u
>

ﬁfﬂ Exp
rtic

loration of

pation in

% iiden
B Eo NS

T Software

} I%-f[-bw Programming Experience Affects Participation
=TT Student Software Teams and Leveraging
% ReposHory Insights for Monitoring Participation

;.2 Merel Steenbe

.: Q

%
TUDelft

rgen

An Exploration of Participation
In Student Software Teams

How Programming Experience Affects Participation in Student
Software Teams and Leveraging Repository Insights for
Monitoring Participation

by

Merel Steenbergen

to obtain the degree
Master of Computer Science
at Delft University of Technology,
Faculty of Electrical Engineering, Mathematics and Computer Science
to be defended publicly on Tuesday October 8, 2024 at 14:00.

Student number:

Project duration: February, 2024 — October, 2024

Thesis committee: Prof. dr. M.M. Specht, TU Delft, Responsible Professor
Dr. ir. E. Aivaloglou, TU Delft, Daily Supervisor
Dr. G. losifidis, TU Delft, Committee Member

Cover: Gource Visualization by The Alpha Blenders procedu-
ral computer graphics

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Acknowledgements

I've always known that crunching numbers or writing code behind a desk for multiple hours a day might
fulfil me for a while, but would not satisfy me in the long run. I've realized, increasingly in the past
years, that the people around you make or break anything; | want to work with a diverse group of
people. Teaching is one of my passions, but | know | do not want to teach full-time either. Centering my
master’s thesis around education was incredibly rewarding. So much so, that | even want to continue
research in this field. I'd never imagined I'd love doing research, but here | am.

| did require some help to get to this point. For her amazing supervision and encouraging words, I'd
like to thank Dr. Fenia Aivaloglou. She gave invaluable feedback and pushed me when | needed it. For
helping me through my first steps in qualitative research, | want to thank Prof. Esther Medina-Ventura
and Prof. Marcus Specht. They took a critical look at the observations | performed and the statistical
tests | performed during this thesis, both of which | did not have as much experience with as | thought.

In my personal life, Julian has been my rock. He provided me with food and coffee when it became
time to start crunching in the home stretch of this thesis. My parents and sister have been incredibly
supportive as well, taking every call | sent their way, even though they live at the other side of the country.
Furthermore, | have been blessed with a lot of great friends who checked in on me and allowed me to
rant to rationalize.

| feel incredibly grateful for all the people in my life who supported me during these eight months.
Coming back to my original statement: The people around you make or break anything. And they
definitely made this thesis.

Merel Steenbergen
Delft, October 2024

Abstract

Group work is an integral part of Computing Education, but introduces problems when students either
fail to participate enough or dominate, not allowing their team members to contribute. This research
focuses on identifying the participation level of the students, allowing the teacher or teaching assistant
who monitors the group throughout the project to identify and resolve problems. The software metrics
that can be extracted from the code repository are often used in this monitoring process. Therefore, this
study investigates the correlation between the software metrics and the participation level. Furthermore,
this study aims to understand the correlation between programming experience and the participation
level in the project.

To this end, four project groups were observed over several weeks, followed by interviews with their
teaching assistants. A questionnaire assessed each student’s programming experience and collected
data about confounding factors. A selection of software metrics to collect was made based on the
literature and the teaching assistant interviews. Per contributor, we collected and analysed the number
of lines of code, amount of issue comments, amount of MR comments, amount of commits, cumulative
cyclomatic complexity, maximum cyclomatic complexity, amount of pipelines triggered, and pipeline
failure ratio.

Of the twenty students in the observed groups, eight were classified as high participation, and six were
identified as low participation. No significant correlation was found between participation level and
gender, age, nationality, GPA, or group familiarity. Programming experience also did not predict par-
ticipation, suggesting that a lack of experience is not a valid reason for low engagement. Furthermore,
the number of lines of code students wrote, the number of commits students made, and the number
of comments that students posted on merge requests are correlated with the participation level. This
means these metrics can be used for monitoring student software groups and can indicate more than
just code contribution.

11

contents

Acknowledgements i

Abstract ii

Nomenclature v
1 Introduction

2 Background and Related Work 2

21 GroupRoles 2

2.2 SocialLoafing. 3

23 Dominance e e 4

24 TeamDiversity e e 4

2.5 Programming Experience 5

2.6 Software Metrics 5

3 Research Questions 7

3.1 Hypotheses e e 7

3.1.1 Programming Experience 7

3.1.2 Software Metrics 8

4 Methodology 9

4.1 Participants and Recruitment 9

4.2 DataCollection e 10

421 Questionnaire Design 10

422 Observative Study 12

4.2.3 Teaching Assistant Interviews o oL 12

424 Software Metrics 13

4.3 DataAnalysis e 14

4.3.1 ParticipationLevel 14

4.3.2 Participant Characteristics 16

4.3.3 RQ1: Programming Experience o oo 16

4.3.4 RQ2: Software Metrics 16

435 EffectSize 16

4.3.6 Qualitative Analysis 17

5 Results 18

5.1 ParticipationLevel 18

5.2 Participant Characteristicso 19

5.3 RQ1: Programming Experience 20

531 EffectSize 20

5.3.2 Qualitativeresults 21

5.4 RQ2: Software Metrics 22

541 Qualitative Results 22

5.5 Exploratory Findings 24

5.5.1 Member Familiarity 24

5.5.2 Dominancein Meetings 24

5.5.3 Interpersonal Dynamics 25

11

Contents

v

6 Discussion
6.1 Implications and Recommendations
6.2 Threatsto Validity
6.2.1 Subjectivity of ParticipationLevel,
6.2.2 ParticipantProfile
6.2.3 SampleSize
6.2.4 Accuracyof Metrics
6.3 Recommendations for Future Work o oo
6.3.1 Participantprofile.
6.3.2 Sample Size e
6.3.3 Accuracyof Metrics
6.4 The Useof LLMsinthis Thesis

7 Conclusion
References
A Questionnaire

B Teaching Assistant Interview Protocol

26
26
27
27
27
28
28
28
28
29
29
29

31
32
36
42

Nomenclature

List of Abbreviations

Abbreviation

Definition

Page number

CC
CCC
CE
CS
FET
GPA
LOC
MR
SLTQ
TA
VCS

Cyclomatic Complexity

Cumulative Cyclomatic Complexity
Computing Education

Computer Science

Fisher’'s Exact Test

Grade Point Average

Lines of Code

Merge Request

Social Loafing Tendency Questionnaire
Teaching Assistant

Version Control System

Introduction

Collaboration competencies are core skills across many study disciplines and are increasingly important
now that knowledge is becoming more specialised. Every student in Computing Education (CE) will en-
counter group work during their studies. It allows students to practice effective forms of communication
and collaboration. These will be useful in their careers, which often entail working in multi-disciplinary
teams and conveying ideas and concepts to colleagues who are not educated in computing disciplines
[1, 2, 3]. Infact, it has become an expectation from the industry that graduates from Computer Science
(CS) programs possess strong group work abilities [4, 5].

While group work has many benefits, certain undesirable behaviours, such as lack of participation or
poor communication, can hinder the learning outcomes. Detecting these behaviours early is critical for
teaching students more effective collaboration strategies. However, detecting participation levels can
be complex as it is an aspect of human behaviour, which cannot be measured by isolated actions. To
determine the participation level, a consistent pattern in the behaviour of students needs to be detected.
This study seeks to understand the key factors that influence student participation in group projects.

In this work, we hypothesise that some students claim less programming experience as the reason
to participate less in the project. Research suggests that programming experience only impacts the
performance in the first introductory CS course [6, 7]. However, participation in a group project is not
measured solely using the code contributions, but also includes collaborative tasks such as planning
and asking for help. Therefore, the first research question is: ‘How is the level of participation related
to prior programming experience in student software development project groups?’

A tutor or Teaching Assistant (TA) often monitors group projects since the study programmes are so
large that a single teacher cannot monitor all groups simultaneously [8]. This can lead to inconsistency
in the intensity of guidance and grading. Therefore, it would be preferable to have more objective
measures to detect the participation of the students working on the project. One of the main advantages
of software development projects is the abundance of data to use for detection. If the code is stored in
a shared repository, this can provide insights into developer behaviour. The metrics that are gathered
from code repositories are already used for monitoring and grading student software development
projects [9, 10, 11, 12]. This raises the second research question: ‘What is the correlation between the
participation level per student and the software metrics in software development projects?’

By addressing these questions, this study aims to contribute to a deeper understanding of what affects
participation in group projects and how it can be measured, ultimately leading to recommendations
for monitoring students in project groups. Chapter 2 will go deeper into the literature related to these
topics. Chapters 3 reiterates the research questions and poses hypotheses. Chapter 4 provides an
extensive explanation of the methodology of gathering and analysing the data. Chapter 5 shows the
results, which Chapter 6 discusses and finally Chapter 7 concludes this thesis.

Background and Related Work

Group work is a key part of CE. It has positive effects on programming skills and, although to a lesser
extent, on course satisfaction [13, 14]. This effect is enhanced in interdisciplinary projects since com-
puter science can often be applied to other subjects. Teachers should leverage these connections
so students know what they will do, learn, and contribute. Aligning these expectations fosters joint
progress in multidisciplinary projects [15].

In the early days of using computers in classrooms, researchers and teachers expressed concerns
about the potential negative impact of computers on students’ learning. They expected that students
would focus on the computer instead of collaborating and thus learn less while working in groups with
computers. However, it was found that using a computer when working in small groups does not
impact the understanding of course topics and material [16]. Computers have become an integral part
of modern classrooms, and collaborative work is suggested to have a positive impact on programming
skills. Coding together (pair programming) before working on problems individually allows students to
learn more complex content [17].

Human behaviour is complex, so many factors impact collaboration. The following sections will ex-
plain factors that affect group work in computing education, providing the foundation for the research
questions.

2.1. Group Roles

Effective collaboration is influenced by the roles that individual members adopt in the team [18]. Strijbos
and de Laat [19] have identified eight participative stances, or roles, regarding group work as shown
in Figure 2.1. These are divided into four stances appearing in large groups (>7) and four appearing
in small groups. As can be seen, two aspects other than group size have an impact on these stances:
Orientation and effort. This research will focus on smaller groups of five students, so only the four
stances for smaller groups are relevant. They are the Captain, the Over-rider, the Free-rider, and the
Ghost.

The Captain is usually the leader of the group and keeps the group in mind while working on the project.
The term Captain implies that there can only be one in the group, but this is not true. Captains are
effective collaborators and a team composed fully of Captains will likely be effective in group projects.
The Free-rider tries to get a benefit, such as a passing grade, with as little effort as possible. The Ghost
is a passive and absent person, either due to disinterest or external circumstances. It can be difficult
to see whether someone is a ghost, since they might exhibit behaviour of another role when they are
present in the group, but are too often absent to unambiguously assign that role. Finally, the Over-rider
tries to control the group process and final product by pushing the other group towards their proposals.
These will be used as a basis for defining group roles in this research, which will be discussed in detail
in Section 4.

2.2. Social Loafing 3

Small group

Y, Low effod
.

™,

High effort High affort

Individual Group
arientation orientation
High affort High effart

A Low affort Lowafio ™,

Large group

Figure 2.1: Eight participative stances, by Jan-Willem Strijpos and Maarten F. de Laat, 2009 [19]

Notably, the only positively connotated role is the captain, the other three imply a negative impact on
group work. Excessive or insufficient effort can result in dominance or social loafing, respectively. Both
significantly affect collaborative work; students have appointed social loafing as the main source of
reluctance to work in groups [20, 21]. The following sections will discuss these phenomena and their
impact on group work.

2.2. Social Loafing

Maximilien Ringelmann, a French agricultural engineer, coined the term ‘social loafer’ around the late
1800s when he conducted research involving students pulling a rope. He found that the students pulled
harder when alone than in a group. This is called “The Ringelmann Effect” [22]. It appears in group work
quite often, even in the present day and is referred to as ‘social loafing’ or ‘free-riding’. An important
distinction is that social loafing is not necessarily putting less effort into a task than team members; it
means putting less effort into a group task than into individual tasks. Free-riding and social loafing are
synonymous and will be used interchangeably in this thesis.

The presence of a social loafer severely negatively influences the group work experience of the other
team members, as is often reflected in course evaluations. Smaller groups, smaller project scopes, self-
selected groups and regular peer reviews are strategies to reduce social loafing, therefore increasing
student satisfaction with their peers, which in turn positively influences students’ perception of grade
fairness [23, 24, 25]. Students often lack effective approaches to address challenges within team
projects, and letting them work together in groups is insufficient to teach these skills [26, 27]. Collab-
orative strategies and skills have to be actively taught and integrated into course design. Preferably,
these strategies are taught to all students, but some groups might require more guidance or intervention
by course staff [28]. Weekly surveys are a valuable and suitable tool to identify those groups. These
surveys have been designed to proactively identify teams that may not be on track to meet learning
goals [29].

Some students show strategies for dealing with social loafers that are not effective. A common pitfall
is that they overly prioritise the final product, leading them to take over the work of social loafers. Es-
pecially in STEM courses, there is a more significant emphasis on the final product, as that is often
delivered to a client. It is believed to be better to teach students how to provide constructive, non-
accusatory feedback to deal with social loafing [30, 31]. Students can learn from professionals, who
use the team infrastructure to solve problems by assigning earlier deadlines, breaking the project into
smaller chunks, and reassigning responsibilities. These strategies have been proven effective in avoid-
ing and solving the problem of social loafing to an extent [28].

2.3. Dominance 4

This reflex of taking over the work of social loafers is natural. The social compensation hypothesis
dictates that people will do the opposite of social loafing when they expect co-workers or peers to
perform poorly on important tasks [32, 33]. This means that they will put more effort into the group
task to compensate for the expected lack of quality work by others. This effect can lead to dominant
behaviour that can also be detrimental to the collaborative process.

2.3. Dominance

Dominance is seen as the opposite of social loafing, but this does not mean it positively affects collabo-
ration. Some students take control of the process or the final product and prevent their team members
from contributing. They try to maintain control over the results and compliance of their team members
[34]. These students are called dominant or over-riders and can be as bad for the collaborative process
as social loafers. It has been shown that dominance is a major obstacle when it comes to the creativity
of virtual teams [35]. It is important to note that leadership and dominance are not the same. Although
a leader can be dominant and vice versa, it is not necessarily the case. Leadership is associated with
positive behaviours enabling the team members to work effectively, while dominance is about control
[36].

In this research, this phenomenon will be referred to as over-riding, since dominance is not consistently
flagged as a negative trait across the literature. Dominance is a subcategory of extraversion, defined by
striving for superiority, control, and influence over others [37]. Extraverted and therefore more dominant
students in group meetings affect the peer reviews. Most students are consistent when giving feedback
to themselves and others. However, the least dominant student awards significantly more points and
contributions to others than to themselves, while this may not reflect the actual situation [38].

2.4. Team Diversity

Other factors can influence the team performance in CE projects. Effective group members exhibit cer-
tain traits, such as willingness to work together, attitude towards uncertainty and other group members,
and conscientiousness [37]. An important trait is emotional stability, which refers to a lack of anxiety
and nervous tendencies. Self-esteem is a key contributor to emotional stability and is synonymous with
self-efficacy. Other than self-efficacy, mathematics ability and comfort level are success indicators in
CE [39].

Additionally, team diversity plays a significant role in team performance. However, diversity only bene-
fits teams in which members focus on learning, also called a learning approach orientation [40]. Another
approach is the performance approach orientation, which is a focus on demonstrating competence by
outperforming others, associated with the over-rider role. Furthermore, member familiarity and willing-
ness to share new information are positively correlated with team performance [41]. This is confirmed
by Driskell et al. who describe openness to experience and the flexibility to adjust to different situations
as important traits for successful team members [37]. While agreeableness is a beneficial feature, stu-
dents should be wary of becoming naive and letting ineffective team members control their progress.
Others should be approached with trust and given the benefit of the doubt, but if they do not recipro-
cate that trust should not be continued. Other research recommends forming groups based on student
learning styles and characteristics [42, 43].

In addition, gender and programming attitudes have an impact on critical thinking skills and program-
ming attitudes. Girls generally have higher critical thinking skills than boys in middle school [44]. How-
ever, they often have a more negative attitude towards programming, which can significantly affect
their performance and experience when learning programming. While girls might be a valuable asset
for problem-solving in group work, they might perform worse and enjoy the process less than their male
counterparts where programming is concerned.

Later on, during their first year at the university, many female students in men-majority teams struggle
with a lack of confidence and interpersonal obligations more than their male counterparts. They take
on more non-technical tasks and their satisfaction with the collaborative work is lower [45]. Men in
men-only teams also suffer from a lack of confidence, while this was not found in men in men-majority
teams [46].

2.5. Programming Experience 5

2.5. Programming Experience

Unsurprisingly, it has been proven that having previous programming experience is a significant suc-
cess factor in introductory Computer Science (CS) courses. However, this effect is neutralised in sub-
sequent CS courses [6, 7]. Gender does play a role in the success in these courses. Female students
without programming experience perform similarly to their male counterparts, but female students with
programming experience routinely outperform male students with experience in these courses [7].

Most of the research in this field focuses on measuring the effect of programming experience on per-
formance in terms of grade or final product [47]. In group projects, difficulties students face are mostly
related to technical skills; Team members lack experience or one group member takes control because
they are highly skilled [14]. Since it has already been shown that dominance in group projects can
come from a place of being a domain expert [34], it is likely that programming experience affects group
dynamics as well. However, usually, the effect of the group projects on learning programming is mea-
sured. This plays a big part in one of the research questions.

2.6. Software Metrics

Most software development projects use a Version Control System (VCS) such as Git, which tracks
previous software versions and allows developers to work on features separately. The repositories
where the code is stored can provide us with a plethora of metrics about the collaborative process.
Information about developer behaviour, such as often being the first to reply to a thread can provide
valuable insights. These metrics, along with source code metrics such as Lines of Code (LOC), can
be extracted from the VCS automatically and can represent developer productivity in the project when
used appropriately [48]. However, Campbell’s law applies: The more important a metric is in social
decision-making, the more likely it is to be manipulated [49]. In this context that means that grading
solely based on metrics would lead students to contribute to just the metrics instead of participating to
the project in a meaningful way. An example would be adding more whitelines to the code to increase
the amount of LOC, which is not related to the quality of the project or the collaboration.

In coursework, these metrics can be analysed to see if the task distribution among the team members
is equal. This can assist with grading [9] and it creates a basis for setting expectations that better match
the software industry [10]. It can also be used to identify different teamwork styles to understand habits
[11] or as a tool that can be used for guidance during the group process [12].

Combining different metrics about the source code to measure developer contributions and productivity
has been a popular research topic. The most used and most researched metric is Lines of Code (LOC),
presumably because it is easily extracted. It has been shown to be correlated with the course grade
[50]. The LOC metric can be made more accurate by removing white lines, removing lines which
solely contain punctuation, and correctly attributing lines to the original author after refactoring [9, 51].
However, it has also been shown that these revisions might not really be necessary and any form of
LOC can provide enough information about the developers [52]. Another metric that is often used is
Cyclomatic Complexity (CC) [53, 54], which is a qualitative measure indicating the complexity of the
code. This can be measured as Cumulative CC (CCC), the maximum CC per function, or the average
CC added per contributor. In general, adding much complexity to the code in total is seen as a positive
thing, but having high CC for one method is negative. This implies that the code should be refactored
into multiple methods to enhance maintainability [55]. In fact, some research suggests that complexity
metrics are strongly correlated with the LOC, and therefore LOC is the only metric necessary to predict
development effort [56]. Still, students feel that none of the metrics should be used in isolation, and we
need to be aware of the impact of using them [57].

Since programming assignments offer specific types of data, they offer unique monitoring techniques.
This impacts grading as it allows for the inclusion of quality measures such as code quality, but can
also introduce problems in groups of varying levels of prior programming experience. Students stress
that it is most important that the setup and grading of group assignments are transparent and tailored
to the learning goals. As long as these criteria are met, students think it is important teachers use all
available and relevant information as assistance for monitoring and evaluation [58].

2.6. Software Metrics 6

Since CS courses tend to have many students, manually checking all repositories for lack of contribu-
tions can be infeasible. Therefore, these metrics are used as a selection tool to flag groups that will be
kept under closer supervision by course staff. The threshold value of these metrics that students need
to adhere to, such as a certain amount of lines of code or percentage of contribution, is usually based
on previous experience and estimations instead of research.

Falsely flagging some students as social loafers is not a substantial issue since this will result in a tutor
observing the group more closely. However, false negatives can be detrimental to the group process
as undetected social loafers significantly impact the experience of their group members. Currently, the
software metrics are already used to estimate student contribution and identify social loafers. How-
ever, there has not been much research towards the correlation between these metrics and the actual
participation level of the students.

Research Questions

The literature regarding programming experience has found contrasting results. On the one hand,
multiple sources mention that the amount of programming experience affects the results in introductory
programming courses, but not anymore in any subsequent courses [6, 7]. On the other hand, being
dominant in a group can come from a place of domain expertise, which could indicate programming
expertise in software development projects [34]. From this inconsistency, the first research question
arises:

RQ1 How is the level of participation related to prior programming experience in student software de-
velopment project groups?

Software metrics are often used to assist in the monitoring and grading process in software development
groups. There has been much research towards ensuring the accuracy of these metrics [9, 50, 51,
55]. However, it has not been researched how these metrics reflect the participation level of students.
Therefore, the second research question in this thesis is:

RQ2 What is the correlation between the participation level per student and the software metrics in
software development projects?

The participation level is based on participation in project meetings and judgement by the TA guiding
the project. The TA has insight into the code contributions, which implicitly impacts the participation
level assigned to the students. The participation level will be measured as a categorical variable with
three levels: Low, medium, and high.

3.1. Hypotheses

Taking into account the literature of the previous section and experiences from group work, hypotheses
for these research questions arise. These will be used to guide the analysis and help determine the
correlations in the data.

3.1.1. Programming Experience
As mentioned in the background, both age and gender can affect dominance and thus participation level
[34]. Other factors that can influence the group process and dynamics are performance in previous
courses, diversity and expectations, and group member familiarity [40]. The confounding factors found
in the literature will be taken into account when collecting data. The null hypothesis and alternative
hypothesis are formulated as follows, where H1 is the main hypothesis about RQ1 and the others are
used to rule out confounding factors:

H1, Programming experience is not related to the participation level in the project.

H1, Programming experience increases as the participation level in the project increases.

HO 44 Age is not related to the participation level in the project.

Ha a4e The participation level in the project increases as age increases.

7

3.1. Hypotheses 8

HOgendger Gender is not related to the participation level in the project.

Hagenger The participation level in the project is larger for students who are the dominant gender
in their group.

HO0gpa GPA is not related to the participation level in the project.

Hagpa The participation level in the project increases as the GPA increases.

HOpationality Nationality is not related to the participation level in the project.

Hanqtionality T€AMS With more international students will have higher participation level students.
HO0,,; Member familiarity is not related to the participation level in the project.

Hay,y The participation level in the project increases as member familiarity increases.

3.1.2. Software Metrics
Virtually an infinite number of combinations of metrics could be collected to analyse. Therefore, a
selection has to be made of metrics to collect and analyse. The null hypothesis is as follows:

H?2, The metrics are not correlated with the participation level.

The alternative hypotheses are based on the individual metrics, so they are listed after the selection of
metrics has been made, which is done in Section 4.2.4.

Methodology

Three things need to be collected in order to answer the research questions: The participation level,
the programming experience and the software metrics. Multiple data sources were used to collect the
participation level: Observations, interviews with the TAs monitoring the groups, and a questionnaire.
This questionnaire was also used to gather the programming experience and confounding factors as
identified in the background. The selection of software metrics to collect was based on the TA interviews
and the literature. They were collected from the GitLab repository, which contains the code the students
wrote.

4.1. Participants and Recruitment

Gaining insights into the dynamics of Software Development teams can only be done by observing
them. To facilitate this research, students of the Delft University of Technology were recruited as par-
ticipants, specifically students enrolled in the project course CSE2000 Software Project, which is worth
15 ECTS’. Participation in the research was voluntary and four groups out of roughly ninety joined
the study. These groups each consisted of five undergraduate students pursuing a Bachelor’s degree
in Computer Science and Engineering, with the majority being in their second year of study. This
means all students should have experience with object-oriented programming, some experience with
functional programming, and should know about problem-solving strategies. Furthermore, they have
all completed a software development project in their freshman year where they have encountered
Scrum, software testing, and GitLab.

Before the course started, all available projects were listed on an online forum. The students replied to
the five projects they found most interesting, either as a group or individually. The projects were divided
using an assignment algorithm that attempts to assign the projects according to preference. Students
who replied to projects individually were grouped based on project preference. In the end, most of the
groups are self-selected and some are randomly assigned based on project preference.

Over the course of ten weeks, these students carry out a project to solve a real-world problem with soft-
ware development, commissioned by a client and guided by a coach and TA from the university. The
student team will have to show problem and risk analysis, requirement engineering, implementation,
testing and validation, and collaboration. The code the students write will be stored in a GitLab reposi-
tory?, which is managed by and shared with the course coordinators. During the project, the students
will have weekly meetings with the TA for guidance, who will be monitoring their code repository as well.
They will be learning technical writing, teamwork, and responsible computer science. These skills are
shown during the midterm presentation in week five, the final presentation in week ten, and in the final
report. Furthermore, Scrum? is used as an agile collaboration technique, using the GitLab issue board
functionality as a Kanban board. The final grade for the course is composed of 15% final report, 20%

"https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64444
2https://about.gitlab.com/
Shttps://www.scrum.org/resources/what-scrum-module

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64444
https://about.gitlab.com/
https://www.scrum.org/resources/what-scrum-module

4.72. Data Collection 10

design, 35% product, 20% process, and 10% presentation. The grade is normally assigned to a full
group, except in cases where individual adjustments are in order as determined by the teacher, based
on input from the TA, peer reviews, and code contributions. The course includes two moments for peer
review, both anonymously and non-anonymously, but these are formative and are not explicitly be used
for grading. However, the TA might use the peer reviews as a sign that intervention is necessary and
implicitly partially base grades on them.

Unfortunately, the ethics approval to start participant recruitment was only obtained after the project
had already started. Therefore, participant recruitment took place from the third week of the project.
This was done by advertising the research after the mandatory sessions and asking students if they
would like to join. The first data collection took place in week six out of ten of the project and ended
in the beginning of week nine. After the project ended, in week ten, interviews with the TA have been
conducted.

4.2. Data Collection

Three tools were used in the data collection: A questionnaire, observations, and interviews. First,
the questionnaire is described. Then, the setup of the observation study is described. Then, the
TA interview protocol is discussed. Finally, the selection and collection of the software metrics are
explained. Section 4.2.4 also includes the alternative hypotheses to H2,.

4.2.1. Questionnaire Design

A questionnaire was created with three goals: (1) to determine the programming experience of the
students, (2) to get a profile of the students, so possible confounding factors that were found in the
background can be tested for effect on the participation level, and (3) to provide an extra basis for
determining the participation level. The next sections will explain the three aspects of the questionnaire.
The full questionnaire can be found in Appendix 7. It was created in the TU Delft environment of
Qualtrics and included the consent form detailing which data would be collected. It was communicated
that completing the questionnaire would take roughly 10 minutes. Still, not all participating students
immediately filled in the survey after receiving it, some required (multiple) reminders. Before the survey
was administered to the participants, it has been reviewed by peers of the researcher to gather feedback.
Based on this, some corrections in spelling and grammar were made. Clarifications that were added
to the questions of the standardised instruments are discussed below. The survey was administered
to the participants in the first week of data collection, corresponding to the sixth week of the project.

Student Profile

Age, gender, performance in previous courses, nationality, and member familiarity were identified as
confounding factors in Section 2 [34, 41, 37]. To measure these, they have been included in the
questionnaire. The first factor is age, for which respondents were asked to provide an integer value.
The second is gender, where a text box was used instead of a dropdown menu to accommodate the
wide range that students may identify as. The same was applied to nationality, allowing students born
in one country, but raised in another to include both in their answers. Furthermore, a question about
the students’ Grade Point Average (GPA) has been included. A multiple-choice format with ranges
was chosen since many students do not know their GPA by heart and calculating it would be time-
consuming. Familiarity with group members was also assessed using multiple-choice options, while
course familiarity was measured with a simple yes/no question.

Programming Experience

A standardised survey, developed by Feigenspan, Kastner, Liebig, Apel, and Hanenberg [59], has
been adopted to evaluate participants’ programming experience. This survey was created using in-
sights from existing research on assessing programming experience. It has been tested in a controlled
experiment with 128 students and was found to be reliable, even when relying on self-assessment.
This indicates that self-evaluation of programming capabilities, as opposed to using a programming
test or peer-reviewing, does not significantly affect the results when using this tool.

The survey asks the students about their experience with specific programming languages. Originally,
these were Java, C, Haskell, and Prolog, as can be seen in Figure 4.1. Since Prolog is not part of
the current curriculum, but Python, Javascript and C++ are, the Prolog question has been replaced by

4.72. Data Collection 11

questions about these three languages. Furthermore, a clarification has been added that the size of
software projects is defined as the number of lines of code, since that was unclear in the original survey
question. The question about the size of professional projects was slightly rephrased, based on peer
feedback stating it was unclear if this question referred to students’ own contributions or the total size
of the project.

Source Question Scale Abbreviation
Self On a scale from 1 to 10, how do you estimate your programming experience? 1: very inexperienced to s.PE
estimation 10: very experienced

How do you estimate your programming experience compared to experts with 1: very inexperienced to s.Experts

20 years of practical experience? 5: very experienced

How do you estimate your programming experience compared to your class 1: very inexperienced to s.ClassMates
mates? 5: very experienced

How experienced are you with the following languages: Java/C/Haskell/Prolog 1: very inexperienced to s.Java/s.C/s. Haskell/

5: very experienced s.Prolog
How many additional languages do you know (medium experience or better)? Integer s.NumLanguages
How experienced are you with the following programming paradigms: 1: very inexperienced to s.Functional/s.Imperative/
functional/imperative/logical/object-oriented programming? 5: very experienced s.Logical/s.ObjectOriented
Years For how many years have you been programming? Integer y.Prog
For how many years have you been programming for larger software projects, Integer y.ProgProf
e.g., in a company?
Education What year did you enroll at university? Integer e.Years
How many courses did you take in which you had to implement source code? Integer e.Courses
Size How large were the professional projects typically? NA, <900, 900-40000, z.Size
=>40000
Other How old are you? Integer o0.Age

Integer: Answer is an integer; Nominal: Answer is a string. The abbreviation of each question encodes also the category to which it belongs.

Figure 4.1: The Programming Experience Questionnaire, by Eirini Kalliamvakou et al. (2009) [59]

Social Loafing Tendency Questionnaire

While searching for measurement instruments for participation level, the Social Loafing Tendency Ques-
tionnaire (SLTQ) was the most similar to what was needed [60]. This tool has been validated by re-
search and has been tested for reliability. It can be used to predict social loafing, which means that
students who score high on social loafing tendency will likely show significantly less effort in a group
task than in an individual task. This part of the questionnaire contains seven statements about group
work that students answer on a Likert scale of 1 (strongly disagree) to 5 (strongly agree) which can be
found in Figure 4.2. The SLTQ was added to the questionnaire to support the subjective assignment
of participation level to the students. First, some of the answers are reversed to manage the use of
negation. Then, the answers to the statements are added to each other and scaled to a score between
0and 1.

1. In a team, I am not indispensable

2. In a team, I will try as hard as I can®

3. In a team, I will contribute less than I should

4. In a team, I will actively participate in the discussion and contribute ideas®
5. In a team, it is okay even if [do not do my share

6. In a team, it does not matter whether or not I try my best

7. In a team, given my abilities, I will do the best I can®

Figure 4.2: The original statements of the SLTQ, by Xiangyu Ying et al. (2014) [60]

Two adjustments have been made to the SLTQ. The first statement contained a double negation ‘In
a team, | am not indispensable’, which was changed for clarity. The first negation has been removed
and its scoring has been reversed to account for this single instead of double negation. Furthermore,
the literature shows that social loafers have a group orientation and need the group to get their desired
result; a high grade [19], while dominant students have trouble trusting their group members and may
prefer individual work over group projects [36]. Therefore, the final statement ‘I prefer working alone
over working in a group’ was added. This statement is reversely evaluated, meaning that a higher
score on this question, indicating a preference to work alone, decreases the tendency to be a social
loafer.

4.72. Data Collection 12

4.2.2. Observative Study

Discovering group dynamics without observing the group process firsthand is complex. Therefore, in
this research, four groups of five students each were observed to determine their participation levels.
This section will discuss the experimental setup of the observation study. information about the pro-
cessing and analysis of this data can be found in Section 4.3.1.

Experimental Setup

In the course the participants are taking, groups have one meeting per week with their Teaching Assis-
tant (TA) and work autonomously the rest of the week. The group meetings with the TA can provide
insight into the progress and state of the final product. However, these TA meetings often serve as a
checkpoint for the group and can be quite rehearsed. Most groups will organise collaboration sessions
in which they will work together on their project.

Scrum is used as the collaboration framework, which includes sprint plannings and sprint retrospectives
in which task distribution is discussed and team reflections are made, which are more interesting in the
context of discovering group dynamics than the TA meetings. Therefore, the collaboration sessions
excluding the TA were chosen for observations. These observations were naturalistic, meaning the
researcher sat in on the meetings to observe and record but did not intervene. The groups were offered
a room on campus to work together as compensation for participating in the research, but none took
this offer. Some groups opted to collaborate online rather than on campus. In that case, the audio of
the online meeting was recorded. The main researcher was present during these sessions to record
the audio and annotate (non-)verbal communication. The meetings took between 30 minutes and 1.5
hours each.

4.2.3. Teaching Assistant Interviews

To assess participation levels, the data collected from the observations was complemented with inter-
views with the TAs monitoring the participating groups. This was done because observing groups is
quite time-intensive. A single researcher is performing the data collection and analysis, so a more
scalable approach to gathering data is needed. Additionally, given the small sample, it is preferable to
have multiple sources confirming the participation level, especially since it is a subjective measure.

Another approach would be to directly ask the students what they think their participation level is. How-
ever, relying solely on self-reporting could potentially introduce bias into the results, especially since the
levels have positive and negative connotations. The course instructor suggested that the anonymous
peer reviews conducted throughout the course can offer valuable insights. However, accessing those
for research introduces complexities in the consent process due to the platform infrastructure used to
gather them, making it infeasible to use the peer reviews for this study.

The TAs, who have access to the peer reviews and meet with the groups weekly, can use their insights
to provide a relatively accurate depiction of the participation without divulging any student-specific in-
formation. Hence, after the final week of the course, TA interviews took place in favour of the other
approaches. During this interview, the TAs were asked some contextual questions to determine their
experience with monitoring project groups and any problems they had identified in the groups. Then,
they were then asked to assign one role to their students; captain, over-rider, free-rider or ghost. Fur-
thermore, they were also asked which software metrics they use to monitor and assess the groups,
this information was used when selecting the metrics to collect to answer RQ2. The interview protocol
can be found in Appendix B. The audio of the interviews was recorded and transcribed after the meet-
ing. The results were compared among TAs and with the results from the observation study, which is
discussed in Section 4.3.1.

4.72. Data Collection 13

4.2.4. Software Metrics

To answer the second research question, it needs to be determined which metrics to gather and how
to gather them. The students work with GitLab as a VCS during their project, from which metrics can
be extracted. Multiple tools exist to extract various metrics, so data is abundant. A selection of metrics
was created based on the literature and the TA interviews.

Metric Selection

Since the goal of this research is to be applicable in practice, both considerations from the literature
and the realities of the current situation have to be taken into account. Currently, the university uses
its own tool that allows the course staff to compare members of a group and all groups of that year’s
project course. It shows the total amount of commits, issues created, merge requests (MR), comments,
and an overview per group. This way, it is easier to identify groups that might be slacking, meaning
that they may require more guidance. Notably, these metrics all focus on quantity and can thus easily
be cheated. Students have been known to contribute to improve their metrics, while the goal should
always be to improve the product and process as a group [57, 49]. This is more difficult with qualitative
metrics, since improving the quality of the code is cannot be done by making empty commits.

As reflected by the literature, the most used metrics are Lines of Code (LOC) [50, 51, 52, 56] and Cy-
clomatic Complexity (CC) [53, 54, 55]. LOC is a quantitative measure which is suggested to be a good
indication of the amount of contribution. However, it is an easy metric to cheat, since refactoring code is
an easy task that can quickly rack up the amount of lines a student wrote. CC is a qualitative metric that
indicates the complexity of the methods written by a student. There are multiple ways of approaching
this metric. Cumulative Cyclomatic Complexity (CCC) measures the sum of the complexities of each
function written by a student. This way, it is easy to see if someone just wrote constructors, getters,
and setters, or if they actually contributed logic to the project. However, having a very high CC per
function indicates low-quality code. Because they are often used and easily collected, LOC, CCC and
maximum CC per contributor were all collected. When collecting the LOC, the amount of commits was
automatically collected.

TAs mentioned using the activity in Git as a metric in their interviews. Therefore, the number of com-
ments on issues and merge requests were also collected. Involvement in the code of other students
seems to be a good indicator of the participation level of the students. Furthermore, since one TA
mentioned pushes as valuable data points for measuring participation, the pipeline success ratio has
been measured. To do that, the amount of pipeline runs triggered per contributor had to be collected
first, which has been included as an additional quantitative measure.

The metrics that have passed consideration, but have not been collected in this research are: The
amount of files changed, the number of MRs created and merged, test coverage, documentation quality,
modularity, coupling, cohesion, the estimated time spent and the quality of the MR comments. The MR
metrics were not collected because they are even easier to cheat than LOC. Documentation quality
cannot be automatically measured, nor can the quality of the MR comments. One difficulty that had
to be faced was that students could choose their own programming languages for their projects. This
meant that measuring test coverage, modularity, coupling, and cohesion would require multiple tools.
That, in combination with the fact that they are difficult to measure per contributor, led to the decision
not to collect them. Since one of the flagged behaviours is ‘invests a lot of effort and time in the
collaborative task’, it would be valuable to measure the time spent on the project. However, there is no
way to measure the time spent accurately enough to use for grading [9].

One TA mentioned the MR comments as a good indicator of the participation level, specifically the
quality of those comments. They expressed that many comments consisted of meaningless messages
such as ‘LGTM’ (looks good to me). However, analysing the quality of comments is not an automated
process and is time-consuming. Therefore, it was not performed in this study, but it will be discussed
in Section 6.3

Ultimately, a combination of quantitative and qualitative metrics has been collected. The metrics col-
lected per contributor are lines of code, amount of issue comments, amount of MR comments, amount
of commits, cumulative cyclomatic complexity, maximum cyclomatic complexity, amount of pipelines
triggered, and pipeline failure ratio. Below, the null hypothesis H2, is reiterated and the alternative
hypotheses are formulated:

4.3. Data Analysis 14

H?2, The metrics are not correlated with the participation level.

H?2, Students with a high participation level write more lines of code than those with a low partic-
ipation level.

H2, Students with a high participation level commit more often than those with a low participation
level.

H?23 Students with a high participation level trigger more pipelines than those with a low partici-
pation level.

H?2, Students with a high participation level have a higher ratio of successful pipelines than those
with a low participation level.

H25 Students with a high participation level commit more cumulative cyclomatic complexity than
those with a low participation level.

H25 The maximum cyclomatic complexity of code written by students with a high participation
level is higher than code written by those with a low participation level.

H?2; Students with a high participation level comment more on issues than those with a low par-
ticipation level.

H?2g Students with a high participation level comment more on merge requests than those with a
low participation level.

Metric Collection

Previously, Gitinspector* was used in the course to show statistics such as percentage of contributions,
percentage of comments and LOC. However, this tool is no longer being maintained, so the university
decided to discontinue its use. The research on LOC contradicts itself on the meaningfulness of filtering
the LOC for white lines [9, 52]. However, the consensus is that it cannot hurt, so GitReporter was used
to collect this LOC [9]. This tool attributes the lines of code that were edited slightly to the original
author, reducing the effect of students ‘cheating the metrics’, however it does not take boilerplate code
into account. All other metrics have been collected using the GitLab API® and a simple Python script.

4.3. Data Analysis

All this raw data had to be processed and analysed. First, the protocol for determining the participation
level of the students will be described. Then, the statistical tests used to test for correlations are
described. Finally, the analysis of the qualitative data is discussed briefly.

4.3.1. Participation Level

The observed meetings resulted in roughly 12 hours of audio recordings. They were first transcribed
to transform them into text that could be used for processing. Subsequently, all transcript fragments
containing student behaviour associated with a group role were labelled. The labels that were used in
the behavioural analysis to identify the participation level are based on the research into group roles
by Strijbos and de Laat. The roles as they define them should not be used to assess group behaviour
but to “assist teachers and students in recognising certain patterns in group member behaviour and
enable them to respond to these behaviours” [19, p. 10]. Most research in this field focuses on group
composition, but in this thesis, the roles will be used to understand the group dynamics to help teachers
respond to them and monitor groups better. Table 4.1 shows the behaviours observed from the different
roles, which have been used as the labels during data processing.

Strijpos and de Laat originally defined four participative stances that appear in smaller groups; The
captain, over-rider, free-rider, and ghost. However, since this thesis is based on a small number of
participants nuances between the roles might be difficult to differentiate. Therefore, it was decided
to remove a dimension from the wheel as shown in Figure 2.1. If the orientation (individual/group)
is removed from the equation, the remaining dimension is the effort. This has been defined as the
participation level throughout this thesis. As can be seen in Figure 2.1, the captain and over-rider are
high-participation roles and the free-rider and ghost are low-participation roles.

“https://github.com/ejwa/gitinspector
Shttps://docs.gitlab.com/ee/api/rest/

https://github.com/ejwa/gitinspector
https://docs.gitlab.com/ee/api/rest/

4.3. Data Analysis 15

Captain
Over-Rider
Free-Rider

Ghost

Behaviour

High

,_
o
=

Enforces (group) deadlines

Tries to find consensus about how to approach the task
Speaks in positive tone

Contributions span more than simply a focus on the product
Tries to keep the group on track

Expresses desire for group building or socialising
Invests a lot of effort and time in the collaborative task

X[X [X [X [X[X |[X|X

Assigns tasks to other group members
Pushes other group members to adopt their proposal/idea/approach

Has a focus on the final product

Kick-starts collaborative activities

Refers back to their proposals that were not used

Takes a leading role in the composition of the final product
Does not contribute much to meetings unless prompted
Does not take on tasks eagerly (except maybe trivial tasks)
Expresses interest for a high grade

X[X [X [X[X | X|X

Promises they will do a task ‘soon’

Is urged to do as promised

Fails to deliver on promises

Can have a more positive experience compared to their group members

Low participation in comparison to team members

XX [X [X[X |[X|X|[X]|X

Uses external factors as an excuse for not contributing

Ignores messages

Misses meetings

Does not take up (many) tasks
Contributions are unrelated to the discussion
Contributions are a reflection of own interests and problems

X[X [X [X[X[X|X

Table 4.1: Labels used for behavioural analysis

After labelling, the transcripts were split per group member to create individual overviews of commu-
nication. Then, the messages were reviewed in the context of each other in an attempt to determine
behavioural patterns. This ensures that the behaviour is persistent and not just exhibited in one acciden-
tal instance. Since this is a solo project, only one researcher was performing this data processing and
labelling. Whenever questions, discrepancies, or ambiguous data were encountered, it was discussed
with a secondary researcher and the work was checked to ensure objectivity as much as possible.

After collecting all the data, it was combined to get the results. First, the participation level assigned by
the observation study and the participation level assigned by the TA interview were combined. Most
of the judgements matched. However, since there is no way to deal with disagreement objectively, the
students for which the TA judgement of participation level mismatched the judgment of the observation
have not been included in the analysis.

4.3. Data Analysis 16

The SLTQ score is not used in the initial assignment of the participation level, but is used to confirm
the results of the classification of the participation levels. A t-test has been used to find the correlation,
after a Shapiro-Wilk test and Levene’s test have been performed to test for normality and equality of
variances, respectively. The hypotheses corresponding to these tests are:

HOsr1o There is no correlation between the SLTQ and the participation level in the project.
Hagsrrg Students with a low participation level will have a high SLTQ score and vice versa.

4.3.2. Participant Characteristics

Since gender, nationality and GPA are categorical in the questionnaire and the sample size is small,
a Fisher’s Exact Test (FET) has been used to determine the correlation between these features and
the participation level. Since member familiarity and GPA both have four categories, leading to a 2x4
contingency table, a variation of the FET was needed for feasibility. The Freeman-Halton extension
was used in both cases.

However, not only gender is a confounding variable according to the literature, but the most dominant
gender in the group can affect dominance as well [34]. Therefore, each student has received an extra
label to indicate whether they are of the most dominant gender in their project group, which has been
tested for correlation with the participation level using an additional FET.

Age is entered in the questionnaire as an integer, so it has been tested using a Shapiro-Wilk test for
normality, a Levene’s test for equality of variances, and, based on the results of these, a t-test or Mann-
Whitney U test for correlation with the participation level. Additionally, the GPA has been converted
to an integer using the median value of the range the students answered to confirm the results of the
previous FET and tested with the same tests as the age for correlation with the participation level.

4.3.3. RQl: Programming Experience

First, the results from the questionnaire were converted to a programming experience score. This was
done by taking the answers to the two significant questions as indicated by the original paper [59]. Their
participant population is similar to the one in this study, so the correlations should transfer. The relevant
questions are: ‘How do you estimate your programming experience compared to your classmates?’
and ‘How experienced are you with the following programming paradigm: Logical Programming?’. Both
are answered on a Likert Scale from 1 (very inexperienced) to 5 (very experienced). These answers
are added to each other and the result is scaled to a score between 0 and 1.

Significance tests were used to reveal any statistically significant differences between the programming
experience score of high-participation and low-participation students. Since we are looking for the effect
of a categorical variable on a numerical variable, logistic regression has been performed to do this.

4.3.4. RQ2: Software Metrics

To determine if there is a correlation between the participation level and the metrics, t-tests have been
performed. Each metric was considered separately since there were not enough samples to perform
ANOVA on the metrics as a whole. First, a Shapiro-Wilk test is used to test for normality. If that is found,
Levene’s test is used to test for equality of variance. In case of normality and equality, a students’ t-test
is used, in case of normality but not equality, a Welch’s t-test is used, in case there is no normality, a
Mann-Whitney U test is performed.

4.3.5. Effect Size

The effect size represents the change, measured in standard deviations, between the averages of two
groups. This does not tell us if the correlation found is significant, but it does tell us how relevant it
is. Therefore, Cohen’s d has been calculated for the programming experience and software metrics
[61]. In general, finding a Cohen’s d of 0.2 indicates a small effect size, 0.5 indicates a medium effect
size and 0.8 implies a large effect [61, p. 24]. This way, it is ensured that the research does not find a
significant effect that would not have any implications in the course in real life. Since the sample size
is quite small, the effect size can increase quite rapidly. Finding a significant correlation with a small
effect size might mean the effect is too small to consider useful.

4.3. Data Analysis 17

4.3.6. Qualitative Analysis

The observation data is rich with information beyond the participation level. Throughout the behavioural
analysis, any remarks related to programming experience and software metrics were tagged along with
the other labels. From this list of quotes, recurring patterns associated with experience and metrics
can be identified. Furthermore, the TA interviews were cross-compared to find discrepancies in their
assessments. Any additional patterns in behaviour were identified from the transcriptions of group
interactions and examined in detail. Special consideration was given to the students for which the
participation level determined by observation and the participation level assigned by the TA misaligned.

Results

This Chapter discusses the results of the statistical tests as described in the previous Chapter. First,
the participation level assignment will be discussed. Then, the confounding factors are analysed. Then,
the results of the tests directly relating to the research questions are described. These include the effect
size and results from qualitative analysis relating to the research questions. Finally, some exploratory
findings from the qualitative analysis are discussed.

5.1. Participation Level

Multiple TAs implied that some students did not fit a single role or showed behaviour belonging to two
of the roles with the same effort (captain/over-rider & ghost/free-rider). Some students did not exhibit
many of the behaviours flagged, or did exhibit flagged behaviour, but roughly in the same amounts for
each role. It was concluded that a fifth role might be necessary when looking at the roles as participative
stances. The TAs called it the worker or the implementor: A student who does their assigned tasks in
time, but does not stand out in collaboration and is not a leader. These students could be assigned
‘captains’, but arguably, the name ‘captain’ implies leadership and does not fit these students. This
situation corresponds to a medium participation level; the student does not show much behaviour that
can be tagged but is too involved to be a ghost.

This medium participation level is not taken into account for the final testing for two reasons. First of all,
the high and low participation levels of students both affect group dynamics and can become problem-
atic. Too much participation could lead to dominance, while too little participation can indicate social
loafing. Second, there were only two students marked as medium participation after the disagreements
had been filtered, which is not enough to analyse as a separate category.

Out of twenty participating students, seven were identified as low-participation by the observation
study, three were identified as medium-participation, and ten were assigned the high-participation
label. The TAs identified six low-participation students, four medium-participation students, and ten
high-participation students. After combining these results, eight students were assigned the high-
participation label, two were assigned medium-participation, six were assigned low-participation level,
and four were inconclusive. Since the medium-participation category contains only two students, it is
too small to show in the figures. The risk of self-identification is too large. Therefore, the results are
only shown for the high-participation and low-participation students.

The SLTQ has been used to support the division into participation levels. According to the hypothesis
Hasrrg, these variables should be negatively correlated, meaning a high SLTQ score indicates a
low participation level and vice versa. A students’ t-test was performed to test this hypothesis, since
the samples are normally distributed as demonstrated by a Shapiro-Wilk Test (p = 0.347). The t-test
resulted in a p-value of 0.003 (t(12) = -3.451), meaning we must reject H0;,. In other words, students
with a high tendency to become social loafers have been assigned a low participation score and vice
versa. A boxplot showing the distribution of SLTQ scores can be found in Figure 5.1.

18

5.2. Participant Characteristics 19

Distribution of SLTQ Score

1.0
0.8 1
2 o6 ©
[o]
(o]
w
=4
)
o |
0.2 o
0.0 T T
Low High

Participation level

Figure 5.1: The distribution of the SLTQ score in participation level groups.

5.2. Participant Characteristics

In Chapter 2, age, gender, experience with other courses, and member familiarity were identified as
confounding factors for the participation level. These were all collected from the questionnaire, which
was completed by eighteen participants, of whom 5 were female and 9 were male. The average age
was 20.9 years with a standard deviation of 1.64. The data was distributed normally as indicated by a
Shapiro-Wilk test (p = 0.083) and the variances were equal as shown by Levene’s test (p = 0.166). A
student’s t-test showed no correlation between the age and the participation level (p = 0.169). A visual
representation of the data can be found in the boxplot in Figure 5.2. This means we can accept H0 44¢.

Distribution of Age

194

Lc‘w H\g‘;h
Participation level

Figure 5.2: The distribution of the age in participation level groups.

A Fisher’s Exact Test (FET) showed no correlation between the dominant gender in the group and the
participation level (p = 0.085). Table 5.1 shows the number of participants who were the dominant
gender in the group per participation level. Interestingly, there were no low-participation students who
were not of the dominant gender in the group. Another FET showed no correlation between the gender,
regardless of the dominant gender in the group, and the participation level (p = 0.301). Table 5.2 shows
the contingency table this test was based on. Because of these results, we accept HOgender-

5.3. RQl: Programming Experience 20

Dom. gender Gender
g Yes | No Male | Female
Part. level Part. level
Low 6 0 Low 5 1
High 4 | 4 High 4 4
Table 5.1: Contingency Table: Dominant gender in the Table 5.2: Contingency Table: Gender and participation
group and participation level. level.

Three more FETs were performed to determine the correlation between the participation level in the
project and the nationality, member familiarity, and GPA. For member familiarity and GPA, the contin-
gency tables have not been included in this thesis, since the frequencies in the tables would be quite
low and all the data combined could have led to self-identification by research participants. The contin-
gency table for nationality can be found in Table 5.3. Nationality was split into Dutch and International in
this case, since the sample size was too small to take into account any other countries. No correlation
was found between the nationality and the participation level (p = 0.627), so we accept HOyqtionality-

L Nationality Dutch | International
Participation level
Low 2 4
High 4 4

Table 5.3: Contingency Table: Nationality and participation level.

No correlation was found between the participation level and member familiarity (p = 0.600) and neither
was it found between GPA and participation level (p = 1.000). Since the GPA had been collected in
intervals, another test was included where the average value of these intervals was used as the GPA
of the students and then a t-test was performed. The data was distributed normally (p = 0.073) and
the variances were equal (p = 0.709). Still, no correlation was found with a students’ t-test (p = 0.372).
Therefore, we accept HOgpa and HO,,¢.

One more participation characteristic was collected: Course familiarity. However, since all students
were new to this course and none of them were taking it as a resit, no tests could be performed to
determine its effect on the participation level. In this scenario that does not matter since the population
is homogenous.

5.3. RQl: Programming Experience

No significant difference was found between the programming experience score of the low-participation
students (M = 0.4888, SD = 0.1510) and the high-participation students (M = 0.4025, SD = 0.1464),
which can already be deduced when looking at Figure 5.3. The data were tested for normality using the
Shapiro-Wilk test, which indicated no significant deviation from normality (p = 0.0957). Logistic regres-
sion revealed that programming experience is not an indicator of participation level (p = 0.341). Then,
when testing for any other correlation, a students’ t-test revealed no significant difference between the
two groups, t(12) = -0.045, p = 0.5174. This means we accept H1.

5.3.1. Effect Size

In addition to the t-test, the effect size was calculated using Cohen’s d to assess the practical signifi-
cance of the difference in participation levels. The effect size is d = -0.0261, which suggests that the
difference between the two groups is negligible. This further supports the finding that programming
experience has little to no practical impact on participation levels in this sample.

5.3. RQl: Programming Experience 21

Distribution of Programming Score

e
=)

e
o

14
kS

Programming Experience Score
o
S

(o]

0.0 T T
Low High
Participation level

Figure 5.3: The distribution of the programming experience score in participation level groups.

5.3.2. Qualitative results

No groups explicitly discussed students’ programming experience. However, multiple groups showed a
dynamic that could be attributed to the individual members’ experience. The high-participation students
assigned tasks to low-participation students when they thought it necessary, as illustrated by these
quotes by high-participation students about low-participation students: “For this issue, our experience
will not help us. So maybe you could help us” and “You don’t have enough issues and we have to
give you some. Do you think you can learn the framework quickly enough?”. The high-participation
students were quick to notice the task they were assigning was ‘easy’ or ‘should not take much time’,
as illustrated by these quotes: “I feel like it's not going to be as hard as you think” and “I think that's a
perfect issue to do for them. It should be easy to do”. Interestingly, the low-participation students did
not take up tasks out of their own initiative, but waited for other students to assign them tasks. The high-
participation students took up the role of assigning the tasks, sometimes before the low-participation
students even had the chance to offer to take up the issue.

Differences between the participation levels become especially clear in when problems arise in their
assigned tasks. High-participation students might run into problems, but discuss possible solutions
with their group or ask for input so they can continue their task. Low-participation students announce
they have run into a problem, which sometimes does not happen until other students ask them about
problems as demonstrated by the conversation snippet below, where LP stands for ‘low-participation’.
The issue in this conversation is trivial and can quickly be resolved, but this student has been stuck on
it for multiple days without notifying their team members or asking for help.

High-participation student: “LP, Did you have any problems that you want to bring up now?”

Low-participation student: “l think my machine is banned again, I'm having a lot of problems with
accessing and pushing code”

High-participation student: “Did you try using the VPN?”
Low-participation student: “I didn’t know that was a thing until yesterday”.

Moreover, the difference in initiative-taking for solving problems becomes clear in the following three
quotes by a high-participation student and two low-participation students, respectively. “I ran into some
trouble and | didn’'t know how to fix it, but | found a very old repository on the internet and | think this
will work”, illustrating there was a problem but this student put in effort to solve it. “| don’t know how to
do this”, followed by silence, indicating the student does not take the initiative to solve the problem or
ask for help. Finally, “I have a problem: My computer is being stupid. Can’t get it to work. And if | try
this, | get an error. So | don’t know how to fix that.” is another trivial issue, for which the student could
have at least tried to look up the error code on the internet.

5.4. RQ2: Software Metrics 22

5.4. RQ2: Software Metrics

A separate statistical test has been performed to find the correlation between each metric and the
participation level. Since most metrics are likely correlated, it would be better to test all metrics simul-
taneously to avoid accumulating errors, but this research does not have enough samples to do so. As
can be seen in Table 5.4, only LOC, commits, and MR comments are correlated with the participation
level. This can also be seen in the boxplots in Figure 5.4. Therefore, we reject H2, and we accept
H23, H24, H25, H24, and H2,.

Metric Normal distr. | Equal var. | T-stat/ U-stat | P-Value | Cohen’s d
LOC No N/A 48.0 0.00033 1.60
Commits Yes Yes 3.13865 0.00428 1.82
Pipelines triggered Yes Yes 0.08733 0.19981 0.51
Pipeline failure ratio Yes Yes 0.27455 0.39416 0.16
CCC No N/A 26.0 0.42591 0.48
Maximum CC No N/A 15.0 0.89331 0.23
Issue comments No N/A 34.0 0.10874 0.18
MR comments Yes Yes 2.08263 0.02967 1.21

Table 5.4: P-values of the t-tests and Mann-Whitney U tests and Cohen’s d for the metrics

Effect size

Effect sizes, measured using Cohen’s d as shown in table 5.4, were calculated to assess the relation-
ship between the metrics and participation levels along with the significance. The largest effect sizes
were observed for the number of commits and LOC, both indicating large effects, suggesting that stu-
dents who made more commits and wrote more lines of code tended to participate significantly more.
Similarly, merge request comments also showed a large effect. A medium effect size was found for
the number of pipelines triggered, while total cyclomatic complexity showed a small-to-medium effect.
The other metrics showed small effect sizes. These effect sizes are similar to the significance found,
meaning the more significant correlations also have a bigger effect.

5.4.1. Qualitative Results

Two groups explicitly addressed the metrics and tactics for balancing them, as illustrated by the quote
“We have to make a plan of attack for the next sprint, with the main goal to all have enough code con-
tribution”. This happened during four separate meetings, two for each group. However, their reasons
for doing so might not be what the course coordinators expect or prefer as illustrated by these two
quotes by a high-participation student and a low-participation student, respectively: “It's only to please
the ones grading us”, and “The main point is to convince the TA that we actually did it”. One group
mainly considered the number of commits and merges as the main metric. The other group considered
the LOC as the most important. To measure this outside of TA meetings, they tried to run some of the
tooling themselves, as shown by “I'll try to figure out how to run Gitlnspector”. Campbell’s law became
relevant here: Some students contributed to the metrics in non-meaningful ways, as illustrated by: “I'll
fix some typos to create more merge requests for myself”.

Generally, both groups employed the same strategy to manage imbalances: larger tasks, whether mea-
sured by LOC or commits, were assigned to members with lower contributions, while those with higher
contributions worked on the report, as shown by “I will do this issue because | want more commits”.
Even though Campbell’s law applies here, it still has the desired effect of students participating more
in the project.

Both groups were advised by their TAs to balance their contributions. They did take the advice to
balance the metrics, but kept realistic expectations: “I don’t want anyone to fail because of low contri-
bution, but it is technically everyone’s own responsibility to pick up enough tasks”. Interestingly, the TA
of another group also discussed contribution imbalance with their group, which did not affect the task
assignments during meetings in that group.

5.4. RQ2: Software Metrics

23

Amount of Pipelines Triggered Lines of Code

Cumulative Cyclomatic Complexity

Amount of Issue Comments

7000

6000

2000

1000

High
Participation level

(a) Lines of Code

225

High
Participation level

(c) Number of Pipelines Triggered

2000

1750

1500

1250

1000

750

3
3

~
G
=]

o

High
Participation level

(e) Cumulative Cyclomatic Complexity

80

70

60

High

Participation level

(9) Number of Issue Comments

Maximum Cyclomatic Complexity Pipeline Failure Ratio Number of Commits

Amount of Merge Request Comments

400

350

300

250

200

150
- 7444IIIIIIIIIIIIIIIIIIIIIIIII
50

Participation level

High

(b) Amount of Commits

B -

High

Participation level

(d) Pipeline Failure Ratio

Ll]

High

35

30

N
]

s
S

=
G

=
5]

o]

Participation level

(f) Maximum Cyclomatic Complexity

140

120

Low

High

Participation level

(h) Number of MR Comments

Figure 5.4: The distribution of software metrics in participation level groups.

5.5. Exploratory Findings 24

5.5. Exploratory Findings

In addition to the primary results, the qualitative data revealed several patterns and behaviours that,
while not directly measurable in this study, provide valuable insights into the group dynamics. These
findings, though exploratory, suggest areas for further investigation and may provide additional context
to this research. In this section, these observations are discussed, so they can be used as a basis for
recommendations for future work.

5.5.1. Member Familiarity

Although the data is not substantial enough to support this theory, it showed that groups with high mem-
ber familiarity already have an established dynamic. Therefore, accurately describing the participation
levels of these students is more complex. Possible reasons and implications for this are discussed in
the next Chapter.

5.5.2. Dominance in Meetings

The loudest students in the meetings are not always classified as high-participation, nor are high-
participation students always the most dominant in the meetings. Some actions were identified as
behaviour exhibited by the most dominant students in the meetings. These have been listed below.

+ Talking really fast and therefore skipping over details, not allowing others to ask questions by
covering up with conversation or questions of their own.

» Go into too much detail about every solved issue of the past sprint.

» Getting caught up in details that are not relevant to the success of the project. For example the
spelling of a word in the meeting agenda or the interpunction in a merge request.

» Underestimating how much time an issue will take, of both their own and other people’s issues.
Quotes like ‘this will literally take five minutes’ are uttered often. Claims to have issues finished
by infeasible deadlines are made.

 Claims the team should be better at communicating are made, without going into what is meant
by effective communication.

» Use of very strong language such as ‘We will just die’, and ‘It's the end of the world’.
* (Over)use of sarcasm, sometimes used as an excuse to be mean to team members.

When considering this behaviour in the context of the participative stances by Strijbos and de Laat [19],
the most dominant student in the meetings was usually either considered an over-rider or, interestingly,
a free-rider. Despite this, the remarks are often not related to the discussion or even to the project by
any means. If they were, the student might not have been classified as low participation.

Previously, the correlation between gender and dominance in the group was mentioned. The original
paper this information was based on, used dominance in the project meetings as a basis [34]. Therefore,
another FET has been performed, testing the correlation between dominance in the group meetings,
solely based on the observations, and the participation level. As can be seen in the contingency table
in Table 5.5, more students have been included in this test. That is because the dominance in group
meetings is only based on the observations, so no students have been filtered out due to disagreements
with the TA and all students’ genders are known. The features are not correlated (p = 0.628).

Domi : :
| . ominant in group meetings No | Yes
Dominant gender in the group
No 2 4
Yes 8 6

Table 5.5: Contingency Table: The most dominant gender in the group and dominance in the group meetings.

5.5. Exploratory Findings 25

5.5.3. Interpersonal Dynamics

The groups participating in the research were all diverse. Some groups were composed of highly
extraverted, high-achieving students with high GPAs and substantial programming experience, often
taking on a dominant role in the meetings. Students who may typically fall into a medium participation
category were overshadowed and pushed into a low-participation role. This dynamic suggests that
group formation affects individual participation levels.

Discussion

This chapter discussed the implications of these results and the recommendations stemming from them.
It dives into the limitations of the study and provides recommendations for future research.

6.1. Implications and Recommendations

No correlation was found between the programming experience and the participation level in this stu-
dent software development project. However, the LOC, number of commits, and number of MR com-
ments were found to be significant and with a large effect size. The implications for these findings in
practice are mainly related to monitoring, since research on recommendations for group formation is
abundant [31, 42, 43].

The course the participants were taking consisted of roughly ninety groups, all monitored by a TA. Most
TAs monitor up to four groups, meaning there are at least 23 TAs, all monitoring and judging their groups
slightly differently. The consensus among TAs is that LOC is not a valid metric and does not reflect
the contributions accurately. However, this study shows that LOC, when measured using GitReporter
[9], is meaningful for showing participation. My recommendation is to use the LOC, obtained through
GitReporter, combined with the amount of commits to get an estimation of the participation level. How-
ever, these metrics should not be used as a stand-alone method, since human behaviour cannot be
reduced to two single integers [52]. These two metrics can provide insight into the code contribution
and the number of MR comments can provide insight into the involvement in others’ code. However,
paying close attention to subtle behaviour in the meetings is still the most valuable for determining par-
ticipation. This advice can be applied to similar situations with student software development groups,
and possibly even professional software development groups.

Furthermore, there was no evidence of a correlation between programming experience and participa-
tion, meaning that not having (enough) programming experience is not a valid excuse for not partici-
pating in the project. If students use this as an excuse, it would be useful to look at any underlying
reasons for not contributing. These findings align with the conclusion that programming experience
usually equalises after the first introductory computer science course [6, 7]. This also implies that tak-
ing programming experience into account for group formation in group projects after these introductory
courses would not be meaningful. In general, CS curricula could benefit from a little more focus on
teaching collaborative strategies, instead of the focus on teaching hard skills such as programming,
especially when students get closer to working in the industry.

26

6.2. Threats to Validity 27

6.2. Threats to Validity

This study has some limitations, which will be discussed below. Most of these will form a basis for
recommendations for future work.

6.2.1. Subjectivity of Participation Level

The disagreement between the observations and the TA interviews regarding the assignment of par-
ticipation levels indicates that this measure is subjective. One explanation for this discrepancy is the
difference in measuring participation level. The observing researcher was present at meetings, as-
signed the participation levels, and then looked at the software metrics. The TA had been involved in
monitoring the meetings as well as the metrics from the start of the project. Code contributions might
have influenced the TA decision, but only discussions about code contributions could have affected the
judgement of the researcher.

Furthermore, the interpersonal dynamics in the group might have affected these disagreements. Active
participation and confidence in meetings by some students could have dominated the others, misguid-
ing the observer or TA. As discussed in Section 5.5.3, this does not always indicate a high participation
level. Seeing dominant behaviour in meetings from over-riders is not surprising. However, free-riders
performing some similar actions is interesting. It might mean that these free-riders are masking their
lack of contributions by seeming involved in the meetings.

The opposite might also be possible: Medium participation students stepping up to a leadership role
in lower participation groups. Quantifying these results is infeasible due to the limited amount of data
gathered in this research. To measure and confirm these results, further research using a different
approach would be required.

6.2.2. Participant Profile

The project that the participants from this study were recruited from is relatively late in the bachelor’s
programme, meaning differences in programming experience might have been diminished already. The
course this research took place in does not teach programming, so any specific programming skills the
students acquired in the first five weeks would have been through their own initiative, possibly inflating
the effect of participation level on programming experience.

Furthermore, the experiment started in week 6 out of 10 of the project, meaning students already had
had some time to get to know each other and establish the group dynamics. This means we have
not been able to see when the dynamics are established and the effect of member familiarity might be
smaller.

Moreover, the participants were not very diverse. They are all from the same university and taking
the same course simultaneously. This introduced fewer confounding variables, but also ensured the
results are not generalisable to students in other study years, courses or universities, let alone software
development groups in a professional setting.

The group formation in this project is based on project preference, meaning some groups of students
consist of friends while others first chose the project and therefore got assigned to a random group of
students. This introduced the confounding variable of member familiarity which only existed in some
groups. Groups with high member familiarity might have more implicit and non-verbal communication
than other groups and, as a result, may appear less engaged on the surface. In contrast, groups with
less familiarity may exhibit more explicit forms of participation, such as verbal contributions.

Another reason groups with high member familiarity might be more difficult to classify is the fact friend
groups will have contact outside of project meetings, where the project might be discussed outside of
the context of research. Furthermore, the project meetings can also include discussions unrelated to
the project, distracting from the task at hand.

6.3. Recommendations for Future Work 28

6.2.3. Sample Size

The study had 20 participating students, which may not be representative of the population of CS
students. Of those 20 students, four students were filtered out due to disagreement and two more were
filtered out due to being medium-participation students. This left 15 students to analyse the relationship
between metrics and participation level. One of these 15 students had not filled in the questionnaire,
meaning there was one data point less to analyse the relation between programming experience and
the participation level.

Statistical testing on a small number of samples is less reliable, since the effect of coincidence is larger.
Small sample sizes increase the likelihood of encountering Type Il errors, or false negatives. This has
been tried to mitigate by using the effect size in the analysis, in addition to the p-value of the statistical
tests. However, due to the small sample size, it was not possible to perform ANOVA on the software
metrics to find correlations between the metrics themselves. Instead, t-tests were performed on each
separate metric. This could lead to aggregated errors.

Because of the small sample size, it was infeasible to test for diversity properly. The nationality was
now considered as ‘Dutch’ or ‘International’, meaning the number of nationalities per group was not
taken into account for statistical testing.

6.2.4. Accuracy of Metrics

The results obtained from the LOC metric might not be representative of the quantity of the code written
by students. The literature contradicts itself on the meaningfulness of using LOC as a metric for devel-
oper productivity [9, 52]. However, the research agrees that it is not detrimental to filter out white lines
and lines with only brackets. Nor does it hurt to assign lines changed by small refactors to the original
author. However, the literature that mentions these measures also mentions the boilerplate code as
something that should be filtered out. GitReporter does not do this. This is mainly due to the fact that it
works on multiple programming languages and detecting boilerplate across different languages is quite
tricky. Clarity on this topic would strengthen LOC as a metric for measuring participation.

Furthermore, one TA mentioned the merge request comments as a valuable metric for determining
participation and contribution to the project, since involved students are aware of the code others wrote.
A correlation was found between the amount of MR comments and the participation level. However,
this metric only takes into account the number of comments per contributor and not the quality of those
comments. From experience, the TA implied that this metric can be cheated by commenting often,
but without much useful contribution. Comments like ‘LGTM’ or ‘Looks good to me’ or ‘Approved’ are
counted as contributions in this study but do not say anything about the involvement of the commenter.

6.3. Recommendations for Future Work

Based on the exploratory findings and the limitations mentioned before, some recommendations for
future work can be made.

6.3.1. Participant profile

As mentioned before, this group project is quite late in the BSc and the study was performed quite late
into the project duration. It would be interesting to see whether the effects of programming experience
are any different from earlier in the programme. Also, for monitoring groups, it is important to know
from which moment the differences in participation level become apparent so they can be identified
and mitigated.

The literature showed that member familiarity has a positive effect on group performance in projects [41].
However, it has not been researched whether this effect is possibly enhanced by skewed judgements
by TAs, teachers, or other tutors. Friend groups already have an established pecking order and friends
choose their friendship over a fair grade. This might mislead teachers and TAs to not intervene when
it is necessary.

Furthermore, to obtain a more homogenous participant population, it would be better to perform this
research on a project with teacher-assigned groups. This reduces the effect of member familiarity on
the results and leads to a more accurate classification by researchers and TAs.

6.4. The Use of LLMs in this Thesis 29

6.3.2. Sample Size

To ensure the feasibility of this thesis, one dimension has been removed from the categorization into
group roles by Strijbos and de Laat [19]. Other research could opt to remove the effort dimension and
try to look at orientation only. This is usually not the feature that is the most valued in group projects,
but it is often in the learning goals of projects at university, since it relates more to collaboration than
code contribution.

Since there were not enough samples, the research was limited with regard to statistical testing. This
means that we could only identify two categories of participation level. Having more participants opens
up possibilities for statistical testing such as testing the data of the medium participation students or
identifying the orientation along with effort.

6.3.3. Accuracy of Metrics

Research into the effect of boilerplate code on contributor statistics could strengthen the use of LOC
as a metric to measure developer participation. It would have to be investigated if low-participation
students commit more boilerplate code to cheat the metrics. This does introduce the difficulty of having
projects in multiple programming languages, so it is recommended to conduct this research on a project
with in a given programming language.

This research has shown a correlation between the amount of MR comments and participation. How-
ever, it would be interesting to see research regarding the correlation between the participation level
and the quality of the MR comments. TAs mentioned these comments often included non-useful re-
marks like ‘LGTM'. Due to the time limit in this thesis, it was not feasible to perform content analysis
on the merge request comments. Performing content analysis is a time-intensive task, but could be
valuable and possibly add an objective measure for determining the participation level.

The TAs used GitLab tools to gather the LOC which work similarly to the GitLab API or use the GitLab
API in the background. That number might differ from the number that GitReporter calculates since
GitReporter assigns lines affected by small refactors to the original author instead of the refactoring
author. Trying to cheat the metrics is a known tactic for social loafers to make it seem their contri-
butions are more substantial than they are. Cheating the LOC metric would increase the number of
LOC assigned to the social loafer when calculated using the GitLab API, but not when calculated with
GitReporter. It would be interesting to research whether cheating the metrics can be determined this
way.

6.4. The Use of LLMs in this Thesis

Problematic use of Large Language Models (LLMs) such as ChatGPT in research is becoming more
frequent’. In this thesis, ChatGPT has been used as a writing coach. This means that it was not asked
to write sections of this thesis, but rather provide feedback and synonyms and occasionally search
queries as well. This is similar to how other students might use tools like Grammarly?. A list of prompts
asked to ChatGPT is included below.

"https://pubpeer.com/publications/CAABBF887348FB2D1C0329E0A27BES
2https://app.grammarly.com/

https://pubpeer.com/publications/CAABBF887348FB2D1C0329E0A27BE6
https://app.grammarly.com/

6.4. The Use of LLMs in this Thesis 30
Prompt Answer
The final grade is of 10% presentation, 40% product and 50% Composed

process. What fits in the blank?

Give me an academic synonym for solo

Give me a less wordy way to say “make more difficult”
Should it be “to create” or “in creating” in this sentence?

Please recommend some tooling for creating transcripts

Help me brainstorm titles for my thesis, these are the aspects |
want to incorporate. Give me ten options.

Can you give me some alternatives for the word 'However’?

Please provide some synonyms for “better”. | need to use them
in my thesis

How do | translate “In tegendeel tot” to English? | can’t find the
word that captures the context accurately.

| want to search for papers about group work in computer science,
specifically on the effect of students who do all the work, not letting
the other learn. Give me some search queries.

Can you convert this RIS citation to Bibtex for me?
Please convert this table from Excel to LaTeX
What word is a bit less strong than 'contradicting’?

Please add a column to this LaTeX table
Are the commas and grammar in this sentence correct?

Individual or single
Complicate

Reply explaining the difference
in nuance between the two.

Recommendations of various
tools.

Ten options for titles.

Nevertheless, nonetheless, yet,
despite that, even so.

Superior, enhanced, improved,
advanced, and optimal.

Contrary to, in contrast to, on the
contrary to, opposite to, unlike.

Some search queries.

The reference in BibTeX format.
The formatted table.

Disagreeing or contrasting or de-
viating.

The table with an added column.
The corrected grammar.

Conclusion

This study identified the participation level of students working on a group project in the second year
of their Computer Science bachelor’s degree. This was done by observing the groups during multiple
sessions, administering a questionnaire, and conducting an interview with the teaching assistants who
monitored the groups. It tried to analyze the association of programming experience, which was deter-
mined based on the questionnaire, with this participation level but found no correlation, meaning that
not having programming experience is not an excuse to not participate in group projects.

Furthermore, the correlation between this participation level and the software metrics of the code repos-
itory of the group project was determined. It was found that the number of lines of code students wrote,
the number of commits students made, and the number of comments that students posted on merge re-
quests are all correlated with the participation level. In the end, some recommendations for monitoring
groups during similar group projects were made.

This study gives an insight into the causes and effects of participation in group projects. It raises some
important questions for further research in his field. For example, investigating if the participation level
can be determined from the quality of the comments on merge requests. Especially if this quality could
be determined automatically, this could be a valuable addition for monitoring groups working on projects
that is not directly related to the code contribution per student.

31

(1]

(2]

3]

[4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

References

Tyson Henry. “The Changing Role of Computing Education: Fostering Collaboration”. In: Issues
In Information Systems 7.1 (2006). DOI: 10.48009/1_iis_2006_67-71.

Carol L. Colbeck, Susan E. Campbell, and Stefani A. Bjorklund. “Grouping in the Dark: What
College Students Learn from Group Projects”. In: The Journal of Higher Education 71.1 (2000),
pp. 60—83. ISSN: 00221546, 15384640. URL: http://www. jstor.org/stable/2649282.

Anne-Maarit Majanoja. and Timo Vasankari. “Reflections on Teaching Software Engineering Cap-
stone Course”. In: Proceedings of the 10th International Conference on Computer Supported Ed-
ucation - Volume 1: CSEDU. INSTICC. SciTePress, 2018, pp. 68—77. ISBN: 978-989-758-291-2.
DOI: 10.5220/0006665600680077.

James D. Lang et al. “Industry Expectations of New Engineers: A Survey to Assist Curriculum
Designers”. In: Journal of Engineering Education 88.1 (1999), pp. 43-51. DOI: https://doi.
org/10.1002/j.2168-9830.1999.tb00410.x.

Christopher Scaffidi. “Employers’ Needs for Computer Science, Information Technology and Soft-
ware Engineering Skills Among New Graduates”. In: International Journal of Computer Science,
Engineering and Information Technology 8 (Feb. 2018), pp. 01-12. DOI: 10.5121/ijcseit.2018.
8101.

Edward Holden and Elissa Weeden. “The experience factor in early programming education”. In:
Proceedings of the 5th Conference on Information Technology Education. CITC5 '04. Salt Lake
City, UT, USA: Association for Computing Machinery, 2004, pp. 211-218. ISBN: 1581139365.
DOI: 10.1145/1029533.1029585.

Chris Wilcox and Albert Lionelle. “Quantifying the benefits of prior programming experience in an
introductory computer science course”. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. Vol. 2018-January. SIGCSE ’18. Baltimore, Maryland, USA:
Association for Computing Machinery, Inc, Feb. 2018, pp. 80-85. ISBN: 9781450351034. DOI:
10.1145/3159450.3159480.

Diba Mirza et al. “Undergraduate Teaching Assistants in Computer Science: A Systematic Liter-
ature Review”. In: Proceedings of the 2019 ACM Conference on International Computing Edu-
cation Research. ICER ’19. Toronto ON, Canada: Association for Computing Machinery, 2019,
pp. 31-40. ISBN: 9781450361859. DOI: 10.1145/3291279.3339422.

Michael Guttmann, Aleksandar Karaka, and Denis Helic. “Attribution of Work in Programming
Teams with Git Reporter”. In: Proceedings of the 55th ACM Technical Symposium on Computer
Science Education. Vol. 1. SIGCSE 2024. Portland, OR, USA: Association for Computing Ma-
chinery, Mar. 2024, pp. 436—442. DOI: 10.1145/3626252.3630785.

Reza M. Parizi, Paola Spoletini, and Amritraj Singh. “Measuring Team Members’ Contributions in
Software Engineering Projects using Git-driven Technology”. In: Proceedings of the 2018 IEEE
Frontiers in Education Conference (FIE). San Jose, CA, USA: IEEE Press, 2018, pp. 1-5. DOI:
10.1109/FIE.2018.8658983.

Niki Gitinabard et al. “Student Teamwork on Programming Projects: What can GitHub logs show
us?” In: Proceedings of the 13th International Conference on Educational Data Mining (EDM).
2020, pp. 409-416. ISBN: 978-1-7336736-1-7.

Jan Jaap Sandee and Efthimia Aivaloglou. “GitCanary: A Tool for Analyzing Student Contribu-
tions in Group Programming Assignments”. In: Proceedings of the 20th Koli Calling International
Conference on Computing Education Research. Koli Calling '20. Koli, Finland: Association for
Computing Machinery, 2020. ISBN: 9781450389211. DOI: 10.1145/3428029.3428563.

32

https://doi.org/10.48009/1_iis_2006_67-71
http://www.jstor.org/stable/2649282
https://doi.org/10.5220/0006665600680077
https://doi.org/https://doi.org/10.1002/j.2168-9830.1999.tb00410.x
https://doi.org/https://doi.org/10.1002/j.2168-9830.1999.tb00410.x
https://doi.org/10.5121/ijcseit.2018.8101
https://doi.org/10.5121/ijcseit.2018.8101
https://doi.org/10.1145/1029533.1029585
https://doi.org/10.1145/3159450.3159480
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3626252.3630785
https://doi.org/10.1109/FIE.2018.8658983
https://doi.org/10.1145/3428029.3428563

References 33

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Roberta Evans Sabin and Edward P. Sabin. “Collaborative learning in an introductory computer
science course”. In: Proceedings of the Twenty-Fifth SIGCSE Symposium on Computer Science
Education. SIGCSE '94. Phoenix, Arizona, USA: Association for Computing Machinery, 1994,
pp. 304-308. ISBN: 0897916468. DOI: 10.1145/191029.191156.

Sherlock A. Licorish et al. “Understanding students’ software development projects: Effort, perfor-
mance, satisfaction, skills and their relation to the adequacy of outcomes developed”. In: Journal
of Systems and Software 186 (2022), p. 111156. ISSN: 0164-1212. DOI: https://doi.org/10.
1016/j.jss.2021.111156.

Elise Deitrick, Michelle Hoda Wilkerson, and Eric Simoneau. “Understanding Student Collabora-
tion in Interdisciplinary Computing Activities”. In: Proceedings of the 2017 ACM Conference on
International Computing Education Research. ICER '17. Tacoma, Washington, USA: Association
for Computing Machinery, 2017, pp. 118-126. ISBN: 9781450349680. DOI: 10.1145/3105726.
3106193.

Noreen M. Webb. “Peer interaction and learning with computers in small groups”. In: Computers
in Human Behavior 3.3 (1987), pp. 193-209. ISSN: 0747-5632. DOI: https://doi.org/10.
1016/0747-5632(87)90023-9.

Matthew Berland, Don Davis, and Carmen Petrick Smith. “AMOEBA: Designing for collabora-
tion in computer science classrooms through live learning analytics”. In: International Journal of
Computer-Supported Collaborative Learning 10.4 (2015), pp. 425-447. ISSN: 1556-1615. DOI:
10.1007/s11412-015-9217-z.

Bram de Wever and Jan-Willem Strijbos. “Roles for structuring groups for collaboration”. In: In-
ternational Handbook of Computer-Supported Collaborative Learning. Ed. by Ulrike Cress et al.
Computer-Supported Collaborative Learning Series. Springer Nature, 2021, pp. 315-331. ISBN:
978-3-030-65290-6. DOI: 10.1007/978-3-030-65291-3_17.

Jan Willem Strijbos and Maarten F. De Laat. “Developing the role concept for computer-supported
collaborative learning: An explorative synthesis”. In: Computers in Human Behavior 26.4 (July
2010), pp. 495-505. ISSN: 07475632. DOI: 10.1016/j.chb.2009.08.014.

Robert Mcquade et al. “Students’ strategies for managing social loafers in PBL: Interactional
means of dealing with unequal participation in group work”. In: Interactional Research into Problem-
Based Learning. Purdue University Press, Aug. 2020, pp. 275-297. ISBN: 9781557538048. DOI:
10.2307/j.ctvs1g9g4. 14.

David Hall and Simone Buzwell. “The problem of free-riding in group projects: Looking beyond
social loafing as reason for non-contribution”. In: Active Learning in Higher Education 14.1 (Mar.
2013), pp. 37—-49. ISSN: 14697874. DOI: 10.1177/1469787412467123.

C. Kevin Synnott. “Guides to Reducing Social Loafing in Group Projects: Faculty Development”.
In: Journal of Higher Education Management 31.1 (2016), pp. 211-221. URL: https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=2890604.

Praveen Aggarwal and Connie L. O’Brien. “Social loafing on group projects: Structural antecedents
and effect on student satisfaction”. In: Journal of Marketing Education 30 (3 May 2008), pp. 255—
264. ISSN: 02734753. DOI: 10.1177/0273475308322283.

Burhanuddin Yasin et al. “’It's Unfair” The Effect of Free Riding And Social Loafing of Group
Discussion In Cooperative Learning”. In: (July 2022), pp. 222—-228.

Charles M. Brooks and Janice L. Ammons. “Free Riding in Group Projects and the Effects of
Timing, Frequency, and Specificity of Criteria in Peer Assessments”. In: Journal of Education for
Business 78.5 (2003), pp. 268-272. DOI: 10.1080/08832320309598613.

Luis Miguel Serrano-Camara et al. “An evaluation of students’ motivation in computer-supported
collaborative learning of programming concepts”. In: Comput. Hum. Behav. 31.C (Feb. 2014),
pp. 499-508. ISSN: 0747-5632. DOI: 10.1016/j.chb.2013.04.030.

llenia Fronza and Xiaofeng Wang. “Towards an Approach to Prevent Social Loafing in Software
Development Teams”. In: 2017 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM). 2017, pp. 241-246. DOI: 10.1109/ESEM.2017.37.

https://doi.org/10.1145/191029.191156
https://doi.org/https://doi.org/10.1016/j.jss.2021.111156
https://doi.org/https://doi.org/10.1016/j.jss.2021.111156
https://doi.org/10.1145/3105726.3106193
https://doi.org/10.1145/3105726.3106193
https://doi.org/https://doi.org/10.1016/0747-5632(87)90023-9
https://doi.org/https://doi.org/10.1016/0747-5632(87)90023-9
https://doi.org/10.1007/s11412-015-9217-z
https://doi.org/10.1007/978-3-030-65291-3_17
https://doi.org/10.1016/j.chb.2009.08.014
https://doi.org/10.2307/j.ctvs1g9g4.14
https://doi.org/10.1177/1469787412467123
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2890604
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2890604
https://doi.org/10.1177/0273475308322283
https://doi.org/10.1080/08832320309598613
https://doi.org/10.1016/j.chb.2013.04.030
https://doi.org/10.1109/ESEM.2017.37

References 34

[28] Joanna Wolfe and Elizabeth Powell. “Strategies for dealing with slacker and underperforming
teammates in class projects”. In: Proceedings of the IEEE International Professional Communica-
tion Conference. Institute of Electrical and Electronics Engineers Inc., Jan. 2015. ISBN: 9781479937493.
DOI: 10.1109/IPCC.2014.7020346

[29] Kai Presler-Marshall, Sarah Heckman, and Kathryn T. Stolee. “Identifying Struggling Teams in
Software Engineering Courses Through Weekly Surveys”. In: Proceedings of the 53rd ACM Tech-
nical Symposium on Computer Science Education. Vol. 1. SIGCSE 2022. Association for Com-
puting Machinery, Inc, Feb. 2022, pp. 126—132. ISBN: 9781450390705. DOI: 10.1145/3478431.
3499367.

[30] Jay Jr, Bruce Reinig, and Robert Briggs. “Principles for Effective Virtual Teamwork”. In: Commun.
ACM 52 (Apr. 2009), pp. 113-117. DOI: 10.1145/1498765.1498797.

[31] Sherry Piezon and Robin Donaldson. “Online Groups and Social Loafing: Understanding Student-
Group Interactions”. In: Online Journal of Distance Learning Administration 8 (Jan. 2005).

[32] Kipling D. Williams and Steven J. Karau. “Social loafing and social compensation: The effects of
expectations of co-worker performance.” In: Journal of Personality and Social Psychology 61.4
(Jan. 1991), pp. 570-581. DOI: 10.1037/0022-3514.61.4.570

[33] Andy McKinlay, Rob Procter, and Anne Dunnett. “An investigation of social loafing and social
compensation in computer-supported cooperative work”. In: Proceedings of the 1999 ACM Inter-
national Conference on Supporting Group Work. GROUP ’99. Phoenix, Arizona, USA: Associa-
tion for Computing Machinery, 1999, pp. 249-257. ISBN: 1581130651. DOI: 10.1145/320297 .
320327.

[34] Rosalie J. Ocker. “A Balancing Act: The Interplay of Status Effects on Dominance in Virtual
Teams”. In: IEEE Transactions on Professional Communication 50.3 (2007), pp. 204—-218. DOI:
10.1109/TPC.2007.902656.

[35] R.J. Ocker. “Influences on creativity in asynchronous virtual teams: a qualitative analysis of ex-
perimental teams”. In: JEEE Transactions on Professional Communication 48.1 (2005), pp. 22—
39. DOI: 10.1109/TPC. 2004 .843294.

[36] Tripp Driskell et al. “Team Roles: A Review and Integration”. In: Small Group Research 48.4 (June
2017), pp. 482-511. DOI: 10.1177/1046496417711529

[37] James E Driskell et al. “What Makes a Good Team Player? Personality and Team Effectiveness”.
In: Group Dynamics: Theory, Research, and Practice 10.4 (2006), pp. 249-271. DOI: 10.1037/
1089-2699.10.4.249.

[38] Ed Lester, Damian Schofield, and Peter Chapman. “Self and Peer Assessment and Dominance
During Group Work Using Online Visual Tools”. In: Seminar.net 6 (1 Nov. 2010). ISSN: 1504-4831.
DOI: 10.7577/SEMINAR . 2460

[39] Chen Chen et al. “Cowboy” and “Cowgirl” Programming: The Effects of Precollege Programming
Experiences on Success in College Computer Science”. In: International Journal of Computer
Science Education in Schools 2.4 (Jan. 2019), pp. 22—40. DOI: 10.21585/ijcses.v2i4.34.

[40] Anne Pieterse, Daan Knippenberg, and Dirk van Dierendonck. “Cultural Diversity and Team Per-
formance: The Role of Team Member Goal Orientation”. In: Academy of Management Journal
56 (July 2012), pp. 782—-804. DOI: 10.5465/amj .2010.0992.

[41] Jeroen Janssen et al. “Influence of group member familiarity on online collaborative learning”.
In: Computers in Human Behavior 25.1 (2009), pp. 161-170. ISSN: 0747-5632. DOI: https :
//doi.org/10.1016/j.chb.2008.08.010

[42] Michal Kompan and Maria Bielikova. “Enhancing existing e-learning systems by single and group
recommendations”. In: International Journal of Continuing Engineering Education and Life Long
Learning 26.4 (2016), pp. 386—404. DOI: 10.1504/IJCEELL.2016.080980.

[43] Naseebah Magtary, Abdulgader Mohsen, and Kamal Bechkoum. “Group Formation Techniques
in Computer-Supported Collaborative Learning: A Systematic Literature Review”. In: Technology,
Knowledge and Learning 24.2 (2019), pp. 169-190. ISSN: 2211-1670. DOI: 10.1007/s10758~
017-9332-1.

https://doi.org/10.1109/IPCC.2014.7020346
https://doi.org/10.1145/3478431.3499367
https://doi.org/10.1145/3478431.3499367
https://doi.org/10.1145/1498765.1498797
https://doi.org/10.1037/0022-3514.61.4.570
https://doi.org/10.1145/320297.320327
https://doi.org/10.1145/320297.320327
https://doi.org/10.1109/TPC.2007.902656
https://doi.org/10.1109/TPC.2004.843294
https://doi.org/10.1177/1046496417711529
https://doi.org/10.1037/1089-2699.10.4.249
https://doi.org/10.1037/1089-2699.10.4.249
https://doi.org/10.7577/SEMINAR.2460
https://doi.org/10.21585/ijcses.v2i4.34
https://doi.org/10.5465/amj.2010.0992
https://doi.org/https://doi.org/10.1016/j.chb.2008.08.010
https://doi.org/https://doi.org/10.1016/j.chb.2008.08.010
https://doi.org/10.1504/IJCEELL.2016.080980
https://doi.org/10.1007/s10758-017-9332-1
https://doi.org/10.1007/s10758-017-9332-1

References 35

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[59]

[56]

[57]

[58]

[59]

[60]

[61]

Lihui Sun, Linlin Hu, and Danhua Zhou. “Programming attitudes predict computational thinking:
Analysis of differences in gender and programming experience”. In: Computers & Education 181
(May 2022), p. 104457. ISSN: 0360-1315. DOI: 10.1016/J.COMPEDU. 2022. 104457.

Laura Heels and Marie Devlin. “Investigating the Role Choice of Female Students in a Software
Engineering Team Project”. In: Proceedings of the 3rd Conference on Computing Education Prac-
tice. CEP ’19 2. Durham, United Kingdom: Association for Computing Machinery, 2019. ISBN:
9781450366311. DOI: 10.1145/3294016.3294028.

Bjarn Hjorth Westh et al. “Gender Differences in the Group Dynamics of Smaller CS1 Project
Groups”. In: IEEE ASEE Frontiers in Education Conference 2023. Los Alamitos, CA, USA: IEEE
Computer Society, Oct. 2023, pp. 1-9. DOI: 10.1109/FIE58773.2023.10343369.

Leonardo Silva, Antonio José Mendes, and Anabela Gomes. “Computer-supported Collaborative
Learning in Programming Education: A Systematic Literature Review”. In: 2020 IEEE Global
Engineering Education Conference (EDUCON). 2020, pp. 1086—1095. DOI: 10.1109/EDUCON45
650.2020.9125237.

Eirini Kalliamvakou et al. “Measuring Developer Contribution From Software Repository Data.”
In: Proceedings - International Conference on Software Engineering. Jan. 2009, p. 55. DOI: 10.
1145/1370750.1370781.

D. Campbell. Assessing the Impact of Planned Social Change. Jan. 1976.

Keir Mierle et al. “Mining student CVS repositories for performance indicators”. In: SIGSOFT
Softw. Eng. Notes 30.4 (May 2005), pp. 1-5. ISSN: 0163-5948. DOI: 10.1145/1082983.1083150.

Kaushal Bhatt, Vinit Tarey, and Pushpraj Patel. “Analysis Of Source Lines Of Code (SLOC) Met-
ric”. In: IJETAE 2 (Apr. 2012).

J. Rosenberg. “Some misconceptions about lines of code”. In: Proceedings Fourth International
Software Metrics Symposium. 1997, pp. 137—-142. DOI: 10.1109/METRIC. 1997 .637174.

Thomas McCabe. “A Complexity Measure”. In: IEEE Transactions on Software Engineering 2.4
(1976), p. 308.

Arthur H. Watson and Thomas J. McCabe. Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric. NIST, 1996.

Chris Mair. Groovy Code Metrics: Cyclomatic Complexity. 2012. URL: https://tenpercentnot
crap.wordpress.com/2012/07/08/groovy-code-metrics-cyclomatic-complexity/.

Israel Herraiz and Ahmed E. Hassan. “Beyond Lines of Code: Do We Need More Complexity
Metrics?” In: Making Software: What Really Works, and Why We Believe It. Ed. by Andy Oram
and Greg Wilson. O’Reilly, 2011. Chap. 8, pp. 125-144.

Jalerson Lima et al. “Assessing developer contribution with repository mining-based metrics”. In:
Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2015, pp. 536-540. DOI: 10.
1109/ICSM.2015.7332509.

Efthimia Aivaloglou and Anna van der Meulen. “An Empirical Study of Students’ Perceptions on
the Setup and Grading of Group Programming Assignments”. In: ACM Transactions on Comput-
ing Education 21.3 (Mar. 2021), pp. 1-22. DOI: 10.1145/3440994.

Janet Siegmund et al. “Measuring Programming Experience”. In: Proceedings of the IEEE Interna-
tional Conference on Program Comprehension. June 2012. DOI: 10.1109/ICPC.2012.6240511.

Xiangyu Ying et al. “Group laziness: The effect of social loafing on group performance”. In: Social
Behavior and Personality 42.3 (Mar. 2014), pp. 465—472. ISSN: 1179-6391. DOI: 10.2224/SBP.
2014.42.3.465.

Jacob Cohen. Statistical Power Analysis for the Behavioural Sciences. Lawrence Erlbaum Asso-
ciates, 1988. ISBN: 0-8058-0283-5.

https://doi.org/10.1016/J.COMPEDU.2022.104457
https://doi.org/10.1145/3294016.3294028
https://doi.org/10.1109/FIE58773.2023.10343369
https://doi.org/10.1109/EDUCON45650.2020.9125237
https://doi.org/10.1109/EDUCON45650.2020.9125237
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1145/1082983.1083150
https://doi.org/10.1109/METRIC.1997.637174
https://tenpercentnotcrap.wordpress.com/2012/07/08/groovy-code-metrics-cyclomatic-complexity/
https://tenpercentnotcrap.wordpress.com/2012/07/08/groovy-code-metrics-cyclomatic-complexity/
https://doi.org/10.1109/ICSM.2015.7332509
https://doi.org/10.1109/ICSM.2015.7332509
https://doi.org/10.1145/3440994
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.2224/SBP.2014.42.3.465
https://doi.org/10.2224/SBP.2014.42.3.465

Questionnaire

Research towards Group Work in the
Software Project

Consent You are invited to participate in a research study titled ‘The Participative Stances
towards Collaborative Work in Computing Education’. Merel Steenbergen, an MSc student from
TU Delft, is doing this study. This research study aims to gain insight into group compaosition
within CS project groups. It will take you approximately 10 minutes to complete. The data will be
used for analysis. We will be asking you to answer the questions of this survey.

For our research, it is necessary to collect some personal data. To use this data during our
research we need your consent. Personal data that is collected is:

- Email — As an identifier during the research and in case we need to contact you

- Age, gender, nationality, previous experience with the course — To establish a basic
background of the participants.

- Your programming experience — To establish a more detailed background of the participants
- Your answers to some statements about group work — To establish the context of the
participants.

Your responses to the questionnaire will be kept completely confidential, the course staff will
not see your answers and your answers have no impact on your grade. Any identifying
information will be anonymised before analysing the data. If identifying information will be used
for further research you will receive a notification of this, with the possibility to withdraw your
consent. Participation in this study is entirely voluntary and you can withdraw anytime until the
research has been published. If you change your mind or if you have any questions, you can
send an email to [email address]. If you want to withdraw, your data will be permanently deleted
from the collected data. Any other information that can be traced back to you will also be
permanently deleted. By ticking the box below, you acknowledge that you have read the above
and understand your rights.

| have read the statement above, | understand my rights and | consent to participation in
the study as written above.

36

37

Q1 What is your gender?

Q2 How old are you?

Q3 Which country/countries are you from?

Q4 What is your GPA?

<6.0 (1)
6.1-7.0 (2)
7.1-8.0 (3)
8.1-9.0 (4)
>9.0 (5)

| don't know/don't want to answer this question (6)

38

Q5 Is this the first time you are taking this course?

Yes (1)

No (2)

Q6 Did you know your team members before the project?

Yes, all of them (1)
Yes, most of them (2)
Yes, some of them (3)

No (4)

Q7 On a scale from 1 to 10, how do you estimate your programming experience?

Very inexperienced Very experienced

1 2 3 4 5 6 7 8 9 10

Where 1 is very inexperienced and 10 is '
very experienced

39

Q8 Answer the following statements on a scale of 1 to 5 where 1 is very inexperienced and 5 is
very experienced.

Very inexperienced Very experienced

1 2 3 4 5

How do you estimate your programming _i_
experience compared to experts with 20
years of practical experience?

How do you estimate your programming _i_
experience compared to your class mates?

How experienced are you with Java? _i_

How experienced are you with C? _i_

How experienced are you with C++? _i_

How experienced are you with Python? _i_

How experienced are you with Javascript? _i_

How experienced are you with Scala? _i_

Q9 Which languages, apart from those mentioned above, do you know (medium experience or
better)?

40

Q10 Answer the following statements about programming paradigms
Very inexperienced Very experienced

4 5

w

1 2

How experienced are you with functional
programming?

How experienced are you with imperative
programming?

How experienced are you with logical
programming?

How experienced are you with object-
oriented programming?

Q11 For how many years have you been programming?

Q12 For how many years have you been programming for larger software projects, e.g. in a
company?

Q13 How large were the codebases of the professional/company projects you contributed to
typically?

Not applicable (1)
<900 lines of code (2)

900 - 40000 lines of code (3)

> 40000 lines of code (4)

41

Q14 Please indicate how much the following statements apply to you.

Strongly Somewhat Neither Somewhat Strongly
disagree disagree agree nor agree agree

In a team, | am indispensable
In a team, | will try as hard as | can
In a team, | contribute less than | should

In a team, | will actively participate in the
discussion and contribute ideas

In a team, it is okay even if | do not do my
share

In a team, it does not matter whether I try my
best or not

In a team, given my abilities, | will do the
best | can

| prefer working alone over working in a
group

disagree

w
N
a1

End of Survey Thank you for filling in the survey! Please be assured again that your responses
will not be shared with anyone except the responsible researchers. The course staff will not
have access to individual responses; only anonymized and aggregated data will be included in
the final thesis. Your input is invaluable in contributing to our research, and we thank you for
your time and effort. If you have any question or want to revoke your answers, you can reach

me at [email address].

Please fill in your email address below. This will be the only thing we can identify you by. If you
do not want to fill in your email address, please ask the researcher to give you an identifier.

Teaching Assistant Interview Protocol

Introduction
5 minutes
* Let the participant sign the consent form.
« Start recording.
* Introduction of research.
» Ask if they have any questions before we start.

Contextual Questions
15 minutes

» Can you tell me something about your experience as a TA, and more specifically as a TA of project
courses?

+ Did you identify any problems in group X? Specifically, any problems having to do with program-
ming experience or communication.

» How did you identify this problem? And how do you identify problems in general?

+ Did you look at the software metrics at all when monitoring this group? If yes, which metrics did
you look at and which tools did you use?

» What feedback have you given the group?
* How and how often do you communicate with the group?

Identifying the Roles and closing

10 minutes
» Explain each role, show Table 4.1 and discuss the behaviour.
* Let them explain what roles they think the students have in the group and why.
+ Ask if they have anything to add.

Potential Questions
Metrics

* When did you use the metrics during guidance?
* How did you implement the metrics during guidance?
+ Did you show the metrics to the students, and if yes: How did students respond to the metrics?

42

43

Guidance
» How did you deal with under-/over-performing individuals?
» How did you approach guiding those projects?
» How did you do individual guidance in this group?

	Acknowledgements
	Abstract
	Nomenclature
	Introduction
	Background and Related Work
	Group Roles
	Social Loafing
	Dominance
	Team Diversity
	Programming Experience
	Software Metrics

	Research Questions
	Hypotheses
	Programming Experience
	Software Metrics

	Methodology
	Participants and Recruitment
	Data Collection
	Questionnaire Design
	Observative Study
	Teaching Assistant Interviews
	Software Metrics

	Data Analysis
	Participation Level
	Participant Characteristics
	RQ1: Programming Experience
	RQ2: Software Metrics
	Effect Size
	Qualitative Analysis

	Results
	Participation Level
	Participant Characteristics
	RQ1: Programming Experience
	Effect Size
	Qualitative results

	RQ2: Software Metrics
	Qualitative Results

	Exploratory Findings
	Member Familiarity
	Dominance in Meetings
	Interpersonal Dynamics

	Discussion
	Implications and Recommendations
	Threats to Validity
	Subjectivity of Participation Level
	Participant Profile
	Sample Size
	Accuracy of Metrics

	Recommendations for Future Work
	Participant profile
	Sample Size
	Accuracy of Metrics

	The Use of LLMs in this Thesis

	Conclusion
	References
	Questionnaire
	Teaching Assistant Interview Protocol

