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ARTICLE INFO ABSTRACT
Keywords: In this paper an initial-boundary value problem on a bounded, fixed interval is considered for
Robin boundary condition a one-dimensional and forced string equation subjected to a Dirichlet boundary condition at

Time-dependent coefficient

Interior layer analysis
Multiple-timescales perturbation method
Resonance zone

one end of the string and a Robin boundary condition with a slowly varying time-dependent
coefficient at the other end of the string. This problem may serve as a simplified model
describing transverse or longitudinal vibrations as well as resonances in axially moving cables
for which the length changes in time. By introducing an adapted version of the method of
separation of variables, by using averaging and singular perturbation techniques, and by finally
using a three time-scales perturbation method, resonances in the problem are detected and
accurate, analytical approximations of the solutions of the problem are constructed. It will turn
out that small order ¢ excitations can lead to order /e responses when the frequency of the
external force satisfies certain conditions. Finally, numerical simulations are presented, which
are in full agreement with the obtained analytical results.

1. Introduction

In the last few decades, high-rise buildings have become increasingly popular. The higher buildings rise, the more vulnerable
they become to wind and earthquake influences. At the same time, it poses particular design challenges to the vertical transportation
systems such as high-rise elevators. Not only can external wind and earthquake forces cause building sway, it can also damage the
elevator cables. If a frequency of the external wind force coincides with one of the natural frequencies of the elevator cable, large
oscillations can occur and damage can be caused. This phenomenon is called resonance. In most cases resonance finally leads to
failures. In order to prevent such failures, it is important to understand the nature of these vibrations. There is a lot of research on
these types of problems. Kaczmarczyk [1] analysed resonance in a catenary-vertical cable with slowly varying length under a periodic
excitation. Fajans et al. [2] introduced auto-resonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas. Chen
and Yang [3] considered the stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed.
Friedland et al. [4] proposed auto-resonant phase-space holes in plasmas. Kimura et al. [5] proposed forced vibration analysis of
an elevator rope with both ends excited by wind-induced displacement sway of the building. Sandilo and van Horssen [6] studied
auto-resonance phenomena in a space-time-varying mechanical system. Gaiko and van Horssen [7] considered lateral vibrations of a
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Fig. 1. The transverse vibrating string with a time-varying spring-stiffness support at x = L, and an external force €A cos(wr).

vertically moving string with in time harmonically varying length, and in [8] the authors further discussed resonances and vibrations
in an elevator cable system due to boundary sway. Kaczmarczyk [9] studied how simulation models and control strategies can be
deployed to mitigate the effects of resonance conditions induced by wind loads and long-period seismic excitations. Zhu and Wu [10]
studied the transverse vibration of the translating string with sinusoidally varying velocities.

In this paper we are motivated by resonance phenomena occurring in a transversally vibrating string (see Fig. 1), where one
end of the string is fixed, and the other one is attached to a spring for which the stiffness properties change in time (due to fatigue,
temperature change, and so on). Mathematically, we will show how to (approximately) solve an initial-boundary value problem for
a nonhomogeneous wave equation on a bounded, fixed interval with a Dirichlet type of boundary condition at one endpoint, and
a Robin type of boundary condition with a time-dependent coefficient at the other end. Actually, the Robin boundary condition is
an interesting one to study from the application and mathematical point of view. The wave equations involving a Robin type of
boundary condition with a time-varying coefficient can be regarded as simple models for vibrations of elevator or mining cables in
the study of axially moving strings with time-varying lengths. Chen et al. [11] considered an analytical vibration response in the time
domain for an axially translating and laterally vibrating string with mixed boundary conditions. Further Chen et al. [12] investigated
the exchange of vibrational energy of a finite length translating tensioned string model with mixed boundary conditions applying
d’Alembert’s principle and the reflection properties. Wang et al. [13] designed an output feedback controller to regulate the state
of a wave equation on a time-varying spatial interval with an unknown boundary disturbance. Wang et al. [14] studied a typical
flexible hoisting system and proposed an absorber with artificial intelligence optimization to reduce system vibrations. For more
information on initial-boundary value problems for axially moving continua, the reader is referred to [15-21]. Also in other fields,
Robin boundary conditions play an important role, and are sometimes called impedance boundary conditions in electromagnetic
problems or convective boundary conditions in heat transfer problems.

Usually the method of separation of variables (SOV), or the (equivalent) Laplace transform method is used to solve initial value
problem for a wave equation on a bounded interval for various types of boundary conditions with constant coefficients. However,
when a Robin boundary condition with a time-dependent coefficient is involved in the problem, the afore-mentioned methods are
not applicable. For this reason, van Horssen and Wang in [21] employed the method of d’Alembert to solve a homogeneous wave
equation involving Robin type of boundary conditions with time-dependent coefficients. In this method, the time domain can be
divided into finite intervals of length 2, so that the initial conditions extension procedure for each interval coincides with the previous
ones. Accordingly, one can obtain an analytical expression in a rather straightforward way for the solution on the time-interval [0, 2]
with n = 1,2,3,..., N, and N not too large. But, one will encounter computational issues for large N. When ¢ is relatively large,
the amount of calculations is very large and the calculation process is complicated. Therefore, in this paper we want to construct
accurate approximations of the solutions of these problems on long timescales by using a different procedure.

This paper is organized as follows. In Section 2, the problem is formulated and a short motivation is given for the methods which
are used in this paper. In Section 3, an adapted version of the method of separation of variables is introduced. This approach allows
us to define a new slow variable = = &#, and to separate u(x, ) as T(t,7)X(x, 7). In Section 4, averaging and singular perturbation
techniques are used to detect resonance zones, and to determine the scalings which are presented in the problem. By using these
scalings, a three time-scales perturbation method is used in Section 5 to construct accurate, analytical approximations of the solutions
of the initial-boundary value problem. In Section 6 numerical simulations are presented, which are in full agreement with the
obtained, analytical approximations. As numerical method a standard finite difference method is used in this paper for simplicity,
but of course also more advanced methods such as the finite element method (as has been used in [22]) can be applied. Finally, in
Section 7 some concluding remarks will be made.

2. Formulation of the problem

By using Hamilton’s principle, the governing equation of motion to describe the transversal vibration of a string as shown in
Fig. 1 can be derived, and is given by:

pu;(x,1) — Puy (x,1) = €Acos(wt), >0, 0<x<L, >0, €8]

where p is the mass density, P is the axial tension (which is assumed to be constant), L is the distance between the supports, and
u describes the lateral displacement of the string. The term A cos(w?) in (1) is a small external force acting on the whole string,
where ¢, w and A are constants with 0 < ¢ < 1, @ > 0 and A € R. The boundary conditions and initial conditions are given by:

u(0,)=0, Pu (L, t)+k@u(L,t)=0, k({t)=1+¢t, t>0, 2)
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u(x,0) = eug(x), u,(x,0) =¢eu(x), 0<x<1L, 3)

where k(¢) is the time-varying stiffness of the spring at x = L. The boundary condition at x = 0 is a Dirichlet type of boundary
condition, and the boundary condition at x = L is a Robin type of boundary condition with a time-dependent coefficient k(). In
this example, the choice of k(r) leads to a spring which becomes stiffer and stiffer in time.

For simplicity, based on the Buckingham Pi theorem, the following dimensionless parameters are used:

Xog=t =L P oLy raen /L
L L P) P P

L
A [P o _ [BMo - _ W
_pP, P s 12 1 I’

by which, the governing equation (1), the boundary conditions (2), and the initial conditions (3) can be rewritten into the following
non-dimensional form:

x

w=Lw

Uy (x,1) —uy (x,1) = €Acos(wt), >0, 0<x<1, >0, 4)
u0,1)=0, >0,

u (1L, +k(u(l,t) =0, k(t)=14+¢et, t>0, (5)
u(x,0) = eup(x), 0<x<1, u(x,0) =eu;(x), 0<x<1, 6)

respectively, where the overbar notations are omitted for convenience.

Due to the Robin boundary condition with the time-dependent coefficient k(7), traditional, analytical methods, such as the method
of separation of variables (SOV), and the (equivalent) Laplace transform method, can usually not be used. By putting k() = 1 +&f an
additional difficulty is introduced: for 7 < O(é), et is a small term, while for r = O(é), et is not a small term. So, we need to analyse
this problem from a new view-point. Firstly, since the coefficient changes slowly in time, we study the problem in Section 3 by an
adapted version of the method of separation of variables, in which an extra independent slow time variable r = ¢t is defined, and
u(x,t) can be separated as T'(t,7)X(x, 7). Then, by using the boundary conditions, the original partial differential equation can be
transformed into linear ordinary differential equations with slowly varying (prescribed) frequencies. Unexpectedly (or not), the slow
variation leads to a singular perturbation problem. By applying an interior layer analysis in the averaging procedure in Section 4
a resonance manifold is found. Three different scalings turn out to be present in the problem. For that reason, a three-timescales
perturbation method is used in Section 5 to construct explicit approximations of the solutions of the initial-boundary value problem
(4)—(6).

3. An adapted version of the method of separation of variables

First of all, in the method of separation of variables we consider the homogeneous part of Eq. (4) subject to the homogeneous
boundary conditions (5):

u,(x,t)—u,.(x,0)=0, 0<x<1, >0,
{,,< ) = (%, 1) -

uw0,0)=0, wu,(l,0)+k@u(l,1)=0, k(@)=1+¢e, t>0.
Note that the coefficient k(¢) in the Robin boundary condition is slowly varying in time. So, in order to derive a solution of problem
(7), we define an extra slow time variable r = ez, which will be treated independently from the variable 7. Hence u(x, ) becomes a
new function i(x, 7, 7) and further problem (7) becomes
i, (x,t,7) + 2¢ei, . (x,1,7) + szﬁTT(x, t, 1) =i (x,1,7)=0, O0<x<1, t>0, 7>0,
w0,t,7)=0, a.(l,t,7)+ 1+l t,7r)=0, >0, 7>0. (€3))

By looking for a nontrivial solution i(x, , 7) in the form T'(¢, )X (x, ), the governing equations of (8) can be approximately written
as

X, o)T;(t, 1) + 2e X (x, )T, (1, 7) + 2e X (x, 0)T;(t, 7) — X, (x, D)T(t,7) + O(ez) =0,

or equivalently as
Ty (t,7) X (X, 7)
O(e) = =222 2
T(t,7) +06) X(x,7)
The O(1) part of the left-hand side of Eq. (9) is a function of ¢ and 7, and the right-hand side is a function of x and z. To be equal,
both sides need to be equal to a function of 7. Let this function be —4%(z) (which will be defined later), so we get
T.(t1) X))
Ten - Xo " -22(1), 0<x<1, t>0, >0,

implying:

, 0<x<l1, t>0, 7>0. (©))

X, (60 + 20X (x,7) =0, 0<x<1, 7>0,
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Fig. 2. For t =0, intersection points of y =tan A and y = —1 are giving 4,(0).

Tt 1)+ @I, 7)=0, t>0, 7>0. (10)
From the boundary condition (8), we obtain
T 7)X0,7)=0 = X(@0,7)=0,
Tt X, (1L, D)+A+0)T¢t0)X(1,7)=0 = X (I,0)+(+7)X1,7)=0. an
In accordance with the first equation for X(x, ) in (10), a nontrivial solution X, (x, ) (satisfying (11)) is
X,(x, 7) = B,(7) sin(4,(7)x), (12)
where B, () is a function of = only, and 4,(7) is the nth positive root of

An(7)

tan(4,(r)) = — T+2

13

For = 0 it is indicated in Fig. 2 how 4,(0) can be obtained. In should be observed that the eigenfunctions X,,(x, r) are orthogonal
on 0 < x < 1. And so, the general solution of (4)—(6) can be expanded in the following form:

ulx,1) = a(x, 1,7) = Y T,(t,7) sin(4,(2)x), a4
n=1
where the boundary conditions (5) are automatically satisfied.

Substituting Eq. (14) into Eq. (4), and into Eq. (6) yields
di, ()

M

(T4 + 26T, + A2(0)T,) sin(A, (2)x) + 2ex

n

T, cos(4,(t)x)] = e A cos(wr) + 0(52),
1

S
Il

M

[T,,(0,0) sin(4,,(0)x)] = guy(x),

n=1
< i d,(0)
z [(T,,,0,0) + €T, . (0, 0)) sin(4,(0)x) + €T,,(0, 0) . x cos(4,(0)x)]
n=1
= eup(x). (15)

Now, by multiplying the first equation in (15) with sin(4,(z)x), and the second and third equations in (15) with sin(4,(0)x), by
integrating the so-obtained equation from x = 0 to x = 1, and by using the orthogonality properties of the sin-functions on 0 < x < 1,
we obtain the following differential equations for k = 1,2,3,..., and r > 0,7 > O:

T+ 2T, = e[-2T;, —2 52 P8¢, (0)T,,, + Ady (1) cos(@n)] + O(), 120, 720,
! in(A, (0)&)d
T,(0,0) = ]/(_) U@ sinth ODdE
fO sin(Ax (0)€) sm(lk(O)]i)dé
Jo 41©) sin(4,(0)9)d&
T, (0,0) + €T} (0,0) = g 20 A THe (16)
ke(0.0) ke i) sin(4,(0)€) sin(4 (0)&)d&

ddy(0) Jo §0s(An(0)8) sin(iy (0))d¢

dr [ sin(a0)2) sin(a (0)€)de

k>

—e Y T,(0,0)
= eGy.
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where ¢, ,(7) and d,(r) are functions of 7, and are given by:

o) x c08(A,(2)x) sin(A (1)x)d x

cui(7) =
¢ o sin? (A (2)x)dx
- i) x c0s(A (2)x) sin(4, (1)x)d x
(4 T) =
o i) sin? (A (0)x)dx
i) = o sin(a,(0)x)dx _ 40— cos(A(@) an
k Sl sin2( (xdx 2A®) - sin(24,(7))”
To simplify the formula, we define a new dependent variable: T (t) = T, (¢, ), yielding
T+ 2T, = e[-252 D¢ ()T, , + Ady(z) cos(n)] + O(e?),
T.(0) = ¢F,, (18)

7,.,(0) = €G,,

where 7 = €t, t > 0. In the next section we will use the averaging method to detect resonance zones in problem (18), and to determine
time-scales which describe the solution of (18) accurately.

4. Averaging and resonance zones

The linear ordinary differential equation (18) with the slowly varying frequency 4,(z) as given by (13), can be analysed by making
use of the averaging method. In this section it will be shown that an interior layer analysis (including a rescaling and balancing
procedure) leads to a description of an (un-)expected resonance manifold and leads to time-scales which describe the solution of
(18) sufficiently accurately. To apply the method of averaging to (18) the following standard transformations are introduced:

¢k(t)=/ A(es)ds and @ = o, (19)
0

and T, (), Ty, (1) are described by A, (1), B (1) in the following way:

T, (1) = A1) sin(¢; (1) + By (1) cos(gh (1)),
7~"k,,(I) = A(T) AR (1) cos(py (1)) — Ay (7) By (1) sin(ghy (). (20)
Problem (18) can now be rewritten in the following problem:

Ay = el D (20 () Ay cos? (@ () + LD

@ i G + ek B sin2 1)
225, L0 (014, oSy 1) cOS@Y) + 2 (1B, s, () 05y 1)
7o) (o5 -+ 940+ c05® — ),

By = el P2 (s o (1) Ay sin@eby (1) — CED (426, (0) By sin? (1)

dr “2A(1) v e
1 425,080 (1), cos () Sin@ ) — 25, L2, (2)B, sin(eh, () sin(h () -
;‘j:((:)) (Sln(d‘) 4 ¢k(1)) — sin(® — (]5/(([)))]7
T =g,
b= o,
q_’;'k = (o).

Resonance in (21), due to the external forcing with frequency w, can be expected when @ — ¢, ~ 0, or @ + ¢, ~ 0. But since & > 0
and 4,(r) > 0, resonance only will occur when

wz/lk(r)@rz—tL—lcnzl(— -
ail

-D. (22)

tan

Since 1,(7) satisfies (13), that is, tan(4,(7)) = —Al"::) it follows (see also Fig. 2) that when t increases, then the value of 1,(z)
increases. Besides, for t tending to infinity, 4,(z) tends to kx (with k = 1,2,...). Therefore, 1,(r) is increasing in time and

0 < 4,0) < A (r) < km,  tan(4,(0)) = —A,(0). (23)
From (23) we can then conclude that:

1. When the external force frequency w is bounded away from 4,(0) by a constant and satisfies (k — 1)z < @ < 1,(0), then no
resonance will occur;

2. When the external force frequency w satisfies 0 < 1,(0) < w < kx, then resonance will occur around r = —(— 1%9_(0 —1). Moreover,
fo — = O(¢), the resonance time zone is around 7 with 7 = O(1); and when ——— —1=0(Q1), the
resonance time zone is around f with 7 = O(E)
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As long as we stay out of the resonance time zone (or equivalently, the resonance manifold), the variables A, and B, are slowly
varying in time. For that reason we can average the right-hand side of the equations in (21) over ¢, and & while keeping A, and
B, constant. The averaged equation for A4; and B; now become

0 dh@, 1
AZ =-¢ dkr (ukm + Ckvk(T))AZ’ 24
2 dig@, 1 ; 249
Bk =—e— (ZAk(r) + Ck,k(T))Bk,
where the upper index « indicates that this is the averaged function. From the expression for ¢; ; in (17), we then obtain
1 .
. dA x cos(A,(7)x) sin(A (7)x)d x
fo = D1 Lo f“))(”))>q
dr " 2x(7) Jo sin?(A()x)dx
e di(r) d(In(4 (7)) d(lﬂ(fol sin (4 (7)x)dx)) a
T2 dr d A (7) d A (1) k
1 sin@A ()
_ _edh® dinGy@) | din(; - =25 ) A
T2 dr d A (7) d A (t) k
lmwg-ﬂ%@»y o5
= —5( 7 VAL,
which implies that
C C
A= 1 B} = = (26)

VA —sin2A (D) ¢ \2A(D) — sin@Ag (D))

with

G \/24,(0) — sin(24, (0
Cl:g £ V/24,(0) — sin(24,( ))’ C, = eF,\/27,(0) — sin(22,(0)), 27)

A (0)

where G, and F, are given in (16).
Hence, outside the resonance manifold the solution of system (18) is given by

EGk\/m
21 (0)y/22,(7) = sin(2A, (7))
+ € Fyy/24;(0) — sin(24,(0))
24,(1) — sin2A, (7))

where ¢, (¢) is defined in (19).
When o satisfies 4,(0) < w < kx for a certain k (with k = 1,2,...) then a resonance zone will occur. We introduce

T, =

sin(¢ (1))

cos(¢p (1)), (28)

w = &) — ¢ (1), (29)
and rescale 7 — 7, = §(e)7 with 7 =0(1) and 7, = —la”n’w — 1. System (21) then becomes:
A= e[~ oe () Ay cos? (¢ () + LD (L 4 ¢ () By sinQe (1))

dr (1) dr " 24(7)
dA, dA, .
—2%,4 %Cn,k(T)An cos(¢,, (1)) cos(¢y (1) + 2X, 4 ;T(T) i (T) B, sin(¢, (1)) cos(¢p (1))

+ 245 o5 + by (1)) + cos(y)],

24 (7)
By = e[ “E2 (5 5 T Ok (DA SN, (1) - e T 26k B sin” (@ (1)
+23,4, 2D ¢, (1) A, 08, (D0 SIn(y (1) — 22,0 L2 e, (2) B, sin(h, (1)) sin(ghy (1) (30)
— SE5 Sin(@ + (1) = sin(w)].
T =g,
b =0,
s

30’
W = o — A (1 + 6(e)%).

To simplify (30) it should be observed that for = = 7, + 6(¢)T we have

W = o — A (1 +6(e)T) = A4 (7)) — A (7 + 6(€)T)

_dA 5
A(z) = (A (z) + 8e)7——= le=r, +07(e)))

—5(5)fﬂ| + 0(8%(e)). (31
dr

T=1)
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By differentiating (13), that is, tan(4,(z)) = /1"(”

1 di —1 d Ak

with respect to z, we obtain

P S . 32
cos? Ay, dt l+7dr  (1+71)? (32)
And so, it follows from (32) that
dxlk DA, A cos? Ay |
dr "% T (I+1) T+r+cos? iy Tk
2
- _ sin 2w _ s'm ® . (33)
2(1 + 7, +cosl®) @ —sinwcosw
which implies for s (see (31)):
2
=——0 D 56)F + O(5(e)). (34)

® — sinw cos w

2
From (33) and from 4,(0) < @ < kx, we obtain sin_
@—sin @ cos @

Based on (34) it now follows from (34) that a balance in system (30) occurs when —— = §(¢), and this implies for the averaging

5( )
procedure in the resonance zone that §(¢) = \/E So, together with = — 7, = §(¢)7, it follows from (30) that

7=1/elt — 1), 1 = iy (35)
£
Further, from (34), we obtain
in2
YO =y - Saet -1 a= —I2 36)
@ — SIn W COS W
Hence, in the resonance zone, we can write
1
cos(y(1) = cos(—ae(t - L) + oty — g (1), = —-(tanw 1. (37)

So taking into account (35), let us average system (30) over the fast variables. Then, the averaged equations for A, and B
become
Ady(7)

2040
Adk(T)

A% =— di"(f)( + ek (DAY + £ 5= cos(y),
k 20 (7) (38)

e di(D, 1

BY = —e PO (o o (1) BY + €5

5 sin(w),

where the upper index a indicates that this is the averaged function.
It follows from (37) and (38) that AZ can be written as

t

C
A9 = 1 Ae
kT T (e T I(et)
where C, is given by (27) and

hy (eT) cos[—%ae(f— 1)? + oty — by (114, (39)

I (e1) = /24, (et) — sin(2A, (1)), (40)
h(e) = 1, (e7) 2(1 — cos(4(e1)))

2D (el = _
24 (en) ANV 2 2, D) — sin2 A (e1)

(41)
For =1, + O(\L[), 7, = el

hy(eD) = hy(et, + O(\/e) = hk(—L —1+0(/e)

dhk(a)

k(—— -1+ 0He) - +h.o.t, (42)

loe,
dhy(a) .
where i | a=z, 18 bounded due to (33). Then,

el EAhk(_l -1 gt . )
a _ an _1 _ 2 _
Ay = lk(gt) e /0 cos[ 2ans(t 1)+ ot — ¢ (t,)]dt

+h.o.t, (43)

-1
where C, is given by (27). We know that m = O(¢) and IE—::)”) = O(1), and so it is important to consider the order of

1
s/ cos[—%ae(z‘ — 1) + oty — ¢ (1,)1dF. (44)
0
By setting u = %ae(t —1;), we obtain

t
e/ cos[—%ae(t —1)% + oty — Py (t)ldT
0
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Fig. 3. C,(1) (a) and S, (r) (b) have a resonance jump from O(\/g) to O(1) around ¢ = 100.

2¢ vV L;(f_’k) )
= o cos(—u” + wt; — ¢ (1,))du

5 (=15)

=4/ % cos(ty — ¢y (1;)Cp (1) + 1/ 2{1_5 sin(wt, — @ (1))S (1),

where

VE 1) VE 1)

2
cos(u”)du, Sg.(t) =
NEIS) VEISH)

When 0 <1, < 0(\%),

. 2 Tk
Cp () = sin(u”)du, 1, = .

0<Cr<01), 0<t<1, +0(L);
(3

7

Cp)=0(1), 1>t + O(L&).

7

When 1, > O(XLE),

Cr (1) = 0(/e),
J0(/e) < Cp (1) £ 0(1),
Cr () = O(1),

osz<zk—0(\/Lg);
rk—O(\Lﬁ)szswong);

1>1, +0(¢).

(45)

(46)

(47)

(48)

In the same way, S, (¢, @) also satisfies (47) and (48). So, the presence of the functions C,(r) and C,(r) causes resonance jumps in

the system. Cg,(t) and Sy, (r) are plotted for e = 0.01, w = 2.2889, and so 7, = 100 in Fig. 3.

Above all, it follows from (43) that
2v/2e A(1 = cos(4 (en)))
k= - _1
Var (eNQ2A(er) — sin A (er))) '~ s
- [eos(@ty, — ¢y (t))C () + sin(wty, — ¢y (t)S g, (D] + Oe),

and

A, =0@), 0<i<t,— 0(\%);
O(e) < A, < 0(1/e),

zk—owl;)szg,(w( ):
A = 0(/e), z>zk+0(\/L;).

L
Ve
Similarly, B, also satisfies (50). So, in the resonance zone,
Tk(f)
= \/EM1 [(cos(wt), — ¢ (t;))C, (1) + sin(wt), — ¢y (1)) S g, (1)) sin(¢, (1))
+ (sin(wty — ¢ (t;))Cr,.(t) — cos(wt — ¢y (1) SE, (1)) cos(¢y ()] + O(e)

8

(49)

(50)
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!
= \/;Ml [(cos(wt )Cr,(t) + sin(wt;)Sf,.(1)) sin(/ A(eD)di)
Tk

1
+ (sin(wty )Cr,.(t) — cos(wt)SE,. (1)) cos(/ A (eD)dD)] + O(e), (G29)]
Tk
where C,(1) and Sg,(¢) are given in (46), and

2v2A(1 = cos(i(et)))
\/' i (D)2 (en) — sinQAg(er))) "= FHomaE

Hence, when the external force frequency w is bounded away from 1,(0) by a constant and satisfies (k — 1)z < @ < 4,(0), for
all k =1,2,..., (where 4,(0) satisfies (23)), then no resonance will occur, and for an O(¢) external excitation there is only an O(¢)
response, which is described in detail in (28). When the external force frequency w satisfies 4,(0) < @ < kr, for a certain k (with
k=1,2,...) and 4,(0) satisfies (23), then a resonance will occur for 7 near — ma"n’(w) — %, and for the O(¢) external excitation an O(\/Z)
amplitude response will occur, which is described in detail in (51).

In the next section, the occurrence of the (un)expected timescales will be used to construct accurate approximation of the solution
for problem (15) and for the original problem (7) when a resonance zone exists. When a resonance zone does not exist then the
solution of problem (7) will remain O(e) for t = O(s~").

(52)

5. Three-timescales perturbation method

In the previous section, it was shown that (under certain condition on the external frequency a)) resonance can occur around
time t = -(— —1). For this reason, we rescale ¢ by defining t =7 + (— —1),and t = ef — problem (18) can
be rewritten in ¢ as follows

T+ 4 ()T = e[-22"= eui (T,
F+ (=2 _ 2
+Adk(‘r)cos(a)t + E( o 1)+ O(e”),

tan w

o :M din(®)

w (53)
Tk(s(tdnw + 1)) = ng’
Tk [(e(tan(u +1)) =G,

In this section, we study problem (53) in detail under the assumption that w is such that a resonance zone exits for the kth oscillation
mode. The application of the straightforward expansion method to solve (53) will result in the occurrence of so-called secular terms
which cause the approximations of the solutions to become unbounded on long timescales. For this reason, to remove secular terms,
we introduce three timescales t, =7, 1| = \/Ef, t, = f. The time-scale ¢, = \/Ef is introduced because of the size of the resonance
zone which has been found in the previous section, and the other two time-scales are the natural scalings for weakly nonlinear
equations such as (53). By using the three timescales perturbation method, the function T, (7; \/E) is supposed to be a function of #,,
t; and 1,,

Te( Ve) = wyli, 11,123 Ve). (54)
By substituting (54) into (53), we obtain the following equations up to O(e\/g):

Dl 4 R + 2 e o+ S 2 e
_.g[ 22:_°°‘“df’2’ Cui(tr) % —a)]

e\ [e[ =S °°‘“ B, (@ 2)"“"] (55)
wy(a, b, c; \/—)=6Fk,

"”’k(a b,e;\/E) + /€2 ”k(a bc; \/’)+e“k(a b,c;\fe) = £Gy,

where

1 ® w
- e(tan(co) D, b= ﬁ(tan(a}) D, e= tan(w) +1

(56)

By using a three-timescales perturbation method, wy (¢, ;.1,; \/E) will be approximated by the formal asymptotic expansion

Wiltes 11,123 VE) = Vewy ot 11,1 VE) + ewy 1 (g 1112 V)
+evew, oty 11,12 Ve) + O(ED). (57)
It is reasonable to assume this solution form since the function wy (f, ,,t,; 1/€) analytically depends on+/e, and we are interested in
approximations of the solution of Egs. (4)-(6), when the initial conditions and the external excitation are of O(¢). By substituting

(57) into problem (55), and after equating the coefficients of like powers in \/E, we obtain as:
the O(\/E)-problern:

0 owy g
+ A (0w =0, wyola,b,c) =0, Em ~(a,b,c) =0, (58)
0

0
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the O(¢e)-problem:
*w

k1 5 02wk,0
— + A @wy ;= _ZW + Ad | (t,) cos(w(ty — a)),
0 0011
0wy | wy g
wy(a,b,c) = Fy, ~(a,b,c) = ————(a,b,c) + Gy, (59)
’ ot ot
and the O(e \/E)-problem:
2w 0w 0*w 0*w
k2 /li(’z)wk,z - kL _ gy k0 k0
a,(Z) 01,01, 0t 0t at%
dA,(ty) 0w, o
— 22::11 #Cn,k(lz)w,
0wy » owy owy |
wy»(a,b,c) =0, 310 (a,b,c) = — TS (a,b,c) — o, (a, b, ). (60)
The O( \/Z)— problem has as solution
Wy o(to, 115125 \/;) = Cy 1 (1), 1) sin(A (12)1) + Cp o (1, 17) cos(Ax (12)10), (61)

where C, | and C; , are still unknown functions of the slow variables ¢, and #,, and they can be determined by avoiding secular terms
in the solutions of the O(¢)— and O(e \/E)— problems. By using the initial conditions (58), it follows that C; ;(b.c) = Cy»(b.c) = 0.
Now, we shall solve the O(¢)— problem (59).

This problem (outside as well as inside the resonance manifold) can be written as

2WkJ 5 9Cy 1 0Cyn
+ A (w = =24l cos(A, (1) — sin(4,(t)t0)]
f% oty oty
+ Ad(t,) cos(w(ty — a)),
owy, 4 dwy g
wy 1(a,b,c) = F, —(a,b,c) = — —(a,b,c)+ Gy. (62)
ot ot

By introducing the transformation (wy,;, Wy ) = (D1, Dy ) with

wy 1 (To, 11,123 \/;)
= Dy y(tg, 11, 155 \/E) sin(A (t2)1g) + Dy 5 (10, 11, 13 V/E) cOs(Ay (1)1,
Wy 140 (os 115123 \/Z)
At)IDy 1 (1, 1113 V/E) COS(A (1)) — Dy 5t 1y, 15 \/€) sin(A (1)t

it follows that the partial differential equation in (62) is equivalent with the system

0Ckn
e

. aC, .
D, = —Tkl’] [cos(2A,(tp)tg) + 11 + sin(24,(t,)ty)

Adi () o _ . _ _
) [cos(wty — wa + A, (1y)ty) + cos(wty — wa — A, (t5)ty)], ©63)
. 0Cy . oC
Dy, = Tkl] $in(24(12)ty) — afk{z [1 = cos(2A, (12)to)]
Ad . .
—#gj;[sm(wto — wa + A (ty)ty) — sin(wty — wa — A, (6)1)],
where the overdot represents differentiation with respect to 7, that is, = %.
0

Outside of the resonance zone, whether it exists or not it should be observed that the last terms in both equations in (63) do not
give rise to secular terms in D, ; and D, ,. To avoid secular terms, C;; and C, , have to satisfy the following conditions

9Cy 0Cyn

=0, =0. 64
or, or, &4

Then, Cy i (t1,1,) = Cy 1 (ty), and C »(t1, 1) = C 5(ty).
Inside the resonance zone, we observe that cos(wty — wa — 4;(1,)ty) and sin(wty — wa — 4;(t,)t;) might cause secular terms. In
accordance with the resonance timescale of O(l), see (34), it is convenient to rewrite the arguments of the cos — and sin — function

as Ve
__%2
Wty — wa — A (t)ty = _Etl - wa,
where « is given by (36). Accordingly, the solution of w, ; in Eq. (62) has unbounded terms in #, unless
0Cy a
5t Adk(tz)cos[—ztf - wa] =0,

—24,(tp)
1

10
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aC,
24(1) —=2 — Ady (1) sin[- 21 — wa] = 0, (65)
ot 2
which implies that
_ A cos(wa)d, (1)) - Asin(wa)d, (t,) -
Cr1(t,1) = Cp 1 (1) + —HCFr(tl) - —HSFr(tl)v
V2w, (ty) V2aa, ()
Asin(wa)d, (t,) - Acos(wa)d (1) -

Cra(t1,1y) = Cpplty) - Sy, (66)

— () ————
V2a (1) V2ah (1)

where

2t

2t

Cr, () = /\/\? cos(x?)dx, and Sp(1)= /\/\? sin(x?)d x, (67)
2p [
2

and which are the well-known Fresnel integrals. Thus, it follows from (63) that

_ Ady(t,) .
Dk,l(t()’ 1, 12) = Dk,l(tl’ 12) + m sm(a)to —wa + ik(t2)t0)
AT ety — wa— 4y,
20t (@ — A4 (15))
_ Ad,(ty)
Dk,2(t0’ Il’ 12) = Dk,Z(tl’ 12) + m COS(C{)IO —wa+ Ak(IZ)IO)
Adi(ty) cos(wty — wa — A (ty)ty). (68)

T 24 (1))@ — A (1)

where D, ) and D, , are still unknown functions of the slow variables ¢, and 1,. The undetermined behaviour with respect to ¢, and
t, can be used to avoid secular terms in the O(e \/E)— problem (60), and in the high order problems.
Taking into account the secularity conditions, the general solution of the O(¢) equation is given by

wy 1 (to, 115195 \/;) = Dy (19, 11, 1p) sin(Ay (#2)10) + Dy 5 (tg, 11, 1y) cos(Ax (12)1p), 69)

where Dy (t),1;,1,) and Dy (t,,1,) are given by (68) and

owy

Dy ,(a,b,c) = Fy, Dy (a,b,c)=— 5
1

2, b,¢) +G,. (70)

The O(e \/E)— problem (60) outside and inside the resonance manifold can be written as

2wk,2 ) aDk,] oDy, .
+ 2wy = —24, (1) ——= cos(A(1))1g) — ——= sin(A; (t2)t))]
or? ot ot
Gy 0Cio
=24l 3 cos(A, (1)) — sin(A(t)t()]
ty oty
PCry | 9*Cyz
+[ > sin(A, (t))tg) + — cos(A,(1)t)]
0tl 011
—oo A2, (17)
_222;;"’ dnt 2 CniE) A (1)IC,, 1 cos(A (12)tg)
2
= C,5sin(4,(12)t0)],
0wy » 0wy 0wy |
wio(a, b,c) =0, a1y (a,b,c) =— o1 (a,b,c) — o, (a, b, c). (71)
To avoid secular terms in the solution wy , in Eq. (71), the following conditions have to be imposed
0Dy 0Cy  0°Cy, d(ty)
—2,(ty) o, —2A4(t) o, + azf = 2¢; k(1) A (1) a, Ci1 =0,
oD, 0Cy  0Cy d A (ty)
22,(tr) o, + 2/1k(12)a—tz + atf + 2ck1k(12)/1k(12)d—t2Ck,2 =0. (72)

Next, we analyse this Eq. (72) inside and outside the resonance manifold.
Inside the resonance zone, substituting (66) and (68) into (72), we obtain the following secularity conditions:

oDy, dCy, dA(ty) -
-2 ~ -2 — -2 t C
ot dt, €ek(r2) dr, k!
d( Acos(wa)d(tp)
A(tn) - - Ad, (1) .
dktzz (Cp (1)) = Sg, (1) + ) at) sin[—af? — wa)

11
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d A, (ty) Acos(wa)d,(t,)

+ ¢ (1) T () (Sp(t) = Cp (1) =0, (73)
2 k\*2
and
0Dk,2 dék k( 2) =
o, +2 an, +2¢4 (1) Cra
Acos(wa)d(tr)
d(——~%
A (t2) Ady (1) )
- (Cp )+ Sk, £ cos[—at? —
di (Cp () + S, (1) — () aty cos[—at| — wal
dAi(ty) Acos(wa)d,(t,) - _
) ;t 2 RO )" 2 (Sp () + Crp(t))) = 0. (74)
2 k\*2

Solving (73) and (74) for D, and D,,, we observe that the solution will be unbounded in #,, due to terms which are
only depending on t,. Therefore, to have secular-free solutions for D, ; and D, ,, the following conditions have to be imposed
independently

aCy k.1 k(lz) = ‘9C_k2 k(’z)

ot «(t2) Ce1 =0, + ¢ k() Cip =0, (75)
123 oty 153
together with
_ A cos(wa)d (tp)
oD, 1T - _ Ady(ty) .
-2 a, _ de22 (Cp (t)) = SE.(t) + () aty sm[—atf — wal
d A (ty) Acos(wa)d, (t,) - _
+ i) — S22 (S 1) = Cpyt) = 0, (76)
dt, Ar(ty)
and
_ A cos(wa)dy (1)
0Dy, S - s d (1)
2 o, + dkt; (Cp,(t)) = Sg, @) — ) aty cos[—at? — wa]
d A, (ty) Acos(wa)d,(t,) - _
— i) —=2 K2 (St + Crp (1)) = 0. (77)
dt, Ai(tr)

where Dk,, and Dk,z can be found by integration of (76) and (77), but we omit the details because of cumbersome expressions.
Next, from (75) we obtain the functions C, (r,) and C, »(1,):

B o dig(s) B e L dig(s)
Cr1(ty) =mye JeZ =5 -, Cra(ty) = mye Je e (78)

where m; and m, are constants. Since C; ;(b,¢) = 0 and C; (b, c) = 0, together with (66), this implies that C; ;(t,), C; 5(t,) are both
identically equal to zero.
So, in the resonance zone,

W o(tg: 1113 V/e)

_ Acsoadi(t) o Asin@adit) ¢ L
V2ai, (1) V2ai, (1)
_ [M Spt) + Asin(@a)d;(t) CF,(tl )] cos(Ag(ty)ty)

V2ai, (ty) V2ai, (ty)

M, [(cos(wa)Cr, (1)) — sin(wa) S, (1)) sin( 4 (t5)ty)
— (cos(@wa)Sp,(t)) + sin(wa)Cp,(t))) cos(A,(ty)ty)] + h.o.t, (79

where M, is given by (52). Outside the resonance zone, it follows from (64) and (72) that

aCy (t2) 0C;, () -
ot Ckk(z) k 2Ckl 0, ot Ckk(z) N 2Ck2=0
2 2
which implies that
_ ' di(s) _ A ,
Cp1(ty) = mle_/fz () K= ds Coalty) = mye — [ () D " . (80)

where m; and m, are constants. Since Cy ;(b,c) =0, C; 5(b,¢) = 0, this implies that Ck,l(tz)a and C_kyz(tz) are identically equal to zero
outside the resonance zone.
Now we can solve the O(e \/E)— problem, where

Wy oo, 11,123 \/E) = Ey (19,11, 1) sin(A4(12)tg) + Ey 5 (19, 11, 17) cOs(Ay (12)1p), (81)

where E; | and E, , are still unknown functions of the variable ¢, and the slow variables #, ,, and they can be obtained by avoiding
secular terms from higher order problems. Moreover,

Ey,(a,b,c) =0,

12
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Fig. 4. (a) The solution u(0.5,7) of the system with w = 2.0917, and the resonance time ¢ ~ 20, 4,(e - 20) = w. (b) The solution u(0.5,7) of the system with
@ = 2.4556, and the resonance time ¢ = 200, 4,(e - 200) =

Ek’l(a, b,c) =

owy owy
- —(a,b,c) — —(a, b, c). 82
o (a,b,0) o, (a,b,0) (82)

Note that in Egs. (69) and (81), Dy, Dy, Ey ;. E;, are yet also undetermined functions. All these unknown functions can be
determined from the O(¢?)— problem and O(e> \/E)— problem. At this moment, only the first term in the expansion of the solution
for the string problem is important from the physical point of view. We are not interested in high-order approximations; that is why
we take
Dk,1(11s ) = Dk,1(b’ c), Dk,z(tl, ) = Dk,z(b, c),
Ey (g, 11,1)) = Ey1(a,b,0),  Eyy(ty,1),1) = Epp(a, b, c). (83)
Thus, an approximation of the solution of Egs. (4)—(6) is given by

u(x,t)
(o]

= Y [Vew, ot 11 12: Ve) + €10, 1 (to. 11 123 V/e)
n=1

+eVew, (1. 11, 1 V) sin(4,(0)x) + O€?), 84
where w; , wy; and w, , are given by (61), (69) and (81).

» When the external force frequency w is bounded away from 4,(0) by a constant and satisfies (k — )z < w < 4;(0), with 1,(0)
given by (23), for all k = 1,2, ..., it follows from (64) and (80) that w (). 11, 1,; \/E) = 0. Further from (54) and (57), we obtain
T,.(f) = O(e), i.e., for the O(e) external excitation, there is an O(e) response. This case can be referred to as the non-resonant

case.
+ When the external force frequency w satisfies 1,(0) < w < kx, with 4,(0) given by (23), for a fixed k = 1,2, ..., it follows from

(79) that w, (tg, 11,12 V/E),sx = 0 and
Wi o(ts 11,123 Ve)
= M, [(cos(@a)Cp,(t;) — sin(@a)Sp,(1,)) sin(A (1)10)
— (cos(wa)S (1) + sin(wa)Cr,.(t))) cos(4; (t)tg)], (85)

where M, satisfies (52). For the solution u(x, r) of the original problem (69) this implies a resonance jump from O(¢) to 0(\/2)
around ¢ = .
&

It should be observed that T} (¢) as calculated by using a three-timescales perturbation method agrees well with the approximation
as calculated by using the averaging method. Further, by using the first term wy (. #,,1,; \/E) as u(x,t) = [\/Ewk,o + O(e)] sin(4,(1)x)
with 1,(0) < w < kz and 4,(0) given by (23), u(0.5,) is plotted for e = 0.01, A = 1, w = 2.0917, and so 7, = 20 in Fig. 4(a) and u(0.5,1)
is plotted for € = 0.01, A = 1, @ = 2.4556, and so 1, = 200 in Fig. 4(b).

6. Numerical results
In this section the finite difference method is used to present numerical approximations of the vibration response and energy of
the string. The computations are performed by using the parameters ¢ = 0.01, A = 1. Let us assume that the initial displacement

is prescribed by f = sin(1.7155x), and the initial velocity g = 0 for 0 < x < 1. There will be different behaviour in the amplitude

13
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Fig. 5. The solution u(0.5,7) (a) and the energy E(r) (b) of the system with @ =2.0917, and the resonance time ¢ ~ 20, 4, (¢ - 20) = o.
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6. The solution u(0.5,7) (a) and the energy E(t) (b) of the system with w =2.4556, and the resonance time ¢ ~ 200, 4, (¢ - 200) = w.
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Fig. 7. The solution u(0.5,7) (a) and the energy E(r) (b) of the system with w = 1.5, there is no resonance.

response of the solution for different choices of the parameter w. Note that the following numerical results are computed based on
O(e) approximations of the equations. Higher order terms in the equations are neglected due to their unimportant contribution in
the solution. By using (22), and according to our analytical results, resonance occurs around times

®
e -tanw

1

£

14
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When the external force frequency w is bounded away from 4,(0) by a constant and satisfies (k— 1)z < @ < 1,(0), with 4,(0) given
by (23), for all k = 1,2, ... Fig. 5 shows the displacement at x = 0.5 and the vibratory energy of the system, respectively, for times
up tor = 200 for w = 2.0917. We observe that for ¢ ~ 20 the response amplitudes of the vibration become of order \/Z from order ¢ at
t = 0. Similarly, Fig. 6 shows the displacement and vibratory energy of the system for times up to ¢ = 400 for w = 2.4556. Again we
observe that the response amplitudes of the vibration become of order \/Z but now for ¢ ~ 200. When the external force frequency
w is bounded away from 4,(0) by a constant and satisfies (k — 1)z < w < 1,(0), with 4,(0) given by (23), for all k = 1,2, ..., Fig. 7
shows the displacement and vibratory energy of the system for times up tot = 400 for @ = 1.58, but now there is no resonance and
the response amplitudes of the vibration are still of order ¢. These numerical results are in agreement with our results as presented
in Section 4 and in Section 5. Moreover, in these figures, the shadowed bands represent the resonance zones, which have the size
of (O(\/lg)) as was also obtained analytically. Therefore, from Figs. 5-7, we can conclude that the general dynamic behaviour of the
solution as approximated numerically is in complete agreement with the analytic approximations as obtained in Section 4 and in
Section 5.

7. Conclusions

In this paper resonances in a transversally vibrating string are studied. A small, externally applied and harmonic force with
frequency w is acting on the whole string. The string is fixed at one end, and at the other end a spring is attached for which the
stiffness slowly varies in time. In this paper one choice is made for the slowly varying stiffness, but also other choices can be made
and a similar analysis as presented in this paper can be given. By assuming that the small external force is of order ¢ and by assuming
that the initial values are also small and of order &, it is shown in this paper that resonances can occur for certain values of w, and
that the amplitude response (in case of resonance) is of order \/E To obtain these results an adapted version of the method of
separation of variables is introduced, and perturbation methods, (such as averaging methods, singular perturbation techniques, and
multiple timescales perturbation methods) are used. Not only the interval for @ for which resonance occurs is determined, but also
the times and time-intervals are found for which this resonance occurs. Furthermore, explicit, and accurate approximations of the
solution of the initial-boundary value problem are constructed. All approximations are valid on time-scales of order £~!. Also a
finite difference method is applied to construct numerical approximations of the solution of the initial-boundary value problem.
These numerical approximations are in full agreement with the analytically obtained approximations.
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Appendix. Numerical approximation

Firstly, we introduce a uniform mesh Ax, a constant discretization time 4t, and a rectangular mesh consisting of points (x;,;)
with x; = iAx and 1= jat, where i = 1,2,3,...,N, j = 1,2,..., with NAx = 1. Following the finite difference method and by using
the Taylor series expansion, the second order space and time derivatives can be discretized by

2 u(xippst)) = 2u(x; 1)) +u(x;_y, 1))

gy _ 2
= 7 +0((4x ). ®7)
%u u(xl-,th)—2u(xl-,tj)+u(xl-,tj_l) )
— = o((41)7). 88
= i +0((41?) 88)

Substituting the finite difference formulae into Egs. (4)-(6), and rearranging the terms, we end up with the linear iterative system

Ui jpg = azuH]J +2(1 - oz)u,-,j + azu‘-_lyj —u;j_y +eAcos(@t)), (89)

At

where ¢ = = From the boundary condition (5) it follows that

un—l,j

—0, uy, = 90
“ = T k() ax 00)

J
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Let us introduce the following vector: UY) = [u j,uy ;. ...t 5 o1ty 17, SY =1[5,,5,,...,5,1", 5; = eAcos(wt),
n—1 times
2(1 - 62) o2 0 - 0
o? 21-06% o2 - 0
B= - . . . : )
0 w02 2(1=0?) o2
2 ey —
0 0 3 2(1 —0) + Tk A
then the iteration process can be rewritten in the following matrix form
uvU+h = pyWv) — yU-b 4 SU), 91)
where the initial conditions imply:
wo = 1= 1 = 30 i+ (= + 303+ A 92
=/ =100, =50 fi (=0 fi+ 507 iy + Ag;. (92)
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