Z = Md −Mmax (9.3)

For sake of comparability with other calculations, where the strength properties will be varied
or treated as stochastic quantities, the more general form is applied here:

Z = σy −
(
max[M(z)]

Wel
+
max[FN (z)]

Asp

)
(9.4)

where σy is the nominal steel yield strength, max[M(z)] is the maximum calculated moment
over depth, Wel is the elastic section modulus of the sheet pile (for AZ18: Wel = 1, 800cm3/m),
max[FN (z)] is the maximum calculated normal force and Asp (for AZ18: Asp = 150cm3/m) cross
sectional area of the sheet pile pile. This approach is conservative in the sense that max[M(z)]
and max[FN (z)] are combined, i.e. they are assumed to coincide with resp4ect to location.

The results are summarized in table 9.5 and figure 9.11.

9Additionally it is assumed that the normal force contribution to the stresses in the wall is negligible.
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Table 9.5: Reliability Results Sheet Pile Failure

Figure 9.11: Influence Factors α2
i Sheet Pile Failure

The calculations were carried out with FORM10. The influence coefficients indicate that
this limit state is dominated by the (shear) stiffness of the clay layer (remember: G = E

2(1+ν)).
Furthermore, it seems that the stiffness of the peat and its unit weight as well as the interface
strength between clay and the sheet pile have influence, whilst the rest of the variables could
be negligible. It can be concluded that the problem is still in the elastic domain. In case of
predominantly plastic behavior we should obtain that the strength properties of the soil become
more important.

Figure 9.12 gives a possible explanation for the results. Apparently the lower stiffness of the
clay layer in the design point has lead to a descreased arching effect and thereby the horizontal
load on the wall was increased.

10An analysis with DARS (level III) with comparable results confirmed the applicability of FORM for this limit
state (see appendix L).
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Figure 9.12: Normal Forces in Mean Value Calculation

The calculations were repeated using only the 5 most influential random variables to inves-
tigete the effect of reducing the number of random variables. The results are summarized in
table 9.6.

Table 9.6: Reliability Results Sheet Pile Failure with Reduced Parameter Set

The reliability index changes slightly from β = 4.2 to β = 4.4 (roughly a factor 2 in Pf ).
The relative influences do not change significantly (the absolute influence coefficients increase
due to a normalization procedure to

∑
αi = 1). Another calculation with only Eclay and νclay

as random variables gave β = 4.5.

It is remarkable that the stiffness of the soil is dominant for the contemplated realistic
problem. In design practice much attention is paid to the strength parameters. This result
suggests to invest more effort into a proper determination of the stiffness properties as well.
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9.2.3 Limit State: Support Failure

For the support reliability we will have to determine two failure probabilities, the anchor and the
waling. The crucial part is the determination of the anchor failure probability. The load on the
waling is proportional to the anchor force. The waling can also be designed deterministically,
if we determine the anchor reliability by calculating the exceedance probability for a certain
admissible anchor force. Then the failure probability of the waling must automatically be lower
(given that only uncertainties in the loads are considered).

To this end we reduce the general formulation of the limit state (see section 7.4.2) to:

Z = Fa,d − Fa (9.5)

where Fa,d = 1570 MPa · 420 mm2/3 m = 220 [kN/m] is the design anchor force per m
sheet pile wall (in z-direction) and Fa [kN/m] is the calculated anchor force.
The results are summarized in table 9.7 and figure 9.13.

Table 9.7: Reliability Results Anchor Failure

The calculations were carried out with FORM11 and the results regarding the influence of
the stochastic variables are comparable to the previous limit state. Again the problem is still
in the elastic domain and the stiffness parameters of the soft soil layers are the most influential
ones. This is not surprising, since the nature of the loads that generate high anchor forces as
well as high bending moments in the sheet pile is the same, namely the horizontal load on the
sheet pile.

11An analysis with DARS (level III) with comparable results confirmed the applicability of FORM for this limit
state (see appendix L).
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Figure 9.13: Influence Factors α2
i Anchor Failure

Repeating the calculations using only the 6 most influential random variables for investigating
the effect of reducing the number of random variables leads to the results summarized in table
9.8.

Table 9.8: Reliability Results Anchor Failure with Reduced Parameter Set

The reliability index changes slightly from β = 5.65 to β = 5.67. The relative influences do
not change significantly. Another calculation with only Eclay and νclay as random variables gave
β = 6.52. This illustrates the effect of increasing reliability for uncertainty reduction, but also
that for this limit state the stiffness of the clay layer was not as dominant as for the sheet pile
itself.
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9.2.4 Limit State: Soil Shear Failure

The calculations for this limit state were carried out using the limit equilibrium methodology
explained in section 7.5. The limit state is thus:

• Z = 1 , if equilibrium is reached in all calculation phases.

• Z = −1 , otherwise.

As explained the directional sampling method was applied for this type of limit state defini-
tion. The results are summarized in table 9.9 and figure 9.14.

Table 9.9: Reliability Results Soil Shear Failure

Figure 9.14: Influence Factors α2
i Soil Shear Failure

It should be mentioned that the influence coefficients that are obtained in Directional Sam-
pling are based on approximating assumptions12.

12The point on the limit state with the highest probability density is assumed to be the design point. The
influence factors are determined, as if a linearization was carried out in this point.
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9.2.5 System Failure

As discussed in chapter 7.6, two methods are applied to calculate the system failure probability,
one that works by combining FORM-results and the other by carrying out one calculation that
includes all relevant limit states at once.

Method ’Hohenbichler’

Using the Hohenbichler approach FORM results can be defined using the outcomes for βi of the
limit states Zi (with i = 1, ...,m) and the (common) influence coefficients αij (with j = 1, ..., n).
An important step is the determination of the correlation between the limit states. The measure
that is used here is the correlation coefficient that is determined in the following way.

ρ =
n∑

j=1

α1jα2j (9.6)

Since the product of these coefficients is small, the contribution of relatively small αij will
be negligible. Therefore only the αij where at least one of the couple (α1j , α2j) is larger than
0.1 are taken into account. This also deals with the fact that for the different limit states not
all variables have been treated stochastically. By assuming the respective α to be zero, thus
unimportant, we can still carry out the analysis.

This way the relevant reliability analysis results can be reduced to table 9.10.

Table 9.10: Data for System Reliability Analysis

Limit State: 1) Sheet Pile 2) Anchor 3) Soil
Method: FORM FORM DS
β 4.38 5.67 3.36
Pf 5.07 E-6 7.08 E-9 3.90 E-4
αij

1 Eclay 0.906 0.812 0.344
2 Epeat 0.100 0.160 0.372
3 γsat,clay 0.000 0.000 0.628
4 γsat,peat -0.186 -0.298 0.114
5 νclay -0.353 -0.311 0.000
6 νpeat -0.100 -0.244 0.000
7 φclay 0.000 0.000 0.230
8 φsand 0.000 0.000 0.297
9 cpeat 0.000 0.000 -0.289
10 Rinter,clay 0.000 0.241 -0.109
11 Rinter,peat 0.000 0.000 -0.183
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Using equation 9.6 we obtain for the mutual correlation between the limit states the following
correlation coefficients:

Table 9.11: Correlation Coefficients

ρ1,2 ρ1,3 ρ2,3

0.947 0.328 0.281

What can be seen from the correlation coefficients, is that the sheet pile and the anchor limit
state seem to fail under the same load conditions, which results in the high value of ρ1,2.

Since the differences in the failure probabilities are large, it is not worth to carry out the
rest of the calculation procedure. The upper bound for the system failure probability is

Pf = Pf,1 + Pf,2 + Pf,3 = 5.07 · 10−6 + 7.08 · 10−9 + 3.90 · 10−4 = 3.95 · 10−4

which is very close to β3, which is the lower bound and also leads to a β = 3.36 .

Directional Sampling with Combined Limit States

According to the ideas presented in chapter 7.6 also a calculation with all the three limit states
in combination has been carried out. The previously described adapted Directional Sampling
method was applied for this purpose. The according limit state function was:

Z = min[{limitcheck}, {σy,sp −
(
M

Wel
+
FN

Asp

)
}, {σy,a − fracFaAa}] (9.7)

where limitcheck is 1, if all calculation phases reached equilibrium and -1 otherwise.

This calculation leads to β = 3.34, which is basically the same result as in the previous
paragraph. Unfortunately with this combination of relevant failure probabilities the added
value of this calculation method could not be demonstrated.
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9.3 Variant 2 - Stochastic Pore Pressures

In contrast to the first variant, the phreatic levels on both sides are not assumed in their design
values, but rather as stochastic quantities. For both sides a mean level, a standard deviation and
a normal distribution are assumed. The aim is to demonstrate the impact of accounting for the
uncertainties in the groundwater levels in a probabilistic manner instead of using deterministic
design values. The calculations were carried out for sheet pile and anchor reliability13.

9.3.1 Probabilistic Treatment of Phreatic Levels

In the deterministic calculations the water levels were treated deterministically. In phases 1-
3, the general phreatic line was situated at pl1 = −1.57m, which resulted from the assumed
distribution pl1 ∼ N(−2.0, 0.5)[m] and the safety considerations in the CUR 166 [8]. In the
final excavation phase 4 (steady state) the phreatic level on the excavation side was lowered
to pl1 = −5.84m. The underlying distribution was pl2 ∼ N(−5.5, 0.2)[m]. A cluster on the
excavation side assumed this level pl2 on its top boundary and pl1 at the lower boudary, whereas
the values in between were interpolated14.

Figure 9.15: Deterministic (a) vs. Stochatic Pore Pressure Treatment (b)

In this variant of the case study the general pore pressure generation principle (two phreatic
lines, interpolation cluster) is applied using the stochastic properties of the phreatic lines. That
means that, according to the reliability method used, a realization of phreatic lines pl1 and pl2
is sent to a Matlab-routine that manipulates the pore pressure field before the Finite Element
calculation is carried out (see section 6.3).

13Due to the high calculation effort for the soil shear failure limit state using Directional Sampling, these results
could not be included here, but the impact should certainly be investigated.

14This way a jump of the pore pressures at the tip if the sheet pile is avoided.
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9.3.2 Limit State: Sheet Pile Failure

Initially the results of a sensitivity study are presented and subsequently the effects of this
manner of taking the uncertainties in the phreatic lines into account are discussed.

Sensitivity Study

For estimating the impact of the phreatic levels on the given problem configuration, several
deterministic combinations of pl1 and pl2 were assessed. The results are listed in table 9.12 and
illsutrated in figure 9.16. Note that the combination (pl1 = −5.5m / pl2 = −2.0m) is the mean
value calculation.

Table 9.12: Bending Moments for Different Combinations of Phreatic Lines

[kNm/m] pl2 = −3.0m pl2 = −2.5m pl2 = −2.0m pl2 = −1.5m pl2 = −1.0m
pl1 = −5.9m 241.7 249.0 256.1 262.2 268.8
pl1 = −5.7m 240.2 247.3 254.2 260.2 267.0
pl1 = −5.5m 238.2 245.7 252.5 258.1 265.0
pl1 = −5.3m 235.9 243.7 250.3 256.3 262.8

Figure 9.16: Bending Moments for Different Combinations of Phreatic Lines

Note that the chosen step size for the variation of this sensitivity study is one standard
deviation for each variable. The larger variance in pl2 leads to larger effects on the maximum
bending moments. However, based on the impact that was found by these results, it can be
expected that there is only a small effect of the uncertainty in the water levels on the reliability
for this limit state.
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Comparison with Design Values

A reliability calculation was carried out using the earlier mentioned basic assumptions for the
distributions of the phreatic levels. The results are summarized in table 9.13 and figure 9.17.

Table 9.13: Reliability Results Stochastic Phreatic Levels

Figure 9.17: Influence Factors α2
i Stochastic Phreatic Levels

We can conclude that the assumptions for the design water levels were conservative in this
case. The stochastic treatment of the phreatic levels lead to a higher reliability (β = 4.47
compared to β = 4.21).

The influence factors reflect that the uncertainty in both phreatic lines contributes to the
response uncertainty. The smaller uncertainty on the excavation side is reflected in a smaller
influence factor. The stiffness of the clay layer remains the dominant variable.
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Influence of Amount of Uncertainty in the Phreatic Levels

In order to investigate the influence of the amount of variability in the groundwater heads, a
parametric study has been carried out with several combinations of the standard deviations σpl1

and σpl2. The results are summarized in table 9.14 and figure 9.18.

Table 9.14: Sheet Pile Reliability for Combinations of Standard Deviations of Phreatic Lines

β (Pf ) σpl2 = 0.3m σpl2 = 0.5m σpl2 = 0.7m
σpl1 = 0.1m 4.57 (2.42E-06) 4.49 (3.57E-06) 4.38 (5.99E-06)
σpl1 = 0.2m 4.57 (2.49E-06) 4.48 (3.68E-06) 4.36 (6.48E-06)
σpl1 = 0.3m 4.53 (2.94E-06) 4.47 (3.94E-06) 4.35 (6.71E-06)
σpl1 = 0.4m 4.53 (3.01E-06) 4.45 (4.32E-06) 4.33 (7.37E-06)

Figure 9.18: Reliability with Varying Uncertainty in Phreatic Levels

This parametric study confirms what is expected according to the sensitivity study. The
impact of the phreatic levels within reasonable ranges of variability of the phreatic lines is
relatively small. It is however remarkable that the calculation results are as expected in a
sense that for in increasing uncertainty in the groundwater levels also a decrease in reliability
was found and vice versa, even for small changes. That provides some trust in stability of the
applied calculation methods.
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9.3.3 Limit State: Anchor Failure

For this limit state the same analysis as for the sheet pile is carried out. Initially the results
of a sensitivity study are presented and subsequently the effects of this manner of taking the
uncertainties in the phreatic lines into account are discussed.

Sensitivity Study

For estimating the impact of the phreatic levels on the given problem configuration, several
deterministic combinations of pl1 and pl2 were assessed. The results are listed in table 9.15 and
illsutrated in figure 9.19. Note that the combination (pl1 = −5.5m / pl2 = −2.0m) is the mean
value calculation.

Table 9.15: Anchor Forces for Different Combinations of Phreatic Lines

[kN/m] pl2 = −3.0m pl2 = −2.5m pl2 = −2.0m pl2 = −1.5m pl2 = −1.0m
pl1 = −5.9m 138.3 143.3 149.0 155.2 162.8
pl1 = −5.7m 137.9 142.8 148.4 154.7 162.2
pl1 = −5.5m 137.3 142.3 147.9 154.2 161.6
pl1 = −5.3m 136.8 141.8 147.3 153.5 160.9

Figure 9.19: Anchor Forces for Different Combinations of Phreatic Lines

Qualitatively the same impact as for the bending moments is also found for the anchors.
Larger differences in phreatic levels lead to higher horizontal loads on the wall, which themselve
lead to higher anchor forces.
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Comparison with Design Values

A reliability calculation was carried out using the earlier mentioned basic assumptions for the
distributions of the phreatic levels. The results are summarized in table 9.16 and figure 9.20.

Table 9.16: Reliability Results Stochastic Phreatic Levels

Figure 9.20: Influence Factors α2
i Stochastic Phreatic Levels

In contrast to the previous limit state, for the anchor forces we find a lower reliability with
the probabilistic treatment of the phreatic lines (β = 5.11) than for the design groundwater
levels (β = 5.67). Nevertheless, the value fulfills the target reliability of β = 3.4.

The influence of the phreatic level on the load side turns out to be as important as the
stiffness of the clay layer (Young’s modulus Eclay) in this case.
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Influence of Amount of Uncertainty in the Phreatic Levels

In order to investigate the influence of the amount of variability in the groundwater heads, a
parametric study has been carried out with several combinations of the standard deviations σpl1

and σpl2. The results are summarized in table 9.17 and figure 9.21.

Table 9.17: Anchor Reliability for Combinations of Standard Deviations of Phreatic Lines

β (Pf ) σpl2 = 0.3m σpl2 = 0.5m σpl2 = 0.7m
σpl1 = 0.1m 5.83 (2.84E-09) 5.12 (1.57E-07) 4.29 (8.90E-06)
σpl1 = 0.2m 5.81 (3.15E-09) 5.11 (1.66E-07) 4.29 (9.09E-06)
σpl1 = 0.3m 5.78 (3.82E-09) 5.09 (1.76E-07) 4.28 (9.23E-06)
σpl1 = 0.4m 5.79 (3.49E-09) 5.08 (1.85E-07) 4.28 (9.58E-06)

Figure 9.21: Reliability with Varying Uncertainties in Phreatic Levels

The impact of the phreatic levels within reasonable ranges of uncertainty is larger for the
anchor limit state compared to the sheet pile limit state (which is mainly due to the bending
moments). In terms of failure probabilities we can observe differences in the order of a factor of
103 within the investigated reasonable ranges of uncertainty.

It is also remarkable that in this case pl2 (load side) is significantly more dominant than
pl1 (excavation side). An intuitive explanation could be that the anchor forces are dominated
by the total horizontal load in the upper part on the wall, whereas for the bending moment,
the pressure difference over the whole depth is determinant, where balancing elements like the
passive earth pressure are present.
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9.4 Variant 3 - Stochastic Corrosion Allowance

The uncertainties in the material properties of structural members applied in this case study are
usually small and it is not worthwhile include them in the probabilistic analysis. The strength
reduction over time, e.g. due to corrosion, however, can have a considerable impact on the
reliability of the structure. Furthermore, the magnitude of this strength reduction is uncertain.
Therefore the effects of stochastic corrosion on the reliability of the structural elements (sheet
piles and anchors) are investigated.

For the calculations several assumptions were made with respect to the corrosion rate. A
reference period of 100 years is contemplated. For this period the following distributions were
assumed for the corrosion rates, based on the characteristic values from EC3 and assumptions
for the mean values (see table 9.18).

Table 9.18: Corrosion Rates in [mm/m2/100 year]

Distribution µ σ shift 95%-value
Peat Lognormal 2.0 0.67 0.0 3.25
Clay Lognormal 0.6 0.32 0.0 1.20

Within the respective soil layers the corrosion is assumed to be homogeneous.

9.4.1 Limit State: Sheet Pile Failure

The general idea of the limit state function that is applied for including the strength reduction
in the reliability analysis is illustrated in figure 9.22.

Figure 9.22: The Effect of Corrosion on the Moment Capacity of a Sheet Pile

After installation of the sheet pile, assuming that there are no relevant geometrical imper-
fections in the profile, the moment capacity Md = Wel · σy is constant over depth. Therefore
it was sufficient to consider the maximum (absolute) bending moment that was calculated over
the whole depth in the previous calculations. When corrosion is included, we have to determine
rather the minimum margin between strength (in form of Md) and load M over depth, that does
not necessarily coincide with the position of the maximum bending moment. That is because
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the strength has become a function of depth. Wel(∆e, z) is a geometrical property of the sheet
pile profile that is influenced by corrosion. ∆e, the thickness loss, can itself be a function of
depth and therefore also Wel(∆e, z) becomes a function of depth. The same is applicable for
the cross sectional area ASP that contributes to the stresses in the outer fibre together with the
normal force FN .

Due to this reason we apply the limit state function in its general form as discussed in section
7.4.1, extended by the thickness loss ∆e:

Z = σy − σ = σy −
(

M(z)
Wel(∆e, z)

+
Fn(z)

ASP (∆e, z)

)
(9.8)

The corrosion assumptions simplify the problem basically to two zones, the peat and the
clay layer, but we do not know beforehand where the maximum bending moment will occur.
The discretization over depth to find the minimum value of the limit state function over depth
is carried out in a Matlab-subroutine.

For the reduction of the geometrical properties by corrosion the following relations were used:

• For the cross sectional area an initial thickness e and intial cross sectional area ASP,0 are
reduced by ∆e:

ASP (∆e, z) = ASP,0
e−∆e
e

(9.9)

• The decrease of the elastic section modulus Wel [cm3/m] is nearly linearly dependent on
the thickness loss ∆e [mm] according to Houyoughes (2000):

Wel = Wel,0 − 160 ·∆e (9.10)

A calculation with the preceding assumptions for this calculation example with an AZ18
sheet pile profile gave the results that are presented in table 9.19.

Table 9.19: Reliability Results Natural Corrosion with AZ18

The structure does not fulfill the requirements using these corrosion assumptions anymore.
In order to find a profile for which the target reliability of β = 3.4 can be achieved, a parametric
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study on the section modulus has been carried out15. The results are summarized in figure 9.23.
The results indicate that at least an AZ25 profile is necessary to fulfill the requirements. A
calculation using this AZ25 profile resulted in the outcomes in table 9.20.

Figure 9.23: Reliability As Function of Sheet Pile Type (section modulus)

Table 9.20: Reliability Results Natural Corrosion with AZ25

15The moment of inertia and the cross sectional area are in nearly a linear relation with the section modulus
and could for these calculations be expressed as functions of Wel in order to automize the calculations. See also
appendix N.
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We can compare the corrosion allowance that was calculated by means of reliability analysis
to what is suggested in the Arcelor Piling Handbook. Figure 9.24 from this book shows us that
with a required profile AZ18 and 3.25 mm thickness loss a profile AZ25 is suggested to account
properly for corrosion. This is consistent with the reliability analysis results.

Figure 9.24: Deterministic Corrosion Allowance (Arcelor Piling Handbook)
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9.4.2 Limit State: Anchor Failure

As for the sheet pile wall, also for anchors corrosion can cause an important strength reduction.
The anchors considered so far have high quality steel tendons that are usually protected against
corrosion by means of isolation and therefore the corrosion is negligible, given that the isolation
is not damaged. Therefore, to create a realistic case, the anchors were replaced by injection
anchors16 that are only protected by a grout layer due to the installation process. The protective
function of this layer is neglected in this case for illustrative puposes.

Since the anchor type is different to the one used in the preceding sections, a reliability
assessment without corrosion influence is carried out first for sake of comparability. The anchor
specifications are presented in table 9.21.

Table 9.21: Anchor Specifications

Property Quantity Unit
outer diameter 70 [mm]
inner diameter 50 [mm]
wall thickness 10 [mm]
cross sectional area 1,885 [mm2]
steel type S355 [-]
yield strength 355 [MPa]

The limit state used for this calculation is as described in section 7.4.2, using the initial cross
sectional area Aa,0.

Z = σy − σ = σy −
Fa

Aa,0
(9.11)

The results are presented in table 9.22.

Table 9.22: Reliability Results No Corrosion with Anchor (70/50)

16In Dutch: schroef-injectie-ankers.
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For the next calculation the same corrosion assumtions as in the previous section are assumed.
For the strength reduction we consider an initial geometry with inner and outer diameter (Dinner

and Douter,0 of the tubular anchor element, leading to an intial cross-sectional area Aa,0. The
inner diameter is kept constant and the outer diameter is reduced by the thickness loss (Douter =
Douter,0 − 2 ·∆t). That leads to the reduced cross sectional area Aa. In combination with the
yield strength the limit state fuction is in this case the following.

Z = σy − σ = σy −
Fa

Aa
(9.12)

Since the anchor force is assumed constant over length Aa has to be determined using the
thickness loss in the peat leayer ∆tpeat, which has the higher value and is therefore determinant.

A calculation with the initial anchor configuration and including the corrosion as decribed
leads to the results in table 9.23.

Table 9.23: Reliability Results Incl. Corrosion with Anchor (70/50)

Even though the anchor was over-designed, the target reliability is not reached anymore. In
order to find an anchor configuration that fulfills the requirements a parametric study on the
effect of varying the anchor cross-sectional area on the reliability was carried out. From figure
9.25 it can be concluded that at least about 2,300 mm2 are required.
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Figure 9.25: Reliability As Function of Anchor Cross Sectional Area

An extra calcuation was carried out to determine the reliability for an anchor with Aa,0 =
2300 mm2 (see figure 9.24). An assumtion was that all configurations had an initial outer
diameter of 100 mm and variable thickness.

Table 9.24: Reliability Results Incl. Corrosion with Aa,0 = 2300 mm2

This anchor configuration would fulfill the requirements.

It should be noted that for this kind of anchors it is not common practice to take corrosion
into account in the design considerations. As mentioned earlier, the anchor is protected by a
grout layer due to the installation procedure. In this sense the assumptions made represent
an unrealistic or over-conservative scenario and therefore no conclusions for the current design
practice should be drawn. The idea was rather to show that the presented method is also
applicable to anchors or struts, if required.
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9.5 Limitations

The following limitations are to be considered with respect to the conclusions that can be derived
from the preceding results:

• The parameter derivation of the soil properties was based on the variation coefficients from
NEN6740 - table 1. It is not clear, if these values refer to local variability or the observed
variance in average quantities or even another approach. That implies that it is not clear,
if averaging effects are included and to which degree this would be the case. Therefore all
conclusions are restricted to these assumtions in the input parameters.

• The stochastic quantities were treated as uncorrelated. This does certainly not represent
reality. Correlations between the random variables can be used in the proposed methodol-
ogy easily and the correlation structure is already implemented. It was, however, the aim
of this research to show the feasibility of the proposed method. This deficiency has to be
kept in mind when judging the conclusions.

• The Mohr-Coulomb model was used in all calculations. It is well known that the loads on
the structure are usually over-estimated with this model. But since the deterministic design
was carried out with the same model, the outcomes can be compared. In uncertainty and
reliability analysis in any case the modelling uncertainties remain. They can be accounted
for by e.g. a model factor. For sake of comparability that was not handled here.

• The uncertainties in the phreatic levels can only account for the input uncertainty. The
modelling uncertainty is expected to be considerable in this case.

• The corrosion assumptions are simplified and the conclusions are limited to the assumed
corrosion model. These assumptions, at least for the anchors, can be considered as very
conservative.

9.6 Conclusions and Recommendations

The following conclusions and recommendations can be derived from outcomes of the first case
study:

• It was demonstrated that it is feasible to carry out a reliability analysis for a realistic
deep excavation problem. The limit states where the soil represents mainly the load on
the structure could reasonably be treated with level II (FORM) methods. The soil shear
failure is more difficult to control. The limit equilibrium approach presented a robust
measure for this purpose. It might, however, be advantageous to keep on searching for
better approaches to determine the respective failure probabilities.

• The load on the sheet pile wall is dominated by the uncertainty in the stiffness of the
weak top layers in this example, especially by the clay layer. Usually not much attention
is paid to the stiffness properties of the soil in the common design procedures. Many
analytical methods do not even include these properties. However, if critical load levels
for the structural members are reached, before the mobilized shear strength of the soil
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reaches critical values, the problem is an elastic one, whilst most of the analytical methods
are based on plasticity respectively limit equilibrium approaches.

• The system reliability assessment can probably be improved by using narrower bound ap-
proaches (Ditlevsen-bounds) or estimates like the Hohenbichler method, if the probabilities
of failure of the components have the same order of magnitude. In the present case the
results unfortunately did not give the opportunity to demonstrate this.

• The stochastic treatment of the pore pressure field was restricted to a modelling approach
using hydrostatic pore pressures (and interpolations). In some cases this approach might
not be sufficient and a flow calculation has to be carried out. It should be investigated
how also the input of the flow calculations can be treated in a probabilistic manner.

• The impact of the uncertainty in the phreatic levels is considerable, especially in case of
the anchors. For the bending moments respectively the sheet pile limit state the design
values as determined based on the suggestions in the CUR 166 [8] were conservative. For
the anchors the probabilistic treatment resulted even in a lower reliability as determined
with the design values.

• For the corrosion of sheet pile walls it could be shown that the deterministic design rules
lead to the same sheet pile choice as the reliability analysis suggested.

• The impact of anchor corrosion on the reliability was significant. That emphasizes the
need for quality control and appropriate installation procedures in order to guarantee the
nesessary corrosion protection.

Remark: The conclusions are based on the results of this case study with its geometry and
set of material parameters and variation coefficients. Changes in the geometry, the material
parameters or the variation coefficients could lead to different results. The generalization of
these conclusions is therefore to be treated carefully.
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Chapter 10

Conclusions and Recommendations

Based on the results and insight obtained in this thesis work the following main conclusions1

can be drawn respectively recommendations can be given:

• The advances in structural reliability analysis have made a large variety of methods avail-
able. The applicability and efficiency of these methods depends on the problem that is
analyzed and on the models that are used. Continuous work is done to further improve the
efficiency of these methods. On the other hand information about the application of these
procedures to real-world or realistic problems is rare. This work can contribute to making
probabilistic respectively reliability analysis more accessible. It was demonstrated that the
calculation effort for this kind of analysis does not necessarily have to be extremely high.
Especially, when previous knowledge about the characteristics of the problem is available,
much more efficient methods can be applied within an acceptable trade-off in terms of
accuracy.

• The focus in this study was on a proper reliability analysis making use of realistic modelling
of the soil and the structure with the Finite Element Method. The analysis of structural
elements, like the retaining wall or the supports in deep excavations, where the soil basically
represents the load, can be carried out in an efficient way, using either level II or level III
methods. The information obtained by such reliability analyses is very useful for further
use in probabilistic design concepts.

• The soil shear failure mechanisms are still difficult to assess with the information that is
available in an FEM-analysis. Several attempts have been presented. These approaches
performed reasonably well for simple problems, but exhibited weaknesses for realistic struc-
tures like in the case study. The problem does not occur only in probabilistic analysis, but
also in deterministic calculations. E.g. the results of the φ-c-reduction can deliver results
that require interpretation as shown in the bearing capacity example. The only method
that proved to be robust and to deliver reliable results was the limit equilibrium approach.
This approach is not very elegant, because it does not use practically any information of
the FEM-analysis except the fact, whether the calculation reached equilibrium or not. On
the other hand it is very generic and does in principle not require any previous knowledge

1More specific conclusions were presented in the respective chapters.
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about the problem. The limit state of soil shear failure and its treatment should certainly
be subject to further research.

• The influence coefficients obtained by the reliability analysis are a very useful information.
They give further insight into the problem and allow us to distinguish important from less
important or even negligible variables. This information can be used e.g. for optimization.
In many cases it even helps us to achieve a better understanding of the physical problem
itself. E.g. in the case study it could be shown that the problem is dominated by the
elastic stiffness parameters for some limit states.

• The elastic stiffness parameters can be of major influence for limit states, not only the
strength parameters of the soil. This holds especially for limit states, for which the soil
represents the load on a retaining structure. The determination of the corresponding
parameters should therefore be carried out properly.

• In the case study a deterministic structural design was based on a partial safety concept
with a certain target reliability. Using the proposed methodology the actual reliability
level could be compared with this target value. Also the suitability of the partial safety
factors can be assessed using this approach. That means also that the method is especially
suitable for the calibration of load and material factors in partial safety concepts, when
FEM is used for the structural design.

• Uncertainties in the soil properties, the phreatic levels and the strength parameters of
the structural members (corrosion) could be successfully accounted for . These cover a
major part of the overall uncertainties. Geometrical uncertainties were not considered yet.
Their impact might be considerable, e.g. the thickness of extremely soft layers. These
geometrical uncertainties in the geology as well as in the structural geometry, e.g. due to
imperfections in the execution, should be considered in further research.

• For real-life structures the quality of a reliability analysis will highly depend on the input
statistics. These are difficult to determine due to differences in local and global variations,
averaging effects, low sample numbers etc. In this study the focus was on adequately
propagating these uncertainties through the model, regardless of their magnitude. It is
strongly recommended to investigate the proper determination of the input parameter
statistics in further research.

• Especially when a high number of random variables is involved, the level II methods like
FORM/SORM or PEM reach their limits of applicability. The experience with calculations
for this thesis has shown that For these cases methods like Directional Sampling or DARS
are more suitable and more stable.

• Besides the methods that were used and evaluated in this thesis, Latin Hypercube Sampling
is a promising method that could be worthwhile implementing in ProBox. Multiple limit
states can be assessed on the same set of FEM evaluations and it requires considerably
less calculations than Crude Monte Carlo. It has some drawbacks like the uncertainties
in the choice of a response distribution, the impact of which must be investigated when
judging about its applicability.
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• A random average approach was applied for modelling the soil. This approach does not
account for its inherent spatial variability. Only 2D-plane-strain models were used, there-
fore all sorts of 3D-effects are neglected. The ideal situation would be to account for both
aspects by 3D-random field modelling. Whenever the computational capacities are suffi-
cient, also this approach should be used to analyze the effects of natural spatial variability
of soil properties.

• As mentioned earlier, model error and ’human error’ have not been taken into account,
which is certainly necessary for the determination of the reliability of a real structure.
However, this allowed us to compare the results directly with the target reliability that
was assumed in the deterministic design of the structure. At least in case of the CUR 166,
the model error was not included in the calibration in the material factors and therefore
the results achieved by purely accounting for parameter uncertainty correspond directly to
the target reliability. In almost all the calculated cases the target reliability was fulfilled
or was even considerably higher. On one hand that provides confidence in the current
safety regulations, on the other hand it shows that there is an optimization and economic
potential using the reliability methods within probabilistic or risk-based design concepts.

Outlook

The applicability of reliability analysis concepts using Finite Elements has been demonstrated in
this study. In the Civil Engineering world these concepts could be used implemented in existing
probabilistic design concepts. It is just a matter of time that the computational capacities allow
us to carry out fully probabilistic analysis on almost any kind of problem. With the increasing
application of these techniques also the databases and determination methods for the input
statistics will be improved. Until then, the methods have to be improved in efficiency and
especially their application has to be described appropriately.

The Finite Element Method itself was a tool only used by the scientific community in the
beginning. By increasing its efficiency, its capacities and especially its user-friendliness it was
made accessible for a wide range of professional groups, also for the design practice. Reliability
analysis, or in general probabilistic techniques, might undergo a similar development. In prin-
ciple the methods are already there and now it is the time to improve the accessibility and the
user-friendliness. The generic probabilistic toolbox ProBox is an excellent example.

Of course, these ideas are not only applicable to geotechnical or structural engineering
projects. They can be used for any kind of problem where uncertainties in the input or model
parameters affect the result of an analysis. These problems could be of economical, financial,
chemical nature etc. This very rational manner of treating uncertainties will certainly find its
way into many of these disciplines.
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Appendix A

Distribution Types

There is a large number of probability distributions available. This thesis focuses on the uncer-
tainties in material parameters and groundwater levels. Therefore a selection has been made of
the distributions that are used for that purpose most frequently in the literature and these are
presented subsequently.

If the uncertainties in the loads are considered, extreme value distributions are more suitable
for many types of loads that occur in extreme events, like e.g. extreme water levels, wind speeds
of river discharges.
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A.1 Normal Distribution

The Normal Distribution or Gaussian Distribution has several advantageous properties, espe-
cially for analytical work, and is therefore widely used for the description of uncertainty in
parameters. It is defined by its first two central moments.

Figure A.1: Probability Density Plot of Standard Normal Distribution

Parameters and Central Moments

The parameters of the Normal Distribution are its central moments:

• µ (mean value)

• σ (standard deviation)

Probability Density Function (pdf)

fX(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )2

; −∞ ≤ x ≤ +∞ (A.1)

Cumulative Distribution Function (cdf)

FX(x) =
∫ x

−∞

1
σ
√

2π
e−

1
2(

x−µ
σ )2

dx ; −∞ ≤ x ≤ +∞ (A.2)

Relevant Properties

The Normal Distribution is

• symmetrical (skewness ξ = 0).

• not restricted to non-negative values.

• more conservative for strength-properties than the Lognormal Distribution.
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A.2 Lognormal Distribution

The Lognormal Distribution is applied when for example negative values are physically impos-
sible or when empirical distributions of data sets exhibit a significant skewness that should not
be neglected.

Figure A.2: Probability Density Plot of Lognormal Distribution (left: two-parametric, right:
shifted or three-parametric)

Parameters and Central Moments

The parameters of the two-parametric Lognormal Distribution expressed in terms of its central
moments and vice versa:

λ = ln(µ)− 1
2
ln

(
σ2

µ2
+ 1

)
ζ =

√
ln

(
σ2

µ2
+ 1

)
(A.3)

µ = e

(
λ+ ζ2

2

)
σ =

(
eζ

2 − 1
)
e2λ+ζ2

(A.4)

(The three-parametric Lognormal Distribution is shifted ’horizontally’ by ε.)

Probability Density Function (pdf)

fX(x) =
1

(x− ε)ζ
√

2π
e
− 1

2

(
ln(x−ε)−λ

ζ

)2

; ε ≤ x ≤ +∞ (A.5)

Cumulative Distribution Function (cdf)

FX(x) =
∫ x

−∞

1
(x− ε)ζ

√
2π
e
− 1

2

(
ln(x−ε)−λ

ζ

)2

dx ; ε ≤ x ≤ +∞ (A.6)

Relevant Properties

The Lognormal Distribution is

• strictly non-negative (for ε ≥ 0).

• fatter in the tail than the normal distribution (conservative for load-parameters).
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A.3 Uniform Distribution

The Uniform Distribution gives equal occurrence probability to any value in a specified range.

Figure A.3: Probability Density Plot of Uniform Distribution

Parameters and Central Moments

The parameters of the Uniform Distribution expressed in terms of its central moments and vice
versa:

a = µ−
√

3σ b = µ+
√

3σ (A.7)

µ =
a+ b

2
σ =

b− a√
12

(A.8)

Probability Density Function (pdf)

fX(x) =
1

b− a
; a ≤ x ≤ b (A.9)

Cumulative Distribution Function (cdf)

FX(x) =
x− a

b− a
; a ≤ x ≤ b (A.10)

MSc thesis Timo Schweckendiek



170 Structural Reliability Applied To Deep Excavations

A.4 Beta Distribution

The Beta Distribution in its classical form is only valid between the limits 0 ≤ x ≤ 1. The
variant presented is scaled to the limits a ≤ x ≤ b.

Figure A.4: Probability Density Plot of Beta Distribution

Parameters and Central Moments

The parameters of the Beta Distribution expressed in terms of its central moments and vice
versa:

r = t · µ− a

b− a
/

(
1− µ− a

b− a

)
t =

µ− a

b− a

[(
b− µ

σ

)2

+ 1

]
− 1 (A.11)

µ = a+ (b− a)
r

r + t
σ = (b− a)

√
rt

(r + t)2(r + t+ 1)
(A.12)

Probability Density Function (pdf)

fX(x) =

(
x−a
b−a

)r−1 (
1− x−a

b−a

)t−1

(b− a)B(r, t)
; a ≤ x ≤ b (A.13)

where B(r,t) is the beta-function applied to the parameters r and t.

Cumulative Distribution Function (cdf)

fX(x) =
B

(
x−a
b−a , r, t

)
B(r, t)

; a ≤ x ≤ b (A.14)

where B
(

x−a
b−a , r, t

)
is the incomplete beta-function.
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Relevant Properties

The Beta Distribution has some very advantageous properties, especially for simulation purposes.

• The major advantage is that the range of realizations can be restricted to values within
the limits a ≤ x ≤ b. This way ill-posed problems can be avoided. In many cases the
choice of these limits can be justified by physically possible limits.

• The parameters of the beta distributions can be adjusted to fit quite well to Normal and
Lognormal Distributions.

• If the limits are equidistant to the mean value, the distribution is symmetric, if not, it is
skewed.

Figure A.5: Beta PDF with different limits compared to Normal PDF

If the adjusted Beta Distribution should for any reason be as similar as possible to a normal
distribution with the same first two moments, the limits should be set equidistant (symmetry)
and as far as possible from the mean. From figure A.5 the improving fit can be seen clearly.
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Figure A.6: Tail of Beta PDF with different limits compared to Normal PDF

Figure A.6 shows furthermore the quality of fit in the region that is usually of interest for
structural reliability problems (about 3 to 4 standard deviations from the mean). Whether the
choice for a distance from the mean is appropriate can in many cases only be checked after
carrying out the analysis when a design value is known. This design value should not be too
close to the ’physically impossible’ or ’very unlikely’ domain.

MSc thesis Timo Schweckendiek



Appendix B

Response Surfaces (RS)

A response surface ĝ(x) is an approximation of the function g(x) that might not be known in
explicit form. A polynomial closed-form expression is fit through a number of points ĝ(xi) that
are obtained by deterministic evaluations. A commonly used quadratic function for this purpose
is:

ĝ(x) = c0 +
N∑

i=1

cixi +
N∑

i=1

ciix
2
i +

N∑
i=1

N∑
j=1,j 6=i

cijxixj = VT · c (B.1)

where cT = {c0, ci, cii, cij} is the vector of coefficients that can be determined with the least
squares method and VT = {1, xi, x

2
i , xixj}. A number of M fitting points {xk, k = 1...M}

is chosen and the the function is evaluated in these points (e.g. by Finite Element Analysis)
obtaining yk = g(xk). The error ξ can be expressed as a function of the coefficient vector c

ξ(c) =
M∑

k=1

[yk −VT (xk) · c]2 (B.2)

and has to be minimized. The solution can be obtained by

c = (νT ν)−1νTy (B.3)

where ν is a matrix whose rows are the vectors VT (xk) and y is a vector containing the
supports yk.

There are, of course, more possible formulations of response surfaces that are e.g. of higher
order or splines or including/excluding cross-terms. Here the intention is only to present the basic
idea. There are several possibilities two implement the idea of response surfaces in probabilistic
calculation techniques:

• Build the RS and carry out the complete probabilistic analysis using the RS.

• Use the RS for (analytical) integration techniques.

• Use the RS as decision support for detecting important regions (as in DARS).

173



Appendix C

Expected Number of Calculations
for Crude Monte Carlo

For the use of Crude Monte Carlo in a reliability problem we can make an estimate of the
expected number of calculations given a certain acceptable error.

The basic idea of Monte Carlo is that a failure probability Pf can be estimated by the
following ratio:

Let N be the number of realizations of the random vector X that is carried out in the Monte
Carlo analysis. Nf is the number of realization where the evaluation of X in the limit state
function Z(X) leads to failure, thus Z(X) ≤ 0.

Then the ratio

Pf ≈
Nf

N
(C.1)

is an estimate of the probability of failure Pf .

The error in this approximation can be written as

ε =
Nf

N · Pf
− 1 (C.2)

Its expectation is E[ε] = 0 and the standard deviation can be written as

σ(ε) =

√
1− Pf

N · Pf
(C.3)

Due to the Central Limit Theorem ε is normally distributed for sufficiently large N . We
require the error ε to be smaller than the acceptable error E with a certain reliability/confidence.
As the expectation is E[ε] = 0, the requirement can be written as

k · σ(ε) ≤ E (C.4)
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Then we can estimate the minimum necessary number of calculations as

N >
k2

E2

(
1
Pf

− 1
)

(C.5)

This also implies that the number of calculations required is independent of the number of
random variables.

Example

If a 95%-confidence interval (k = 2) is required with an acceptable error of 10% (E = 0.1), the
necessary number of realizations can be estimated using the expected failure probability by

N > 400
(

1
Pf

− 1
)

(C.6)
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Appendix D

System Failure Probability using
FORM (Hohenbichler)

The method FORM itself is not capable of coping with system reliability aspects. It can only
be used to determine respectively approximate the failure probability of single limit states.
The method described in this section can be applied to combine FORM outcomes in order to
determine the common reliability of several failure mechanisms, i.e. the system reliability.

We will start with a method developed by Hohenbichler [20] that allows us to approximate
the failure probability of a parallel system for two mechanisms. Subsequently a series system of
two elements and also n elements are treated using the Hochenbichler concept.

D.1 Parallel System with Two Components (Hohenbichler)

Assume, we have a parallel system of two elements with failure probability

Pf = P (Z1 < 0 ∩ Z2 < 0) (D.1)

whose failure domain in Z-space is illustrated in figure D.1.

Figure D.1: Failure Domain of a Serial System with 2 Elements

The failure probability can be written as:

Pf = P (Z1 < 0)P (Z2 < 0|Z1 < 0) (D.2)
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Hohenbichler’s method serves for determining the part of the conditional probability. It
supposes that the reliability indices βi (number of elements: i = 1, 2) and the influence factors
αij (number of random variables xj : j = 1, ..., n) are known as results of a FORM-analysis. The
correlation coefficient between the element failures can be obtained from the influence factors:

ρ =
n∑

j=1

α1jα2j (D.3)

For the following derivation we assume β1 > β2 and we rewrite the limit states as functions
of the standard normal variables u and v:

Z1 = β1 − u and Z2 = β2 − v (D.4)

Since the βi are constant, u and v are correlated in the same way as the limit states:

ρ(u, v) = ρ(Z1, Z2) = ρ (D.5)

We switch from the dependent variables u and v to the independent variables u and w (w
is standard normal and independent of u). Z1 is not affected by this change whereas Z2 can be
expressed as:

Z2 = β2 − ρu− w
√

1− ρ2 (D.6)

The correctness of equation D.6 is proven by the following three expressions:

expectation : µ(Z2) = β2 − 0− 0 = 0 (D.7)

variance : σ2(Z2) =
(
∂Z2

∂u

)2

σ2
u +

(
∂Z2

∂w

)2

σ2
w = ρ2 + (1− ρ2) = 1 (D.8)

correlation : cov(Z1Z2) = E[(Z1 − µ(Z1))(Z2 − µ(Z2))] (D.9)

ρ(Z1Z2) =
cov(Z1Z2)
σ(Z1)σ(Z2)

= ρ (D.10)

Figure D.2: Representation of Z1 and Z2 in the u-w-plane

We can represent the two new formulations for Z1 (eq. D.4) and Z2 (eq. D.6) in the u-w-plane
as in figure D.2 and rewrite the conditional probability from equation D.2 as:

P (Z2 < 0|Z1 < 0) = P (β2 − ρu− w
√

1− ρ2 < 0|β1 − u < 0) (D.11)
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The idea of Hohenbichler was to replace u by a new variable u′ in such a way that this
conditional probability can be rewritten as an unconditional one. For that purpose he used a
truncated normal distribution that is conditioned on u > β1 (all values below β1 are zero and
the area under the standard normal distribution for values larger than β1 is scaled up to 1):

u′ = Φ−1(1− p · Φ(u)) with p = P (u > β1) (D.12)

Figure D.3: Transformation u→ u′ by Truncating Normal Distribution

With this new variable the conditional expectation becomes:

P (Z2 < 0|Z1 < 0) = P (Ze < 0) = P (β2 − ρu′ − w
√

1− ρ2 < 0) (D.13)

and the new limit state can be written as:

Φ−1(1− p · Φ(u))− w
√

1− ρ2 (D.14)

A FORM-analysis leads us to the desired P (Ze < 0).

D.2 Serial System with Two Components

The failure probability of a serial system with two elements respectively mechanisms can be
written as:

Pf = P (Z1 < 0 ∪ Z2 < 0) = P (Z1 < 0) + P (Z2 < 0)− P (Z1 < 0 ∩ Z2 < 0) (D.15)

where the last term was solved in the previous section.
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D.3 Equivalent α for a Serial System with 2 Components

After carrying out FORM analyses for the limit states Zi(X1, ..., Xn) < 0 with the basic random
variables Xj (j = 1, ..., n) the reliability indices βi and the influence coefficients αij are obtained
as well as the joint failure probability Pf = P (Z1 < 0 ∩ Z2 < 0). The limit state functions can
now be rewritten in standard format:

Z1 = β1 + α11u11 + α12u12 + ...+ α1nu1n

Z2 = β2 + α21u21 + α22u22 + ...+ α2nu2n (D.16)

As before the correlation between the limit states is determined by:

ρ =
n∑

j=1

α1jα2j (D.17)

where is implicitly assumed that the variables Xj are fully correlated between the different limit
states. For the problems contemplated, this is sufficient. If e.g. a dike ring is split into several
sections there might also be a correlation coefficient ρijk between the Xj necessary.

The aim is to find the coefficients of the equivalent limit state

Ze = βe + αe
1u1 + αe

2u2 + ...+ αe
nun (D.18)

that belongs to
P (Ze < 0) = P (Z1 < 0 ∩ Z2 < 0) (D.19)

The equivalent β is already known via the joint failure probability and the α-values can be
determined by a perturbation with εj :

αe
j =

βe(εj)− βe(0)
εj

(D.20)

where βe(εj) is
βe(εj) = Φ−1[P (Ze < 0)] with µ(uj) = εj (D.21)

and thus
βe(εj) = Φ−1[P (Z1 < −α1jεj ∩ Z2 < −α2jεj)] (D.22)

If required the αe
j can be normalized on

∑
(αe

j)
2 = 1.

D.4 Serial System with Arbitrary Number of Components

In order to calculate the failure probability of an arbitrary serial system P (Z1 < 0 ∩ Z2 <
0) ∩ ... ∩ ZN < 0) the previously described procedure can be repeated N − 1 times. Since the
determination of the equivalent influence factors is an approximation, the whole procedure is an
approximation as well. By experience the best performance is achieved, if always the two most
correlated of the remaining limit states are combined first.
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Appendix E

Ditlevsen Bounds

In appendix D an approximation method for the failure probability of a serial system was
presented. A method for obtaining bounds of this probability was presented by Ditlevsen in
1979 [10].

The failure probability of a serial system is described as:

Pf = P (Z1 < 0 ∪ Z2 < 0) = P (Z1 < 0) + P (Z2 < 0)− P (Z1 < 0 ∩ Z2 < 0) (E.1)

The last term P (Z1 < 0 ∩ Z2 < 0) is to be determined on basis of correlation information
between the two limit states (see also appendix D).

ρ(Z1, Z2) =
n∑

j=1

α1jα2j (E.2)

where αij are the influence coefficients for stochastic variable Xj in limit state i = [1, 2].

According to the derivation of Ditlevsen (see [10]), the lower bounds of the failure probability
for ’parallel system’ are:

P (Z1 < 0 ∩ Z2 < 0) ≥ Φ(−β1)Φ(−β∗2) (E.3)
P (Z1 < 0 ∩ Z2 < 0) ≥ Φ(−β∗1)Φ(−β2) (E.4)

where β∗2 is

β∗2 =
β2 − ρβ1√

1− ρ2
(E.5)

(β∗1 is determined accordingly)
The upper bound is determined by the sum of the lower bounds:

P (Z1 < 0 ∩ Z2 < 0) ≤ Φ(−β1)Φ(−β∗2) + Φ(−β∗1)Φ(−β2) (E.6)
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Appendix F

Constitutive Model Choice and
Relevant FEM-Features

F.1 Constitutive Models

In this section an overview of the constitutive models that are potentially suitable for retaining
structure modelling is given. The main features and properties of these models are explained,
upon which they are evaluated for applicability in the presented reliability analysis framework.
In principle the model choice is problem dependent and has to be carried out for each specific
case. Only general features1 of the described models can be treated here.

Finite Element Modelling, as all kinds of modelling by definition, is developed for simulating
and predicting the real world behavior of a material respectively a structure as exactly as
possible. The constitutive models describing the material behavior differ significantly in degree
of sophistication. On the one hand there are relatively simple models like linear elasticity
that resemble the real world behavior reasonably for some materials like e.g. steel within a
certain range of stresses and strains. Simple models usually require only a small number of
parameters. For soils, however, elasticity theory reaches its limits quite quickly because plastic
deformations play an important role and the behavior is often strongly non-linear. To this end
more sophisticated constitutive models have been developed like elasto-plastic or hypo-plastic
models. These can include hardening or softening of the material, which is also observed in
nature. A drawback of these models can be the high number of parameters, which automatically
involves a large amount of sample tests in order to determine these parameters.

F.1.1 Comparison of Available Constitutive Models

In the following a number of models that are in general suitable for standard excavation and
retaining structure analysis is presented. Other models could be applicable for special situations,
like the Soft Soil Creep Model in order to take time-dependent secondary compression into
account, but are not treated here.

1The descriptions and analyses are restricted to drained behavior.
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Linear Elasticity

For most of the potential applications in soils linear elasticity is insufficient for approximating the
stress-strain behavior. Especially when relatively large deformations are involved, irreversible
deformations and the strength properties of the soil play an important role. Linear elastic
models, however, only include stiffness properties of the soil.

An example is Hooke’s law (in incremental form) with:

dσ = Ddε (F.1)

where D is the material stiffness matrix:

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1/2− ν 0 0
0 0 0 0 1/2− ν 0
0 0 0 0 0 1/2− ν

 (F.2)

which includes the Young’s modulus E and the Poisson ratio ν as stiffness parameters.

Even though no use will be made of this model for soil, the behavior of steel can be approxi-
mated by linear elasticity reasonably well and the model will be applied for sheet pile walls and
tie-back anchors as well as for struts or walings for the contemplated problems.

Figure F.1: Stress-Strain Curve for Linear Elasticity

Elasto-Plasticity

If we need to continue the calculations beyond the limits of the regions where the material
behavior can be reasonable approximated by linear elasticity, one possibility is the to use elastic
perfectly plastic models.

There are many formulations for yield criteria (limit between elastic and plastic behavior)
like von Mises (max. deviatoric stress) or Tresca (max. shear stress). These criteria are suitable
for materials like steel, where the isotropic stress state has negligible influence on the yield
criterion, i.e. the failure surface is parallel to the space diagonal in 3D-stress space.

For soils this approximation does not perform well. One essential property of frictional
materials is that their strength increases with increasing mean stress.
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Figure F.2: Stress-Strain Curve for Elastic Perfectly Plastic Models

Elastic - Plastic Model with Mohr-Coulomb Failure Criterion

The Mohr-Coulomb criterion takes several effects into account that are essential for the descrip-
tion of soil behavior. Basically soil has only a limited amount of tensile strength that is due
to cohesion. The shear strength increases under increasing mean stress. Thus the total shear
strength is composed by a part due to the frictional properties and another cohesive part (refer
also to chapter 7.5.3). Strictly speaking, this model also belongs to the previous described family
of elastic-perfectly plastic models.

Figure F.3: Mohr-Coulomb Yield Criterion in Principal Stress Space

This model uses 5 input parameters:

• Stiffness parameters: E and ν (as in linear elasticity)

• Strength respectively plasticity parameters: c (cohesion) and φ (friction angle)

• Dilative Behavior: ψ (dilation angle)

In the ’Mohr-Coulomb Model’ (MC), as implemented in Plaxis, the average stiffness values
are used, i.e. the stiffness is stress-independent. For application in excavation problems there is
general consensus that this model gives conservative results for the loads on the retaining wall
and thus in general also for the generated moments, the deflections and the anchor forces. It is
not suitable for deformation analysis of settlements next to or heave inside the excavation. The
approximation of the strength of the whole system (failure mechanisms in the soil) is reasonably
good.
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Hardening Soil Model

The Hardening Soil Model (HS) is an advanced critical state theory model that is based on
a hyperbolic stress-strain relationship in triaxial compression including shear and compaction
hardening. By combining these two types of hardening it is suitable for hard and soft soils. As
implemented in Plaxis it also accounts for stress-dependency of the stiffness. Another important
feature is that it takes the loading history into account (memory of pre-consolidation stress) and
makes a difference for the stiffness between primary loading and un-/re-loading.

Figure F.4: Hardening Soil Model Hardening Criteria in p-q-Plane (based on Plaxis Material
Models Manual v8.2)

This model uses 7 standard2 input parameters:

• Stiffness parameters: Eref
50 (secant stiffness in standard triaxial test), Eref

oed (tangent stiff-
ness for primary oedometer loading), Eref

ur (un-/reloading stiffness) and m (power of stress
dependency of stiffness)

• Strength respectively plasticity parameters: c (cohesion) and φ (friction angle)

• Dilative Behavior: ψ (dilation angle)

The ultimate failure criterion is also in this model described by the Mohr-Coulomb Criterion.
Due to the shear hardening and the stress-dependent stiffness it is well suited for sand, gravel
and stiff clays, whereas the compaction hardening also makes it suitable for soft soils, such as
normally consolidated clay and peat3.

Specifically for retaining structures it can be stated that, if applied for the suitable soil
types, the deformations of the wall as well as the settlements next to the wall and the bending
moments are estimated more accurately with the HS-model than with Mohr-Coulomb. For
the shear failure mechanisms in drained soil no substantial difference should be observed. The
general performance is thus better, but the investment in terms of a larger number of parameters
is to be considered.

2Other advanced parameters can be used, but are preferably maintained at standard settings, like e.g. un-
/reloading Poisson ratio νur or the cohesion increment cincr. See also [31].

3This opinion is confirmed by the instructions in the CUR 166.
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Hypo-Plasticity

The concept of Hypo-Plasticity was developed by searching for a mathematical formulation that
would satisfy a number of properties that are typical for soil behavior like:

• incremental non-linearity (stress-dependency of stiffness)

• homogeneity in stress

• critical state limits etc.

These features are similar to the capabilities of the Hardening Soil model, but the mathemat-
ical formulation is different. An important aspect is that the soil behavior is density-dependent.
Strength and stiffness are formulated as functions of the void ratio. Currently there is no Hy-
poplastic Model available in the commercial version of Plaxis4. It is recommended to follow the
developments in the relatively young field of Hypo-Plasticity and investigate the possibilities of
its application.

F.1.2 Conclusions

For deterministic analysis of deep excavations the CUR 166 [8] gives recommendations on the
use of constitutive models, which are mainly based on investigation5 for the North-South Line
(metro) in Amsterdam. Basically it can be concluded that the Hardening Soil Model is best
suited for realistic estimates of the deformations and occurring bending moments, even though
for small structures Mohr-Coulomb is a simple and efficient alternative giving safe lower respec-
tively upper bounds. Only where long-term creep behavior of very soft soils is involved, the use
of the Soft Soil Creep Model should be considered.

4There are user-defined hypo-plastic models.
5The report is an internal report of the Adviesbureau Noord-Zuid Lijn by Vermeer et al. The report itself was

not available and it is referred to the information given in the CUR 166.
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F.2 Relevant FEM-Features

In reliability analysis the number of calculations is usually too high to check the outcomes of
every single limit state evaluation manually. Hence the aim is to create an FE-model including
the calculation configuration that is as stable as possible. Usually this requirement is conflictive
with the also desirable properties of low calculation times and high accuracy.

Another topic in reliability analysis is the incapability of FEM methods to deliver results
when the failure domain is reached because equilibrium would be needed in order to obtain these
results. There are methods to determine ’the distance to failure (no equilibrium)’, of course only
in the non-failure domain. One of these is the ’φ-c-reduction technique’ implemented in Plaxis.

The ’φ-c-Reduction Technique’

The ’φ-c-reduction’6 is a tool that is included in Plaxis and allows us to calculate a kind of
safety factor regarding to failure in the soil elements. The construction stage whose ’stability’ is
to be checked is modelled and calculated in the normal way and used as starting point for the
procedure. From this equilibrium situation the φ-c-reduction lowers the strength parameters of
the soil by dividing them stepwise by an increasing common factor (MSf) until the FEM-model
is on the edge of equilibrium and non-equlibrium:∑

MSf =
tanφ

tanφreduced
=

c

creduced
(F.3)

The appropriateness and stability of this procedure in combination with reliability analysis
will be investigated by means of example calculations. In principle the intention is to use the
method for limit state formulations that describe failure mechanisms in the soil. Of course, it
can only deliver values in the non-failure domain.

Interface Strength

For a more realistic soil-structure interaction, in most FEM-packages there are interface elements
available. In Plaxis these interfaces obtain properties from the adjacent soil, whilst the strength
properties are reduced by the factor:

cinter = Rinter · csoil (F.4)
φinter = arctan(Rinter · tanφsoil) (F.5)

The dilatancy angle of the interfaces is set to ψinter = 0.

The yield limit of the interfaces is defined according to the Coulomb criterion. In the elastic
region two phenomena are likely to occur:

1. Slipping (relative movement parallel to the interface):

uslip =
τ

K‖
=
τ · tinter

Ginter
(F.6)

6For detailed information refer to Brinkgreve and Bakker (1991) [5].
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2. Gapping (relative movement perpendicular to the interface):

ugap =
σ

K⊥
=

σ · tinter

Eoed,inter
(F.7)

where tinter is the virtual interface thickness7, K‖ and K⊥ are the interface shear and normal
stiffness, and Eoed,inter and Ginter are the interface compression and shear moduli determined
by:

Ginter = R2
inter ·Gsoil (F.8)

Eoed,inter = 2Ginter
1− νinter

1− 2νinter
with νinter = 0.45 (F.9)

Considering these relations there might be a considerable influence of this parameter de-
pending on the problem that is analyzed. The recommendation by Brinkgreve et al [6] is to use
a value for Rinter in the order of 2/3. Other authors, according to the CUR 166 gives recommen-
dations for higher values in the case of sheet pile walls like 0.9. It should be stated, especially in
the framework of this thesis, that there are no test procedures available and that this parameter
is uncertain. Even though there is a lack of data, this uncertainty should be taken into account
unless it can be proven that the sensitivity to this parameter is negligible. For the analysis in
this work a Beta distribution with parameters Rinter ∼ Beta(0.6/0.1/0.0/1.0) will be used for
most of the applications.

Updated Mesh Analysis

For large deformations (as in the case of road embankments or dike bodies on soft soils) the
simple plastic calculations might lead to inaccurate results, since the limits are reached where
large deformation theory is required. In Plaxis this can be achieved by carrying out an updated
mesh analysis. With this option the node and integration point positions are updated according
to the calculated displacements. Furthermore, an objective stress measure is handled that
accounts for the rotations of stresses.

This analysis type will be adopted in this thesis, whenever initial deterministic calculations
show considerable differences between simple plastic analysis and updated mesh analysis. It
should be noted that it will not be applied for the generation of initial stresses by means of
gravity loading. The displacements in the gravity loading procedure are physically meaningless
and usually reset to zero in the subsequent calculation phase, which is not possible in updated
mesh analysis.

Initial Stress Generation

If the surface level and the layer boundaries are horizontal, the initial stress state can be gener-
ated using the K0-procedure in deterministic analysis. K0 is the ratio between horizontal and
vertical effective stresses:

K0 =
σ′xx

σ′yy

(F.10)

7tinter is determined automatically in Plaxis.
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For normally consolidated soil, the expression K0 = 1 − sinφ by Jaky is usually applied,
whereas for overconsolidated soils the value is higher.

In principle this method is also applicable for reliability analysis. With Plaxis, however there
are practical reasons impeding this. As explained in chapter 6, for the automated calculation
process, only the Plaxis calculation module is used. The initial stress generation is part if the
input module and therefore not available. It is therefore recommended to always use gravity
loading8 for the generation of the appropriate initial stress state according to each parameter
realization as first calculation step. That means also the the initial calculation phase (before
gravity loading) must be generated with zero effective stresses.

It is important to note that with gravity loading the initial stress state is highly sensitive to
the Poisson’s ratio ν. For elastic9 one dimensional compression the relation between Poisson’s
ratio and the generated K0 is:

ν =
K0

1 +K0
(F.11)

Thus one should restrict the possible values for ν (possibly by an appropriate distribution
type) to a range that leads to realistic initial stress states. Otherwise plasticity might occur
during the generation of the initial stresses. E.g. for cohesionless soils this occurs10 for:

1− sinφ

1 + sinφ
>

ν

1− ν
(F.12)

The Limit Equilibrium

The ’limit equilibrium’ is defined as a state where the FEM-calculation is between reaching
equilibrium and not reaching equilibrium, i.e. still encountering unbalanced nodal forces. In
fact the limit equilibrium can also be interpreted as the set of parameter combinations that lead
to the preceding definition. In several situations this state is applied as criterion for defining
failure.

In the φ-c-reduction the distance to ’failure’ is expressed in the factor MSf (for definition
see section F.2) whose magnitude is defined by the input parameters and the parameters that
represent the limit equilibrium.

Also in the CUR 166 this definition is implicitly accepted as failure criterion. In chapter 4.3
of part 1 it is stated that the embedment depth of the sheet pile is sufficient, if equilibrium is
reached in all calculation phases using design values.

This suggests that this criterion may also be used for reliability methods. For detecting after a
calculation, if equilibrium was reached, several information sources are available. The calculation
log files give information over the state that the calculation finally reached. Furthermore, the
multiplier

∑
MStage is 1, when the equilibrium was achieved and else smaller than 1. Note

that this holds only for calculation phases in staged construction calculations as applied in this
thesis.

8First calculation phase with the gravity multiplier
∑

Mweight set to 1. The displacements in the next phase
are set to zero.

9Thus only applicable for linear-elasticity and Mohr-Coulomb!
10Only using Mohr-Coulomb.
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Appendix G

Calculation Results PEM
(Zhou-Nowak)
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Appendix H

ProBox Results Format

The results in ProBox are presented in a standard format on the application screen. In this
thesis the results are presented in result tables in the same format. The format is explained in
figure H.1.

Figure H.1: ProBox Results Format

Remark: Usually the information about the LSF-values of the first and last calculation are
omitted in the result tables.
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Appendix I

NEN 6740 - Table 1

The next page contains table 1 from the Dutch code NEN 6740 with the characteristic values
for soil types that are typical in the Netherlands.
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Appendix J

Soil Properties (JCSS)

The following tables were taken from the JCSS Probabilistic Model Code [23]:

Table J.1: Indicative Soil Properties of Non-Cohesive and Cohesive Soils (Mean-Values)

Table J.2: Indicative Variation Coefficients Soil Properties
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Appendix K

Central Moments of Normal
Distribution for given
95%-Characteristic Values and
Variation Coefficient

If a quantile qp̂, i.e. the value that is not exceeded with a probability of p̂ percent, and the
variation coefficient COV (X) of the variableX are given, we can recalculate the central moments
of a variable with Normal Distribution using the following considerations.

The probability the a realization of X is smaller than qp̂ can be expressed as:

P (X ≤ qp̂) = Φ
{
qp̂ − µx

σx

}
(K.1)

Using the definition of the variation coefficient COV (X) = σx
µx

we obtain:

P (X ≤ qp̂) = Φ
{

qp̂ − µx

COV (X)µx

}
(K.2)

⇔ Φ−1{P (X ≤ qp̂)} · COV (X)µx = qp̂ − µx (K.3)

Thus we obtain:

µx =
qp̂

1 + Φ−1{P (X ≤ qp̂)} · COV (X)
(K.4)

σx = COV (X)µx (K.5)
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Appendix L

DARS-Results Case 1

The applicability of FORM for the limit states sheet pile failure and anchor failure was confirmed
by the following results obtained by DARS (level III).

Table L.1: Reliability Results Sheet Pile Failure with DARS

Table L.2: Reliability Results Anchor Failure with DARS
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Appendix M

Equivalent Rectangular Cross
Section

In the Plaxis file-structure the parameters for a plate/beam-element are stored in terms of the
shear modulus G [GPa], the Poisson’s ratio ν [-] and the thickness d [m] of the beam, as if it
was a rectangular cross-section.

Figure M.1: Rectangular Cross Section Equivalent To Sheet Pile in Bending and Compression

For the variation of input values it is more convenient to use values that are available in tables
and that are handled in the common practice, like the moment of inertia around the y-axis
Iy [cm4/m] and the cross section A [cm2/m], which are usually given per m retaining wall.
The Young’s modulus E of steel is considered a material constant as well as the Poisson’s ratio
ν. In the following the conversion rules to obtain the properties of an equivalent rectangular
cross-section from given sheet pile properties are summarized.
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M.1 Steel Properties

The following material properties are assumed as constants for steel:

• Young’s modulus: E = 210 [GPa]

• Poisson’s ratio: ν = 0.28 [−]

From these two properties the shear modulus is obtained by the following relation:

G =
E

2(1 + ν)
=

210
2(1 + 0.28)

≈ 82 GPa (M.1)

M.2 Equivalent Behavior in Bending and Compression

The idea of the conversion is to work with the properties of a simpler rectangular cross section
that behaves equally to the sheet pile in bending and compression/extension. Therefore the
following two relations must hold:

EI = Eeq
bd3

12
(M.2)

EA = Eeqbd (M.3)

M.3 Equivalent Thickness

The equivalence of the rectangle to the sheet pile shape has to hold for bending and compres-
sion/extension. The same thickness d is used for the bending stiffness EI = Ebd3/12 and the
compression stiffness EA = Ebd and therefore the following holds:

d = 12EI/(Ebd2) = EA/(Eb) = d (M.4)

it follows that

d =

√
12
I

A
(M.5)

M.4 Equivalent Young’s Modulus

By amending this geometrical property, also the Young’s modulus has to obtain an equivalent
value. Since the ratio of I/A = h2/12 is constant, it doesn’t matter whether we choose for EI
or EA for obtaining Eeq and for sake of simplicity we choose EA:

EA = Eeqbd (M.6)

it follows that
Eeq =

EA

bd
=

EA√
12 I

A

=
EA

d
(M.7)

where b = 1m, since we consider a plane-strain situation and all magnitudes are per m in
y-direction (out of plane). The reducing factor for E to Eeq is consequently the factor A/d.
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M.5 Expressed in Parameters Used by Plaxis

As mentioned earlier, we assume the moment of inertia around Iy [cm4/m] and the cross section
A [cm2/m] to be given besides the material constants of steel. The user-interface of Plaxis is
fed by EA, EI and ν. If I and A are considered as stochastic variables we have to apply the
following relations in ProBox:

1. d =
√

12 I
A

2. Geq = Eeq

2(1+ν) = EA
2d(1+ν)

Note that, if d is used in the second equation, it has to be calculated first from I and A!

MSc thesis Timo Schweckendiek



Appendix N

Parameter Correlations AZ-Profiles

For AZ sheet pile profiles, there are almost linear relations between the cross-sectional area A
and the moment of inertia I respectively the elastic section modulus Wel. In the following linear
fit relations between these quantities are derived. By expressing the quantities as dependent of
each other, on can carry out parametric studies on e.g. the sheet pile type or the section modulus
in an automatized way.

It is observed that for the same class of profile (e.g. AZ, excluding special profiles), there is
a nearly linear relationship between I, A and Wel. As example consider the following list (table
N.1, source: website Arbed) of AZ-profiles, where all special profiles were excluded.

Table N.1: Standard AZ-Profile Dimensions (without special sizes)
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Plotting A against I we obtain figure N.1:

Figure N.1: Plot A Against I for AZ-Profiles

As fit-procedure the least-squares method is applied. The quantity to be minimized was,
however, chosen to be the sum of the differences of the original ratios I/A and the fitted ratios
I/Afit: ∑

i

(
Ii
Ai
− Ii
Ai,fit

)2

(N.1)

The best fit results for:
Afit = 93.93 +

I

542.17
[cm2/m] (N.2)

where I must be inserted in [cm4/m].
The resulting fit is shown in figure N.2:

Figure N.2: Plot Afit and A Against I for AZ-Profiles
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Similarly the moment of inertia I can be fit to the elastic section modulus Wel by:

Ifit = 25.4 ·Wel − 15, 000 [cm4/m] (N.3)

where Wel must be inserted in [cm3/m].

The resulting fit is shown in figure N.3:

Figure N.3: Plot Ifit and I Against Wel for AZ-Profiles

This least-squares fit-procedure is easily reproducible for other types of sheet piles in a simple
spreadsheet. The steps for e.g. A and I are:

1. Insert the columns of A and I.

2. Calculate the ratio of the original values I/A.

3. Create a cell with an arbitrary value for the intersection of the fit with the y-axis b. This
is the first fit parameter.

4. Calculate a = I/(A− b) and create a cell with the summation of these terms. This is the
second fit parameter.

5. Calculate Afit = aI + b.

6. Build the ratio I/Afit.

7. Calculate the square differences of the original I/A and the fitted I/Afit.

8. Create a cell with the sum of these squared differences
∑

i

(
Ii
Ai
− Ii

Ai,fit

)2
.

9. Use the solver to minimize this cell’s value by changing b. The new a and b are the fit
parameters.
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Appendix O

The Variance of sinφ compared to
the Variance of φ or tanφ

The FEM code Plaxis applied in this thesis stores and works with sin(φ) instead of the friction
angle itself. In order to take the variability of φ properly into account, the following formulae
and graphs can be used. Also the use of tan(φ) is discussed.

O.1 General Procedure to Estimate Mean and Variance of a
Function

For an arbitrary one-parameter function G, which is a function of a one-parameter estimator
G(θ̂), the expected value can in general be approximated (Taylor-expansion) by:

E[G(θ)] = G(θ̂) +O

(
1
n

)
(O.1)

where G(q) is some function of q and q is the population parameter where E(θ) = q as
n → ∞ (n is the sample size). Thus for large n the expected value E[G(θ)] converges to the
mean m.

For the same one-parameter distribution the variance can be estimated by 1:

V ar(G(θ)) =
(
∂G

∂θ

)2

θ=θ̂

V ar(θ) +O

(
1

n
3
2

)
(O.2)

For the present problem we can neglect the error terms, since we assume the mean and variance
of the variable to be known.

1see http://www.weibull.com: Approximate Estimates Of The Mean And Variance Of A Function
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O.2 From a given variance of φ to the variance of sin(φ)

The transformation function and its derivative are:

f(φ) = sin(φ) (O.3)
f ′(φ) = cos(φ)

Therefore the variance and the standard deviation of the function can be written as:

V ar(sinφ) =
(
∂sinφ

∂φ

)2

φ=φ̂

V ar(φ) = cos2φ|φ=φ̂ V ar(φ) (O.4)

Taking the square root gives the standard deviation:

σsinφ = |cosφ̂| σφ (O.5)

Expressed in coefficients of variation:

COV (sinφ) =
|cosφ|
µsinφ

COV (φ) µφ =
COV (φ) φ̂

tan(φ̂)
(O.6)

Figures O.1 and O.2 show the standard deviation and the variation coefficient of sinφ as function
of φ and its variation coefficient.

O.3 From a given variance of φ to the variance of tan(φ)

The transformation function and its derivative are:

f(φ) = tan(φ) (O.7)
f ′(φ) = 1/cos2(φ)

Similar to the previous section the standard deviation results in:

σtanφ =
1

cos2φ̂
σφ (O.8)

Expressed in coefficients of variation:

COV (tanφ) =
cosφ̂

cos2φ̂ sinφ̂
COV (φ) φ̂ =

1

cosφ̂ sinφ̂
COV (φ) φ̂ (O.9)

Figures O.3 and O.4 show the standard deviation and the variation coefficient of tanφ as function
of φ and its variation coefficient:
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O.4 From a given variance of tanφ to the variance of sin(φ)

The transformation function and its derivative are:

f(φ) = sin(φ) (O.10)
f ′(φ) = cos(φ)

Similar to the previous sections the standard deviation results in:

σsinφ = σφ cosφ̂ (O.11)

The standard deviation of tanφ can be transformed to:

σφ = σtanφ cos
2φ̂ (O.12)

Combining the last two equations leads to.

σφ = σtanφ cos
3φ̂ (O.13)

Expressed in coefficients of variation:

COV (sinφ) = |cos3φ̂|
COV (tanφ̂) µtanφ

µsinφ
= cos2φ̂ COV (tanφ̂) (O.14)

Figures O.5 shows the variation coefficient of sinφ as function of φ and the variation coefficient
of tan φ.
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Figure O.1: Standard Deviation of sin φ as function of phi and COV(φ)

Figure O.2: Variation Coefficient of sin φ as function of phi and COV(φ)

MSc thesis Timo Schweckendiek



212 Structural Reliability Applied To Deep Excavations

Figure O.3: Standard Deviation of tan φ as function of phi and COV(φ)

Figure O.4: Variation Coefficient of tan φ as function of phi and COV(φ)
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Figure O.5: Variation Coefficient of sin φ as function of phi and COV(tan φ)
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