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Abstract

The rapid adoption of electric vehicles (EVs) poses significant challenges to low-voltage distribution
grids, particularly in regions with high penetration rates like the Netherlands. As EVs increasingly draw
power from and feed power back into the grid through technologies such as Vehicle-to-Grid (V2G) and
mobile V2G, the stability and reliability of low-voltage grids are put to the test. This thesis investigates
how uncoordinated charging behaviors, combined with real-world factors like commuting patterns, im-
pact grid performance. The study focuses on key technical aspects such as grid congestion, voltage
fluctuations, and transformer loading, aiming to understand the potential stress points in the grid.

Through a series of detailed simulations, the research explores different operational scenarios involving
smart charging, V2G, and mobile V2G technologies. These simulations assess the grid’s response
to varying levels of V2G penetration, seasonal demand shifts, and commuting behaviors, providing
a realistic analysis of the challenges that low-voltage grids face. The study models suburban Dutch
grids, emphasizing real-world conditions such as the asynchronous nature of charging and discharging
patterns and how they can lead to localized imbalances.

This research reveals the complex interactions between EV integration and grid performance, empha-
sizing that user-driven charging behaviors and the growing penetration of V2G solutions can lead to
significant grid instability without proper coordination. The findings highlight the necessity for advanced
grid management strategies, infrastructure reinforcements, and innovative charging solutions to miti-
gate these risks. By offering insights into the technical challenges of grid integration under various
real-world conditions, this thesis contributes to a deeper understanding of the infrastructure require-
ments and operational strategies needed to support the transition to electrified transportation on a
large scale.
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Introduction

The world is currently facing an escalating climate crisis, characterized by rising global temperatures,
frequent extreme weather events, and rapidly changing ecosystems that threaten environmental sta-
bility. In response, urgent measures are required to reduce greenhouse gas emissions, as outlined
in the Paris Agreement, which aims to limit global temperature increases to well below 2°C above
pre-industrial levels [1]. Among these measures, the transition to EVs is of paramount importance. As
nations increasingly shift toward cleaner energy sources, EVs present a sustainable alternative to tradi-
tional fossil-fuel-based transportation. By reducing emissions from one of the most significant polluting
sectors, widespread EV adoption is critical in meeting global climate goals and advancing a low-carbon
future [2] .

The rapid integration of EVs is a vital element in global efforts to reduce carbon emissions and ad-
dress climate change. While their deployment within power grids offers various benefits—such as
enhancing grid stability and enabling more efficient energy management through smart charging and
Vehicle-to-Grid (V2G) technologies—their impact on low-voltage grids remains a significant concern
[3]. The low-voltage distribution network, which directly serves residential areas and local communi-
ties, is particularly susceptible to increased demand and voltage fluctuations resulting from widespread
and simultaneous EV charging[4].

Despite advancements in smart grid management at higher grid levels, local networks face distinct
challenges, including risks of localized overloads, uneven power distribution, and accelerated wear
on grid infrastructure [5]. As EV adoption continues to rise, it is crucial to understand and address
these challenges to ensure a smooth transition to electrified transportation without compromising the
reliability and stability of local electricity supplies.

This thesis aims to evaluate the impact of smart charging, V2G, and mobile V2G technologies on low-
voltage grids under various real-world scenarios. The analysis considers different commuting patterns
(42% and 100% EV commuting), seasonal variations, and varying levels of V2G participation (with 50%
and 100% of vehicles equipped with V2G technology or capable of discharging at home). By examining
these conditions, this research provides a comprehensive assessment of the benefits and challenges
associated with integrating these solutions into local distribution networks.

An introductory research overview is presented as follows. Section 1.1 provides an overview of EVs,
focusing on their environmental benefits and growing global adoption. Subsequently, Section 1.1.1
delves into the adoption trends of EVs, highlighting key regions like the Netherlands and discussing
the factors driving widespread adoption. Section 1.1.2 explains the importance of charging technolo-
gies, including fast charging and smart charging solutions, in supporting the expansion of EVs. The
research question is outlined in Section 1.2, focusing on evaluating the integration of EVs into low-
voltage distribution networks while maintaining grid stability. The thesis outline is presented in Section
1.3, summarizing the content and structure of each chapter. Lastly, this introductory chapter concludes
with a discussion of the thesis motivation and contributions.



2 1. Introduction

1.1. Electric Vehicles

The transportation sector is one of the largest contributors to global greenhouse gas (GHG) emissions,
accounting for approximately 24% of global CO, emissions, with road transport responsible for around
75% of these emissions [6]. As the world moves toward decarbonization to combat climate change,
EVshave emerged as a crucial technology in reducing GHG emissions from the transportation sector.

Unlike traditional internal combustion engine (ICE) vehicles, EVs produce zero tailpipe emissions[7].
This means that, during operation, EVs do not emit carbon dioxide (CO,), nitrogen oxides (NO,), or
particulate matter (PM), which are harmful to both the environment and human health [8]. The shift
from ICE vehicles to EVs can significantly reduce the direct emissions of pollutants in urban areas,
where vehicular emissions contribute to poor air quality and adverse health outcomes.

Even when accounting for the emissions from electricity generation (known as "well-to-wheel” emis-
sions), EVs are significantly more efficient than ICE vehicles. Depending on the energy mix of the
electricity grid, EVs can produce 30% to 70% less CO, over their lifecycle compared to gasoline or
diesel vehicles [9]. In countries with a higher share of renewable energy, such as wind, solar, or hy-
dropower, this reduction can be even more pronounced. For example, in countries like Norway, where
renewable energy makes up over 90% of the electricity grid, the GHG emissions associated with EVs
are reduced by as much as 70% [10]. As more countries invest in renewable energy sources to de-
carbonize their power grids, the overall lifecycle emissions of EVs will continue to decrease. By 2050,
many developed nations aim to have fully decarbonized grids, further enhancing the environmental
benefits of EVs [11].

EVs are also much more energy-efficient than traditional gasoline or diesel vehicles. EVs convert about
60-77% of the electrical energy from the grid into vehicle movement, whereas conventional vehicles
only convert about 12-30% of the energy stored in gasoline into power at the wheels [12]. This in-
creased efficiency results in a lower overall energy demand for transportation, further reducing the
carbon footprint of road travel.

Beyond their role in reducing emissions, EVs can contribute to the stability and sustainability of energy
systems through Vehicle-to-Grid (V2G) technology. V2G allows EVs to act as mobile energy storage
units that can store excess renewable energy during periods of low demand and discharge it back
into the grid during peak demand periods [13]. This technology supports the integration of renewable
energy sources, which are often intermittent, by providing a flexible and distributed storage solution.
In doing so, V2G can help smooth out fluctuations in the grid caused by variable renewable energy
production, such as solar and wind power, further reducing the reliance on fossil fuel-based backup
generators[14].

The global adoption of EVs has the potential to significantly reduce GHG emissions. According to the
International Energy Agency (IEA), the widespread deployment of EVs could prevent the emission of
up to 2.5 billion metric tons of CO, annually by 2050, which is roughly equivalent to the total emissions
of India [15]. Additionally, reducing tailpipe emissions in cities will not only lower GHG emissions but
will also result in cleaner air, improving public health outcomes, and reducing the societal costs of air
pollution.

1.2. The Netherlands: A Global Leader in EV Adoption

The Netherlands has established itself as a global leader in EV adoption, recognizing the critical role
these vehicles play in mitigating climate change. The Dutch government has implemented a compre-
hensive strategy that combines ambitious policy targets with substantial investments in infrastructure,
making the Netherlands one of the most EV-friendly countries worldwide.

As part of its commitment to reducing greenhouse gas emissions, the Netherlands aims to achieve
a fully carbon-neutral transportation system by 2050. A key milestone in this strategy is the planned
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phase-out of new gasoline and diesel vehicles by 2030, effectively mandating that all new cars sold
after this date be zero-emission vehicles, predominantly electric [16]. This policy is integral to the
Netherlands’ broader climate goals, which include reducing national CO, emissions by 49% by 2030
compared to 1990 levels [17].

To support the rapid transition to EVs, the Netherlands has developed one of the most extensive charg-
ing infrastructures in Europe, with over 90,000 public charging points as of 2023 [18]. This network
alleviates range anxiety and makes EV usage more practical, even in densely populated areas. Fur-
thermore, the Dutch government offers a range of incentives to encourage EV adoption, including
purchase subsidies, tax exemptions, and lower registration fees. These financial incentives, combined
with the extensive charging network, have made EVs increasingly attractive to Dutch consumers. As
a result, EVs accounted for more than 30% of all new car sales in the Netherlands in 2023 [19], with
this figure expected to rise as the 2030 target approaches.

The Netherlands is also a pioneer in integrating EVs into its broader energy and mobility strategies[20].
Through the deployment of smart charging and V2G technologies, EVs can interact dynamically with
the power grid, helping to balance supply and demand, store excess renewable energy, and reduce
strain on the grid during peak hours [21]. This not only supports grid stability but also maximizes the
environmental benefits of EVs by ensuring they are charged with green energy.

Building on its leadership in sustainable mobility, the Netherlands has seen significant growth in EV
adoption. By 2023, registered EVs surpassed 400,000, representing approximately 15% of the total
vehicle fleet[22]. This growth reflects a decade of strategic government efforts, including purchase
subsidies, tax benefits, and substantial investments in public charging infrastructure.

Expected EV market shares and sales with the SparkCity model

100 6,000,000
5.000.000

4,000,000

2,963,380

3,000,000

2,000,000

1,000,000

B Total EVs in the Netherlands EV marketshare

Figure 1.1: Projected growth of the EV market share and total sales in the Netherlands [23].

As shown in Figure 1.1, the projected growth of the EV market share and total sales in the Netherlands
illustrates the rapid pace of EV adoption. By 2035, the EV market share is anticipated to reach 88%,
with the total number of EVs surpassing 5 million. This trajectory reflects the influence of government
support, consumer demand, and technological advancements.

Technological innovations, particularly in battery technology, have been crucial in facilitating this tran-
sition. Advances in battery performance, increased vehicle range, and faster charging capabilities
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have addressed key concerns of potential EV buyers[24]. Moreover, the introduction of V2G technol-
ogy is transforming EVs into dynamic components of the energy grid, enabling them to contribute to
energy storage and distribution, and aligning with the Netherlands’ broader goals of reducing carbon
emissions[25].

However, this rapid adoption presents both challenges and opportunities for the Dutch power grid.
The increasing penetration of EVs necessitates a deeper understanding. Ensuring grid stability and
reliability will be critical as the country continues to advance toward its ambitious goals of electrification
and sustainability. This requires strategic planning and the development of robust grid management
solutions to accommodate the growing number of EVs and their integration into the national energy
infrastructure.

1.3. Research Question

As EV adoption grows, especially in regions like the Netherlands, the potential challenges posed to
local distribution grids become more pronounced. While solutions like smart charging, Vehicle-to-Grid
(V2G), and advanced grid management strategies offer promising ways to mitigate grid stress, they
often involve complexities such as highly coordinated behaviors or ideal conditions that are not always
feasible in real-world scenarios. Additionally, the uncoordinated nature of individual user behavior and
its cumulative effects on low-voltage grids remain under explored, despite being crucial to understand-
ing the real-world impacts of EV integration.

This thesis aims to fill that gap by evaluating the effects of uncoordinated smart charging, V2G, and
mobile V2G technologies driven by individual user behavior within the Dutch low-voltage grid. The
primary objective is to assess how the lack of centralized coordination among EV users—each with
unique driving and charging habits—affects grid stability, load management, and overall performance.
By analyzing varying commuting patterns, seasonal influences, and different levels of V2G participation,
this research provides a comprehensive understanding of the risks and benefits of this uncoordinated
approach.

The impact of uncoordinated charging behaviors is anticipated to vary significantly based on grid topol-
ogy, whether rural, urban, or suburban. However, in all cases, the consequences of uncoordinated
user actions are likely to be substantial, potentially leading to grid instability. This study also distin-
guishes between two levels of power management: the local level and the central level. The local
level focuses on individual chargers and charging behaviors, where uncoordinated actions can result
in severe consequences for the grid. In contrast, the central level considers the collective operation
of all system elements, with strategies such as curtailment mechanisms ensuring grid constraints are
met.

The analysis centers on grid congestion resulting from uncoordinated charging and the deployment
of mobile V2G solutions, exploring under what conditions these issues become critical and potential
strategies for alleviating them.

The Dutch low-voltage grid serves as the focal point of this research due to its high EV adoption rates
and extensive charging infrastructure, which present unique challenges and opportunities. Unlike stud-
ies that assume idealized conditions or coordinated charging, this thesis investigates more realistic,
uncoordinated user behaviors that are expected to dominate in the near future, providing actionable
insights directly relevant to the Netherlands’ ongoing transition to electrified transportation.

The primary research question guiding this study is:

What is the impact of uncoordinated smart charging, Vehicle-to-Grid (V2G), and mobile

VaG technologies, driven by individual user behavior, on dutch low-voltage distribution
grids under different real-world conditions?

In addition to the main research question, the following sub-questions are introduced:
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1. How does uncoordinated charging by individual users affect grid stability, congestion, and voltage
levels in scenarios with high EV penetration in the Dutch low-voltage grid?

2. In what ways do individual user behaviors, such as different commuting patterns and seasonal
charging habits specific to the Netherlands, influence the for grid congestion and voltage devia-
tion?

By addressing these questions, this thesis will provide valuable insights into the challenges and oppor-
tunities of integrating V2G into the Dutch power system. It will focus on user-driven factors that could
either support or hinder grid stability, offering practical recommendations for improving the resilience
of local distribution grids in the face of growing EV penetration.

1.4. Thesis Outline

The study begins by laying the theoretical foundation in Chapter 2, where a comprehensive litera-
ture review explores the role of smart charging and V2G technologies in low-voltage grid integration,
highlighting how commuting patterns and seasonal variations impact grid performance. Moving into
Chapter 3, the simulation setup is detailed, describing the key assumptions, grid models, integration of
photovoltaic (PV) systems, and the use of day-ahead market data to simulate realistic charging con-
ditions. In Chapter 4, the focus shifts to the formulation of the EV scheduling problem, outlining the
methodologies used to optimize charging strategies for improved grid reliability and efficiency. Chapter
5 presents the results, analyzing how smart charging, V2G, and mobile V2G perform under different
scenarios, revealing their distinct impacts on transformers, lines, and voltage stability, with mobile V2G
emerging as the most balanced. Finally, Chapter 6 concludes the study by discussing key findings, of-
fering recommendations for future research, and emphasizing the need for coordinated EV scheduling
to ensure grid stability amidst growing EV penetration.






Literature Review

In the previous chapter, we discussed the role of EVs in reducing greenhouse gas emissions, focusing
on global adoption trends and the Netherlands’ leadership in EV uptake. The purpose of this section
is to explore the impact of integrating EVs into low-voltage distribution networks, which serve as the
critical connection point between local electricity supply and end-users. As EV adoption continues to
accelerate, particularly in residential and rural areas, these networks face significant challenges related
to voltage stability, load management, and infrastructure capacity. This section provides an overview
of how increased EV charging demand, particularly from high-power chargers, can strain low-voltage
grids and discusses various strategies to manage these issues, including grid reinforcement, smart
charging, and energy storage solutions. By understanding these challenges and potential solutions,
this section sets the foundation for assessing the broader implications of widespread EV adoption on
local distribution systems.

2.1. Charging Technologies

Charging technologies are a cornerstone of the EV ecosystem, directly influencing their adoption by
addressing key user concerns such as range anxiety and convenience. The variety of EV charging
systems available plays an important role in meeting different user needs, ranging from daily commutes
to long-distance travel. Each charging technology offers distinct benefits, and understanding these
technologies is crucial for evaluating how they support the growing penetration of EVs. Furthermore,
they serve as a foundation for more advanced systems like smart charging and V2G technologies [26].

EV charging technologies can be broadly categorized into three main types: slow (Level 1), fast (Level
2), and rapid or ultra-fast charging (DC fast charging). Slow charging, or Level 1, typically operates at
120 volts and can add approximately 3-5 miles of range per hour [26]. This method is most suitable for
overnight charging at home or in residential areas where vehicles remain parked for extended periods.
However, the extended time required to fully charge an EV using Level 1—often 12-24 hours—makes
it less practical for users with busier schedules [27].

Fast charging, or Level 2, operates at 240 volts and can deliver around 10-30 miles of range per hour,
significantly reducing charging time compared to Level 1, [28]. These chargers are commonly installed
in public spaces such as parking lots, workplaces, or shopping centers. Although more efficient than
Level 1, Level 2 chargers still require a few hours to fully charge an EV, depending on the battery
size[29].

In contrast, rapid or ultra-fast charging, known as DC fast charging, can deliver 50-350 kW of power
and can recharge an EV’s battery to 80% capacity in approximately 20-40 minutes, adding hundreds of

7
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miles of range in a short time[26]. These systems are typically located along highways or major travel
routes to support long-distance EV travel. While offering the greatest convenience, DC fast charging
comes with higher installation costs—around $50,000 to $100,000 per station—and poses significant
grid demands, particularly as EV adoption increases[30].

While fast charging offers substantial convenience, it also presents challenges, particularly regarding
the strain it can place on the energy grid. To mitigate these issues, newer technologies such as smart
charging and bidirectional charging are being developed. These innovations extend beyond simply
improving charging speed. Smart charging, for instance, allows EVs to adjust charging times based on
real-time electricity prices or grid load, reducing peak demand and grid stress. Bidirectional charging
technologies, on the other hand, enable EVs to supply power back to the grid, which can help balance
energy supply and demand, particularly during peak hours.

Smart Charging

Smart charging technology is a critical innovation for ensuring the large-scale adoption of EVs. As
the number of EVs on the road grows, the demand for charging infrastructure and electricity increases
significantly. Traditional grid infrastructure is often not equipped to handle the additional loads gener-
ated by widespread EV adoption, which could result in grid overloads or instabilities. Smart charging
addresses these challenges by managing how and when EVs charge, using real-time data on electric-
ity demand, grid capacity, and power availability to ensure efficient energy distribution. By optimizing
charging sessions, smart charging plays a key role in maintaining grid stability, reducing energy costs,
and facilitating the smooth integration of EVs into existing power networks [31].

A typical EV battery requires anywhere from 30 to 100 kWh to fully charge, depending on the vehicle’s
range and battery capacity. If unmanaged, widespread EV charging could increase peak electricity
demand by 20-30% in some regions.According to Black D. [32], in California, where EV adoption is
among the highest in the U.S., projections show that without smart charging, grid demand during peak
hours could surge by as much as 25% by 2030, potentially destabilizing the grid during peak evening
hours. Smart charging mitigates these risks by intelligently staggering charging sessions and aligning
them with periods of lower electricity usage, often during the night when overall demand drops by
30-40%. This approach not only prevents grid stress but also increases the efficiency of energy use,
reducing overall costs for consumers while maintaining grid stability [33].

Several key methods of smart charging have been developed to optimize energy consumption and
ensure that EVs are smoothly integrated into the power grid. The primary methods include:

» Controlled Charging: In controlled charging, a centralized system dynamically adjusts the timing
and power levels of EV charging sessions. According to Mahmood A. [34], during off-peak hours,
EVs can charge at full power, when demand is 30-40% lower than peak times. In contrast, during
peak periods , the system can reduce or delay charging to avoid overwhelming the grid. This
method prevents grid overload by distributing power across various charging points based on the
grid’s capacity at any given time. Controlled charging is especially beneficial in environments
with high EV density, such as residential complexes and large commercial buildings. Studies
show that in such environments, controlled charging can reduce peak demand by up to 25%,
significantly improving grid stability [35].

» Dynamic Load Management (DLM): DLM is essential in high-demand environments, such as
public or commercial charging hubs, where multiple EVs are plugged in simultaneously [36]. DLM
systems monitor the total electrical load in real-time and allocate available power across several
charging points, ensuring that the grid is not overloaded. According to Kimmel A. [37] in a com-
mercial fleet charging scenario involving 50 EVs, DLM can prevent peak loads from exceeding
80-90% of grid capacity, while still providing adequate charging for all vehicles. By dynamically
adjusting the power supplied to each vehicle, DLM reduces the risk of localized blackouts and
ensures efficient energy distribution. This method can reduce peak load by up to 40% in high-
demand areas, ensuring that the grid remains stable even during times of heavy use.
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The scalability of smart charging technology is another significant advantage. In regions with high EV
adoption, where the number of vehicles on the road is projected to grow exponentially in the coming
years, the strain on local grids could require costly infrastructure upgrades if unmanaged. For example,
in Europe, some countries are preparing for a future where EVs could constitute 30-40% of total vehicles
by 2035 [38]. Without smart charging, this could lead to a doubling of electricity demand during peak
hours, potentially requiring billions of euros in grid expansions. However, smart charging systems offer
a scalable solution that can adapt to increasing demand without the need for significant investments
in grid capacity [39]. By controlling charging times and rates, smart charging reduces peak loads and
allows existing infrastructure to support a greater number of vehicles.

Smart charging also contributes to grid resilience by enabling utility providers to manage energy flows
more effectively. By smoothing out peaks in demand and ensuring a more balanced load throughout
the day, smart charging reduces the likelihood of grid failures or power outages [40]. For example, in
regions where renewable energy sources such as solar or wind power are abundant, smart charging
can be programmed to align EV charging with periods of high renewable energy generation. By charg-
ing during times of high solar output or strong winds, smart charging reduces reliance on fossil fuels,
lowering the carbon footprint of EVs while supporting broader sustainability goals.

In addition to improving grid stability, smart charging can lower electricity costs for consumers. Studies
show that by optimizing charging times and reducing demand during peak hours, smart charging can
lower electricity costs by 20-30% compared to unmanaged charging [41]. For large commercial fleets
or public charging stations, this translates into significant savings over time. For instance, a company
operating a fleet of 100 EVs could save up to $100,000 annually in electricity costs by implementing
smart charging systems that reduce demand during peak hours [42].

Vehicle-to-Grid (V2G)

V2G technology is a transformative innovation in EV adoption, providing crucial benefits for grid stability,
renewable energy integration, and economic incentives for EV owners. V2G enables bi-directional
energy flow, allowing EVs to not only draw power from the grid but also return stored energy when
needed. This capability is essential for balancing electricity supply and demand, particularly during
peak periods, which reduces stress on the grid and improves overall efficiency [14].

With millions of EVs on the road, their combined storage capacity could reach hundreds of gigawatt-
hours (GWh). According to Alsharef M. [43], if just 10% of 1 million EVs in a region participate in V2G,
they could provide up to 10 GWh of electricity back to the grid—enough to power approximately 200,000
homes for a day. This distributed storage capacity allows V2G to act as a buffer during peak electricity
consumption, reducing reliance on fossil-fuel-based peaker plants, which are costly and contribute
significantly to greenhouse gas emissions [14].

V2G’s ability to provide distributed energy storage offers significant economic advantages. As EV
adoption increases, electricity demand will rise, particularly during peak hours when EV owners typically
charge their vehicles. Without V2G, this increased demand could necessitate costly grid infrastructure
upgrades to prevent overloads. In the paper by Chen G. [44] suggests that, the U.S. grid may require
between $100 billion and $200 billion in upgrades by 2040 to accommodate EV demand. However,
V2G could reduce this required investment by up to 30%, as EVs can discharge energy back into the
grid during peak demand, flattening demand curves and reducing the need for expensive expansions.

An important application of V2G is its role in enhancing renewable energy integration. Renewable en-
ergy sources such as wind and solar are variable, often generating energy during times when demand
is low, such as at night or midday. V2G enables EVs to store surplus renewable energy during these
periods and discharge it back into the grid when demand peaks. For instance, wind farms may over-
produce energy at night, while solar farms generate excess energy during the day. V2G can absorb
this energy, making it available when it is most needed, reducing the reliance on fossil-fuel generation.
In regions with high renewable energy adoption, V2G could reduce carbon emissions by up to 25% by
minimizing the need for conventional peaking plants and reducing energy curtailment [45].
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Mobile V2G, a more flexible extension of traditional V2G, amplifies the potential of this technology by
offering greater mobility and adaptability. Unlike stationary V2G systems, mobile units can be deployed
anywhere they are needed, making them especially beneficial in regions with underdeveloped charging
infrastructure. This mobility enables energy services to reach remote or rural areas that may otherwise
be excluded from V2G programs, ensuring broader participation. For instance, in locations where the
grid is weak or unable to meet peak demand, mobile V2G units can be deployed to provide additional
capacity and prevent blackouts. Furthermore, these mobile systems can act as temporary energy
sources during emergencies or large-scale events, helping to stabilize grids that face unexpected stress
from high demand or natural disasters [46].

In disaster response, mobile V2G offers a crucial solution by supplying on-demand power to critical
infrastructure. Following natural disasters such as hurricanes, earthquakes, or floods, mobile V2G
units can quickly be mobilized to power essential services, including hospitals, emergency shelters,
and communications networks [43]. For example, after a major grid outage caused by a natural dis-
aster, mobile V2G units could be dispatched to provide several megawatts of power to key facilities,
reducing reliance on diesel generators, which are both carbon-intensive and challenging to maintain
during crises. This added resilience is especially important in disaster-prone regions, where the ability
to restore power swiftly can be lifesaving.

The role of mobile V2G in supporting renewable energy adoption is also noteworthy. These units can
be deployed near renewable energy sources, such as wind farms or solar arrays, to store excess
energy when generation is high but demand is low. By capturing surplus energy during periods of
peak production—such as sunny afternoons for solar power or windy nights for wind power—mobile
V2G units can transport this stored energy to urban centers or areas with higher demand [45]. This
not only helps balance the grid but also reduces the curtailment of renewable energy, which is often
wasted when there is insufficient storage capacity. In regions where renewable energy generation
frequently exceeds demand, mobile V2G can significantly reduce wasted energy and improve overall
grid efficiency.

For EV owners, mobile V2G opens up new economic opportunities. Much like stationary V2G systems,
mobile units allow EV owners to sell excess energy back to the grid during peak periods when electricity
prices are highest [47]. However, mobile V2G offers even greater flexibility by enabling EV owners to
position their vehicles in locations where demand is greatest. For instance, fleet operators or individual
owners can move mobile V2G units to high-demand areas, such as urban centers during peak times, to
provide energy directly to the grid. This mobility enhances revenue potential, with mobile V2G units able
to supply energy where it is most valuable, generating substantial income for operators. For example, a
fleet of mobile V2G units deployed during a major city event could supply megawatts of power, earning
tens of thousands of dollars over the course of a single high-demand period [44].

2.2. Low-Voltage Distribution Networks and EVs

The rapid growth of EV (EV) adoption is placing substantial stress on low-voltage distribution grids,
particularly due to uncontrolled charging—charging without the use of smart technologies or grid coor-
dination systems such as V2G. Uncontrolled charging leads to significant increases in power demand
during peak hours and has a measurable impact on voltage levels across the grid, causing both voltage
fluctuations and demand surges that affect overall grid stability [48, 49].

In areas where uncontrolled charging is the dominant mode, voltage instability becomes a critical issue.
Voltage drops of 5% to 8% are common in neighborhoods with moderate EV penetration, and these
drops can exceed 10% in areas where adoption rates surpass 30% [50]. These voltage drops are
particularly problematic in low-voltage grids, which are designed to handle steady, predictable loads.
Sudden voltage dips affect line voltage regulation and cause deviation from the nominal voltage , lead-
ing to operational inefficiencies in electrical appliances and devices connected to the grid.

Moreover, the voltage fluctuations impact the efficiency of EV charging itself. When voltage sags occur,
EV chargers experience reduced power throughput. In an uncontrolled charging scenario, this results in



2.3. Smart Charging and lts Impact on Low-Voltage Grids 11

increased charging times, with studies reporting a 20% increase in charging duration due to suboptimal
voltage levels [49]. According to Nalo N., Bosovi¢ A. and Musi¢ M.A [51] 10% voltage drop from 230V
to 207V can extend EV charging times by 10%, resulting in an additional 3 kWh of energy consumed
per session. In a neighborhood with 100 EVs charging simultaneously, this can lead to an extra 300
kWh per event, increasing load on transformers and causing 1-2% efficiency loss for every 5°C rise in
operating temperature, accelerating thermal degradation of grid components. This ultimately leads to
higher operational temperatures, particularly in grid components not designed for such prolonged peak
loads, increasing the risk of thermal degradation and failure.

The effects of uncontrolled charging are most pronounced during peak demand periods, when residen-
tial demand for electricity overlaps with EV charging. In regions with significant EV penetration, such as
the Netherlands, peak load surges due to uncontrolled charging have been shown to increase overall
neighborhood demand by 30% to 50% [48]. This surge in demand stresses distribution transform-
ers, which must operate well beyond their rated capacity during these hours. Continuous overloading
reduces transformer efficiency and accelerates aging factors such as oil degradation and winding in-
sulation breakdown, leading to reduced transformer lifespans.

In addition to voltage issues, grid congestion becomes a significant problem in areas with high rates
of uncontrolled charging. Grid congestion refers to the inability of the grid to meet local demand due
to physical limitations of the distribution infrastructure. In low-voltage networks, congestion results in
load imbalances where different phases of the network carry uneven loads, further aggravating voltage
instability [52]. Phase imbalances in three-phase distribution systems can result in neutral current
buildup, which increases the risk of overheating in conductors and can lead to neutral point shifts,
negatively affecting voltage regulation across all phases [53].

Rural areas are particularly vulnerable to these effects, given that grid infrastructure in such regions is
often older and less capable of handling the concentrated loads generated by uncontrolled EV charg-
ing. Simulation studies in rural networks have demonstrated that the addition of 20 to 30 EVs in a
neighborhood can cause voltage drops of up to 10%, significantly impacting both power quality and the
operational stability of the grid [49]

In areas with high EV penetration, uncontrolled charging can cause voltage drops of up to 10% and
increase peak demand by 30% to 50%, leading to grid congestion and inefficiencies. Without smart
charging or V2G, transformers and conductors face prolonged overloading, accelerating thermal degra-
dation and reducing their lifespan by up to 50%, which significantly increases maintenance costs and
the risk of grid failure[54].

2.3. Smart Charging and Its Impact on Low-Voltage Grids

As EV adoption accelerates, the growing strain on low-voltage (LV) grids has become a critical issue,
particularly in areas with high EV penetration. Smart charging has emerged as an essential tool for man-
aging this increased demand. Unlike uncontrolled charging, which leads to sudden demand spikes and
voltage instability, smart charging systems can smooth demand curves by optimizing charging times
based on real-time data and grid conditions. Research shows that smart charging can reduce peak
loads by 30-50%, alleviating pressure on distribution transformers and preventing localized voltage
drops, which in some high-EV penetration areas can otherwise reach up to 10% [55]. By distribut-
ing the load more evenly throughout the day, smart charging minimizes the need for expensive grid
reinforcements, delaying infrastructure upgrades by several years in congested urban networks [56].

Figure 2.1 provides a comprehensive overview of the components involved in EV charging scheduling,
highlighting three primary elements: Dynamic Pricing Schemes, Optimization Techniques, and Opti-
mization Objectives. These components are critical to optimizing charging patterns and improving grid
stability. Dynamic Pricing Schemes, such as Time of Use (TOU) pricing, Real-Time Pricing (RTP), and
Critical Peak Pricing (CPP), incentivize EV owners to charge their vehicles during off-peak hours when
electricity demand is lower. This alignment of economic incentives with grid requirements helps flatten
the demand curve. Studies have shown that TOU pricing alone can reduce peak demand by 15-25%,
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encouraging users to avoid charging during high-demand periods [57]. However, challenges such as
the avalanche effect, where large numbers of EVs begin charging simultaneously in response to lower
prices, remain an issue. This can lead to an amplified grid load, increasing demand by up to 15 times
in high-EV penetration areas [58].
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Figure 2.1: EV Charging Scheduling Framework [59]

To address these challenges, several studies have integrated demand response mechanisms into
smart charging models. These systems dynamically adjust charging times or rates based on real-time
grid conditions, preventing localized overloads caused by the avalanche effect. Predictive algorithms,
often powered by machine learning, can forecast grid load conditions with 95% accuracy, allowing
charging sessions to be staggered and distributed more efficiently [44]. Research indicates that when
smart charging is combined with demand response strategies, peak demand can be reduced by up
to 70%, significantly reducing the likelihood of grid overloads [60].Such systems not only stabilize the
grid but also reduce electricity costs for EV users by up to 20%, aligning economic incentives with grid
reliability [56].

Additionally, price-based optimization models, such as those that utilize day-ahead market prices, have
gained significant attention in the literature. These models optimize charging schedules by purchasing
electricity when prices are low and reducing or even selling power back to the grid when prices rise. This
approach, often referred to as arbitrage, can generate cost savings of up to 20% for EV owners, while
contributing to grid stability by preventing overloads during high-demand periods [60].Incorporating
these price signals into charging strategies ensures that EVs charge when there is excess capacity in
the grid, reducing the strain on critical components such as transformers and distribution lines.

While the benefits of smart charging are well-documented, many studies highlight the importance of
considering real-world user behavior and environmental factors, which can significantly affect the per-
formance of smart charging systems. For example, seasonal variations in electricity demand—such as
increased heating loads in winter—can alter grid conditions and complicate the optimization of charg-
ing schedules. In colder months, energy consumption can increase by as much as 30%, placing addi-
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tional strain on the grid. If not accounted for, these seasonal factors can lead to suboptimal charging
schedules that fail to alleviate grid stress during peak periods [61]. Furthermore, the diversity of urban,
suburban, and rural driving patterns introduces additional variability into charging demand, which many
generalized models fail to capture.

Incorporating these real-world variables into smart charging optimization is critical for ensuring the
scalability of these systems. Studies confirm that smart charging models that account for SOC dynam-
ics, user behavior, and environmental factors can provide a more robust and scalable solution to the
growing challenges faced by low-voltage grids in the era of mass EV adoption.

2.4.V2G Technology and Its Integration into Low-Voltage Grids

V2G technology enables bidirectional energy flow, allowing EVs to function as distributed energy re-
sources, which contributes to low-voltage grid stability through services like frequency regulation, load
balancing, and voltage support. By utilizing the storage capacity of EV batteries, V2G allows vehicles
to not only draw power from the grid but also feed electricity back into it. This capability is particularly
valuable for low-voltage grids, which are often more susceptible to demand and supply fluctuations.
For example, in frequency regulation, V2G-equipped EVs can rapidly inject or absorb power to help
maintain grid frequency within operational limits, which is essential for preventing widespread black-
outs [62]. Additionally, load balancing is enhanced as EVs can discharge power during peak demand
periods, easing grid strain and flattening the load curve [63]. V2G technology also provides voltage
support by supplying reactive power, which can improve power quality and mitigate voltage dips in
local grids [64].

Studies on V2G scenarios reveal both positive and negative impacts on voltage stability, transformer
loading, and power quality in low-voltage distribution networks. V2G technology can enhance grid
stability, but it also introduces challenges that require careful management. One key area of impact is
voltage stability; when EVs discharge power back into the grid, they can help regulate voltage levels
during high demand or low generation periods. However, without proper coordination, V2G operations
can cause voltage fluctuations, leading to instability in local grids [65]. Regarding transformer loading,
V2G offers advantages by distributing loads more evenly throughout the day. For instance, during peak
periods, EVs can discharge stored energy, reducing the strain on transformers and potentially extending
their lifespan. On the downside, frequent bidirectional power flows could accelerate transformer aging,
particularly in older infrastructure, if not carefully managed [66]. In terms of power quality, V2G can
provide reactive power support and reduce harmonics, which improves overall power quality. However,
uncoordinated V2G activities might lead to power imbalances, voltage sags, and harmonic distortion,
especially in grids with high EV penetration [67].

Widespread adoption of V2G technology faces significant challenges related to grid coordination, bidi-
rectional inverter technology, and regulatory barriers, all of which must be addressed for successful
integration. One of the primary hurdles is grid coordination, as effective V2G deployment requires
real-time communication between EVs, charging infrastructure, and grid operators. This coordination
is critical for managing power flows, preventing grid congestion, and ensuring that V2G activities do
not destabilize local grids. Without sophisticated management systems and reliable communication
protocols, large-scale V2G could lead to imbalances and inefficiencies, posing risks to grid stability
[68].

Another challenge lies in the development of cost-effective and reliable bidirectional inverters, which
are essential for enabling EVs to both charge and discharge power. While these inverters are crucial to
V2G functionality, current models are expensive, and ongoing research is focused on improving their
efficiency, durability, and affordability. Enhancements in inverter design, particularly regarding power
conversion efficiency and long-term reliability, are necessary to make V2G a viable large-scale solution
[69]. Regulatory barriers also present significant obstacles. V2G introduces complexities around en-
ergy pricing, grid access, and compensation for energy fed back into the grid. Existing regulations often
do not fully support bidirectional power flows, and there is a lack of universal standards for integrating
V2G into national grids. For V2G to scale, regulatory frameworks need to evolve to address grid access
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rights, tariffs, battery degradation compensation, and data privacy concerns tied to the communication
between EVs and grid operators [70].

2.5. Mobile V2G: A New Frontier in Grid Integration

Mobile V2G technology has emerged as a promising concept that could significantly enhance grid flex-
ibility by enabling EVs to function as mobile energy resources, dynamically supporting the grid wher-
ever they are connected. Traditional V2G systems typically rely on stationary EVs discharging power
at fixed locations like homes or designated charging stations. In contrast, mobile V2G leverages the
inherent mobility of EVs to offer grid services across different locations, increasing the responsiveness
and adaptability of energy management. Research indicates that mobile V2G can improve grid flexi-
bility by providing services such as frequency regulation, peak shaving, and emergency power supply,
especially in areas with fluctuating demand or limited infrastructure [71]. For example, EVs equipped
with mobile V2G capabilities can address temporary energy needs during events or act as distributed
backup generators during localized outages.

One of the significant advantages of mobile V2G is its ability to balance energy supply and demand
more dynamically, which is particularly useful in grids with high renewable energy penetration. By
moving to where energy is needed most, EVs can contribute to more effective load balancing and fa-
cilitate the integration of intermittent renewable sources like solar and wind [64]. Despite its potential,
large-scale implementation of mobile V2G presents challenges, including the need for real-time com-
munication systems, standardized bidirectional charging infrastructure, and regulatory frameworks that
accommodate the mobile nature of these energy resources [72]. Mobile V2G technology introduces
significant unpredictability to low-voltage grids, potentially affecting grid stability due to the dynamic
availability and mobility of EVs. While mobile V2G provides the flexibility to support the grid from vari-
ous locations, this mobility also creates challenges in predicting energy availability and usage patterns.
Unlike stationary V2G systems, mobile V2G is influenced by the movement and behavior of EV users,
which can be inconsistent and difficult to forecast. This unpredictability can result in voltage fluctua-
tions, imbalanced power flows, and additional strain on grid infrastructure, particularly in low-voltage
networks [73]. For example, if a group of EVs leaves a particular area during peak demand times, the
anticipated grid support may disappear, leading to voltage drops. On the other hand, a sudden surge in
EVs returning to charge at the same location could overload local transformers, causing grid instability
and potential failures [74].

Simulation models of mobile V2G scenarios reveal that while this technology can enhance grid per-
formance, it can also strain grid stability, especially in low-voltage networks, depending on factors like
EV distribution and coordination. On the positive side, these models show that mobile V2G can allevi-
ate grid congestion by discharging power during peak hours, reducing transformer stress and helping
prevent overloads. However, the unpredictability introduced by the movement and varying availability
of EVs creates significant challenges [74]. For example, irregular charging and discharging patterns
can lead to localized voltage instability and imbalances in power distribution. Additionally, when large
numbers of EVs return to a single area and begin charging simultaneously, it can lead to grid con-
gestion, voltage drops, and power quality issues. The effectiveness of mobile V2G in either mitigating
or exacerbating these impacts depends heavily on the coordination and control mechanisms in place.
This underscores the need for advanced, real-time control strategies and predictive algorithms that can
dynamically manage the fluctuating nature of mobile V2G resources.

2.6. Role of Commuting Patterns in EV Integration Studies

Studies modeling EV charging behavior often rely on real-world commuting data, focusing on arrival
and departure times to predict and optimize charging demand. These models are key to improving grid
management, charging infrastructure planning, and load balancing by understanding the temporal and
spatial dynamics of commuter-driven charging behavior. Charging demand tends to follow the daily
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routines of drivers, making commuting patterns, such as when and where drivers park and charge
their vehicles, essential for accurate modeling. Research shows that morning and evening commute
patterns create predictable spikes in charging demand, particularly in residential areas [75]. This insight
enables the design of smart charging strategies, such as delayed charging or time-of-use pricing, which
can help prevent grid overload [76]. Furthermore, these models are instrumental in identifying optimal
charging station locations and integrating renewable energy sources by aligning charging behaviors
with periods of peak renewable generation [77].

Research analyzing varying levels of commuting participation, such as 42% versus 100%, highlights
significant implications for grid management and EV charging strategies. These studies show that
partial participation scenarios produce distinct charging demand patterns, which are critical to consider
for maintaining grid stability. The load profile of EV charging varies considerably depending on the level
of commuting participation. For instance, in a 100% participation scenario, peak loads are much more
concentrated and predictable compared to lower participation levels, like 42%. Reduced participation
results in more dispersed charging, which can ease peak congestion but also introduces challenges in
accurately forecasting loads [78]. On the other hand, scenarios with nearly full participation lead to more
intense and concentrated demand spikes, particularly during morning and evening commuting hours
[79]. This necessitates tailored grid management strategies, such as demand response programs and
dynamic pricing, that align with the specific commuter participation levels.

Moreover, different participation rates affect the deployment and effectiveness of V2G strategies and
smart charging infrastructure. Mixed participation scenarios are particularly challenging, as they re-
quire more adaptive solutions to balance loads efficiently [80]. These findings underscore the need for
flexible, data-driven approaches in grid management as EV adoption continues to rise.

Despite advancements in EV research, significant gaps remain in understanding how different com-
muting scenarios interact with V2G systems and smart charging strategies. These gaps underscore
the need for further investigation into how diverse commuting behaviors impact grid stability, V2G effi-
ciency, and the integration of renewable energy sources.

While there has been progress in modeling the interplay between commuting patterns, V2G systems,
and smart charging, several critical areas remain underexplored. For instance, many existing models
lack detailed analysis of mixed and dynamic commuting scenarios, such as fluctuating levels of remote
work or hybrid commuting, which can substantially alter charging demand profiles [80]. Furthermore,
the effectiveness of V2G strategies is not fully understood in situations where real-world commuting
behaviors introduce unpredictability in grid support availability. For example, most studies assume a
stable number of vehicles available for V2G during peak demand, but they often overlook the variabil-
ity in commuter participation and vehicle availability [79]. Another research gap lies in the integration
of smart charging strategies with V2G systems in environments where commuting participation is in-
consistent. The interaction between smart charging algorithms and V2G under dynamic conditions
remains insufficiently studied, particularly regarding how these systems can adapt to sudden shifts
in commuter behavior [81]. Additionally, there is a need for more comprehensive evaluations of how
varying charging behaviors influence the integration of renewable energy sources, such as optimizing
charging schedules to coincide with peak solar or wind generation periods.

2.7. Seasonal Variations and Their Impact on EV Grid Integration

Temperature variations and seasonal shifts in energy demand significantly impact both grid operations
and EV performance. pan. Additionally, seasonal energy demand fluctuations challenge grid stability,
influencing charging behavior and the integration of renewable energy sources.

Seasonal energy demand shifts also play a significant role in grid operations. For example, in win-
ter, increased energy consumption for heating coincides with peak EV charging times—typically in
the evening—intensifying the strain on grid capacity [82]. In summer, the demand from air conditioning
combined with EV charging requires careful load balancing to prevent grid congestion. These seasonal
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variations further influence renewable energy integration. Solar energy generation peaks during sum-
mer, potentially aligning better with midday EV charging, while wind energy tends to be more abundant
in winter, offering different opportunities for balancing grid demand.

To mitigate the impacts of temperature fluctuations and seasonal demand shifts, grid operators must
plan for infrastructure enhancements and implement effective demand response programs. Smart
charging strategies, V2G systems, and advanced battery thermal management are critical for main-
taining both EV performance and grid reliability under varying temperature and seasonal conditions.



Simulation Setup and Case Studies

After exploring different aspects of charging technology in Chapter 2. In this chapter, we present the
key assumptions, simulation grids, and modeling parameters that form the foundation of our analysis
of EV integration and charging strategies within low-voltage grids. We begin by outlining the main
assumptions used to simplify system interactions. Next, we describe the simulation grids, including their
topology and grid-specific parameters. Finally, we explore the integration of EVs, charger distribution,
and the role of Day-Ahead Market prices in optimizing charging and discharging strategies. These
elements collectively define the operational environment used to assess the impact of different EV
charging strategies on grid performance.

3.1. Main Assumptions

The following assumptions were made to model and simulate the impact of EVs, charging strategies,
and related grid dynamics within this thesis. These assumptions simplify complex system interactions
and enable the application.

+ Active Power Consideration: Reactive power effects are neglected due to the significant pres-
ence of power electronics in PV panels and charging stations. The average power factor is as-
sumed to be close to unity, focusing the analysis solely on active power flows.

» Three-Phase Connections and Chargers: All EV chargers, regular loads, and charging stations
are modeled as three-phase connections to ensure balanced phase distribution and avoid grid
imbalances. This assumption also improves simulation convergence.

» Fixed Grid Topology: The grid topology remains unchanged throughout the study. Restructuring
or reinforcement of grid infrastructure is outside the scope, allowing the focus to remain on current
grid conditions.

+ Ideal PV System Operation: PV systems are modeled with optimal tilt and consistent generation,
disregarding factors like cloud coverage, rain, or dust. This provides a stable power output for
the analysis.

» Perfect System Knowledge: Regular load and solar panel behavior are assumed to be known
with 100% accuracy, while information on EV connections becomes available only at the moment
of connection. This includes perfect knowledge of energy prices, vehicle trips, and EV availability
throughout the simulation.

» Constant Power Assumption: Both regular loads and charging stations are modeled with con-
stant power behavior. While this simplifies the analysis, it may impact simulation precision.

17
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+ Day-Ahead Market Energy Prices: Energy prices are based on the Day-Ahead Market, allowing
for better optimization in the charging process. Differences between Day-Ahead and Intraday
prices are considered negligible.

» Curtailment Limited to Charging Stations: In case of grid issues, only charging stations are
curtailed. Regular residential and industrial loads are considered inflexible and cannot be cur-
tailed without requiring compensation from the Distribution System Operator (DSO).

» Private EVs Exclusively Modeled: The study focuses solely on private EVs, excluding semi-
public and public charging stations, to provide a detailed analysis of individual user behavior.

» User-Centric Simulation Perspective: Simulations are conducted from the perspective of indi-
vidual users rather than grid operators, emphasizing the impact of uncoordinated charging strate-
gies.

These assumptions collectively streamline the analysis, enabling a targeted investigation of the key
factors influencing the integration of EVs and their charging strategies within low-voltage grids. By
narrowing the focus, this research provides actionable insights while acknowledging the limitations
inherent in modeling such a complex system.

3.1.1. Simulation Grids

The simulations are performed on two suburban grids obtained from Enexis Groep. These grids exhibit
a radial topology, which is typical for suburban electrical networks. Figures 3.1 and 3.2 show the grids
used for the simulation.

The grid parameters, such as the number of nodes, buildings, lines, and PV installations, are sum-
marized in Table 3.1. These parameters provide a comprehensive comparison between the heavy
suburban and light suburban grids, reflecting the differences in infrastructure density and PV penetra-
tion levels.

Table 3.1: Comparison of grid parameters between heavy suburban and light suburban setups

Parameter Heavy Suburban | Light Suburban
Nodes 2809 2553
Buildings 885 809
Lines (m) 2636 2483
PV Installations 133 122

3.1.2. Simulation Parameters

The simulation parameters for the winter and summer seasons are compared in Table 3.2. Both simu-
lations have a timestep duration of 15 minutes, allowing for consistent data collection and comparison.
The winter simulation runs from January 5th to January 10th, while the summer simulation spans from
June 15th to June 20th. These time ranges are chosen to represent seasonal extremes, offering insight
into grid performance under varying environmental conditions.

Table 3.2: Simulation Parameters for Winter and Summer Seasons

Parameter Winter Summer
Time Step Duration 15 min 15 min
Simulation Period 05-01 00:00:00 — 10-01 00:00:00 | 15-06 00:00:00 — 20-06 00:00:00
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Figure 3.1: Light Suburban Grid

3.2. Load Modelling

The residential and commercial loads used in the model, provided by Enexis Groep, are represented as
low-voltage (LV) loads, capturing typical energy consumption behaviors across the Netherlands based
on data from the Dutch Energy Data Exchange (NEDU) [83]. While NEDU profiles provide detailed
insights into daily energy consumption patterns, the actual power consumption at any given time is
modeled using a specific formula that accounts for the total annual consumption, the consumption
profile at that time, and the number of time steps. In this study, the time step is 15 minutes, meaning
the consumption is calculated four times per hour. The formula used to determine the power at time t
is expressed as:

Total Annual Consumption x Consumption Profile,
Total Number of Time Steps

Power, = (3.1)



20 3. Simulation Setup and Case Studies
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Figure 3.2: Heavy Suburban Grid

This equation distributes the total annual consumption over the year based on the NEDU profiles and
the 15-minute time intervals. The consumption profile from NEDU provides the relative usage pattern
throughout the day, and the formula converts this pattern into a power profile for each time step.

For small households with relatively steady consumption, the E1A profile provides the basis for the
calculation. The power profile, as shown in Figure 3.3, is calculated by applying Equation (3.1) to the
E1A consumption profile, with the total annual consumption distributed across the time steps.
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Figure 3.3: E1A Load

Similarly, the E1C profile reflects households that shift their energy usage to off-peak hours due to
lower electricity tariffs, particularly between 9:00 PM and 7:00 AM. As illustrated in Figure 3.4, the
power profile shows higher energy demand during these hours, calculated using the same formula and
time-step adjustment.
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Figure 3.4: E1C Load

For commercial users, the model applies the NEDU profiles in a similar manner. The E2A profile



22 3. Simulation Setup and Case Studies

represents small commercial consumers with moderate energy demand, while the E2B profile captures
larger commercial users with more intensive energy use. In both cases, the power profiles, shown in
Figures 3.5 and 3.6, are calculated by applying the same formula to the respective consumption profiles
provided by NEDU.
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Figure 3.6: E2B Load
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3.3. Photovoltaic Generation

To accurately model photovoltaic (PV) generation within the grid, a solar calculation model is utilized. In
this study, DIgSILENT PowerFactory was employed to simulate the behavior of PV systems, incorpo-
rating inputs like PV module specifications, inverter characteristics, site conditions, and meteorological
data (solar irradiance and temperature).

3.3.1. Solar Calculation Model

The solar calculation model in DIGSILENT PowerFactory computes the DC power output from the PV
modules using the following formula:

Ppc =G X AxXnpy X [1—a X (T — Trer)] (3.2)

where:

* G is the global irradiance (W/m?)

+ A is the area of the PV modules (m?)

* npy is the efficiency of the PV modules

* a is the temperature coefficient of the PV panels (%/°C)
* T is the module temperature (°C)

* T, is the reference temperature (10°C for winter, 20°C for summer)

The generated DC power is then converted into AC power using the inverter, applying an efficiency
factor n;,, as follows:

Pac = Ppc X Niny (3.3)

PowerFactory integrates these calculations dynamically in simulations, considering hourly or sub-hourly
profiles for irradiance and temperature. This results in accurate modeling of PV output during load flow
and dynamic analyses.

3.3.2. Panel Specifications

For this simulation, the SunPower SPR-X21-345 solar panel was used. This panel is recognized for
its high efficiency and robust performance, with a rated output of 345 watts and an efficiency of 21.5%.
The SunPower SPR-X21-345 is a reliable choice in scenarios where space is limited but high energy
production is required. Figure 3.7 provides the detailed specifications of the SunPower SPR-X21-345
panel.
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E PV Panel - Equipme-nt Type LibranA\Sunpower SPR-X21-345,TypPvpanel x
SR Name Sunpower SPR-X21-345 ok ]
Description
Version Peak Power (MPP} 345. W Cancel

Rated Voltage (MPP) 57.3 v
Rated Current (MPP) 6.02 A
Open Circuit Voltage 69.5 | v
Short Circuit Current 6.43 A
Material Single crystalline silicon (Mono-5i) w

(] Use Typical Values
Ternperature Coef. (F) -0.35 %/ degC

NOCT 45, degC

Figure 3.7: Specifications for SunPower SPR-X21-345 Panel

3.3.3. Environmental Data

The irradiance data used for this study is derived based on the geographic coordinates (latitude and
longitude) of the node where the PV system is connected. The global irradiance data is modeled using
the Adnot-Bourges et al. model, while diffuse irradiance is estimated using the Louche et al. model.

The Adnot-Bourges et al. model is a statistical approach that estimates global solar irradiance by con-
sidering historical data, geographic location, seasonal patterns, and climatic conditions. It is designed
to provide hourly estimates of irradiance, making it suitable for detailed PV performance analysis.

The Louche et al. model specializes in calculating diffuse irradiance—sunlight scattered by atmospheric
particles such as clouds and aerosols. This model uses empirical relationships between various atmo-
spheric parameters (e.g., cloud cover, humidity) to deliver accurate predictions of diffuse irradiance on
both hourly and daily scales.

Both models complement each other by providing a comprehensive assessment of solar irradiance,
enabling more accurate simulations of PV output under varying environmental conditions.

Based on the given data, PV panels in the grid have been modeled based on two setups: residential
PV and workplace/commercial PV, differentiated by the number of panels and the number of invert-
ers. Table 3.3 highlights the differences in PV modeling for these setups. It can be observed that PV
generation is higher in commercial setups compared to residential loads, and PV generation is more
significant in summer than in winter.
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Table 3.3: Number of panels and inverters for residential and commercial setups

Type Number of Panels per Inverter | Total Number of Inverters
Residential 8 1
Commercial 8 2

3.4. EV Modeling

The integration of EVs into the grid plays a central role in this study, with a specific focus on 80% EV
penetration within suburban low-voltage distribution grids. The goal of EV modeling is to assess the
impacts of high EV adoption on grid stability, load management, and charging behavior, specifically
within suburban environments.

Charger Types and Distribution

In the model, EVs are distributed across three types of chargers based on the availability and usage
patterns in suburban areas. These categories are:

* Home Chargers: Chargers located at the user’s residence, predominantly used for overnight
charging.

» Semi-Public Chargers: Chargers located in shared spaces, such as workplaces or parking
garages.

» Public Chargers: Publicly accessible chargers located in commercial areas like shopping centers
and parking lots.

Suburban grids are modeled with a majority of EVs charging at home, reflecting the residential nature
of the area. The breakdown of charger types used in the model is shown in Table 3.4, where 50% of
EVs use home chargers, 25% use semi-public chargers, and 25% use public chargers.

Table 3.4: EV Charger Distribution in Suburban Grids

Grid Type | Home Charger (%) | Semi-Public Charger (%) | Public Charger (%)
Suburban 50 25 25

This distribution reflects the typical charging behavior of suburban EV users, who primarily charge their
vehicles at home during off-peak hours.

The total number of electric vehicle chargers for a given EV penetration level can be calculated using
the following equation:

Nc,tot = Nc,hh + Nc,sp + Nc,p (3-4)

Here, N, 1ot represents the total number of chargers, while N, N sp, @and N, correspond to the number
of home, semi-public, and public chargers, respectively.
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To generate a robust dataset, a Monte Carlo simulation is employed, producing one week of charging
information for 200 chargers per type. This data is obtained through random sampling of real-world
measurements combined with assumptions about EV types and charging patterns. The key objective
is to convert the number of EVs into the required number of chargers, ensuring sufficient coverage for
the growing EV fleet.

The calculation of home chargers is shown in the following equation:

Nepn = €V X Nearhn X Npp X € X Neeph (3.9)

where:

 ev is the EV penetration rate, expressed as a percentage of the total vehicle population.

* Nearnnh is the average number of cars per household, assumed to be 1.6 for different grid types.
* Ny, is the total number of households, typically derived from grid data.

* ¢, represents the average number of charging events per car per week, set at 4 for all grids.

* N nn is the percentage of home chargers, as listed in Table 3.4.

Similar calculations are applied for semi-public (N¢.s,) and public (N, ) chargers, with each type’s
percentage distribution defined in the same table.

In total, 10 different types of EVs were used to develop the EV fleet dataset [84]. This dataset captures
the charging behavior and characteristics of a wide range of vehicles, providing critical insights into
charger demand across different types of charging spaces. Key behavioral parameters include the
arrival time (ta), parking duration (tpaning), and the distance covered (dcq,) by the EVs, all of which
vary depending on whether it is a weekday or weekend.

3.5. Day-Ahead Market

The Day-Ahead Market prices, obtained from the ENTSO-E Transparency Platform, are integral to op-
timizing charging schedules for EVs and implementing V2G technologies. These prices are forecasted
based on anticipated electricity supply and demand for the upcoming 24-hour period and are provided
in EUR/KWh for the Dutch bidding zone BZN|10YNL.

Day-Ahead Market pricing data enables strategic charging and discharging decisions, allowing EV
charging to be scheduled during off-peak times when electricity prices are lower, which reduces costs
for EV owners and alleviates grid stress. In addition, this pricing data is used to optimize V2G op-
erations, where EVs can return stored energy to the grid during high-demand periods when electricity
prices peak. This bidirectional energy exchange not only enhances grid stability but also offers financial
benefits to EV owners.

Two figures are used to illustrate the trends in Day-Ahead Market prices. Figure 3.8 represents price
trends reflecting the winter period with increased demand due to heating requirements.
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Day-Ahead Market Prices (Winter)
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Figure 3.8: Day-Ahead Market prices for winter period

Figure 3.9 shows the fluctuations in prices, highlighting summer conditions with variable renewable
energy generation.

Day-Ahead Market Prices (Summer)
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Figure 3.9: Day-Ahead Market prices for summer period

In order to simplify the problem, negative pricing has not been considered in this analysis. If negative
prices occur in the Day-Ahead Market, they are limited to a minimum value of 0. This approach reduces
the complexity of optimization and ensures that charging and discharging strategies are based on non-
negative price values, which still aligns with the goals of minimizing costs and supporting grid stability.






EV scheduling

In this Chapter the optimization model developed in this thesis aims to provide efficient EV charging
schedules by simulating a wide range of real-world scenarios. A total of 48 unique simulations were
conducted, each integrating different combinations of parameters to reflect various EV commuting pat-
terns, V2G participation, seasonal variations, and grid conditions.

Key Factors Considered in the Simulations

Commuting Patterns:

» Two distinct commuting patterns were modeled: one reflecting a realistic scenario where 42%
of vehicles follow typical commuting schedules [85], and an extreme scenario where 100% of
vehicles are assumed to be in use.

 This distinction allows for evaluation under both normal and peak usage conditions, offering in-
sights into how varying levels of EV availability impact grid interactions and charging opportunities.

V2G Participation:
» Scenarios were designed with both 50% and 100% V2G participation.

» The 50% scenario represents a situation where half of the EV fleet is equipped and willing to
participate in V2G operations, contributing power back to the grid during high-demand periods.

» The 100% scenario assumes full participation, enabling an analysis of the maximum potential
impact of V2G on grid stability and peak load management.

Seasonal Variations:

» Seasonal variations were accounted for by conducting simulations in both winter and summer
conditions.

» Winter typically involves higher household heating demand and reduced photovoltaic (PV) energy
generation, while summer features increased cooling demand and higher PV energy output.

» Understanding how EV charging behavior adjusts to these seasonal shifts is crucial for optimizing
energy usage year-round.

Each of the 48 simulations represents a unique combination of the above factors, reflecting the com-
plex interplay between EV behavior and grid performance under different conditions. This structured
approach ensures a comprehensive evaluation of optimal EV charging strategies across various real-
world scenarios. Figure 4.1 below summarizes the representation of these different parameters across
the 48 scenarios.

29
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Figure 4.1: Summary of Simulations performed

4.1. Problem Formulation

The objective of the Smart Charging, V2G, and Mobile V2G models is to optimize the charging and
discharging schedules of electric vehicles (EVs) at various locations while maximizing revenue through
electricity arbitrage. The models differ in their handling of charging, discharging, and vehicle availability
based on location (home, work, or mobile charging stations). The variables used for this are given in
Table 4.1.

Objective Function
For all three models, the objective function aims to maximize net profit by buying electricity when prices
are low and selling it back to the grid when prices are high:

Total Revenue = Z Z [PseIIHomet_r At - Ppricet “Esen — PbuyHomet’r At - Ppricet] (4-1)
teT reER

where:
* PseliHome,,.: Power sold to the grid at time ¢ from location 7.
* PouyHome, Power bought from the grid at time t for location r.
* Pprice,: Price of electricity at time ¢.

» Eqq: Efficiency factor accounting for losses when selling electricity back to the grid.

At: Duration of the time step.
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Table 4.1: Variables used in the Smart Charging, V2G, and Mobile V2G models.

Variable Description
Pseibome(t,7) | Power sold to the grid at time ¢ from location r.
PpuyHome(t,7) | Power bought from the grid at time ¢t for location r.
Pprice (1) Price of electricity at time t.
Esen Efficiency factor accounting for losses when selling electricity back to the grid.
At Duration of the time step.
Pehev,, Power used to charge the EVs at location r at time t.
Pychev, , Power discharged from the EVs at location r at time t.
PV¢, Power generated by photovoltaic systems at location r at time t.
Ly Residential load at location r at time t.
PmaxPeakHome, | Maximum allowable peak power for location r.
Pgrig Maximum grid capacity for selling electricity back to the grid.
Peh, Maximum charging power for EV k at time t.
Pich, ;. Maximum discharging power for EV k at time t.
Ae Availability of EV k attime t. A = 1 (home), A = 2 (work/mobile), A = 0 (transit).
SOC, State of charge of EV k at time t.
TE¢x Trip energy consumed by EV k at time ¢.
BatCap; Battery capacity of EV k.
NchEV Charging efficiency of the EV battery.
NdchEV Discharging efficiency of the EV battery.

Shared Constraints
The following constraints apply to Smart Charging, V2G, and Mobile V2G:

1. Power Balance

This constraint ensures that the power balance at each residential location holds, accounting for energy
bought from and sold to the grid, EV charging/discharging, residential loads, and photovoltaic (PV)
generation:

buyHome _
Py — PselHome,, = Pchev,, — Pdcheve, — Ppver + Ler (4.2)

where:
. PbuyHomet’r: Power purchased from the grid at location r.
* PsellHome,,: Power sold to the grid from location r.
* Penev,,: Power used to charge the EVs at location r.
* Pychev,,: Power discharged from the EVs at location r.
* Ppy.,: Power generated by photovoltaic systems at location r.

* L., Residential load at location r at time t.

2. Maximum Power Constraints
To prevent grid overloading, the power bought or sold at each location must remain below the grid
capacity:

PbuyHometyr = Pgridr (4.3)

PseIIHomet, < Pgrid (4-4)

where:

* Pgiq: Maximum grid capacity for selling electricity back.
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Charging and Discharging Constraints

The availability of EVs at home or work impacts their charging and discharging capabilities. The avail-
ability function A, takes different values depending on whether the vehicle is at home, work, or in
transit:

» Acx = 1: EVis connected to the grid and available for charging or discharging.
* A.x = 2: EVis connected at a work or mobile location and only available for partial charging.

* A.x = 0: EVis in transit and not available for charging or discharging.

1. Smart Charging
In the Smart Charging model, EVs are only allowed to charge but not discharge. Charging constraints
ensure that an EV can only charge if it is connected:

Penevey < Pengy - Aee A =1 (4.5)
PdChEVt_k =0 |if At,k =1or At,k =2 (46)

2. Vehicle-to-Grid (V2G)
In the V2G model, EVs can charge and discharge, providing flexibility to sell electricity back to the grid
when prices are high:

Penevy < Pengy - Aee A =1 4.7)
Pgchevey < Pdchy - Arie 1f A =1 (4.8)

3. Mobile Vehicle-to-Grid (V2G+)
In the Mobile V2G model, EVs can charge or discharge not only at home and work locations but also
at mobile charging stations:

PChEVf,k < PCht,k “Atx if A =1or2 (4.9)
Pgchevey < Pdchyy  Ack 1A =1 (4.10)

State of Charge (SOC) Dynamics

1. Smart Charging Model

In Smart Charging, the EV is only allowed to charge (no discharging). The SOC equation accounts for
energy consumed during trips and the power gained from charging:

SOC¢_1 = B;Z’; if in transit (i.e., 4, = 0)
SOCt,k = PchEv, ;f‘ﬂchEV‘At . . (4.11)
SOC,_1x + ButCap, if charging, A, = 1 or 2
k
2. Vehicle-to-Grid (V2G) Model
In the V2G model, EVs can both charge and discharge based on grid requirements:
TEex e -
SOCt-1k ~ Facap if in transit (i.e., 4., = 0)
k
Pg el A . .
SOC, ) ={SOC;_yx + %;Evt if charging, A, =1 (4.12)
PdchEVy At

SOC;_1x — if discharging, A, = 1

N4chev-BatCapy,
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3. Mobile Vehicle-to-Grid (Mobile V2G) Model
In Mobile V2G, EVs can charge and discharge at home, work, and mobile charging stations:

SOC¢_1x = B;EC’:; if in transit (i.e., 4, = 0)
k
p ) At . .
SOC;, =4{SOC; 1 + % if charging, A, = 1 or 2 (4.13)
P At
SOC;_y — —ctk if discharging, 4, = 1

TNdchev-BatCapy,

The SOC of the EV battery must remain within certain limits to ensure proper operation:

SOC,) > 0.2, SOC. <0.8 (4.14)

Equations 4.1 to 4.14 define the key constraints and objectives in the Smart Charging, V2G, and Mobile
V2G models.






Results and Analysis

5.1. EV scheduling using Python

The Results obtained from EV scheduling is mentioned in this section where in we have plotted required
charging power (for all EVs )comparing it across different v2g participation and commutation pattern.

5.1.1. Smart Charging

In scenarios where smart charging is used. Figures 5.1 and 5.2 illustrate the charging power demanded
from the grid under light and heavy grid conditions, respectively.

In the light suburban grid scenario (Figure 5.1), the interaction between EVs and the grid is influenced
by both commuting behavior and seasonal variations. When 42% of vehicles are commuting, the
interaction with the grid remains moderate, with less pronounced peaks compared to the scenario
where 100% of vehicles are commuting. Fewer vehicles in use result in lower and more stable power
demands, with minimal fluctuations during the 42% commuting scenario.

Total Charging Power Over Time (All Cars)
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Figure 5.1: Charging power demanded from the grid in the light suburban grid scenario.
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However, when 100% of vehicles are commuting, the demand on the grid increases, particularly after
daily commuting, resulting in more pronounced peaks.This is because the energy required to carry out
the trip increases (T.E increases). Due to this when compared with the prices we see difference in the
charging patterns for summers and winters.

Seasonal variations also play a significant role. In summer, higher solar generation allows for power
to be sold back to the grid, reducing net demand. Users are more likely to charge their vehicles during
off-peak hours when prices are lower. In contrast, during winter, the grid faces a substantial increase
in demand, with peaks reaching up to 2200 kW at midnight due to lower prices.Hence we see a single
peak when the prices are the lowest.
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Figure 5.2: The charging power demanded from the grid in the heavy suburban grid scenario.

The heavy suburban grid (Figure 5.2) shows similar trends but with greater capacity to handle the
increased load. Even though the heavy grid can accommodate larger loads, peak commuting times
still present challenges, particularly in winter. The contrast between the stable periods during 42%
commuting and the stress during 100% commuting is significant, especially in colder months.

5.1.2. Vehicle-to-Grid (V2G)

In the light suburban grid scenario with 42% commuting, depicted in Figure 5.3, the impact of V2G
participation is evident. At 50% V2G participation, the grid experiences moderate peaks, with charging
power reaching around 1500 kW. As V2G participation increases to 100%, these peaks become more
pronounced, especially during synchronized discharging periods when EVs discharge simultaneously
to capitalize on high electricity prices.

In the 100% commuting scenario (Figure 5.4), the grid faces greater challenges. With full commuting,
vehicle availability is more evenly distributed, leading to substantial discharging peaks of up to 4500 kW
during peak times. Correspondingly, the charging power demand rises to around 2000 kW at midnight.
This synchronized behavior significantly amplifies the grid’s load, underscoring the critical role of V2G
participation in maintaining grid stability under full commuting conditions.
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Figure 5.3: Charging power demand in the light suburban grid scenario with 42% commuting.
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Figure 5.4: Charging power demand in the light suburban grid scenario with 100% commuting.

From the results of heavy suburban grid shown in Figures 5.5 and 5.6, we observe that the fluctuations
are more effectively managed, due to the grid’'s higher capacity. While the peaks in both commuting
scenarios are similar to those in the light grid, the heavy grid’s robustness allows it to absorb these
fluctuations without significant stress.

5.1.3. Mobile Vehicle-to-Grid (V2G+)

The introduction of mobile V2G technology in the light suburban grid, which allows vehicles to charge
outside of home, presents notable differences. In the 42% commuting scenario (Figure 5.7), mobile
V2G significantly reduces the required charging power compared to traditional V2G, with peak demand
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Figure 5.5: Charging power demand in the heavy suburban grid scenario with 42% commuting.
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Figure 5.6: Charging power demand in the heavy suburban grid scenario with 100% commuting.

around 1000 kW. This results in a shorter and more distributed peak, enhancing the grid’s ability to

manage the load.

Under the 100% commuting scenario (Figure 5.8), the differences between mobile V2G and traditional
V2G become more pronounced. The peak charging power required by the grid rises to around 2200
kW, but this is still lower than in a non-mobile V2G scenario. The ability to charge at various locations
reduces the strain on the grid during peak times.

In the heavy suburban grid, mobile V2G demonstrates its advantages, particularly in high-commuting
scenarios. For the 42% commuting scenario (Figure 5.9), mobile V2G results in a reduced peak charg-
ing demand compared to traditional V2G, with the grid’s required charging power peaking at around

1500 kW.
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Figure 5.7: Charging power demand in the light suburban grid scenario with 42% commuting.
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Figure 5.8: Charging power demand in the light suburban grid scenario with 100% commuting.

When commuting increases to 100% (Figure 5.10), the grid experiences a peak charging demand of
around 2200 kW, which is again lower than in a non-mobile V2G setup. The peak discharge power
reaches up to 4500 kW, reflecting the high participation rate and the grid’s reliance on mobile V2G
during peak periods.

Figures 5.7 through 5.10 highlight the benefits of mobile V2G technology in reducing peak charging
demands while still enabling significant energy contributions during peak discharge periods. The flexi-
bility offered by mobile V2G allows for a more distributed and manageable load on the grid, especially
in high-commuting scenarios.

The summary of findings, including the impact of commuting patterns, seasonal variations, and V2G
participation on grid stability and demand, is presented in Table 5.1. This table highlights the key
differences across smart charging, traditional V2G, and mobile V2G scenarios.
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Figure 5.9: Charging power demand in the heavy suburban grid scenario with 42% commuting.
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Figure 5.10: Charging power demand in the heavy suburban grid scenario with 100% commuting.

5.2. Impact of Charging Technologies on grid

To comprehensively assess the impact of high EV penetration on the grid, we will analyze key compo-
nents, including lines, nodes, and transformers. A central metric in our analysis is the Duration Mag-
nitude Product (DMP), which provides a clear indication of grid stress by combining both the severity
and duration of violations. Specifically, DMP is calculated by determining the percentage by which a
parameter exceeds its limit, then multiplying this by the duration of the violation.

For example, if a transformer experiences a loading violation of 115%, the DMP would be calculated
as:

(115 — 100) x duration

meaning the excess 15% is multiplied by the duration of time the violation persists.
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Table 5.1: Summary of Results

Factor Smart Charging Traditional V2G Mobile V2G
o . - 42% commuting shows | - 42% commuting
. - 42% commuting results . : .
Commuting in lower arid interaction moderate discharging reduces peak charging
Pattern . 9 peaks (up to 1800 kW for | demands to around 1000
with moderate peaks. . )
light grids). kW.
- 100% commuting
- 100% commuting - 100% commuting shows reduced peaks
increases demand, with causes significant grid compared to traditional
peak loads up to 2200 stress, with discharging V2G, with charging
kW in winter for light peaks reaching 4500 kW | demands around 2200
grids. in light grids. kW and discharging
peaks up to 4200 kW.
- Summer reduces grid - Summer allows for - Summer sees reduced
Seasonal ; . .
Variati demand due to increased | more energy selling back | charging demands due to
ariation . . - .
solar generation. to the grid. distributed charging.
- Winter increases - Winter causes higher - Winter shows increased
o . . demands, but peaks
demand significantly, peaks in discharging .
: R . remain lower than
especially in mid-week (4500 kW) and charging traditional V2G (e
(2200 kW peak for light (2000 kW) due to heating .g.,.
: 2200 kW peak charging
grids). and EV needs. ; :
in heavy grids).
- - —ho e —
V2G N/A (dllscharge not - 50% participation: 50% participation:
Participation utilized in smart moderate grid impact manageable peaks,
P charging). 9 pact. better load distribution.
- 100% participation:
C . lower peaks than
- ) .
100% participation: high | 4 yisi0n21 VoG, indicating
stress on grid, especially . .
. more efficient grid
under full commuting (up management (e.g., 2200
to 4500 kW discharge). KW peak charging for
heavy grids).

By summing the DMP values across all components for each scenario or case, we gain a comprehen-
sive view of the overall grid impact under varying conditions.This visualizations will help highlight when
and where the grid is most stressed.

5.2.1. Impact due to commutation pattern

Transformer

Figure 5.11 illustrates the DMP values for different commuting scenarios in a light suburban grid, where
the blue bars represent 42% commuting and the red bars represent 100% commuting. In the case of
smart charging, as the commuting percentage increases, the energy demand rises sharply. Since
smart charging involves only charging without any discharge of power back to the grid, the entire en-
ergy demand falls on the transformer, resulting in higher DMP values for 100% commuting. This in-
creased energy demand directly translates to higher stress on the transformer, as there is no discharge
mechanism to alleviate the load, leading to more significant Overloading.

However, the introduction of V2G technology changes this dynamic. In V2G, vehicles not only charge
but also discharge power back to the grid, thereby reducing the net power demand on the transformer.
As shown in Figure 5.11, the increase in the DMP when compare to 100% is not that significant. This
is not just because of the discharging but the power is constantly being exchanged with the external
grid. While this reduces the net energy demand, it also introduces sharp and higher spikes in trans-
former stress due to the continuous back-and-forth flow of power. These spikes are a result of vehicles
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Figure 5.11: DMP values for different commuting scenarios in a light suburban grid.

frequently discharging into the grid, which causes the transformer to cycle between charging and dis-
charging states more rapidly. This creates additional stress points for the transformer, especially in
mobile V2G scenarios where power exchange is even more dynamic. In mobile V2G, we see higher
peaks for 42% commuting scenrios is because the vehicles are able to bring back energy externally to
the grid .
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Figure 5.12: DMP values in a heavy suburban grid with 100% V2G participation.

Figure 5.12 further illustrates these trends in a heavy suburban grid. As seen with the light suburban
grid, smart charging in the heavy suburban grid leads to high DMP values, particularly with 100%
commuting, as the transformer is required to meet the increased energy demand without any discharge
relief. However, the introduction of V2G and mobile V2G technologies significantly alters the DMP
values.

The DMP values, as observed in both light and heavy suburban grids, are heavily influenced by com-
muting patterns and the charging technology in use. In smart charging, the lack of discharging capa-
bilities results in higher DMP values as commuting increases due to the higher energy demand. In
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V2G and mobile V2G systems, the transformer stress is mitigated by the vehicles’ ability to discharge,
but sharp spikes in DMP values are introduced due to the constant power exchange with the grid. As
shown in Figure 5.12 and supported by the data in the appendix, this power exchange plays a critical
role in determining transformer stress, particularly under high commuting and high V2G participation
scenarios.

Line

Figure 5.13 illustrates that in a light suburban grid under smart charging conditions, an increase in
commuting leads to higher DMP values, which mirrors the rise in line loading of the grid. This occurs
because the increased energy demand for charging EVs during peak commuting times has a significant
impact on the grid. The greater the number of commuters, the more energy is drawn from the grid, which
stresses the transformers and the overall grid infrastructure.
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Figure 5.13: DMP values of Line for different commuting scenarios in a light suburban grid.

However, when V2G technology is introduced, the relationship between commuting patterns and line
loading becomes more complex. The distinction between different commuting levels begins to blur
due to the discharging capability of the EVs. Even though the energy demand increases due to more
trips and commuting, the overall impact on the grid is mitigated by the ability of the EVs to discharge
power back into the system. As the availability of EVs in the grid increases, their participation in both
charging and discharging becomes more frequent. However, the key factor driving the increased line
loading is not simply the availability of EVs but rather the charging and discharging behavior of vehicles
located farther from the grid, such as car 31. These vehicles, positioned at the periphery of the network,
experience lower nodal voltages, which leads to higher current demand during charging. The lower the
nodal voltage, the more current is required, resulting in increased line loading.Where the charging and
discharging of distant vehicles cause significant current surges due to their greater distance from the
transformer. Therefore, while V2G helps balance energy demand, it also contributes to increased line
loading, especially when vehicles located far from the grid are involved. This highlights the need for
grid reinforcement, particularly in areas with long distribution lines, to mitigate the effects of low nodal
voltages and high current demands.

This effect is clearly seen in the winter scenario with 50% V2G participation, where 100% commuting
results in equal higher magintude DMP values than the 42% commuting scenario. The discharge from
EVs helps to reduce the overall load on the grid, meaning that higher commuting does not necessarily
lead to higher DMP values when V2G is involved. A similar trend is observed in mobile V2G systems,
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where 50% V2G participation in summer also leads to lower DMP values despite the higher commuting
levels. This is due to the extra energy brought externally from grid.

In Figure 5.14, a similar trend is observed in the heavy suburban grid. However, the grid in this sce-
nario is relatively more stable, and the line overloading primarily occurs when there is significant V2G
participation, such as with 50% V2G in summer. In these cases, the energy demand from EVs is lower
overall due to reduced charging requirements, especially in relation to the lower load demand during
the summer season. As a result, the DMP values reflect the grid’s ability to handle higher levels of
commuting when discharging technology is in use.
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Figure 5.14: DMP values of Line for different commuting scenarios in a heavy suburban grid.

This suggests that the line loading is not solely dependent on commuting patterns but is also signifi-
cantly influenced by the availability of vehicles for discharging and the grid’s overall load requirements.
The grid becomes less sensitive to commuting fluctuations when V2G or mobile V2G systems are in
place, as the discharging from EVs helps to alleviate some of the stress caused by increased energy
demand from commuting. Therefore, the line loading, when compared solely to commuting, becomes
relatively indifferent in V2G systems, as the discharge capabilities and energy management through
vehicle-grid interaction play a more dominant role in managing grid stress.

Node

Figure 5.15 illustrates how smart charging impacts node voltages in a low-voltage grid under varying
commuting patterns. As the commuting pattern increases from 42% to 100%, there is a clear rise in
undervoltage occurrences. This increase is attributed to the heightened energy demand required for
commuting, which intensifies the load on the grid during peak hours. The median undervoltage values
also escalate, indicating a general decline in voltage levels across the network due to the additional
charging requirements of a larger number of EVs.

In the V2G scenario, similar findings to smart charging are observed, with undervoltage levels rising
as the commuting pattern increases. However, a distinctive observation in V2G is the occurrence of
overvoltages when EVs discharge energy back to the grid. This suggests that the energy supplied by
the EVs is significant compared to the grid’s demand, leading to voltage levels exceeding acceptable
limits. Despite this, the median undervoltage values remain relatively constant, indicating that while
overvoltages become more prominent with increased V2G participation, undervoltages do not worsen
significantly beyond a certain threshold.
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Figure 5.15: Node Voltages in heavy suburban grid different commuting patterns

A similar pattern is seen in the combined V2G and mobile V2G scenarios. The simultaneous charg-
ing and discharging activities contribute to both undervoltage and overvoltage issues, highlighting the
importance of careful management of V2G operations to maintain voltage stability in the grid.

Figure 5.16 presents the impact of node voltages in a light suburban grid. The results align with those of
the heavy grid, where heavy commuting leads to undervoltage problems under smart charging strate-
gies. The increased number of EVs charging simultaneously imposes a substantial load on the grid,
causing voltage drops below acceptable levels.

In the V2G and mobile V2G scenarios depicted in Figure 5.16, a similar trend of overvoltages emerges
due to EV discharging. Interestingly, an anomaly is observed during the winter season with 100% com-
muting, where the variability in electricity prices results in less significant undervoltage and overvoltage
issues compared to the 42% commuting pattern. This trend is caused by the reduced availability of
EVs for discharging and the influence of price signals, which lead to fewer charging and discharging
cycles. As a result, the grid experiences less stress in terms of voltage fluctuations during this period.

Overall, the analysis shows that in low-voltage grids, the charging and discharging behaviors of EVs
significantly affect node voltage levels. Increased commuting patterns exacerbate undervoltage issues
under smart charging due to higher energy demand. In V2G and mobile V2G scenarios, while under-
voltages remain relatively stable, overvoltages become more frequent as EVs discharge energy back
to the grid.

5.2.2. Impact due to V2G participation

Transformer

The integration of V2G technology places an increasing operational burden on transformers, particu-
larly as participation rises from 50% to 100%. In light suburban grids, this effect is clearly visible. As
seen in Figure 5.17, during summer with 42% commuting, the DMP for 50% V2G participation sits at
approximately 1,500%h. However, when V2G participation reaches 100%, the DMP climbs sharply
to around 6,000%h, representing a fourfold increase. This indicates that the increasing scale of V2G
participation places significant stress on transformers, pushing them toward operational limits as the
bidirectional flow of energy intensifies.
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Figure 5.16: Node Voltages in Light suburban grid different commuting patterns.
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Figure 5.17: DMP values of transformer for different V2G participation level in a light suburban grid.

The stress is even more pronounced in heavy suburban grids. Here, the DMP values are significantly
higher, reflecting the amplified energy demands of these regions. As seen in Figure 5.18, the DMP
remains relatively low at around 200%h under 50% V2G participation during summer with 42% com-
muting. However, once V2G participation reaches 100%, the DMP surges to approximately 1,600%h,
representing an eightfold increase. The same pattern holds in winter, with the DMP jumping from
250%h at 50% V2G to 1,500%h at 100%. These results highlight the severe vulnerability of trans-
formers in heavy suburban grids, where increased V2G participation puts an even greater strain on
infrastructure.

The key driver behind this increase in transformer stress is the power exchange between electric ve-
hicles and the external grid. V2G technology allows electric vehicles to not only consume power from
the grid but also discharge power back into it. This bidirectional energy flow, particularly during charg-
ing and discharging cycles, significantly amplifies the load on transformers, accelerating Overloading.
As V2G participation rises, the frequency and volume of these energy exchanges increase, which
contributes to the dramatic rise in DMP values observed across both light and heavy suburban grids.
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Figure 5.18: DMP values of transformer for different V2G participation level in a heavy suburban grid.

Essentially, the more vehicles involved in energy exchange, the more stressed the grid becomes.

While mobile V2G technology offers a potential solution, the benefits are somewhat limited. Vehicles
that charge at external locations, such as workplaces, instead of relying on the local grid, do reduce
the frequency of energy exchanges, alleviating some stress on transformers. However, as many vehi-
cles still discharge power back into the grid during non-working hours—especially in the evening—the
reduction in transformer stress remains modest. Although mobile V2G prevents continuous grid inter-
action during the day, its impact on overall grid stress remains limited.

Line

Increasing V2G participation from 50% to 100% leads to a notable rise in Median DMP values across
various grid types, seasons, and commuting patterns. In the heavy grid, as illustrated in Figure 5.19,
during summer with a 42% commuting pattern, the Median DMP increases from 30 to 38, reflecting a
26.7% rise. For the same grid type during summer but with a 100% commuting pattern, the Median
DMP rises from 30 to 36, indicating a 20% increase. During winter, the Median DMP also rises by
20% across both commuting patterns. The light grid follows a similar pattern (Figure 5.20), though the
increases are slightly smaller, particularly in summer with a 42% commuting pattern, where the Median
DMP grows by 15.6%. Under all other conditions, the increase remains steady at 20%, indicating a
consistent rise in grid stress as V2G participation reaches 100%.

This trend points to a direct relationship between increased V2G activity and heightened grid pres-
sure. The uniform rise in Median DMP values, regardless of grid type, season, or commuting patterns,
suggests that the expansion of V2G participation consistently elevates grid strain, with potential impli-
cations for grid management and infrastructure stability.

Further evidence supporting these conclusions comes from transformer and line loading data. For
example, in the case of 42% commuting during winter, both V2G and mobile V2G scenarios exhibit
greater variability in grid stress at 50% participation, with a wider range of maximum and minimum
loading values. However, at 100% participation, the median loading values are higher, demonstrating
greater overall stress despite the fluctuations being more pronounced at lower participation levels.
This indicates that while stress variability may be higher at 50% participation, the total load on grid
infrastructure intensifies significantly as V2G participation reaches 100%.

In the heavy suburban grid, the increase in V2G participation correlates with a higher frequency of grid
violations, such as transformer overloads and line congestion, signaling potential risks of grid instability
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Figure 5.19: DMP values of line for different V2G participation level in a heavy suburban grid.
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Figure 5.20: DMP values of line for different V2G participation level in a light suburban grid.

and failure. The consistent increase in stress across the grid, as indicated by transformer and line data.

Node

Figure 5.21 illustrates the node voltage profiles in a heavy suburban grid under different scenarios. As
V2G participation increases from 50% to 100%, a clear trend emerges: both undervoltage and over-
voltage issues become more common. This increase in voltage instability is linked to the higher number
of EVs that can charge and discharge simultaneously, putting additional stress on the grid. The inter-
action between EV charging and discharging during peak hours amplifies these voltage fluctuations,
which becomes particularly noticeable as more vehicles participate in V2G.

In the smart charging scenario, as the commuting pattern shifts from 42% to 100%, there is a notable
rise in undervoltage occurrences. The increased energy demand from more vehicles charging during



5.2. Impact of Charging Technologies on grid 49

V2G

i
i
i
i

V2G+

i
i
i
i

50% 100% 50% 100% 50% 100% 50% 100%
2% 100% 42% 100%
Summer Winter

Figure 5.21: Node voltage profiles in the heavy suburban grid under varying V2G participation and commuting patterns.

peak periods causes voltage drops across the grid. Median undervoltage levels also increase, reflecting
a broader decline in voltage stability due to the additional charging load. As more EVs require power
during the same hours, the grid’s capacity to maintain stable voltages diminishes, leading to more
frequent undervoltage events.

In both the V2G and mobile V2G scenarios, increasing V2G participation worsens both undervoltage
and overvoltage issues. The simultaneous charging of EVs leads to undervoltages, while discharging
activities cause overvoltages, resulting in greater voltage swings throughout the grid. However, the
mobile V2G scenario shows a slightly reduced impact compared to standard V2G. This difference is
likely due to mobile V2G’s ability to distribute the charging load across multiple locations, potentially
easing some of the voltage instability by avoiding overloading residential areas during peak times.

Figure 5.22 shows a similar trend in the light suburban grid, with increasing commuting patterns leading
to more severe undervoltage problems. As more EVs charge at the same time during peak hours, the
grid faces greater strain, causing voltage levels to dip below acceptable thresholds. The increase in
concurrent EV charging activities imposes a heavy load on the grid, leading to widespread undervoltage
issues similar to those seen in the heavy suburban grid.

In the V2G and mobile V2G scenarios depicted in Figure 5.22, both undervoltage and overvoltage
problems become more pronounced with higher V2G participation. As in the heavy grid, the charging of
EVs causes undervoltage issues, while discharging leads to overvoltage fluctuations. Interestingly, an
anomaly is observed in the mobile V2G scenario with 100% V2G participation and daily commuting. In
this case, undervoltage issues are less severe compared to the 42% commuting pattern. This reduction
in undervoltages is due to EVs being able to charge at work locations during the day, which helps
balance the grid’s energy demand and reduces the load on residential nodes during the evening peak.
By charging away from home, EVs return with lower energy needs, easing the demand on residential
areas and thus lowering the frequency of undervoltages.

Despite the improvement in undervoltages, overvoltages caused by discharging activities remain con-
sistent. Since the total amount of energy discharged back to the grid does not change significantly, the
risk of overvoltage continues, particularly when EVs feed excess energy back into the grid during off-
peak hours. Seasonal variations also play a role in voltage stability, particularly in the winter season
with 100% commuting in the light suburban grid. During this period, fluctuations in electricity prices
and EV availability reduce the severity of undervoltage and overvoltage issues compared to the 42%
commuting pattern. Price signals encourage EVs to charge and discharge in a way that results in fewer
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Figure 5.22: Node voltage profiles in the light suburban grid under varying V2G participation and commuting patterns.

cycles, thereby placing less stress on the grid. In the mobile V2G scenario, the ability of EVs to charge
at multiple locations further spreads the load, contributing to the reduction in voltage fluctuations.

5.2.3. Impact due to Seasonal variation

Transformer
As Figure 5.23 illustrates, in the heavy suburban grid, the Smart Charging scenario shows consistent
transformer DMP values of 40 %h in both summer and winter for the 42% commuting pattern. However,
at 100% commuting, the DMP rises from 80 %h in summer to 90 %h in winter, reflecting a 12.5%
increase in transformer stress during the colder months. This suggests that while Smart Charging
effectively handles lower commuting levels, winter causes higher transformer stress at full commuting
capacity, likely due to increased heating demands.
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Figure 5.23: Transformer DMP values in the heavy suburban grid for different seasons
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For V2G, a significant pattern emerges, particularly in the 42% commuting scenario, where transformer
stress is higher in winter than summer. The DMP increases from 200 %h in summer to 210 %h in winter,
a 5% rise in stress during winter. This is notable, as V2G typically exerts more stress during summer
due to higher solar generation and frequent charging/discharging. However, in this case, the heavy
suburban grid faces additional transformer loading challenges in winter, likely driven by heating needs
and reduced solar input.

At 100% commuting, Figure 5.23 shows that summer-induced transformer stress becomes more pro-
nounced. The DMP increases to 1600 %h in summer compared to 1400 %h in winter, reflecting a
14.3% rise. This aligns with expected trends, where summer, driven by peak solar production and V2G
interactions, leads to greater transformer strain.

In the V2G+ scenario, as Figure 5.23 further demonstrates, winter proves more stressful for transform-
ers at 42% commuting. The DMP doubles from 20 %h in summer to 40 %h in winter, indicating a 100%
rise. This suggests that even with the dynamic capabilities of V2G+, winter conditions, with heightened
heating demand and less solar power, significantly increase transformer loading.

At 100% commuting, the trend reverses again, with summer causing more transformer stress. The
DMP reaches 1400 %h in summer, compared to 1200 %h in winter, representing a 16.7% increase.
This follows the pattern observed with V2G, where higher commuting and solar activity during summer
exacerbate the demands on transformers.

In the light grid, as depicted in Figure 5.24, Smart Charging reveals an inverse trend, with winter con-
sistently causing more transformer stress than summer. At 42% commuting, the DMP jumps from 120
%h in summer to 250 %h in winter, a 108.3% increase. Similarly, at 100% commuting, the DMP rises
from 280 %h in summer to 400 %h in winter, a 42.9% increase in transformer stress during winter.
This highlights that Smart Charging struggles to manage transformer loading effectively in the light grid
during the winter, likely due to lower solar generation and higher heating demand.
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Figure 5.24: Transformer DMP values in the light grid for different seasons.

For V2G, transformer stress remains considerably higher in summer. At 100% commuting, the DMP
reaches 5000 %h in summer, compared to 4600 %h in winter, reflecting an 8.7% increase in summer
stress. At 42% commuting, the summer DMP is 2000 %h, compared to 2200 %h in winter, showing a
10% rise in winter stress. Although summer induces higher stress overall, winter still poses significant
challenges to transformer loading, particularly under lower commuting conditions.

Similarly, Figure 5.24 shows that in the V2G+ scenario, summer continues to cause more stress at
100% commuting, with the DMP rising from 3500 %h in winter to 4000 %h in summer, reflecting a
14.3% increase. At 42% commuting, winter slightly exceeds summer, with DMP values of 2000 %h
in winter compared to 1800 %h in summer, indicating an 11.1% rise. Although V2G+ performs better
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overall, both summer and winter present transformer loading challenges, with summer causing slightly
more stress at higher commuting levels.

Line

As Figure 5.25 illustrates, in the heavy suburban grid, line loading increases significantly during winter,
especially in the Smart Charging scenario. Under the 42% commuting pattern, DMP rises from 25
%h in summer to 30 %h in winter, reflecting a 20% increase in line stress. This trend becomes more
pronounced at 100% commuting, where DMP jumps from 25 %h in summer to 40 %h in winter, a
60% rise. These results indicate that Smart Charging faces substantial challenges in maintaining line
stability during winter, particularly as commuting levels increase. The added heating demand in colder
months is a major factor, contributing to heightened grid stress despite efforts to optimize charging
times.

For V2G, Figure 5.25 shows that winter continues to be more challenging for line loading, though the
increase in stress is less extreme. Under the 42% commuting pattern, DMP rises from 30 %h in summer
to 35 %h in winter, marking a 16.7% increase in stress on the lines. At 100% commuting, DMP climbs
from 40 %h in summer to 45 %h in winter, reflecting a 12.5% increase in line loading during the colder
months. Despite V2G’s potential to alleviate stress through energy discharge, the increased heating
demands and lower renewable energy availability during winter still put pressure on the grid. However,
this line is blurred with increase participation of v2g causing higher discharge posing a challenge for
line by increasing its value.

In the V2G+ scenario, as Figure 5.25 further shows, line loading stress also increases during winter. At
42% commuting, DMP rises from 30 %h in summer to 35 %h in winter, a 16.7% rise. Similarly, at 100%
commuting, DMP rises from 40 %h in summer to 45 %h in winter, reflecting a 12.5% increase. Despite
V2G+ offering more dynamic charging and discharging capabilities, winter continues to impose more
significant challenges for line loading, primarily due to higher energy demand and reduced solar input.
The trend sets to reverse when we consider increased v2g paricipation due to increase in discharging
power as discussed eariler.
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Figure 5.25: Line DMP values in the heavy suburban grid for different season.

As illustrated in Figure 5.26, the light suburban grid experiences an even more significant rise in line
loading during winter, particularly in the Smart Charging scenario. At 42% commuting, DMP increases
sharply from 35 %h in summer to 50 %h in winter, a 42.9% rise. At 100% commuting, DMP rises from
45 %h in summer to 60 %h in winter, reflecting a 33.3% increase in winter line stress. These findings
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indicate that Smart Charging struggles more in winter in the light grid, likely due to higher heating
demands and reduced solar generation, placing additional strain on the grid infrastructure.
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Figure 5.26: Line DMP values in the light suburban grid for different season.

For V2G, Figure 5.26 shows that line loading stress is most pronounced in winter. At 42% commuting,
DMP increases from 40 %h in summer to 60 %h in winter, a 50% rise. At 100% commuting, DMP
rises from 60 %h in summer to 80 %h in winter, reflecting a 33.3% increase. Despite V2G’s capability
to discharge energy and reduce grid stress, the light suburban grid experiences severe winter pres-
sure, likely because the higher energy demand during this season overwhelms the system’s capacity.
However, similar to heavy suburban grid rend reverses as we increase the discharge capabilities.

For V2G+, Figure 5.26 shows a slightly more balanced pattern, but winter still leads to higher line
loading. At 42% commuting, DMP increases from 45 %h in summer to 55 %h in winter, a 22.2%
rise. At 100% commuting, DMP increases from 65 %h in summer to 75 %h in winter, reflecting a
15.4% increase. Although V2G+ performs better overall, winter remains challenging, especially in high
commuting scenarios where the demand for energy intensifies, and solar generation remains limited.

This indicates that the increasing demand causes corresponding to winter season. However, the dis-
charge does effect the line loading on significant level. Hence, high v2g participation poses problem in
the grid causing the line loading to be almost similar in both the seasons.

Node

Figure 5.27 presents the nodal voltages for the grid under different seasonal conditions. It is evident
that winter consistently proves to be the worst season compared to summer across all scenarios. While
overvoltages are absent, winter experiences significantly higher undervoltages. Notably, undervoltage
issues are exacerbated in the summer during 100% commuting.

When incorporating V2G (Vehicle-to-Grid), where EVs discharge power back to the grid, we observe
that with 50% of EVs participating, no overvoltages occur. However, when all vehicles participate in
discharging, there is a noticeable increase in overvoltages. This issue becomes more pronounced in
summer, which is exacerbated by the increased PV (Photovoltaic) generation. Despite this, undervolt-
age levels remain constant across scenarios. A similar trend is noted in the mobile V2G scenario, where
the undervoltages remain largely unchanged, but the increase in PV generation and EV discharging
heightens the problem of overvoltages in the grid.

Figure 5.28 illustrates the nodal voltages for various seasons across different charging technologies.
The undervoltage pattern remains consistent, with increasing magnitude and winter being the worst
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Figure 5.27: Nodal voltages under different seasonal conditions in Heavy suburban grid.

season. In the case of V2G, however, the discharge causes additional overloading in both winter and
summer scenarios. The summer season emerges as particularly problematic due to the combination of
PV generation and vehicle discharge, and the magnitude of overvoltage increases with higher discharge
capacities. The mobile V2G scenario shows a similar trend, where undervoltages stay roughly constant,
but increased PV generation and EV participation significantly aggravate overvoltage issues in the grid.
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Figure 5.28: Nodal voltages across different seasons in light suburban grid.



Conclusion and Recommendation

6.1. Reflection on Result

Uncoordinated charging by individual users significantly impacts the stability of the Dutch low-voltage
grid, especially in scenarios of high EV penetration. The absence of centralized control over charging
and discharging behaviors, particularly during peak hours, exacerbates issues related to grid stability,
load management, and voltage regulation. Moreover, increased EV penetration blurs the demand
margins requested by a significant percentage, making it challenging for grid operators to predict and
manage loads effectively.

One of the main challenges is increased transformer loading and overall grid stress. Uncoordinated
charging, especially when users return home and plug in their EVs simultaneously, causes transformers
to operate beyond their capacity. This leads to higher Duration Magnitude Product (DMP) values and
frequent transformer overloads. In V2G scenarios, the situation worsens, as uncoordinated discharg-
ing leads to frequent power spikes, further stressing the transformers and increasing the likelihood of
failures. The lack of mitigation strategies to solve problems caused by Time-of-Use (TOU) pricing, and
the day-ahead market’s failure to reflect changing demand, contribute to this lack of coordination.

Another major concern is the congestion and overloading of distribution lines. As more vehicles charge
simultaneously, particularly those farther from transformers, the current requirements rise due to lower
nodal voltages, contributing to increased line loading. This congestion can lead to overheating, equip-
ment failure, and even outages. Although V2G capabilities offer some relief by enabling discharging
during peak hours, the overall load on the grid remains high, particularly in high-commuting scenarios,
thus failing to fully mitigate the stress on lines and transformers.

Voltage deviations also present a serious problem due to uncoordinated charging. The simultaneous
charging of multiple vehicles during peak hours causes significant voltage drops, resulting in under-
voltage conditions across the network. Conversely, in V2G scenarios, high discharging participation
without coordination can lead to overvoltages when excess energy is injected back into the grid at times
of low demand. Both undervoltage and overvoltage conditions pose risks to grid reliability, potentially
causing equipment damage and power disruptions.

The combined effects of overloading and voltage deviations reduce the overall reliability of the grid.
Transformers and lines experience accelerated wear and tear, increasing the likelihood of equipment
failures. This, in turn, leads to potential outages and poses challenges for grid operators in managing
unpredictable power fluctuations. Without centralized coordination and with assumptions of perfect
knowledge of the system, managing the grid efficiently becomes increasingly difficult, leading to oper-
ational inefficiencies and higher maintenance costs.
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56 6. Conclusion and Recommendation

Individual user behaviors, such as commuting patterns and seasonal charging habits, further compli-
cate grid management. Higher commuting percentages, particularly in the Netherlands, significantly
increase energy demand during peak hours, resulting in higher transformer and line loading. In win-
ter, colder temperatures and increased energy demands for heating exacerbate these issues, causing
voltage deviations and putting additional strain on the grid. In summer, the situation changes, with
increased solar generation reducing net demand. However, the combination of high solar generation
and uncoordinated V2G discharging can lead to overvoltages, particularly when demand is low.

V2G participation also plays a crucial role in influencing grid dynamics. While V2G technology has the
potential to alleviate grid stress by distributing charging loads more evenly, uncoordinated discharging
can worsen grid conditions, causing transformer overloading and voltage fluctuations. Higher V2G
participation rates, without proper coordination, can exacerbate these challenges, especially during
periods of high demand or high solar generation.

6.2. Recommendation for Future Works

Future research could focus on incorporating location-specific aspects into the analysis to provide grid-
specific solutions. By changing the optimization approach to Particle Swarm Optimization (PSO), it
would be possible to account for spatial variations in grid infrastructure and demand patterns. PSO
optimization can enhance the efficiency of managing charging and discharging activities by finding
optimal solutions that are tailored to specific regions within the grid.

Additionally, implementing quasi-dynamic load flow analysis using unbalanced load flow methods could
further enhance the robustness of the model. Unbalanced load flow takes into account the asymmetrical
distribution of loads across different phases of the power system, providing a more accurate represen-
tation of real-world conditions. This approach would improve the reliability of simulation results and
help in designing strategies that are more effective in mitigating grid stress.

Strategies like dynamic pricing or the introduction of aggregators could also be explored to mitigate
the issue of simultaneous charging. Dynamic pricing incentivizes users to shift their charging activities
to off-peak hours by varying the cost of electricity based on demand. Aggregators can coordinate
charging and discharging schedules among multiple EV users, optimizing the overall load on the grid.
These strategies have the potential to reduce peak demand, alleviate transformer and line loading, and
enhance grid stability.
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A.3. Node Plots
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Figure A.17: Voltage V2G+ 42% Commuting
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