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Abstract

Dense 3D modeling based on monocular visual data is a powerful process of gaining spatial 3D
understanding from 2D observations. The use of visual data to reconstruct such 3D models is
still a challenging topic. To obtain the accurate dimensions, additional metadata is required
such as a Global Positioning System (GPS) which is not always available. Besides this, dealing
with challenging visual situations such as bad-lightening conditions or motion blur remains a
difficult subject. Furthermore, since visual data is highly dimensional, most algorithms lack
scalability, meaning that they fail to reconstruct 3D models in acceptable time limits and are
incapable of handling large data sets.

In this thesis, the objective is to mitigate these typical issues whilst preserving the quality
of the dense 3D models. To this end, visual-inertial Simultaneous Localization and Mapping
(SLAM) and Multi View Stereo (MVS) techniques are combined to form a dense 3D modeling
architecture that is capable of mitigating the typical challenges of classical dense 3D modeling
approaches. Besides this, the architecture is extended with additional improvements in the
MVS system. These improvements further increase the scalability by abstracting the input
data in a highly compact representation by leveraging image segmentation techniques. The
result is a novel, visual-inertial dense 3D modeling system.

The novel system is tested on benchmark data sets and within a lab setting, where a remote-
inspection case-study is performed. The presented system is compared against the industrial
and academic state-of-the-art systems. A thorough comparison is made by evaluating the
pose accuracy, computation time, and reconstruction quality.

It is shown that the presented system improves the state-of-the art systems by a signifi-
cant margin in terms of computation time. Furthermore, the presented system is capable of
computing 3D models with accurate geometric scale without relying on external metadata,
showcasing the effectiveness of the presented system. This work contributes to the lack of
research in dense 3D modeling based on visual-inertial SLAM and paves the way for a new
direction of efficient MVS algorithms.
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Chapter 1

Introduction

1-1 Research motivations

As a global telecom infrastructure provider, Ericsson plans to expand a global 5G network
worldwide starting from 2020. Such a network would service more than 1.9 billion subscribers
and contains approximately 1-2 million cellular sites [32, 43]. Such sites are thoroughly
inspected after installation to ensure that it is functioning properly when it is handed over to
the customer - this is the process of acceptance of the installation from Ericsson’s client. In this
process, all findings have to be documented which is very time-consuming. After acceptance,
the sites are visited again to upgrade the equipment or to perform troubleshooting when
technical problems arise. The field of 3D modeling has opened up an opportunity to do this
in an alternative, more time-efficient and save manner. Instead of requiring a technician to
visually inspect the cellular site, a drone is flown to the tower which records visual data.
Using this data, a 3D point cloud model is created of the cellular site with a 3D modeling
architecture. Then, the technician can use this digital 3D point cloud model, a digital twin,
from the convenience of his or her office. The difference between manual and remote inspection
is shown in Figure 1-1.

Figure 1-1: Manual inspection (left) can be replaced with a digital twin, captured using a
remotely operated drone (right).

Such a digital model offers several use-cases including but not limited to:
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• Minimizing safety hazards associated with climbing the cellular towers.

• Automating the acceptance tests for Ericsson’s customer.

• Planning expansion or upgrading projects ahead by using digital models of the cellular
tower that have correct dimensions.

The current process works by flying the drone around the cellular tower and capturing visual
data (i.e. images) from different heights, orientations and angles. With this data, the 3D
modeling architecture computes a 3D point cloud model. This model is then used by the
technician to automate the acceptance tests, check for faults or wear and tear and plan
maintenance ahead of visiting the site. An overview of a typical acquisition pattern and an
inspection example is shown in Figure 1-2.

Figure 1-2: The 3D model is used to inspect an antenna of a cellular tower (left). Specifically, in
this example, the technician is inspecting the bottom part of the equipment where the connectors
are located. This 3D model is acquired by flying a pattern with a UAV around the cellular tower
(right) and capturing a set of pictures.

Although the quality of the current 3D modeling architecture is satisfactory, there exist
three major shortcomings: robustness, scalability and the ability to observe geometric scale
without metadata. Robustness problems are observed in challenging visual settings such as
in indiscriminate image regions or places with bad lightening. A lack of robustness is then
defined as the incapability of handling such situations. The model quality may suffer or the
reconstruction might even fail completely. Scalability is defined as the required computational
resources as a function of the input data. In the current architecture, the required resources
scale quadratically with the amount of input images [30], making it difficult to obtain results
when the technician is still present at the site. This is important since the data-acquisition
process may have failed and if this becomes clear after the technician is back, it means that
he or she has to return to the site at a later point. Finally, in the current architecture, it is
impossible to directly observe geometric scale without relying on captured metadata such as a
Global Positioning System (GPS) information. This is problematic since it is important to be
able to perform accurate measurements on the 3D point cloud model. If the geometric scale
is unknown, this is not possible. Combined, these shortcomings limit the current use-case
for remote inspection. This directly leads to the motivation of this work. In this thesis, an
alternative architecture is proposed which has the purpose of mitigating the shortcomings of
the current architecture. It tries to answer the question:
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"What is an architecture that reconstructs 3D point cloud models with comparable
quality as the current state-of-the-art architectures whilst mitigating the typical
shortcomings?"

Since it is required to obtain 3D reconstructions that are comparable to the current archi-
tectures, the proposed system would aim to minimize the required computational resources
whilst preserving the 3D model quality, improve the performance in challenging visual envi-
ronments and be able to extract the geometric scale of 3D point cloud models without relying
on external metadata.

1-2 Research contributions

There are four main contributions in this work. First, the performance of the current state-
of-the art visual 3D modeling architectures are studied on a real-life data set of a cellular
site provided by Ericsson AB in the context of remote inspection. Secondly, visual-inertial
Simultaneous Localization and Mapping (SLAM) and Multi View Stereo (MVS) techniques
are combined to produce a dense 3D modeling architecture that offers a reduction in terms of
computational complexity and is able to directly observe geometric scale. Thirdly, a further
reduction in the computational complexity of the MVS module is achieved by leveraging
image over-segmentation techniques. Both approaches are combined which yield a novel
architecture for dense 3D modeling. Fourth and finally, the proposed method is thoroughly
tested on public benchmarks as well as lab-experiments, recorded on representative data sets.
The proposed system is compared against the current academic and commercial state-of-the-
art visual 3D modeling architectures. In all experiments, the computation time, accuracy of
the reconstructed poses and the dense 3D model quality are evaluated.

1-3 Outline of the thesis

The research question is answered in a structured approach in four steps. First, the cur-
rent visual-based architecture will be introduced and according to a set of requirements, two
baseline methods will be chosen. Secondly, the shortcomings of the current architectures will
be studied by means of several representative experiments on data sets that are provided by
Ericsson AB. Thirdly, an alternative visual-inertial based architecture will be proposed which
improves the current architecture in two steps. In the first step, inertial information will be
integrated in the pipeline. In the second step, the dense 3D modeling module will be accel-
erated by using a form of image-segmentation. Fourth and finally, the proposed architecture
will be tested in end-to-end benchmark and lab-experiments. These results will be compared
against the baseline methods and used to establish whether the proposed architecture indeed
mitigates the current shortcomings.
Following this description, the thesis is divided in the following chapters:

• Chapter 2 will introduce the currently used architecture. It will show how the cur-
rent architecture frames the problem of dense 3D modeling and how this is solved.
Furthermore, two suitable architectures will be chosen which can serve as a baseline
method.
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• Chapter 3 showcases the shortcomings of the current architectures by means of several
representative examples. Based on these shortcomings, the main problem of this thesis
is formulated where the goal is to mitigate these limitations.

• Chapter 4 shall introduce the proposed architecture which includes inertial information
in the pipeline for 3D model generation. It will treat how the inertial information is
included and what a suitable architecture is for the use-case of remote inspection.

• Chapter 5 introduces further improvements with the purpose of optimizing the scala-
bility of the dense 3D modeling module. It will derive the proposed method to achieve
this and show the performance in several benchmark experiments.

• Chapter 6 will test the complete system and compare it against the baseline methods.
Two types of experiments are run. First, benchmark experiments are run. Next, a
lab set-up is created to run end-to-end experiments to test the proposed method on
representative data sets for remote inspection.

• Chapter 7 concludes the thesis and presents directions for future research.
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Chapter 2

Visual Based 3D Modeling

Visual-based 3D modeling is the process of transforming visual data into 3D models. In the
context of this work, a 3D model is defined as a dense 3D point cloud representation. It can
be seen as an inverse problem where the goal is to recover a 3D structure of a captured scene
when only its 2D projections are given. This is visualized in Figure 2-1.

Figure 2-1: The inverse problem in 3D reconstruction - given are 2D projections (images) and
the goal is to recover the 3D structure (right) from this information.

In this setting, there are two unknowns that need to be solved - the poses of the input images
and the 3D structure. This problem is tackled in two distinct stages defined as sparse and
dense 3D modeling which is shown in Figure 2-2.

Figure 2-2: Overview of a typical 3D modeling architecture. A dense 3D point cloud model is
obtained by sparse 3D modeling (left) and dense 3D modeling (right).

Sparse 3D modeling uses a set of input images and computes two sets: the set of poses or
6 Degrees Of Freedom (DOF) of each image and a sparse 3D point cloud model. Using this
output, the dense modeling module will estimate a dense 3D point cloud model. The dense
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6 Visual Based 3D Modeling

3D point cloud model is the final output of the architecture. In the following two sections,
the sparse and dense modeling modules will be treated more in depth.

2-1 Sparse 3D modeling

In sparse 3D modeling, the input is a set of N images defined as I

I := {Ij | 0 ≤ j ≤ N − 1}, (2-1)

where an image Ij ∈ Rw×h×3 is defined by the three dimensional tensor where w and h are
the image width and height, respectively. The goal is to estimate a set of corresponding poses
T for each image and a sparse 3D point cloud model Xs containing Ms points where the set
of poses are defined as

T := {Tj | 0 ≤ j ≤ N − 1}. (2-2)

Each pose is represented by a homogeneous rigid body transformation

Tj =
(

Rj tj
01×3 1

)
∈ SE(3), (2-3)

where Rj ∈ SO(3) is the rotation matrix and tj ∈ R3 the translation vector. In this notation it
holds that SO(3) and SE(3) are the 3D Special Orthogonal (SO) and Special Euclidean (SE)
group, respectively. The sparse 3D point cloud model is defined as

Xs := {Xi | 0 ≤ i ≤Ms − 1}, (2-4)

where each point Xi ∈ R3 represents a point in 3D. From this definition it can be concluded
that two sets have to be estimated simultaneously, the poses and 3D structure. This makes
the problem inherently difficult to solve. When the poses are known, it is relatively simple to
solve for the 3D point cloud via triangulation methods [21]. In the opposite situation, when
the 3D point cloud is given, the poses can be obtained by solving the Perspective-n-Points
problem where popular approaches are described in [27, 45].

In the computer-vision community, the dual problem of solving for poses and 3D structure
simultaneously is typically defined as Structure-from-Motion [41]. The key-driver to solve
this problem is by means of visual correspondence search [41]. Visual correspondence search
is the process of recognizing locations in different images that correspond to the same scene.
Such locations need to be robust against changing viewpoints, scale or lightening conditions
[33]. Typically, these locations correspond to high-intensity gradient areas such as corners or
lines. An example of extracted key-points is shown in Figure 2-3.
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Figure 2-3: Image of the statue Ignatius obtained from the Tanks-and-Temples data set [25]. A
total of 2500 ORB [36] key-points (blue) are extracted.

In Figure 2-3 it can be clearly seen that features are extracted near edges (windows of the
building) or highly textured areas (flowers). Using these key-points, it becomes possible to
extract a feature vector which can be seen as an unique identifier of the key-point. Repeating
this feature extraction process for each image in the input set, a set of extracted features for
each image is obtained.
Now that a set of extracted features is available for each image in the set, it becomes possible
to match them. This is the core of visual-correspondence search where the purpose is to
determine where key-points are co-observed in the input image set. This yields a set of
correspondences in the form of a connected graph. An example of such graph is shown in
Figure 2-4 for two images where matched features are indicated by connected blue lines.

Figure 2-4: Matched features (blue lines) in two images of the Ignatius data set from the Tanks-
and-Temples benchmark [25]. By searching for key-points that share similar feature-descriptors it
becomes possible to obtain pairs of key-points that are part of the same object but observed in
different images.

Such a graph spans the whole input image set and contains an edge between each set of
key-points, observed in different images, that are matched. Many different types of feature
extraction and matching approaches exist and, for a more complete review, the reader is
referred to [26, 35]. Many of the extracted matches between two images are faulty, meaning
that they do not map to the same scene points. To filter out the erroneous matches, the
feature matching process is often combined with a geometric verification step. In this step,
a mapping is estimated between two images based on the matched features using projective
geometry. Then, if the obtained mapping projects a sufficient number of features between
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two images, the matches are geometrically verified [38]. With the set of matched key-points,
the dual problem of estimating the set of poses T and the sparse 3D point cloud Xs from
Equation (2-2) and (2-4), respectively can be framed. For each unique and new match

{xin ↔ xim} n 6= m, (2-5)

a variable Xi ∈ Xs is created. In this notation, a key-point xij is coupled to a 3D point i and
observed in pose j. This process is shown in Figure 2-5.

Figure 2-5: Matching key-points xij across different images Ij creates a new variable Xi for each
connected graph. This example shows three images with three matched (blue edges) key-points
(green dots) with one new scene point. Each key-point is associated with a scene point (yellow
edges). The result is a correspondence graph.

The variable point Xi can be projected back into the images in which it was observed as a
function of its estimated location and the poses of the cameras. This results in a projected
point x̂ij and is visualized in Figure 2-6.

Figure 2-6: Two images with pose j and j − 1 showing the extracted key-points (green) and
re-projected 3D points (red).
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From Figure 2-6 it can be concluded that such a projection almost never exactly aligns with
the location of the key-point in an image. This may be caused due to a faulty match, noise or
pose errors. The misalignment between the projected scene point x̂ij and extracted key-point
xij is shown in Figure 2-7.

Figure 2-7: Projection of 3D point (red) with extracted feature (green). The difference between
the two points yields a residual vector rij (black edge).

Depending on the exact projection, a residual can be defined as a function of the projection
of the 3D scene point Xi and pose Tj

rxij = x̂ij − xij . (2-6)

Such residual corresponds to the Euclidean distance between an extracted key-point xij and
a projected 3D point x̂ij . With a given camera projection model this results in

rxij = f(K,Tj ,Xi)− xij , (2-7)

where K is the intrinsic camera matrix which projects a reconstructed scene point Xi, defined
in the camera coordinate system of a pose j, to an observation in the image plane as described
in Appendix A. The resulting projection function f(·) is then defined by a mapping that is
nonlinear in the pose and 3D scene parameters [44]

f(K,Tj ,Xi) := K
(

Rj tj
01×3 1

)(
Xi

1

)
. (2-8)

Next, all residuals are collected by summing over all Ms points and N images. Solving the
problem can then be defined as minimizing a robustified non-linear least-squares problem of
the form

min
T ,Xs

N−1∑
j=0

Ms−1∑
i=0

ρ
(
r2

xij

)
, (2-9)

where ρ(·) is a robust loss function which down weighs the effect of large residuals [44]. This
is necessary since the problem can contain gross outliers due to for example faulty matches.
Typically, this is chosen to be a Huber’s loss function [22]. The output of the sparse 3D
modeling for the Tanks and Temples example is shown in Figure 2-8.
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10 Visual Based 3D Modeling

Figure 2-8: Collection of input images with known poses T and sparse 3D point cloud model
Xs. The data set was obtained from the Ignatius data set of the Tanks-and-Temples benchmark
[36].

To solve Equation (2-9), a good initial estimate is required due to the non-convexity of
the problem [29]. Solving directly will generally not result in good reconstructions. To
circumvent this, most state-of-the-art architectures use an incremental approach. Starting
from an initial pose T0, new poses are registered sequentially and the sparse 3D point cloud
model is expanded with each new pose. Each new pose is typically added in two steps
where the first step infers the pose based on the current point cloud model and the second
step uses the newly registered pose to triangulate new 3D points. After some threshold has
been reached, the current estimate can then be refined by solving Equation (2-9) where this
refinement step is typically denoted as bundle-adjustment. There are many variations in
the literature available that have different protocols for initialization, registering new images,
bundle-adjustment and determining which view to add next. For a comprehensive overview
of these approaches the reader is referred to [4, 29, 38].
After solving Equation (2-9) for the set T and Xs, the sparse 3D model can be densified in
the final step which will be treated next.

2-2 Dense 3D modeling

The second and final step in 3D modeling is the densification step. It uses the computed
poses and sparse 3D model from the previous module and densifies the sparse 3D model. In
the previous section, it was explained that the sparse 3D model was generated by working on
a sparse set of pixels in each image: key-points. This is exactly the main difference between
sparse and dense 3D modeling. Instead of operating on sparse pixel locations in each image,
dense 3D modeling directly operates on the pixel level. The main goal is to obtain a dense
3D point cloud representation Xd with Md points. The point cloud model is defined as

Xd := {Xi | 0 ≤ i ≤Md − 1}, (2-10)

where each point Xi represents a point in 3D. The dense 3D model is created through a
process defined as Multi View Stereo (MVS) and fusion. In this process there are three steps
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to infer the dense 3D point cloud model. First, it infers a set of depth maps Dj ∈ D for each
input image where Dj ∈ Rw×h. In this notation it holds that w and h are defined as the
image width and height, respectively and each element in the depth map contains a depth
value d. Secondly, it uses inverse projection to obtain a point cloud model from each depth
map. Thirdly, it fuses the independent point cloud estimates into one consistent dense 3D
point cloud model Xd.

As explained, the first step is to infer a depth map Dj ∈ D for each image Ij in the input set
I. Besides estimating a depth value d for each pixel, in most state-of-the-art applications,
this is combined with the estimation of a normal map to yield more accurate results. In this
scenario, each pixel location also contains a unity normal vector

n = (nx, ny, nz)T , ||n||2 = 1. (2-11)

Each pixel is then represented by an oriented plane which has a depth-normal value. The
problem of estimating a single depth-normal map is then defined as inferring the depth map
Dj ∈ D and normal map Nj ∈ N for a reference image Iref given the source images Isrc =
{I r Iref}. In this notation a normal map is represented by a three dimensional tensor
Nj ∈ Rw×h×3 since each entry contains a normal vector. Such combination of depth and
normal is defined as the hypothesis for a pixel. To perform inference, a measure of likelihood
is needed which describes how likely a certain hypothesis is given the set of source images
that are available.

Such likelihood is typically defined as photo-consistency ρ(·) and it yields a matching cost for
a given depth and normal hypothesis in one other view. This is shown in Figure 2-9.

Figure 2-9: The matching cost for the depth-normal hypothesis of a pixel is computed by
comparing two patches in the reference and source image. A reference image (left) extracts and
projects a patch in a source image (right). This yields a reference and source patch which are
compared to compute a photo-consistency cost (bottom).

In Figure 2-9, homography warping is defined as the projection of an oriented (slanted) plane
from the reference image to a source image. Photo-consistency returns a value between 0 and
1 where a higher value indicates a higher similarity score between two patches. The score
is computed by using a rectangular support region Ω around the current pixel. This yields
a rectangular patch of |Ω| pixels for the reference and source view, respectively. Multiple
photo-consistency measures exist but the most state-of-the-art algorithms such as Gipuma
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[18], COLMAP [38] or PMVS2 [16] use the zero-mean Normalized Cross Correlation (NCC).
For a more complete review of different type of photo-consistency costs the reader is referred
to the work of C. Hernändez et. al [17]. Prior to computing the NCC, most implementations
convert color images into greyscale intensity images. The NCC can then be computed by
taking the dot product between the vectorized reference and source patches, with subtracted
mean and normalizing them with the standard deviation

ρNCC(f, g) = (f − f̄) · (g − ḡ)
σfσg

∈ [−1, 1], (2-12)

where f ∈ R|Ω| and g ∈ R|Ω| are the vectorized patches of the reference and source view,
respectively. These vectors contain the pixel values of the support region Ω. In this notation
f̄ and ḡ denote the average pixel intensity value in both patches. Furthermore, σf and σg are
the standard deviations of both patches. Although the NCC yields a score between -1 and 1,
where a higher score indicates a better match, it can be scaled such that it returns a value
between 0 and 1. A more clear example of how the vectors f and g are extracted is depicted
in Figure 2-10.

Figure 2-10: A reference patch with a support region Ω of 3 × 3 pixels and vectorized patch
f (left) and a source patch and vectorized patch g (right). Both vectors contain the greyscale
intensities of the pixel locations.

When the hypothesis is evaluated for different depth-normal values, a cost-volume can be
build. This is shown in Figure 2-11.

The matching cost volume is constructed by aggregating the costs from the set of source
images. If one would use all the source images to obtain the matching cost, the result could
become ambiguous. This is a result of the occlusion problem. The occlusion problem is
caused by including source images that are not observing the specific part of the scene of the
reference patch, that is being matched with the source views. This is depicted in Figure 2-12.

When these images are included, they obscure the cost-volume since they map to incorrect
image regions that are not visible in the reference image. In the example of Figure 2-12, the
two images are taken at two opposing locations of the statue. Then, when the middle part
of the statue (red patch) is given the correct depth-normal hypothesis, it can be projected
to the source view. In this scenario, this will map to the back of the statue which will yield
a completely different image patch. Since this patch will be different from the reference
patch, even at the correct depth-normal hypothesis, it will return a low photo-consistency
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Figure 2-11: Matching cost evaluated for different depth-normal hypothesis for a single pixel.
Exploring the search-space for a single pixel yields a cost-volume.

Figure 2-12: The occlusion problem obscures the photo-consistency cost in MVS. In this example
the reference patches (left) are given the true depth-normal hypothesis and are projected in the
source image (right).

score. Projecting a non-occluded part of the scene (green patch), when it is given the correct
depth-normal hypothesis, will not result in low photo-consistency costs.

Typically, to circumvent the occlusion problem, most state-of-the-art MVS algorithms also
propose methods to select a set of source images which are likely observing the same part
of the scene as the reference patch. For example, COLMAP [38] adopts a pixel-wise view
selection scheme that is directly integrated in the depth-normal inference. Having devised an
approach to handle the (partial) occlusions in source images, it becomes possible to solve for
the correct depth-normal hypothesis. This boils down to choosing the hypothesis with the
lowest aggregated matching cost in non-occluded source views.

However, this problem quickly becomes intractable to solve since computing a photo-consistency
score in each reference image is costly and the number of pixels is very large. A typical smart-
phone camera is capable of shooting 12 Mega Pixels (MP) pictures. This means that there
are 12 million depth-normal values that need to be estimated for only one image. Since
each depth-normal has 4 dimensions (a depth value and three normal-vector components) the
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problem space is 48 ·106 for one image. Solving this problem quickly becomes intractable and
as such, very efficient algorithms are required to handle the large problem-space.

The current state-of-the-art algorithm that overcomes this problem is defined as PatchMatch
and was originated by M. Bleyer et al. [5]. The algorithm is able to tackle the large problem
space by leveraging structured region information within a scene. Structured region infor-
mation means that fairly large groups of pixels share similar depth-normal values since they
belong to the same or similar objects. The algorithm exploits this fact by operating an iter-
ative scheme that works in four steps. First, it random initializes the depth-normal map. It
assumes that most random guesses are completely off but a few will be close to the correct
depth-normal value. Then, it allows those good estimates to spread to neighboring pixels in a
propagation step. Next, it refines the current depth-normal map and repeats these two steps
until the depth-normal map converges to a stable state. Finally, the depth-normal map is
filtered to remove spurious estimates or outliers. An overview of this procedure is given in
Figure 2-13.

Figure 2-13: Overview of the PatchMatch optimization scheme (top) and example flow (bottom).
The optimization scheme operates in four steps which are shown from left to right. First, a
depth-normal image is random initialized. Next, the algorithm iterates between propagation and
refinement steps until convergence. Finally, it removes spurious estimates in a filtering step to
obtain the final result.

In MVS, this procedure is repeated for each image Ij ∈ I. The final step is to use inverse
projection to obtain a point cloud model of each depth map. Those independent point cloud
models are then fused into a consistent dense 3D point cloud model. Several variations exist
for the fusion step. However, most approaches search for consistent depth-normal values by
performing a cross-consistency check across different images and requiring the values to be
consistent with a minimum number of views. The final depth-normal point in this case is
then the combination of all the independent estimates. For example, COLMAP [38] uses the
median value of the independent estimates to obtain the final point. The end result of the
fusion process is the final output in the 3D modeling architecture and is shown in Figure 2-14
for the Tanks-and-Temples example.

Several different variations of dense 3D modeling exist and in this work a choice needs to be
made to determine what a suitable architecture is. This will be treated in Section 2-3.
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Figure 2-14: Depth-normal maps of all input images are fused into a dense 3D model. The
depth-normal maps of this example were computed using the Ignatius data set from the Tanks-
and-Temples benchmark [25].

2-3 Choice in Baseline Systems

In this work, visual-based 3D modeling architectures are considered the baseline method.
Such an architecture is capable of transforming a set of visual input data (i.e. images) into a
dense 3D point cloud model. Being the baseline approach, this architecture will be compared
against an alternative proposed architecture. That is why it is important that the visual-based
3D modeling architecture is capable of delivering state-of-the-art results. For this reason, two
systems are chosen: PIX4D and COLMAP [1, 38]. PIX4D and COLMAP represent the
industrial and academic standard, respectively.

PIX4D, is a widely used commercial 3D modeling architecture. It has been shown to deliver
state-of-the-art results on several benchmarks including the Tanks-and-Temples benchmark
[25]. It is capable of transforming a set of visual input data with attached metadata such
as Global Positioning System (GPS) information into dense 3D point cloud models with the
correct geometric scale, thereby offering an end-to-end reconstruction system.

The COLMAP [38] system is chosen as the second baseline method. COLMAP is a general
purpose, academic 3D modeling architecture which provides an end-to-end solution. It is
widely studied by the research community on multiple benchmarks such as the Tanks-and-
Temples [25] and ETH3D [40]. As such, its state-of-the-art performance has been proven
across a wide variety of settings.

Although many high-performing learning-based methods exist that are academically inter-
esting, they need a great quantity of domain specific training to perform well [49]. As such,
these approaches are not feasible for real-world applications which is the focus of this work.
Popular examples of learning-based approaches include [31, 48, 24].
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Chapter 3

Problem Formulation

In this chapter, the shortcomings of the baseline methods introduced in Section 2-3 will be
studied. First, several experiments on real data sets will be performed both with PIX4D (the
commonly used industrial solution) and COLMAP (one of the most widely studied open-
source methods). Using these experiments, the set of issues will be specified. With the
identified issues, the research problem for this thesis work is formulated with the general
purpose of mitigating the typical issues.
The experiments are run on a real recording of a cellular site provided by Ericsson AB. The
visual data is collected with a DJI Phantom drone which is capable of capturing 5472× 3648
RGB images. With each image, the DJI Phantom drone receives Global Positioning System
(GPS) information - which includes latitude, longitude and altitude information and the yaw,
pitch and roll angles. These angles define the orientation of the drone during the image
acquisition process. Multiple experiments are available from this site. In this work, two
experiments are chosen since they are particularly interesting. The first experiment is a
standard flying pattern with a downward facing camera. This pattern is used to capture a
complete 3D model of the whole site and is defined as the 3D Model data set. The second
experiment, which has the goal of capturing a piece of the equipment with an upward facing
camera, is defined as the Level 1 up-look set.
The first experiment is representative of a standard setting which can be used to study the
general performance whilst the second experiment contains a challenging visual data set. This
is caused by the large portion of sampled sky-pixels due to the upward facing camera.
In the experiments, two sets of reconstructions are computed using PIX4D and COLMAP,
respectively with standard settings unless stated otherwise. Furthermore, to perform the
computations, the computing platform described in Appendix B is used.

3-1 The 3D model data set

In this experiment, two 3D point cloud models are computed using PIX4D and COLMAP.
In this setting, the goal is to capture a complete 3D point cloud model of the scene and its
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surroundings. To achieve this, the technician operates a drone and flies a circular pattern at
different heights. Then, he or she flies several columns at different locations to connect the
circular runs at different heights. The resulting flight-plan is visualized in Figure 3-1.

Figure 3-1: Overview showing the flight-plan of the 3D model experiment. Camera poses are
shown as a red projection objects. The figure was obtained from COLMAP’s sparse 3D modeling
output.

Using the standard settings in both methods, the two dense 3D point cloud models are
computed. The resulting models are shown in Figure 3-2.

Figure 3-2: PIX4D (left) and COLMAP (right) reconstructed 1,346,612 and 921,634 3D points
respectively. Both 3D point clouds are computed using the 3D model experiment data set. For
each reconstruction, the cellular tower’s height is computed in meters.

From Figure 3-2 it can be concluded that both 3D point cloud models look quite comparable.
The large difference in number of points could be caused by different filtering settings in both
methods. However, there is one important difference. PIX4D is able to read the attached
metadata of the DJI drone. Leveraging this information, the algorithm is able to deduce
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3-2 The level 1 up-look data set 19

the correct geometric scale. This results in a 3D point cloud model which has accurate
dimensions up to its accuracy of 2 (cm). COLMAP is not able to do so and the implications
are significant. Although visually very similar, the dimensions in COLMAP’s model are
inaccurate. As means of an example, since there is no ground-truth reconstruction available,
the computed height of both towers is also shown in Figure 3-2. In Figure 3-2, it can be seen
that PIX4D’s reconstruction has computed a cellular tower that has a height of 51.76 (m)
which is accurate up to 2 (cm). However, COLMAP’s reconstruction yielded a tower that has
a height of 10.81 (m) which is clearly inaccurate. This is caused by the inability to leverage
the available metadata information attached to the images.

It is important to note that if there is no (accurate) metadata available, both methods would
be unable to recover the accurate geometric scale. This is problematic in the context of
remote inspection since the technicians need to be able to measure pieces of the equipment
and parts of the structure to perform their tasks. If this is not possible, the use-case of the
3D point cloud models is significantly hindered. The absence of metadata in the form of a
GPS signal is not an unusual situation since there are many cellular sites located at remote
instances where the coverage is not reliable. Besides lack of GPS information due to a remote
location, alternatively, it can be required to create indoor digital models of the sites. For
example, indoor-equipment such as battery cases or racks with base-bands are sometimes
scanned as well. These pieces of equipment are located indoor and therefore, the acquired
GPS information may not be reliable. By relying on the metadata only, it is not possible to
extract 3D point cloud models with accurate geometric scale in these settings.

3-2 The level 1 up-look data set

The second set of reconstructions is computed using the challenging up-look experiment. In
this scenario, the goal is to capture the antenna equipment from the bottom with a camera
facing upwards. This is important since the technician is often interested in inspecting the
underside of the antenna equipment, where the connectors are located, which are a crucial
piece of equipment. This was also depicted in Figure 1-2. In this setting, the drone is also
flying a circular pattern around the tower similar to the previous case. However, the drone is
now flying significantly closer to the tower to capture the equipment more in detail. This is
visualized in Figure 3-3.

Feeding the exact same input data to PIX4D and COLMAP and using the standard set-
tings, both methods failed to reconstruct the equipment in this scenario and crashed in the
sparse 3D modeling phase. This is attributed to the fact that the large portion of indis-
criminate sky-pixels make the system unstable. Although the settings of PIX4D can not be
changed, COLMAP has the possibility of tweaking the parameters. Specifically, the num-
ber of extracted features is increased in the first phase. This allows the sparse 3D modeling
module of COLMAP to find more accurate correspondences across the images to guide the
reconstruction. Using the new settings a reconstruction is obtained and is shown in Figure
3-4.

Notice that since the drone flew closer to the tower, the number of details that are captured
is higher than the previous scenario. Especially, the thin structural elements of the tower’s
framework are reconstructed more accurately. However, since COLMAP is unable to use the
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Figure 3-3: The Level 1 up-look run. The drone has an upward oriented camera and is flying a
circular pattern around the site. Camera poses are shown as red projection objects. The figure
was obtained from COLMAP’s sparse 3D modeling output.

attached metadata, the dimensions of the reconstruction are inaccurate. Furthermore, it is
noticeable that there is noise present around the edges of the reconstruction. The blue colored
noise originates from the sky-pixels and is caused by errors in the depth-normal hypothesis
generated by propagating the depth-normal values from the structural framework elements to
the sky-pixels. This can be seen more clearly when one of the depth-normal map generated
by COLMAP is analysed. This is shown in Figure 3-5.

Figure 3-5: The depth-normal map of COLMAP for a single image where the depth map is
shown on the left and the normal map on the right. Showcasing the noise around thin edges in
the structure.

From Figure 3-5 the location of the noise can be clearly seen to focus around the edges of the
thin members. Although visually displeasing, it is not problematic for the use-case of remote
inspection since it can be filtered out easily in a post-processing step.
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Figure 3-4: The reconstructed dense 3D point cloud model of COLMAP after increasing the
number of features. Note that PIX4D failed to compute a reconstruction.

3-3 Defining the problem

Based on the previous experiments several shortcomings were observed. Summarizing, there
are three key-shortcomings of the current architecture:

• Inability to directly extract geometric scale.

• Lack of robustness.

• Scalability.

First, there is a geometric scale ambiguity. This ambiguity means that the obtained dense
3D reconstruction is correct up to an unknown scale-factor S if there is no external metadata
available. The geometric scale ambiguity is visualized in Figure 3-6.

In the context of remote inspection this is problematic. This stems from the fact that the
main use-case of dense 3D point cloud models is the ability to perform measurements on the
structure. The current solution as implemented in for example PIX4D solves this problem
by relying on external information sources in the form of EXchangeable Image File-format
(EXIF) metadata attached to the images. Such metadata contains for example the GPS
coordinates of where the image was acquired. Having GPS information attached to the
images resolves the scale ambiguity of the 3D point cloud model. The ambiguity is solved
since the GPS information provides additional prior information terms on the camera poses.
This constraints the reconstruction to only one scale factor. However, some mobile cellular
towers are located in remote locations where the GPS signal is absent or inaccurate. Or
the visual data is captured indoors which yields the same problems. In the aforementioned
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Figure 3-6: Scale ambiguity in classical 3D-modeling where S denotes the 3D model scale.

scenarios, it becomes difficult or even impossible to obtain the accurate geometric scale. Not
having accurate geometric scale of the 3D point cloud model renders it almost useless for
remote inspection.

Secondly, there is a lack of robustness in challenging visual situations. As mentioned in
the introduction, the current architecture relies solely on visual information (excluding the
GPS signal for scale-extraction). This means that the quality of the final 3D point cloud
model is entirely dependent on the quality of the visual input data. Whenever a challenging
visual environment is encountered, such as bad-lightening conditions, homogeneous surfaces
or motion blur, the quality degrades. More so, the system may even fail to reconstruct
anything at all as was showed in the comparison of PIX4D and COLMAP on the Level 1
up-look data set. This is problematic as well since bad-lightening or homogeneous image
regions are encountered frequently in site monitoring. Two examples are shown in Figure 3-7.

Figure 3-7: Challenging situations in remote inspection scenarios. Bad lightening (left) due to a
sun-facing camera and homogeneous sky image-regions (right). Images were obtained from the
recording provided by Ericsson AB.

Thirdly, the whole process of transforming the visual data into usable 3D point cloud models
is computationally very expensive. Although not considered directly in these experiments,
the 3D modeling algorithms scale very poorly with an increasing size of input data. In the
context of remote inspection it is important to obtain the dense 3D point cloud models in a
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time that allows the visiting technician to observe the results whilst still being present at the
site. This is important since the data acquisition process is non-trivial and as such may have
failed and require an additional run. If the technician is able to assess this immediately at the
site, he or she is not required to visit the site again. With the current architecture, obtaining
the dense 3D point cloud models within a time window that allow this, is not possible.

In this research, an alternative architecture is proposed which is able to mitigate the current
shortcomings. It is required that the alternative architecture is capable of computing dense 3D
models with comparable quality as the current solutions. Since PIX4D is capable of computing
reconstructions with 2 (cm) accuracy [1], this will be used as the minimum requirement. In
the following two chapters the alternative architecture will be introduced. After this, it will
be tested and compared against the baseline methods: PIX4D and COLMAP.
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Chapter 4

Visual-inertial Based 3D Modeling

Over the recent years, the topic of sparse 3D map and pose reconstruction has gained in-
creasing attention from outside the computer vision community in the field of Simultaneous
Localization and Mapping (SLAM). The topic of SLAM is mostly studied by the robotics
community where the goal is to reconstruct a sparse 3D map and the pose of the system in
real-time to perform for example collision avoidance and path-planning. Essentially, SLAM
and Structure from Motion (SfM) try to solve the same problem of computing a sparse 3D
map and set of poses. However, SLAM is mostly interested in obtaining efficient and online
results where the sparse output is the end-goal of the pipeline. On the contrary, SfM typically
operates offline and serves as the first step in a dense 3D reconstruction pipeline where the end
goal is a dense 3D point cloud model. Since both methods have the same intermediate output
and SLAM approaches have shown to yield more favorable results in terms of computational
efficiency and accuracy, it would make sense to combine state-of-the-art SLAM algorithms
with Multi View Stereo (MVS) to reconstruct dense 3D models. However interesting, this
topic has not been studied extensively in the research community.

In this chapter, an architecture that combines SLAM with MVS algorithms will be designed.
Besides introducing SLAM algorithms to replace SfM, in this work, additional information
sources will be integrated in the system. Specifically, it is proposed to include inertial in-
formation. The inclusion of inertial information has the potential to mitigate some of the
typical issues that are observed in the current architecture such as the scale ambiguity. Then,
the resulting architecture will leverage the additional information source by relying on visual-
inertial SLAM algorithms.

In this chapter, first, it will be explained how inertial information is absorbed in the problem
structure by deriving the new measurement model. Next, it will be explained how the new
measurement model is used to frame the general optimization problem. After this, the new
architecture will be introduced where a motivated choice in specific method will be made.
Using the presented architecture, a set of reconstructions will be computed using the cur-
rent academic baseline solution (COLMAP) and the presented system on a benchmark data
set. Based on this experiment, further improvements are suggested to further increase the
performance of the presented system.
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4-1 Deriving the inertial measurement model

The inertial information is included by adding an additional sensor in the form of an Inertial
Measurement Unit (IMU). An IMU measures the system’s accelerations and angular veloci-
ties. This is shown in Figure 4-1.

Figure 4-1: IMU measurements over the body-axis (superscript) over the 3 axes (subscript).
The origin of the coordinate system coincides with the body centroid of the system. The IMU
measures accelerations (blue columns) and angular velocities (green columns).

The IMU sensor is typically described using the measurement-model which is adopted from
[13] and defined as

ω̃b(k) = ωb(k) + bg(k) + ηg(k), ωb(k) ∈ R3

ãb(k) = R(k) (aw(k)− gw) + ba(k) + ηa(k), ab(k) ∈ R3 (4-1)

where ω̃b(k) ∈ R3 and ãb(k) ∈ R3 are defined as the measured angular velocity and the
acceleration and described in the body frame at time-step k. Besides this, ωb(k) ∈ R3 and
ab(k) ∈ R3 are the actual angular velocity and acceleration vectors, gw ∈ R3 is defined
as the gravity vector described in the world coordinate system and R(k) ∈ SO(3) is the
rotation matrix that transforms vectors defined the world coordinate system to the body
frame. In Equation (4-1) it further holds that bg(k) ∈ R3 and ba(k) ∈ R3 are the time-varying
gyroscopic and acceleration biases, respectively. Furthermore, ηg(k) ∈ R3 and ηa(k) ∈ R3 are
zero-mean white-noise which evolve the the gyroscopic and acceleration biases via a random-
walk noise-model.
The measurements of Equation (4-1) can be related to the pose of the system by using a
kinematic motion model of the form

Ṙ = Rω̂,
v̇w = aw,
ṗw = vw,

(4-2)

Q. Dekker Master of Science Thesis



4-1 Deriving the inertial measurement model 27

where R ∈ SO(3) and Ṙ ∈ SO(3) are the rotation and the rotation time-derivative, respec-
tively and the rotation matrix transforms coordinates from the world to the body coordinate
system. Furthermore, ω̂ ∈ so(3) is the Lie-algebra of the angular velocity vector. The
Lie-algebra relates an angular velocity vector to a difference in rotation matrix. Using Lie-
algebra to represent differential rotation matrices stems from the fact that rotation matrices
have undesirable degrees of freedom which make it an inefficient representation. Essentially,
Lie-algebra solves this problem by leveraging the fact that the rotational increments are typ-
ically very small. For a more thorough treatment of describing rotations using Lie-algebra,
the reader is referred to [46]. Next, v̇w ∈ R3 and aw ∈ R3 are defined as the time derivative
of the velocity and the acceleration vector, respectively. Finally, ṗw ∈ R3 and the vw ∈ R3

are the time-derivative of the position and velocity vector, respectively.

Integrating the kinematic model over a period ∆j and relating this to the IMU measurement
model, yields a pose T̃ =

(
R̃, p̃

)
∈ SE(3) and velocity measurement ṽ ∈ R3 at time j, which

is the point at which a new camera image Ij becomes available. To relate the measurement-
model of (4-1) to the kinematic motion model defined in (4-2), the procedure outlined in [13]
can be used which yields

R̃(j) = R̃(i)
j−1∏
k=i

Exp
((
ω̃(k)− bg(k)− ηg(k)

)
∆t
)
,

p̃(j) = p̃(i) +
j−1∑
k=i

[
v(k)∆t+ 1

2gw∆t2 + 1
2R(k)

(
ãb(k)− ba(k)− ηa(k)

)
∆t2

]
,

ṽ(j) = ṽ(i) + gw∆tij +
j−1∑
k=i

R(k)
(
ãb(k)− ba(k)− ηa(k)

)
∆t,

(4-3)

where ∆tij is defined as the time between two consecutive images Ii and Ij and ∆t is defined
as the time between consecutive IMU measurements. Furthermore, Exp (·) is defined as the
exponential map which transforms an element of the Lie-algebra back to its Lie-group

Exp : so(3) −→ SO(3), (4-4)

where in this context the transformation means that the exponential map will transform
an angular velocity vector, assumed constant over a small time increment ∆t, in a rotation
matrix. It can be concluded that the integration of the inertial terms yields three additional
type of variables for each measurement at time k. Specifically, the velocity v(k), acceleration
bias ba(k) and gyroscopic bias bg(k) need to be estimated as well and are included in the
optimization scheme as the sets V and B, respectively. Typically, these are assumed constant
between consecutive images i and j. Starting from Equation (4-3), the measurements are
collected in a single, relative positional, velocity and rotation term which yields a compact
set of residual terms. For a complete derivation of this term the reader is referred to [13].
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4-2 Framing the new sparse 3D modeling problem

The next step is to include this residual term into the optimization problem of (2-9). It is
similar to visual-based sparse 3D modeling but in this case there are additional information
terms originating from the IMU. This is shown in Figure 4-2.

Figure 4-2: Inertial measurements at step k (yellow) between pose at time j − 1 and j yield
extra information terms.

This term originates from the pose and velocity measurements and results in two additional
residual terms which are visualized in Figure 4-3.

Figure 4-3: Projection of 3D point (red) with extracted feature (green), difference between
estimated pose (red) with measured pose (green) and estimated velocity (red) with measured
velocity (green) shown on the left, middle and right respectively.

Specifically, there is a set of residuals originating from the 3D landmarks Xs, inertial pose T ,
velocity information V and bias estimates B defined as

rxij = x̂ij − xij ,
rTj = T̂j − T̃j ,

rvj = v̂j − ṽj .
(4-5)

The new residuals are then included in the optimization scheme. Similar to the visual-based
case, not the squared loss but a robust loss is minimized to account for outliers. This is
typically chosen as Hubers’s loss [22] due to its convex properties [44]. The resulting problem
can then be defined as
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min
T ,Xs,V,B

N∑
j=0

Ms∑
i=0

ρ
(
r2

xij

)
+

N∑
j=0

ρ
(
r2

Tj

)
+

N∑
j=0

ρ
(
r2

vj

)
, (4-6)

where the minimizer yields the set of poses T and sparse 3D model Xs. Note that the
inclusion of the inertial information required to add the set of velocities V and IMU biases
B as additional variables. Depending on the used architecture, probabilistic information
may be included in Equation (4-6). In this setting, a weighted least-squares objective of the
residuals is minimized where the weights are obtained from the information matrix of the
measurements.

4-3 The new architecture

To obtain the new architecture, the structure-from-motion based sparse 3D modeling module
is replaced with a visual-inertial based 3D modeling architecture. Both methods yield the
same output: a sparse 3D model. In both the current as the proposed architecture, the 3D
models are densified using COLMAP’s multi-view stereo algorithm. However, this leaves out
the question of which visual-inertial sparse 3D modeling architecture is a suitable choice in
this work. There are two key-requirements in the desired architecture.

First, the chosen architecture should be able to deliver state-of-the art sparse 3D modeling
results that can compete with the baseline methods (i.e. COLMAP and PIX4D). Secondly,
the ideal architecture should also have a demonstrated performance on drone systems. This
is relevant in the context of remote inspection since Ericsson AB wants to be able to produce
dense 3D point cloud models with data captured on board of drone systems. Having an
architecture that is proven to work on such systems is advantageous.

For this reason, in this work, the Maplab [37] framework is chosen. Maplab is an open-
source visual-inertial mapping framework. It offers a state-of-the-art visual-inertial SLAM
front-end: ROVIO [6]. ROVIO is a direct Extended Kalman Filter (EKF) based approach
that has been shown to deliver state-of-the-art performance in benchmark experiments on
Unmanned Aerial Vehicle (UAV) systems [12]. Besides an integrated front-end, Maplab also
offers extensive post-processing tools such as loop-closure and global map optimization. These
tools are necessary in order to obtain globally consistent maps. The proposed architecture is
shown in Figure 4-4.

To conclude, it is proposed to integrate inertial information in the sparse 3D modeling module
by adding an IMU sensor and using the Maplab framework. Next, the resulting sparse 3D
model Xs and set of poses T are exported to COLMAP. COLMAP takes the output of
Maplab and runs its dense 3D modeling module. This yields the dense 3D point cloud model
Xd obtained by means of a visual-inertial based architecture.

4-4 Performance of the visual-inertial method

To showcase the performance, the visual-inertial architecture is compared against one of the
baseline methods - COLMAP. The goal in this experiment is to assess the differences in
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Figure 4-4: The proposed SLAM based architecture computes a dense 3D point cloud model Xd

using Maplab’s framework and COLMAP’s MVS module.

accuracy and computation time in both methods. To achieve this, the two architectures are
tested on the EuRoC Micro Aerial Vehicle (MAV) benchmark [9]. This benchmark has an
available ground-truth trajectory and offers synchronized visual-inertial data captured with
a small MAV system. Specifically, for this experiment, the machine hall data set MH01
Easy is chosen. The benchmark also offers more challenging data sets but for now this is
not required since the aim is to compare the differences in accuracy and computation time
and not robustness. Robustness properties in both approaches will be evaluated further in
Chapter 6.

In the experiment, two dense 3D reconstructions will be computed based on the current
academic (COLMAP) and the proposed architecture (Maplab). All calculations are performed
on the computing platform that is described in Appendix B. In the comparison, PIX4D is
not considered since it does not provide means to evaluate the pose-accuracy. In Chapter 6,
PIX4D will also be evaluated and compared against the presented method and COLMAP.

First, the sparse 3D modeling will be compared. Both outputs have to be aligned with
the ground-truth trajectory since they use different global coordinate systems. Furthermore,
since COLMAP computes a reconstruction which is accurate up to an unknown scale-factor,
the scale needs to be estimated as well in order to compare the results. To achieve this,
Umeyama’s [45] Sim(3) and SE(3) alignment methods are used for COLMAP and the pro-
posed architecture, respectively based on the implementation of [20]. Here, for the current
architecture, a Sim(3) alignment is computed which estimates a rigid-body transformation
and a scale-factor to align the trajectory with the ground-truth. For the proposed method,
a SE(3) alignment is estimated which yields a rigid-body transformation and no scale-factor.
This is chosen since Maplab is able to observe the correct scale directly.

To compute a reconstruction in COLMAP, the standard settings are used and all the recorded
visual data is provided as input to the pipeline. For Maplab, to compute the sparse 3D
reconstruction, two set of steps are taken. First, the visual-inertial data is run on Maplab’s
SLAM front-end, ROVIO. Secondly, the resulting sparse 3D reconstruction is post-processed
by running the loop-closure module and visual-inertial bundle adjustment of the Maplab
framework. The output is a sparse 3D reconstruction. Running the first step of both methods
yields a sparse 3D model with an estimated trajectory. These results are aligned using the
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aforementioned method and is visualized in Figure 4-5.

Figure 4-5: COLMAP and Maplab trajectories SO(3)+Scale aligned with the ground-truth poses.

From the result shown in Figure 4-5 it can be concluded that the Maplab-based approach
yields significantly more accurate results in terms of pose-estimation. Next, it becomes possi-
ble to compute a dense 3D reconstruction based on the output of both methods and compare
the results. The resulting reconstructions are shown in Figure 4-6.

Figure 4-6: The current (left) and proposed (right) architecture resulting 3D model. Using the
same fusion settings 2.6M and 2.35M points are extracted respectively.

In Figure 4-6 it can be concluded that both methods produce dense 3D reconstructions that
appear visually very similar. Although the current architecture reconstructed a dense 3D
point cloud model of 2.6M points, which contains 10.6 (%) more points than the proposed
architecture, it is important to note that this result also contained more outliers which are
not clearly visible in Figure 4-6. For this data set it is not possible to compare both methods
with a ground-truth 3D point cloud model since that is not available. However, in Chapter 6,
both approaches will be evaluated on several data sets which contain ground-truth 3D point
cloud models.
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To make a more rigorous comparison between the accuracy in pose-estimation in the two
approaches, the Absolute Pose Error (APE) defined in meters can be computed. This metric
computes the Euclidean distance between the ground-truth and reconstructed pose. Then,
several statistics can be computed from this metric such as the Root Mean Squared Error
(RMSE) or median, which is less sensitive to outliers. The resulting metrics and computation
times are depicted in Table 4-1.

Architecture Sparse RMSE Median Dense
modeling Time APE (m) APE (m) modeling Time

Current 325 0.9971 0.6579 332.4
Proposed 19 0.0148 0.0124 333.9

Table 4-1: Computation time defined in minutes and trajectory accuracy evaluated for the
current and proposed architecture. In this notation APE is defined as the Absolute Pose Error.
The metrics are computed using [20].

In Table 4-1, the observation in Figure 4-5 is confirmed where the proposed architecture yields
poses which are an order of magnitude more accurate than the current architecture. Besides
the increase in accuracy, it is also observed that the sparse 3D modeling computation time has
been decreased from 332.4 to 19 (min), a decrease of 94 (%). And, since the same dense 3D
modeling architecture is used in both methods, the dense 3D modeling time is approximately
equal.

Concluding, the addition of inertial information solved the scale ambiguity problem of the
current architecture. Furthermore, the computation time for sparse 3D modeling was reduced
with a large margin whilst producing more accurate results in terms of pose-estimation. As
of right now, the dense 3D modeling module is the bottleneck in the pipeline where both
architectures rely on the same dense 3D modeling module of COLMAP. As it is of interest
to obtain dense 3D point cloud models of cellular sites when the technician is still at the
site, the next chapter will focus on optimizing the computational complexity of the dense 3D
modeling module.
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Chapter 5

Accelerating Dense 3D Modeling

As mentioned in Chapter 2, dense 3D modeling works through a process called Multi View
Stereo (MVS) and fusion. In this process, a depth-normal value was estimated for each pixel
in each image in the input set.

As such, MVS algorithms scale very poorly with increasing resolutions where the computa-
tion time is directly proportional to the number of processed pixels [30]. In many practical
applications, it is necessary to produce dense 3D point cloud models in near real-time for a
direct spatial understanding such as autonomous driving or EXtended Reality (XR) [11, 39].
As the quality of consumer-grade camera’s is rapidly growing, a need is created to improve the
scalability of dense 3D modeling algorithms to be able to handle larger image resolutions. In
this chapter, a novel approach is proposed to achieve a reduction in computational complexity
of dense 3D modeling systems to better handle high-resolution images.

5-1 Limiting the number of processed pixels

To improve the scalability of dense 3D modeling algorithms, the most widely used solution
aims at decreasing the number processed pixels. To achieve this, the input images are down-
scaled by a certain factor. This effectively limits the number of processed pixels by decreasing
the image size. The decrease in computation time is directly proportional to the downscaling
factor that is applied to the input images. This is shown for an image in Figure 5-1.

In this scenario, not only computation time and dense 3D model resolution are traded-off but
also coarsity. In this definition, coarsity describes the ability to capture fine details and edges
in 3D structures. To explain why this is the case, it is important to remember how multi-view
stereo processes an image to compute the depth-normal map. It extracts a rectangular patch
around the pixel which it uses to compute a matching cost. Intuitively, downscaling can be
seen as resizing the size of pixels where the size of one pixel increases. With equal patch-sizes,
this means that the relative size of a patch increases with a decreasing scale-factor. This is
visualized in Figure 5-2
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Figure 5-1: Downscaling an image with a different scale-factor S. The decrease in total pixels
with respect to the original image is directly proportional to the downscale factor.

Figure 5-2: Full image (left) and factor 4 downscaled image (right). In both images a 6×6
patch (purple rectangular) is visualized for a pixel (purple square) which is used to compute
depth-normal values.

The increase in relative patch-size reduces the capability of discriminating fine details in an
image where examples include edges, boundaries or complex shapes such as curves. One may
wonder how this affects the final 3D reconstruction quality. To study the trade-off in compu-
tation time and dense 3D model quality, a series of experiments are run on the Ignatius data
set from the Tanks-and-Temples benchmark [25]. All calculations are performed on the com-
puting platform described in Appendix B. The Tanks-and-Temples benchmark provides an
accurate ground-truth 3D dense point cloud reconstruction for evaluation and a pre-computed
sparse 3D model. For this experiment, the downscale factors S = {1, 0.5, 0.25, 0.125} are cho-
sen. In each reconstruction, the input images are first downscaled with a factor S using
a bi-linear filter which is a widely used image rescaling algorithm that is implemented in
COLMAP. More information on the precise workings of a bi-linear filter and other image
scaling techniques can be found in [19]. Then, the dense 3D point cloud model is calculated
with COLMAP’s dense 3D modeling module using standard settings. The resulting dense 3D
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point cloud models are shown in Figure 5-3.

Figure 5-3: Dense 3D point cloud reconstructions at different downscale factors S compared
against the ground-truth (GT).

The reconstructions are compared using two metrics: precision and recall which are combined
into a F1 score. The F1 score is obtained by computing the harmonic mean of both metrics.
Intuitively, precision can been seen as the accuracy and recall as the completeness of the
reconstructed 3D point cloud model. In this definition precision is defined as the fraction
of points of the reconstruction that have a closest neighbor to the ground-truth for a given
threshold distance τ . Recall is defined exactly the other way around. It is computed by
evaluating the closest neighbor for each point in the ground-truth reconstruction. The recall
score is then computed by evaluating the fraction of ground-truth point which have a closest
neighbor within the distance τ . For this experiment, τ is set to 3 (mm).

The differences in processed pixels per image, F1 score, precision, completeness and compu-
tation time are summarized in Table 5-1.

S Processed Pixels F1 Precision Recollection Time (min)
1 2,073,600 0.7700 0.7252 0.8207 129.2
0.5 518,400 0.4425 0.5836 0.3564 57.4
0.25 129,600 0.1196 0.3585 0.0718 28.6
0.125 32,400 0.0217 0.1780 0.0116 14.2

Table 5-1: Experimental results showcasing the effect in dense 3D point cloud quality when
downscaling the image. The downscale factor S limits the number of processed pixels per image
which accelerates the dense 3D modeling.

From Table 5-1 it can be clearly seen that the computation time is directly proportional
with the downscaling factor S. Furthermore, it can be concluded that not only the recall
score decreases for smaller downscaling factors S. Besides recall, also precision drops which
is undesirable since it destroys fine details and edges in the reconstruction.

In this work, an alternative is proposed to improve the scalability of the dense 3D modeling
algorithms. Instead of downscaling the image, the full resolution is used as input to the
multi-view stereo algorithm. However, instead of processing each pixel, a subset of pixels is
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processed. Specifically, in this work, it is proposed to process every kth pixel which results in
a uniform grid. This is shown for an example image-grid of 20× 20 pixels in Figure 5-4.

Figure 5-4: Full image (left) sparse pixel computations (black) where every kth = 3 pixel is
processed. The total reduction in processed pixels is equal to k2.

Using this scheme, the number of processed pixels is reduced with a factor k2. This method
circumvents the problem of larger relative patches since the original image is kept during
processing. To implement this, the code of COLMAP is changed such that it skips every kth
pixel and outputs a sparse set of depth-normal maps defined as Ds and Ns, respectively.

By implementing this change and choosing a sampling-rate k, the computation time per
image is reduced by limiting the number of processed pixels. Since COLMAP’s parallel
implementation processes one image row at a time, the computation time is reduced by a
factor k. This is visualized in Figure 5-5.

Figure 5-5: COLMAP’s parallel implementation processes one image row at a time. In this
example, the MVS computations are accelerated with a factor 3 which is directly proportional to
the sampling-rate k = 3.

However, the output is a sparse depth-normal map where many pixels contain missing values.
As described in Chapter 2, a full depth-normal map is necessary to extract a dense 3D model
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Xd. The next section will propose a method to achieve this and answer the question of how
the dense depth and normal information may be recovered.

5-2 Dense depth recovery

In this section, a method will be derived to retrieve the missing pixel information. The goal
is to transform the sparse set of depth maps Ds and normal maps Ns into dense maps D and
N , respectively. Using the proposed method, a dense depth-normal map can be estimated
from the sparse multi-view stereo output.

5-2-1 Problem definition

Given the sparse depth-normal map from running COLMAP’s adjusted multi-view stereo
algorithm, the goal is to compute a depth and normal estimate for all the missing pixel
values. For an image j there are three information sources available: the color image Ij ∈ I,
the sparse depth map Dj ∈ Ds and the sparse normal map Nj ∈ Ns.

To solve for the missing pixel values, in this work, it is proposed to leverage the available full
color image. It is argued that there exists a local correlation between depth and color space
that can be used to estimate the missing depth-normal values whilst preserving details. In
this definition, the term local indicates that this assumption holds for small neighborhoods
of pixels (u, v) ∈ Ωk in an image. This relation is depicted in Figure 5-6.

Figure 5-6: The assumption in this work is that similar colored pixels in a local neighborhood
(u, v) ∈ Ωk are linearly correlated with their associated depths d(u, v).

To use this correlation, it is argued that, given a small enough neighborhood Ωk of pixels in
an image, the surface that is reconstructed within this local area can be well approximated
with a 3D plane πk ∈ R2

πk := nT · p + dc = 0, (5-1)

where n = (a, b, c)T represents the normal vector of the plane, p = (x, y, z)T a point lying on
the plane and dc a constant defined as
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dc = −nT · c, (5-2)

where c = (cx, cy, cz)T represents the centroid of the plane. The problem of retrieving the
missing pixel values is then solved by estimating a series of 3D planes within each local window
Ωk. This is shown in Figure 5-7.

Figure 5-7: For a local neighborhood of pixels (u, v) ∈ Ωk (blue) in an image it is argued that
the 3D scene that is reconstructed can be well approximated by a 3D plane πk. Missing pixels
are retrieved by back-projection (red square).

For a given plane πk valid in a local neighborhood of pixels (u, v) ∈ Ωk, the missing pixel
estimates for depth d(u, v) can be retrieved by projecting the 3D plane back into the 2D depth
map which may be computed as

d(u, v) = − dc
(ae+ bf + c) (u, v) ∈ Ωk. (5-3)

In this equation it holds that u and v are the pixel coordinates and {a, b, c, dc} the plane-
parameters. Furthermore, e and f are defined as

e = u− fx
c̄x

,

f = v − fy
c̄y

,
(5-4)

where the parameters {fx, fy, c̄x, c̄y} are obtained from the intrinsic camera calibration matrix
K as described in Appendix A. Since a 3D plane has a constant normal-vector, to obtain the
missing normal values, all pixels within the local neighborhood are set equal to the orientation
of the 3D plane n.

Using this method, there are two key assumptions made to solve the problem of retrieving
missing pixel values. First, it is assumed that there exists a local correlation between the
color and depth space. And secondly, within a small neighborhood Ωk where this correlation
holds, the local surface can be well approximated with a planer 3D model.

However, that still leaves the question unanswered of how the local neighborhoods Ωk can
be obtained. In this work, it is proposed to compute the local neighborhoods by computing
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an over-segmentation of the color image: super-pixels. Such super-pixels have the desirable
properties in that they locally cluster the image based on spatial (locality) and color (corre-
lated with depth) distance. What exactly super-pixels are and how they are computed will
be treated next.

5-2-2 Super-pixel segmentation

Super-pixels are a set of clusters computed from a color image. Each cluster is defined by its
centroid location and boundary pixels. Super-pixels are an abstraction of the color image and
can been seen as a low-level representation of the image. In such a representation each pixel
in the image is assigned to a specific cluster. Super-pixels are widely used in the computer-
vision community to accelerate or improve the accuracy of vision applications. Examples
include 2D-tracking and optical-flow estimation problems [50, 47]. The key insight of these
applications is that operating on a super-pixel abstraction of an image provides a more efficient
representation of an image without much loss of information. This efficient representation
may be leveraged to improve the results. However, super-pixels have never been applied in
the context of multi-view stereo to reduce the computational complexity. That is the main
idea behind the proposed approach - leverage super-pixel level abstraction of images to reduce
the computational complexity in multi-view stereo.

There are multiple ways of computing super-pixels but the most widely used one is defined
as Simple Linear Iterative Clustering (SLIC) [2]. It computes the over-segmentation in two
steps: initialization and iteration until convergence. First, the initialization distributes a set
of K cluster-centers in a uniform grid. Then, secondly, each pixel in the image is assigned to a
cluster-center k based on color and spatial distance. Next, the cluster-centers are updated with
a new location based on the assigned pixels. Then these steps are repeated until convergence.
This yields a set of cluster-centers with assigned pixels. This process is shown in Figure 5-8.

Figure 5-8: Computation of K = 8 super-pixels in two steps. Initialization of cluster-centers
(left) and convergence into a set of super-pixels (right).

The parameterK which defines the number of super-pixels can be controlled. To showcase the
effect of this parameter, several over-segmentation’s are computed using the SLIC algorithm
and shown in Figure 5-9.
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Figure 5-9: Super-pixel segmentation of the image computed using the SLIC algorithm [2]. In
this example, the number of clusters (cyanide borders) is varied by increasing the value K.

Due to their properties, super-pixel clusters can be used to leverage the assumed correlation
between depth and color to obtain a set of local neighborhoods Ωk.

Summarizing, the dense depth-normal estimation process can be divided in three steps. First,
it will compute a set of super-pixels from a color image which are used as local neighborhoods
Ωk. Next, it will collect the sparse set of depth-normal samples and compute a 3D plane for
each super-pixel. Thirdly, it will project the 3D planes back into the depth map to obtain
the missing depth values. The missing normal values are extracted by setting them equal to
the constant normal vector of each plane. This process is depicted in Figure 5-10.

Figure 5-10: Super-pixels overlaid on the sparse depth-normal map (left). Interpolation is
executed by estimating a plane for each super-pixel (right) using the sparse information (black
rectangular) and projecting it back into the depth-normal map (middle).

5-2-3 Choosing the parameters

The number of required super-pixel clusters are governed by the parameter K. When the
goal is to accelerate the multi-view stereo scheme by abstracting the image in super-pixels, it
is desirable to have an as compact as possible abstraction. Specifically, as small as possible
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K. However, from Figure 5-9 it became clear that at smaller values of K the super-pixels
fail to grasp fine details in the scene. In this example, they fail to capture the boundaries of
the Ignatius statue accurately. Hence, there is a lower-bound on the required super-pixels. In
this work, it is proposed to estimate such bound by defining the minimum width or height in
pixels pmin of the smallest details in the image that needs to be retained in the abstraction.

If an image has a width w and height h the total number of pixels is equal to w ·h. Let K be
the number of super-pixels then the average length or width of a super-pixel L is equal to

L =

√
w · h
K

. (5-5)

When the smallest details in the image are of size pmin then it is required that at least the
average super-pixel length and width is equal to this. This yields

pmin = L =

√
w · h
K

. (5-6)

Solving Equation (5-6) for K then results in

K = w · h
p2
min

. (5-7)

This yields a minimum number of super-pixels that are required to capture the details of
interest. This only leaves the parameter k (sampling-rate) to be considered. Ideally, the
sampling-rate should be chosen as high as possible since the number of processed pixels is
reduced with a factor k2. To make the problem tractable it is required that the minimum
number of samples kmin is equal to 1. The number of samples per super-pixel cluster is given
as

kmin = p2
min

k2 . (5-8)

Solving for k will result in

k =

√
p2
min

kmin
, (5-9)

where k is rounded down to its closest integer value. However, 1 ≤ k so Equation (5-22) is
adjusted to always be greater than or equal to 1

k = max

1,

√
p2
min

kmin

 . (5-10)

Concluding, a method was obtained for setting the required parameters K and k to run the
proposed scheme. However, the process of transforming the sparse depth-normal map into a
set of 3D planes πk has not been introduced. This will be treated next.
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5-2-4 Robust M-estimation for dense depth-normal map recovery

The dense depth-normal map estimation problem is defined as identifying a set of 3D planes
using the sparse depth-normal map. Since each depth-normal map contains a portion of
outliers due to noise in the MVS algorithm, the problem is framed as a robust model fitting
problem. To this end, it is chosen to use a maximum likelihood type or M-estimation frame-
work where a robust loss function is minimized to solve for the planar parameters. In this
section, the framework which estimates the set of planes using the M-estimation scheme will
be derived.

The available information is the sparse set of depth-normal pixels and the super-pixel mask
which contains the local neighborhoods (u, v) ∈ Ωk. For a super-pixel k, the goal becomes to
infer a 3D plane πk which is described by its centroid c and normal vector n. The normal
vectors are given in Cartesian coordinates. This is problematic since this means that there is a
norm-constraint on the vector. To circumvent this, the Cartesian coordinates are transformed
to spherical coordinates via the mapping (x, y, z) −→ (r, θ, ϕ)

θ = arctan2
(√

a2 + b2

r

)
,

ϕ = arctan2
(
b

c

)
,

(5-11)

which satisfies the norm constraint by fixing the radius r to 1. The plane πk is then defined
by the state

xk =
(
cx, cy, cz, θ, ϕ

)T
, (5-12)

which needs to be estimated. The state xk is directly related to the plane which was described
in Equation (5-1) via the mapping

a := sin(ϕ) · cos(θ),
b := sin(ϕ) · sin(θ),
c := cos(ϕ),
dc := − (a · cx + b · cy + c · cz) .

(5-13)

For a super-pixel, one processed pixel contains a 3D point and a normal vector defined in
spherical coordinates zi = (zx, zy, zz, zθ, zϕ)T . This yields the term


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

Ai


cx
cy
cz
θ
ϕ


︸ ︷︷ ︸

xk

=


zx
zy
zz
zθ
zϕ


︸ ︷︷ ︸

bi

, (5-14)
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where Ai ∈ R5×5, xk ∈ R5 and bi ∈ R5. Collecting allN measurements within one super-pixel
k yields

Ak =


A0
A1
·
·

AN

 , bk =


b0
b1
·
·

bN

 , (5-15)

where Ak ∈ R5N×5 and bk ∈ R5N . Using this result, the error for one super-pixel is defined
as

εk = Akxk − bk, (5-16)

where εk ∈ R5N . Let the total number of super-pixels be equal to K, then the total system
can be defined by stacking the results for each super-pixel


ε0
ε1
...
εK


︸ ︷︷ ︸

ε

=


A0

A1
. . .

AK


︸ ︷︷ ︸

A


x0
x1
...

xK


︸ ︷︷ ︸

x

−


b0
b1
·
·

bK


︸ ︷︷ ︸

b

. (5-17)

From which the plane estimation problem can be formulated in a M-estimator framework by
formulating it as a least-squares problem where the Huber’s loss function is minimized

min
x
J(ε) =

K−1∑
i=0

ρ
(
ε2
k

)
, (5-18)

where ρ(·) denotes the Huber’s loss function [22]. This loss function is designed such that
large residuals get down-weighted. It can be solved by the Iteratively Reweighted Least
Squares (IRLSQ) algorithm which iterates between solving the weighted least-squares problem
and using that result to update the weights until convergence. The convergence criteria is
met when the cost-change between two iterations is smaller than a threshold ∆min

|1− Jt−1
Jt
| ≤ ∆min, (5-19)

where the index t is defined as the iteration number. In this setting, the weighted least-squares
problem is defined as

min
xk

K−1∑
k=0

wk · ε2
k, (5-20)
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where wk ∈ R5N×5N is a diagonal weighting matrix. The weights are derived from differenti-
ating Huber’s loss function and are defined for a single residual as

wi(εi) =
{

1 if |εi| ≤ c · σ̂
| 1εi | otherwise. (5-21)

In equation (5-21), c is chosen as 1.345. The parameter c is chosen such that it has 95
(%) efficiency when there are no outliers compared to the ordinary least-squares solution
[22]. Furthermore, σ̂ is defined as the estimated co-variance of the state belonging to εi. In
practice, the co-variance σ of the states is unknown and needs to be estimated as well. This
is achieved by following the procedure as described in the works of P. J. Rousseeuw et al.
[34]. It estimates the co-variance by computing the Median of Absolute Deviations (MAD)

σ̂xi = 1.4826 ·median (|εxi |) , (5-22)

where εxi is the set of residuals of state i. The MAD is scaled with a constant 1.4286 to
obtain a break-down point of 50 (%) when the distribution is assumed to be Gaussian [34].
The break-down point is a measure of robustness and indicates at what percentage of outliers
in the sampled set the estimate becomes biased. For example, to compute σ̂θ, the residuals
of the state θ in all K super-pixels are collected and the median value of this vector scaled
with the constant 1.4286 is used as the robust co-variance estimate.
Summarizing, the method can be formulated for a single image in the following pseudo-code:

Algorithm 1 Accelerated Dense 3D modeling
1: procedure Pre-processing
2: pmin ← smallest pixel-size of details
3: K ← (5-6);
4: k ← (5-10);
5: compute SLIC super-pixels;
6: if each super-pixel has one sample then
7: continue;
8: else
9: K ← K+, K+ ≤ K;

10: procedure Processing
11: run multi-view stereo on the sparse uniform grid of pixels;
12: store sparse depth-normal image;
13: procedure Post-processing
14: build system matrix using super-pixels and sparse multi-view stereo output (5-17);
15: wk ← Ik;
16: while not converged (5-19) do
17: x∗ ← argmin

x

∑K−1
k=0 wk · ε2

k according to (5-20);
18: σ̂ ← 1.4286 ·median (ε) according to (5-22);
19: wk ← Huber’s weights obtained from (5-21);
20: interpolate depth-normal images using (5-3);
21: store dense depth-normal image;
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5-3 Verifying the color-depth correlation

The dense depth estimation scheme was created on the basis of two key-assumptions. First,
it was assumed that there exists a local correlation between color and depth for a small
enough neighborhood Ωk. This implied that color information can be used to define a small
neighborhood of pixels such that the depth of those pixels are linearly correlated. The second
assumption stated that if such neighborhood exists, the surface within that neighborhood can
be well-approximated with a 3D planar model πk.
In this section, the first assumption will be verified by means of an experiment. For this
experiment a high-accuracy ground-truth depth map is required with corresponding color
image. To this end, the Middlebury stereo data set is suitable [36]. This data set contains
several color images with highly accurate ground-truth depth maps.
To perform the experiment, a data set is chosen which contains the color image and the
corresponding ground-truth depth map. Next, for a different number of super-pixels, the
color information is defined as the independent variable and used to predict the depth within
each super-pixel. This yields a linear predictor of the form

ŷk = Akxk, (5-23)

where the predictor uses the available color information. This results in a predictor of depth
of the form

d̂(u, v) = αk · L+ βk ·A+ γk ·B (u, v) ∈ Ωk,

d̂(u, v) =
(
L A B

)αkβk
γk

 (u, v) ∈ Ωk,
(5-24)

where L, A, and B are the colors in LAB-space at a pixel location (u, v) and αk ,βk,γk are
the estimated coefficients for the super-pixel k. To estimate the coefficients, the ground-truth
depths and respective color pixels can be collected in a standard linear regression form


d0
d1
...
dN


︸ ︷︷ ︸

yk

=


L0 A0 B0
L1 A1 B1

...
LN AN BN


︸ ︷︷ ︸

Ak

αkβk
γk


︸ ︷︷ ︸

xk

+


ε0
ε1
...
εN


︸ ︷︷ ︸
εk

, (5-25)

where yk ∈ RN , Ak ∈ RN×3, xk ∈ R3 and εk ∈ RN . This is the result for one super-pixel k
with N pixels. Expanding this result to all K super-pixels by stacking the results yields


y0
y1
...

yK


︸ ︷︷ ︸

y

=


A0

A1
. . .

AK


︸ ︷︷ ︸

A


x0
x1
...

xK


︸ ︷︷ ︸

x

+


ε0
ε1
...
εK


︸ ︷︷ ︸

ε

. (5-26)
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The least-squares solution to Equation (5-26) is

x∗ = (ATA)−1ATy. (5-27)

From this result, the prediction error is equal to

ε = Ax∗ − y. (5-28)

The correlation coefficient for multiple regression (regression involving more than one inde-
pendent variables) is defined as the portion of the sample variance (ground-truth depths) that
is explained by the predictor ŷ

R2 = 1− Cov(ε)
Cov(y) , (5-29)

where Cov(·) is the sample co-variance. This procedure is executed on the Midlebury stereo
benchmark [36] for 5 data sets - Vintage, Pipes, Playtable, Sticks and Jadeplant. The ground-
truth depth-maps and color images are shown in Figure 5-11.

Figure 5-11: Ground-truth depth-map (bottom) and color-image (top). For this experiment, the
Vintage, Pipes, Playtable, Sticks and Jadeplant (left to right) data sets were chosen from the
Midlebury stereo benchmark [36] to represent a diverse set of scenes.

The correlation coefficient (R2) is plotted for increasing number of super-pixels on each data
set. Specifically, the correlation coefficient is computed for

K = {10, 40, 90, 160, 250, 360, 490, 640, 810, 1000}. (5-30)

The results for the different data sets are shown in Figure 5-12.
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Figure 5-12: The correlation coefficient (R2) is plotted for different number of super-pixels (K).
Each colored line represents the results obtained on a different data set from the Midlebury stereo
benchmark [36].

From Figure 5-12 it can be concluded that for increasing number of super-pixels there is a clear
correlation between color and depth. Starting with 10 and increasing to 1000 super-pixels,
the correlation coefficient increases from an average value of 0.61 to 0.90. Although the pipes
data set seems to be an outlier in the sense that its correlation coefficient only increases to
∼0.7, it is still a significant result and supports the assumption that there exist a strong local
linear correlation between the color and depth space. Concluding, the experimental results
indicate that for sufficiently small-sized super-pixels (higher number of super-pixels), a linear
correlation exists between the local neighborhood of color pixels (u, v) ∈ Ωk and depth values
d(u, v) which can be exploited with the proposed scheme.

5-4 Experimental validation

In the previous sections, a method for accelerating dense 3D modeling was proposed. Contrary
to downscaling, it was proposed to process a sparse set of pixels on a uniform grid for each
image Ij . Specifically, it was proposed to process only every kth pixel. This procedure
effectively limits the number of processed pixels with a factor k2. However, the resulting
sparse output needed to be densified in order to extract dense 3D point cloud models. To
this end, it was proposed to leverage the local correlation between color and depth. Using
this relation, the problem was defined as estimating a set of K 3D planes, using the sparse
depth map Dj ∈ Ds and normal map Nj ∈ Ns. The local neighborhoods Ωk where such
planes would be computed are obtained by means of a super-pixel over-segmentation on the
color image. The local neighborhoods of pixels were grouped together based on color and
spatial distance. It was expected that this procedure has the advantage of preserving edges
and boundaries in a scene.
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The goal of this section is to validate whether the proposed approach yields accurate and com-
plete dense 3D point cloud models at decreased computational complexity. To this end, the
proposed approach will be tested on the Tanks-and-Temples benchmark [25] on the Ignatius
data set. The Ignatius data set is chosen since it contains complex curved shapes within the
scene. This makes it possible to assess how well the approach holds for non planar objects. It
is important to note that the experiment is performed on only one data set, the Ignatius data
set. Although the experiment is only run on one data set, it should provide a good indication
whether the planar surface approximation yields good 3D reconstructions.

5-4-1 Method

The input data set that is provided in the Tanks-and-Temples benchmark consists of a sparse
3D model with a set of images with a resolution of 1920 × 1080 and corresponding poses.
Furthermore, it provides a highly accurate ground-truth 3D reconstruction for evaluation
purposes. For a given sampling-rate and number of super-pixels, a sparse set of depth and
normal maps are computed using COLMAP’s MVS algorithm. Next, the proposed method
is used to estimate a dense set of depth and normal maps. Then, the result is fused into a
dense 3D point cloud model. Finally, this dense 3D point cloud model is evaluated by using
the ground-truth 3D model.

In this experiment, a series of reconstructions will be computed where the sampling-rate will
be increased to study the effect on computation time and 3D model quality. It will showcase
the performance in reconstruction quality at reduced computational complexities and compare
this with the downscaling of images.

5-4-2 Running the experiment

First, the number of required super-pixels need to be computed using Equation (5-7). Then,
it is necessary to define the smallest pixel details that need to be captured. Since the Ignatius
statue needs to be reconstructed a good starting-point is examining the fine details in the
statue. By doing so, it is determined that most of the fine details such as the fingers can be
captured by super-pixels of 15 (px) therefore setting pmin = 15. This is illustrated in Figure
5-13.

Figure 5-13: Zoomed in image showing the index finger of the Ignatius statue. Most details in
the statue can be captured by approximately 15 (px) wide structures (purple).

Filling in (5-7) yields
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Kmin = w · h
p2
min

= 1920 · 1080
196 = 9259, (5-31)

which is rounded upwards to 10,000 for the inclusion of a small margin. Using this amount of
super-pixels and requiring at least a single sample in each cluster, the maximum sampling-rate
can be calculated using Equation (5-22) as

kmax = max

1,

√
p2
min

kmin

 = max

1,

√
152

1

 = 15, (5-32)

which is sufficient for comparison with downscaling the image which was executed up until a
factor of 8. With these results, a set of reconstructions is computed for S = {1, 0.5, 0.25, 0.125}.
In this setting, the factor S denotes how many pixels are processed with each MVS iteration
as a fraction of the full resolution input images. In this definition, the factor S is equivalent
to the inverse of the sampling-rate k. As such, it is analogous to downscaling an image with
a factor S since both approaches limit the number of processed pixels by a factor S2. All
reconstructions were computed using the hardware set-up described in Appendix B and using
COLMAP’s standard settings.

Although running S = {1, 0.5, 0.25} yielded no problems, the number of super-pixels was set
to K = 5000 for S = 0.125. This was chosen since otherwise there were a few super-pixels
with no samples in the data set. The resulting reconstructions are compared with downscaling
the input images and visualized in Figure 5-14.

Figure 5-14: Dense 3D point cloud reconstructions at different factors S compared against the
ground-truth (GT). Showing the effect of downscaling (top row) and using the proposed scheme
(bottom) on the dense 3D reconstruction.
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From Figure 5-14 it can be concluded that the difference with downscaling is significant. Even
at the coarsest scale, k = 8, which processed only 1.56 (%) of the total number of pixels, the
reconstruction is visually not very different from the full information result. To make a more
thorough comparison the reconstruction is compared with the available ground-truth 3D point
cloud model which is obtained by a high-accuracy Light Detection And Ranging (LiDAR).
For each reconstruction, an accuracy, completeness and F1 score is computed. Where F1 is
the harmonic mean of the accuracy and completeness scores which yields a single performance
index. All metrics are between 0 and 1 where a higher score indicates better performance.
To determine the computation time, the interpolation time was not considered. This means
that the processing time only consists of running COLMAP’s MVS module. In Chapter 6,
the post processing step will be considered to provide a more complete overview of the net
benefit. The summary of these results are shown in Table 5-2.

S Processed Pixels F1 Precision Recollection Time (min)
1 2,073,600 0.770 0.725 0.821 129.2
0.5 518,400 0.756 0.718 0.799 50.41
0.25 129,600 0.757 0.720 0.797 26.3
0.125 32,400 0.703 0.652 0.763 14.02

Table 5-2: Experimental results showcasing the effect in dense 3D point cloud quality when
operating the proposed schemes at higher sampling-rates. For each sample-rate, computation time
excluding interpolation, number of processed pixels per image, F1, Precision, and Recollection
metrics are computed for a threshold τ of 3 (mm). Higher scores indicate a better reconstruction.

Using the proposed method, the computation time of multi-view stereo is decreased with a
factor S. Furthermore, it is surprising that reducing the number of super-pixels by half for
the case S = 0.125 did not impact the performance significantly. This could be an indication
that the method that was outlined to determine a minimum number of super-pixels is too
conservative. Given the fact that in multi-view depth map estimation a set of independent
depth maps are fused into a dense 3D point cloud model, it could be the case that having
a set of coarser depth maps which do not capture all the details in a single image is still
acceptable for the final result since it is fixed in the fusion step. This is considered interesting
for future work. The differences in 3D point cloud quality between downscaling and the
proposed approach are shown in Figure 5-15.

From Figure 5-15 it can be concluded that the proposed method is able to reduce the compu-
tational complexity at a more favorable trade-off in 3D point cloud quality when compared
to downscaling the input images. Notably, at the coarsest setting for k = 8, the proposed
method processed only 1.56 (%) of the pixels when compared to the full resolution images
and reconstructed a point cloud model with a F1 score of 0.703. To obtain an equal reduction
in processed pixels per image, the input images would need to be downscaled with a factor 8.
As demonstrated in Table 5-1, in this setting, COLMAP’s MVS module produces a 3D point
cloud model with a F1 score of 0.022 which is 96.9 (%) lower than the proposed system. Al-
though more experiments are necessary to generalize these findings, it can be concluded that
there is a strong indication that the proposed system is capable of reconstructing complex
shapes of scenes whilst decreasing the computational complexity in the MVS module when
compared to downscaling the input images.

Q. Dekker Master of Science Thesis



5-5 Overview of the proposed system 51

Figure 5-15: Comparison between downscaling (dashed lines) and the proposed method (unbro-
ken line). For different downscale factors (1/S), a dense reconstruction is computed and the F1
(red), Precision (green) and Recollection (blue) scores are computed.

5-5 Overview of the proposed system

Now that the effectiveness of the acceleration scheme has been established in a first benchmark
experiment, the complete proposed architecture can be defined. First, the input to the system
is a set of synchronized visual-inertial recording and a calibrated camera system. Next, the
proposed system will compute a dense 3D reconstruction in two steps. First, it will compute
a set of poses T and sparse point cloud model Xs using the Maplab framework. Next, a
sampling-rate and set of super-pixels is chosen and a dense reconstruction Xd is computed
using the scheme outlined in this chapter. An overview of the proposed system is depicted in
Figure 5-16

Figure 5-16: The proposed system computes a dense 3D point cloud model Xd in two steps. In
the first step it computes a set of poses T and a sparse 3D map Xs. Secondly, it computes the
dense 3D point cloud model by running MVS on a sub-set of pixels, interpolating and fusing the
sparse depth maps Ds normal maps Ns.
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5-6 Conclusion

In this chapter, a method was proposed to accelerate the dense 3D modeling module. It was
shown that there exists a local linear correlation between color and depth for small enough
neighborhoods Ωk. This fact was exploited by moving away from per-pixel computations in
multi-view stereo to higher-level clusters of pixels for which the local correlation holds. Such
neighborhoods were obtained by computing an over-segmentation of the image: super-pixels.
Then, it was proposed to compute only a sparse uniform grid of pixels defined by a sampling-
rate k in an image which accelerated the dense 3D modeling by this factor. The sparse output
in combination with the super-pixel grid was used to identify a set of 3D planes using robust
regression. These planes were then used to obtain the dense depth-normal information again
by back-projection in the image plane. Finally, the resulting dense depth-normal images were
fused into a dense 3D point cloud model.

To study the performance, several experiments were run on the Tanks-and-Temples [3] bench-
mark. It was shown that the proposed method was successful in retaining details at sparser
outputs. Even at very high sampling-rates (i.e. only processing 1.56 (%) of the pixels) the
proposed approach was still capable of computing reconstructions at only a modest decrease
in quality. For example, for the case S = 0.125, the F1 score decreased from 0.770 to 0.703
compared to S = 1. The number of processed pixels was reduced from 2, 073, 600 to 32, 400
per image.

However, the process of identifying the planar parameters was written in un-optimized and
un-compiled code (Python). The interpolation time was not considered in these scenarios but
was established to impair the net benefit of the approach. However, due to the independence
of the computations, a parallel Graphical Processing Unit (GPU) implementation is possible
which would decrease the interpolation time significant. This is considered interesting for
future studies.

Now that the sparse and dense 3D modeling modules have been optimized, it is possible to
put everything together and test the complete architecture in end-to-end experiments and
compare against COLMAP and PIX4D.
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Chapter 6

End-to-end Experiments

In Chapters 4 and 5, an alternative architecture was proposed to mitigate the typical issues
with the current method: direct observation of scale, lack of robustness and scalability issues.
As 3D modeling is executed in two steps - sparse and dense 3D modeling - the two steps were
optimized sequentially. First, in Chapter 4, inertial information was included in the sparse
3D modeling system. This allowed the use of more efficient algorithms which used a form
of visual-inertial Simultaneous Localization and Mapping (SLAM) instead of Structure from
Motion (SfM). Following this approach, it was concluded that the scale is directly observable
and the scalability was improved in the sparse 3D modeling step. Next, in Chapter 5, the
dense 3D modeling was optimized for computational complexity. Specifically, the scalability
was improved by operating not on the pixel level of the visual images but on a higher level
abstraction - super-pixels. Using this method, it was concluded that a significant reduction
in computational complexity was realized without compromising the 3D point cloud quality.
Finally, the SLAM based approach was combined with the optimized dense 3D point cloud
generation module, which resulted in an end-to-end visual-inertial 3D modeling architecture.

6-1 Test method

Now that the proposed architecture has been defined in Figure 5-16, it can be tested in end-
to-end experiments. In this end-to-end setting the architectures will have a visual-inertial
data set available as input. Using this data, the aim is to reconstruct a dense 3D point cloud
model of the scene.

The goal of these experiments is to put everything together and showcase the performance in
realistic scenarios of the current and proposed architectures. From these experiments it will be
possible to make several conclusions whether the proposed architecture is capable of mitigating
the typical issues of PIX4D and COLMAP. To achieve this, two types of data sets are used:
multiple visual-inertial recordings from the EuRoC Micro Aerial Vehicle (MAV) benchmark
[9] and recorded data in a lab-setting in the form of a case-study on a representative scene.
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To be able to run a proper experiment, ideally, three types of information are required:
a ground-truth trajectory, a ground-truth dense 3D point cloud model of the scene and a
synchronized visual-inertial data set. First, the process of obtaining a ground-truth trajectory
and a 3D model will be explained for the EuRoC MAV benchmark. Next, the process of
evaluating the obtained trajectory and dense 3D point cloud model will be explained.

After having introduced the necessary concepts for evaluation purposes, several experiments
will be run on the EuRoC MAV benchmark for which all information is available. After this,
a set of experiments is executed on a lab-recording where the goal is to test the proposed
system in a realistic remote inspection scenario and study its performance.

6-2 Obtaining a ground-truth trajectory and 3D model

Obtaining ground-truth information is the most critical aspect in running end-to-end experi-
ments. Without this information the reconstructions can only be evaluated visually. To obtain
a ground-truth set of poses, the typical approach is to use a high-accuracy motion tracking
device. For example, in the well-known EuRoC MAV benchmark the 6D Vicon motion-tracker
was used. Such a device directly measures the pose of the system. This information can be
used as a ground-truth trajectory of an experiment.

The ground-truth 3D dense point cloud model is typically captured using a high-accuracy
Light Detection And Ranging (LiDAR) sensor. LiDAR’s are laser-based scanning devices
capable of measuring a 3D scene with millimeter accuracy. Such dense 3D point cloud model
can then be used to compare against the 3D reconstruction of the visual(-inertial) architecture.

6-3 Evaluating the poses

To evaluate the poses, the same procedure as outlined in section 4-4 is used. The procedure
operates in two steps. First, it aligns the set of reconstructed poses with the ground-truth
trajectory. This is achieved by Umeyama’s [45] Sim(3) or SE(3) method, depending on the
architecture. For PIX4D and COLMAP the SE(3) method is used. This is necessary since
the recordings do not contain attached metadata and therefore, the reconstructed poses are
correct up to an unknown scale factor. Furthermore, for the proposed architecture, only a
Sim(3) alignment is required. The output of this first step is a set of reconstructed poses that
are aligned with the ground-truth trajectory.

In the second step, two metrics are computed: the Absolute Pose Error (APE) and Relative
Pose Error (RPE). The APE computes the Euclidean distance in meters between the ground-
truth and reconstructed pose location. The RPE is defined as the relative difference in esti-
mated pose. Intuitively, it can be thought of as a delta or difference between two consecutive
estimated and ground-truth poses. Whereas the APE is a good measure of global consistency
in the reconstructed poses, the RPE is commonly used to evaluate the drift over time in
the estimation of the poses. Particularly, in SLAM applications this is interesting since drift
builds up over the course of a trajectory and this metric provides insight as to how rapidly
the accuracy of the reconstructed poses degrades. For both metrics, summarizing statistics
are computed to evaluate the resulting trajectories. In this work, the Root Mean Squared
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Error (RMSE) and standard deviation, σ are computed for the APE and RPE using the work
of [20].

6-4 Evaluating the reconstruction

For evaluation purposes, the Tanks-and-Temples bench-marking procedure is used. Evalu-
ating a dense 3D point cloud reconstruction boils down to comparing a set of two 3D point
cloud models: the reference and the reconstruction. The quality of a point cloud model can
be assessed by two characteristics: accuracy and completeness. Both characteristics can be
computed quantitatively by computing the distance from one point cloud to the other and
summarizing the results. Then, accuracy is defined as the percentile of points from the recon-
struction that have a closest-neighbor with the ground-truth reconstruction within a threshold
τ . Completeness is computed the other way around where the nearest distance neighbor is
determined for each 3D point of the ground-truth reconstruction. Completeness is then de-
fined as the percentile of ground-truth points that have a nearest neighbor point within a
distance threshold τ . This process of calculating accuracy and completeness is visualized in
Figure 6-1.

Figure 6-1: Ground-truth 3D (green) and reconstructed 3D model (red). Showing the complete-
ness (left) and accuracy (right) score. Both metrics are computed by means of a nearest-neighbor
search for each 3D point and thresholding on a distance τ . In this example the completeness and
accuracy scores are 66.67 (%) and 75 (%), respectively.

When computing this score the threshold τ is typically chosen as the 2σ Mahalanobis distance
of the specific LiDAR scanner that was used. This is chosen such that points that lie within
the threshold τ have a ∼95 (%) probability of corresponding to the correct ground-truth point
when the LiDAR’s noise is assumed to be Gaussian. To provide one score which describes
the quality of the point cloud, the authors of [3] propose to compute the harmonic mean of
the recollection and precision metric defined as the F1 score

F1(τ) = 2P (τ)R(τ)
P (τ) +R(τ) . (6-1)

This metric is preferred over for example the average of both metric since it has the property
that when either P (τ)→ 0 or R(τ)→ 0, F (τ)→ 0. Meaning, that lack of completeness and
precision is both penalized. Taken to the extreme, when a reconstruction algorithm would
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perfectly reconstruct a single 3D point, it would still have an average combined precision and
accuracy score of 50 (%) when the mean is taken. On the contrary, using the harmonic mean
would result in a combined score of 0 which better reflects the actual reconstruction quality.

Now that the evaluation method is outlined, the specific benchmark data set will be treated
next.

6-5 The EuRoC micro aerial vehicle benchmark data Set

The EuRoC Micro Aerial Vehicle benchmark data set [9] was created for the aim of testing
real-time SLAM algorithms. It provides a set of recordings that were acquired with the Asctec
Firefly drone. On board of the drone, there is a visual-inertial architecture and a transmitter
for the Vicon laser-tracker. The test set-up of the EuRoC MAV drone system is shown in
Figure 6-2.

Figure 6-2: Asctec Firefly hex-rotor helicopter used during data set collection (left) and sensors
and ground-truth instruments schematic overview (right). The figure and caption are obtained
from [9].

The recordings are acquired in different locations but for this work, the Vicon hall was chosen
as a suitable location since for this location there is a ground-truth dense 3D point cloud
model available to compare against. This ground-truth point cloud model is captured with
millimeter accuracy using the Leica MS50 laser-scanner and is depicted in Figure 6-3.

For this location, there are three set of recordings. Each recording differs in the difficulty of
the flown trajectory. Starting from a slow-flown path, in each new recording, the speed is
increased thereby making it more important to deal with aspects like motion blur. In each
recording, the drone flies a path through the room at various heights, orientations and speed.
Note that the trajectories of the drone do not resemble a realistic pattern for remote inspection
purposes. In these cases, it is important to obtain a controlled, slow pattern of the object of
interest. Although the benchmark was not captured with this goal in mind, it is interesting
to study nevertheless. Since the recordings are more challenging, the algorithms are tested
more exhaustively by decreasing the input data quality. This makes it possible to study the
robustness properties more in depth. Besides this, it will be interesting to observe how the
reconstruction quality is influenced by feeding the different architectures with different data.

For each recording, three reconstructions are computed using the two current approaches
(PIX4D and COLMAP) and the proposed architecture without the accelerated dense mod-
eling scheme (i.e. k = 1). All reconstructions are computed on the hardware set-up that
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Figure 6-3: Ground-truth point cloud model of the EuRoC Vicon Hall captured with a Leica
MS50 laser-scanner [9].

is described in Appendix B. Next, for each reconstruction, three aspects are compared: the
computation time, the pose-accuracy in sparse modeling and the dense 3D model quality.
After this, the complete proposed approach is tested. In this scenario, a dense reconstruction
is computed for different sampling-rates on the easy data set. From this result, the dense 3D
model quality will be assessed for these reconstructions and compared against the results of
PIX4D and COLMAP.

6-5-1 Comparison of the current and proposed architectures

For the easy, intermediate and difficult recordings the sparse and dense reconstructions are
compared. The same procedure as outlined in Section 4-4 is used where the result of COLMAP
and PIX4D is scale-adjusted and aligned with the ground-truth trajectory and structure. This
is necessary since the reconstructions of both methods are correct only up to an unknown
scale factor. To compare all approaches, the results need to be aligned. Without alignment,
the results can not be compared. It is important to keep in mind that since all recordings
are obtained indoors, no external Global Positioning System (GPS) information is available.
Both PIX4D and COLMAP would, without alignment to the ground-truth, be incapable of
producing usable results where usable means reconstructions with accurate geometric scale.

The results for the sparse reconstruction are shown in Table 6-1.

When computation time is evaluated for the sparse modeling phase, there is a clear distinction
between COLMAP, PIX4D and the proposed approach. On all recordings, the proposed
approach yields at least an order of magnitude faster results. For example, on the first data
set, the proposed approach computed a reconstruction in 18.2 (min), PIX4D in 892.8 (min)
and COLMAP in 663.8 (min). This means that the proposed method is a factor 49 and
37 faster than PIX4D and COLMAP, respectively. When the quality of the reconstructed
poses are evaluated, from which only the results of COLMAP and the proposed approach
are available, an interesting phenomenon emerges. On the 01 data set, which was the easy
data set, the proposed approach and COLMAP yielded a RMSE in APE of 0.0127 (m) and
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Sparse modeling
Time (min)

APE (m)
σ

APE (m)
RMSE

RPE (m)
σ

RPE (m)
RMSE

01 PIX4D 892.8 - - - -
01 COLMAP 663.8 0.0649 0.0230 0.0066 0.0044
01 Proposed 18.2 0.0336 0.0127 0.0044 0.0022
02 PIX4D 143.7 - - - -
02 COLMAP 81.7 0.0273 0.0095 0.0045 0.0025
02 Proposed 4.83 0.0245 0.0096 0.0036 0.0017
03 PIX4D 168.5 - - - -
03 COLMAP 66.6 0.0329 0.0100 0.0078 0.0051
03 Proposed 4.2 0.0464 0.0213 0.0037 0.0019

Table 6-1: Sparse 3D modeling results on the Vicon Room 1, data set 01, 02 and 03. Show-
ing the sparse modeling time, the Absolute Pose Error and the Relative Pose Error in meters.
Reconstructions are computed using COLMAP, PIX4D and the proposed method.

0.0230 (m), respectively. This means that the proposed architecture produced better results
in terms of pose accuracy. However, when the data sets become more difficult the quality
degrades. As can been seen in data set 03, COLMAP yielded better results. On this data
set, the proposed architecture and COLMAP yielded a RMSE of the APE of 0.021 (m) and
0.010 (m), respectively. This could be caused by the fact that the proposed approach is
constructed for real-time operation. When the data set is difficult, with fast movements and
motion blur in the recordings, requiring real-time results degrades the performance. Since the
post-processing step is executed after the recording, to find loop-closures and perform bundle
adjustment, the errors are still larger than COLMAP. Although the RMSE and σ of the APE
are 0.014 (m) and 0.011 (m) lower, respectively, it remains important to keep in mind that the
reconstruction was obtained faster by a factor 16 than COLMAP, showcasing the favorable
quality and performance trade-off. Furthermore, in the context of remote-inspection, the
acquisition patterns are typically controlled, low-speed trajectories. Hence, data set 01 would
be the more representative data set for such a use-case.

Now that the sparse reconstruction quality has been assessed, the dense reconstructions can
be compared of the current approaches and the proposed approach. To achieve this, for
each recording, a dense reconstruction is computed with COLMAP, PIX4D and the proposed
approach. This yields 9 reconstructions. The reconstructions are aligned with the method
outlined in Section 4-4 and evaluated using the procedure of Section 6-4. The results are
depicted in Table 6-2

For these data sets the threshold τ was chosen to be 0.02 (m). This was chosen since the
reported accuracy of the current approaches should be within this range. From Table 6-2 it can
be concluded that PIX4D computes the best reconstructions on the easy and intermediate
data sets 01 and 02 with a F1 score of 0.7968 and 0.7063, respectively. Particularly, the
precision of PIX4D is fairly high when compared to COLMAP and the proposed approach.
Specifically, on the data set 01, PIX4D delivers a precision score of 0.8816 while COLMAP
and the proposed approach only yield 0.5550 and 0.5843, respectively. Since PIX4D has a
more extensive post-processing system, the higher score could indicate that PIX4D effectively
removes more noise from the final reconstruction. Although the proposed approach delivers

Q. Dekker Master of Science Thesis



6-5 The EuRoC micro aerial vehicle benchmark data Set 59

Dense modeling
Time (min) F1 Precision Recollection

01 PIX4D 346.6 0.7220 0.8061 0.6536
01 COLMAP 343.4 0.5643 0.4823 0.6798
01 Proposed 356.5 0.6421 0.5488 0.7736
02 PIX4D 83.4 0.7063 0.7687 0.6533
02 COLMAP 216.9 0.6845 0.5996 0.7973
02 Proposed 194.4 0.6279 0.5197 0.7973
03 PIX4D 106.1 0.5071 0.6618 0.4110
03 COLMAP 251.7 0.6239 0.5883 0.6641
03 Proposed 264.5 0.4395 0.3475 0.5977

Table 6-2: Dense 3D modeling results on the Vicon Room 1, data set 01, 02 and 03 (top to
bottom). Showing the dense modeling time, F1, precision and recollection scores using a threshold
τ of 0.02 (m).

a better reconstruction on the easy data set when compared to COLMAP, the performance
degrades on the more difficult data sets 02 and 03. From the previous comparison, it was noted
that the pose accuracy degraded in the proposed approach and COLMAP delivered better
results in terms of APE. Interestingly, the RPE of the proposed approach remained better
than COLMAP. Since the reconstruction quality of COLMAP was higher on the data sets
02 and 03, the effect of the APE is apparently a more important predictor of reconstruction
quality.

Now that the proposed method has been tested without leveraging the acceleration scheme
introduced in Chapter 5, it is time to introduce this in the proposed architecture and assess
the results on the EuRoC MAV data set.

6-5-2 Accelerated dense modeling

In this section, the acceleration scheme will be added to the proposed architecture. Using
the sparse reconstructions of the proposed architecture, a set of dense reconstructions are
computed on the EuRoC data set. All reconstructions are computed on the hardware set-up
that is described in Appendix B. For this experiment, only the 01 data set is used since
it is captured in a controlled fashion. This is more representative of a real-life scenario
where a drone flies a controlled flight pattern around a cellular tower. The reconstructions of
the proposed scheme will be compared against PIX4D and COLMAP in terms of the model
quality and computation time. It will be studied whether the proposed architecture is capable
of delivering comparable model quality at decreased computation times.

To use the acceleration scheme, the first step is to determine how many super-pixels should be
used to properly capture the details in the EuRoC MAV benchmark. In Section 5-2-3, it was
established that the number of super-pixels are dependent on the pixel-size of the smallest
details that need to be retained. For the EuRoC MAV Vicon Hall 1 data set, pmin was chosen
to be 19 px. This value captures most of the details in the images. This is shown in Figure
6-4.
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Figure 6-4: Choosing pmin on the EuRoC MAV Vicon Hall 1 data set. Using 19 pixels seem to
capture the majority of the fine details in an image.

Now that pmin has been set, the number of super-pixels can be computed. Filling in Equation
(5-7) yields

Kmin = w · h
p2
min

= 752 · 480
196 = 999.89. (6-2)

This result is rounded up to 1000 super-pixels. An example super-pixel mask extracted from
using 1000 super-pixels is depicted in Figure 6-5.

Figure 6-5: 1000 super-pixels extracted on an input-image in the EuRoC MAV Vicon room data
set 01.

Using this amount of super-pixels and requiring at least a single sample in each cluster, the
maximum sampling-rate can be calculated using Equation (5-22) as

kmax = max

1,

√
p2
min

kmin

 = max

1,

√
192

1

 = 19, (6-3)

which is more than the maximum sampling-rate of k = 8. Now that the parameters have been
set, a set of reconstructions can be computed using the proposed scheme. Starting from pro-
cessing 100 (%) of the pixels, the downscale factor S is decreased in each new reconstruction.
This effectively limits the number of processed pixels. In this experiment four reconstructions
are computed for S = {1, 0.5, 0.25, 0.125} where the downscale factor was equal to the inverse
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of the sampling-rate S = 1/k. This means that the four reconstructions are computed using
100 (%), 25 (%), 6.25 (%) and 1.56 (%) of the pixels. For each reconstruction, the same
evaluation procedure is used as described in Section 6-5-1 using a threshold τ of 0.02 (m).
The results are shown in Table 6-3.

S Processed
Pixels F1 Precision Recollection Time

Excl. Interpolation
Time
Incl. Interpolation

1 360,960 0.642 0.549 0.774 343.4 343.4
0.5 90,240 0.591 0.483 0.764 162.3 607.3
0.25 22,560 0.612 0.506 0.774 80.6 259.7
0.125 5,640 0.652 0.593 0.761 47.1 117.3

Table 6-3: Table showing the dense 3D model quality for different down-scale factors S. For
each reconstruction, the number of processed pixels per image, precision, recollection and F1
scores are computed for a threshold τ of 0.02 (m). Besides this, the computation time defined in
minutes is shown including and excluding the interpolation step.

From Table 6-3 it can be concluded that the proposed scheme works as expected on the
EuRoC Vicon Room data set. By processing only 5,640 instead of 360,960 pixels per image,
the dense 3D modeling time excluding the interpolation time has been decreased from 343.4
to 47.1 (min) with a factor 7. Although not the focus of the work, since the implementation
of the dense depth estimation scheme was written in non optimized code, a speed-up of a
factor 3 was achieved when including the dense depth estimation. Furthermore, the F1 score
did not only decrease, it even slightly increased. In particular, the precision score improved
slightly. This is an unexpected result since the reconstruction was obtained by relying on
less information. From Table 6-3 it can be observed that the higher F1 score is caused by an
increase in precision whilst the recollection score remained approximately constant (0.7736 -
0.7612). Interestingly, the precision score decreased for S = 0.5 and then increased slowly.
This effect may be caused by the suppression of noise due to an increase in super-pixel size.
Besides this, the recollection score did not decrease either when decreasing the factor S. The
results are further visualized in Figure 6-6.

Figure 6-6: Reconstruction metrics for different downscale factors (1/S). For each reconstruction
the F1 (red), Precision (green) and Recollection (blue) score is computed. The reconstructions
were computed using the Vicon Hall 1 data set.
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Although the metrics indicate that the sparsest reconstruction, processing 1.56 (%) of the
pixels, shows comparable performance, it is important to also visually showcase the results.
To this end, all four reconstructions are shown in Figure 6-7.

Figure 6-7: Reconstructions of the Vicon Hall 1 data set of the EuRoC benchmark [9]. Showing
the reconstruction where 100 (%) of the pixels (top-left), 25 (%) of the pixels(top-right), 6.25
(%) of the pixels (bottom-left) and 1.56 (%) of the pixels (bottom-right) are processed.

From Figure 6-7 it can be concluded that the visual results confirm what was shown in
the reconstruction scores. Also, the slight increase in precision which caused the higher
reconstruction score for k = 4 can be explained. For k = 1 there is significant noise present at
the edges of objects in the room. For example, near the edges of the desk, there is a cluster
of noise on both sides. For the reconstruction computed using k = 4, a large percentage
of noise present at the windows of the room and at the desk is removed. Since this noise
is removed, which contain a cluster of outliers, the precision score is increased. Although
interesting to observe, in practice, the reconstructions all look visually very comparable. It
can be concluded that the first point cloud would need more manual cleaning to improve its
usability but the overall result is highly similar. It is noteworthy that even at the coarsest
level of computation small details remained preserved. This is depicted in Figure 6-8 .

The ability to retain fine details whilst improving the scalability of the dense 3D modeling
architecture is the main objective of the proposed architecture. The results on the EuRoC
MAV benchmark seem to confirm that this is indeed achieved. The proposed scheme is able to
accurately estimate the dense depth-normal map using the sparse depth-normal information.
An example of a full and interpolated depth map is shown in Figure 6-9.

Both results look very similar. The piece-wise planar assumption yields smooth depth-normal
maps which preserves sharp edges and details in the scene by leveraging the super-pixel
segmentation of the color image. Note that the depth-normal filtering step is not possible in
the current implementation. This is causing the absence of the black pixels in the right depth
image. The reconstructions are showed side-to-side with PIX4D and COLMAP in Table 6-4.
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Figure 6-8: Close-up of the reconstruction computed using only 1.56 (%) of the pixels. Even at
the sparsest experiment that was performed, the algorithm was capable of capturing fine details
such as the pole in the Vicon room.

Figure 6-9: Full (left) and interpolated (right) depth-map where the sampling-rate was equal to
2. Filtering is currently not possible in the interpolation scheme which causes several outliers to
remain in the final depth-map.

Architecture F1 Precision Recollection Total Time (min)
PIX4D 0.7220 0.8061 0.6536 1239.4
COLMAP 0.5643 0.4823 0.6798 1007.2
Proposed: S = 1 0.6421 0.5488 0.7736 361.6
Proposed: S = 0.5 0.5912 0.4832 0.7638 180.5
Proposed: S = 0.25 0.6116 0.5057 0.7736 98.8
Proposed: S = 0.125 0.6526 0.5705 0.7623 65.3

Table 6-4: Dense 3D reconstructions computed on the Vicon Room 1 data set. Showcasing the
reconstruction quality and computation times for the current and proposed architecture, computed
for different factors S. Comparable reconstructions are obtained at a significant acceleration in
computation time.

Now that the performance has been confirmed on the EuRoC MAV Vicon hall data set, a
case-study will be performed on a visual-inertial lab recording where the goal is to show the
performance of the proposed architecture in a realistic remote inspection scenario.
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6-6 Remote inspection case-study

In this section, a case-study will be executed. To this end, Ericsson AB has provided a model
cellular tower with corresponding ground-truth measurements. The provided model cellular
tower is shown in Figure 6-10.

Figure 6-10: Lab set-up showcasing the model cellular tower. Using a synchronized visual-inertial
recording, the goal is to compute a dense 3D reconstruction of the model and be able to perform
measurements.

This model tower has an antenna mounted on top of it with several cables. Hence, it is a good
representation of an actual cellular tower. The goal in this case-study is to compute a dense
3D reconstruction of the model tower with accurate geometric dimensions. There are two
criteria that are important in this process. The first aspect is that the reconstruction should
run in a time that enables the technician to observe the reconstruction when present at the
site. Secondly, the accuracy of the reconstruction should be within the range of the current
commercial solution (i.e. PIX4D) which is reported at 2 (cm). Hence, if measurements are
performed using the dense 3D point cloud model, the measurements should be accurate within
2 (cm). If this is the case, the performance is comparable to the current architectures.

For this cellular model, no ground-truth point cloud is available. As such, it is not possible
to evaluate the reconstruction using the methods outlined in Section 6-4 where point cloud
metrics such as F1 scores could be computed. However, in the context of remote inspection,
technicians are typically interested in accurately measuring elements of the tower. For exam-
ple, one could be interested in measuring the antenna equipment’s dimensions. To this end,
the following method is outlined to perform and evaluate the case-study. First, a synchro-
nized visual-inertial recording will be obtained from the model tower using a sensor-suite.
Next, using the proposed architecture, several reconstructions will be computed. Then, a set
of measurements are performed on the reconstruction and compared against measurements
obtained by directly measuring the model tower in the lab. In this way, the accuracy of
the reconstruction can be determined in the context of a practical remote inspection setting.
Within this setting, the goal will be to test whether the presented architecture is capable of
computing dense 3D reconstructions at a reduced level of computational complexity without
losing the required accuracy of 2 (cm).
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6-6-1 Method

To study the reconstruction, several measurements are obtained from the model tower. An
overview of the tower is depicted in Figure 6-11.

Figure 6-11: Overview of the model tower used for the lab experiment. Two areas are highlighted
for which physical measurements are available. These measurements are used as ground-truth
dimensional reference.

In Figure 6-11, two areas where the measurements are obtained are highlighted (green rect-
angles). Both areas are shown in greater detail in Figure 6-12 and 6-13.

Figure 6-12: Antenna equipment of the model tower. The width w1, height h1, depth d1 and
connector thickness t1 are measured.

As shown in Figure 6-12, in the antenna, a set of four measurements are obtained. Specifically,
the width w1, height h1, depth d1 and the thickness of the cable t1 is measured.
From Figure 6-13, it can be concluded that a set of four measurements are extracted - the
width of the tower w2, depth of the tower d2, the thicknesses of the main bar element t2 and
thin bar element t3. The complete set of measurements is summarized in Table 6-5.

Element w1 h1 d1 t1 w2 d2 t2 t3

Dimension (cm) 30 38.5 12.5 26.5 26.5 1.5 4.5 4.5

Table 6-5: Obtained measurements of different elements of the model tower.

From the reconstructed dense 3D models, these measurements will be extracted as well by
measuring the point cloud models and compared against the actual measured distances. The
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Figure 6-13: Top structure of the model tower. The width w2, depth d2, bar thicknesses t2 and
t3 are measured, respectively.

goal will be to accurately extract the correct dimensions within 2 (cm). In this case, the
measurement satisfies the industry requirements and make the dense 3D model usable. All
reconstructions are computed using the hardware set-up that is described in Appendix B.

To acquire the visual-inertial recording, the Intel Realsense D435i sensor-suite is used. For
this experiment, Ericsson AB captured a series of visual-inertial recordings where the visual
sensor was set to capture 640 × 480 grayscale images using the global shutter camera. The
visual recordings are synchronized with the Inertial Measurement Unit (IMU). The complete
Realsense sensor-suite is then calibrated using Kalibr [14, 15, 28]. To acquire the data, the
Realsense camera is moved around the model tower in a circular pattern thereby capturing
it from different angles. Then, this visual-inertial data is recorded and processed using the
proposed visual-inertial architecture.

Using the recordings, for different downscale factors S, several 3D reconstructions are com-
puted. Specifically, four reconstructions are computed where S = {1, 0.5, 0.25, 0.125}. To
choose the required number of super-pixels, the minimum pixel size pmin has to be deter-
mined. For the lab-scene, similar to the EuRoC data set, 17 pixels capture the majority of
the fine details. This is visualized in Figure 6-14.

Figure 6-14: Choosing pmin on the model-tower data set recorded in the lab. Using 17 pixels
seem to capture the majority of the fine details in an image.

Filling in Equation (5-7) yields

Kmin = w · h
p2
min

= 640 · 480
172 = 1062. (6-4)

This result is rounded to K = 1000 super-pixels. Using this amount of super-pixels and
requiring at least a single sample in each cluster, the maximum sampling-rate can be calculated
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using Equation (5-22) as

kmax = max

1,

√
p2
min

kmin

 = max

1,

√
172

1

 = 17, (6-5)

which is sufficient for the maximum sampling-rate of k = 8 which corresponds to the case
S = 0.125. The reconstructed dimensions at the reference locations depicted in Figures 6-12
and 6-13 are extracted and compared against the values of Table 6-5. The goal will be to
assess within which accuracy the dimensions are reconstructed. Specifically, the accuracy
of the dimensions computed using the super-pixel based acceleration scheme for different
sampling-rates will be studied.

6-6-2 Results

The set of reconstructions that are obtained using the proposed architecture are depicted in
Figure 6-15.

Figure 6-15: Reconstructions computed using the proposed visual-inertial pipeline for differ-
ent downscale factors S. The reconstructions have been cleaned by removing the surrounding
environment of the lab.

Unfortunately, the resolution of 640× 480 was clearly not high enough to produce crisp point
cloud models from the tower. This can be seen in Figure 6-15 due to the presence of noise
between the bar elements of the tower. Due to the low resolution, the dense 3D modeling
pipeline is unable to properly differentiate the background pixels from the pixels that belong
to the bar elements. This stems from the fact that, in the PatchMatch scheme, the image
patches that are used to compute the photo-consistency scores between the reference and
source images are too large with respect to the fine details in the scene. This effect causes
ambiguity in the matching step resulting in faulty points between the thin bar elements.
Although the point cloud models are noisy, they can still be used to measure the dimensions
of the tower and the equipment. This is achieved by directly measuring the point cloud models.
Comparing the extracted dimensions with the measured ground-truth dimensions yields a set
of errors for each point cloud model. These errors are shown for the four reconstructions in
Figure 6-16.
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Figure 6-16: Errors showcasing the difference between the measured and reconstructed elements
of the model tower. The errors are shown for different reconstructions computed at different
downscale factors S.

From Figure 6-16 it can be concluded that across all downscale factors S, the dimensions are
reconstructed within the 2 (cm) accuracy bound. This means that, even at the sparsest level,
the dimensions of the model-tower were reconstructed within the current industrial standard.
Now that the accuracy has been evaluated, it will be interesting to compare the computation
times. These are depicted in Table 6-6.

S Total Time (min)
Including Interpolation

Total Time (min)
Excluding Interpolation

1 121.8 121.8
0.5 142.7 56.1
0.25 72.5 29.7
0.125 21.6 16.3

Table 6-6: Total computation time excluding and including the interpolation time for different
downscale factors S on the lab-recording.

Whilst all reconstructions yielded dimensions within 2 (cm) accuracy, the computation times
were significantly different. This can be seen in Table 6-6. For S = 0.125, the total compu-
tation time, excluding interpolation, was equal to 16.3 (min). This is a factor 7.5 faster than
then current approach, which is identical to the scenario of S = 1. These results indicate the
advantages of the presented approach, which reduced the computation time whilst delivering
dense 3D models with an accuracy that is within the required specifications.
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Chapter 7

Conclusions and Future Work

7-1 Conclusions

In this thesis, a novel monocular 3D modeling architecture was presented. The presented
architecture is capable of modeling scenes with accurate geometric scales in times that are
unparalleled in the current state-of-the-art approaches. In this thesis, the state-of-the-art
systems were chosen to be PIX4D and COLMAP, the industrial and academic standard
in monocular 3D modeling, respectively. The presented architecture achieves a significant
increase in performance over the current state-of-the-art systems in two steps.
First, instead of using only monocular visual data, inertial data was included in the architec-
ture. The inclusion of inertial information made it possible to leverage efficient frameworks
developed for real-time robotics purposes which have not been widely used in the context of
dense, monocular 3D reconstruction. To this end, the Maplab framework was chosen for this
use-case which offers a state-of-the-art visual-inertial sparse mapping architecture that has
been widely tested on several robotics systems such as micro aerial vehicles. This architec-
ture demonstrated to be capable of, under controlled flight patterns, compute more accurate
sparse 3D reconstructions and poses of a scene when compared to PIX4D and COLMAP.
In benchmark experiments, the proposed architecture was shown to achieve a speed up of
a factor 49 and 37 in the sparse 3D reconstruction process when compared to PIX4D and
COLMAP, respectively.
Secondly, a novel dense 3D modeling system was presented. The presented system was capable
of reconstructing dense 3D models at unprecedented computation times while keeping an
acceptable loss of model quality. To achieve this, the computational complexity of the classical
Multi View Stereo (MVS) problem was reduced by leveraging local depth-color correlations
and assuming a planar surface within these regions. By using these assumptions, local similar
colored image regions were extracted by computing a set of super-pixels. The super-pixels
were capable of providing a compact, powerful representation of the image at only a fraction
of the original image size. The problem in MVS to compute a depth-normal value on a pixel
level was then reduced to finding a depth-normal value for at least one pixel within a super-
pixel due to the planar surface approximation. To leverage the reduction in computational
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complexity, in this thesis, the main code of COLMAP was adjusted. Specifically, a sampling-
rate k was introduced which defined that computations were only performed on a uniform
grid of pixels by processing every kth pixel. This yielded a sparse depth-normal image which
was densified by robustly estimating a set of planes for each super-pixel. Effectively, by
setting a larger sampling-rate k, the number of processed pixels is reduced by a factor k2.
The presented densification system was tested on aMVS benchmark and the results were
significant. At a sampling-rate of 8, the densification step was accelerated by a factor 8 and
the number of processed pixels was reduced by a factor 64 - from 100 (%) to 1.56 (%). The
dense 3D reconstruction quality, defined by the F1 score, decreased from 0.77 to 0.70.

Both Maplab’s visual-inertial framework and the novel dense 3D modeling system were then
combined to yield the final presented system which was shown in Figure 5-16. The presented
system was tested on the EuRoC Micro Aerial Vehicle (MAV) benchmark and a remote
inspection case-study. On the EuRoC MAV Vicon Hall 1 data set 01, COLMAP computed a
dense 3D reconstruction in 1007.1 (min), PIX4D in 1239.4 (min) and the presented system,
using a sampling-rate of 8, in 65.3 (min) and 135.5 (min) by excluding and including the plane-
estimation step, respectively. Furthermore, it was able to compute 3D reconstructions with
accurate geometric scale without relying on external metadata such as a Global Positioning
System (GPS). Although an increase in robustness was expected by including the Inertial
Measurement Unit (IMU) as input to the system, no experiments were performed to validate
this assumption. Furthermore, in the challenging EuRoC MAV Vicon Hall 1 data set 03,
the proposed system reconstructed a dense 3D model with a F1 score of 0.44. This was
lower compared to PIX4D and COLMAP which produced reconstructions with a score of
0.51 and 0.62, respectively. The decrease in performance was observed due to the fact that
Maplab’s front-end is running online. In this specific data set, the drone followed a fast and
uncontrolled trajectory with many sudden movements. Since both PIX4D and COLMAP are
running offline, the performance is less influenced in such a scenario. However, in practical
reconstruction scenarios, the MAV would fly a slow and controlled trajectory around the scene.
This scenario would closely resemble the data set 01 where the presented system managed
to outperform PIX4D and COLMAP on all metrics. Besides the benchmark experiment, a
remote-inspection case-study was performed. From this case-study, it was concluded that
the proposed system was able to decrease the computation time with a factor 5.6, from 121.8
(minutes) to 21.6 (minutes) whilst reconstructing a dense 3D point cloud model with accurate
geometric scale that was accurate within 2 (cm).

From this thesis, it can be concluded that the presented visual-inertial system is capable
of mitigating the typical issues in the current state-of-the-art approaches since it is capa-
ble of directly observing geometric scale and scales better with the input data in terms of
computational complexity.

7-2 Future work

For future work it will be interesting to study the dense 3D modeling system in its mini-
mal representation: only computing pixels that correspond to the centroids of super-pixels.
This is the minimal case since one sample needs to be processed in each super-pixel. Fur-
thermore, throughout all the experiments, the maximum sampling-rate was equal to 8. In
this thesis, the code of COLMAP was adjusted and used to compute sparse depth-normal
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images. Although the results are promising, due to COLMAP’s parallel implementation, the
complexity reduction is not fully leveraged. Since COLMAP process one image row at a time,
the observed speed-up was proportional to k even though the total number of computations
was reduced by a factor k2. Other MVS approaches, such as Gipuma [18], have different
computation schemes that could fully leverage the complexity reduction. It is expected that
for these approaches, the speed-up will be proportional to a factor k2 which will improve the
results even more.

Besides fully leveraging the possible complexity reduction by either further limiting the num-
ber of processed pixels or using a different parallel computation scheme, another interesting
subject will be to change the matching window. The matching window, or support region in
the current implementation was defined as a rectangular patch of pixels surrounding the pixel
of interest. This patch was matched across different images to find a depth-normal hypothesis
that maximized the photo-consistency across the image sets. It will be interesting to study
whether using the super-pixels directly as one patch will improve the results by removing
much of the ambiguity in this patch-matching process. The removal of ambiguity is expected
since an envisioned super-pixel patch will account for naturally present boundaries and edges
which rectangular patches do not have.

Intuitively, it can be thought of as instead of performing a sparse set of computations on a
pixel level with rectangular support regions and collecting those results within each super-
pixel in a post-processing step, to directly perform the photo-consistency computations on
a super-pixel level. At the most fundamental level, it can be seen as changing the classical
objective of MVS. Instead of computing a set of depth-normal values for each pixel, the goal
becomes to compute a set of planar super-pixels. Then, it becomes obvious that one could
move away from using rectangular patches as support regions for super-pixels but instead,
directly use the super-pixel itself. Moving in this direction, it can be envisioned that the
complexity reduction and accuracy can be increased even further, when compared to using a
post-processing step. The fundamental assumption in the PatchMatch stereo algorithm is that
of structured region information, the idea that local clusters of pixels in an image typically
share similar depth-normal values. The key-insight in this thesis is that this characteristic is
not properly leveraged in all state-of-the-art MVS algorithms since they operate on the pixel
level using standard support regions. There is a significant gain in computational complexity
reduction to be made by more effectively leveraging structured region information in images
where this work provides a first step in this direction.

Finally, the presented system was only tested in ideal lightening conditions or in indoor
settings. As the goal is to compute reconstructions in outdoor settings, the weather may
also play an important role. For example, bright sunlight, fog or heavy rain may influence
the 3D model quality. In this work, these effects were not studied properly. Although an
increase in robustness in challenging visual situations was expected due to the integration of
an IMU, it was not studied in depth in this work. It will be interesting to test the presented
system in these realistic settings and study the performance. Essentially, to further study the
differences in robustness of the presented system with the baseline architectures.
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Appendix A

Appendix A: The Projection Model

The projection model describes how 3D observations are related to 2D image observations.
In essence, it describes the measurement model of a camera which is the cornerstone of every
vision based reconstruction algorithm. Every projection model consists of two elements -
a camera model and a distortion model. These will be treated sequentially. The goal of
this appendix is to provide the interested reader with an overview of the most commonly
used projection models and point towards more complete references describing the variety of
different models.

A-1 The Camera Model

The camera model, assuming no distortion, relates how 3D points are projected on the image
plane in the form of observations. Specifically, it is of interest to obtain a camera model f (·)
that maps a scene point to the image plane. In digital cameras, observations are represented
as pixels where each pixel is a discrete point in the image plane. Such pixel observations
typically contain greyscale intensity values or three dimensional color values, for example,
RGB or LAB colors. The 2D image plane describes the location of the observations with a
coordinate system that is aligned with the image plane. The convention is to place the center
of this coordinate system at the top-left of the image plane. This is depicted in Figure A-1.

To relate 3D points to the pixel locations in the image plane, typically, a pinhole camera model
is used. The pinhole camera model has a center point defined as the projection center. The
camera’s coordinate system is then defined at this location with the z-axis pointing towards
the image plane. A 3D point defined in the world coordinate system is then projected to
the image plane in two steps. First, it is transformed to the camera’s coordinate system and
secondly it is projected on the image plane via the pinhole model. This is depicted in Figure
A-2.

The first transformation maps a point from the world’s coordinate system, defined by the
superscript (w), to the camera’s coordinate system, denoted by the superscript (c), via a
homogeneous transformation defined as the pose Tj ∈ SE(3) of camera j
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Figure A-1: The image plane of a digital camera. The coordinate system is defined from the
top-left of the image plane. In this example, the image plane consists of 25 pixels.

Figure A-2: Overview of the pinhole camera model of camera Cj showcasing the camera’s
projection center (purple) and the principal point (red). Coordinate systems are represented by
superscripts. A scene point X(w)

i (yelllow) represented in the world coordinate system is projected
in the image plane where it is observed as x(i)

ij in two steps.

(
Rj tj

01×3 1

)
, (A-1)

where Rj ∈ SO(3) and tj ∈ R3 are the rotation matrix and translation vector, respectively.
Next, the scene point defined in the camera’s coordinate system is mapped to the image plane,
denoted by the superscript (i), via the pinhole camera projection matrix Kc ∈ R3×4

Kc =

 fx 0 c̄x 0
0 fy c̄y 0
0 0 1 0

 , (A-2)

where fx and fy are the focal lengths described in pixel units over the x- and y-axis, respec-
tively and c̄x and c̄y are defined as the principal point location. The parameters c̄x and c̄y
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describe the distance between the camera projection center and the image coordinate system
(located at the top-left of the image-plane). Combining the transformations Tj and Kc yields
a complete camera model

x(i)
ij = f

(
Kc,Tj ,X(w)

i

)
, (A-3)

which describes how 3D observations are observed in the image plane. However, this model
assumes that there exists not distortions in the camera. In practice, every camera has some
form of distortions. Such distortions change the way that 3D points are observed in the image
plane and need to be modeled properly, depending on the used camera model.

A-2 The Distortion Model

As mentioned before, the pinhole camera is an ideal model that assumes no form of distortion
or other nonlinearities. In practice, there are many forms of distortions but most camera’s
can be adequately described with two - radial and tangential distortion.

Radial distortion is visualized in Figure A-3.

Figure A-3: No distortion (left), positive radial or barrel distortion (middle) and negative radial
or pincushion distortion (right). The figure was obtained from [7].

The second distortion is defined as tangential distortion. This distortion is caused by the
misalignment of the camera’s lens with the image plane [8]. Tangential distortion is visualized
in Figure A-4.
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Figure A-4: No distortion (left), tangential distortion (right).

Most camera models combine radial-tangential distortion models. This was first introduced
by D. C. Brown et al. [8, 10] and has proven to be a highly effective way of modeling the
distortion effects that are typically observed. Although the radial-tangential model is the most
widely used, other variants exists depending the specific use-case. For example, for fish-eye
lens camera’s, the radial-tangential model fails to properly capture the complete distortion
and more suitable alternatives exist [23]. For a more complete overview of different distortion
models the reader is referred to [42].

When the radial-tangential distortion model is assumed, it becomes possible to define the
projection model with the inclusion of distortions. This will move a projected, undistorted
scene point xij = (x, y)T to its distorted location x′ij = (x′, y′)T

x′ = x
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6 + 2p1xy + p2
(
r2 + 2x2

)
,

y′ = y
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6 + p1
(
r2 + 2y2

)
+ 2p2xy,

(A-4)

where r2 = x2 + y2, k1,k2,k3,k4,k5, and k6 are the radial distortion coefficients and p1 and p2
are the tangential distortion coefficients.

Using (A-3) and (A-4), it becomes possible to define a mapping that will project a scene point
X(w)
i to an observation (x′ij)(i). This is achieved by substituting (A-3) in (A-4).
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Appendix B: Hardware Set-up

This appendix describes the hardware platform that was used throughout this thesis as de-
scribed in Table B-1.

Lenovo Legion T730-28ICO

RAM Memory 31.3 GiB
CPU Intel Core i7-9700K CPU@ 3.60GHz × 8
GPU NVIDIA GeForce RTX 2080 SUPER/PCIe/SSE2
GNOME 3.28.2
OS Ubuntu 18.04 LTS
OS Type 64 bit

Table B-1: Hard- and software-specifications of the computing platform used throughout this
work.
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

APE Absolute Pose Error

GPS Global Positioning System

GPU Graphical Processing Unit

LiDAR Light Detection And Ranging

MP Mega Pixels

DCSC Delft Center for Systems and Control

DOF Degrees Of Freedom

EKF Extended Kalman Filter

EXIF EXchangeable Image File-format

IMU Inertial Measurement Unit

IRLSQ Iteratively Reweighted Least Squares

MAD Median of Absolute Deviations

MAV Micro Aerial Vehicle

MVS Multi View Stereo

NCC Normalized Cross Correlation

RMSE Root Mean Squared Error

RPE Relative Pose Error

SfM Structure from Motion
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84 Glossary

SLAM Simultaneous Localization and Mapping

SLIC Simple Linear Iterative Clustering

SE Special Euclidean

SO Special Orthogonal

TU Delft Delft University of Technology

UAV Unmanned Aerial Vehicle

XR EXtended Reality
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