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Hierarchical Path Planning and Motion Control
Framework Using Adaptive Scale Based
Bidirectional Search and Heuristic
Learning Based Predictive Control

Guodong Du ", Yuan Zou

Abstract—Autonomous vehicles have been used for a variety of
driving tasks, in which path planning and motion control are impor-
tant research parts to realize the autonomous driving. A hierarchi-
cal framework consisting of path planning and motion control of the
vehicle for non-specific scenarios is proposed in this paper. Firstly,
the description and the formulations of the problem are given,
and the corresponding models are constructed. Then, the logical
construction of proposed framework is expounded with several
logical associations and algorithmic improvements. The bidirec-
tional heuristic planning with adaptive scale search is designed and
incorporated with robust weighted regression algorithm to plan the
optimal global path, while the multi-step predictive control method
based on heuristic reinforcement learning algorithm is proposed to
improve the effect of the motion control. The results show that
the proposed framework for autonomous driving achieves better
performance in both path planning and motion control than several
existing algorithms and methods. The adaptability of hierarchical
framework is demonstrated. Furthermore, the effectiveness of the
hierarchical framework in real world scenario application is also
validated.

Index Terms—Hierarchical framework, path planning, motion
control, adaptive scale based bidirectional search, heuristic
learning based predictive control.

1. INTRODUCTION

UTONOMOUS vehicles are promoting the development
A of the intelligent vehicular technology (IVT) [1], and have
been widely used in a variety of driving tasks [2]. Benefitting
from its ability to reduce the driving burden, several studies on
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autonomous vehicles have been conducted in recent years [3].
The technical problems of autonomous vehicles mainly focus on
the acquisition, perception, communication, planning, control
and actuation [4]. Among these key technologies, the plan-
ning part and the control part determine the level of automatic
driving. High-level automatic driving has the characteristics of
high autonomy. Research on fully autonomous path planning
and motion control to replace the driver behavior has practical
significance in the development of vehicular technology.

For autonomous vehicles operating specific driving tasks, the
research of planning usually refers to the path planning based
on the driving requirements and global map. The planned global
path will be used as a reference for the automatic driving process.
Then, the research of control generally refers to the actual motion
control, which generates control strategies based on the planned
global path and real-time perception information. In case of
sudden obstacles, the dynamic avoidance control will also be
implemented during the automatic driving process. Recently, the
path planning and motion control for autonomous vehicles have
been recognized as the valuable research area using multiple
methods [5].

In the study of path planning, various algorithms have been
applied, such as sampling-based algorithm, optimization-based
algorithm, potential field algorithm and graph search algorithm.
The sampling based algorithm is often applied to the path
planning using the ability to find the internal connectivity.
The rapidly-exploring random tree (RRT) [6] and probabilistic
roadmap method (PRM) [7] are regarded as representatives to
realize the global path planning.

The optimization-based algorithms have become popular in
the path planning research, such as particle swarm optimization
(PSO) [8], genetic algorithm (GA) [9], and recurrent spline
optimization (RSO) [10]. The planning problem is transformed
into the value function in these optimization-based algorithms,
and the optimal path is generated. However, the optimization
is affected by the model complexity, and the computational
burden can be heavy. In order to achieve the fast path planning in
continuous space, some researchers focus on the application of
the artificial potential field (APF) algorithm. The modified APF
algorithm was proposed for the path planning of autonomous
vehicles, and the simulation results proved the better planning
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effectiveness than previous algorithms [11]. In [12], another
path planning method based on improved APF algorithm was
designed. However, the planned path might fall into the local
optimum in some particular conditions. Even though some vari-
ants of the APF algorithm are developed to solve this problem,
this class of algorithms is still limited in extreme scenarios, such
as a long and narrow alleyway.

As the representative algorithm of global path planning, the
graph search algorithm has been widely studied in this field.
The global optimal path from start position to target position is
generated by minimizing the accumulation of the value function.
As a typical graph search, the Dijkstra algorithm was applied
for the surface optimal path planning, and the feasibility of this
algorithm was validated [13]. Because of its global optimality,
the Dijkstra algorithm is generally used as the benchmark for
other path planning algorithms. However, the global traversal
search of this algorithm would take a lot of computational time.
Therefore, a series of variations were developed to achieve
faster search speed. A-star (Ax) algorithm realized the graph
search with the heuristic conception, and assigned different
weights of path nodes [14]. The path planning method based
on jump-Ax algorithm was designed, which was more efficient
than traditional algorithms [15]. In addition, another typical
graph search algorithm called D-star (D*) was designed using
the heuristic improvement with dynamic search cost [16]. In
[17], the Dx algorithm with negative edge weights was applied,
and the simulation results validated its performance.

While these graph search algorithms constantly improve the
solution speed, further reducing the planning time to achieve bet-
ter practical applications is still necessary. Especially in the cur-
rent demand for real-time autonomous driving, the shorter path
planning time means a broader real-time application prospect.
Besides, the initial path solved is usually not smooth enough due
to the direct connection of nodes in graph search algorithms,
which may negatively affect the path tracking performance of
autonomous vehicles. It is valuable to apply an efficient contin-
uous smoothing method so that the processed path can better
meet the demand of path tracking control. Above all, designing
an improved graph search scheme to further improve the rapidity
and smoothness of path planning is a motivation of this research.

In the study of motion control, several methods were used,
such as proportion-integration-differentiation (PID) method,
pure pursuit (PP) method and linear quadratic regulator (LQR)
method. The PID method has wide engineering applications
due to its simplicity and reliability [18], which adjusts three
ratio coefficients to control longitudinal and lateral motions.
Han et al. [19] proposed a PID-based motion control method
for the path tracking of intelligent vehicles, and the capability
of this approach was verified by the experimental simulation.
However, the control strategy designed by PID method has poor
universality, which hardly adapts to different driving scenarios.
The PP method is another popular motion control choice [20].
In [21], the modified PP method with adjustable look-ahead
distance was developed. Nevertheless, the tracking accuracy of
PP method is limited by path curvature and vehicle speed, so the
control performance is mediocre under high velocity or large
curvature conditions. Moreover, the PP method needs to strictly
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follow the reference path. Once the reference path fails, such
as being blocked by sudden obstacles, the PP method cannot
generate dynamic strategies to avoid obstacles independently.
As another representative of motion control methods, the LQR
method works well in several driving scenarios, which utilizes
the linear state feedback [22]. However, the linear assumption
of this method also restricts its application.

In recent years, the model predictive control (MPC) based
motion control of autonomous vehicles has become a research
hotspot. The MPC method solves the motion control sequence
iteratively by using optimization algorithms in a prediction hori-
zon [23]. An improved kinematic MPC method was proposed
for the high-speed motion control of autonomous vehicles [24].
The results demonstrated that the developed controller tracked
the reference path well. In [25], a randomized MPC method
for autonomous driving was designed, which contained the
reference path tracking and collision avoidance. Besides, other
MPC methods, such as nonlinear MPC [26], have also been
applied to related control problems of autonomous vehicles.
Nevertheless, MPC method has the heavy computational load
and the engineering application stability in the field of motion
control is still being validated.

With the development of the concept of artificial intelligence
(AI), machine learning algorithms are constantly applied to the
motion control optimization of autonomous vehicles. Shan et al.
[27] proposed a reinforcement learning (RL) based motion con-
trol strategy, which involved driving smoothness and tracking
accuracy. The results proved that this RL-based control was
better than MPC-based control and LQR-based control. Another
adversarial RL framework was designed for the motion control
and collision avoidance in the autonomous driving [28]. The
effectiveness of this framework was validated by simulation
tests. Besides, other variants of RL methods have also been
applied to the motion control research, such as partial RL. method
[29], safe RL method [30], and configurable RL method [31].
Actually, the RL architecture is suitable for solving dynamic
motion control problem with its powerful self-learning ability.
The general RL algorithms belong to Markov decision process
(MDP), and generate single-step control action according to the
current state. However, the actual global optimal solution of a
control sequence is often derived in a long solution time domain.
The single-step decision of the existing RL method does not
consider the state of the next several steps, and the generated
control strategy is only optimal for the current state, which may
miss the actual optimal control strategy of the current state from
the perspective of global optimization. Therefore, the set of
one-step solution of RL method easily falls into the problem
of sub-optimal. In addition, the above motion control research
mainly focuses on the path tracking problem, but does not fully
consider the situation of sudden obstacles and the coupling of
path tracking control and dynamic collision avoidance control.

Facing with the above problem and referring to the advantage
of MPC method, the predictive time domain concept of MPC is
introduced into the traditional RL algorithm, and the control op-
timization based on the future prediction horizon can effectively
improve the performance of the global control policy. Therefore,
incorporating a forward multi-step predictive decision method
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with reinforcement learning structure to replace the single-step
decision of traditional reinforcement learning is meaningful,
which has the potential to achieve better motion control effect
of autonomous vehicles.

Actually, the planning system and control system for auto-
matic driving are related directly [32]. In the past few years,
several researchers have focused on layered frameworks that
include planning system and control system together [33], [34],
[35]. Admittedly, the performance of hierarchical frameworks
for autonomous vehicles is constantly being improved. However,
the path planning system and motion control system in existing
layered frameworks are still as discussed in above literature
review, which have the possibility of further improvement.

The key contributions for this research are described by:

1) The novel hierarchical framework consisting of path
planning and motion control for the autonomous ve-
hicles is constructed for non-specific scenarios, which
achieves complete autonomous driving without involving
the driver. The proposed hierarchical framework combines
planning and control reasonably, and the logical relations
of these two modules complement each other to realize
the function of autonomous driving, so as to replace the
traditional completely independent planning and control
modules scheme.

2) The bidirectional heuristic planning with adaptive scale
search is designed and incorporated with the robust
weighted regression algorithm to generate the global path
that takes optimality, rapidity, and smoothness into ac-
count. This planning scheme combines the bidirectional
heuristic search and adaptive scale search to maximize
the aggressiveness of the search and further shorten the
planning time in the large scene map. Meanwhile, the
innovative integration of the robust locally weighted re-
gression algorithm also makes up for the weakness that the
initial path generated by the proposed aggressive planning
method is not smooth enough.

3) The multi-step predictive control method based on the
heuristic reinforcement learning algorithm is proposed
to further improve the overall performance in safety, ac-
curacy, comfort and rapidity of motion control. In this
control scheme, the heuristic Q learning algorithm (HQL)
is applied to the training of the initial motion control agent,
which effectively improves the effectiveness of the train-
ing optimization compared to the traditional Q learning
method. The future prediction horizon is constructed and
the multi-step predictive control (MSPC) solution logic
is designed, and then applied to the initial control agent
to realize the transformation from single-step decision
making to multi-step predictive decision making.

The organizational structure of this paper: In Section II,
the description and the relevant formulations of the problem
are given, and the motion control model is constructed. The
hierarchical framework consisting of path planning and motion
control is proposed with several logical associations and algo-
rithmic improvements in Section III. In Section IV, the perfor-
mance of the proposed framework is verified by virtual driving
environment simulation and real world scenario test. Finally,
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Fig. 1. The schematic diagram of autonomous driving problem.
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Fig. 2. The kinematic model for motion control.

Section V concludes this paper and gives the future research
plan.

II. MODELING AND FORMULATIONS OF PATH PLANNING AND
MOTION CONTROL

A. Problem Description

In the actual execution of autonomous vehicle, the globally
fixed and locally dynamic information is input in rolling up-
date. The vehicle plans the optimal global path and tracks the
reference path to complete the driving task. In case of sudden
obstacles, the vehicle needs to avoid collision automatically. The
diagram of this problem can be illustrated in Fig. 1.

In the above schematic diagram, the inertial coordinate
system and local coordinate system are represented by O —
Xglobal - Yglobal - Zglobal and o — Lyeh — Yveh — Zvehs IC-
spectively. (Vyen, dver) is the motion state pair of driving velocity
and steering angle, which describes the driving behavior. (2,415,
Ypaths Zpath) denotes the position of the reference path point,
which is targeted for tracking control. Besides, (Zobs, Yobss
Zobs) stands for the position information of fixed obstacles, and
(Tsuddens Ysudden» Zsudden) Stands for the position information
of sudden obstacles. In this paper, the research scene is the level
road, which does not include vertical motion in the analysis.

B. Problem Modeling

Fig. 2 shows the kinematic model for motion control. X-O-Y
and x-o-y stand for the inertial coordinate system and local
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coordinate system, respectively. In the inertial coordinate sys-
tem, the center coordinate of the front axle is represented by (X 7,
Y}), and the center coordinate of the rear axle is represented by
(X, Y;). The yaw angle of the vehicle is denoted by (. In the
local coordinate system, d ; and v, are the steering angle of front
axle and velocity of rear axle center, respectively. / stands for the
wheel base of vehicle, and R denotes the instantaneous turning
radius of the rear axle center.
The velocity of rear axle center is calculated by:

6]

According to the constraints of axles, the kinematic equations
are described by:

{):(fsin(<p+_(5f) ~Yjcos(p+6;) =0

Uy :chosgo—i—Yrsin(p

2
X,sinp —Y,cosp=0 )
The derivative of center position for rear axle can be related
to the driving velocity as follows:

X, = v, cos
Y, =v,singp

3

Besides, the front and rear axles satisfy the following geomet-
rical equations:

{Xf—X,,Jrlcoscp @)

Yy =Y, +1lsing

Therefore, the instantaneous turning radius and yaw velocity
are derived by:

w = ”l—rtanéf

p=w ®
R=1

According to the above equation, the relationship between the
steering angle and the instantaneous turning radius is described

as follows:
l
¢ = arct —
¢ = arctan (R)

Finally, the kinematic model for the motion control can be
described by the following state space equation:

(6)

cos ¢ 0 cos ¢
Y, =| sing |v,+| 0 |w= sin Uy
7 0 1 tandy/L

The collision detection is necessary in the motion control
process of the autonomous vehicle considering fixed obstacles
as well as sudden obstacles. The adaptive three-circle collision
detection model shown in Fig. 3 is designed in this paper.

Assuming that the driving velocity of the target vehicle is O
m/s, the area of collision detection is the base area as shown on
the right in Fig. 3. Based on the geometric center of autonomous
vehicle, three circles are arranged in an array, which cover
the area occupied by this vehicle. Once an obstacle enters the
collision detection area, it is judged that a collision will defi-
nitely occur. Assuming that the target vehicle drives at a certain
velocity, the collision detection area is dynamically adjusted
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Base area for
collision detection

Fig. 3.
vehicle.

The adaptive three-circle collision detection model of autonomous

considering motion factors such as braking distance. The size
of the detection area is determined by calculating the adaptive
radius of circle. The adaptive radius R,qaptive can be calculated
by:

Vini

1 2
Radaptive =Tr+rK- ('Uini X prk — 2 X Qprk,max X tork )
lork =

Abrk,max

(®)
where r represents the base radius of the base area for collision
detection, and « is the weight factor of length. v;,,; and ap,k max
stand for the initial driving velocity and maximum braking
acceleration, respectively. The braking time t;,.;; can be obtained
by vini and ap -k max. If no other object exists in the collision
detection area, the autonomous vehicle is in a safe driving state.

C. Setting of Variables

The hierarchical framework includes the path planning layer
and the motion control layer, and two sets of variables are gen-
erated. In the path planning layer, the state variables are denoted
as Splanning = (xsta'r‘ts Ystarts Ltarget> Ytargets Obcls ObCZ,
Obckfls ObCk), where (mstart’ ystart) € R2 and (xtargeta ytarget)
€ R? stand for the start position and target position respectively,
k € R denotes the number of obstacles, obcy, = {(Zyp. Yope)
l[i=1,2, ...n; (2%, ,y,.) € R?}) represents the collection
of the kth obstacle with plenty of obstacle pixels. Then, the
continuous path planned is denoted as Ppianning = {(Tpath-
f(xpath)) | Tpath € [xpath,min» CEpath,max]; (xpatfu f(xpath)) S
R?}. In the path planning part, the collision detection area is
adjusted to the theoretical maximum and regarded as the area
occupied by the autonomous vehicle. Then, the occupied area
at path position (zpath, fTparn)) is given by Aoccupied(Tpaths
f@patn)) C R?. Furthermore, the passable area is represented
by Apass C R?, while the impassable area is represented by
Aimpass = R? \ Aps5. Finally, the cost function of path planning
is denoted as Jpianning(Splannings Pplanning), and the optimal
path is generated by:

arg min Jplanning (Splanning» Pplanning)
s.t. vJf‘path € [xpath,min7xpath,max] :
Tpath,start — xstart&mpath,start € [zpath,minal‘path,max}

Lpath,target :wtarget&xpath,target S [xpath,mina :Epath.,max}

(xpath,starta f(xpath,start)) = (xsta’rh ystart)
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(l'path,targeta f(xpath,target)) = (xtargetv ytarget)
Aoccupied(xpathv f(xpath)) c Apass
Aoccupied(xpathv f(xpath)) N Aimpass = (Z) (9)

In the motion control layer, the path Ppianning planned by
path planning layer is applied as reference for motion control of
autonomous vehicle. The state variables at time i are represented
by s; = (x4, ¥i, vi, ©;) € S, where (x5, y;) € R? stands for the
position of the vehicle, v; € R stands for the driving velocity,
and ®; € R denotes the yaw angle. The sudden obstacles are
applied as the disturbance for motion control:

Obcs = obes; U _obcsz U---u obes
obcsy, = {(J)chsl, yqbcsl)u =1,2,...,
n; (Iobcszayobcsl) S Rz}ka k= 1727 e 7l

where Obcs represents the set of all sudden obstacles, and each
sudden obstacle consists of a large number of pixels. The control
variables at time i are represented by u; = (a;, ;) € U, where
a; € R denotes the acceleration, and §; € R means the steering
angle. Besides, the update of states is realized using discrete
dynamic formulation as follows:

(10)

Y

where fa; stands for the executive function parameterized by
At. The collision detection area Age:(s;, Radaptive) C R?, the
passable area Ap,ss(s;, Obes) C R?, and the impassable area
Aimpass = R* \ Apqss provide the basis to judge the safety
of motion control. Finally, the optimal control strategies ux is
derived by minimizing the cost function J(s;, wi, Ppianning
Obcs, Radaptive):

Si+1 = fAt (si7 Us Pplanninga Obcsv Radaptive)

u* = argmin J(so.n, Uo:N—1)

SI:N,U0: N1
st.ie {0, N —1}:
Sit1 = fae(Sis Uiy Pplanning, Ob¢s, Radaptive)
Adet(8i, Radaptive) € Apass(si, Obes)

Adet (5i7 Radaptive) N Aimpass(5i7 ObCS) = @
(12)

III. THE HIERARCHICAL PATH PLANNING AND MOTION
CONTROL FRAMEWORK FOR AUTONOMOUS VEHICLE

The planning and control of autonomous driving are closely
related in terms of execution logic. The path planning sys-
tem considering vehicle motion characteristics is the basis of
efficient vehicle control, and the motion control system can
adjust velocity and direction to avoid obstacles in real time
during the driving task planned. Different from the traditional
completely independent planning and control modules scheme,
the collaborative operation of these two parts can ensure smooth
and stable movement of the autonomous vehicle in automatic
driving. The hierarchical framework proposed in this paper
integrates the planning part and control part reasonably, which
makes the system more adaptable to complex driving scenarios
and improves the real-time performance of the system. The
hierarchical framework can optimize these two layers decisions
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Fig. 4.
vehicle.

inreal time to adapt to different driving scenarios. This flexibility
is especially important when dealing with unknown situations
and changing environment. Moreover, the hierarchical design
facilitates the scalability of the framework and makes it easier
to integrate path planning and motion control algorithms.

The structure diagram of the hierarchical framework is shown
in Fig. 4, which describes several logical associations and algo-
rithmic improvements. In this hierarchical framework, the path
planning layer is directly related to the motion control layer.
First of all, the global scenario map is received by the path
planning system and autonomous driving task is determined.
Then, the adaptive scale search is proposed and combined with
the bidirectional heuristic planning algorithm to plan the initial
path rapidly. Afterwards, the initial discrete path is fitted piece-
wise by robust locally weighted regression (RLWR) smoothing
algorithm, and the final global optimal path with smoothness
and continuity will be obtained. Subsequently, the global path
will be transmitted to the self-learning system in motion control
layer for training. Based on the path reference to be tracked, the
heuristic reinforcement learning (HRL) algorithm is applied to
optimize the motion control agent. Then, the forward prediction
conception is introduced into the reinforcement learning system,
and the multi-step predictive control method based on agent
optimized by HRL is proposed. Meanwhile, the local path and
sudden obstacles are input into the control layer in rolling up-
dates. Finally, the motion control strategies containing real-time
obstacle avoidance will be generated.

A. Bidirectional Heuristic Planning Algorithm With Adaptive
Scale Search

For large global maps, the planning efficiency of several
heuristic planning algorithms such as Ax and D+ is still limited
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by large number of nodes searched. In a specific path planning
task, the total number of nodes searched is positively correlated
with planning time. Designing a more reasonable search instead
of the traditional single-step search can effectively reduce the
total number of search nodes and shorten the planning time. In
this paper, the aggressive degree of search is determined by the
nearby environment of the current search node. For example,
the search scale will be set larger if the nearby environment is
an open area. Conversely, the search scale will be set smaller if
some obstacles exist in the nearby environment. Therefore, the
adaptive scale of search is formulated as follows:

Scalemaxa if(dnear > anax)

Scaleyin+ round (7%*1;:;:}@:: x (Scalemax

—Scalemh)) ,if(Rmax > dnea?" > Rmin)
Scalemimif(Rmin Z d/neaT > 0)

Sscale =

(13)
where Scaley,q, and Scale,,;, represent the maximum and
minimum search scales respectively. d,,.q, stands for the dis-
tance from the current search node to the nearest obstacle. Be-
sides, R4 and R,,,;,, are the maximum and minimum detection
radiuses. The round(x) function is used to obtain the integer for
X.

Furthermore, the traditional planning algorithms have the
characteristic of one-direction search, searching from the start
position to the target position. Under the condition of sufficient
computational memory, the bidirectional search can further save
the planning time. Therefore, the adaptive scale search proposed
above will be carried out simultaneously based on the start
position and the target position. When the two search paths
from the start position and the target position meet in the global
map, the global optimal path will be synthesized by the specific
judgment rules. In this research, the heuristic planning functions
of bidirectional search are expressed by:

fs(Ns) = gs(Ns) + hs(Ns)

fr(Nr) = gr(Nr) + hr(Nr)

hS(NS) = \/(st - mtarget)z + \/(yNs - ytarget)2
hT<NT) = \/(xNT - xstart)z + \/(yNT - ystm"t)z

(14)
where fs(Ng) and fr(Np) are heuristic functions of search
from start position and from target position, respectively.
gs(Ng) and gr(N7) denote the corresponding accumulative
path costs at node Ng and node N7, respectively. hg(Ng) is
the Euclidean distance from node Ng to the target position,
and hr(Nt) is the Euclidean distance from node Np to the
start position. The implementation process of the bidirectional
heuristic planning algorithm with adaptive scale search (ABHS)
is described in Table I.

B. Robust Locally Weighted Regression Smoothing

The proposed planning algorithm greatly reduces planning
time, but the obtained path is discrete and the smoothness
can be further optimized. Considering actual path tracking
requirements of the autonomous vehicle, the RLWR method is
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TABLE I
PSEUD-CODE OF PATH PLANNING ALGORITHM

Algorithm: ABHS

1. Initialize openlist_1, closelist 1, Ry and Ruin

2. Initialize openlist_2, closelist_2, Scalenax and Scalemin

3. Put start point in openlist_1 and target point in openlist 2

4. if openlist_1 & openlist 2 is not empty

5. Choose current nodes with highest priority from openlist_1 and
openlist_2

6. if current node_1 meets current node_2 (satisfy judgement rules)

7. Trace the parent nodes from two current nodes progressively

8. Synthesize the path from start to target

9. return path

10. else

11.  Pop current node 1 and current node 2 from openlist 1 and openlist 2
12.  Push current node 1 and current node 2 into closelist 1 and closelist 2
13.  Get the nearest distances d; and d> from current nodes to obstacles

14.  if di> Ryax (d>> Rinax)

15.  Set search step Scate1 = Scalemax (Sscate.2 = Scalemar)

16.  elseif d; < Ruin (d2 < Ruin)

17.  Set search step Scate1 = Scalemin (Sscate,2 = Scalemin)

18. else

19. Sscate,1 = Scalemin + round((ds = Rmin) / (Rmax = Rmin) % (Scalemax -
Scalenin)) (Sscate.2 = Scalemin + round((dz - Rumin) / (Rmax = Ruin) % (Scalemax -
Scalenin)))

20. end

21.  for neighbor nodes with scales Sicae,; and Scate,2:

22. Cost of neighbor node: c(ngh) = g(cur) + c(cur to ngh)

23. if neighbor node in closelist_1 (closelist_2)

24. Skip and choose next neighbor node

25. elseif neighbor node in openlist_1 (openlist_2) & c(ngh) = g(ngh)
26. Skip and choose next neighbor node

27. elseif neighbor node in openlist_1 (openlist 2) & c(ngh) < g(ngh)
28. Update g(ngh) = c(ngh), fingh) = g(ngh) + h(ngh)

29. Set new parent node ngh. parent = cur

30. else

31. Set parent node ngh. parent = cur

32. Calculate g(ngh) = c(ngh), fingh) = g(ngh) + h(ngh)

33. Push the neighbor node into openlist 1 (openlist 2)

34. end

35. end

36. end

37. end

developed to realize path continuity and improve path smooth-
ness. As stated above, the discrete path will be divided into
appropriate intervals for piecewise fitting which satisfies the
properties of functions. The relevant fitting function is expressed
by:

Fritting(x) =Y ja! (15)
=0

where ¢; means the coefficient of jth degree term of n-order
polynomial. To solve all coefficients of the fitting function, the
optimization objective is shown below:

N

Hgnz Ki(z, @) | yi — i il
=0

i=1

(16)

where (z;, y;) stands for the ith original path point. K;(x, x;)
denotes the weight function of distance, formulated by:

Kai(e,a0) = D(E2)

(1=, <1
0, [t] > 1

A7)

D(1)
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where D(f) represents the cubic kernel function, and / is the
metric window size for the kernel. Based on (16), its matrix
form can be expressed by:

min (¥ — XWTK(Y - X0T) (18)

Then, the set of coefficients of n-order polynomial is obtained
by the following equation:

U= (XTKX) 'XTK)Y (19)

To ensure the robustness of fitting, the residual error of fitting
is calculated on the basis of the first locally weighted regression:

ei = Yi — fritting () (20)

The double square kernel function B(¢) is used to obtain the
weight of residual error:

5 = B()

11—, Jt|<1
By < {127,
o={" 5

2L

where 7 is the outlier factor, and s denotes the median of the
absolute value of residual error. Then, K;(x, x;) is multiplied by
the weight of residual error d; to generate the robust distance
weight function as follows:

K. (2, 2;) = 0 x Ki(z, ;) (22)

Afterwards, the process shown in (18) and (19) will be
repeated based on K, (x, x;). Finally, the continuous global

Optima] Path Pplanning = {(x,f(x)) | Ystart :f(xstart); Ytarget
= f(Ttarget); (x, fix)) € R*} will be generated.

C. Heuristic Q-Learning Algorithm

The continuous global path planned in path planning layer
is transmitted to the reinforcement learning system in motion
control layer as training samples. Relying on the ability of
self-learning, the heuristic Q-learning algorithm (HQL) is pro-
posed to optimize the initial motion control agent which contains
path tracking and collision avoidance. The heuristic Q-learning
structure can be divided into Q-learning algorithm and heuristic
experience replay.

Q-learning algorithm has the characteristics of model-free.
The dynamics model of the autonomous vehicle may be affected
by many complex factors, and Q-learning can learn without the
explicit model. Besides, the environment of the autonomous
vehicle is dynamic, complex, and difficult to model in advance.
Q-learning algorithm can make the vehicle adapt to different
driving scenarios by constantly interacting with the environ-
ment. Meanwhile, the decision space of this motion control
problem is large, and Q-learning can effectively deal with this
high-dimensional and continuous action space, and select the
optimal action by learning the value function.

Actually, the motion control can be classified as a sequential
decision process, and the value of implementing specific controls
in specific states can be evaluated. In reinforcement learning
algorithms, the evaluation value is generally represented by the
expectation of future cumulative rewards, assuming that the spe-
cific control is implemented and optimal controls are followed
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thereafter [36]. Consequently, the optimal value function for
control u at state s can be expressed by:

t=ty
V*(s,u) = max F Z Yir(se, ur)|sy, = 8, up = uy "
e
t=to
(23)
where 7* means the follow up optimal policy, and E(x) represents
the expectation function of x. 7y denotes the discount factor which
can balance the reward weights at different steps, and r(s¢, us)
represents the reward function formulated as follows:

T(Sh ut) = kacu : ftra(8t7 Ut Pplanning) + ksaf
: fobs(5t7 Ut, ObCS, Radaptive)

+ krap : fvel(Sty U, Umax) + kcom, : fdrz' (uf)
(24)

where kqcy, Esafs Erap and kcop, stand for the accuracy factor,
safety factor, rapidity factor and comfort factor, respectively.
ftra> fobss fver and fg.; represent the tracking error function,
obstacle avoidance function, velocity evaluation function and
motion comfort function, respectively.

According to the expression of the optimal value function
V*(s, u), Q matrix (QM) with strong approximation ability is
applied to approximates the optimal value function by constant
training. The relevant function based on RL is described by:

Q" (s¢) = Hie}X(T(Su ug) +7Q" (St41)) (25)

where s; and s;y; denote the current and next states respec-
tively. u; denotes the currently executed control action. Then,
the optimal control strategy 7*(s;) is derived by the following
formula:

T (s¢) = arg rr;ax(?“(st, ug) +vQ" (s141)) (26)
t
By solving the single-step optimal motion control strategy
iteratively, the sequence of optimal control strategies will be
derived. Besides, the target and optimal value functions of
motion control are reformulated as follows:

Q(st,ut) = (s, ue) + ’Y%li)l{Q(stJrlauthl;ft)
Q" (st,ut) = Hq{gX(T(St,ut) + VIE%Q(SHMUHU&))
(27)

where &, represents the set of weights in Q matrix. The update
of Q matrix is expressed by:

Qst,ue; &) + Q(se,ues &) + Q[T(Staut)

+7r£i>l(Q(5t+17Ut+l§§t) = Qs w; &) (28)

where « and y stand for the learning rate and discount factor,
respectively. The update of Q matrix is realized by the update of
weights &;, and the perfection of weights indicates the perfection
of Q matrix.

As another important part of reinforcement learning struc-
ture, the experience replay determines the training efficiency
of reinforcement learning system. The training experiences are
temporarily stored in the replay buffer, then they are sampled
in batches to optimize the Q matrix. In previous research, the
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original experience replay (ER) selects samples randomly and
ignores differences in the importance of different samples. To
address this weakness, the prioritized experience replay (PER)
is proposed, which selects samples according to the priorities
of different samples. However, PER still involves the sampling
probability, which weakens the pertinence of experience re-
play to a particular training sample. Therefore, the heuristic
experience replay (HER) is developed to match the Q-learning
algorithm and improve the training efficiency. In the reply buffer,
some of the more valuable samples need to be selected more
frequently for the matrix training, which can speed up the
training and optimization. Generally, the training value of the
sample is positively correlated with its temporal difference (TD)
error, and larger TD error indicates more obvious training effect.
TD error is an important index in RL system, quantifying the
disparity between the target and actual value functions for a
specific experience sample. Based on the expression of TD error,
the heuristic function H(s;, u;) is formulated by:

H(St, ’U,t) = K(St, Ut) . 71])(5757 Ut) = K" |QTa'r‘get(St’ ’ll,t)
_6214ctual(8t7 ut)|
QTI (54, up) = (s, ur) + 7y max Q(st41,u115&)
41
QACtual(St,Ut) = Q(St,ut;ft)
(29)
where k(s¢, ut) represents the training attenuation factor, which

decreases as training times of the specific sample. Afterwards,
the sampling process of HER is performed as follows:

(Snl’u”ll) = argn%aX{H(Stvutﬂt = [lvnbuffer]}

(Sny» Un,) = arg max{H (s, u¢)|t = [1, Npufer|&t # 1}
ny

(Snys Un,y) =arg H;ax{H(st, u)|t=[1, Npusfer)&t # ni,no }

(Sn, s Un, ) = arg max {H(st7ut)|t = [1, npurfer|&t # 0y,

77,27...,77,»”,1}
Btraining - {(sm 5 unl)a (Sn27 unz)a (Sn3 ) un3)7' ) (Snn ’ U”ﬂn)}
(30)
where By qining denotes the sampling batch of these selected
experiences. n and np,f e represent the number of samples
for the matrix training and the size of replay buffer, respectively.
Besides, in order to pursue the pertinence of training while taking
into account the comprehensiveness of training, the prioritized
experience replay is also used at intervals to assist the HER
method. In the sampling process of PER, the probability of each
experience sampled is described by:

(H (st ur) +0)"
Zzi?buffcr (H (sg,ug) + O')P«

e = (€19}
where o stands for the priority factor, and o is the division
protection constant.

Furthermore, the generalized correlation coefficient (GCC) is
introduced into HQL to evaluate the completeness of Q matrix
training. The working mechanism of GCC is to evaluate the
similarity between the matrix at current time node and the matrix
at last time node. The training of the matrix is judged complete
when the value of GCC is equal to 1. The expression of GCC p
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is formulated by:

_ tr[COV(chra Qla)] 32
{trfeov(Qeur)] x trleov(Qua)l}'"? Y

where ).,,,- and Q;, represent the Q matrices of current and last
time nodes. tr(X) represents the trace function of matrix X, and
cov() is the covariance matrix as follows:

p(chrv Qla)

[Qeur—E(Qeur)]” X[Qeur—E(Qeur)]

COV(Qmm’) - Nnode—1
cov(Qra) = [Qza7E(Qz:l)j:di[f?1m*E(Qla)] (33)

E{[Qeur—E(Qeur)]” x[Q1a—E(Qua
cov(Qeur, Qua) = {[Q @ )1] x[Q (Qua)l}
where E(X) denotes the expectation function of matrix X, and
Nnode 18 the time node number.

D. Multi-Step Predictive Control Based on HQL Agent

The HQL agent can be directly used in the motion control,
which generates the single step action based on the state. How-
ever, as described in Section I, the optimal solution of control
sequence is often derived in a long horizon, and the single-step
solution of HQL is generally suboptimal. To enhance control
performance of HQL even further, the multi-step predictive
control (MSPC) method is proposed and combined with HQL
algorithm in this paper.

In the process of MSPC, the future horizon is built on the
decision system of HQL. Specially, all possible control strategies
are traversed for the first control action in the future prediction
horizon. Then, the proposed HQL method iteratively generates
follow-up control strategies for multiple steps in the whole pre-
diction horizon starting from the current state. The cumulative
rewards for diverse control sequences derived will be evaluated
and tested, and the first action from sequence with the highest
cumulative reward is determined for the current-state motion
control.

The cumulative reward function of the future horizon can be
expressed:

sk ), = Qs ur) + S350 Q(s1) = Qsk, uy)
+ Z:C;L:-il Aj max Q(si, ui)
Si+1 = fAt(5i7 Ug s Pplanninga Ob657 Radaptive)v
i€k, k+h,—1]

(34)
where h,, is the size of the prediction horizon. A; denotes the pre-
diction attenuation factor negatively correlated with prediction
progress, and fa; stands for the executive function parameter-
ized by At. Based on the above cumulative reward function, the
optimal motion control strategy on state s is obtained by the
following formula:

u*(sy) = argmax J(sg,uy), = argmax {Q(sk,uk)
Uk r U

k+hy

+ Z Ai HluaXQ(fAt(Si—l7ui—l)aui):| (35

i=k+1
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u, =argmax Q(s,,u,;<,)
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Fig. 5.

TABLE II
MAIN PARAMETERS OF HQL-MSPC METHOD

Names Values
Learning rate o 0.955
Discount factor y 0.25
Initial training attenuation factor x 1.0
Size of sampling batch n 23
Priority factor 0.75
Division protection constant o 0.0001
Replay buffer capacity N 5000
Initial exploration factor & 0.6
Exploration attenuation rate v 0.98
Length of prediction horizon 4, 6
Initial prediction attenuation factor 4 0.5

The implementation process of the multiple steps predic-
tive control is combined with well-trained HQL agent instead
of other optimization algorithms and complex motion control
model. Therefore, the proposed method has the sufficient solu-
tion speed and the ability of real time application. The complete
framework of the multi-step predictive control based on HQL
agent (HQL-MSPC) for the motion control problem is illustrated
in Fig. 5. In addition, the important parameters for HQL-MSPC
are listed in Table II.

IV. THE RESULTS VALIDATION AND ANALYSIS

In order to validate and evaluate the effectiveness of the
proposed hierarchical framework for autonomous driving, some

The complete framework of the multi-step predictive control based on HQL agent.

existing classical algorithms and methods are used for com-
parisons. The path planning layer and motion control layer are
analyzed in subsections. In the following statement, the bidirec-
tional heuristic planning with adaptive scale search incorporated
with RLWR algorithm is called ABHS-RLWR, and the multi-
step predictive control method based on heuristic Q-learning
algorithm is called HQL-MSPC.

In this research, the numerical simulation, virtual driving
simulation and experiment test collected from the real world
scenario are carried out. The numerical simulation was com-
pleted in the workstation equipped with Matlab, and the con-
struction of the virtual driving environment was realized based
on Simulink and Driving Scenario Designer toolbox. The real
vehicle collecting the real world scenario was equipped with
global positioning system (GPS) and simultaneous localization
and mapping (SLAM).

A. Validation of Path Planning Results

In this subsection, Dijkstra algorithm, A star (Ax) algorithm
proposed in [14] and fast A star algorithm proposed in [15]
are compared with the proposed ABHS-RLWR algorithm in
terms of optimality, rapidity, and smoothness. According to the
received global map containing obstacles, the paths planned by
these four algorithms are illustrated in Fig. 6. The constructed
external environment consists of several obstacles and a long
tunnel as shown in the blue ellipse. The red star and the green
diamond represent the start and target positions, respectively.
The area covered in black belongs to the obstacles. As Dijkstra
algorithm is used for the benchmark, the trajectory of the path
planned is the comparison reference. As can be seen, the path tra-
jectory of ABHS-RLWR algorithm is similar to that of Dijkstra
algorithm, which indicates that the proposed ABHS is feasible
and close to optimal. The path of the proposed algorithm is
smoother and more continuous than the other three paths, which
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Fig. 6. The global paths planned by these four algorithms.
TABLE III
KEY INDICATORS OF PATHS PLANNED BY FOUR ALGORITHMS
. Maximum
. Total Planning .
Algorithms . Cumulative
Length (m) Time (s)
Curvature

Dijkstra 582.41 17.39 6.86
A star 585.59 10.73 8.29
Fast A star 616.87 6.55 8.72
ABHS-RLWR 583.50 5.36 1.60

proves the effectiveness of the RLWR. Besides, the path planned
by the fast Ax algorithm is completely different from the other
paths. This is because the fast A algorithm focuses on the speed
of planning rather than the length of the path, and it takes less
planning time compared with Dijkstra algorithm and traditional
Ax algorithm.

To further evaluate the algorithm, some key indicators are
compared in Table III. Obviously, the length of path derived
by ABHS-RLWR is shorter than those of paths planned by
traditional Ax algorithm and fast Ax algorithm, and close to the
shortest length from Dijkstra. The planning time of the proposed
ABHS-RLWR algorithm is the least. Specially, the proposed
algorithm takes much less calculation time than Dijkstra algo-
rithm while ensuring the planning optimality. Although fast Ax
algorithm focuses heavily on the planning speed, the proposed
ABHS-RLWR algorithm is still faster in path planning, which
benefits from the bidirectional heuristic conception and adaptive
scale search. Besides, the cumulative curvature is introduced to
evaluate smoothness of different paths, with smaller curvature
values representing higher smoothness. Apparently, the cuamula-
tive curvature of ABHS-RLWR algorithm is much smaller than
those of other algorithms, further proving the effectiveness of
RLWR. Therefore, the effects of the ABHS-RLWR algorithm
are verified.

Second scenario is created for the adaptability verification
of the proposed planning algorithm, which contains several

Dijkstra Algorithm
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Fig. 7. The global paths planned by these four algorithms for adaptability

verification.

TABLE IV
KEY INDICATORS OF PATHS PLANNED FOR ADAPTABILITY VERIFICATION

. Maximum
. Total Planning .
Algorithms . Cumulative
Length (m) Time (s)
Curvature

Dijkstra 447.39 13.95 4.15
A star 449.56 8.66 6.44
Fast A star 502.91 5.02 2.72
ABHS-RLWR 44797 3.96 1.97

obstacles and two tunnels. For the new global map, the paths
derived by these four algorithms are illustrated in Fig. 7. The
trajectory of ABHS-RLWR is still similar to that of Dijkstra
algorithm. The path of the proposed algorithm is still smoother
and more continuous than the other three paths. Furthermore, the
relevant results of key indicators for four planning algorithms
are shown in Table IV. The length of ABHS-RLWR algorithm
still approaches the shortest length from Dijkstra, and shorter
than those of paths planned by traditional Ax algorithm and fast
Ax algorithm. Besides, the planning time of the proposed algo-
rithm is the least, and the cumulative curvature of the proposed
algorithm is also the smallest. Therefore, the planning result of
this scenario is consistent with results of first scenario.

B. Validation of Motion Control Results

The motion control part contains the global path tracking and
local collision avoidance. Firstly, the vehicle is controlled to
track the path from the start position to the target position after
receiving the global path. During the process of path tracking,
the real-time obstacle avoidance strategy is generated while
receiving local external environment changes in rolling update.
In this subsection, the pure pursuit method with lattice planner
(PP-LP) proposed in [20], the classical Q-learning method (QL)
proposed in [37] and the heuristic Q-learning method (HQL) are
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Fig.9. The structure diagram of virtual environment simulation and platform.

compared with the proposed HQL-MSPC method in terms of
safety, accuracy, comfort and rapidity. Based on the global map
shown in Fig. 6, the dynamic scenario is constructed as shown
in Fig. 8. The sudden obstacles block the planned path, and the
autonomous vehicle needs to avoid these obstacles locally.

To evaluate the motion control performance of different
methods, the virtual driving environment platform is built and
the relevant simulation is carried out. The structure of virtual
environment simulation and platform is shown in Fig. 9, which
is based on the hierarchical framework of path generation and
motion control shown in Fig. 4.

The motion control results containing path tracking and ob-
stacles avoidance are illustrated in Fig. 10. Obviously, all four
control policies complete path tracking and obstacles avoidance
successfully. From the local magnification view of the blue
rectangles, the tracking accuracy of the proposed HQL-MSPC
method is the highest compared with other three methods in the
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Fig. 10. The motion control results of these four control methods.
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Fig. 11.  The curves of driving velocities for the vehicle controlled by different

methods.

whole motion control process. In the relatively small turning
radius area, the tracking error of the PP-LP method with simple
tracking rules is the largest. The better tracking performance of
the proposed method than the HQL method proves the effective-
ness of the multi-step predictive control (MSPC). Besides, the
autonomous vehicle controlled by the HQL-MSPC method can
safely avoid sudden obstacles and quickly return to the reference
path. Its local collision avoidance trajectory is smooth as shown
in the orange ellipse. Therefore, applying the future horizon
decision in the RL solution system to replace single step decision
is feasible and effective.

Fig. 11 illustrates driving velocities of the vehicle controlled
by four methods. In the process of PP-LP, the target velocity
is controlled at 2 m/s by PID method to ensure better motion
control effect. The other three learning-based methods control
the vehicle with a minimum velocity set at 2 m/s. As we can
see, the autonomous vehicle drives faster in the part without
sudden obstacles, while it slows down to avoid collision in the
part with sudden obstacles. In particular, the driving velocity of
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Fig. 13.  The variation curves of generalized correlation coefficients for dif-
ferent methods.

HQL-MSPC method in the open area is the fastest compared
with other methods, as shown in yellow rectangles. Meanwhile,
the autonomous vehicle with HQL-MSPC controller takes the
shortest time (221 seconds) to complete the whole motion con-
trol task, which proves the rapidity of the proposed method. Be-
sides, Fig. 12 shows the steering angular speeds of four methods.
The angular speed of the vehicle with PP-LP controller fluctuates
sharply, which is between —30 and 30 degrees. The angular
speed of the vehicle with HQL-MSPC controller is in the interval
[—8°, 8°], which avoids the large angle steering. Therefore, the
driving comfort of the proposed method is guaranteed.
Considering the requirements of practical applications, eval-
uating the training efficiency of three learning-based methods
is necessary. The variation curves of generalized correlation
coefficients of the three methods are shown in Fig. 13. Obviously,
the correlation coefficients of the three methods converge to
1, which means that the three training processes are finally
perfected. Specially, the matrix training of the HQL-MSPC
method and HQL method is completed at the 5401th episode and
the 5434th episode, respectively. The training speed of these two
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TABLE V
THE RESULTS OF PATH TRACKING DERIVED BY FOUR METHODS

Average Maximum Training Time /
Methods Tracking Tracking Error ~ Calculation Time
Error (m) (m) (s)
PP-LP 1.05 2.35 -/0.34
Q-learning 0.46 1.16 871.60/0.17
HQL 0.43 1.12 532.94/0.16
HQL-MSPC 0.23 0.63 529.35/0.26

heuristic learning-based methods is much faster than that of the
classical Q-learning method, which indicates that the heuristic
experience replay enhances the training significantly.

To further evaluate the training efficiency, Fig. 14 shows the
variation curves of value function errors of the three methods.
As we can see, the errors of the HQL-MSPC and HQL still
approach zero faster than classical Q-learning method. Besides,
the episode nodes representing the perfect training are consistent
with the results in Fig. 13. Therefore, the training effectiveness
of HQL-MSPC is proved.

The performance results of path tracking strategies derived by
four motion control methods are listed in Table V. The average
tracking error of the HQL-MSPC method is the smallest, while
the average tracking error of PP-LP method is the largest. The
maximum tracking error of the proposed method is also much
smaller than errors of other methods. The above comparisons
are consistent with the results in Fig. 10, which further proves
the best path tracking performance of the HQL-MSPC method.
Besides, the training time of proposed method is much shorter
than that of the classical Q-learning method, and its calculation
time is 0.26 s, which has the potential for the motion control in
real-world applications.

Furthermore, the performance results of collision avoidance
strategies solved by four motion control methods are listed in
Table VI. The extra avoidance distance of HQL-MSPC is the
shortest, which implies the vehicle avoids obstacles and contin-
ues to track, minimizing the distance traveled. The velocity fluc-
tuation in collision avoidance process of the proposed method
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TABLE VI
THE RESULTS OF COLLISION AVOIDANCE DERIVED BY FOUR METHODS
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TABLE VII
THE RESULTS OF PATH TRACKING FOR ADAPTABILITY VALIDATION

Extra Velocity Calculation Average Maximum Training Time
Methods Avoidance Fluctuation Time (s) Methods Tracking Tracking / Calculation
Distance (m) (m/s) Error (m) Error (m) Time (s)
PP-LP 29.97 - 0.57 PP-LP 1.01 2.17 -/0.35
Q-learning 21.15 1.26 0.16 Q-learning 0.43 1.28 728.33/0.16
HQL 20.29 0.72 0.16 HQL 0.42 1.26 414.26/0.17
HQL-MSPC 17.31 0.61 0.25 O-HQL-MSPC 0.24 0.67 -/0.25
N-HQL-MSPC 0.19 0.59 409.85/0.25
14 — T -
— Without sudden obstacles
----- With sudden obstacles
12 ‘ The global map shown in Fig. 7 is also updated to the dynamic
o scenario with obstacles suddenly appearing, and applied for the
£ adaptability verification of proposed motion control method.
g 8 Specially, two versions of the HQL-MSPC method are used
2. P for comparison, which are new version (N-HQL-MSPC) and
: HaL-apcibered original version (O-HQL-MSPC). It should be noted that these
4 . :- ) two versions of the method use the same algorithmic logic, but
, ‘ | are trained by different scenario samples.
\/\_‘ S In the implementation of the N-HQL-MSPC method, the HQL
o o A&WM’;W agent is trained by samples from the second scenario shown in
" Driving Process Fig. 7. Differently, in the implementation of the O-HQL-MSPC
method, the HQL agent is trained by samples from the first
Fig. 15.  The tracking error and performance in two comparison scenarios. scenario shown in Fig. 8. Then, thiese two trained agents are

is also the least compared with other methods, which ensures
the stability of avoidance driving. Besides, its calculation time is
0.25 s, which is also potential for several real-world applications.
Therefore, the accuracy, safety, comfort and rapidity of the
proposed HQL-MSPC method are demonstrated.

To further demonstrate the flexible adaptation of the pro-
posed HQL-MSPC method in collaborative path tracking and
obstacles avoidance, another set of comparison experiment is
presented more intuitively. In this experiment, the scenario
without sudden obstacles shown in Fig. 6 and the dynamic
scenario with obstacles suddenly appearing shown in Fig. 8
are applied as the comparative analysis pairs. The impact of
sudden obstacles on the tracking accuracy of the autonomous
vehicle will more intuitively show the flexible adaptability of
the proposed method. The tracking error variations in these two
driving scenarios are shown in Fig. 15. It can be found that
the autonomous vehicle controlled by the proposed method can
always track the reference path with very low tracking error
in the scenario without sudden obstacles. On the other hand,
when the autonomous vehicle is driving in the scenario with
sudden obstacles, it will stay away from the reference path only
in the process of locally avoiding the obstacles, and then quickly
return to the reference path after bypassing the obstacles. In the
rest part of driving process, the tracking error of the autonomous
vehicle is consistent with that in the scenarios without sudden
obstacles. The above results and analysis prove that the proposed
method can achieve effective collaboration between path track-
ing and obstacle avoidance. Meanwhile, the proposed method
has the flexible adaptation to different scenarios.

combined with the MSPC respectively and used directly for the
motion control solution in the second scenario. The difference
in control results between these two methods determines the
adaptability of the well-trained Q matrix.

The motion control performance containing path tracking
and obstacles avoidance for different methods are illustrated in
Fig. 16.

Obviously, the O-HQL-MSPC method still completes path
tracking and obstacles avoidance efficiently in the new sce-
nario. The tracking accuracies of the O-HQL-MSPC and the
N-HQL-MSPC method are higher than those of the other three
methods. Besides, the local collision avoidance trajectories of
these two HQL-MSPC methods are smooth enough as shown in
blue ellipses.

Table VII shows the performance results of path tracking
derived by different methods. The average and maximum track-
ing errors of the O-HQL-MSPC method are close to those
of the N-HQL-MSPC method, and much smaller than those
of other methods. In particular, the agent of O-HQL-MSPC
method has been trained well in the previous scenario, and
it can be applied directly in the new scenario without fur-
ther training. Its calculation time is 0.25 s, which is possi-
ble for real-time applications. Furthermore, Table VIII shows
the performance results of collision avoidance derived by dif-
ferent methods. It is observed that the extra avoidance dis-
tance and the velocity fluctuation in collision avoidance pro-
cess of the O-HQL-MSPC method are also close to those of
the N-HQL-MSPC method. Its calculation time still satisfies
the requirement of the real-time motion control. Finally, the
adaptability of the proposed framework in motion control is
demonstrated.
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Fig. 16.  The motion control performance of these five control methods for adaptability validation.

TABLE VIII
THE RESULTS OF COLLISION AVOIDANCE FOR ADAPTABILITY VALIDATION

Extra Velocity .
. . Calculation
Methods Avoidance Fluctuation .
. Time (s)
Distance (m) (m/s)

PP-LP 34.19 - 0.59
Q-learning 22.06 1.34 0.15
HQL 21.58 0.92 0.16
0O-HQL-MSPC 18.37 0.78 0.25
N-HQL-MSPC 17.95 0.60 0.24

C. Validation of Path Planning and Motion Control in the
Real World Scenario

To further verify the performance of hierarchical framework,
a more complex real world scenario was applied. As mentioned
above, the real-world scenario was collected by a real vehicle
in the Innovation Center of BIT. Fig. 17 shows the global
positioning system (GPS) based satellite map and synchronous
positioning and mapping (SLAM) based points cloud map of
the collected scenario. For this autonomous driving task, the
path planning layer is executed in this fixed scenario and the
global path is formed. The autonomous vehicle is required to
efficiently track the global path from start position to temporary
target position, and then from temporary target position to final
target position. Besides, in the process of motion control, several
dynamic obstacles are constructed as uncertain disturbance of
external environment, which are also illustrated in Fig. 17. When

Fig. 17.  The satellite map, points cloud map and dynamic obstacles informa-
tion for real world scenario.

the autonomous vehicle reaches the specific area, the corre-
sponding dynamic obstacles will be triggered to start moving,
and the vehicle needs to avoid the obstacles safely and quickly,
then return to the reference path to continue driving.

In the evaluation of path planning performance, the Dijkstra
algorithm and the fast Ax algorithm are used as results compar-
ison with the proposed framework. The global paths planned by
different algorithm are shown in Fig. 18. Obviously, these three
algorithms successfully complete two stages of path planning
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Fig. 18.  The global paths of three algorithms for real world scenario.
TABLE IX
KEY INDICATORS OF PATHS PLANNED AND RELATIVE INCREASES IN REAL
WORLD SCENARIO

Total Length Calculation Max1mqm

. Cumulative

Algorithms (m) Time (s) Curvature
(Relative Increase (%))

Dijkstra 790.13 2231 3.95
Algorithm ®) (238.5%) (51.3%)
Fast A* 799.64 8.02 5.36
Algorithm (1.2%) (21.7%) (105.4%)
ABHS-RLWR 792.98 6.59 2.61

Algorithm (0.4%) (-) (-)

and generate paths with similar trends. Especially, the path of
the ABHS-RLWR algorithm is smoother at quarter turn section.
Furthermore, Table IX shows the key indicators of paths planned
and relative increases in real world scenario. It is evident that
the length of ABHS-RLWR algorithm approaches the short-
est length from Dijkstra which is benchmark. Meanwhile, the
proposed algorithm is much better than Dijkstra algorithm for
the index of planning rapidity and smoothness. Besides, the
proposed algorithm outperforms the fast Ax algorithm in total
length, calculation time and maximum cumulative curvature.
Therefore, the ABHS-RLWR algorithm is significantly superior
to other two algorithms.

In the evaluation of motion control performance, the Q-
learning method and the HQL method are used as results com-
parison with the proposed framework. The path tracking and
dynamic collision avoidance trajectories of different methods
are illustrated in Fig. 19. As can be seen, the autonomous vehicle
equipped with three control methods successfully complete the
motion control task, including global path tracking and local
obstacle avoidance. From the local motion trajectories in the
orange rectangles, it can be found that the proposed HQL-MSPC
method has the highest path tracking accuracy, and the tracking
performance is excellent in both the straight road section and
the turning section. The tracking accuracy of HQL method is
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scenario.

The motion trajectories controlled by three methods for real world

TABLE X
THE RESULTS OF PATH TRACKING GENERATED IN REAL WORLD SCENARIO

Average Maximum .
. . Average Driving
Methods Tracking Tracking Error .
Velocity (m/s)
Error (m) (m)
Q-learning 0.62 2.17 7.55
HQL 0.51 1.51 7.86
HQL-MSPC 0.18 0.50 9.23
TABLE XI
THE RESULTS OF COLLISION AVOIDANCE GENERATED IN REAL WORLD
SCENARIO
Extra Velocity .
X . Calculation
Methods Avoidance Fluctuation i
. Time (s)
Distance (m) (m/s)
Q-learning 3541 1.49 0.17
HQL 33.79 0.80 0.17
HQL-MSPC 26.58 0.71 0.23

better than that of Q-learning method in specific road sections,
which also reflects the effectiveness of heuristic experience
replay in optimization system. Besides, from the trajectories
of the local obstacle avoidance part, it can be found that the
vehicle controlled by the HQL-MSPC method can smoothly and
quickly complete the dynamic obstacle avoidance and return to
the reference path with the shortest extra obstacle avoidance
distance.

The results of path tracking generated by three control meth-
ods for real world scenario are described in Table X. In numer-
ical terms, the tracking error of the vehicle equipped with the
HQL-MSPC method is much smaller than that of the other two
methods, and its average driving velocity is the fastest, which
indicates that the proposed method is superior to the other two
methods in terms of tracking accuracy and rapidity.

Moreover, the results of collision avoidance generated by
three control methods for real world scenario are listed in
Table XI. The extra avoidance distance of HQL-MSPC method is
the shortest, which is consistent with the discussion of Fig. 19.
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The proposed method realizes the least extra mileage cost to
avoid dynamic obstacles maintaining the fastest average driving
velocity. Meanwhile, in the process of collision avoidance, the
velocity fluctuation of the proposed method is also smaller
than that of other two methods, which ensures the comfort of
obstacle-avoiding driving. Therefore, the HQL-MSPC method
achieves better effectiveness in accuracy, safety, rapidity and
comfort.

Finally, the performance of hierarchical framework is demon-
strated in the real world scenario.

V. CONCLUSION AND RESEARCH PLAN

In this research, the novel hierarchical framework consisting
of path planning and motion control of the autonomous vehicle
in non-specific scenarios is proposed with several logical as-
sociations and algorithmic improvements. In the path planning
layer, the bidirectional heuristic planning with adaptive scale
search is designed and incorporated with the robust locally
weighted regression algorithm to generate the optimal global
path. In the motion control layer, the multi-step predictive
control method based on the heuristic Q-learning algorithm is
proposed to improve the effects of the motion control. The hier-
archical framework is proved by the virtual driving environment
simulation and real world scenario test. It can be concluded
that the proposed framework for autonomous driving achieves
better performance in both path planning and motion control
compared to several existing algorithms and methods. In the re-
sults analysis of path planning part, the rapidity, smoothness and
optimality are validated. In the results analysis of motion control
part, the safety, accuracy, comfort and rapidity are validated.
Furthermore, the adaptability of framework is demonstrated in
another autonomous driving scenario.

In the next research plan, the hierarchical framework will be
optimized by more non-specific scenarios, then be applied to the
real vehicle and real-life experiment.

REFERENCES

[1] A. Haydari and Y. Yilmaz, “Deep reinforcement learning for intelligent
transportation systems: A survey,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 1, pp. 11-32, Jan. 2022.

M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. &, pp. 3152-3168, Aug. 2020.

Y. Huang et al., “A motion planning and tracking framework for au-
tonomous vehicles based on artificial potential field elaborated resis-
tance network approach,” IEEE Trans. Ind. Electron., vol. 67, no. 2,
pp. 1376-1386, Feb. 2020.

S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 2, pp. 712-733, Feb. 2021.

L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826—1848, May 2020.

C. Yuan, G. Liu, W. Zhang, and X. Pan, “An efficient RRT cache method
in dynamic environments for path planning,” Robot. Auton. Syst., vol. 131,
2020, Art. no. 103595.

K. Cao, Q. Cheng, S. Gao, Y. Chen, and C. Chen, “Improved PRM for
path planning in narrow passages,” in Proc. IEEE Int. Conf. Mechatron.
Automat., 2019, pp. 45-50.

L. Zhang, Y. Zhang, and Y. Li, “Mobile robot path planning based on
improved localized particle swarm optimization,” I[EEE Sensors J., vol. 21,
no. 5, pp. 6962-6972, Mar. 2021.

(2]

(3]

[4]

(5]

(6]

(71

(8]

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 6, JUNE 2025

[9] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm based ap-
proach for autonomous mobile robot path planning,” Procedia Comput.
Sci., vol. 127, pp. 180-189, 2018.

W. Xu, Q. Wang, and J. M. Dolan, “Autonomous vehicle motion plan-
ning via recurrent spline optimization,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 7730-7736.

F. Bounini, D. Gingras, H. Pollart, and D. Gruyer, “Modified artificial
potential field method for online path planning applications,” in Proc.
1EEE Intell. Veh. Symp., 2017, pp. 180-185.

W. Siming, Z. Tiantian, and L. Weijie, “Mobile robot path planning based
on improved artificial potential field method,” in Proc. IEEE Int. Conf.
Intell. Robotic Control Eng., 2018, pp. 29-33.

M. Luo, X. Hou, and J. Yang, “Surface optimal path planning using an
extended Dijkstra algorithm,” IEEE Access, vol. 8, pp. 147827-147838,
2020.

E. Shang, B. Dai, Y. Nie, Q. Zhu, L. Xiao, and D. Zhao, “An improved
A-star based path planning algorithm for autonomous land vehicles,” Int.
J. Adv. Robot. Syst., vol. 17, no. 5, pp. 1-13, 2020.

L. Liu et al., “Global dynamic path planning fusion algorithm combining
jump-Ax algorithm and dynamic window approach,” IEEE Access, vol. 9,
pp. 19632-19638, 2021.

H. Huang et al., “Dynamic path planning based on improved D= algorithms
of Gaode map,” in Proc. IEEE 3rd Inf. Technol., Netw., Electron. Automat.
Control Conf., 2019, pp. 1121-1124.

I. Maurovi¢, M. Seder, K. Lenac, and I. Petrovi¢, “Path planning for
active SLAM based on the Dx algorithm with negative edge weights,”
IEEE Trans. Syst., Man, Cybern.:, Syst., vol. 48, no. 8, pp. 1321-1331,
Aug. 2018.

Y. Pan, X. Li, and H. Yu, “Efficient PID tracking control of robotic
manipulators driven by compliant actuators,” IEEE Trans. Control Syst.
Technol., vol. 27, no. 2, pp. 915-922, Mar. 2019.

G. Han, W. Fu, W. Wang, and Z. Wu, “The lateral tracking control for
the intelligent vehicle based on adaptive PID neural network,” Sensors,
vol. 17, no. 6, 2017, Art. no. 1244.

W.-J. Wang, T.-M. Hsu, and T.-S. Wu, “The improved pure pursuit algo-
rithm for autonomous driving advanced system,” in Proc. IEEE 10th Int.
Workshop Comput. Intell. Appl., 2017, pp. 33-38.

Y. Huang, Z. Tian, Q. Jiang, and J. Xu, “Path tracking based on improved
pure pursuit model and PID,” in Proc. IEEE 2nd Int. Conf. Civil Aviation
Saf. Inf. Technol., 2020, pp. 359-364.

S. Xu and H. Peng, “Design, analysis, and experiments of preview path
tracking control for autonomous vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 1, pp. 48-58, Jan. 2020.

F. Eiras, M. Hawasly, S. Albrecht, and S. Ramamoorthy, “A two-stage
optimization-based motion planner for safe urban driving,” IEEE Trans.
Robot., vol. 38, no. 2, pp. 822-834, Apr. 2022.

L. Tang, F. Yan, B. Zou, K. Wang, and C. Lv, “An improved kinematic
model predictive control for high-speed path tracking of autonomous
vehicles,” IEEE Access, vol. 8, pp. 51400-51413, 2020.

A. Muraleedharan, H. Okuda, and T. Suzuki, “Real-time implementation
of randomized model predictive control for autonomous driving,” IEEE
Trans. Intell. Veh., vol. 7, no. 1, pp. 11-20, Mar. 2022.

F. Gao, Y. Han, and D. Dang, “Balancing accuracy and efficiency: Fast
motion planning based on nonlinear model predictive control,” in Proc.
5th CAA Int. Conf. Veh. Control Intell., 2021, pp. 1-6.

Y. Shan, B. Zheng, L. Chen, L. Chen, and D. Chen, “A reinforce-
ment learning-based adaptive path tracking approach for autonomous
driving,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 10581-10595,
Oct. 2020.

V. Behzadan and A. Munir, “Adversarial reinforcement learning frame-
work for benchmarking collision avoidance mechanisms in autonomous
vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 13, no. 2, pp. 236-241,
Summer 2021.

L. Ding, S. Li, H. Gao, C. Chen, and Z. Deng, “Adaptive partial reinforce-
ment learning neural network-based tracking control for wheeled mobile
robotic systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 7,
pp. 2512-2523, Jul. 2020.

L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao, “Safe
reinforcement learning with stability guarantee for motion planning of
autonomous vehicles,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 12, pp. 5435-5444, Dec. 2021.

X. Wang, H. Krasowski, and M. Althoff, “CommonRoad-RL: A con-
figurable reinforcement learning environment for motion planning of
autonomous vehicles,” in Proc. IEEE Int. Intell. Transp. Syst. Conf., 2021,
pp. 466-472.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2025 at 14:59:36 UTC from IEEE Xplore. Restrictions apply.



DU et al.: HIERARCHICAL PATH PLANNING AND MOTION CONTROL FRAMEWORK

[32]

[33]

[34]

[35]

[36]

[37]

i}

-

S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740-759, Feb. 2022.

Z. He, L. Dong, C. Sun, and J. Wang, “Asynchronous multithreading
reinforcement-learning-based path planning and tracking for unmanned
underwater vehicle,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 52, no. 5,
pp. 2757-2769, May 2022, doi: 10.1109/TSMC.2021.3050960.

Y. Lu, X. Xu, X. Zhang, L. Qian, and X. Zhou, “Hierarchical reinforce-
ment learning for autonomous decision making and motion planning of
intelligent vehicles,” IEEE Access, vol. 8, pp. 209776-209789, 2020.

M. Chen et al., “FaSTrack: A modular framework for real-time motion
planning and guaranteed safe tracking,” IEEE Trans. Autom. Control,
vol. 66, no. 12, pp. 5861-5876, Dec. 2021.

G. Du, Y. Zou, X. Zhang, L. Guo, and N. Guo, “Energy management for
a hybrid electric vehicle based on prioritized deep reinforcement learning
framework,” Energy, vol. 241, 2022, Art. no. 122523.

B. Huetal., “Reinforcement learning approach to design practical adaptive
control for a small-scale intelligent vehicle,” Symmetry, vol. 11, no. 9,
2019, Art. no. 1139.

Guodong Du received the B.S. degree in mechanical
engineering in 2019 from the Beijing Institute of
Technology, Beijing, China, where he is currently
working toward the Ph.D. degree in automobile en-
gineering. His research interests include autonomous
e’ driving, motion planning and control, reinforcement
~ learning algorithm, vehicle dynamics control, and en-
ergy management of hybrid electric vehicles. He is an
academic guest of ETH Zurich. He was the recipient
of the “Best Student Paper Award” in the 35th IEEE
Intelligent Vehicles Symposium (IV 2024).

— —
- e

Yuan Zou (Senior Member, IEEE) received the Ph.D.
degree from the Beijing Institute of Technology, Bei-
jing, China, in 2005. He is currently a Professor with
the Beijing Collaborative and Innovative Center for
Electric Vehicles and School of Mechanical Engineer-
ing, Beijing Institute of Technology. He is also the
Co-Director of ETHZ-BIT Joint Research Center for
New Energy Vehicle Dynamic System and Control.
He conducted research about ground vehicle propul-
sion modeling and optimal control with University of
Michigan Ann Arbor, Ann Arbor, MI, USA and ETH

Zurich, Ziirich, Switzerland. His research interests include modeling and control
for electrified vehicle, and transportation system.

8663

Xudong Zhang (Member, IEEE) received the M.S.
degree in mechanical engineering from the Beijing
Institute of Technology, Beijing, China, in 2011 and
the Ph.D. degree in mechanical engineering from the
Technical University of Berlin, Berlin, Germany, in
2017. Since 2017, he has been an Associate Professor
with the Beijing Institute of Technology. His research
interests include distributed drive electric vehicles,
vehicle dynamics control, vehicle state estimation,
torque allocation, and power management of hybrid
electric vehicles.

Zirui Li received the B.S. degree in 2019 from
the Beijing Institute of Technology, Beijing, China,
where he is currently working toward the Ph.D. degree
in mechanical engineering under the supervision of
Prof. Jianwei Gong. From 2021 to 2022, he was
a Visiting Researcher with the Delft University of
Technology (TU Delft), Delft, The Netherlands, with
CSC funding from China. Since 2022, he has been a
Visiting Researcher with the Chair of Traffic Process
Automation, Faculty of Transportation and Traffic
Sciences “Friedrich List”, TU Dresden, Dresden,

Germany. His research interests inlcude interactive behavior modeling, risk
assessment, and motion planning of automated vehicles.

Qi Liu received the B.S. degree in 2019 from the Bei-
jing Institute of Technology, Beijing, China, where he
is currently working toward the Ph.D. degree in me-
chanical engineering. His research interests include
intelligent vehicles, environmental perception, and
decision making.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 01,2025 at 14:59:36 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1109/TSMC.2021.3050960


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


