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Abstract

As the age of industry 4.0 evolves expeditiously, the demand for improved performance in the high-tech in-
dustry is rapidly increasing. Industries such as the semiconductor, optical, and metrology have a higher
standard in regards of precision to enhance throughput rates and reduce production times between its vari-
ous stages. The complex machines operating in such conditions are often exposed to structural or ambient
vibrations, which pose a challenge to throughput rates. Hence it is a primary need to isolate the system from
these vibrations by quickly damping them before it hampers the system process.

In this thesis, a novel approach to active vibration isolation using skyhook damping is undertaken by intro-
ducing a reset-based bandpass filter. This filter is used to achieve finite-time vibration isolation for a damped
metrology frame, and its development is inspired by the success of switch-based control in active isolation.
The effectiveness of the filter is numerically tested for multiple types of vibration disturbances for improved
transient damping characteristics, These findings are compared to a linear counterpart of the filter, demon-
strating the benefit of applying reset control for improving transient performance.
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Preface

This preface will serve as an overview of this thesis so that readers can efficiently read the content of their
choice.
Chapter 1 gives an introduction to this thesis and gives the motivation for this work based on industrial rele-
vance.
Chapter 2 builds the foundation of the main thesis by introducing necessary concepts of active isolation, and
the drawbacks of linear control, hence motivating the need for nonlinear control techniques,such as reset
control.
Chapter 3 then establishes a link between the developed technique and the research objectives by identifying
current gaps in the literature.
Chapter 4 is the essence of this thesis. This chapter explains the controller design and how it is generated,
along with leading questions which should be considered while performing tests and simulations.
Chapter 5 discusses the results of numerical simulations performed on the proposed design, and also takes
into account possible avenues for future research. Finally, Chapter 6 concluded the study and summarizes
the thesis contributions, and suggesting future work that can be done with this study.
For readers who would like to retrace the steps, plots and results obtained in this study, the Appendices might
be the place to go to.
Appendix A contains a google drive link to the MATLAB codes used for the simulations performed, along with
simulink models required to run them.
I hope this preface helps you in understanding the contents of this document, and optimize your energy.

Mohammed Miyaji
Delft, October 2021
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1
Introduction

As the world progresses further into the uncharted territory of innovation, new tools, techniques and ideas
are put through rigorous trials. When successful, humanity progresses even further and the cycle repeats
itself. Innovation has brought us from stones to swords, and from horses-carts to spaceflight. Today we as
a species have conquered even electricity, by packaging it up into small smartphones by electronics means-
which is the crux of most if not all the appliances we use today.
At this moment however, the high-tech semiconductor industry has taken a hit as there is a mass shortage
of silicon chips [10], which is the essence of all electronic devices. Once the production and supply of these
products start, there will be a strong sense of urgency and responsibility to fulfil this demand. In short, An
increase in demand of the overall throughput production rate will be the motivation, supported by reduced
production times for industrial automation.
The high tech industry uses machines such as lithographic wafer scanners and metrology systems like co-
ordinate measuring machines (CMMs). From a mechanical engineer’s standpoint, friction and backlash in
moving systems are issues that come to mind while trying to boost throughput for machines like these. Some
design modifications such as adding more compliant elements overcome these issues, and improve accuracy
up to the nanometer level. This unfortunately comes at a cost of making the structure more susceptible and
highly sensitive to ambient vibrations. To maintain the accuracy and performance of these machines in the
precision industry, these vibrations need to settle first, which unfortunately hits the throughput rate nega-
tively. Therefore, damping these vibrations and improving transient performance should be focused on.
Vibration isolation techniques have been used in industry to dampen these disturbances sufficiently, and the
existing state-of-the-art use linear control strategies to achieve just that. However, there are certain nonlinear
methods which hold potential to improve transient performance when compared to these linear techniques.
The aim of this research thesis is to develop and simulate a nonlinear skyhook damping technique, which is
also easy to design and tune using frequency domain analysis, and shed light on how its transient damping
performance compares to its linear counterpart. This study also aims to investigate how high of a damping
gain can be achieved, while ensuring stability and robustness as much as possible.

1.1. Outline
This thesis is divided in the following chapters.

• Chapter 2 provides the foundation knowledge in the form a literature survey. It covers information on
vibration isolation techniques used in industry, along with an in-depth understanding of reset con-
trol - a nonlinear control method. It explains the need for a nonlinear control technique in vibration
isolation.

• Chapter 3 establishes research gap and objectives, once the background and state-of-the-art has been
studied.

• With the objectives clear, chapter 4 contains the main contributions of this thesis, and includes the
controller design concept.
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2 1. Introduction

• Chapter 5 contains the numerical test results of the designed controller, and is divided based on tests
conducted on individual aspects of the controller.

• Chapter 6 concludes the study, summarizing the contributions, and provides additional suggestions for
future work to be done on this architecture.



2
Literature overview

This chapter acts as a review of appropriate literature and concepts, upon which this thesis is formed on. In
section 2.1, the basics of different vibration isolation techniques used in industry are introduced, where the
differences between passive and active damping are shown mathematically. Section 2.2 discusses the reason
why linear techniques are used, and provides incentives to explore nonlinear control methods. The main
focus will be on a form of sliding mode control called reset control. This section will also provide information
on the tools required for frequency domain analysis of reset systems. Section 2.3 gives insight for the energy
distribution and dissipation in the dynamic system where damping is introduced. This section provides rea-
soning for the need of nonlinear control in active isolation in the aspect of improved damping from a more
mechanical perspective.

2.1. Vibration Isolation
In the field of precision mechatronics, vibration isolation becomes an important design aspect especially
in the semiconductor industry. The type of isolation technique used on a system varies depending on cer-
tain factors. It can be the source of the vibration, its frequency, the mechanical design and objective of the
machine, etc. Most machines in the precision industry are designed with flexible structures, therefore the
disturbances can be either from ambient vibrations, or generated within the structure itself. The aim of these
isolation techniques is to add damping to these structures, and are mainly classified into the following- pas-
sive, semi-active (Relaxed), and active isolation. Figure 2.1 illustrates a metrology system in the form of mass-
spring system, and how the three different techniques inject damping into the system.

2.1.1. Passive Vibration Isolation
Passive vibration isolation mainly makes use of structural components such as springs and dampers to isolate
the payload mass from ambient disturbances. Other well known passive elements used in industry are tuned-
mass dampers, magnetic dampers etc [29] [9]. However these techniques add mass to the system and make
it harder for parametric tuning of the system. This sub-section will explain aspects which influence how

Figure 2.1: Physical representation of a) Passive isolation; b) Semi-active Isolation; c) Active Isolation achieved using controller H(s) [9]

3



4 2. Literature overview

vibrations are transmitted to a payload mass, and how the passive technique can reduce its influence. A
passive system is essentially modelled as a mass-spring-damper system as shown in equation 2.1a, where m
is the mass of the metrology frame supported by a spring and damper of stiffness k and damping coefficient
c respectively. The frame’s position x is measured with respect to a certain reference, while the position of the
base to which the frame is connected to is given by w . The disturbance on the mass is due to force F , which
come from environmental and seismic vibrations, or through the base itself.

mẍ + c(ẋ − ẇ)+k(x −w) = F (2.1a)

mẍ + cẋ +kx = F if w = F = 0 (2.1b)

ẍ +2ζpωn ẋ +ω2
n x = 0 (2.1c)

When the system is considered to be at complete rest, i.e. when w = 0 and F = 0, the differential equation of
the model can be re-written as equation 2.1c. Here,ωn =p

k/m is the natural frequency of the system in rad/s.
It is at this frequency that the system has its first rigid body resonance mode, and this is maximum amplitude
of gain is achieved by the system (figure 2.2). ζp = c/(2

p
k ·m) is the dimensionless passive damping ratio. It

is an industry standard to use ζp = 0.7 as a damping ratio, to obtain a favourable balance among settling time
and overshoot in the transient response of the system.

X (s) = cs +k

ms2 + cs +k
W (s)+ 1

ms2 + cs +k
F (s)

=T (s)W (s)+C (s)F (s)
(2.2a)

(2.2b)

C (s)·(ms2)+T (s) = 1 (2.2c)

Equation 2.2 shows the system in the Laplace domain and here we see two prominent transfer functions; the
transmissibility T (s) and the compliance C (s). Transmissibility expresses the relation of how the position
of the payload mass X (s) is influenced by the floor vibrations W (s), i.e a relation expressing the influence of
disturbances being transmitted to the system. Compliance expresses the sensitivity of the mass to external
forces F , how easily the system complies to external forces.
A sign of good isolation is when the transmissibility function is less than 1. Hence to increase passive isola-
tion, the first parameter to reduce that comes to mind is the natural frequency of the system. However, doing
so only increases the sensitivity of the system at lower frequencies, as shown in figure 2.2(b). Reducing the
resonance peak is also desirable, which can be done by increasing the damping coefficient c. However this
reduces disturbance rejection at higher frequencies, as the roll off slope has changed to -1 from -2, increasing
gain in that range, as shown in figure 2.2(a). This also makes sense as at higher frequencies, a stronger damp-
ing element acts as a stiff element and transmits vibrations as a stiff spring. This is one trade-off in a passive
design, between damping and isolation. Also, to reduce natural frequency the stiffness should be reduced.
This inversely affects the compliance and makes the system highly sensitive to external force F . This is an-
other trade-off occurring between isolation and robustness of the system to external forces. In conclusion,
passive isolation performs poorly at lower frequencies. To overcome these trade-offs, active isolation control
is used. This technique improves in minimizing the transmissibility and compliance of a vibration isolation
system.
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Figure 2.2: Transmissibility curves of isolation systems a) With isolators as shown in Fig. 2.1 (a) and (b); b) With isolator in Fig. 2.1 (c), [9]

2.1.2. Active Vibration Isolation
Active vibration isolation (AVI) utilize sensors and actuators to actively pump damping into the system. Us-
ing active control adds relatively little mass if actuators and sensors are wisely chosen, and the tune-ability
is far easier since the control provides damping based on the position, velocity or acceleration sensor data of
the payload. This technique employs use of accelerometers and other motion senors. This sensor data is fed
to a controller, usually a filter which parses useful data to an actuator connected to the payload mass. This
actuator then suppresses incoming vibrations by effectively dissipating the change in energy of the system.
This is achieved using a combination of both feedback and feedforward control [4] in the system. However to
reduce complexities in this research, only feedback control is chosen as the primary focus.
The result of the feedback control is influenced by the choice of the sensed variable. Therefore, damping of
a system can be injected based on either the acceleration, velocity, or position of the payload. In the Laplace
domain, forces due to inertia are equivalent to adding virtual mass. Similiarly forces due to velocity are equiv-
alent to virtual dampers, and forces related to position are equivalent to virtual stiffness. Acceleration feed-
back of the metrology frame adds a virtual mass to the system which is equivalent to adding real mass in a
passive system. Whereas position and velocity feedback creates a skyhook spring and damper respectively.
The latter two techniques induce a force onto the system from a virtual reference of rest, as if they are con-
nected to the "sky". Figure 2.2(b) illustrates the influence of these concepts on transmissibility. As observed,
acceleration and position feedback shift the dynamics of the system globally. This research will focus on sky-
hook damping, since it has interesting effects in damping of suspension modes by just changing the Q factor
of the resonance peaks.

2.1.3. Skyhook Damping
The concept of skyhook damping revolves around the idea of damping the system with a damper which is
detached from the world. It does so by using the velocity of the frame against itself, and injecting damping
into the system. The velocity data of the isolated payload is the sensed variable. This is then passed through
a control unit, which usually filters the signal of noise. This filtered signal is fed to an actuator to provide the
necessary damping force with damping coefficient β to the system. This results in the following transmissi-
bility and compliance functions (equations 2.3a and 2.3c).

Tsk y =
x

w
= cn s +k

ms2 + (β+ cn)s +k
(2.3a)

Csk y =
x

Fd
= 1

ms2 + (β+ cn)s +k
(2.3b)

β= 2ζacti ve

p
k ·m (2.3c)
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Figure 2.3: Mechanical diagram of a skyhook damping setup applied to a mass-spring system

Figure 2.4: Block diagram of a skyhook damper design applied to a mass-spring-damper system

It should be noted that cn is the natural damping of a system without the presence of any damping element.
This value is quite small and makes the influence of the skyhook damping force decisively dominant. The
skyhook damping coefficient β is controlled by a dimensionless active damping ratio ζacti ve ., which unlike
ζp in passive systems, is actively tuned as a gain value in a control loop (illustrated in figure 2.4).

This influence is shown clearly in equation 2.4, which highlights the relationship of transmissibility, compli-
ance, and β through skyhook damping force C(s).

C(s) =βCbp (s) (2.4a)

Csk y (s) · (ms2 +C(s))+Tsk y (s) = 1 (2.4b)

As discussed earlier in section 2.1.1, minimizing the transmissibility function should be an initial goal. Equa-
tion 2.4 shows that without changing the mass, increasing the skyhook damping force C(s) appropriately
allows precise tune-ability and control over damping the vibration modes.

2.1.4. Performance analysis
The performance analysis of any motion control system in the context of AVI is done on the basis of the
following criteria [2] [3]:-

1. Time domain transient response.

2. Steady state vibration suppression. (Transmissibility)

3. Rejection of disturbances applied directly to the system. (Compliance)

The transient response of a system after motion gives information regarding how quick disturbances settle
before it reaches a steady state. Two important aspects to note are the overshoot percentage and the settling
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time it takes to reach steady state. In the frequency domain, performance is measured by the compliance and
transmissibility functions. The phase characteristics are also taken into consideration as reduced phase lag
is equivalent to a faster response in time domain.
So far the dynamics of the system have been discussed, but for an AVI system the essence of the damping is
provided by the control strategy employed in the system. The next section sheds more light on control design,
and possible improvements in that domain.

2.2. Control strategies for skyhook damping
In skyhook damping, the controller used are most often linear bandpass filters. This is because this one
filter solves two challenges which appear in AVI systems [2][21]. It reduces firstly the garbage information
picked up by accelerometers at very low frequencies, and secondly any form of spillover from high frequency
noise. This helps us focus on a frequency band and attack one or at most two resonance mode of the system.
However linear controllers are often held back by certain limitations. This section will introduce a nonlinear
alternative called reset control.

One of the limitations of linear control is the Bode phase-gain relation, which states that any change in the
phase of the system linearly changes the slope of the gain as well. It is desirable to have as much phase margin
around the bandwidth frequency in the open loop, as it makes the system more robust to changes when the
loop is closed. Another is the waterbed effect due to Bodes sensitivity integral. As shown in the equation 2.5,
and figure 2.5, if a system excels in reference tracking at lower frequencies, it takes suffers in performance at
rejecting disturbances at higher frequencies and vice versa.

∫ ∞

0
ln |S( jω)|dω= 0 (2.5)

Figure 2.5: The waterbed efffect [33]

The alternative which is explored in this paper is using nonlinear control paradigms.[1] Some examples in
literature of applied nonlinear control techniques are sliding mode control, switching control, adaptive un-
scented kalman filters, etc [11][16][28]. This study will focus on switching control methods, mainly reset
control. Filters such as unscented kalman filters require lots of data along with precise design, making them
difficult to design and re-tune. Switching control [18] employs the idea of switching the controller between
two states on linearity and non-linearity. They are also tuned based on time based switching (occurs at a
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specified time interval) or state-based switching (occurs at a particular state of the controller).
Hybrid Integrator-gain system (HIGS) is a form of sliding mode control and has been applied as a skyhook
damper controller in an AVI setup in [17] and [2], where a HIGS based bandpass filter is designed. It has shown
improved frequency domain response with better phase characteristics compared to its linear counterpart,
along with time domain transient response.

In literature however, Reset control has shown to be superior to HIGS in the aspect of motion tracking, but
disturbance rejection performance has not been explored. The following sections will introduce the concept
of reset control and how it can be beneficial in AVI systems, along with some tools required to analyse reset
based systems in the frequency domain.

2.2.1. Reset Control
Reset control is a form of sliding based control regulated by discrete and continuous dynamics of the system.
The pioneer of this school of control strategy was J.C Clegg in 1958 [8] who attempted to reset the states of a
linear integrator. The most basic of all reset elements was coined as the Clegg Integrator (CI) 2.6b.

(a) Circuit of a Clegg integrator. [30]

(b) State-space representation of a Clegg integrator.

Figure 2.6: Clegg integrator- Electronic and state space representation.

Reset can occur in one of two ways- either resetting the state of the integrator, or keep resetting at regular
time intervals[36][15]. This thesis will focus on state based reset. The working logic is that the input and
output of the controller are always of the same sign, i.e the direction of the magnitude of both is the same.
It electronically it is illustrated in figure 2.6a, with equation 2.6 stating the first reset law which the design
follows. The reset law states that unless the product of the input of the controller and the current state of
the controller is less than or equal to 0, it operates linearly. If not, then the states of the controller are reset
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to 0. This is called a zero-crossing condition (figure 2.7a). Compared to its linear counterpart, its frequency
response function (figure 2.7b), shows a reduced phase lag of 38°.{

ẋc = 1
RC e, is allowed when xc e > 0

x+
c = 0, is allowed when xc e ≤ 0

(2.6)

(a) Clegg Integrator (orange) showing zero crossing when the sine input (dashed yellow) crosses zero.

(b) Linear v/s Reset control in frequency domain.

Figure 2.7: Reset control compared to linear counterpart [19]

An open loop state space representation of a general reset system is given in equation 2.7, here x is the state
vector of the open loop control system and Aρ is a state reset matrix. This matrix determines which states of
the controller are to be reset, and to what extent. When Aρ = 0, full reset occurs and if Aρ = 1, the controller
has zero reset, and operates exactly like its linear counterpart.The rules in which the reset is designed to
occur belong to a set called the flow set F , this is where the output is that of a continuous dynamic of the
reset control. The set condition where reset occurs is called as the jump set J , and is represented by the
second sub-equation in equation 2.7.

ẋ(t ) = Ax(t )+Bu(t ) x,u, t ∈F

x(t+) = Aρx(t ) x,u, t ∈J

y(t ) =C x(t )+Du(t )

(2.7)
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Over time, more improved variants of the concept were developed; as shown by Horowitz et al. who extended
the idea of Clegg to a First Order Reset Element (FORE) [20] [26], which provides the advantage of filter fre-
quency placement and has been applied for narrow band applications such as [27]. The FORE is the reset
equivalent of a low-pass filter in the frequency domain. The state space matrices for a FORE with corner
frequency ωr are shown below.

Ar =−ωr , Br =ωr ,
Cr = 1, Dr = 0, Aρ = γI

(2.8)

R(s) =
��

�
��*

Aρ
1

s/ωrα+1
(2.9)

In [13], FORE was generalised (GFORE) in a way where Aρ = γI . Here, gamma is an additional reset parameter
and could be a value in the range of [0,1], providing a control over the nonlinearity introduced in reset. Figure
2.8, shows a a representation of how the controller behaves in the frequency domain. Note the presence
of higher order harmonics, which are triggered because of the reset action. This representation is called a
describing function, and is explained in detail in the next section.

Figure 2.8: First order reset element with the presence of higher order harmonics.

2.2.2. Describing Function
Reset systems being inherently nonlinear, make it difficult to represent them in the frequency domain. Unlike
linear systems which can be represented using transfer functions, nonlinear systems require alternative tools
and techniques to understand frequency domain behaviour.
A linear approximation technique called describing function (DF) is used in literature for frequency domain
analysis for non linear systems. It is based on quasi linearisation, which depends on the form of the input
signal [35] given to the system. A sinusoidal input is usually chosen as input signal, as it similar to that of
ground vibrations. Guo et al. has done an analytical calculation of a generalised reset system in [13][15][27],
however it only considers the first harmonic of the Fourier series decomposition of the output, and neglects
the influence of the higher order harmonics. This can result in grave inaccuracies as seen in [22]. To obtain
a more accurate and reliable data about the frequency response of nonlinear systems, an appended method
called “Higher Order Sinusoidal Input Describing Function” (HOSIDF) has been introduced in [19] [15][34].
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For reset elements, it is defined in the following equation-

Gn(ω) =



Cr
(

jωI − Ar
)−1 (I + jΘ(ω))Br +Dr ,

n = 1

Cr
(

jωnI − Ar
)−1 jΘ(ω)Br ,

odd n > 2
0, even n ≥ 2

Θ(ω) =−2ω2

π
∆(ω)

[
Γ(ω)−Λ−1(ω)

]
Λ(ω) =ω2I + A2

r

∆(ω) = I +e
π
ω Ar

∆ρ(ω) = I + Aρe
π
ω Ar

Γ(ω) =∆−1
ρ (ω)Aρ∆(ω)Λ−1(ω)

(2.10)

where Gn(ω) is the n
th

order harmonic for a sinusoidal input of frequency ω.

2.2.3. Stability
In linear control systems, the BIBO stability is checked using frequency domain tools such as Nyquist or bode
plots. For a reset controller however, to have asymptotic stability in a closed loop, the following condition
must be satisfied [5] [14].It follows the principle of energy dissipation over time. For a reset system, the base
linear system should be BIBO stable as an initial condition to stability.

Theorem 2.2.1 (Stability theorem) There exists a constantβ ∈Rnr x1 and positive definite matrix Pρ ∈Rnr xnr ,
such that the restricted Lyapunov equation

P > 0, AT
cl P +PAcl < 0 (2.11)

B T
0 P =C0 (2.12)

has a solution for P, where C0 and B0 are defined by

C0 =
[
βCp 0nr xnr Pρ

]
,B0 =

 0nr xnr

0nnr xnr

Innr

 AT
ρ PρAρ −Pρ ≤ 0 (2.13)

where Acl is a closed loop A-matrix, nr is the number of states being reset, nnr being the number of nonresetting
states and np is the states for the plant. Ap ,Bp ,Cp ,Dp are the state space matrices of the plant.

2.3. Energy Dissipation in AVI damping
Figure 2.9 shows a control loop block diagram commonly used in mechatronics design. Here, r is the refer-
ence that is usually traced in motion control systems, and d is the disturbances that come into the system.
This section focuses mainly on the energy dissipation when damping is injected into the system, and answers
the question - When disturbances occur, where does the extra energy introduced into the system go?

Figure 2.9: Block diagram of a skyhook damping motion control system. No reference is added as it is focusing strictly on disturbance
rejection
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When a mass-spring system is in motion, the energy of the system is either in the mass as kinetic energy, or
in the springs as potential energy. Ideally if there is no damping, an oscillating system would oscillate forever.
However in nature, damping is always present and a system when excited eventually comes to rest. Therefore
damping elements are the energy sinks of the system, which dissipate energy through various means (heat or
transferring it through fluids).
A skyhook damper dissipates energy through introducing an opposite force through an actuator. Figure 2.10
illustrates a block diagram of a skyhook damper, and how it adds a force in the direction opposite to that of
motion, and hence dissipating energy.

Figure 2.10: Skyhook damping illustrated along with its emulated force equivalent diagram on the right [25]

Figure 2.11: Step response of a system using linear damping as compared to reset based damping [14]

Using Reset control, real-time energy dissipation is shown in [14] and is illustrated in figure 2.11. As shown,
the overshoot is theoretically zero. This is explained individually in [6] [7], where reset control is used to
ideally extract energy when velocity is 0 i.e when motion of the mass is stationary. This reset technique is
called an virtual absorber, and uses time based reset control to achieve finite time vibration suppression as
shown in figure 2.10. This technique has not been explored using state based reset, which considers the state
of the controller at each time interval of the system.



3
Gaps in Research and Objectives

3.1. Problem Definition
In chapter 2 the current state-of-the-art in skyhook damping is covered, along with control techniques used
in vibration isolation. The drawbacks of passive isolation techniques are explained and the limitations of lin-
ear control in active isolation is also observed.
Reset control is a viable alternative to linear control with its operating principle, along with the ability to be
designed in the frequency domain using DF. In literature it is extensively found that reset exceeds in motion
tracking control, however disturbance rejection is still in theoretical stages. It is observed that time based re-
set techniques have achieved vibration isolation[6] [7] [15], however it is more difficult tune as it is designed
in the time domain. Therefore an easier frequency domain based tuning is yet to be achieved. The tools of
DF can be used for optimal control synthesis, which can also be an easier tuning alternative, similar to loop
shaping techniques in linear control.
In [17] a HIGS bandpass filter is used to successfully improve transient response for step motion vibrations.
It is observed that higher control gains can be implemented without triggering actuator saturation and also
have improved damping at the same time. This controller is designed in the frequency domain using DF’s,
however no such studies have been performed using reset control.
Therefore, this instigates the question: how would a reset based controller perform when designed for sky-
hook damping. This thesis shall focus on this question and will aim to fill in the following gaps in literature
of the state-of-the-art:

• Linear control strategies are limited by Bode’s phase-gin relationship and the waterbed effect. This
limits the transient damping performance that is achieved in damping.

• Reset elements are good at reference tracking [31] [23], however, disturbance rejection has not been
explored using reset control. They have been theoretically studied, but have not been numerically or
experimentally tested.

• Most nonlinear control techniques are not designed in the frequency domain, what most of industry
has become comfortable with. Designing robust controllers troubleshooting becomes difficult if not
designed in the frequency domain.

These gaps then help in stating the upcoming research objectives of this thesis, and are stated as follows:

• Develop a reset based skyhook damper for improved transient response when compared to a linear
controller.

• The controller should be designed and tuned in the frequency domain.

• The controller performance should be validated using different types of disturbances (step, impulse,
sinusoidal). The performance using various control gains which influences damping, should also be
considered.
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4
Reset based Skyhook Damping : Active

isolation using nonlinear control

4.1. Controller Design Concept
This chapter will forge the essence of a resetting skyhook damper, by building on the concepts introduced in
chapter 2. Reset controllers designed for disturbance rejection have not been studied extensively. Due to that
reason, this paper will scratch the surface on initial simulation tests of the proposed design, and closed loop
analysis of the controller will be studied.
Skyhook damping is often designed using a bandpass filter. Since the filter has velocity as the input variable,
the reset law considers the zero-crossing of the velocity of the payload, i.e when the mass is at rest. At that
moment, most if not all of the kinetic energy of the mass is stored as potential energy in the spring and
the skyhook damper. Resetting the states of the controller at that instant dissipates the potential energy by
injecting damping into the system.

4.1.1. Resetting bandpass filter
Before presenting the resetting bandpass filter Rbp , consider the transfer function of the following linear
bandpass filter Cl i n :

Cl i n(s) = u(s)

e(s)
= ωl

s +ωl︸ ︷︷ ︸
lowpass filter

·

highpass filter︷ ︸︸ ︷
s

s +ωh
, (4.1)

where ωl and ωh are the lowpass and highpass frequencies respectively, with ωl > ωh > 0. As observed in
equation 4.1, the highpass filter adds a zero to the transfer function. This causes a problem in DF analysis
using the algorithm being used by [14]. The alternatives are either using time based reset over state based
[36], or creating the controller strictly using reset elements with low-pass characteristics. The latter choice is
explored in this paper, using basic reset elements which are more commonly used.
This thesis tests two FOREs in combination to form a bandpass filter. FOREs are extensively studied and
used in reset literature and are easier to work with in state-space implementations. This reduces sources of
errors and uncertainties in the design and makes it easier to work with. To form the bandpass, the FOREs are
subtracted with each other as shown in figure 4.1.

15
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Figure 4.1: FORE’s of two different corner frequencies subtracted to form a bandpass filter.

Equation 4.2 shows mathematically how two FOREs of corner frequenciesωl r =ωl andωhr =ωh respectively,
combine to become a bandpass filter when Aρ = γ= 1 (no reset). It is clear that the numerator is not the same
as that of equation 4.1, this can be compensated by normalizing the overall gain of the controller by adding a
gain of Gn .

when Aρ = 1,

Rbp (s) = ωl

s +ωl
− ωh

s +ωh

= (ωl −ωh)

s +ωl
· s

s +ωh

= Gn

s +ωl
· s

s +ωh

when Aρ = 0,

Rbp (s) =
�
�
�>

Aρ
ωl

s +ωl
−
�
�
��>

Aρ
ωh

s +ωh

=Gn ·
�
�
��

Aρ

1

s +ωl
·
�
�
��>

Aρ
s

s +ωh

(4.2)

Figure 4.2: Reset bandpass filter with full reset v/s no reset
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To test this architecture in a simple manner, a single resonance mode is attacked. Hence a bandpass filter is
designed for a plant of resonance frequency of 12.57 r ad/s (2Hz). The describing function of this element
when γ= 1(no reset) and γ= 0(full reset), is shown in figure 4.2. For γ= 1, the phase lag is 0 at the resonance
frequency. This makes sense as the behaviour is exactly the same as a linear bandpass filter. However at γ= 0
a phase lag of about 17 degrees is present. This means that for a reset based filter to work in this setup, a
phase lag of around 17 degrees should be present after reset at the resonance frequency. This statement will
also be put to the test in the numerical experiments.

Figure 4.3: Reset bandpass filter spanning over two decades from 0.1Hz to 10Hz

Figure 4.4: Time series simulation of the reset bandpass filter (blue) as compared to a linear bandpass filter (dashed black) from 4.3 when
a sinusoidal input is given (gray).

Figure 4.3 shows an example of the Rbp filter spanning two decades. For this controller to function effec-
tively after reset, the controller should be used for a plant with a resonance frequency of around 5Hz, where
appropriate phase lag is present. Figure 4.4 shows how the controllers would perform to a sinusoidal input,
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with reset occurring at the inputs zero-crossing. It can be seen that at frequencies 1Hz the significance of the
resets is minimal, as the linear counterpart performs equally well as compared to Rbp . At 0.5Hz, there is a
phase lead in the system and it is seen that at the instance of reset, there is slightly more gain than the input
amplitude; whereas at 5Hz, there is significant reset action but there is no increase in the amplitude of the
controller output at the instance of reset.

4.2. Numerical Analysis and Simulations
The Rbp control architecture is put to the test by tuning it to a pre-determined plant, a metrology table pro-
vided by ASML at TU/e. The plant parameters are taken from the system identification data presented in [3].
The metrology stage is designed such that it has isolation modules for multi-axis vibration suppression. Only
one axis will be focused on in this thesis, and the numerical values for the plant parameters are as follows :
m = 1300 kg,k = 170 kN/m,c = 1100 Ns/m, which comes down to a dimensionless passive damping ratio of
ζp = c/(2

p
k ·m) = 0.03. Therefore the resonance frequency of the first mode of the system is at 1.8Hz.

Figure 4.5 shows the frequency response function (FRF) of the plant through system identification. It is ob-
served that at higher frequencies there are additional resonance peaks due to higher modes of the system,
and at lower frequencies, the data is unreliable due to accelerometer noise. [3] mentions that the phase of the
system starts deteriorating beyond 10Hz and this is due to delay present in the Lorentz actuators used.

Figure 4.5: The Bode magnitude plots showing the FRFs of the measured (solid grey) and modeled (dashed black) data of the compliance
of the metrology table. [3]

For a model such as this, the Rbp filter is tuned to have a band between 0.1Hz to 3Hz. For a comparative
study, a linear bandpass filter Cl i n is designed with the transfer function shown in equation 4.3. As illustrated
in figure 4.6, at the 1.8Hz the gain for Rbp is -2.36dB and a phase lag of 19.63 degrees. This gain is normalized
to with the linear gain at this frequency to ensure similar control force and to compare control performance
effectively. For that, Gn = 0.762.

Cl i n(s) = Gn

s +ωl
· s

s +ωh
(4.3)
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Figure 4.6: Designed Rbp filter (blue) and linear filter (dashed black) of frequency range 0.1Hz to 3Hz.

The next chapter will discuss the results of numerically testing this controller when a step, impulse or si-
nusoidal disturbance is imparted on the system. The influence of phase lag is also studied, along with a
simplified approximation of the process sensitivity function of the closed loop.





5
Results of numerical simulation and

Discussion

The performance of the designed Rbp is numerically tested using a SIMULINK model of the plant. Damp-
ing performance of the controller is studied by varying the dimensionless active damping gain ζacti ve ∈
{0.5,0.7,1,10}. The results are compared to an equivalent linear bandpass filter Cl i n .

The figures of merit, as discussed in section 2.1, that are used to compare the performance of the two con-
trollers are the transient response characteristics- overshoot percentage and settling time. For the same
gains, performance will be studied for 3 separate disturbances to the system- Step, impulse and sinusoidal.
The step response is used to obtain overshoot and settling time data, and the impulse and sinusoidal response
are tested because these occur most if not always in practical situations.

This chapter is divided in 4 subsections. Section 5.1 discusses the simulation results of a step and impulse
response. Section 5.2 discusses the simulation result of a sine disturbance. Section 5.3 discusses the ques-
tions the requirement of a phase lag for the reset system to work for varying gains. Section 5.4 expands on a
particular finding in section 5.1, which is a behaviour the controller has at higher damping gains.

5.1. Step and impulse disturbance response
Figures 5.1 and 5.2 show the step responses of the system, which reaches a steady state of 5.881e−8m. Figures
5.4 and 5.5 show the impulse response. Since a pure impulse is difficult to generate, two step responses in
opposite directions are subtracted from each other in a very short instance of time. The time instance is
arbitrarily selected to be 0.02 seconds. For both disturbance types, it should be noted that the reset action for
Rbp occurs when the velocity of the sytem reaches zero. In the position aspect,this occurs when the slope of
the plot is parallel to the x-axes, i.e when the slope is zero, indicating no change in position.

In the step response for ζacti ve = 0.5, the overshoot of the system for both control strategies is the same.
However at such a low active damping gain, the disturbance settles quicker for the reset based Rbp , than the
linear counterpart Cl i n . However as gains are increased, say at ζacti ve = 0.7, the reset-based bandpass filter
Rbp shows a reduction in settling time by 70.33% (over 3 times faster) when compared to its linear counter-
part for a step response (shown in table 1). It is observed that for ζacti ve ∈ [15], the performance deteriorates.
This can be seen in figure 5.3, showing the percentage overshoot and settling times achieved over a set of
active gains ζacti ve ∈ [0.1 10] to a step disturbance response. This is most likely due to some computational
error within the simulations algorithm, or how the describing function calculates the closest approximation
of the first order harmonic of the controller. After ζacti ve = 5 the overshoot performance improves again.

For the impulse response, the max overshoot for both control strategies is the same, unlike that of a step
response where the overshoot gradually reduces as ζacti ve increases. This proves a good metric of comparison
for settling times. For ζacti ve = 0.7 an improvement of 49% in settling time is observed compared to its linear
counterpart (about twice as fast) and is tabulated in table 2.

21
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Figure 5.1: Step response of Rbp for a dimensionless active gain ζacti ve 0.5 and 0.7 respectively. Their settling times (1.62 seconds and
1.3 seconds) and steady state values (both 5.88e-8 m) are shown in their respective axes.

Figure 5.2: Step response of Rbp for a dimensionless active gain ζacti ve 1 and 10 respectively. Their settling times (2.31 seconds and
4.48 seconds) and steady state values (both 5.88e-8 m) are shown in their respective axes

Table 1: Settling time performance for a step disturbance

ζacti ve Settling time
(Linear) (sec)

Settling time
(Reset) (sec)

Reduction in
time (%)

Improvement
in damping

0.5 3.84 1.62 57.65 2.36
0.7 4.38 1.3 70.33 3.36
1 4.94 2.31 53.29 2.14
10 14.21 4.48 68.5 3.17
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Figure 5.3: Percentage overshoot and settling time for a set of active gains ζacti ve ∈ [0.1 10]. Computational error is noticed from gains 1
to 5, and it should be assumed that in actual implementation the curve follows at a lower value.
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Figure 5.4: Impulse response of Rbp for a dimensionless active gain ζacti ve 0.5 and 0.7 respectively, along with their settling times (1.73
seconds and 1.39 seconds)

Figure 5.5: Impulse response of Rbp for a dimensionless active gain ζacti ve 1 and 10 respectively, along with their settling times (2.39
seconds and 4.5 seconds)

Table 2: Settling time performance for an impulse disturbance

ζacti ve Settling time
(Linear) (sec)

Settling time
(Reset) (sec)

Reduction in
time (%)

Improvement
in damping

0.5 2.2 1.73 23.48 1.27
0.7 2.7 1.39 49.08 1.94
1 3.6 2.39 33.65 1.5
10 15.6 4.5 71.17 3.46
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5.2. Sinusoidal disturbance response
A sinusoidal disturbance of the same frequency as the resonance frequency of the plant (1.8Hz). The distur-
bance is kept on for an arbitrary amount of time (14.8 seconds for this case) so that it achieves a steady state
motion. The disturbance is then switched off and transient response is studied. Figures 5.6 and 5.7 show
the results of this simulation. Table 3 shows the settling time performance to such a disturbance, and a clear
improvement in settling time (close to 76% reduction for ζacti ve = 0.7).

Table 3: Settling time performance for a sinusoidal disturbance

ζacti ve Settling time
(Linear) (sec)

Settling time
(Reset) (sec)

Reduction in
time (%)

Improvement
in damping

0.5 0.88 0.63 23.84 1.41
0.7 1.36 0.31 76.59 4.27
1 1.82 0.4 77.78 4.5
10 13.32 1.75 86.86 7.61

Figure 5.6: Sinusoidal disturbance response (stopping at 14.8 seconds) of Rbp for a dimensionless active gain ζacti ve 0.5 and 0.7 respec-
tively. Their settling times (within 0.68 seconds and 0.3 seconds respectively).
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Figure 5.7: Sinusoidal disturbance response (stopping at 14.8 seconds) of Rbp for a dimensionless active gain ζacti ve 1 and 10 respec-
tively. Their settling times (within 0.46 seconds and 1.75 seconds respectively).

5.3. The influence of phase lag on the performance of the reset controller
The interesting point observed in Rbp is that for it to operate at its best, there should be a phase lag present
at the resonance frequency. This phase lag should also be generated completely by the resetting action, and
not externally induced by other controllers. However for a linear controller, phase should be zero at the
resonance frequency. The amount of phase lag produced by the filter also varies with how wide the band of
the bandpass designed. In chapter 4, it was found that when designed for just one resonance frequency, the
designed bandpass is that of a peak. This gives us - of phase lag. When the band is widened to a decade with
the resonance frequency at the centre, - of phase lag is observed.

This brings up the following questions-

• Does the performance improve with any value of phase difference? Can a similar improvement oc-
cur in the presence of a phase lead?

• Does the same improvement occur with a phase difference greater than the calculated value of -19
degrees? How much of phase lag is enough? Does more mean better performance?
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To answer these questions, Rbp controller will be kept constant, and the natural frequency of the plant will be
shifted throughout the bandpass range, i.e [0.1 3]Hz. This can be considered as using a de-tuned controller
on systems with different natural frequencies. This way the sensitivity of the controller can be tested against
plant uncertainties. Note that the transient response after a step input is observed, therefore the overshoot
percentage and settling times will be the performance testing criteria.

Figure 5.8 shows the Rbp bandpass range of 0.1 to 3Hz, with a phase lead from 43 to 0 degrees in the range
of 0.1Hz to 0.5Hz, and phase lag from 0 to -25.8 degrees in the range of 0.5Hz to 3Hz. Therefore, for each
frequency there is a particular degree of phase that the controller has. If a plant resonance frequency is at
3Hz, it will experience a phase lag of of -25.8 degrees, an so on. The gains are normalized for each frequency
tested for a fair comparison
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Figure 5.8: Designed Rbp filter (blue) and linear filter (dashed black) of frequency range 0.1Hz to 3Hz. This figure focuses on the area
where phase difference ranges from 43 degrees to -25.8 degrees, the range of phase experienced in the bandpass range.

Considering ζacti ve = 0.7, figure 5.9 shows overshoot percentage and settling time against frequency range
[0.1 3] on a log scale. This plot can also be shown as overshoot percentage and settling time against the
degree of phase at that frequency figure 5.10. Note that these plots cannot be superimposed directly as the
frequency is expressed on the log scale in figure 5.9, and the phase is varied in absolutes in figure 5.10, but it
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is understood that both plots are the same. From these plots, it is clear that in the region of phase lead, the
performance is quite poor, but steadily improves as the phase reduces (natural frequency increases).

Figure 5.9: Overshoot percentage and settling time of varying plant resonance frequency in [0.1 3]Hz, when ζacti ve = 0.7. These charac-
teristics also relate to the phase of Rbp at that frequency

Figure 5.10: Overshoot percentage and settling time of a plant under a range of phase 43 to -25.8 degrees, when ζacti ve = 0.7. These are
the phase values provided by Rbp at that particular frequency at which the plant has its resonance frequency.

To check how a change in damping gains would influence performance, a range of dimensionless active gains
ζacti ve ∈ [0.2 10] is selected and tested for this control setup (figure 5.11). Note that increase in damping gain
makes the system overedamped, and increases the settling time and overshoot relatively. Apart from the fact
that the plot is overloaded, a clear conclusion to the first question can be made - It is only for phase lower than
0 is when settling times are lower than 5 seconds with optimal overshoot percentages. Therefore, a phase lag
is necessary after reset for improved performance.
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For the second question, the plots are focused to the phase lag region. This is means the plant natural fre-
quency should be within 1Hz-3Hz. To have more clarity on observations, the plots are split in 4 sets of active
gains. Figures 5.12 and 5.13 show the performance when ζacti ve ∈ [0.2 1]. Figures 5.14 and 5.15 show the
performance when ζacti ve ∈ [1 10]. As observed in the previous section, due to numerical and mathemat-
ical error, active damping gains from 1 to 5 have proven to be erroneous. The plots are shown merely for
uniformity purposes, and no inferences are concluded from data of that range. It is very apparent that for
a particular amount of ζacti ve , as the phase reduces the performance improves to a point after which there
is not overshoot observed, and settling times are very quick. One inference can be made that beyond that
degree of phase, any more tuning is unnecessary because even if there is no overshoot present, settling times
are reducing at a very low rate.
For example, the current designed controller Rbp provides a phase lag of 19.8 degrees for the natural fre-
quency of the system used for simulations from [3]. Therefore for such a setup, the best choice of active gain
would be 0.9 (as shown in figure 5.13), as this combination provides the most optimum overshoot percentage
and fastest settling time.

Figure 5.12: Overshoot percentage and settling time of a plant under a range of phase 0 to -28.5 degrees, with ζacti ve ranging from 0.2 to
0.6.
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Figure 5.13: Overshoot percentage and settling time of a plant under a range of phase 0 to -28.5 degrees, with ζacti ve ranging from 0.7 to
1.
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Figure 5.14: Overshoot percentage and settling time of a plant under a range of phase 0 to -28.5 degrees, with ζacti ve ranging from 1 to
5.



5.4. High frequency oscillations early in the transient response at higher damping gains 33

Figure 5.15: Overshoot percentage and settling time of a plant under a range of phase 0 to -28.5 degrees, with ζacti ve ranging from 6 to
10.

5.4. High frequency oscillations early in the transient response at higher
damping gains

It is also observed that in figure 5.2, as ζacti ve increases, there are small but high frequency oscillations occur-
ring at the start of the response. Although performance has greatly improved, there is still a need to address
this anomaly. There can be two reasons for this, either the influence of higher order harmonics, or because
the damping gain is more than necessary and reset is occurring prematurely. Since the anomaly happens
after ζacti ve = 1, this value of active gain is selected for simulations.
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Figure 5.16: Block diagram of a motion control system. No reference is added as it is focusing strictly on disturbance rejection.

Figure 5.16 shows the control loop of the system, which will be used as a refernce to derive our open loop and
closed loop equations. An open loop analysis is done before introducing feedback, the gain of which is given
by the relation:

OL =G(s) ·C (s) =G(s) ·β ·Rbp (5.1)

The controller transfer function, as explained towards the end of 2.1, consists of active damping gain β, and
the gain provided by the designed bandpass filter Rbp . Figure 5.17 shows clearly that there is influence due
to higher order harmonics at lower frequencies. However, they are still in the designed band of Rbp , which is
a cause of concern.

Figure 5.17: Plant+Controller Open loop and presence of higher order harmonics due to reset.

Closed loop analysis is done by making use of the gang of 4 [32], mainly the process sensitivity function shown
below in equation 5.2

e

d
= G(s)

1+G(s)C (s)
(5.2)

Plotting closed loop DF’s are still being researched in literature, and a very simplified algorithm is used from
[12]. It is seen in figure 5.18 that the gain of the higher order harmonics is less than first order in the closed
loop plot. They may have an influence in the closed loop, and should be checked with a better and accurate
algorithm of the DF.
The next reasoning can be premature reset due to too much gain. Figure 5.19 shows a zoomed in shot of
a step disturbance response to the system, when ζacti ve = 10. It can be clearly seen that there is a wave of
oscillations at the start of the response. Also a small peak is seen as the first "overshoot". Systems operating
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in a phase lag show slight instability at the start of a step response but eventually make it to the steady state.
To check this we must check how the input and the output of the reset controller looks like in time domain, ie
the velocity and the control force generated. Figures 5.20, 5.21, 5.22, 5.23 illustrate these parameters, and it is
observed that at the first instance of reset (at 1.8 seconds), where the velocity crosses zero. It is observed that
the velocity and control force amplitude’s gradually decrease exponentially quicker than the linear counter-
part, which explains the improved performance. However the cause of multiple resets is most likely related
due to the incomplete storage of energy in the system. As discussed in section 2.3, reset based damping
removes energy from the system and injects damping. Doing so prematurely will force the system to do a
"discreet" step wise motion, making its way to steady state.

Figure 5.18: Plant + Controller Closed loop approximation DF showing the presence of higher order harmonics due to reset.

Figure 5.19: Multiple resets occurring for ζacti ve = 10. Mainly due to premature reset and incomplete initial "overshoot" due to the
phase lag in the system.



36 5. Results of numerical simulation and Discussion

Figure 5.20: Velocity plot of the system being damped with ζacti ve = 10 .
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Figure 5.21: Velocity plot (Zoomed out) of the system being damped with ζacti ve = 10 .
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Figure 5.22: Control force plot of the system being damped with ζacti ve = 10 .
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Figure 5.23: Control force (Zoomed out) plot of the system being damped with ζacti ve = 10 .





6
Conclusion and Future recommendations

In this thesis, a novel control technique using nonlinear control methods was developed to improve transient
characteristics when used as a skyhook damping controller. The motivation for this was to increase through-
put in high-precision machines, which is limited due to structural or ambient vibrations.

After performing a literature survey of the state-of-the-art, linear active damping techniques proved to be
lacking in terms of improvement and restricted by bodes sensitivity integral and the waterbed effect. Reset
control - a form of nonlinear control technique- showed great potential to improve transient damping char-
acteristics.
A controller was designed by having two fores in parallel and was numerically validated by using it on a real-
time plant, the parameters of which have been taken from [3]. The plant model used is that of a metrology
table provided by ASML at the Technical university of Eindhoven. The plant is tested using a step, impulse
and sinusoidal disturbances, and has proven to provide over 70% reduction in settling time when compared
to a linear bandpass for the same active control gain. The controller performs better than a linear bandpass
even at lower damping gains, and the drawback of linear controllers at higher damping gains is overcome by
substantially improved performance.
The controller operates in the presence of a certain phase lag, and it is concluded that for this architecture, a
phase lag of 19.63 degrees is required at best at the resonance frequency. The controller will not perform at
its best if the phase is in the positive, or above this value, and any further phase lag than is not necessary.

As future work, the following recommendations are proposed:

• The study can be extended by performing experimental validation of these results. There are numerical
errors present at a particular range of gains, and this can be cleared out with experiments on the setup
itself.

• The bandpass can be widened to attack multiple resonance modes at once. This research only focused
on a band which is a decade long and focused on isolating vibrations on the first resonance mode of
the system.

• Since a phase lag is necessary, having a constant phase lag throughout the bandpass could be tested for
performance. There can also be an improvement to have a stable gain so that gain normalization is not
required.

• Currently the controller is not explicitly designed to be robust to plant variations, and is an area of re-
search which can be explored. Work is being done in the field of reset control to bandpass nonlinearities
[24] of a reset based system. This needs to be done to reduce the influence of higher order harmonics
in the open loop.

• The effects of external delays on the system has not been studied in this research, and should be ex-
plored to further test the phase lag operating condition of the controller.

• Stability analysis and an extensive closed loop analysis can be performed on the controller.
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A
MATLAB Codes for Active isolation

https://drive.google.com/file/d/1v7ozAGZoRVWVvqhcrKM0HNDzH97RTFoF/view?usp=sharing

The above link contains a zip file with the following files.

• AVI_comparisiondata_plots.m - This file will help to retrace everything from the results chapter. It is
one block of code containing different sections to plot the transient response to a step, impulse or a
sinusoidal disturbance. The dimensionless active damping ratio zet aacti ve can be varied as well, along
with the plant natural frequency to test how it would respond in a varying degree of phase difference.

• AVI_parameters_export.slx - This file is the Simulink model of the controllers tested in a closed loop
with a plant, along with input disturbances which can be changed accordingly. The file also contains a
variety of scopes to check the process at a particular location of the loop.

• Controller_response_pg2.slx - This file is the Simulink model for only testing controller responses in
open loop, and is made to easily compare with alternative controllers.

• hosidf.m - The HOSIDF plotting code. It’s input are the state-space variables of the system being reset
[A ,B, C, D], the reset matrix Ar , the order of harmonics activated to be shown, a frequency range in
logspace, choice to hold the plot, and the dimension of input frequency (Hz or rad/sec).

• hosidfcalc.m - The mathematical model which calculates the order of harmonics, based on [19] [13]
[15] [27].

• ssdatacanonicalform.m - A code which converts a transfer function to its state-space variables in the
canonical form.
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