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ABSTRACT 

Facilitating data analytics for effective prediction in 
complex products or systems development is the focus of the 
research described in this paper. The specific objective was to 
develop strategies and a data analytics pipeline with a view to 
supporting exploration of the design space of complex products 
or systems upfront. The underlying challenges tackled included 
how to acquire and store raw data gathered by using both the 
traditional methods and advanced Internet of Things (IoT) 
devices, how to preprocess and transform raw data into a form 
suited for data analytics, and how to deal with analytics. A 
pipeline for data analytics to support decision making in 
complex products or systems development is proposed and its 
applicability illustrated with a practical example. The 
incorporation of advanced analytics techniques into the 
proposed pipeline allows users to acquire data and to 
insightfully and intelligently predict aspects such as cost and 
assembly time early on, and to make decisions based on data 
that may otherwise deemed to be inaccessible or unusable. This 
work contributes to the efforts directed toward applying data 
analytics techniques in a way that can have a profound impact 
on an engineering product or system development process.  

1. INTRODUCTION 
There is a huge excitement around the promise of using 

advanced data analytics techniques against large and diverse 
datasets in various application domains. Engineering product 
development is one of the application domains which advanced 
data analytics practices can positively impact. Upfront 
prediction of aspects such as performance, reliability, and cost 
is one of the early phase engineering design analysis activities 
in which advanced data analytics techniques such as machine 
learning and data mining could play role in, e.g., to facilitate 

enriching, converting, and capturing trends in data (i.e., data 
acquired using traditional data gathering techniques coupled 
with e.g., advanced data acquisition tools such as Internet of 
Things (IoT) devices) to gain insights. Products or systems1 
(with mechanical, electrical, software, cyber and/or sensing 
elements in them) are increasingly becoming more and more 
complex. To a large extent, this can be attributed to continuous 
advances of various advanced technologies used in them, 
including computing, communication, sensing, and control 
technologies—which are increasingly becoming intertwined 
with products or systems. In general terms, the more complex a 
product or system becomes, the harder the prediction of the 
aspects such as performance, reliability, or cost becomes. The 
motivation behind the work reported in this paper was the 
general understanding that the success of a product or system 
during its use phase will depend on how well the developers 
can predict and understand the dynamics of the system upfront, 
and be able to accommodate the knowledge gained into the 
development process and to decisively address any uncovered 
problems early on. 

This work builds and expands on our earlier work—see, 
e.g., [1], [2], [3], in which a roadmap for prediction of future 
prospects and for exploration of design space of novel complex 
systems such as cyber-physical systems (CPS) was created—
see Figure 1. This roadmap outlines a systematic approach for 
identification of the components and features of complex 
products or systems such as CPSs, and for modeling of these 
products or systems with a view to forecasting aspects such as 

                                                           
1 The term ‘product’ is used in this paper to refer to an object or service 

created as a result of an engineering process and serves a need or satisfies a set 
of requirements while the term ‘system’ is used to refer a collection of objects 
or things working together as parts of a mechanism. 
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cost, reliability, performance, and assembly time early on. It 
specifies the four steps of complex product or system design 
space exploration process, which are: (a) needs analysis, (b) 
components and features identification, (c) modeling and 
representation, and (d) exploration (i.e., engineering analyses 
and data analytics). In the latter step, among other things—
apart from carrying out various engineering analyses such as 
Finite Element Analysis (FEA) or Computational Fluid 
Dynamics (CFD) analysis to optimize complex designs, the 
data needed in making predictions is gathered and suitable 
methods are chosen and applied to prognosticate future 
prospects. To this end, several data analytics techniques may be 
applied together to achieve reliable prediction from massive 
design datasets, which can in turn be used as the basis for 
optimizing complex designs in real time. In this work, we 
focused specifically on the fourth step of this roadmap (i.e., the 
exploration—i.e., engineering analyses and data analytics step) 
and we attempted to develop a pipeline and strategies for data 
analytics with a view to supporting prediction based on massive 
product datasets and decision making processes in the early 
stages of the engineering product or system development 
processes. Thus, the principal objective of the reported research 
was to develop techniques for acquiring data in raw form, for 
preprocessing and transforming gathered raw data into a form 
suited for data analytics, and for dealing with analytics—with a 
view to predicting aspects such as assembly time, performance, 
reliability, and cost. The intention here was to ultimately come 
up with an all-inclusive pipeline that combines several tools 

and applications to manage the entire analytics process, i.e., 
from data acquisition through to analytics. The challenges we 
attempted to address included how to acquire data in raw form, 
how to preprocess and transform gathered raw data into a form 
suited for data analytics, and how to deal with analytics. The 
sought after strategies and pipeline were intended to provide a 
comprehensive strategic and operational plan for data-
processing, as well as tools to effectively support the product or 
system developers to deal with the above-mentioned design 
space exploration and data analytics challenges. 

In this paper, we describe the research we conducted and 
present the results. The paper is organized as follows. We first 
present a concise literature review in the following Section. 
Then, we describe the needs and present the requirements for 
the data analytics pipeline, present the proposed data analytics 
pipeline, and illustrate how the pipeline and the proposed 
strategies can be put to use. We finally discuss the research 
results and present some conclusions about the findings of the 
research. 

2. A CONCISE LITERATURE REVIEW 
Data analytics is increasingly becoming an important 

subject in a number of research and application domains. 
Today, analytics tools are used variously in many application 
domains to transform data into useful insights, including, e.g., 
in business—where analytics methods and tools are used to 
process data and embed information into business processes 
[4], in weather forecasting [5], and in engineering [6]. 
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Figure 1 Upfront design space exploration scheme, see also [1].  
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Numerous methods and techniques from various disciplines are 
used to deal with the challenges faced in data analytics, e.g., in 
acquiring data and in analyzing previously untapped data 
sources to gain new insights and to uncover knowledge [4], [7]. 
These include visual analytics [6], text analytics [8], predictive 
analytics [9], descriptive analytics [10], diagnostic analytics 

[11], and prescriptive analytics [12]. Furthermore, methods and 
techniques such as machine learning [13], data mining [14], 
[15], statistical analyses [15], and natural language processing 
[16] are also applied to process, analyze, and to discover 
patterns in data. Data analytics methods and techniques such as 
those mentioned above allow us to make good use of data 
datasets originating from various sources, including, for 
instance, from scientific experiments, computer-based services, 
online sales, or from machine measurements in shop floors, 
services, or any other activities and to obtain insight into 
complex operations. 

The data dealt with in analytics include text data (i.e., text 
analytics)—see, e.g., [17] in which approaches such as 
statistical pattern learning are used to derive information from 
patterns and trends in texts, video data (i.e., video analytics), 
see, e.g., [18]—where video analytics applications are used to 
monitor scenes to gain insights and to understand the actions 
occurring, and graphical data (i.e., graph analytics)—see, e.g. 
[19] which enables us to explore ‘many-to-many’ complex 
relationships and to map relationships among high volumes of 
highly connected data to find connections, to unlock insightful 
questions, and to produce more accurate outcomes. 

Overall, regardless of the domain in which analytics is 
applied or of the form or type of data, the analytics processes 
typically pass through three major stages, namely: acquiring 
and storing raw data—much of which is generated in large 

Analytics

Product data enrichment 
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transforming  raw data)

Acquiring and storing raw 
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Figure 2 A data analytics workflow showing a chain of data-
processing stages.  
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Figure 3 Techniques and possible technologies to support data analytics in complex systems development processes.  
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scale and in real time, typically coming from sensors, 
embedded computing devices, cameras (i.e., video and photos), 
audio recording devices, web-based processes, social media 
applications, log files, office applications, or from traditional 
transactional applications—see, e.g., [20]; preprocessing and 
transformation of raw gathered data, and analyzing gathered 
data (Figure 2). Various approaches are used to collect data in 
raw form and to manipulate the collected data (i.e., to inspect, 
clean, and to transform data)—see Figure 3. The most 
commonly used approaches and means to acquire data are: 
registration—i.e., depositing data or information into a 
specified repository, questionnaires—i.e., forms are filled in by 
respondents; this method is typically used to collect regular or 
infrequent routine data, which can be adopted for the entire 
population or sampled population, interviews—i.e., information 
is obtained through inquiry and recorded by the enumerators; 
and this is performed either by using survey forms (i.e., 
structured interviews), or by taking notes while speaking with 
respondents (i.e., during open interviews), observations—i.e., 
taking direct measurements during practical laboratory 
experiments, or by using IoT devices such as sensors or any 
embedded computing devices—e.g., to measure a physical 
phenomenon, or properties such as force, temperature, or light 
intensity. 

In light of the above review, it can be said that there are 
already numerous techniques in place that can be adopted and 
applied in the context of the research reported in this paper to 
acquire data in raw form, to preprocess and transform gathered 
raw data into a form suited for data analytics, and to deal with 
analytics. The choice of a specific technique to use will depend 
on the circumstances on the ground, including e.g., the type of 
data dealt with. 

3. NEEDS ANALYSIS AND REQUIREMENTS FOR A 
DATA ANALYTICS PIPELINE 
A typical data analysis assignment involves gathering, 

manipulating (i.e., inspecting, cleaning, transforming), 
visualizing, and modeling data with a view to capturing and 
fostering an understanding of the patterns and trends in data. 
The requirements for an analytics system can be identified by 
considering the underlying data handling sub-processes and 
tasks involved. A suite of data analytics support tools must: 
• Facilitate acquisition and storage of raw data. 
• Support ubiquitous data acquisition by using IoT devices 

such as sensors and embedded computing devices within 
the existing Internet infrastructure, protocols, and a wide 
range of open source platforms. 

• Support processing of the raw data acquired by using the 
traditional data gathering techniques as well as the data 
acquired by using advanced data acquisition tools such as 
sensors, embedded computing devices, and other IoT 
devices. 

• Support transformation of raw data in the event data is 
missing, requiring enrichment, or if there is a need to 
transform the way the values are represented. 

• Facilitate data sharing among various stakeholders within 
the existing Internet infrastructure. 

• Enable fast, effective, and comprehensive data analysis by 
using advanced data analytics techniques. 

• Facilitate the discovery of useful information from raw 
datasets and visualization of processed data, suggest 
conclusions, and support decision-making. 

Apart from these high-level functional requirements, 
according to ISO/IEC 9126 quality standard—see e.g., [21], 
[39], the data analytics software components must also attain 
the desirable efficiency, maintainability, portability, usability 
and other desirable quality characteristics. A suite of software 
tools, consisting of a mix of dedicated tools and some selected 
everyday applications can be stringed together and used to meet 
the above described data analytics requirements.  

4. PROPOSED DATA ANALYTICS PIPELINE 
One of the principal functional requirements for the 

pipeline is to support users to perform analytics on the acquired 
raw data with a view to extracting useful insights. Building a 
pipeline for carrying out scalable analytics on voluminous and 
high velocity datasets acquired by using IoT devices or through 
traditional data gathering techniques coming in in many varied 
formats is one of the challenges that need to be addressed. The 
pipeline in its final form will combine several tailor made and 
existing applications to support activities in the following broad 
data analytics steps: (1) acquiring and storing of raw product 
data, (2) preprocessing and transformation of data, and (3) data 
analytics (Figure 4). The two pre-exploration steps shown in 
Figure 1, namely, the components and features identification 
step—in which the needs, wishes, and the preliminary general 
requirements for the product or system are identified and used 
as the basis for identifying the components and features, and 
the modeling and representation step—in which concrete and 
more specific requirements are formulated and used as the basis 
for modeling or representing the product or system variously, 
precede these three broad analytics steps.  

Acquiring and storing raw product data is the initial step of 
the proposed data analytics workflow. To this end, the 
traditional data gathering techniques such as observation, 
interview, and questionnaire survey can be adopted and used. 
Also, myriad protocols can facilitate raw data acquisition by 
using IoT devices (such as sensors, implants, transponders, or 
any other embedded computing devices). These devices may 
connect to the network using connections such as Bluetooth, 
cellular, Wi-Fi, or a hardware connection, which would send 
messages using defined protocols. Protocols widely supported 
by IoT applications such as Message Queue Telemetry 
Transport (MQTT)2[22], Constrained Application Protocol 
(CoAP) [23], Extensible Messaging and Presence Protocol 
(XMPP) [24], and others can be applied. Considerations in 
choosing a protocol to use include ubiquity and the ability to 
provide a wide range of support. Using any chosen protocol 
                                                           

2 Mosquitto—see, e.g., [29], is one of the widely used open source MQTT 
brokers which could be used. 
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will help to get the messages in hand—i.e. to catch and 
represent events or observations from connected devices in the 
event data is acquired by using connected IoT devices. Once a 
message is received by a broker, it can be handed over to an 
analytics system for the downstream activities of preprocessing 
and data transformation. It is recommended that the original 
source data must be stored before any preprocessing or 
performing transformation. This can be very helpful down the 
road, e.g., should there be any debugging issues during 
transformation or preprocessing, or if there is a need to replay a 
sequence of messages, e.g., for analysis or testing purposes. 

There are several options for storing data acquired by using 
IoT devices. These include using data warehousing 
infrastructures or frameworks such as Hadoop [25] and Hive 
[26], or working with NoSQL document databases [27] such as 
Couchbase [28]. The key storage requirements include the 
ability to offer a good combination of high-throughput and low-
latency characteristics, schema-less feature, the ability to 
handle high data volume input, flexibility, easiness to add new 

data, the ability to store very large datasets reliably and to 
stream those datasets at high bandwidth to clients, and the 
ability to write data directly to a distributed file system.  

Custom code to enable continuous writing and storage of 
data can be written and appended to the message broker. Codes 
can also be written to enable pushing messages to an 
intermediate messaging brokers or moving messages to 
different elements of the pipeline. One possible strategy is to 
have in place separate mechanisms for writing raw data to a 
persistence store and for moving the data into a real-time 
stream processing engine. 

As far as preprocessing and transformation step is 
concerned, it is important to recognize that raw product data 
derived from IoT devices or gathered by using traditional 
methods may not necessarily be suited for analytics. In certain 
circumstances, data may be missing—thus requiring 
enrichment, or representation of values may need to be altered. 
Consequently, there is always the need for a preprocessing and 
transformation step to manage enrichment and re-representation 
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Figure 4 Broad data analytics steps.  
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of gathered raw data. However, it is imperative to have in place 
strategies and mechanisms for storing both the enriched and re-
represented product datasets as well as for storing the original 
raw product dataset. It should be noted that preprocessing and 
transformation can be very expensive processes. They may also 
add significant latency to the data analytics workflow. From the 
implementation perspective, preprocessing, transformation, and 
data storage can be institutionalized in several different ways. 
Frameworks or systems such as Pig [30] and Storm [31] can be 
used in batch mode analysis and in writing data to a distributed 
file system. In this way, both the original raw data as well as the 
transformed or enriched data can be stored for future use. One 
of the key requirements in preprocessing and transformation is 
to achieve low-latency characteristics. In this regard, it is 
important to note that running multiple jobs in sequence will 
obviously add a lot of latency to the workflow.  

Data analytics is the final step of the pipeline, which starts 
once the data has been preprocessed or transformed. The goal 
here is to analyze data (i.e., large amounts of data - typically 
obtained in design office environments) with a view to 
capturing trends and patterns in data. An appropriate advanced 
analytics tool needs to be selected or developed and used to 
handle data, including continuous streams of data. Such a 
technique should be able to manage high-volume data streams 
and capable to perform operations such as event correlation, 
rolling metric calculations, and aggregate statistical analyses if 
needed. Examples of advanced analytics techniques that can be 
used to capture patterns and trends in data include machine 
learning techniques such as Artificial Neural Networks (ANNs) 
[32]. Another key requirement is that an analytics tool, as a key 
element of an analytics pipeline, should be a good fit for 
working with all sorts of data, including data streamed by IoT 
devices. Some of the obtained analytics values may sometimes 
be discarded directly while other values may need to be stored 
in a persistent store—and it always make sense to keep more 
data than the data that is discarded. Most of the available tools 
such as the Waikato Environment for Knowledge Analysis 
(WEKA) [33] and MATLAB [34], [35] are open source in 
nature, and this allow users to implement additional analytics 
algorithms as required—i.e., their functionalities can be 
accessed from other programming environments, e.g., for 
WEKA, there is an interface for Python and for the statistical 
programming language R. 

5. ILLUSTRATION 
In this section we explain how the proposed data analytics 

pipeline and strategies can be used in predicting various aspects 
of an engineering product or system such as cost, reliability, 
performance, and assembly time. Consider the product 
development assignment summarized in Figure 5. 

The hand-operated noodle making machine (Figure 6) 
needs to be conceptualized (i.e., its components and features 
identified) and then modelled or appropriately represented first. 
Once the product model or representation (i.e., the hand-
operated noodle making machine model or representation)—
created by taking into consideration usability, performance and 

other quality requirements—is in place, then aspects such as 
cost, performance, reliability, or assembly time can be 
predicted. The feature-based upfront design space exploration 
scheme—see Figure 1and refer also to [1], [2], [3]—is used to 
guide the conceptualization, modeling and representation, and 
exploration processes. Various aspects of the hand-operated 
noodle making machine can be predicted according to the data 
analytics workflow we propose in this paper (see Figure 4 and 
refer also to Figure 3).  

According to the feature-based upfront design space 
exploration scheme (see Figure 1), components and feature 
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Figure 6 A case-study product (a hand-operated noodle making 
machine). 

COMPANY’SCOMPANY’SCOMPANY’SCOMPANY’S BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUND
AAER & Co. is a company that develops various kinds of
home utensils. It has received an assignment to develop a
noodle press machine (see Figure 6). This small machine
will be sold in department stores and used mainly
domestically. The user should be able either to fix the
machine—e.g., on the kitchen table, or to hold it with one
hand while operating it. The noodle press machine will be
produced in large quantities and should be fairly
inexpensive.
ASSIGNMENTASSIGNMENTASSIGNMENTASSIGNMENT
Design the noodle press machine and show analytically
(using a suitable parametric mathematical model) that the
designed components and connections can withstand the
loading when the machine is in use. When designing, take
into consideration the need for minimum usage of material
(for all components) and make sure that the design meets
functional and non- functional requirements for the noodle
press machine. The components can take any shapes or
appearance. The main dimensions for the noodle press
machine are shown in Figure 5 (these dimensions can be
changed/varied slightly). Choose suitable materials for the
components. Consider possible real scenarios of extreme
loading.

 

Figure 5 An example product development assignment.  
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identification (also referred to as conceptualization in this 
article) is the first process step, which is guided by the sub-
scheme depicted in Figure 7. This sub-scheme discerns and 
defines three sets of features that a product or complex system 
may encompass, which are: (1) set of paradigmatic low-end 
complexity manifestation (CM) features, (P

LEf ); (2) set of 

paradigmatic high-end CM features, (P
HEf ); and (3) set of 

basic-system manifestation features, (
MFf ). Based on the 

viewpoints and constraints—gathered through user-centered 
techniques such as interviews and focus group research, the 
basic-system as well as CM physical, software, and cyber 
components can first be identified (see Table 1—but it is 
important to note here that for the case study product, i.e., the 
intended hand-operated noodle making machine, there were no 
any software or cyber components). The process entails 
identification of functional-physical, software, or cyber 
components that would make the hand-operated noodle making 
machine meet its functional as well as other quality 
requirements, and brainstorming on how the components will 
operate together and which features will make it operate as 
desired.  

As shown in Table 1, the hand-operated noodle making 
machine consists of some basic-system manifestation 
functional components that will enable it to operate and offer 
services to meet functional and other quality requirements. 
These basic-system components, among other things, enable 
the hand-operated noodle making machine to function as 
required. There were no any specific requirements that called 
for incorporation of paradigmatic CM functional components in 
this hand operated machine. To achieve the required 

functionality, the components with certain particular features 
must be aggregated in different ways as desired in order to 
come up with combinations or assemblies of components (i.e., 
complex mechanisms) that work collectively, and whose 
combined actions enable the eventual product or system to 
function as desired. Features (i.e., the elements of 

MFf , P
LEf , 

and P
HEf ) that must be incorporated into the components in 

order for them to function properly must be identified by taking 
into consideration functional and other quality requirements. 
The elements of these sets of features may be physical, 
software, or cyber in nature. In short, it is imperative to 
recognize that a feature or a given set of features can be 
manifested on components, and this will allow the hand-
operated noodle making machine to function or operate as 
required. And depending on the types of features incorporated 
into or onto the components of the hand-operated noodle 
making machine, it may function or operate differently. 

Practically, the process of identifying the features that 
should be incorporated onto or into the identified components 
of the hand-operated noodle making machine simply entails 
specifying the elements of 

MFf , P
LEf , and P

HEf . The applicable 

paradigmatic features can be identified in several ways, 
including, for instance, through expert judgement, focus group 
discussions, or by making associations, analogies, or references 
to prior similar products or past experiences. The identified 
features can further be classified differently, e.g., into the sets 
of form features, functional features, interface features, and so 
on. Through the above-described process, the functional 
components and features of a hand-operated noodle making 
machine summarized in Table 1 were identified. 
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Figure 7 Components and features identification scheme, see also [3].  
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Based on the sets of the identified components and basic 
paradigmatic features, a hand-operated noodle making machine 
can then be modelled or represented according to the scheme 
shown in Figure 8. Modeling techniques such as Petri Net [36], 
or low-fidelity prototyping techniques [37] such as abstract 
prototyping [38], [39], [40], and paper prototyping [41] may be 
used to represent the product or system architecturally or to 
model the operations of the product or system. Once the 
product or system has been modelled, various aspects of the 
hand-operated noodle making machine such as costs and 
assembly time can subsequently be predicted. To this end, 
advanced analytics techniques such as machine learning as well 
as statistical analysis routines incorporated into the pipeline can 
then be applied to enable the designers to analyze various 
datasets to gain insights into different aspects of the hand-
operated noodle making machine. 

The proposed roadmap (see Figure 1) allows us to 
conceptualize, to model or represent the product or system 

early on, and to explore, e.g., in this case, how the hand-
operated noodle making machine will be like and how it will 
function or operate. The resulting models or representations 
also allow the designers to investigate information, materials, 
and/or energy flows within the hand-operated noodle making 
machine and to evaluate the performance, operation, reliability, 
or any other quality characteristics. In this way, the potential 
problems can be uncovered and addressed early on. Also, an 
architectural representation (e.g., a skeleton representation) of 
the hand-operated noodle making machine can be built and 
used to visualize the layout of the components. Such a 
representation can be used as the basis, e.g., for determining the 
optimal arrangement of components, evaluating the kinematics 
and dynamics of the system, or as the basis for estimating the 
cost of the hand-operated noodle making machine—to this end, 
the appropriate data needed to predict cost, e.g., historical cost 
data of comparable prior products, should be available in a 

Table 1 Deriving components and features of the noodle making machine. 
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3MFf  Groove (holding handle interface) 

Spindle 

4MFf  Power thread  

5MFf  Fastening thread (press handle interface) 
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Press handle 
7MFf  Fastening thread (spindle interface) 

Top cover 
8MFf  Fastening thread (container interface) 
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10MFf  Groove (container’s handle interface) 
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12MFf  Inner hole 

13MFf  Varied cross-section area (gripping) 

Bottom cover 
14MFf  Fastening thread (container interface) 

15MFf  Noodle discharging holes 
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usable form, and suitable prediction tool must be created or 
selected, and applied. 

Overall, specification of the components of the hand-
operated noodle making machine in advance—based on 
knowledge of the design constraints as well as of the 
requirements for the product or system and wishes of various 
stakeholders—and identification of the features that the 
components should have in order for them to operate and to 
function as desired, are the key pre-exploration sub steps that 
the design process must go through, particularly when doing 
analytics in new product development processes. Knowledge of 
the design constraints and of the requirements for the product 
or system, as well as of the components and features in them 
allows the designers to conceptualize, to model or represent the 
product or system appropriately, and to subsequently use the 
analytics pipeline proposed in this paper to predict various 
aspects of the product or system such cost, performance, and 
assembly time early on (i.e., according to the chain of data-
processing steps specified in the pipeline). Such prediction can 
be effected by comparing the design of the product or system 
with the designs of prior products or systems—this prediction 
relies on the availability of prior historical datasets (e.g., based 
on prior comparable product’s or system’s cost, performance, or 
assembly time datasets).  

6. SUMMARY, CONCLUSIONS, AND FUTURE WORK 
The paper has addressed the issues pertaining to facilitating 

and supporting data analytics in complex products or systems 
(with mechanical, electrical, software, cyber, and/or sensing 
elements) development processes. The challenges we attempted 
to address included how to acquire data by using both the 
traditional data acquisition methods and IoT devices, how to 
preprocess and transform gathered raw data into a form suited 
for data analytics, and how to deal with analytics. The paper 
has introduced strategies and a pipeline which consists of a 
chain of data-processing stages in which advanced analytics 
techniques are applied. These strategies and the pipeline can be 
used against large and diverse datasets to predict various 
aspects of complex product or system. The data analytics 
pipeline can be scaled or adapted, and used in various 
application domains to support processing of different types of 
data such as structured, unstructured, streamed, or batch data of 
different sizes—including large datasets (i.e., big data3) that 

                                                           
3 According to the literature, a dataset is taken to be ‘big data’ if it cannot 

be handled by a traditional relational database management systems (RDMS). 
For instance, Naveenkumar and Selvavinayagam [20] define big data as 
‘datasets whose size or type is beyond the ability of traditional relational 
databases to capture, manage, and process the data with low-latency’. The 
defining characteristics for big datasets are high-volume, high-velocity, and/or 
high-variety. 
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Figure 8 Components and features aggregation scheme, see also [1],[3].  
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require capabilities beyond those of the traditional relational 
database management systems (RDBMS). 

A case-study application example has been used to 
illustrate how the pipeline can be used in a practical 
engineering product or system development process. In short, 
the proposed pipeline is a constituent of a broader design space 
exploration workflow scheme designed for prediction of 
various aspects of complex products or systems upfront. This 
design space exploration scheme defines a four-tier procedural 
workflow, which starts with needs analysis, followed by the 
identification of the components and features of the product or 
system. The product or system can then be modeled or 
represented as desired (i.e., the requirements for the product or 
system need to be formulated first, and then used as the basis 
for modeling—i.e., building a functional, structural, or a 
complete product or system model as desired). Modeling in this 
sense entails aggregating the identified features of the product 
or system to achieve the required architectural composition and 
functionality. Modeling techniques such as Petri Net, or low-
fidelity prototyping techniques such as abstract prototyping and 
paper prototyping may be used to model or to represent the 
architecture or the operations of the intended product or 
complex system. Various aspects of the product or system such 
as cost, assembly time, or performance can subsequently be 
predicted. 

The proposed pipeline and strategies allow users to acquire 
data and to insightfully and intelligently explore the design 
space of products or systems. The incorporation of powerful 
advanced analytics techniques such as machine learning as well 
as various statistical analyses into the pipeline aims to allow the 
designers to analyze untapped data sources or data that may 
otherwise deemed to be inaccessible or unusable to gain new 
insights, resulting in faster exploration of design space and 
sensible decisions. The reported research contributes to the 
complex products and systems conceptualization knowledge, in 
particular to the research efforts on applying data analytics 
techniques upfront in a way that could have a profound impact 
on the processes of development of complex engineering 
products or systems. Apart from complex engineering product 
or system development, the proposed data analytics workflow 
can be adapted and used for prediction in other application 
domains with high societal impact such as health care and 
business. Future works include delving deeper into issues 
concerning the validity of the proposed strategies and of the 
data analytics workflow, including their applicability and 
manifestation in different practical settings. This would entail 
developing additional dedicated algorithms that may be needed, 
e.g., to process or manage high-volume data streams, or to 
perform certain specific operations such as event correlation, 
metric calculations, or any other statistical computations 
needed to make predictions. 
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