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Abstract

This research aims at determining a suitable order release strategy for a warehouse featuring
a shuttle-based storage and retrieval system with multiple goods-to-person picking worksta-
tions. These picking workstations facilitate efficient picking; however, current release strate-
gies do not take similarity between orders into account, while this could potentially lead to
better capacity utilisation. A meta-heuristic approach has been developed in literature to
exploit this similarity, thereby using less stock retrievals to fulfil customer orders. However,
its capabilities are limited. In this thesis, the meta-heuristic is extended to deal with multiple
pick stations and a stock-multiplicity constraint. The algorithm consists of multiple steps.
First, a random-start greedy algorithm generates an initial solution for a large set of orders.
However, this initial solution will be of poor quality in general. As the computation cost
scales exponentially with the order set size, heuristically optimising the entire order set is
infeasible in practice. Secondly, the initial order sequence is split into subsets of equal length,
each of which will be picked by a separate picking workstation. The picking workstations
are then sequentially optimised using the meta-heuristic approach assuming an infinite stock.
Afterwards, a check on the stock-multiplicity constraint is conducted, i.e. it is checked if the
warehouse is capable of supplying all picking stations simultaneously. If an order line violates
this constraint, the order is selected and put in a random position of the order completion
sequence of that picking station. It was found that this method is capable of avoiding viola-
tions of the stock-multiplicity constraints, although it was also found that this constraint will
hardly be violated in a realistic goods-to-person warehouse setting, i.e. with a large number
of orders, picking stations, and order lines per order. Furthermore, our simulations show that
the algorithm is capable of significantly reducing the number of stock retrievals per picking
workstation.
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Chapter 1

Introduction

More and more shopping happens online instead of in physical shops. As a result, fulfilment
centres now need to focus on picking individual orders instead of picking stock per store. Ful-
filment centres can be roughly split into two categories: Picker-To-Goods (PTG) warehouses
and Goods-To-Picker (GTP) warehouses. In PTG warehouses, a worker (picker) walks or
drives through the storage aisles in order to fulfil orders. According to Kulak et al. (2012); De
Koster et al. (2007), 50-70% of the total operating costs of a PTG warehouse are attributed
to the labour cost of order picking. Travel time accounts for at least 50% of the picking tour
(Tompkins et al., 2003). An alternative approach to PTG is the GTP approach.

In a GTP warehouse, the worker is stationary, i.e. the worker is located at a picking station
and the required products are brought to the station by a system of conveyors or autonomous
robots. According to Azadeh et al. (2019) 63 fulfilment centres featuring some form of robo-
tisation have been built in the Netherlands between 2012 – 2016. It therefore makes sense
to research automated fulfilment. An overview of this kind of warehouses will be given in
Section 1-1. Warehouse control logic strongly influences the efficiency of automated logis-
tics solutions. The challenges arising in the automated fulfilment operation are explained
in Section 1-2. A problem statement will be drawn up, which will be elaborated upon in
Section 1-3.

1-1 Automated fulfilment centres

The fulfilment operation can be split into inbound and outbound operations. In order fulfil-
ment, a physical customer order is created from a list of requested products and the corre-
sponding stock. Inbound operations break down bulk goods into stock totes, which are then
stored in the storage system. Unit totes are crates of the same size. These are used by the
Shuttle-Based Storage/Retrieval System (SBS/RS) to store the products as it is easier for the
SBS/RS to handle unit totes than to handle products of different size. Outbound operations
create orders by picking goods from stock totes to customer totes. Completed orders are
stored in the storage area until they are received for shipping. Since this work specifically
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2 Introduction

focuses on the outbound operations in GTP warehouses, this section will elaborate on the
picking station and the storage system.

Picking stations

The picking station can be located end-of-aisle or remote. End-of-aisle means that the picking
station is located close to the input/output of the storage and the product totes are delivered
to the picking station directly by the storage/retrieval machine. A disadvantage of this set-up
is that, in general, only the products of the corresponding aisle can be picked by a picking
station. On the other hand, a remote picking station means that conveyors or robots are
needed to transport the product totes to the picking station. In most warehouses the picking
station receives Stock Keeping Units (SKUs) in unit load stock totes from the storage system.
A schematic overview of a remote order picking system is provided by Tappia et al. (2019)
and shown in Figure 1-1. The storage consists of consist of multiple tiers, multiple columns,
and multiple aisles of racks. The storage is considered to be single-deep, i.e. each storage
location can fit one tote. At the picking stations, SKUs are transferred from their stock
tote to a customer tote. If the stock tote has not been depleted, it will be returned to the
storage system. A depleted stock tote will be replenished at a different location by inbound
operations. Multiple customer totes can be filled simultaneously. This style of order picking
is depicted in a schematic way in Figure 1-2a (Füßler and Boysen, 2019). Please note that at
Picnic the customer tote is divided in three parts and thus not necessarily coincides with a
single order. Other setups are possible as well. Füßler and Boysen (2017) research the need
for scheduling in the sequence of arriving SKUs in an inverse order picking system. In such
a system the picking station has a different layout. The customer totes are located along a
conveyor, on which a stock tote is transported. A stock keeping unit is transferred from the
storage to the customer tote and the stock tote moves to the next location. If a customer
tote is fulfilled, it is replaced. This style is depicted in Figure 1-2b.

Figure 1-1: An overview of a remote order picking system (Tappia et al., 2019)
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1-1 Automated fulfilment centres 3

(a) Conventional order picking station (Füßler
and Boysen, 2019)

(b) Inverse order picking station (Füßler and
Boysen, 2017)

Figure 1-2: Two kinds of order picking

It is clear that the aforementioned picking styles differ slightly. The most important difference
is that in inverse order picking a subsequent customer tote cannot receive the current stock
keeping unit since it has moved on. In conventional order picking, a subsequent customer
tote can receive the current SKU. It therefore provides more flexibility.

Storage/retrieval systems

In a remote order picking system, both an Automated Storage/Retrieval System (AS/RS) or
a SBS/RS can be used to transport the product totes to the conveyor. Both systems will be
elaborated upon in this sections.
In an AS/RS the product totes are stored using a crane that can move horizontally and
vertically simultaneously. The crane can visit any column and any tier within its aisle. In an
SBS/RS, the horizontal and vertical movements are split. Shuttles take care of the horizontal
movements in a specific tier and lifts take care of the vertical movements per aisle. Once a
shuttle has picked up a product tote, it will transfer it to a buffer point near the lift. As soon
as the lift is available, it will pick up the product tote and transfer it to the conveyor system.
An SBS/RS can achieve a higher throughput capacity than an AS/RS. A downside is that
an SBS/RS has a higher investment cost per aisle (Tappia et al., 2015).
Boysen et al. (2017) research another possible setup that uses rack-moving mobile robots, also
called a Kiva system. The robots are remotely controlled vehicles that move racks containing
several types of SKUs. The fact that one robot carries several SKUs makes the planning of
robots different from an AS/RS. For a thorough survey on the different possible set-ups the
interested reader referred to (Roodbergen and Vis, 2009).
The current Picnic fulfilment centres are all PTG warehouses. However, to increase through-
put and decrease labour costs, work has started on an automated fulfilment centre. Since the
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4 Introduction

company will most likely implement an SBS/RS with remote picking stations, this system
will be considered from now on.

1-2 Challenges in automated fulfilment centres

Automated fulfilment is extremely complex. Therefore, several challenges arise, some of which
are listed below.

1. Suppliers of warehouse material handling systems deliver to traditional e-commerce
companies. In traditional e-commerce orders are typically of small size, consisting of
few different order lines. As a result, cross-order similarity is ignored in the fulfilment
operation. At Picnic, however, the average order consists of some 30 different order
lines, making it interesting to research if cross-order similarity can be exploited.

2. Within the SBS/RS several problems can be optimised, e.g. shuttle dwell-point location,
storage policy, etc. The problem is that all these factors are all interdependent, so tuning
one process may result in a severe loss of performance in another process.

3. Even in an automated fulfilment centre, human pickers are used for the operation.
Human picker performance varies over time as it is repetitive work, usually with poor
ergonomics. As this is the most expensive process within the picking operation, it makes
sense to let the human pickers be the bottleneck of the picking operation. This can be
achieved in a few different ways: create large stock tote buffers at the picking station
or make sure that the SBS/RS will not be the systems’ bottleneck. The latter can be
achieved by investing in extra aisles of SBS/RS technology, or by making sure that the
SBS/RS works efficiently. Buffers at the picking stations are easy to implement but
create different problems, e.g. a stock tote that is stuck in a buffer cannot be used at
another picking station. It is also trivial that extra investments might not be an option.

4. One has to take into account that the actual operation will deviate from the planning.
One can devise a (near-)optimal order release strategy, but if a crucial shuttle is broken,
it needs maintenance; this can potentially block a proper execution of the planning.
Therefore, some form of real-time control and physical redundancy is needed to steer
the system back to the (near-)optimal strategy.

It is clear that several challenges arise in automated fulfilment centres and that it is hard
to take every aspect of the operation into account. Lastly, many different set-ups or picking
procedures are available, each featuring their own advantages and disadvantages. Luckily,
these choices had already been made by Picnic. However, even at the Picnic automated
fulfilment centre, fast-moving products will be picked in a different way than the slow-moving
products. The choice was made to focus on the most commonly used GTP picking stations.
Considering this, the next section will draw up a problem statement that will serve as a base
for this research.

It can be seen that, for now, it is close to impossible to optimise an entire automated fulfilment
centre. Trade-offs have to be made while designing and operating such a centre. As Picnic
is interested in the performance within the picking stations, the scope was set on the picking
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1-3 Problem statement 5

part of the operation. More specifically, how can picking be made more efficient, thereby
decreasing the chance that the SBS/RS becomes the bottleneck.

1-3 Problem statement

In this section a problem definition will be drawn up. In the end, a fulfilment centre needs
to make profit for it to stay active. As mentioned before, 50-70 % of the total warehouse
costs are part of the picking costs. In conventional PTG warehouses a large amount of this is
attributed to labour costs, more specifically the cost of travel time. This is not cost efficient,
so it makes sense to replace human workers with some form of automation. However, a
single AS/RS aisle costs around $630, 000 (Roodbergen and Vis, 2009) and an SBS/RS aisle
will cost even more (Tappia et al., 2015). In order to get return on investment as soon as
possible, the SBS/RS and human workers need to be used as efficiently as possible. To do
so, it is important to make sure that the workers do not experience down time. Using the
storage/retrieval machines as efficiently as possible means that all the customer totes are
filled with as little storage/retrieval movements as possible, so the storage/retrieval system
is less likely to be the bottleneck of the warehouse. This goal can be achieved indirectly by
making use of cross-order similarity. If multiple customer totes demand the same SKU at the
same time, only one stock tote is needed to fulfil the customer totes. This way, the number
of stock totes retrieved is reduced while the number of customer totes that can be fulfilled is
increased. The sequence of the customer totes to be fulfilled heavily influences the number
of stock totes needed. Furthermore, current order release strategies do not take this into
account, as it is uncommon in traditional e-commerce to have orders existing of more than
a few different order lines. Considering these facts, the following problem statement can be
drawn up:

Can cross-order commonality be exploited to minimise the number of storage/re-
trieval transactions, considering multiple picking stations, stock tote multiplicity,
and a realistic order set in a Goods-To-Picker (GTP) warehouse?

From this problem statement, the contribution to the current literature of this MSc thesis can
be derived. In this report a strategy from current literature will be extended to deal with larger
problem sizes, multiple picking stations and stock multiplicity. To the best of the author’s
knowledge, this combination has not been researched before. The structure of the rest of this
MSc thesis report is as follows. In Chapter 2 the state-of-the-art of order picking efficiency
improving strategies is elaborated. Chapter 3 will explain the proposed improvements that
have been implemented in this research. Chapter 4 discusses the numerical experiments and
its results. It gives an insight on the benchmark algorithms used for this cause. Lastly, in
Chapter 5 we will try to draw conclusions and give recommendations for follow-up research
in the area of this work.
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Chapter 2

Strategies to improve order picking
efficiency: State-of-the-art

In this chapter, the state-of-the-art on improving order picking efficiency is discussed. It is
important to note that, to the best of the author’s knowledge, little research has been con-
ducted on the picking process within a picking station. Therefore, most of the algorithms and
approaches that are discussed in Section 2-1 have been applied to PTG warehouses. However,
the approaches used in PTG warehouses can be adapted to GTP warehouses. Section 2-1
therefore discusses literature in both the PTG and GTP case. Section 2-2 explains the exact
way of solving the problem described in Section 1-3. A meta-heuristic way to solve the prob-
lem is elaborated in Section 2-3. This meta-heuristic has its limitations; these are addressed
in Section 2-4. Lastly, conclusions are drawn in Section 2-5.

2-1 Algorithms for more efficient order picking

In this section, strategies and algorithms that have been used to make order picking more effi-
cient are discussed. First it is necessary to understand the picking process, and the strategies
that can be used to make picking more efficient. As mentioned, quite some research has been
done on PTG warehouses. Therefore, the strategies to improve order picking efficiency for
PTG warehouses are first explained. Afterwards the GTP case and some heuristic algorithms
will be elaborated in this section

2-1-1 Efficient order picking in Picker-To-Goods (PTG) warehouses

In PTG warehouses pickers walk or drive through the aisles of the warehouse. Customer
orders consist of SKUs, of which multiple are picked per picking tour. This can be done per
order (pick-by-order) or for a combination of orders (pick-by-batch). Pickers use a picking
device, usually a cart, to carry the picked items. The capacity of the picking device cannot
be exceeded. Usually, all items of a specific order have to be collected in a single tour, i.e.
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8 Strategies to improve order picking efficiency: State-of-the-art

customer orders cannot be split as this means an extra sorting step. This is different when a
zoning strategy is applied, as will be explained later in this section. A nice overview of the
supply chain within warehouses is provided by Zhang et al. (2016).

The total processing time of a picking tour consists of (Henn, 2015; Henn and Schmid, 2013):

1. travel time, i.e. the time spent on travelling between pick locations, from the depot to
the first pick or from the last pick back to the depot;

2. search time, i.e. the time spent on locating the SKUs to pick;

3. pick time, i.e. the time spent on picking the SKUs, i.e. moving the SKUs from the racks
to the picking cart;

4. setup time, i.e. the time spent on administrative tasks per tour.

Bartholdi III and Hackman (2017) stated: “Travel time is waste. It costs labour hours but
does not add value.” However, the travel time accounts for at least 50% of the total processing
time of a picking tour (Tompkins et al., 2003). In order to minimise warehouse operation costs,
it is makes sense to minimise travel time. In PTG there are four strategies to minimise travel
time: picker routing, zoning, storage assignment, and order batching. These strategies will
be elaborated in the following paragraphs.

Routing

The first strategy is picker routing, where the travel distance is minimised directly. Assuming
a constant travelling speed, this is equivalent to minimising travelling time. Most of the
developed routing strategies are sub optimal, yet commonly applied. Ratliff and Rosenthal
(1983) developed a solvable optimal routing strategy by modifying the travelling salesman
problem. A problem with 50 aisles takes around a minute to solve. However, it is often not
implemented since optimal routes are not intuitive and lead to confusion among the pickers
(De Koster et al., 1999; Koch and Wäscher, 2016). Furthermore, the most common routing
strategies reduce the in-aisle congestion as opposed to an optimal routing strategy (De Koster
et al., 2007). As picker routing is irrelevant in a GTP warehouse, the routing strategies will
not be further investigated.

Zoning

Under the zoning strategy, the warehouse is divided into several disjoint zones. A picker is
assigned to one zone and will only pick SKUs in his own zone. There exist two types of zoning.
The first type is called progressive zoning, where the picker stays within his zone, but the pick
cart is transferred to the next zone. This differs from synchronised zoning, where the pickers
from different zones pick in parallel and the orders are consolidated afterwards (De Koster
et al., 2007). Zoning has received plenty of attention in literature, but the consolidation step
is hardly researched (Boysen et al., 2018). Since zoning is out of scope for this research, the
interested reader is referred to De Koster et al. (2007); Gu et al. (2007, 2010) for extensive
reviews.
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2-1 Algorithms for more efficient order picking 9

Storage assignment

The third strategy is storage assignment. In this strategy, SKUs are stored according to some
property. Several storage assignment methods exist: dedicated, random, closest open location,
full-turnover-based, and class-based (Roodbergen and Vis, 2009). All these strategies utilise
the storage capacity differently, e.g. SKUs are stored according to their demand frequency,
weight and size, or randomly. Storage assignment is an interesting approach for either PTG
warehouses or when the performance of the SBS/RS is researched directly. For a research
on the behaviour within a picking station, it is not of use. It will therefore not be further
discussed.

Order batching

Order batching means that orders are grouped into batches and picked in a single tour to
save on travel time. These methods are the ones most researched and reviewed (De Koster
et al., 2007; Gu et al., 2007, 2010). Order batching is considered to be the most important
strategy to save on travel times (Tsai et al., 2008). Batching creates the need for an order
consolidation step after picking, as the pick cart has to be sorted into individual orders. Boysen
et al. (2018) try to minimise the total consolidation time by sequencing partial orders using
multiple heuristics. However, their research features an automated storage/retrieval system as
an interface between the picking and the consolidation. They show that the release sequence
of storage bins influences the efficiency of the consolidation process as soon as packing is the
bottleneck of the warehouse. It is easy to see that the pick-by-batch strategy will generally
need less travel time and is therefore more efficient than a pick-by-order strategy. Minimising
travel time will minimise operational costs, as labour is expensive.

Batching can be done on-line and off-line. In on-line batching, orders are not known in
advance and can become available over time. Batching is mostly done per time window, i.e.
when the order is received. In off-line batching, all orders are known beforehand. This is
also the case at the Picnic warehouse, since the ‘shop’ closes at 22:00 the evening before.
Therefore, this research will mainly be focused on off-line batching and sequencing. Henn
and Schmid (2013) batch and sequence orders such that the total travel distance as well as
the total order delay time, or tardiness, is minimised. They use iterated local search and
an attribute-based hill climber algorithm. Order delay time is the time interval between the
fulfilment deadline the actual fulfilment of the order. Order delay time is minimised to ensure
a timely delivery to the customers. Similarly, Henn (2015) uses meta-heuristics to solve the
order batching and sequencing problem. Both variable neighbourhood descent and variable
neighbourhood search are used to solve this problem. These algorithms are proposed as they
can vary the neighbourhood structure during the optimisation as opposed to e.g. iterated local
search. Henn and Schmid (2013) manage to improve their initial solutions by around 44%
on average. However, their initial solution is of poor quality as the orders are only sequenced
by due date. On the other hand, Henn (2015) manages to improve their initial solution by
around 39% on average. As their initial solution is created by a constructive algorithm, it will
be of higher quality than the initial solutions from Henn and Schmid (2013). Therefore, it can
be concluded that the research by Henn (2015) yields superior results. Scholz et al. (2017)
also take the batch assignment to pickers and picker routing into account in their algorithm.
That is, the algorithm by Scholz et al. (2017) actively optimises the picker routes instead of
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optimising the order batching and sequencing problem and calculating a route afterwards.
They therefore achieve smaller order processing times than Henn (2015).

As order batching is so important in PTG warehouses, it has been researched extensively.
However, most papers research more or less the same problem and just use different algorithms
to solve the problem. Bozer and Kile (2008) use a Mixed-Integer Linear Programming (MILP)
approach in order to solve a relatively simple order batching problem to optimality for small
instances up to 25 orders. They use the MILP approach to find upper and lower bounds on the
solutions to the order batching problem by heuristics. The authors state that the heuristics
are reasonably good, but take quite some computation time for larger problems. It is good to
keep in mind that this paper was written in 2008, and thus the performance of heuristics will
have improved. Žulj et al. (2018) also use meta-heuristics and can solve the order batching
problem up to 100 orders. The authors propose a hybrid algorithm and compare it to some
of the methods used in literature before. Their algorithm is capable of outperforming all of
the other algorithms. This paper gives a good overview of the capabilities of many algorithms
that have been proposed for order batching. Henn and Wäscher (2012); Henn et al. (2010);
Henn (2012); Koch and Wäscher (2016) all cover the order batching problem and integrate
some form of routing into the problem.

There are papers that combine order batching, batch sequencing and picker routing into one
problem. Tsai et al. (2008); Azadnia et al. (2013); Chen et al. (2015) all use a Genetic Al-
gorithm (GA) to solve this problem. Tsai et al. (2008) used a nested GA to solve the order
batching problem and routing problem. Azadnia et al. (2013) propose a hybrid between a
data-mining algorithm and a GA. Their algorithm outperforms a simple GA by 68% on av-
erage. However, no analysis is shown on computation times, which is a weak point to this
paper. Chen et al. (2015) proposed a hybrid between a GA and an ant colony optimisation.
Their algorithm managed to improve the solution by 9% for some simple problems. A down-
side is that the problem instances used for the experiments were extremely small; the largest
problem instance featured 8 orders.
Henn and Schmid (2013); Henn (2015); Scholz et al. (2017) all used different meta-heuristics.
These papers are hard to compare, since they all use different constructive heuristics as their
benchmark. Henn (2015) and Scholz et al. (2017) both propose a Variable Neighbourhood
Descend, but Scholz et al. (2017) take multiple pickers into account. Therefore these papers
are also hard to compare. Judging by the reviewed literature and the fact that the order
batching and batch sequencing are NP−hard problems, we can conclude that it is impossible
to solve these problems to optimality for now, and that (meta-)heuristic approaches are the
only way to produce near-optimal solutions (Matusiak et al., 2014; Henn, 2012).

2-1-2 Efficient order picking in Goods-To-Picker (GTP) warehouses

In a GTP configuration, the picker is stationary at a picking station, and the stock totes,
i.e. crates containing stock SKUs, are brought to the picker. This can be done using e.g. a
conveyor belt system or rack moving robots. Similarly as in a PTG setting where the pick
cart has a certain capacity, the picking station has a certain capacity as well. In a GTP
warehouse batching cannot be used to minimise travel time, but to synchronise different flows
in the picking station. This is called sequencing and is used to minimise storage movements.
This way, energy is saved and the machines use less of its capacity. An example of this is
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2-1 Algorithms for more efficient order picking 11

given by Füßler and Boysen (2019). In this paper, orders and stock totes are sequenced in
order to retrieve as little stock totes as possible. The authors also prove that the problem is
NP−hard and find out that it is thus only solvable to optimality for small instances of the
problem. Since small instances are not realistic, they propose a three-stage heuristic to solve
bigger instances. This meta-heuristic will be elaborated in Section 2-3.

A similar problem is covered by Füßler and Boysen (2017). Here inverse order picking is used,
i.e. the stock totes pass along the customer totes on a conveyor. A critical note is provided by
the authors themselves: inverse order picking is especially attractive if each SKU is demanded
by multiple orders. That implies that inverse order picking will be less efficient for slow moving
items or very large assortments. This problem is also proven to be NP−hard and therefore
a two-stage heuristic is proposed. The authors obtain multiple initial solutions, which are
then improved using a sequencing algorithm. At Picnic Supermarkets the assortment is quite
large, around 10.000 different products, so inverse order picking will probably not be useful.

Boysen et al. (2017) try to synchronise inbound and outbound flows in a picking station of
a rack-moving mobile robot system, also known as a Kiva system. Once again, the synchro-
nisation is carried out in order to prevent excess movements by the robots and ultimately
to limit the fleet as this decreases investment costs. This time, a heuristic is used to solve
two sub problems in an alternating fashion. Furthermore, Boysen et al. (2017) recognise the
scheduling problems arising with multiple picking stations but leave these open for future re-
search, as is the case with Füßler and Boysen (2017, 2019). These scheduling problems have
thus not been researched yet for either the Kiva system or an SBS/RS for multiple picking
stations. To the best of the author’s knowledge, these papers are the only ones to consider
the optimisation within the picking station.

2-1-3 Heuristic algorithms to improve order picking efficiency

Now, we can review the algorithms that have been used in literature. We only consider the
most widely used algorithms: simulated annealing and a GA, both of which are considered
to be suitable to solve scheduling problems. Please note that the simplest form is discussed
here. Also, note that these algorithms are often embedded in a hybrid algorithm, as will be
shown in the next sections. One can think of a greedy algorithm to create an initial solution
that can be improved by simulated annealing.

Simulated annealing

In simulated annealing, a local search based algorithm, the cooling of metal is mimicked.
During quick cooling of metal a meta stable equilibrium can be reached, which is similar
to a local minimum. When cooling slowly, a nice crystalline structure is achieved, which is
similar to a global minimum. Simulated annealing represents the slow cooling of metal, while
the quick cooling is similar to a local search. Simulated annealing is capable of escaping
local minimums by sometimes accepting a solution that increases the objective function value
(Eglese, 1990). The acceptance of worse solutions is done using a probability factor: P =
exp(−δ/T ), where δ = f(xneighbour)−f(xincumbent), f(xneighbour) is the objective function value
of the neighbour solution, and f(xincumbent) is the objective function value of the incumbent
solution. The temperature control parameter is called T . It can be seen that large values of
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12 Strategies to improve order picking efficiency: State-of-the-art

T create a higher probability of accepting a worse solution. The lower T becomes, the less
likely that worse solutions are accepted. This results in the algorithm moving through the
search space more randomly at high temperatures (Delahaye et al., 2019).

When using a simulated annealing algorithm, a few choices need to be made. First of all, it
is important that the initial temperature and the temperature function are determined. Both
have an effect on the acceptance of worse solutions. An often used temperature function is
as follows: T (t + 1) = αT (t), where α is a constant that is typically between 0.8 and 0.99.
Secondly, it is important to define after how many iterations the temperature will be altered.
Lastly, the termination criterion should be defined. Matusiak et al. (2014) combine the
principle of simulated annealing with other algorithms to solve the order batching problem
while taking precedence constraints into account. Simulated annealing is responsible for
batching orders in this case. An extensive comparison with heuristics from literature is made.
This comparison shows that the simulated annealing-based algorithm outperforms all other
algorithms in terms of solution quality when the problem features more than 40 orders. The
other algorithms in this comparison were the C&W(ii) savings algorithm, attribute-based hill
climber, and variable neighbourhood search. Boysen et al. (2017) use simulated annealing to
define near optimal order and rack sequences in a GTP warehouse using rack-moving robots.
They use the simulated annealing approach on either the order sequence, or the rack sequence.
They show that optimising the order sequence provides better solutions than optimising the
rack sequence. The authors define the initial temperature by generating 100 initial solutions
and neighbourhoods with a strictly worse objective function value. Afterwards, the authors
set the initial temperature such that around 80% of the neighbourhoods get accepted.

Threshold acceptance is a variant of simulated annealing. Essentially, the only difference
between threshold acceptance and simulated annealing is the way the acceptance criterion
is defined (Gilli et al., 2011). Where the acceptance criterion is probabilistic in simulated
annealing, it is deterministic in threshold accepting. The acceptance criterion is defined as a
sequence of different values. Dueck and Scheuer (1990) introduced the method and conducted
numerical experiments and found that threshold accepting produces very-near-optimal results
in a fraction of the amount of CPU seconds compared to simulated annealing. Füßler and
Boysen (2019) used threshold accepting in order to improve a given order sequence. After a
predetermined number of iterations, the threshold is multiplied with a sink rate. This makes
the search behave more and more like a local search with increasing iterations. Their threshold
accepting-based algorithm outperforms a conventional MILP approach and can solve problems
up to 100 orders. A weak point is that their proposed algorithm is not benchmarked to other
meta-heuristics from literature, but only to simplifications of itself.

Genetic Algorithm

A GA is a population based meta-heuristic that was first introduced by Holland (1975). It is
especially useful for scheduling problems, but can cover a wide variety of problems (Whitley,
2019). The GA mimics the evolution of a species and uses the fact that only the fittest in-
dividuals get to reproduce. In a GA, the solutions get encoded into (possibly binary) strings
that store all the information needed. The following operators are of importance: selection,
crossover, and mutation. The selection operator determines which parents are allowed to
reproduce. This is mostly done using a roulette wheel selection where each individual gets
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2-2 Base MILP approach for GTP picking 13

assigned a selection probability proportional to its fitness, i.e. individuals with a higher fitness
have a higher chance of breeding (García-Martínez et al., 2018).
The other two operators are genetic operators and determine how the reproduction will hap-
pen. The crossover operator determines at what points the encoded string is cut and switched
with a sub string of the other parent. A mutation can happen after the crossover procedure
with a certain probability. It is common for the probability of mutation of one bit, pm to be
proportional to the length of the string: pm = 1/n (Whitley, 2019).

Tsai et al. (2008) used a multiple GA method for solving the batch picking problem. They
constricted the search space to make sure that the algorithm would not become too compu-
tationally expensive. Tsai et al. (2008) used two GAs in a nested way; the first one creates
the batches by minimising the travel cost, earliness and tardiness of all orders. The second
GA takes care of the routing strategy by minimising the travel distance. The authors bench-
marked their proposed nested algorithm against two variants; one variant that only minimises
travel cost, and against one variant that just minimises earliness and tardiness. Their pro-
posed algorithm outperformed both variants. This is, however, hardly a useful conclusion as
both variants were simplifications of the proposed algorithm, so the fact that these simplifica-
tions produce solutions of worse quality seems trivial. The research by Tsai et al. (2008) did
not benchmark against another algorithm than their simplifications, which is a weak point as
it does not provide any reference to the state-of-the-art.
Koch and Wäscher (2016) developed a group-oriented GA and benchmarked it to a standard
item-oriented GA developed by Hsu et al. (2005). Hsu et al. (2005) were already capable
of cutting travel length with more than 50% for a 3D warehouse. The computation time
for this problem, however, was 5.4 hours on average. The group-oriented GA by Koch and
Wäscher (2016) created better solutions than the item-oriented GA. Koch and Wäscher
(2016) state that the item-oriented already improved a solution from a C&W(ii) savings algo-
rithm by 3.15% on average, while the group-oriented GA could improve the C&W(ii) solution
by 3.75%. However, for larger problem instances, the improvements in comparison with the
C&W(ii) solution are minimal.

Chen et al. (2015) created a hybrid coded GA in combination with an ant colony optimisation.
Hybrid coded in this case means that the encoded string contains information on two differ-
ent objectives; the first part of the string contains the batch sizing information, the second
segment contains information on the batch sequencing. The fitness evaluation is done by ant
colony optimisation, that calculates the total tardiness values of each individual solution that
is given by the GA. These fitness values are then fed back to the GA, which determines if the
termination conditions are satisfied. Chen et al. (2015) apply an elitist selection strategy, i.e.
the best performing solution is automatically transferred to the next generation. They man-
age to obtain near-optimal solutions, but only on rather small problems with at most 8 orders.

2-2 Base MILP approach for GTP picking

To the best of the author’s knowledge the only papers that have researched the GTP picking
process within picking stations are Füßler and Boysen (2019), Boysen et al. (2017) and Füßler
and Boysen (2017). The paper by Füßler and Boysen (2019) will be followed because the
authors describe a way of picking that is similar to the way of picking that will be used by
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Table 2-1: Notations

T Number of time slots (t = 1, . . . , T )
n Number of picking orders (i = 1, . . . , n)
S Set of SKUs (and storage bins; s ∈ S)
oi Set of SKUs demanded by order i
C Capacity of the workbench
xs,t Binary variables: 1, if SKU s is delivered in slot t; 0, otherwise
zs,i,t Binary variables: 1, if SKU s is delivered for order i in slot t; 0, otherwise
yi,t Continuous variables: 1, if order i is processed in slot t; 0, otherwise
δt Continuous variables: 1, if the SKUs delivered in t− 1 and t differ; 0, otherwise

Picnic in their automated fulfilment centre. Füßler and Boysen (2019) try to exploit cross-
order similarity, thereby limiting the number of stock retrievals. Using the notation from
Table 2-1 the authors defined a MILP problem is defined as

minimize F =
T∑

t=2
δt (2-1a)

subject to∑
s∈S

xs,t ≤ 1 for t = 1, . . . T , (2-1b)

n∑
i=1

yi,t ≤ C for t = 1, . . . T , (2-1c)

yi,t + yi,t′ ≤ 1 + yi,t′′ for i = 1, . . . , n; 1 ≤ t < t′′ < t′ ≤ T , (2-1d)
T∑

t=1
zs,i,t ≥ 1 for i = 1, . . . , n; s ∈ oi, (2-1e)

2zs,i,t ≤ yi,t + xs,t for i = 1, . . . , n; s ∈ oi; t = 1, . . . , T , (2-1f)
δt ≥ xs,t − xs,t−1 for t = 2, . . . , T ; s ∈ S, (2-1g)

xs,t ∈ {0, 1} for t = 1, . . . , T ; s ∈ S, (2-1h)
zs,i,t ∈ {0, 1} for i = 1, . . . , n; s ∈ oi; t = 1, . . . , T , (2-1i)

0 ≤ yi,t ≤ 1 for i = 1, . . . , n; t = 1, . . . , T , (2-1j)
δt ≥ 0 for t = 2, . . . , T . (2-1k)

Here, Equation (2-1a) is the objective function to be minimised. It minimises the amount of
SKU changes, so F + 1 equals the number of stock retrievals. Equation (2-1b) ensures that
only one SKU is processed per time slot, while Equation (2-1c) makes sure that at most C
orders are processed concurrently. Equation (2-1d) states that an order will be processed in
consecutive time slots, i.e. it cannot leave the picking station. Equation (2-1e) says that every
SKU required by order i should be delivered. For this to be possible, both order i and SKU
s should be present in the picking station, which is ensured by Equation (2-1f). Equation
(2-1g) tracks the number of SKU changes and Equations (2-1h)-(2-1k) define the domains of
the variables. An upper bound on the number of slots is set as T =

∑n
i=1 |oi|. This upper
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2-3 The base meta-heuristic approach for efficient order picking 15

bound corresponds with the situation when every SKU is pick separately for every order.
This is also considered to be the worst case scenario in this research.

Please note that the above MILP only minimises the number of SKU changes. It does not
minimise the number of time slots that orders or SKUs are present in the picking stations.
For this to be achieved, the objective function has to be extended to

F =
T∑

t=2
δtt+

T∑
t=1

n∑
i=1

yi,t +
T∑

t=1

∑
s∈S

xs,t. (2-2)

In Equation (2-2) the number of time slots is minimised by adding the two double sums.
These double sums make sure that any order or SKU occupies the picking station for the
least possible number of time slots. Since the problem uses these time slots, it is a discrete
optimisation problem. Furthermore, the variable δt is forced to take either the value 0 or
value 1. Therefore, multiplying δt with t has an integrating effect. As each SKU change δt is
now multiplied with the time slot, the solver now forces the minimisation problem to use the
earliest time slots possible.

2-3 The base meta-heuristic approach for efficient order picking

As solving a MILP problem will take too much computation time in practice, Füßler and
Boysen (2019) developed a meta-heuristic method. This meta-heuristic approach consists of
three stages: a greedy algorithm to create an initial solution, a heuristic improvement stare,
and a small MILP problem in order to eliminate as many SKUs as possible. The different
stages will be elaborated in this section.

2-3-1 A greedy algorithm to create an initial solution

An initial feasible solution is needed before heuristic improvement can take place. This initial
solution is created using a greedy algorithm. This algorithm will create 3 different sequences:
an order sequence, a completion sequence, and a SKU sequence. First, the order sequence
is derived; it defines in what succession the free spaces in the picking station are filled with
orders. A random order is chosen to be the first order of the order sequence. Let this order
be called order i; its set of SKUs is therefore called oi. A degree of similarity with every other
order j is calculated according to

S(oi, oj) = 2|oi ∩ oj |
|oi|+ |oj |

. (2-3)

The next order in the order sequence is then chosen according to a probability that is propor-
tional to this similarity degree. The newly chosen order that is now last in the order sequence
is then set to be the new order i and the process is repeated until all orders are placed in the
order sequence.

Secondly, the completion sequence can be defined. This sequence determines in what suc-
cession the orders are completed and thus removed from the picking station. It is clear that
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the completion sequence is strongly dependent on the order sequence: an order that is not
available at the picking station simply cannot be completed. In order to define the completion
sequence, the first C orders from the order sequence are considered, as these are the first to
be available at the picking station. The first order to be completed is randomly chosen from
these C orders. Afterwards, the next orders are randomly drawn from the first C, not yet
completed, orders of the order sequence. To keep orders from blocking a spot in the picking
station, an order is forced into the completion sequence if it has not been chosen for 2C times.

Lastly, the SKU sequence is created. The SKU sequence is created by considering the current
order in the completion sequence. The SKUs required by that order need to be retrieved
first. Then we consider the order that takes the place of the current order in the completion
sequence after it has been fulfilled is determined, i.e. the subsequent order. The overlapping
SKUs are determined, one of which will be the last SKU to retrieve for the current order.
This ensures that the subsequent order can still benefit from that SKU and it will save a
stock retrieval. All SKU positions to fulfil that have not been predetermined to be the last
SKU for the current order, or the last SKU from a preceding order, are fulfilled randomly.

It can be seen that although a greedy similarity measure is applied, there is quite a lot of
randomness present in this algorithm. It is therefore highly unlikely that the initial solution
will be of good quality. Therefore it will be improved in the following stages.

2-3-2 Heuristic improvement

To heuristically improve the initial solution, threshold accepting is applied. Threshold ac-
cepting is similar to the simulated annealing algorithm. Threshold accepting uses swap moves
to define solutions in the neighbourhood of the incumbent solution. First, a random order
is selected from the completion sequence. This order can then be swapped with one of the
orders that is simultaneously active at the picking station. The definition of the set of orders
that can be swapped with the order on the i-th position of the completion sequence is defined
as

Os
i = {πo

j |j = 1, . . . ,min(n; i+ C − 1)} \ {πc
j |j = 1, . . . , i}. (2-4)

In Equation (2-4), πo
i is the order at position i of the order sequence and πc

i is the order at
position i of the completion sequence.

The threshold accepting procedure is then relatively straightforward. First, Equation (2-4)
is used to apply a swap move to the incumbent solution. It’s objective function value is
then compared to the objective function value of the incumbent solution. If the difference is
smaller than the current threshold, the neighbour solution is accepted as the new incumbent
solution. When a new incumbent solution is found, the threshold is multiplied with a sink
rate. This means that the threshold will become lower over time, thereby reducing the chance
that a deteriorating move will be accepted. In the paper by Füßler and Boysen (2019), a sink
rate sr = 0.999 was used. Preliminary tests showed that this sink rate made the algorithm
exceptionally slow. Therefore it was decided to adjust the sink rate to sr = 0.99. The other
parameters were chosen in accordance with Füßler and Boysen (2019): threshold τ = 10
and stopping threshold τs = 0.001. The pseudo code for threshold accepting is given in
Algorithm 1.
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Algorithm 1 Threshold Acceptance
Input: set nsteps, threshold τ , sink rate sr, compute current solution xc (randomly)

while τ > τstop do
for i = 1 : nsteps do
generate xn ∈ N (xc);
∆ = f(xn)− f(xc);
if ∆ < τ then
xc := xn

else
i = i+ 1

end if
τ := τ · sr

end for
end while
xsolution = xc

Output: xsolution

2-3-3 Elimination of SKUs by MILP

Stage three of the meta-heuristic algorithm solves an interval scheduling problem. Let πs be
the SKU sequence that is returned by stage 2 and πs

i the SKU at the i-th position of the
SKU sequence. Furthermore, T is the total number of stock totes in πs, i.e. the objective
function value. Using πs, all possible fulfilment intervals are determined for each order j. An
interval starts at a position i, where an SKU required by the order is active on the picking
station. The interval ends when when order is fulfilled entirely, i.e. at the smallest possible
i′ = i, . . . , T for which oj ⊆

⋃i′
k=i π

s
k holds. Then, let Γj be the set of all possible intervals for

order j. Now two binary variable can be preprocessed. First we process ajmt, a variable that
states if an interval m is active for order j at SKU sequence position t. We set ajmt = 1 if
interval m is indeed active, or ajmt = 0 otherwise. Secondly, we process bjmt, that states if
an interval m for order j ends at SKU sequence position t. If the interval m indeed ends at
position t, we set bjmt = 1. Otherwise we set bjmt = 0.

Now, the optimisation variables are declared as

xjm =
{

1, if interval m is selected for order j,
0, otherwise,

(2-5)

yt =
{

1, if the SKU as position t is required,
0, otherwise.

(2-6)

Then, the MILP problem is defined as
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minimize P =
T∑

t=1
yt (2-7a)

subject to ∑
m∈Γj

xjm = 1 ∀j ∈ O, (2-7b)

∑
j∈O

∑
m∈Γj

ajmt · xjm − bjmt · xjm ≤ yt · C for t = 1, . . . , T, (2-7c)

∑
j∈O

∑
m∈Γj

bjmtxjm ≤ yt ·M for t = 1, . . . , T, (2-7d)

xjm ∈ {0, 1} ∀j ∈ O; m ∈ Γj , (2-7e)
yt ∈ {0, 1} for t = 1, . . . , T. (2-7f)

In Equation (2-7) O is the set of all orders and M is a large number. It uses the objective
function in Equation (2-7a) to minimise the number of required SKUs. Equation (2-7b)
ensures that exactly one processing interval is chosen per order. Equation (2-7c) states that
at most C orders can be simultaneously active at the picking station for a requires SKU at
sequence position t. It is important to ignore the orders that end at sequence position t as
they free up space on the picking station. Equation (2-7d) makes sure that an interval can
only end at a SKU position where the SKU is required. Lastly, Equation (2-7e) and (2-7f)
set the binary domains of the optimisation variables.

2-4 Remarks on the meta-heuristic approach

In initial testing, the meta-heuristic approach showed promising results. It is capable of
handling larger order sets in less computation time in comparison with the MILP approach.
However, some remarks have to be made.

First, some unwanted behaviour was found. Equation (2-7c) is used to determine the maximal
number of orders that can be simultaneously active on the picking station. An important part
of this algorithm is that order intervals that end on SKU sequence position t are not counted
in this capacity constraint, since these will be replaced by a subsequent order that can still
benefit from the current SKU at the picking station. During testing it was found that this
results in the algorithm planning single-item orders on intervals that are infeasible in essence.
This behaviour is shown in Figure 2-1. It shows the chosen fulfilment intervals per order.
From this graph we can read that, e.g. order 0 is active at the picking station between SKU
sequence positions 0 − 9. In this instance, the meta-heuristic was solving a small order set,
consisting of 30 orders of between 1-10 items per order. The capacity of the picking station
was set to 3 orders. It can be seen that order 27 is placed at a spot where no capacity is
left; orders 0, 2, and 16 already are already active on the picking station leaving no capacity
for order 27. Since it only consists of one item, the order interval ends in the same sequence
position as it starts. Its presence at the picking station is therefore neglected by Equation (2-
7c). Picnic uses a minimal order value of e25, so single-item orders will not occur. Taking this
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Figure 2-1: Unwanted behaviour on a small and simple order set

into consideration, no effort was made to fix this error. In traditional e-commerce however,
this should be fixed as single-item orders are much more common there.

Secondly, the benchmark conducted by Füßler and Boysen (2019) only uses the separate
stages and the MILP approach to benchmark their proposed algorithm. The author considers
this to be insufficient to be called a benchmark as it does not compare with algorithms for
order sequencing from literature. However, it does suffice as a proof of concept. A different
approach was chosen for this research. It will be elaborated in Chapter 4

Thirdly, a remark has to be made on the order sets used by Füßler and Boysen (2019).
The variables shown in Table 2-2 were combined in a full factorial manner, i.e. all possible
combinations of parameters are considered. It can be seen that at most 50 different SKUs
were used to create the orders and that each order contained at most 10 SKUs. Furthermore,
a set of 100 orders is small in reality. Once again, this paper was used as a proof of concept.
An order of at most 10 SKUs seems reasonable in a conventional e-commerce fulfilment centre.
However, at Picnic orders generally consist of around 30-40 different SKUs. Also, using only
50 different SKUs is not a realistic amount for any e-commerce fulfilment centre.

Lastly, the meta-heuristic cannot cope with multiple picking station. This is a severe lim-
itation as it does not represent the real GTP order picking operation. As multiple picking
stations have not yet received attention in literature, it is considered a research gap.
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Table 2-2: Parameters of the numerical experiments of Füßler and Boysen (2019)

Description Values

Number of picking orders 10, 30, 50, 70, 100
Number of SKUs 10, 30, 50
Interval of SKUs per order [1; 3], [7; 10], [1; 10]

2-5 Conclusions

In this section, conclusions on the state-of-the art will be drawn. It is clear that the process
within the picking stations of an GTP warehouse has hardly had any attention in literature so
far. The problem described in Chapter 1 is proven to be NP−hard, as are the order batching
problem and its’ variants. A consequence is that one cannot use a commercial solver to solve
the MILP formulation to generate a feasible solution in a reasonable computation time. The
use of meta-heuristic methods for optimising the order picking operation is currently the most
suitable way to address this limitation.

The most used strategy to make order picking more efficient in the PTG case is called order
batching. In order batching, several orders are picked in one picking round. This will save on
travel time as the picker does not have to walk to and from the consolidation area for each
order. However, if several orders with a high similarity are to be combined the saving can
become even higher; It is easy to see that less distance needs to be travelled in order to pick
all products, since a high fraction of the products overlap. In GTP warehouses, the picker
is stationary, so no travel time can be save. However, the amount of stock retrievals, i.e.
the number of machine movements, can be minimised. This is called sequencing and it can
have a severe impact on the utilisation rate of the SBS/RS. In this chapter, these approaches
have been reviewed and the most used heuristic algorithms have been elaborated. Simu-
lated annealing, threshold acceptance and GAs all seem to be suitable for (meta-)heuristic
optimisation methods for order sequencing.

Please note that PTG warehouses have been researched extensively, but these papers mostly
consider the operation within the SBS/RS. To the best of the author’s knowledge, only three
papers have been published on the picking process in picking stations in a GTP warehouse.
One of these papers considers the picking strategy that will be implemented by Picnic. The
paper, by Füßler and Boysen (2019) tries to find a near optimal stock tote sequence using a
meta-heuristic approach. The meta-heuristic uses a Greedy algorithm to generate an initial
solution, which is then heuristically improved by threshold accepting. Lastly, a small MILP
is used to eliminate as many SKUs as possible. The meta-heuristic approach shows promising
results. However, as already mentioned in Section 2-4, it does have its’ own limitations; one
constraint was not entirely thought out, the benchmark process only suffices as a proof of
concept, and the problem size and order size are not realistic. In the end, the paper suffices
as a basis for this research. However, it does need to be extended. This will be explained in
Chapter 3.

T. H. R. Biemans Master of Science Thesis



Chapter 3

Improvements to the base
meta-heuristic

In Section 2-4 we learned that the base heuristic by Füßler and Boysen (2019) poses limitations
that prevent it from being implemented in the Picnic GTP picking operation. In this chapter,
several improvements are proposed to extend the heuristic to more realistic problems. The
current limitation of the unrealistic order sets is addressed in Section 3-1. Afterwards, the
extension to multiple picking stations is elaborated in Section 3-2. In Section 3-3, the stock
multiplicity constraints considered. Lastly, conclusions are drawn in Section 3-4.

3-1 Optimising realistic order sets

As mentioned previously, Füßler and Boysen (2019) used the variables of Table 2-2 in their
numerical experiments in a full factorial manner. As a result the most complex problem the
authors researched featured 100 orders, each of which consisted of between 1 and 10 items
that were chosen from 50 different SKUs. This problem size does not represent the prob-
lem sizes encountered in typical e-commerce operations. At Picnic each warehouse produces
between 2000 and 3000 orders per day and this is expected to grow by a factor of 10 with
the introduction of GTP picking. Furthermore, Picnic now has an assortment of over 10.000
different SKUs and orders consist of 30-40 different SKUs on average.

In this research the algorithm by Füßler and Boysen (2019) was adapted to deal with realistic
warehousing problems. The first step is to use more realistic order sets as the inputs. In
order to achieve this, a realistic order data-set was supplied by Picnic. Picnic uses three
temperature zones in their warehouses and some products will not be picked using the GTP
picking stations. The temperature zones are called frozen, chilled, and ambient. As will be
shown in this section, the realistic data set was filtered on the products that are picked using
the GTP picking stations in the ambient temperature zone. This resulted in a data set of
4490 different SKUs.
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In this research the large Picnic data set is filtered on the ambient temperature zone and
on the products that are actually picked using the GTP picking stations. For some very
fast-moving products, it makes no sense to decant them into stock totes and store them in
the warehouse. These products are picked directly from the pallets in different and separate
picking stations. As these picking stations make use of a different picking process, they are
ignored in this research. Devising a strategy that combines both types of picking stations
could be an interesting opportunity for follow-up research.

As fewer SKUs are available for orders to consist of, the computational complexity of the
problem will decrease. This is a realistic assumption since chilled and frozen SKUs are picked
into different, insulated, totes. These SKUs are therefore picked in different picking stations.
No adjustments need to be made to the algorithm for it to optimise chilled or frozen picking.
Supplying the data set of the appropriate temperature zone suffices. It is interesting to point
out that, since less SKUs are available for optimisation, the similarity of the orders will be
higher than when the warehouse is optimised as a whole. This is expected to be beneficial
for the performance of the algorithm.
Lastly, the data set is grouped on the Tote ID, as an order can be larger than one tote and
the capacity of the picking station is measured in totes. In the remainder the word order is
used instead of order tote.

We can now define what a realistic problem will be for the meta-heuristic to optimise. A
realistic problem will be defined as a problem that features around a days worth of orders,
each of which can consist of around 30-40 SKUs, chosen from these 4490 SKUs. The orders
are then filtered on GTP picking and on the ambient temperature zone. For now, a days
worth of orders coincides with the number of orders the current PTG warehouses produce,
which is around 2000-3000 orders each day.

Determine the order set size

This section will demonstrate the obtaining of a favourable order set size that is to be op-
timised. To determine the order set size the meta-heuristic was run 20 times for each order
set size and the results were analysed. Specifically, the percentage of improvement from the
worst case scenario and the computation time were plotted in order to find an order set size
with a favourable trade-off between the two. Recall from Section 2-3-3 that the worst-case
scenario is defined as the scenario where every order line is picked separately for every order.
This is defined as

worst case =
n∑

i=1
|oi|. (3-1)

In Equation (3-1) n is the number of orders, and oi is the set of SKUs required by order i. The
percentage of improvement is defined as the number over stock retrievals saved in comparison
with the worst case scenario, which is defined as

improvement = worst case− objective
worst case · 100. (3-2)

It was expected that the algorithm would find a larger improvement for larger order sets
due to the fact additional orders will largely consist of already used SKUs. Therefore, more
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Figure 3-1: The average percentage of improvement from worst-case vs. the average computa-
tion time on one pick station

options with a high similarity degree are available. Also, it was expected that the increase of
improvement would become smaller as the order sets grows, as the number of extra orders be-
comes relatively smaller. It is evident that a larger order set will take more computation time.
In this section, the relationship between improvement and computation time is investigated.
As shown in Figure 3-1 the improvement, as defined in Equation (3-2), increases with an in-
creasing order set size. For larger order set sizes the extra improvement obtained is marginal.
The computation time however, increases exponentially with the order set size. Using these
results an order set size of 70 orders was chosen as it provides a significant improvement
from the worst-case scenario, while needing only around 100 seconds of computation time on
average. It can also be seen that the algorithm takes more than three times as long for an
order set of 100 orders than a set of 70 orders, while the average extra improvement is slightly
less than 10 % extra. The average improvement for 120 orders is sightly more than 10%
extra in comparison with 70 orders, however this still needs more than three times as much
computation time. Note that if a similar experiment is conducted on a different machine or
on parallel machines, Figure 3-1 can look rather different. It is therefore recommended to re
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do this simple analysis when implementing the meta-heuristic on another machine.

Assumptions

In modelling automated warehouses with GTP picking stations the following assumptions are
made. The GTP warehouses are complex, and some assumptions are needed to be able to
model the behaviour. The assumptions made in this research are now elaborated.

1. Each stock tote contains only one kind of SKU. A stock tote that contains multiple
different SKUs would limit the capacity of the warehouse, and increase the complexity
of the problem. It is easy to imagine the scheduling problems that could arise in such
a situation. Let SKU A and SKU B be stored in the same stock tote. If picking
station 1 requires SKU A, SKU B is cannot be required by a different picking station
simultaneously. This assumption is valid, as stock totes will only carry one SKU in the
Picnic fulfilment operation.

2. It is assumed that each tote carries enough stock to fulfil all orders that are currently
active on the picking station. In reality, this might not be true since a stock tote will
only be replenished when it is depleted. When a stock tote is stored in one location
only, this assumption could potentially be a problem. However, if a stock tote is stored
at multiple locations, the system should know the number of SKUs stored in each stock
tote. It can then choose to send a tote that can indeed fulfil the orders at the picking
station. Another possibility is that, next to returning an order release strategy, the
algorithm determines a stock tote depletion strategy. It can then send a stock tote that
will be completely depleted, such that it can be replenished immediately after fulfilling
the orders. However, as we assume sufficient stock per stock tote, this problem is out
of scope for this research. It is therefore an interesting problem for follow-up research.

3. Before extending the algorithm to multiple pick stations, an assumption is made that
there is always a crate available to fulfil the required SKU. This assumption is made
since in general, an SKU is stored in multiple locations, and thus always one stock tote
will be available for picking. When dealing with only one picking station, this assump-
tion is valid, since at most one picking station can request an SKU simultaneously.
However, when multiple picking stations are considered, multiple picking stations can
request the same SKU simultaneously. If that SKU is stored on just one location in
the warehouse, this will yield an infeasible solution. How to deal with this constraint is
explained in Section 3-3.

4. If an order requires multiple order lines of one product, these are ignored. First of all, in
Assumption 2 we just assumed that each stock tote carries enough stock to fulfil every
order tote that is active on the picking station. Secondly, we take the number of stock
retrievals as the performance metric and that number does not change when an order
line is required multiple times by the same order. Therefore, by ignoring multiple order
lines of the same SKU, we do not change the problem or the model.

5. When a stock tote has fulfilled orders at a picking station, it is sent back to the storage.
Because the trip back to the storage takes time, the tote cannot be requested again
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immediately. In this research, the optimisation problem is solved using SKU sequence
positions. An SKU sequence position is defined as the interval in time where a specific
SKU is active at the picking station. These time slots are of variable time length. It is
assumed that a stock tote that is required in time slot t, cannot be required by another
picking station in the same time slot. However, it can be required by another picking
station in time slot t+ 1. A downside of this approach is that it is hard to say anything
about the total processing time of an order. In the case of only one picking station, this
assumption means that no time limits are used during optimisation and a specific stock
tote can, in theory, be requested in two consecutive time slots.

6. Lastly, standardised customer totes and stock totes are assumed. This makes it possible
to express the capacity of the picking station in a number of totes that can be filled
simultaneously. Standardised totes have been used throughout the Picnic operations
and will be used in their GTP warehouse as well, as it is easier for the SBS/RS to
handle standardised totes.

It is clear that some assumptions had to be made in order to be able to solve the order
sequencing problem. Now, the validity of these assumptions is discussed. Assumptions 1
and 6 are valid, as they mimic the picking operation in reality. Assumption 2 is not always
realistic. In reality, stock totes are filled and only replenished once they have been completely
depleted. In can be interesting to let the warehouse control system choose a stock tote
that can be replenished directly after fulfilling the orders at a picking station. In other
words, a depletion strategy can be developed. As this is a different field of research this
assumption was made. Assumptions 3 is valid for the situation when only one picking station
is considered. As the algorithm will be extended to multiple picking stations, this assumption
simplifies the algorithm as it eliminates the stock multiplicity constraints from Section 3-3.
As said, Assumption 4 is made since we assume a sufficient number of SKUs per stock tote in
Assumption 2; it is therefore a valid assumption. Lastly, Assumption 5 is not so realistic. In a
real situation, the travel time of a stock tote will vary, deadlocks can occur, lifts and shuttles
can break down, and SKUs can come from different locations in the warehouse. Stock totes
will thus not be available for request for varying amounts of time. These stochastic situations
are not captured when using SKU sequence positions as the time variable. The SKU sequence
positions greatly simplify the model of the picking station. The SKU sequence positions also
provide an opportunity for future research, where the stochastic behaviour of the system can
be incorporated in the problem.

3-2 Extending to multiple picking stations

As we have defined the assumptions in the previous section, we can now extend the algorithm
to service multiple picking stations. In this section, a strategy is proposed to create this
extension.

As mentioned in Section 2-3, the current heuristic developed by Füßler and Boysen (2019)
consists of three stages; a greedy initial solution generator stage, a heuristic improvement
stage, and an SKU elimination MILP problem. In Section 3-1, we determined a suitable
number of realistic orders that can be optimised by the original meta-heuristic. It was found
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that a set of around 70 realistic orders yields the most favourable trade-off between the
percentage of improvement and the computation time. As the Picnic warehouse will feature
around 30 picking stations, an order set of 2100 orders was created by randomly sampling
the entire order data set. It is clear that this large order set should be split into 30 pieces
of an equal number of orders, each one representing a picking station. At least two possible
strategies for this division exist. The large order set can simply be split or it can be optimised
first. As the large order set is created using random sampling, simply splitting it means that
random orders end up at the same picking station; this can possibly diminish the performance
of the meta-heuristic. Therefore, the large order set is first sorted on cross-order similarity
by the Greedy algorithm that has been explained in Section 2-3-1.

After sorting the large order set on cross-order similarity, it can be split into manageable
chunks per picking station. Due to the sorting process, orders that have a high similarity
degree are likely to end up in the same picking station. Remember from Section 2-3-1 that
the Greedy algorithm arranges orders by sampling based on a probability that is proportional
to the similarity degree. That means that randomness is present in this greedy algorithm, as
it can happen that an order that does not have the highest similarity degree is chosen as the
next order in the order sequence.

Now that the orders have been sorted and split into chunks per picking station, an initial
solution is determined per picking station by creating a completion sequence and an SKU
sequence. Due to the randomness that is present within the Greedy algorithm, these chunks
will in general not result in a solution of good quality. Therefore, stage 2 from Section 2-
3-2 and stage 3 from Section 2-3-3 are used to improve the initial solution. This is done
for each picking station sequentially while assuming infinite stock, i.e. no stock multiplicity
constraints are taken into account. After each picking station has been optimised all generated
SKU sequences are returned and the total objective function value is calculated by summing
all SKU retrievals.

It is important to check if the assumption of infinite stock is valid. A simple analysis was
conducted on this by running a global GA and letting it create solutions. These solutions were
checked for feasibility by comparing the number of requested SKUs to the stock multiplicity for
each SKU at each SKU sequence position. If an infeasible solution was found, it was stored,
along with the multiplicity degree of the SKU that violated the constraint. It was found
that a completely decoupled solution, as is described in this section, would create solutions
that are infeasible in practice. Therefore, the check on the stock multiplicity constraints was
added to the meta-heuristic algorithm, as will be elaborated in Section 3-3. It was also found
that a large portion of the violations were caused by SKUs with just one storage location.
Almost 99.5 % of the violations were caused by SKUs that are only stored in one place in
the warehouse. This is shown in Figure 3-2. It is therefore recommended to make sure that
every SKU is stored in at least two different storage locations.

In short, in this section a strategy to take multiple picking stations into account has been
elaborated. First a large order set is sorted based on cross-order similarity, after which it
is split into parts of an equal number of orders. Each of these chunks is regarded as a
picking station. Then for each picking station, the heuristic improvement stage and the SKU
elimination stage are used to improve the solution quality; these stages are iterated five times.
In this section, it was also found that the assumption of infinite stock would cause infeasible
solutions in reality. Therefore, a strategy on how to take stock multiplicity into account is
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explained in the following section.

Figure 3-2: The count percentages per multiplicity degree for violations

3-3 Considering stock multiplicity

In the previous section, an extension to multiple picking stations was proposed. However, as
infinite stock is assumed, this proposal is neither realistic, nor of any use in reality. It will plan
critical SKUs on multiple picking stations simultaneously and thus create infeasible solutions.
For the algorithm to be useful to Picnic, or any other e-commerce company, it is necessary to
take stock multiplicity into account. In other words, if a certain SKU is stored on only one
location in the warehouse, it cannot be requested by multiple picking stations simultaneously.
To take this multiplicity into account, a database on storage locations was provided by Picnic.
It featured a possible configuration of the storage locations in the future automated fulfilment
centre. The proposed strategy from Section 3-2 is slightly adapted. After each optimisation
of a picking station, a check is conducted over all currently known SKU sequences. If all these
SKU sequences combined do not violate the multiplicity constraints, the overall solution is
accepted and the next picking station will be optimised, i.e. the next SKU sequence is created.
An example of this is given in Figure 3-3. The corresponding stock multiplicities are given
in Table 3-1. In this figure, each row represents a picking represents a picking station, of
which m are present. Each column represents a position in the SKU sequence. There are
n positions in these sequences and it is assumed that every picking station features an SKU
sequence of equal length, although this might not be true in reality. Each time after a new
SKU sequence created, i.e. a row is added to the SKU sequence matrix, a multiplicity check
is conducted. This check will count all SKUs per SKU sequence position, i.e. per column. As
soon as a violation is found, in this case at picking station m and SKU sequence position 3,
the order containing that specific SKU is placed at a random spot in the completion sequence
of that picking station. Recall from Section 2-3-1 that a different completion sequence will
yield a different SKU sequence. The pseudo code of this process is given in Algorithm 2. The
following behaviour is expected from this strategy. It is easy to see that the (near-)optimal
solution within the picking station is adjusted. This will probably result in a solution of lower
quality in that picking station. However, a solution of lower quality is more useful than an
infeasible solution. Another expectation is that this strategy will hardly cost any computation
time. A different strategy could have been to simply redo the local heuristic optimisation when
a violation is found. However, this would result in the heuristic improvement stage as well as
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the SKU elimination stage restarting every time a violation is found. As this will result in a
computationally extensive algorithm, this strategy is not used.

Algorithm 2 Pseudo code for the stock multiplicity check
Input: order sequence per picking station, stock multiplicity data, number of picking stations
m, overall_solution = ∅
for i = 1:m do
create order completion sequence;
create SKU sequence;
append overall_solution with SKU sequence;
n = max(length(overall_solution));
for j = 1:n do
count SKUs used in SKU sequence position j;
if stock multiplicity is violated then
find violating order and place at the end of order completion sequence
create new SKU sequence
break

end if
end for

end for
Output: overall_solution

Figure 3-3: An example of a multiplicity
constraint check

Table 3-1: The stock multiplicity for Fig-
ure 3-3

SKU Multiplicity

A 2
B 3
C 3
D 3
E 1
F 1

3-4 Conclusions

In this chapter, several different improvements to the base line algorithm by Füßler and
Boysen (2019) have been proposed. Firstly, the problem is made more realistic by increasing
the number of SKUs and the number of orders, as opposed to the original algorithm. An
analysis showed that an order set of 70 orders yields a good trade-off between the improvement
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from the worst case scenario and the computation time. Secondly, the meta-heuristic was
extended to deal with multiple picking stations. At first, an infinite stock was assumed,
i.e. the picking stations were completely decoupled from each other and interdependencies
were ignored. However, from analysis this was found to be unrealistic as infeasible solutions
were created. For instance, an SKU with only one storage location could be requested by
two picking stations simultaneously. Therefore, it was proposed to take the so called stock
multiplicity constraints into account in order to ensure feasible and realistic solutions.

It is evident that the extension to multiple picking stations will have a large effect on the
computation time. As stage 2 from Section 2-3-2 and stage 3 from Section 2-3-3 have to be
repeated for every picking station, the computation time will increase severely, as both stages
are computationally extensive. On the other hand, the improvement will probably not be
affected, since all stages are still used to optimise each picking station. The check on the
multiplicity constraints is expected to slightly lower the performance of the meta-heuristic.
As explained, it will alter a local (near-)optimal solution to make it suitable for the global
solution. In other words, the solution of one picking station is changed so the overall solution
for all picking stations is feasible. The proposed strategy for this, takes the order that violates
the stock multiplicity constraint and places it at a random spot in the completion sequence
for that picking station. It will then not be improved heuristically anymore, so it takes only
a small amount of computation time.

These proposed improvements of course have their effect on the performance of the algorithm.
It is expected that the solution quality of the algorithm will be slightly worse due to the
increased number of SKUs. It is easy to see that a larger set of SKUs to choose from has
a lower cross-order similarity as an effect. Therefore the algorithm will probably find fewer
opportunities to exploit the cross-order similarity. On the other hand, this is expected to be
cancelled out by the fact that the meta-heuristic sorts a large order set based on cross-order
similarity. This will result in more common orders ending up at the same picking station.
This creates an opportunity to eliminate more SKUs, thereby causing a larger improvement
in the overall solution. Furthermore, as a more realistic order set contains more orders, a
longer computation time is expected.

Lastly, a takeaway from this chapter is that the number of multiplicity constraint violations
can be reduced significantly by ensuring multiple storage locations for all SKUs. In the
following chapter, the numerical experiments will be elaborated that are conducted using the
proposed improvements from this chapter.
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Chapter 4

Numerical experiments for the
proposed meta-heuristic

In this chapter, the numerical experiments for the proposed meta-heuristic will be elaborated.
First the set-up will be explained in Section 4-1. Afterwards, the benchmark algorithms are
elaborated in Section 4-2. We will try to explain the results in Section 4-3, after which some
conclusions will be drawn in Section 4-4.

4-1 Set-up

Picnic provided a large order data set consisting of realistic orders. From this large order set,
20 different smaller order sets were created using random sampling. Multiple data sets were
used to eliminate the chance that one of the data sets featured some advantage for one of the
algorithms. Each of these smaller order sets consists of 2100 orders, i.e. 30 picking stations
that have to pick 70 orders. This number was chosen since the Picnic automated fulfilment
centre will feature around 30 picking stations. The picking stations all pick 70 orders since
it was found that an order set of 70 orders featured the most favourable trade-off between
improvement and computation time. This has been described in Section 3-1.
As previously explained, the algorithm improves an initial solution in a heuristic way. The
fact that a heuristic is used, may result in a different solution every run. Similarly, the other
benchmark algorithms feature some form of randomness. For instance, the Greedy algorithm
uses random sampling, as will be explained in Section 4-2-2. Therefore, every algorithm was
run 5 times per data set. In order to say something about the spread of the solutions, the
standard deviation is also considered in the experiments.

It is expected that the MILP approach cannot handle the problems consisting of 2100 or-
ders. It was found by Füßler and Boysen (2019) that their MILP approach could not handle
problems consisting of more than 30 orders. It has to be noted that their problems were of
lower complexity than the ones in this research. This could mean that a MILP approach will
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perform worse in this set-up. Therefore, different experiments were set up to test the per-
formance of the proposed algorithm on a smaller scale and to test if the proposed algorithm
can actually produce (near-)optimal solutions. Several data sets were created, again using
random sampling. The data sets consisted of 10, 20, 50, and 70 orders. For each order set
size 20 data sets were created. As mentioned, the hardware used throughout this research is
a Dell laptop using a Intel(R) Core(TM) i5-8350U CPU with a base speed of 1.90 GHz and
16 GB RAM.

4-2 Benchmark algorithms

In order to be able to make a meaningful conclusion on the proposed algorithm, it is important
that its performance is checked against the performance of different algorithms. The bench-
mark algorithms chosen in this research are a First-Come-First-Serve (FCFS) algorithm, a
Greedy algorithm, and a GA. These will all be explained in this section.

4-2-1 First-Come-First-Serve (FCFS)

In order to draw meaningful conclusions on the ability of every algorithm to improve the
solution quality, an FCFS algorithm is used as the simplest benchmark. As the name implies,
the algorithm uses the first order it reads in the data set as the first order of the order
sequence. In other words, the algorithm does not shuffle the order set base on some property
of the orders. After the order sequence is created, it creates a completion sequence and a
SKU sequence. While creating the SKU sequence, it will take the cross order similarity of
the simultaneously active orders into account, i.e. it will use one stock tote to fulfil multiple
orders at once. The resulting solution will therefore still be an improvement from the worst
case scenario. Remember that the worst case scenario is defined as every SKU is picked
separately for all orders. This simple FCFS algorithm will combine overlapping SKUs while
fulfilling the orders and therefore improve the worst case scenario. It is still necessary to
check for multiplicity violations. If the multiplicity constraint is violated, an entirely new
SKU sequence is constructed for the picking station that causes the violation. Remember
from Section 2-3 that SKUs that are not predetermined to be the first or last SKU of a
particular order, are fulfilled in a random order. Creating a new SKU sequence can thus
potentially solve the violation. The pseudo code for the FCFS algorithm is not shown, as it
is similar to the pseudo code for a Greedy algorithm that is shown in Algorithm 3. The only
difference is that the FCFS algorithm does not feature a CreateOrderSequence function, as
it derives the order sequence directly from the data set.

4-2-2 Greedy algorithm

The second algorithm that was chosen to use as a benchmark is the Greedy algorithm. This
algorithm is based on stage 1, as described in Section 2-3-1. It has been slightly adapted,
which will be elaborated in this section. Similarly as previously explained, the large order
set of 2100 orders is sorted based on the cross-order similarity degree that was given in
Equation (2-3). After this sorting step, the algorithm has created an order sequence of 2100
orders. This sequence is then split into 30 pieces of equal length; each piece is regarded
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as a picking station. The algorithm now calculates the completion sequence and the SKU
sequence per picking station. These SKU sequences are stored in a matrix, and after every
picking station, a check on the multiplicity constraints is conducted as has been described in
Section 3-3. When a violation of the stock multiplicity constraint is found, the algorithm is
restarted for the picking station that caused the violation. The pseudo code for the Greedy
algorithm can be found in Algorithm 3. As mentioned, the only difference between the Greedy
algorithm and the FCFS algorithm is the CreateOrderSequence function that sorts the order
set according to the similarity degree. The result is that more similar orders are active on the
picking station simultaneously. This is expected to yield a solution of better quality, since more
stock totes can be used by multiple orders. The function CheckMultiplicityConstraints
is described in Algorithm 2.

Algorithm 3 Greedy algorithm
Input: order set S, number of picking station n, stock multiplicity file
CreateOrderSequence
restart = True
sku_sequence_matrix = ∅
for i = 1:n do

while restart do
restart = False
CreateCompletionSeqeunce
CreateSKUSequence
CheckMultiplicityConstraints
if multiplicity constraint violated then
restart = True

end if
end while

end for
Output: sku_sequence_matrix, objective

4-2-3 Global Genetic Algorithm (GA)

According to Whitley (2019), a GA is especially useful for scheduling problems. A global
GA was created as a benchmark for the proposed meta-heuristic as it is considered to be a
competitive algorithm. The global GA will be elaborated in this section.
The GA is set up to optimise the 2100 orders globally, thereby possibly converging to a global
optimum. In order to achieve this, an individual consists of all 2100 order IDs. The sequence
of the order IDs is regarded as the order sequence. From this sequence, all other information
can be calculated. The toolbox used for creating the GA is called DEAP (Fortin et al., 2012).
DEAP features several evolution operators. The ones that were used in this research will be
discussed below. The pseudo code of the GA that was used as a benchmark is given in
Algorithm 4.
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Ordered cross-over

An ordered cross-over is useful when an individual consists of alleles that all need to be
present in each individual. An example of this could be the solution to a Travelling Salesman
Problem, or our problem where we need each order to be fulfilled. The cross-over operator
needs two individuals as input, an example is

P1 = (8 4 7 3 6 2 5 1 9 0),
P2 = (0 1 2 3 4 5 6 7 8 9).

(4-1)

At random, two cross-over points are determined for the first parent P1. All the alleles that
are in between the two cross-over points of parent P1 are placed in the child O1 in the exact
same positions as they were found in P1. Then the remaining positions are filled with alleles
from P2 in the order in which they appeared in P2. Determining the order is fairly simple.
If a P2 allele is positioned before the second cross-over point, it will be placed before the P1
alleles in the child. Any allele that was positioned after the second cross-over point is placed
behind the P1 alleles in the child. This is visualised as follows:

P1 = (8 4 7 | 3 6 2 5 1 | 9 0),
P2 = (0 1 2 3 4 5 6 7 8 9).

(4-2)

The resulting child is defined as

O1 = (0 4 7 3 6 2 5 1 8 9). (4-3)

If another child is desired, P1 and P2 are swapped and the operation is repeated.

Population size

Another parameter that influences the behaviour of a GA is the population size. As mentioned
before, a population consists of individuals, each of which represents a solution. Note that
in this case, not every solution is feasible per definition. The feasibility of each solution
is checked using the pseudo code from Algorithm 5, which adjusts the fitness value if the
solution is infeasible. It is easy to see that a larger population will explore more of the search
space than a smaller population; this can potentially lead to a solution of better quality.
However, a larger population means that more calculations are needed in each iteration. A
larger population will therefore take a longer computation time.
In order to tune the GA a data set of 70 orders was optimised for different population sizes.
The mutation probability used was 0.01 and the tournament size was 5 individuals. These
parameters were tuned separately afterwards, as will be explained in the following section.
The results from the experiment are summarised in Table 4-1. In this table, the results
from 5 runs per population size are averaged. The column Avg. best solution therefore is the
average of the best solution found in the last generation of each run. It can be seen that the
expectations are fulfilled, i.e. the computation time increases with a larger population and the
objective function decreases. This means that for a larger population, the GA finds a solution
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Table 4-1: Results from the population size tuning

Population size Avg. Computation time Avg. best solution Std. dev. of best solution

20 32.1 690.0 3.5
30 47.1 686.8 2.7
40 65.2 684.8 3.1
50 96.2 686.6 3.0
60 117.2 684.4 2.1
70 138.2 682.4 4.2
80 155.6 682.4 2.2
90 173.2 681.8 2.8
100 192.7 682.4 2.1
110 235.1 680.8 2.0
120 258.0 680.8 0.8
130 282.3 681.4 1.5
140 302.1 679.8 3.1
150 322.7 677.6 2.5
200 430.6 678.0 1.6

that needs fewer retrievals, and has therefore a better quality. In the end a population size
of 90 individuals was chosen. This because this size features a significantly improved average
solution quality in comparison with a population size of 20 individuals, while still using a
reasonable computation time. Lastly, the standard deviation is reasonable as well, at only
0.41% of the average best solution.

Selection tournament and mutation

In a GA, a mutation operator is important for the performance of the algorithm. It can
implement some random behaviour in solutions of already good quality. Thereby, it makes
sure that the search space is thoroughly explored. In this research, a mutation happens via the
mutShuffleIndexes operator. The operator uses an individual and a mutation probability
Pm as an input. The mutation probability is the probability that an allele is shuffled with
another allele. The way that the individuals are defined, a shuffle of an allele will yield a
shuffled order sequence.
Pm = 1/n is widely accepted as a suitable mutation probability, where n is the number of
alleles of the individual (Whitley, 2019). In this research n = 2100, since that is the number of
orders that are optimised. This means that each orders has a chance of 1/2100 = 0.00047 to
be swapped with another order. The mutation operator prevents the algorithm from getting
stuck in a local minimum. With a mutation probability as low as 0.00047, mutation will
hardly take place. This can result in a GA that does not explore the search space sufficiently.
However, a too high mutation probability will prevent the algorithm from remembering useful
features of a solution, thereby diminishing the performance.
A 2D experiment was run on the size of the selection tournament and the mutation probability.
An order set of 70 orders was optimised by the global GA with tournament sizes ranging from
2 to 50 participants and mutation probabilities ranging from 0.0005 to 0.5. Each combination
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Figure 4-1: Results of the 2D analysis split per tournament size

of tournament size and mutation probability was ran 5 times to average out some of the
statistical noise. The results of the analysis on mutation probability are shown in Figure 4-
1. Please note that the qualities corresponding to a mutation probability of 0.5 are left
out, as these runs performed badly and distorted the figure. It can be seen that the best
results were obtained when a mutation probability of either 0.01 or 0.02 was used. The
results on the tournament size can be found in Figure 4-2. It can be seen that especially the
lower tournament sizes produce bad quality solutions, while for larger tournament sizes the
incremental improvement is small. The computation time however, increases almost linearly
with a larger tournament size. This can be seen in Figure 4-3.

The selection is carried out using a tournament. For a tournament x individuals are randomly
picked from the current population. From these x individuals, the individual with the best
fitness is transferred to the next generation. This means that a tournament of size one equals
a random sampling selection operator. This is expected to diminish the performance of the
GA as no useful features of a solution will be remembered. On the other hand, a tournament
with the same size as the population results in the same individual getting selected every
tournament. This will thus result in an entire population consisting of the same individuals.
It is easy to see that this will not be beneficial for the solution quality.

A heat map of the combined results of the 2D experiment is shown in Figure 4-4, where it can
indeed be seen that a mutation probability of either 0.0005 of 0.5 performs badly, as well as a
tournament size of 2 as this is close to using random sampling for selection. In this figure, it
can be seen that the lowest average minimums are found when using a mutation probability
of 0.01 or 0.02 and a tournament size between 30 and 50. Within this area of possible
combinations, the differences between average solution quality are minimal and could as well
be attributed to statistical noise. Therefore, we take the computation time from Figure 4-3
into account. This led to choosing a mutation probability of 0.01 and a tournament size of
35 individuals.
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Figure 4-2: Results of the 2D analysis split per mutation probability

Figure 4-3: Tournament size vs computation time
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Figure 4-4: A heat map of the results of the 2D analysis on GA parameters

Algorithm 4 General pseudo code for a GA
Input: Initial population, Np: population size, Pc: crossover probability, Pm: mutation
probability, n: number of generations
//Initial population:
for i = 1 to Np do
pi := Generate solution;
pi.fitness := Evaluate(pi);

end for
//Evolution
P := initial population
for generation < n do
//Offspring generation
for j = 1 to 5 do
P0 := P
parents := Sample(P);
offspring := Crossover(parents); //according to Pc

offspring := Mutation(offspring); // according to Pm

offspring.fitness := Evaluate(offspring);
P0 := P0 ∪ offspring;

end for;
P := Selection(P0); //according to Np

end for
Output: Best generated solution;
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Algorithm 5 General pseudo code for the fitness evaluation
Input: current population, n: number of picking stations, M : a large number

for individual in current population do
order_sequence := SplitIndividual(individual)
sku_sequence_matrix := ∅
fitness = 0
for i = 1 : n do
compl_seq := GenerateCompletionSequence(order_sequence[n])
sku_sequence := GenerateSKUSequence(compl_sequence)
sku_sequence_matrix.append(sku_sequence)
CheckMultiplicityConstraint
if MultiplicityConstraint violated then
individual.fitness := length(sku_sequence) + M

else
individual.fitness := length(sku_sequence)

end if
end for

end for
Output: population.fitness

4-3 Results

In this section, the results of the different numerical benchmark experiments are discussed.
In order to properly check the performance of the meta-heuristic and benchmark algorithms
some smaller instances were checked, as these are more likely to be solvable by the MILP
approach. This way, it was checked if the meta-heuristic is capable of producing optimal
solutions for smaller, thus less complex, instances. These smaller instances featured 10-70
orders per data set. We chose at most 70 orders for the small scale experiments, as that is the
amount of orders that will be optimised per picking station. For each number of orders, 20
different order sets were created by random sampling orders from the large data set supplied
by Picnic. In each table in the appendix of this section, the results for different order set
sizes are shown. In each row, the worst case number of retrievals for is given per order set.
Recall that the worst case is defined as picking all order lines separately for all orders, in other
words no cross-order similarity is exploited. The column Ī[%] gives the average improvement
achieved by each algorithm over a specific data set according to Equation (3-2). The average
objective function value that has been obtained by the algorithm over a specific data set in
a number of retrievals, is denoted by Ō[#]. Lastly, T̄ [s] shows the average computation time
used by the algorithm for a specific data set in seconds and the column Std. denotes the
standard deviation of the objective. Each algorithm was run 5 times per data set in order
to average out some of the statistical noise and randomness that is embedded in most of the
algorithms.

All algorithms have been coded using the Pycharm (x64) 2018.3.7 edition IDE with the Python
3.7 interpreter. The linear programming was conducted using the PuLP 1.6.10 package and
using and Gurobi Optimizer 8.1.1 as the MILP solver (Gurobi Optimization, 2020). Lastly,
the GA was coded using the DEAP 1.3.1 package (Fortin et al., 2012). As mentioned, the
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hardware used throughout this research is a Dell laptop using an Intel(R) Core(TM) i5-8350U
CPU with a base speed of 1.90 GHz and 16 GB RAM.

10 orders

The results from the experiment with an order set of 10 orders are shown in Table A-1
and summarised in Figure 4-5. It is clear that the MILP approach is more suitable for the
simplified problem by Füßler and Boysen (2019). In their results, the authors showed that the
MILP algorithm was capable of solving instances up to 30 orders. From Table A-1 it is clear
that the MILP approach performs poorly and struggles to solve problems of just 10 orders.
A solving time limit was set on 1200 seconds using the Gurobi Optimizer package. This
was done in order to prevent the computer from running out of memory. An empty row for
the MILP algorithm means that the solver could either not find a feasible solution within the
solving time limit, or the computer ran out of memory, i.e. the data set seemed too complex
for the solver to handle. In Figure 4-5, just the results for the data sets that were solved by
all algorithms are shown, making it easier to make a meaningful comparison.

The MILP is outperformed by all other algorithms, both on the average improvement of the
solutions and the average computation time, as can be seen in Table A-1. Figure 4-5 also
shows that the solution quality of the MILP algorithm is generally worse than the quality
of the other algorithms. This seems strange, as a MILP algorithm should output optimal
results. However, it is stated in the Gurobi documentation that the solver will output the
best found solution when the solving time limit is reached. This means that the solver can
output sub optimal solutions.

Table A-1 shows the full results from the experiments with 10 orders. Please note that the
total average objective of the MILP algorithm is a bit misleading in this table. This is due
to the fact that the solver was not capable of generating feasible solutions for the somewhat
larger problems. It could only generate feasible solutions for the smaller problems with a
worst case scenario of less than 110 retrievals. As a result, the average objective function is
significantly lower than for the other algorithms. When the average results are filtered by the
instances that the MILP solver was capable of actually solving, the results are different; these
results are depicted in Table 4-2. It can be seen that still the MILP approach performs the
worst. This is due to the output of sub optimal solutions when using the time limit with the
Gurobi solver. The FCFS and Greedy algorithm performed similarly. Both provided solutions
of better quality than the MILP approach in a short computation time. The solutions from
the Greedy algorithm feature a slightly larger standard deviation than the solutions of the
FCFS algorithm. This was to be expected since the experiments featured a small order set
size and the FCFS does not create the order sequence based on a property of the order.
The Greedy algorithm does use the similarity between orders to create the order sequence,
but some randomness is present in this process. This can therefore result in different order
sequences for each run, which explains the slightly larger standard deviation. Even so, both
the GA and the proposed meta-heuristic approach perform similarly and produce solutions
of better quality than the MILP approach. The proposed meta-heuristic, however, uses only
around a third of the computation time of the GA.

A key take away from this small scale experiment is that both the GA and the proposed
meta-heuristic are capable of producing (near-)optimal solutions. However, since the time
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Table 4-2: the results for 10 orders, filtered on the instances that were solvable by every algorithms

Ī[%] Ō[#] T̄ [s]

MILP 2.16 100.57 1,319.97
FCFS 2.46 100.26 0.10
Greedy 2.35 100.37 0.10
GA 2.78 99.93 12.54
Heuristic 2.78 99.93 4.06

Figure 4-5: The distribution of the quality of the solutions for 10 orders, filtered on the data
sets that were solvable by all algorithms

limit is used, it is hard to prove optimality for the solutions generated by the MILP. Another
interesting phenomenon is that the GA and the proposed meta-heuristic take much longer
to compute a feasible solution than both the FCFS and the Greedy algorithm. This was
expected, as the proposed meta-heuristic and the GA improve an initial solution iteratively.

20 orders

It is now interesting to check how the behaviour of the algorithm scales with the order set
size. It is important to note that the MILP approach is not featured for the experiment that
are larger than 10 orders. This choice was made since the MILP approach was struggling to
provide feasible solutions for 10 orders, let alone optimal solutions. It was found that the
computer ran out of memory for order sets of 20 orders or larger, even with the solving time
limit set on 20 minutes.

The results of the experiments featuring 20 orders are as expected; they are shown in Table A-
2 and summarised in Figure 4-6. As the order set is now larger, there are more possibilities to
differentiate for the algorithms. It can be seen that the worst performance in terms of average
improvement is generated by the FCFS algorithm. Note that this simple algorithm is still
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Figure 4-6: The distribution of the quality of the solutions for 20 orders

capable of improving the worst case scenario by 2.25%, i.e. the algorithm that is currently
used in most automated fulfilment centres.

Once again, the proposed meta-heuristic and the GA produce similar results. Both these
algorithms improve the worst case scenario by 4.75% on average with a minimal average
standard deviation. The only big difference is the average computation time. The proposed
meta-heuristic needs less than half the computation time of the GA. However, since the order
set size is still rather small, and the GA and the proposed meta-heuristic perform similarly,
it is hard to draw conclusions on what algorithm would be the better choice for solving large
scale order sequencing problems. The performance of the algorithms is visualised in a box plot
in Figure 4-6, where we can see that in general, the meta-heuristic returns the best quality
solutions.

50 orders

The experiments consisting of 50 orders again yielded results that were expected, as can
be seen in Table A-3. This time, as the order set size was larger than in the previous,
there was even more room for the algorithms to differentiate. Again, the FCFS algorithm
performed relatively poorly, improving the worst case scenario by only 3.28% on average. The
Greedy approach to solving the order sequencing problem performs slightly better, improving
the worst case scenario by almost 5.5%. The standard deviation is slightly higher for the
Greedy algorithm than for the FCFS algorithm. This is to be expected as has been discussed
previously. Still, the standard deviation accounts for less than a percent of the average
objective value. In these experiments, we can now see that the proposed meta-heuristic is
well suited for the order scheduling problem. It achieves the best quality solutions, improving
the worst case scenario with around 9.6% on average. Also, the solutions are quite close
together with an average standard deviation of just 2.09 retrievals. We can also see that the
proposed meta-heuristic uses less computation time than the GA, around 60% of it. The GA
also performs slightly worse than the meta-heuristic, improving the worst case scenario just
with 8.95% on average. The results have been summarised in Figure 4-7.
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Figure 4-7: The distribution of the quality of the solutions for 50 orders

Figure 4-8: The distribution of the quality of the solutions for 70 orders

70 orders

Now the results on the experiments of 70 orders are discussed; they are summarised in Fig-
ure 4-8. This is the largest order set size that was tested in a single picking station setup,
due to what has been discussed in Section 3-1. It can be seen in Table A-4 that the FCFS
performs quite poorly again by improving the worst case by around 3.5%. The Greedy al-
gorithm again performs significantly better by improving the worst case scenario by 5.9%;
it does yield a slightly higher average standard deviation. Furthermore we can see that the
proposed meta-heuristic improves the worst case scenario the most, but it needs quite some
computation time. It does, however, perform better than the GA on all facets, as it produces
better solutions in less computation time. The GA features a lower average standard devi-
ation and a lower average objective, which means that it will produce solutions using more
retrievals on a more consistent basis in comparison with the meta-heuristic.
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2100 orders

In the previous paragraphs, the results of the experiments of relatively small scale have been
discussed. In this paragraph we will discuss the results of the large scale experiments of
2100 orders. All algorithms have been adapted such that they can deal with multiple picking
stations. For the FCFS and Greedy algorithm, this is done in a similar way as was proposed for
the meta-heuristic. This has been described in Section 3-2; each algorithm will optimise the
picking stations sequentially and store the SKU sequence per picking station. After a picking
station has been optimised, the multiplicity constraint is checked. Before the different SKU
sequences can be determined, it is important to know which orders are assigned to which
picking station. The FCFS algorithm is the most straightforward in this; it reads the data
set and the first 70 orders are assigned to the first picking station, and so on. The Greedy
algorithm uses the similarity degree to assign orders to picking stations, as has been explained
in Section 3-2.

Again, as expected, the FCFS algorithm performs poorly. This can be explained by the fact
that the FCFS algorithm does not sort the orders on similarity. It will therefore most likely
assign orders with a low similarity degree to the same picking station. It is then incapable of
creating a SKU sequence of good quality and is does not use a improvement stage. This all
sums up the relatively low improvement of the FCFS algorithms. Interesting to see is also the
large average standard deviation in comparison with the other algorithms. The FCFS has an
average standard deviation of around 1.1% of the average objective value; this is an order of
magnitude larger than the other algorithms.

In this large scale experiment, it becomes clear what the benefits of sorting orders based on
similarity are. The Greedy algorithm, like the FCFS, does not use any heuristic improvement
stages in order to solve the order sequencing problem. Still, it is capable of improving the
worst case scenario by almost 8.67% on average, 4,78 percent point more than the FCFS
algorithm. It achieves this with a significantly smaller standard deviation.

Figure 4-9 shows that the proposed meta-heuristic approach is far superior to the other algo-
rithms. Not only is the distribution of the objective values positioned at a much better quality
than the other algorithms, the distribution is also quite narrow in comparison. This means
that the proposed meta-heuristic produces high quality solutions relatively consistently. A
downside is, of course, the computation time it needs to arrive at these solutions. On average,
the meta-heuristic takes 3072 seconds of computation time, or around 51 minutes. Consid-
ering the order set size of 2100 orders this could potentially become a problem. Currently,
between 2000 and 3000 orders are produced in Picnic’s PTG fulfilment operations. This num-
ber is expected to grown with a factor 10 when GTP picking is used, thereby increasing the
computation time for devising a suitable order release strategy. On the other hand, it should
be noted that this research is intended as a proof of concept and not as an implementation
study. It is expected that the computation time used by meta-heuristic can be shortened by
using more efficient code.

Looking at Figure 4-9 and Table A-5, some interesting results are visible for the GA. While
the GA performed well in the small scale experiments, the performance diminishes with larger
order set sizes. The GA was only capable of improving the worst-case scenario with around
4.4% on average, while it was capable of improving the worst case scenario with around 9.2%
on average with the experiments on 70 orders. A few different hypotheses were formulated.
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Figure 4-9: The distribution of the quality of the solutions for 2100 orders

The first hypothesis was that the GA was not properly tuned for such large order sets.
Remember from Section 4-2-3 that different settings were tested to tune the GA properly. The
data sets on which the GA was tuned however, consisted of only 70 orders. It is possible that
the scale of the data set changes the most suitable settings for a GA. For instance, remember
that the mutation probability was set to 0.01, while according to literature it should have
been set to 0.0005. A second hypothesis was that, since the experiments features many more
orders, it needs more generations to return a good quality solution. Lastly, a hypothesis was
that a violation of the a stock multiplicity constraint should have been featured explicitly in
the genome of the individuals. This is explained in the next paragraph.

The biggest difference between the small scale experiments and the large scale experiment
is the fact that small scale experiments are small enough to use just one picking station.
That is, each picking station will process 70 orders, since this was decided in Section 3-2. As
a result, at most one of each SKU can be requested at any time step, thereby eliminating
the chance of violating the stock multiplicity constraints. So the only experiments in which a
stock multiplicity constraint can be violated are the experiments with 2100 orders. Remember
from Section 3-3, Section 4-2-1, and Section 4-2-2 that a multiplicity violation can be dealt
with directly. This is done by either re-positioning the order that caused the violation in the
proposed meta-heuristic or by restarting the algorithm when a violation is detected for both
the FCFS and Greedy algorithms. Also note that the GA can create infeasible individuals,
where each allele corresponds to an order ID. The sequence of the order IDs in the individual
thus determines the order sequence. The GA then creates a completion sequence and SKU
sequence as has been described in Section 2-3. These procedures use certain random processes,
such as sampling. Afterwards, the GA will evaluate the fitness of every individual using the
algorithm described in Algorithm 2. In short, the sequence of the alleles does influence the
chance of a multiplicity violation, but it does not directly determine if a multiplicity violation
will occur. The GA severely punishes stock multiplicity constraint violations by worsening
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the fitness of an individual with such a violation. However, since the SKU sequence is not
directly determined by the sequence of the alleles, it can happen that an order sequence that
features a good solution is punished due to a randomly formed stock multiplicity violation. As
a result, areas of the search space featuring potentially good quality solutions can be ignored,
thereby diminishing the performance of the GA.

In order to test the hypotheses, the GA was rerun using different settings. To test if the (lack
of) tuning of the GA was responsible for the bad performance, the mutation probability was
set to 0.00047. To test if too few generations were used, the GA was set to 300 generations
instead of 100. Lastly, to test if the stock multiplicity check was responsible for the bad
performance, the GA was run without the stock multiplicity check, i.e. an infinite stock was
assumed. If the GA were to provide good quality solutions on one of these set-ups, the
corresponding hypothesis can be accepted as true. The data set that featured the largest
average improvement by the meta-heuristic was chosen for these tests. The results of these
extra experiments are compared to the runs of the GA including the stock multiplicity check,
and to the meta-heuristic runs. Each version of the GA was run 5 times on the same data
set.

In Table 4-3 it is shown that the tuning of the mutation probability is probably not the cause
of the GA’s bad performance, as the average improvement is slightly worse for a mutation
probability of 0.0005. Ignoring the stock multiplicity constraint does yield a larger improve-
ment, though not a significantly larger one. The largest improvement by a GA was generated
by increasing the number of generations from 100 to 300. This also resulted in the smallest
standard deviation so a GA that uses more generations is more consistent in producing better
quality results. A disadvantage is the computation time, that almost tripled in comparison
with the computation time of the original GA. Another way to explore more of the search
space is use a larger population. This will also increase the computation time. It also needs to
be noted that still the meta-heuristic produces far superior solutions than the best performing
GA.

Lastly, it can be seen in Table A-5, that the original GA already takes the longest average
computation time of all algorithms. This in combination with the bad performance in terms
of solution quality, makes this specific GA not suitable for this particular problem. In order
for it to be a more suitable alternative to the proposed meta-heuristic, it needs to be adapted.
We can conclude that the GA does not seem a suitable algorithm for the case of 2100 orders.
However, the potential of a GA has been shown during the small scale experiments. The
problem is that the experiments of 2100 orders feature 30 times more orders, and therefore
needs more exploring moves. As the computation time almost tripled when we increased the
number of generations from 100 to 300, one can expect enormous computation times when
more generations are added in order to increase the GA’s performance. It will therefore not
be useful in daily picking operations.

4-4 Conclusions

In this section, conclusions will be drawn on the results of the numerical experiments. The
conclusions will be split between the small scale and the large scale experiments. In the small
scale experiments, the most interesting results are summarised in Figure 4-5 and Table 4-2,
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Table 4-3: The results of GA experiments with different settings

Algorithm Ī[%] Ō[#] Std. T̄ [s]

GA lower mutation 4.18 20,862 20.69 3,188.67
GA original 4.42 20,811 19.38 3,495.49
GA inf stock 4.45 20,804 31.85 2,925.81
GA 300 generations 5.00 20,684 17.96 9,846.62
Meta-heuristic 13.52 18,830 26.47 3,013.42

where it is visible that the MILP approach performed quite poorly. A time limit of 1200
seconds was needed; without it, the computer would run out of memory. A result of this,
is that the Gurobi solver will return a sub optimal solution when the time limit is reached.
It can also be seen in Table A-1 that for 6 of the 20 data sets, either Gurobi could not find
a feasible solution or the computer ran out of memory. Another interesting thing from the
10 order experiments is that the GA and the proposed meta-heuristic perform similar. They
return the same results in every run. This insinuates that a global optimum is found for
these experiments, however this cannot be proven as the MILP approach returned a worse
solution for 50% of the problems it was capable of solving. The computer ran out of memory
while trying to solve an experiment of 20 orders with the MILP approach. It can therefore be
concluded that solving a realistic order scheduling problem is too complex to be done using
a MILP formulation

The rest of the small scale experiments returned results that were largely expected. In the
experiments with 20 orders, the GA and the proposed meta-heuristic yielded superior results
compared to the FCFS and the Greedy algorithm. The experiments with 50 order show a
slight advantage for the proposed meta-heuristic, which returns solutions of better quality
in less computation time and with a lower standard deviation compared to the GA. The
solution quality that is returned by either the FCFS or the Greedy algorithm is significantly
worse than the solution qualities from the GA and the proposed meta-heuristic. This pattern
is continued in the experiments with 70 orders, however the advantage of the meta-heuristic
is slightly larger. From the small scale experiments it can be concluded that the proposed
meta-heuristic is a promising algorithm to solve the order scheduling algorithm. It is capable
of returning good quality solutions in a reasonable computation time.

Even more interesting are the results of the large scale experiments. Currently mostly the
FCFS algorithm, or a sorting algorithm based on due dates is used for determining a suitable
order release strategy. Furthermore, cross-order similarity is not exploited due to the fact that
in traditional e-commerce, orders consist of few order lines. These algorithms will result in a
fairly random order sequence in terms of cross-order similarity. It can be seen in Table A-5 that
this results in a relatively low average improvement of around 3.9% in comparison with the
worst case scenario. Sorting the orders beforehand based on cross-order similarity, is beneficial
for the solution quality. This sorting step is a relatively simple procedure that significantly
improves the solution quality. It can be seen that the Greedy algorithm improves the worst
case scenario by almost 8.7% on average, thereby reducing the average number of retrievals
needed by 1047. Please note that in the Greedy algorithm, no heuristic improvement has been
applied. The results show that a heuristic improvement stage is also beneficial for the solution
quality. The proposed meta-heuristic achieved an average improvement of around 13.4% in
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comparison to the worst case scenario. The performance of the GA, however, diminished
when solving problems of larger scale. This behaviour is probably due to the fact that not
enough of the search space can be explored with the settings used. In order to overcome this,
more generations are needed, or a larger population should be used. It can be concluded
that this GA is not well suited to solve such complex problems in a reasonable computation
time. Even if more generations are used, the question is if a GA will be able to produce
better quality solutions than the proposed meta-heuristic, as the GA was outperformed by
the meta-heuristic in the small scale experiments.

In the end, the conclusions on the meta-heuristic approach should be based on the most
realistic problems, i.e. on the experiments with 2100 orders. Based on the average improve-
ment and the average number of retrievals, it can be concluded that the meta-heuristic is the
most suitable algorithm due to the large average improvement it generates. A down side on
the meta-heuristic is the long computation time, of around 50 minutes on average. It needs
to be noted that a day’s orders are known at 22:00 the evening before; the entire night is
available for calculating a suitable order release strategy. Furthermore, the code used for this
algorithm will not be the most efficient, meaning that the computation time can potentially
be decreased with developing effort. This means that the computation times in this chapter
should be looked at as an indication of the computation time of a fully developed algorithm.
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Chapter 5

Conclusions and recommendations

In this chapter, conclusions will be drawn on this research. The conclusions of previous
chapters are summarised in Section 5-1. These conclusions will be discussed in Section 5-2.
Afterwards, in Section 5-3, some recommendations for follow-up research are given.

5-1 Summary and conclusions

The aim of this research is to develop an algorithm that can return a (near-)optimal order
release strategy. Hardly any research has been done on improving the picking efficiency by
exploiting cross-order similarity. To the best of the author’s knowledge, only a few papers
have tried this method. Füßler and Boysen (2019, 2017); Boysen et al. (2019) all try to exploit
cross-order similarity in different operational set-ups. In these papers, it was concluded that
such an order sequencing problem is NP−hard and that (meta-)heuristic methods are the
most suitable way to solve such problems. In these papers a lot of assumptions are made;
the problems solved in these papers are therefore simplified versions of realistic problems.
The orders in the paper by Füßler and Boysen (2019) contain at most 10 Stock Keeping
Units (SKUs), chosen from at most 50 different kind of SKUs. In e-commerce, typically more
different SKUs are sold and at Picnic the orders consist of around 30-40 SKUs. Furthermore,
the aforementioned papers consider only one picking station, thereby ignoring interdependen-
cies between multiple picking stations. This also significantly simplifies the algorithm.

In order to consider multiple picking stations, it is first important to determine how many
orders a picking station will fulfil. In this research an analysis was done on the trade-off
between the percentage of improvement from the worst case scenario and the computation
time. It was found that 70 orders per picking station yielded a favourable trade-off. Note that
the relation between the percentage of improvement and the computation time will differ per
machine. Therefore, it is recommended to redo this small analysis when implementing the
meta-heuristic on another machine. The algorithm was extended to deal with multiple picking
stations, assuming infinite stock. That is, the picking stations are decoupled completely
and no interdependencies are taken into account. It was found that such a scenario is not
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realistic, as SKUs with a low stock multiplicity can be required by multiple picking stations
simultaneously. A strategy was devised to deal with these stock multiplicity violations. If
an order was found to violate the stock multiplicity constraint, it was placed at a random
position in the completion sequence. It was found that this method is capable of dealing with
such stock multiplicity constraint violations. It was expected that this meta-heuristic would
yield a lower performance in terms of solution quality in comparison of the meta-heuristic
that optimises just one picking station. However, it did not. A possible explanation for this
behaviour is the fact that all orders are sorted on similarity before the heuristic improvement
and SKU elimination take place. Since the orders have been sorted beforehand, these two
stages are capable of generating higher quality solutions.

Numerical experiments were carried out on different order sets. In the smaller order sets,
the results were largely as expected. First of all, the MILP approach seemed unsuitable for
realistic order sets. It was not capable of returning optimal solutions for the smallest order
sets, while for larger order sets the computer ran out of memory. The proposed meta-heuristic
was benchmarked against a simple FCFS algorithm, a Greedy algorithm consisting of stage
one of the meta-heuristic, and a global Genetic Algorithm (GA). It was found that for
order sets up to 70 orders, using one picking station, the meta-heuristic returned solutions of
superior quality in comparison with the benchmark algorithms. Even a properly tuned GA,
which is widely considered to be a useful algorithm for sequencing, provided lower quality
solutions while needing more computation time.

In the experiments with larger order sets, multiple picking stations were used. Here it was
found that the proposed meta-heuristic returned results of far superior quality. It managed
to improve the worst case scenario by 13.37% on average. However, this came at a large
computational cost: the algorithm needed around 51 minutes of computation time on average
to optimise 2100 order divided over 30 picking stations. In comparison, the FCFS algorithm
performed poorly, with an average improvement of the worst case scenario of only 3.89%.
It was much quicker than the meta-heuristic, with an average computation time of just 1.4
seconds. The Greedy algorithm performed reasonably good. It improved the worst case
scenario by 8.67% on average while only needing around 90 seconds of computation time.
The GA disappointed in the large scale tests with an average improvement of only 4.43%. It
was found that by increasing the number of generations, the performance of the GA improved.
However, this came at a cost of extra computation time. The GA already used the longest
average computation time. It is therefore questionable if adding more generations would yield
a suitable algorithm.

In the end it is concluded that the proposed meta-heuristic is a suitable algorithm for solving
large scale order sequencing problems. It is capable of handling multiple picking stations and
of resolving potential stock multiplicity constraint violations. A critical note is the current
average computation time, which is significant. If such a computation time is not an issue, the
meta-heuristic is recommended for implementation. It could, for instance, be used to create
a (near)-optimal order release strategy before the actual operation starts. If, however, issues
occur during the operation, it will be too slow to solve these issues in real time. Fur such a
cause, the Greedy algorithm shows a more favourable trade-off between solution quality and
computation time.

During this research, a gap has been found in the current literature. To the best of the author’s
knowledge, only three papers have contributed to literature on order sequencing to improve
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order picking efficiency within Goods-To-Picker (GTP) picking stations. This MSc thesis has
contributed to that knowledge by extending a meta-heuristic approach from literature to be
able to deal with larger, more realistic problem sizes. Furthermore, the meta-heuristic is now
capable of devising a suitable order release strategy for a GTP warehouse featuring multiple
picking stations while taking stock multiplicity into account.

5-2 Discussion

In this research several assumptions have been made, as has been described in Section 3-1.
These assumptions will be discussed in this section.

First of all, it has been explained that the order set has been filtered on temperature zone
and on the GTP picking stations. The Picnic operation will be divided in three temperature
zones: ambient for non-perishable goods, chilled for products that need to be cooled, and
frozen for frozen products. Leaving certain SKUs out of the problem may result in higher
cross-order similarity values, and therefore a higher performance of the algorithm. However,
it can be justified when looking at the actual picking operation that will take place in Picnic’s
automated fulfilment centre. First of all, the frozen and chilled picks will happen in completely
separate picking stations. It therefore makes sense to not include them in this problem.
Secondly, in a different picking strategy, called zone picking, products are picked straight
from pallets. This is specifically useful for fast moving products where it does not make sense
to put the products away in stock totes. As zone picking works differently than GTP picking,
it needs to be modelled differently and it was not incorporated into this research. It does make
sense to devise a strategy how to combine zone picking and GTP picking in a (near-)optimal
way. As this was out of scope for this research, it provides a nice opportunity for a follow-up
research.

In order to simplify the modelling, time slots are used in the MILP approach. A time slot
is defined as the interval of time in which a certain subset of the order set is active on the
picking station, as well as a specific SKU. In the meta-heuristic algorithm similar SKU
sequence positions are used. A big disadvantage of this method is that it is hard to quantify
actual order fulfilment times. This is due to the fact that a time slot or SKU sequence position
is not of a fixed time length. This is especially fruitless when certain orders might need to be
prioritised, for instance because of an early due date. If the system cannot calculate the order
fulfilment time properly, this may cause delays. As a result of this assumption, stochastic
behaviour has not been taken into account in this research.

As mentioned, the proposed meta-heuristic needs a lot of computation time and does not take
stochastic behaviour into account. It is therefore useless as a real-time optimisation method.
Nonetheless, it can be used to compute a near-optimal order release strategy that can serve
as an input for the warehouse management system. Also, at Picnic the orders are known at
22:00 the evening before the actual operation. As a result, the entire night is available for
calculating such a strategy. It needs to be noted however, that this may cause a problem in
the future, when the automated fulfilment centre produces more orders than are currently
optimised. It also needs to be noted that the current algorithm may not be written in the
most time efficient way. It is expected that, if Picnic chooses to implement the algorithm,
it will need less computation time after the code is improved by professionals. Furthermore,
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the algorithm is currently run at a laptop, while it will be run in parallel on multiple larger
machines when it is implemented into the Picnic GTP picking operation. As this research
serves as a proof-of-concept, the computation time should not yet be treated as the most
important performance indicator. However, the current computation times could serve as an
estimate for the computation times of fully developed future versions.

5-3 Recommendations

The discussion points given in Section 5-2 give rise to some recommendations for future
research. For Picnic, it does make sense to use precedence constraints. Such a constraint will
guarantee the quality of service and makes sure that no product gets squashed underneath
other, heavier products. In order to do so, the precedence constraints state the order in which
the products need to be picked. Such constraints, however, have not been taken into account
in this research. It is expected that precedence constraints will decrease the quality of the
solutions that are currently returned by the meta-heuristic. This is due to the fact that such
a constraint may force a non-overlapping SKU to be the last SKU to be picked for an order.
An interesting question is how much a pick sequence constraint will affect the performance of
the algorithm.

In this research, an algorithm has been created that is capable of dealing with the stock
multiplicity constraints. However, it is unclear if the strategy used is the most optimal. Future
research should try to find different strategies to deal with the stock multiplicity constraint,
or eliminate the need for it altogether. As mentioned, around 99.5% of the stock multiplicity
constraint violations were caused by SKUs that are stored in just one place. Future research
could devise a strategy to adjust the stock multiplicity to the actual demand.

This research has developed an algorithm to devise a suitable order release strategy. It has
been mentioned that no stochastic behaviour has been included in this research. Therefore,
there is a large chance that the actual operation will differ from the planned strategy. It would
be interesting to optimise the fulfilment operation in real-time. This way, stochastic issues,
such as an Shuttle-Based Storage/Retrieval System (SBS/RS) aisle suffering down time, can
be dealt with swiftly. This should of course be done with real time data, and requires a
different approach than has been used in this research. This can also help in determining
when to start or shut down certain parts of the operation.

As mentioned in Section 5-2, the order sets have been filtered on temperature zone and picking
strategy. This was done purposefully, as different picking strategies need to be modelled
differently. An interesting topic however is how to combine different picking strategies into
one order fulfilment strategy. For instance, would the picking efficiency improve if an order
fulfilment operation always starts in the zone pick area, or how to deal with order lines in
several picking zones while taking precedence constraints into account? It is, for instance,
easy to see that it will not be beneficial to always start with picking the fast-moving products
if a large portion of the fast-moving products is fragile. On the other hand, letting the order
tote travel between a GTP picking station and a zone picking station could potentially violate
the capacity of the conveyor system. It can be seen that such a strategy needs to take a large
portion of the warehouse operations into account, which will be extremely complex.

T. H. R. Biemans Master of Science Thesis



5-3 Recommendations 53

Lastly, as technology advances, robotised picking stations are becoming more and more suit-
able for the order picking task. Currently several companies create robotised picking stations
that can easily pick box-like order lines. However, for more fragile products, human pickers
do a much better job. This provides an opportunity to partially robotise the picking stations
and let the robotic picking operation start during the night. This can potentially unburden
the human pickers during the day, thus leading to more capacity. For this cause however, a
suitable strategy should be developed that takes precedence constraints and multiple picking
strategies into account.
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Table A-2: The results of experiments with 20 orders

FCFS Greedy GA Meta-heuristic
Worst
Case [#] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s]
219 1.74 215.2 1.48 0.10 2.47 213.6 0.89 0.10 3.65 211.0 0.00 34.49 3.65 211.0 0.00 13.13
213 2.07 208.6 2.07 0.10 3.66 205.2 1.92 0.10 5.16 202.0 0.00 32.75 5.16 202.0 0.00 13.63
261 3.45 252.0 0.71 0.10 3.75 251.2 2.17 0.11 6.36 244.4 0.55 40.95 6.44 244.2 0.45 19.22
173 1.50 170.4 1.34 0.10 2.66 168.4 0.55 0.10 3.47 167.0 0.00 25.45 3.47 167.0 0.00 11.30
211 2.09 206.6 1.95 0.10 4.27 202.0 1.41 0.10 6.16 198.0 0.00 31.20 6.16 198.0 0.00 13.99
221 3.71 212.8 1.92 0.10 4.16 211.8 0.45 0.10 6.24 207.2 0.45 33.30 6.33 207.0 0.00 15.10
172 1.05 170.2 1.30 0.10 1.74 169.0 0.71 0.10 2.91 167.0 0.00 25.77 2.91 167.0 0.00 8.85
215 1.49 211.8 1.10 0.10 3.72 207.0 1.41 0.10 5.12 204.0 0.00 33.10 5.12 204.0 0.00 13.23
184 0.87 182.4 1.14 0.10 2.50 179.4 1.14 0.10 3.26 178.0 0.00 27.43 3.26 178.0 0.00 10.06
200 1.50 197.0 1.58 0.10 2.20 195.6 1.52 0.09 3.50 193.0 0.00 31.08 3.40 193.2 0.45 10.67
232 3.71 223.4 1.67 0.10 3.36 224.2 1.92 0.11 5.60 219.0 0.00 36.62 5.60 219.0 0.00 15.01
164 1.46 161.6 0.89 0.09 1.71 161.2 0.45 0.10 2.44 160.0 0.00 23.84 2.44 160.0 0.00 7.94
236 2.46 230.2 0.84 0.10 3.47 227.8 1.92 0.11 5.08 224.0 0.00 35.78 5.08 224.0 0.00 14.73
214 2.90 207.8 0.45 0.10 3.08 207.4 0.89 0.10 4.67 204.0 0.00 32.26 4.67 204.0 0.00 12.46
218 2.75 212.0 1.41 0.10 3.76 209.8 1.64 0.09 5.96 205.0 0.00 32.20 5.96 205.0 0.00 14.48
183 2.84 177.8 1.48 0.09 2.40 178.6 1.14 0.10 4.92 174.0 0.00 28.12 4.92 174.0 0.00 10.42
182 2.31 177.8 1.48 0.10 3.41 175.8 1.30 0.10 5.49 172.0 0.00 27.72 5.49 172.0 0.00 10.68
172 2.33 168.0 1.87 0.10 3.26 166.4 0.89 0.10 4.07 165.0 0.00 25.33 4.07 165.0 0.00 9.30
173 2.54 168.6 1.14 0.09 4.74 164.8 1.64 0.10 6.94 161.0 0.00 25.19 6.94 161.0 0.00 10.76
179 2.23 175.0 0.71 0.09 2.79 174.0 1.22 0.11 3.91 172.0 0.00 26.13 3.91 172.0 0.00 9.36

Average 2.25 196.5 1.33 0.10 3.16 194.7 1.26 0.10 4.75 191.4 0.05 30.44 4.75 191.4 0.04 12.22

Table A-3: The results of experiments with 50 orders

FCFS Greedy GA Meta-heuristic
Worst
Case [#] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s]
534 3.33 516.2 1.30 0.12 5.39 505.2 6.22 0.12 8.95 486.2 1.92 89.21 9.55 483.0 1.22 53.02
477 3.14 462.0 2.83 0.11 5.62 450.2 2.86 0.12 9.18 433.2 2.17 78.19 9.81 430.2 4.21 45.28
475 2.82 461.6 1.34 0.12 6.02 446.4 3.51 0.12 9.73 428.8 1.92 76.85 10.40 425.6 1.14 44.08
532 2.56 518.4 2.70 0.11 4.32 509.0 2.55 0.12 8.16 488.6 3.91 90.78 8.46 487.0 1.87 56.41
555 3.60 535.0 2.00 0.12 5.77 523.0 4.42 0.12 8.50 507.8 2.86 92.78 10.02 499.4 1.82 55.29
505 2.61 491.8 0.84 0.12 6.14 474.0 3.39 0.12 9.43 457.4 0.55 83.04 10.46 452.2 2.17 49.47
502 3.27 485.6 3.21 0.11 4.70 478.4 3.05 0.13 8.29 460.4 2.79 84.40 8.88 457.4 1.95 49.03
508 4.29 486.2 2.49 0.11 6.73 473.8 3.42 0.12 10.28 455.8 2.86 87.38 10.67 453.8 3.03 49.63
592 3.28 572.6 3.36 0.12 5.37 560.2 2.17 0.12 8.45 542.0 0.00 100.32 9.26 537.2 1.92 62.55
528 2.61 514.2 1.48 0.11 5.68 498.0 3.16 0.12 8.98 480.6 1.52 85.91 9.24 479.2 1.92 51.47
595 4.87 566.0 2.00 0.11 6.62 555.6 2.30 0.12 9.85 536.4 2.07 94.91 10.79 530.8 3.27 62.20
533 3.98 511.8 1.30 0.11 5.48 503.8 4.71 0.12 9.53 482.2 1.92 86.16 10.21 478.6 3.51 50.93
535 3.51 516.2 1.48 0.12 5.08 507.8 4.09 0.11 8.52 489.4 2.19 87.66 8.71 488.4 1.52 52.49
573 2.86 556.6 3.65 0.12 5.10 543.8 1.64 0.12 8.80 522.6 2.07 95.08 9.25 520.0 1.22 61.77
600 4.37 573.8 2.17 0.12 5.90 564.6 3.21 0.12 9.50 543.0 1.87 96.89 9.93 540.4 1.14 60.03
491 2.32 479.6 2.19 0.12 4.93 466.8 2.28 0.12 7.86 452.4 1.82 81.01 8.68 448.4 1.95 44.04
566 2.44 552.2 3.35 0.11 4.98 537.8 3.49 0.12 8.76 516.4 2.07 93.31 9.72 511.0 3.16 58.55
471 3.40 455.0 2.00 0.11 5.18 446.6 1.52 0.11 9.47 426.4 2.97 75.69 9.51 426.2 1.10 43.48
556 2.95 539.6 2.70 0.12 4.82 529.2 1.64 0.12 7.63 513.6 2.79 93.56 7.91 512.0 1.22 55.83
558 3.37 539.2 3.35 0.12 5.73 526.0 2.74 0.12 9.18 506.8 3.27 90.41 10.25 500.8 2.39 56.58

Average 3.28 516.7 2.29 0.11 5.48 505.0 3.12 0.12 8.95 486.5 2.18 88.18 9.59 483.1 2.09 53.11
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Table A-4: The results of experiments with 70 orders

FCFS Greedy GA Meta-heuristic
Worst
Case [#] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s]
745 3.09 722.0 2.55 0.12 5.61 703.2 2.86 0.14 8.40 682.4 1.52 124.09 9.32 675.6 1.82 95.58
711 3.32 687.4 3.65 0.13 5.82 669.6 3.71 0.14 9.03 646.8 2.49 119.02 10.18 638.6 3.36 87.73
706 3.77 679.4 4.51 0.14 6.15 662.6 2.70 0.15 9.89 636.2 2.77 119.05 9.97 635.6 4.56 87.41
705 3.91 677.4 2.19 0.12 5.90 663.4 2.70 0.14 9.59 637.4 3.05 121.16 10.41 631.6 3.29 85.58
796 4.32 761.6 4.67 0.12 6.08 747.6 4.16 0.13 9.20 722.8 2.77 137.26 10.78 710.2 3.03 105.96
676 3.20 654.4 1.14 0.12 6.12 634.6 4.39 0.13 9.85 609.4 3.91 117.10 10.59 604.4 2.70 77.79
707 3.96 679.0 2.12 0.13 6.14 663.6 2.88 0.13 10.01 636.2 2.59 122.05 10.75 631.0 3.39 83.41
765 4.03 734.2 2.77 0.12 6.59 714.6 2.51 0.13 9.91 689.2 1.30 137.55 11.01 680.8 3.77 97.77
794 3.17 768.8 3.83 0.12 6.15 745.2 5.07 0.14 8.99 722.6 3.58 143.88 9.75 716.6 1.82 102.83
698 2.98 677.2 2.59 0.12 5.90 656.8 3.03 0.13 9.48 631.8 2.95 122.12 9.97 628.4 5.03 83.10
787 3.05 763.0 2.55 0.12 5.34 745.0 2.55 0.14 8.23 722.2 4.02 142.75 8.97 716.4 3.85 105.22
738 2.90 716.6 4.28 0.12 4.93 701.6 3.36 0.14 7.72 681.0 1.87 131.62 8.48 675.4 3.51 93.06
768 2.71 747.2 2.59 0.13 5.86 723.0 4.42 0.14 8.75 700.8 1.64 137.69 9.40 695.8 5.67 99.04
768 3.70 739.6 2.61 0.12 5.44 726.2 2.77 0.14 8.96 699.2 1.79 136.25 10.13 690.2 1.48 101.00
726 4.30 694.8 3.35 0.13 6.50 678.8 3.56 0.14 10.00 653.4 1.82 127.02 11.49 642.6 3.85 91.25
722 2.74 702.2 4.02 0.13 6.20 677.2 5.85 0.13 9.83 651.0 2.74 128.65 10.53 646.0 3.61 91.01
724 3.98 695.2 3.03 0.12 5.83 681.8 5.40 0.13 9.17 657.6 3.21 127.32 10.22 650.0 3.24 90.02
688 2.88 668.2 2.86 0.12 5.64 649.2 4.49 0.13 8.49 629.6 2.51 119.85 9.56 622.2 2.49 82.57
773 4.11 741.2 4.44 0.12 6.00 726.6 3.65 0.14 9.29 701.2 3.70 140.33 10.35 693.0 2.92 103.33
840 3.67 809.2 1.48 0.13 5.81 791.2 3.11 0.14 8.86 765.6 3.51 154.72 9.69 758.6 1.14 117.92

Average 3.49 715.9 3.06 0.13 5.90 698.1 3.66 0.14 9.18 673.8 2.69 130.47 10.08 667.2 3.23 94.08

Table A-5: the results of the experiments of 2100 orders, using multiple picking stations

FCFS Greedy GA Meta-heuristic
Worst
Case [#] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s] Ī[%] Ō[#] Std. T̄ [s]
21752 4.01 20,880 293.72 1.48 8.66 19,868 16.38 77.68 4.39 20,798 25.35 3,430.88 13.32 18,854 13.54 2,942.61
22285 3.97 21,400 323.74 1.45 8.65 20,356 18.74 92.59 4.52 21,279 4.44 3,536.91 13.24 19,334 24.32 3,117.37
21908 3.28 21,189 15.66 1.40 8.62 20,019 32.84 108.12 4.29 20,967 28.43 3,472.94 13.35 18,984 28.74 3,164.02
22019 4.61 21,005 386.10 1.41 8.79 20,083 18.40 123.41 4.51 21,025 25.03 3,567.07 13.47 19,053 35.50 3,155.47
21826 3.79 20,999 327.69 1.39 8.55 19,960 23.42 109.69 4.40 20,866 10.03 3,531.69 13.34 18,913 20.65 3,112.62
22046 3.38 21,301 23.64 1.39 8.73 20,122 34.93 93.01 4.39 21,077 22.93 3,598.90 13.41 19,090 26.10 3,139.09
21728 3.36 20,997 20.55 1.38 8.69 19,839 36.41 77.80 4.43 20,766 14.47 3,522.63 13.47 18,800 16.30 3,027.40
21842 3.97 20,975 318.53 1.37 8.68 19,947 39.04 93.13 4.34 20,895 18.78 3,611.12 13.36 18,923 8.06 3,019.91
22022 3.35 21,284 18.65 1.39 8.61 20,125 19.19 93.08 4.35 21,064 14.77 3,602.03 13.27 19,100 24.50 3,071.37
21773 4.06 20,889 295.96 1.37 8.84 19,848 19.60 78.35 4.42 20,811 19.38 3,495.49 13.52 18,830 26.47 3,013.42
21918 3.15 21,228 9.79 1.39 8.61 20,031 27.50 110.15 4.39 20,956 14.00 3,483.37 13.30 19,004 9.45 3,057.68
21787 3.42 21,043 11.34 1.38 8.72 19,886 16.84 77.96 4.58 20,789 12.90 3,432.10 13.48 18,851 28.54 3,079.34
22038 5.22 20,887 628.19 1.40 8.66 20,131 33.70 78.17 4.43 21,061 5.81 3,480.22 13.31 19,105 20.28 3,130.24
22293 4.69 21,248 355.96 1.40 8.58 20,380 19.34 78.21 4.52 21,285 30.02 3,550.20 13.30 19,327 20.80 3,124.74
21905 4.24 20,977 329.06 1.41 8.63 20,014 17.49 108.84 4.43 20,935 24.20 3,439.05 13.49 18,951 19.93 3,040.85
22105 3.30 21,375 20.82 1.39 8.56 20,212 26.60 78.34 4.41 21,131 19.84 3,464.41 13.22 19,183 23.48 3,079.00
22139 4.07 21,238 318.86 1.39 8.58 20,239 26.75 78.18 4.47 21,150 20.62 3,465.25 13.36 19,182 12.52 3,119.29
21955 4.58 20,948 634.93 1.39 8.64 20,059 22.10 77.72 4.39 20,990 19.51 3,451.81 13.34 19,027 8.64 3,093.43
21880 4.07 20,988 268.70 1.41 8.77 19,961 27.25 77.60 4.49 20,898 22.60 3,485.96 13.40 18,947 26.88 3,091.59
21353 3.33 20,642 18.25 1.36 8.74 19,487 19.20 93.13 4.42 20,409 14.45 3,348.30 13.50 18,470 33.15 2,982.96

Average 3.89 21,075 231.01 1.40 8.67 20,028 24.79 90.26 4.43 20,958 18.38 3,498.52 13.37 18,996 21.39 3,078.12
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Glossary

List of Acronyms

AS/RS Automated Storage/Retrieval System

FCFS First-Come-First-Serve

GA Genetic Algorithm

GTP Goods-To-Picker

MILP Mixed-Integer Linear Programming

PTG Picker-To-Goods

SBS/RS Shuttle-Based Storage/Retrieval System

SKU Stock Keeping Unit
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