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Proof-of-Concept Demonstration of Vector
Beam Pattern Measurements of Kinetic

Inductance Detectors
Kristina K. Davis, Willem Jellema, Stephen J. C. Yates, Lorenza Ferrari, Jochem J. A. Baselmans,

Kotaro Kohno, David Thoen, Vignesh Murugesan, and Andrey M. Baryshev

Abstract—We present results from the first vector beam pattern
measurement of microwave kinetic inductance detectors (MKIDs).
Vector beam patterns require sampling of the E-field of the re-
ceiver in both amplitude and phase. MKIDs are inherently direct
detectors and have no phase response to incoming radiation. We
map the amplitude> and phase patterns of the detector beam pro-
file by adapting a two-source heterodyne technique. Our testing
strategy recovers the phase information by creating a reference
signal to trigger data acquisition. The reference is generated by
mixing the slightly offset low-frequency signals from the output
of the two synthesizers used to drive the submillimeter sources.
The key requirement is that the time-series record always begins
at the same set phase of the reference signal. As the source probe
is scanned within the receiver beam, the wavefront propagation
phase of the receiver changes and causes a phase offset between
the detector output and reference signals. We demonstrated this
technique on the central pixel of a test array operating at 350 GHz.
This methodology will enable vector beam pattern measurements
to be performed on direct detectors, which have distinct advantages
reducing systematic sources of error, allowing beam propagation,
and removing the far-field measurement requirement such that
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complicated optical systems can be measured at a point that is
easily accessible, including the near field.

Index Terms—Direct detector, kinetic inductance detector
(KID), phase response, radiation pattern, vector beam pattern.

I. BACKGROUND

M ICROWAVE kinetic inductance detectors (MKIDs)
measure the change in kinetic inductance of a super-

conducting resonator upon photon absorption, causing a de-
tectable phase shift in the detector readout [1]–[3]. This process
is sensitive only to the total power of the incident electric field,
therefore, kinetic inductance detectors (KIDs) are direct detec-
tors (phase insensitive). Typical beam pattern characterization,
relies on scalar (amplitude only) detection of a source scanned
in the main beam of the receiver [4], most often with a thermal
source and optical chopping. The advantage of these systems is
that they are low cost and easy to implement.

However, vector (i.e., coherent) beam pattern measurements
of both amplitude and phase can offer a complete characteriza-
tion of the optical system. Scalar measurements using a thermal
source are broadband, which “smear out” standing waves and
diffraction effects, for example, by a beam clipping the window
of a cryostat. These effects are immediately noticeable in vec-
tor beam scans. A vector beam measurement characterizes the
beam emerging from the last optical element, which is influ-
enced by all optical elements preceding it. If the optical system
is characterized well enough (i.e., amplitude and phase distor-
tion per element), a vector beam scan can differentiate between
errors in the fundamental beam provided by the detector, align-
ment errors in the optical system, or misalignment of the beam
measurement system to the optical axis [5]. Furthermore, vector
measurements are required to deconvolve the beam produced by
the source probe from the measured field, which is a common
practice since the source probe’s beam makes the receiver beam
appear larger than it should be if it is highly directive. Measur-
ing the phase is also a key to compensate for standing waves
and multiple reflections in the optical system, which are very
common and usually a dominant source of error for heterodyne
beam pattern measurements.

At submillimeter wavelengths, it is often impractical to be
in the near field of the primary beam emerging directly from
the detector, but it is almost impossible to be in the far field of
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Fig. 1. Schematic of system components used in this experiment. The high
frequency is labeled in red and the low frequencies are indicated in green.

the primary mirror of a telescope system. This is especially true
considering the state-of-the-art output power from sources in
this wavelength regime, along with the attenuation through the
atmosphere at long distances. Measuring amplitude and phase
allows the E-field of the receiver to be propagated and then
recreated at any distance z along the optical axis. This elim-
inates the necessity of taking multiple scans at different path
lengths to trace the divergence of the beam angle, and the need
to be in the far-field of the system as would be required with
scalar measurements. Importantly, vector measurements allow
full characterization of astronomical instruments at arbitrary
points in their optical systems, including in the near field, for in-
struments where a far-field measurement may be inconveniently
far from the receiver to be tested in situ. This technique could
be of practical use for characterization of end-to-end optical
systems based upon direct (incoherent) radiation detectors.

II. METHODOLOGY

Vector beam pattern measurements require at least one co-
herent source to illuminate the receiver. For amplifier-based
detector systems, only one source is necessary, but for hetero-
dyne instruments a local oscillator (LO) is also required. The
LO may be injected optically as a second source located in the
optical path of the receiver or may be injected directly with a
waveguide hybrid. The measurement system used for this ex-
periment is shown in Fig. 1 and is typical of a heterodyne beam
scanning system requiring quasi-optical LO injection (see [6],
[7]), except where noted in this section.

The two sources are frequency offset by a small value Δf ,
measured in Hertz, and are coupled together with a beamsplitter
in the foreground of the receiver. The LO is stationary while the
source signal is mounted on an X/Y motion stage. The signal of
the detector read-out system is modulated at the difference of
the two frequencies, according to (1), where we ignore terms
outside the detector read-out bandwidth

SRO ∝ EsigELO cos (2π (fsig − fLO) t+ Δϕ) . (1)

In this equation, SRO is the complex signal recorded by the
read-out system used, Esig and ELO are the electric field am-
plitudes of the input signal and LO sources, fsig and fLO are

TABLE I
EXPERIMENT SYSTEM FREQUENCIES

Location f

Synth. 1 14.166500000 GHz
Synth. 2 14.166500400 GHz
RF 339.995009600 GHz
LO 339.995000000 GHz
IF 9600 Hz
Reference 400 Hz

List of the frequencies used for the
heterodyne beam scanning system
outlined in Fig. 1.

the signal and source frequencies, t is the time, and Δϕ is the
relative phase shift between the two signals. The two signal in-
put frequencies are related by fsig = fLO − Δf . The emerging
signal modulated at the intermediate frequency, Δf = fIF , is
then amplified and digitized. For MKIDs,SRO = θMKID , where
θMKID is the phase of the complex in-phase and quadrature (IQ)
signal used as the data acquisition (DAQ) technique for this
experiment.

The source signal is scanned in front of the MKID in either
a planar, cylindrical, or spherical pattern. The amplitude and
phase response of the detector changes as a function of position
relative to some set point in the measurement, usually the grid
center thereby mapping the beam pattern of the device under
test (DUT). The complex measurement field can be transformed
into the radiation pattern of the receiver system. The frequencies
used in this demonstration are shown in Table I. A more detailed
description of the heterodyne measurement theory can be found
in [8] and [9].

Instead of a true IF signal, the total power incident on the
detector is modulated at the IF frequency, which translates to
phase modulation of the IQ read-out signal θMKID . Our mea-
surement scheme differs from a traditional system by recording
a timeseries of the complex θMKID signal and taking a fast
Fourier transform (FFT) to calculate the magnitude and phase
of the modulation. They key focus of this paper is how to track
the phase response of phase-insensitive detectors as the source
probe is scanned through the measurement plane. We do this
by recording the phase offset between θMKID and a refer-
ence signal via triggered acquisition. We create the reference by
splitting the signal from the LO and source probe synthesizers
at low frequency, combining them with a double-balanced har-
monic mixer, and then feeding that signal as a trigger into the
DAQ module. DAQ of the detector IF signal happens only after
a positive zero crossing of the reference signal.

Fig. 2 shows the timeseries recorded at the central grid loca-
tion of our measurement plane, as well as the FFT of that series.
The reference signal is at the same phase as the incoming ra-
diation to the detector, and any phase offset must, therefore, be
caused by the phase delay of the Gaussian beam of the MKID.
Thus, the relative phase offset of the detected signal to the refer-
ence signal encodes the phase response of the KID detector. In
order to Nyquist sample the modulated MKID signal, the DAQ
system must have a sampling rate of at least 2 ∗ fIF . In principal,
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Fig. 2. Timeseries measurement of the amplitude of the IQ detector output
at the central location in the measurement scan (a) and FFT (b). The IQ is
modulated at 9600 Hz.

fIF can be any positive value of Hertz. Practical limitations for
fIF are the read-out rate of the DAQ, especially for arrays with
multiplexed readout schemes. 1/fIF must also be longer than
the response time of the superconducting KID resonator. Lower
values for fIF may be used for devices with a slow response
time, but higher offset frequencies decrease the 1/f noise in the
system.

III. EXPERIMENTAL SYSTEM

The DUT in this experiment was a meandering λ/4 hybrid
Al-NbTiN superconducting KID, similar to the device in [10]
except using a sapphire substrate instead of silicon. We tested a
single pixel of a 4 × 4 array for which the DUT was centered
geometrically within the system. The detector was fed by a twin-
slot antenna that sits beneath a 2-mm-diameter laser-machined
silicon lens array coupled to the device substrate. This new
KID architecture is highly experimental and these are the first
measurements of this new device.

The array was mounted within a dual stage 4He–3He cryostat
reaching 250 mK. The cold optics consisted of a Gaussian beam
telescope (see, for example, [11]) made of two hyperbolic high-
density polyethylene lenses of focal length 25 mm and separated
by twice the focal distance. One lens was directly mounted on
the array housing and another was mounted to the 4-K shield.
An optically limiting aperture (cold stop) was placed in between
the lenses, limiting the opening angle to an f/2 beam, or 14◦

half opening angle.
The use of an elliptical mirror with a short focal length and

low f-number optics led to significant off-axis aberrations, com-
pounded by a slight cold defocus. There was misalignment be-
tween the two lenses due to curvature in the 4-K plate, which also
caused misalignment to the elliptical mirror of order 3 mm. For
these reasons, the position of the elliptical mirror was adjusted
to give the most symmetric 3-dB beam shapes for all pixels,
trading the on-axis aberration performance for better off-axis
performance. A system diagram is shown in Fig. 3.

Fig. 3. Optical system schematic of the 4He–3He cryostat.

We use a modified ALMA band 9× 24 chain as the stationary
LO source [12]. The signal source was a harmonic generator
based on a superlattice electronic device set to maximize the
output power of the 12th harmonic of the input frequency [13],
which was fed by an active frequency doubler. The spectral con-
tent of this device was checked with a Michelson Fourier trans-
form spectrometer to ensure there were no harmonics within the
bandpass of the receiver. A low-phase noise cable connected the
scanned source to the synthesizer.

The system uses a homodyne detection technique to measure
the changes in transmitted phase of a microwave readout signal
that passes through a feedline coupled to the MKID. The read-
out system used for this experiment is summarized in [3]. We
used DAQ rate of 500 kS/s, which limited our Nyquist sampling
frequency to 250 kHz. At each point in the scan plane, a 300
point timeseries was acquired, and then 80 timeseries were av-
eraged to produce the signal shown in Fig. 2(a). The phase and
amplitude are taken from the peak in the FFT of the timesereis
signal, shown in Fig. 2(b). The reference frequency of 400 Hz
was chosen to ensure the modulation at high frequency (9.6 kHz)
fell sufficiently below the Nyquist limit and the response time
of the MKID at ∼30 kHz.

With this experimental system, simultaneous measurement of
the beam patterns of multiple KID detectors in an array configu-
ration should be possible, with a multiplexing acquisition system
and appropriate reimaging optics as necessary. This proof-of-
concept demonstration used only a single pixel for simplicity of
the system configuration and computational processing. In prin-
ciple, there is no difference in the measurement system between
scans of a single pixel or a whole array.

IV. RESULTS

A. Device Linearity

We measured the linearity of the DUT by making a series of
cuts across the measurement plane varying the input power to the
signal source such that the DUT output power was reduced. In
each cut, we measure the same beam pattern across a relative out-
put power range of 50 dB. The detected power scans are shown in
Fig. 4(a) on a logarithmic scale for different source input power
levels. We note that the shape of the central lobe of the beam
pattern remains the same for significantly different test source
power levels, demonstrating excellent linearity of the KID. By
comparing the measured cuts at low-power levels, one can accu-
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Fig. 4. Amplitude response of the receiver taken multiple times over the same X cut while varying the source probe input power (a). (b) Compares the input
power to output power for each scan. We see there is excellent agreement for input signals greater than ∼40 dB, showing that at peak center, the device is linear
until the noise floor is reached at the edges of the scan.

rately determine the source power of each cut. This subsequently
allows the recovery of the linearity plot of the system shown
in Fig. 4(b). The power to drive the source is insufficient under
17.3 dBm. For the beam scans presented in this paper, the source
power was kept at 17.5 dBm for maximum stability and signal-
to-noise ratio corresponding to the −1.3 dBm line in Fig. 4.

B. Vector Maps

The amplitude and phase maps of the data collected using the
above systems are presented in Fig. 5. The upper two scans were
taken at a fixed distance from the cryostat, whereas the lower two
scans were obtained by displacing the source by a distance of
λ/4 = 220 μm from the original measurement plane. This axial
offset was introduced to compensate for the effects of standing
waves, as will be discussed in Section III-C. The Gaussian beam
can be clearly recognized in Fig. 5(a) and (c), and panels (b) and
(d) reveal the spherical phase fronts of the diverging beams as
the phase increases from the phase center outward. The annular
structure is caused by phase jumps where the phase wraps from
–π to +π. We have achieved a ∼30-dB dynamic range in the
amplitude scans. The phase data degrade where the noise floor
is reached in the amplitude maps, indicating that the signals are
strongly correlated.

C. Standing Wave Compensation

Monochromatic measurements are particularly susceptible to
standing waves, where reflections can either constructively or
destructively interfere with the incoming signal and cause a
rippling effect in the beam pattern. We find a strong standing
wave ripple effect discernable in these measurements. To correct
for this, we employ the quarter-wave offset technique, available
only for vector measurements. The technique involves taking
two measurements of the E-field at the same x, y position in the
scan, but offset by a quarter wave in z. The two maps are then
coadded using the equation

sc =
s1 + s2e

−iπ/2

2
(2)

where s1 , s2 are the complex signals taken at each distance z,
and sc is the compensated signal. When the two maps are coad-
ded, a wave travelling parallel to the optical axis will have a
phase shift of π/2, but a standing wave, traveling twice the
distance, will have a phase shift of π. These waves will cancel
each other to first order, effectively smoothing out the standing
waves in the compensated map. A more detailed description of
this technique can be found in [14].

Fig. 6 shows the central E-plane and H-plane cuts through
the measured data, illustrating that the compensated signal is
much smoother than either the Δz = 0μm or Δz = 220μm
maps. For this demonstration, we manually moved the source
probe for the z-offset with a micrometer mounted to the X/Y
stage. Signal stability between the two maps could be increased
by using a XYZ scanner that automatically takes the offset data
before system drifts significantly.

V. GAUSSIAN BEAM ANALYSIS

A. Gaussicity

We calculate the Gaussicity of the receiver’s beam to be 80.3%
by performing a normalized overlap integral (3) for the best-fit
fundamental Gaussian mode ψ0,0 (4) [11], [14]. The fitting al-
gorithm used here produces an idealized Gaussian beam at the
focal plane of the optical system, propagates the idealized beam
to the measurement plane, and fits for the beam parameters that
provide the best Gaussian beam coupling to the receiver’s com-
plex field at the measurement plane Em . The overlap integral
determines the degree of coupling between the measured com-
plex field and that produced byψ0,0 . The fitted parameters of the
location of the focal plane and the idealized beam parameters
are summarized in Table II. We predict a Gaussian beam cou-
pling efficiency of 85% based on antenna-lens simulations, so
we determine that the optical system scatters 5% of the incident
lens-antenna beam into higher order modes.

We correct for any offsets in the measurement system by
using a Nelder–Mead minimization algorithm to produce a pri-
mary beam in a new coordinate system with translational and
rotational offsets to the measurement plane [15]. The transla-
tional offsets are characterized by x-offset, y-offset, and z-offset,
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Fig. 5. Amplitude (a), (c) and phase (b), (d) measurements of the beam pattern of the KID receiver. The top two panels (a), (b) are the measurement with zero z
offset, and the bottom two (c), (d) were taken after the scanned source was shifted by a distance of z = 220 μm.

Fig. 6. X-cut (a) and Y-cut (b) of the standing wave reduced amplitude map.
The red and blue lines show the two cuts at Δz = 0 μm and Δz = 220 μm,
respectively, and the solid black line is the reduced amplitude.

and the rotational offsets are characterized by the Euler rota-
tion angles θEul1 , θEul2 , θEul3 , and are shown in Fig. 7. The
Gaussian beam parameters ωx , ωy , Rx , Ry , ϕx , ϕy are all
dependent on the z′ coordinate, and so are transformed to the
primed coordinate system before being fit by the minimization
algorithm, whereas the parameters ω0,x , ω0,y , and Δzx,y are
independent in the unprimed coordinate system.

TABLE II
GAUSSIAN BEAM PARAMETERS

Fit

Coupling Coefficient (unitless) 0.803
Coupling Loss (%) 19.7
ωo , x 11.6
ωo , y 10.0
Δzx , y −0.16
x-offset −10.0
y-offset −20.0
z-offset 600
θE u l1 (rad) 0.028
θE u l2 (rad) −0.017
θE u l3 (rad) 0.16

Gaussian beam parameters and coordinate
system transformation values minimized to
produce an optimal model Gaussian beam
from the measurement data. All values
given in mm unless otherwise stated.

The minimization algorithm yields the lowest coupling loss
by fitting for the independent Gaussian beam parameters and
the offsets between the two coordinate systems. Our Gaussian
beam function also accounts for any astigmatism in the beam
by including an offset value Δzx,y between the phase centers in
the x̂- and ŷ-directions

cc =

∫∫
Em ψ∗

0,0δx
′δy′

∫∫ |Em |2δx′δy′ ∫∫ |ψ0,0 |2δx′δy′
(3)
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Fig. 7. Demonstration of a Gaussian beam in a reference frame x, y, z, and a
measurement plane with a misaligned coordinate system x′,y′, z′. The idealized
Gaussain beam parameters must be transformed from the x′, y′, z′ to the x, y,
z system before the overlap integral can be performed. The blue lines show
the beam amplitude, and red dashed lines show the spherical phase fronts. The
primed and unprimed coordinate systems are shown in relation to their origin
and are also superimposed at the top of the figure.

where

ψ0,0 =

√
2

πωxωy
exp

[

−
(
x

′2

ωx2 +
y

′2

ωy 2

)

−iπ/λ
(
x

′2

Rx
+
y

′2

Ry

)

− ikz + i/2 (φx − φy )

]

. (4)

A beamwaist of ωo,x = 11.6 and ωo,y = 10.0 mm gives a
beam angle emerging from the elliptical mirror of 1.4◦, 1.6◦,
respectively. This is consistent to first order with the beam an-
gles derived separately from the angular plane wave spectrum
(APWS) maps, where we find θx = 1.15◦ and θy = 1.09◦.
The fitted tilt angles θEul1 , θEul2 are also fully consistent with
the peak offset of the APWS map (see Section V-I). We believe
the slight astigmatism is caused by errors introduced by the cold
optical system in the cryostat and not introduced by misalign-
ment of the beam measurement system as our analysis should
remove these effects. Fig. 8 shows that the measured beam is
well characterized by ψ0,0 in amplitude, and our dominant error
is in the phase matching.

We believe that there are significant optical effects arising
from the specific architecture of the DUT, which may include
a standing wave on the device substrate and misalignment of
the lens antenna. A complete and qualitative comparison of the
measured and expected optical performance of this device re-
quires full characterization and control of the optical system
geometries involved to within fractions of a wavelength. It also
requires rigorous electromagnetic modeling of the preliminary
and experimental lens-antenna system, which will not be avail-
able until the physical nature of the device is better understood
and constrained, which was not the primary purpose of this ex-
perimental demonstration. A methodical characterization of the
optical performance of this new device is suggested for follow-
up research but lies beyond the scope of this paper.

Fig. 8. Comparison of the central H-plane cut of the measured field Em to
the fitted Gaussian ψ0 ,0 in amplitude (a) and phase (b).

Fig. 9. Absolute phase error (a) and phase error weighted by the magnitude
of the standing wave compensated amplitude measurement convolved with the
ideal Gaussian beam propagated to the measurement plane (b). The phase error
describes spherical aberrations of the phase fronts of the measured complex
E field.

B. Wavefront Error

The divergence of the measured phase front from spherical
is the best diagnostic tool for beam characterization. We have
calculated the absolute and weighted residual phase error of
the measured beam relative to the idealized beam, shown in
Fig. 9. In the absolute phase error in Fig. 9(a), we see that
the error is smooth for a significant distance from phase center
demonstrating the phase is well-matched over the main peak of
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Fig. 10. Paraxial far field of the measured data. Amplitude is shown in
(a) and phase is shown in (b). The phase is clearly recovered by the trans-
formation. The signal degradation in the phase measurement traces the low
signal in the amplitude measurement.

the beam. This is also conveyed in Fig. 8. In the weighted error
plot in Fig. 9(b), we see even at the peak at phase center, the
phase error is a fraction of a wavelength.

The phase behavior of the receiver is more sensitive to mis-
alignment of the optical components of a system and to standing
waves and multiple reflections than the amplitude response of a
detector. The additional availability of simultaneously recorded
phase and amplitude patterns tightly constrains the optical prop-
erties of the system under investigation. The optical errors we
find in these measurements are indiscernible in the amplitude
measurements (see Figs. 6 and 9), demonstrating the power of
vector radiation pattern measurements as a diagnostic tool in
detailed receiver characterization employing direct detectors.

VI. ANGULAR PLANE WAVE SPECTRUM ANALYSIS

One of the greatest advantages of the vector beam measure-
ment technique is the ability to propagate the beam at the
measurement plane either back through an optical system or
outwards into the far field of the detector. This can be done
by the technique of Huygens–Fresnel [16] principal or by an-
gular plane-wave expansion [17]. The latter technique involves
taking a 2-D Fourier transform of the field to create an APWS
of the measured field. This APWS can be easily propagated
through free space and recreate the field any distance z, positive
or negative, along the optical axis. Fig. 10 shows the plane-wave
spectrum amplitude and phase plots for this dataset. We retain
signal-to-noise ratio of ∼30 dB. The APWS map has recovered
the spherically symmetric phase structure. The peak offset in
the APWS amplitude is in excellent agreement with the fitted
Gaussian beam tilt angles, listed in Table II, both in sign as well

as magnitude, illustrating that the key optical system properties
can be consistently extracted from a single vector beam map.

VII. CONCLUSION

In this paper, we have unambiguously demonstrated a vec-
tor measurement technique using a MKID detector, which is in
principle suitable for any direct detector instrument. This new
technique provides measurement accuracy suitable to determine
the primary beam characteristics of interest for receiver char-
acterization. The phase preservation through APWS analysis,
agreement to the predicted Gaussicity, and the agreement be-
tween the beam angles and derived from the overlap integral
analysis and the APWS analysis verifies the system reliability.

Though vector beam measurements have an increase in cost
and complexity in electrical components compared to scalar
measurements, the advantage in the capability of performing
multiple diagnostic tests from a single scan and making the re-
quired scan area significantly smaller make this measurement
technique. Importantly, a single scan at a fixed position in z
simultaneously finds the beamwaist and focal position of the
receiver. We will continue this work by understanding the op-
tical performance of each element in the receiver chain and
completing the analysis of the end-to-end system, with detailed
comparisons of the measurement to electromagnetic simula-
tions. Follow-up work for other instrument analyses is already
underway to take this system and use it as a diagnostic tool both
from a device and an instrument perspective, as well as scaling
the analysis pipeline to measure a full detector array.
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