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ABSTRACT

Facilitating data analytics for effective predictioin
complex products or systems development is thesfafuthe
research described in this paper. The specificctibge was to
develop strategies and a data analytics pipelitie aviview to
supporting exploration of the design space of cemplroducts
or systems upfront. The underlying challenges &tkhcluded
how to acquire and store raw data gathered by usirly the
traditional methods and advanced Internet of Thiigd)
devices, how to preprocess and transform raw adbaa form
suited for data analytics, and how to deal withlyits. A
pipeline for data analytics to support decision imgkin
complex products or systems development is propasedits
applicability illustrated with a practical exampleThe
incorporation of advanced analytics techniques irhe
proposed pipeline allows users to acquire data #&md
insightfully and intelligently predict aspects suah cost and
assembly time early on, and to make decisions basedata
that may otherwise deemed to be inaccessible csalhe. This
work contributes to the efforts directed toward Isjpy data
analytics techniques in a way that can have a prafampact
on an engineering product or system developmertesmo

1. INTRODUCTION
There is a huge excitement around the promise iofgus

advanced data analytics techniques against lardedarerse
datasets in various application domains. Engingegroduct
development is one of the application domains wihidhanced
data analytics practices can positively impact. ropf
prediction of aspects such as performance, relighbénd cost
is one of the early phase engineering design aisafyivities
in which advanced data analytics techniques sucmashine
learning and data mining could play role in, etg.facilitate

enriching, converting, and capturing trends in da®, data
acquired using traditional data gathering techrsgueupled
with e.g., advanced data acquisition tools suchngsnet of
Things (loT) devices) to gain insights. Productssgstem$

(with mechanical, electrical, software, cyber amdéensing
elements in them) are increasingly becoming mor raore
complex. To a large extent, this can be attributedontinuous
advances of various advanced technologies usedhém,t
including computing, communication, sensing, anchticd

technologies—which are increasingly becoming imered

with products or systems. In general terms, theentomplex a
product or system becomes, the harder the prediafothe
aspects such as performance, reliability, or cesbimes. The
motivation behind the work reported in this papeaswthe
general understanding that the success of a prausystem
during its use phase will depend on how well thgettgpers
can predict and understand the dynamics of thesysipfront,
and be able to accommodate the knowledge gainedtiva
development process and to decisively address aogvered
problems early on.

This work builds and expands on our earlier workesse
e.g., [1], [2], [3], in which a roadmap for prediot of future
prospects and for exploration of design space @Ehcomplex
systems such as cyber-physical systems (CPS) veasedr—
see Figure 1. This roadmap outlines a systemapcoaph for
identification of the components and features ofmplex
products or systems such as CPSs, and for modefitigese
products or systems with a view to forecasting efspsuch as

! The term ‘product’ is used in this paper to refean object or service
created as a result of an engineering processaandssa need or satisfies a set
of requirements while the term ‘system’ is usedefer a collection of objects
or things working together as parts of a mechanism.
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cost, reliability, performance, and assembly tinalyeon. It
specifies the four steps of complex product oresystiesign
space exploration process, which are: (a) needysima(b)
components and features identification, (c) modgeliand
representation, and (d) exploration (i.e., engimgeanalyses
and data analytics). In the latter step, among rothimgs—
apart from carrying out various engineering anaysach as
Finite Element Analysis (FEA) or Computational Elui
Dynamics (CFD) analysis to optimize complex desigihe
data needed in making predictions is gathered aiichide
methods are chosen and applied to prognosticatarefut
prospects. To this end, several data analyticsitgaks may be
applied together to achieve reliable predictionnfronassive
design datasets, which can in turn be used as dkes tor
optimizing complex designs in real time. In this kowe
focused specifically on the fourth step of thischwap (i.e., the
exploration—i.e., engineering analyses and datytcs step)
and we attempted to develop a pipeline and stredeigir data
analytics with a view to supporting prediction béem massive
product datasets and decision making processehleirearly
stages of the engineering product or system dexaop
processes. Thus, the principal objective of themeg research
was to develop techniques for acquiring data in fasmn, for
preprocessing and transforming gathered raw dataarform
suited for data analytics, and for dealing withlgtes—with a
view to predicting aspects such as assembly timdppnance,
reliability, and cost. The intention here was ttnoately come
up with an all-inclusive pipeline that combines es&¥ tools

eWishes (i.e., viewpoints,
and constraints) gathering

eSpecification of
components and features

Components and
features
identification

eFormulation of specific requirements

eCreation of functional, structural or the
entire system (mental or physical )
model

Modeling and
representation

Exploration
(engineering analyses
and data analytics)

and applications to manage the entire analyticcqes i.e.,
from data acquisition through to analytics. Thellemges we
attempted to address included how to acquire datav form,
how to preprocess and transform gathered raw dataai form
suited for data analytics, and how to deal withlgiws. The
sought after strategies and pipeline were interidggrovide a
comprehensive strategic and operational plan fota-da
processing, as well as tools to effectively suppuetproduct or
system developers to deal with the above-mentiathesign
space exploration and data analytics challenges.

In this paper, we describe the research we conduatel
present the results. The paper is organized amwisllWe first
present a concise literature review in the folloyviBection.
Then, we describe the needs and present the rewrite for
the data analytics pipeline, present the proposed dnalytics
pipeline, and illustrate how the pipeline and theposed
strategies can be put to use. We finally discussrédsearch
results and present some conclusions about thendisdf the
research.

2. A CONCISE LITERATURE REVIEW
Data analytics is increasingly becoming an impdrtan

subject in a number of research and application aiasn
Today, analytics tools are used variously in mappliaation
domains to transform data into useful insightsjuding, e.g.,

in business—where analytics methods and tools aes Wo
process data and embed information into businessepses
[4], in weather forecasting [5], and in engineerif@].

eChoosing and using
suitable data analytics
techniques to predict
aspects such as
performance, cost,
assembly time; finite
elements analysis; life-
cycle assesment, etc.

Figure 1 Upfront design space exploration scheme, see &|so [
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Analytics
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N

Product data enrichment
(i.e. pre-processing and
transforming raw data)

y )

Acquiring and storing raw
product data

Figure 2 A data analytics workflow showing a chain of data-
processing stages.

Numerous methods and techniques from various disegpare
used to deal with the challenges faced in dataytosl e.g., in
acquiring data and in analyzing previously untappta
sources to gain new insights and to uncover knoyddd], [7].
These include visual analytics [6], text analyti@s predictive
analytics [9], descriptive analytics [10], diagriosanalytics

Acquiring and storing
raw product data

Product data
enrichment (i.e. pre-
processing and
transforming raw
data)

Analytics

Figure 3 Technigues and possible technologies to suppaatatalytics in complex systems development prosesse

Techniques

[11], and prescriptive analytics [12]. Furthermamregthods and
techniques such as machine learning [13], datangifl4],
[15], statistical analyses [15], and natural larggu@arocessing
[16] are also applied to process, analyze, and iscoder
patterns in data. Data analytics methods and tqaksisuch as
those mentioned above allow us to make good usdatd
datasets originating from various sources, inclgdirior
instance, from scientific experiments, computeredaservices,
online sales, or from machine measurements in dlomps,
services, or any other activities and to obtainigints into
complex operations.

The data dealt with in analytics inclutkxt data (i.e., text
analytics)—see, e.g., [17] in which approaches suach
statistical pattern learning are used to deriverimftion from
patterns and trends in textédeo data (i.e., video analytics),
see, e.g., [18]—where video analytics applicatiars used to
monitor scenes to gain insights and to understhrdattions
occurring, andgraphical data (i.e., graph analytics)—see, e.g.
[19] which enables us to explore ‘many-to-many’ @bex
relationships and to map relationships among higliraes of
highly connected data to find connections, to uklmsightful
guestions, and to produce more accurate outcomes.

Overall, regardless of the domain in which anabytis
applied or of the form or type of data, the anabtprocesses
typically pass through three major stages, namadguiring
and storing raw data—much of which is generatedaige

Possible technologies

e N
Devices such as sensors, implants,

transponders or any other embedded

loT based data acquisition
techniques and traditional data
gathering techniques

Dedicated tools/algorithms applied
to manage the enrichment or
transformation, to write data to
distributed file systems, and to
store transformed data

Advanced analytics techniques

A

computing devices connected to the
network using connections such as
Bluetooth, cellular, Wi-Fi, or a
hardware connection, plus supported
protocols as well as techniques such as
questionnaires, interviews, etc.

Tailor made pre-processing and
transformation tools

Machine learning tools built based on
techniques such as ANNs —used to
capture patterns and trends in data
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v




scale and in real time, typically coming from sesso
embedded computing devices, cameras (i.e., viddgphatos),
audio recording devices, web-based processes,| soedia
applications, log files, office applications, ooffn traditional
transactional applications—see, e.g., [20jeprocessing and
transformation of raw gathered data, arahalyzing gathered
data (Figure 2). Various approaches are used tectalata in
raw form and to manipulate the collected data, (feeinspect,

» Facilitate data sharing among various stakeholdgttsin
the existing Internet infrastructure.

» Enable fast, effective, and comprehensive dataysisaby
using advanced data analytics techniques.

* Facilitate the discovery of useful information froraw
datasets and visualization of processed data, stgge
conclusions, and support decision-making.

Apart from these high-level functional requirements

clean, and to transform data)—see Figure 3. Thetmos sccording to ISO/IEC 9126 quality standard—see, d21],

commonly used approaches and means to acquire adata
registration—i.e., depositing data or information into a
specified repositoryquestionnaires—i.e., forms are filled in by
respondents; this method is typically used to coltegular or
infrequent routine data, which can be adopted far éntire
population or sampled populatiamierviews—i.e., information

is obtained through inquiry and recorded by theneenators;
and this is performed either by using survey for(ns.,
structured interviews), or by taking notes whileaing with
respondents (i.e., during open interviewa)servations—i.e.,
taking direct measurements during practical lalooyat
experiments, or by usinpT devices such as sensors or any
embedded computing devices—e.g., to measure a qathysi
phenomenon, or properties such as force, temperavuright
intensity.

In light of the above review, it can be said tHadre are
already numerous techniqgues in place that can bpted and
applied in the context of the research reportethis paper to
acquire data in raw form, to preprocess and tramsfgathered
raw data into a form suited for data analytics, emdeal with
analytics. The choice of a specific technique te wil depend
on the circumstances on the ground, including ¢he.type of
data dealt with.

3. NEEDS ANALYSIS AND REQUIREMENTS FOR A
DATA ANALYTICS PIPELINE
A typical data analysis assignment involves gatitgri

manipulating (i.e., inspecting, cleaning, transfig,

visualizing, and modeling data with a view to cajstg and
fostering an understanding of the patterns anddgén data.

The requirements for an analytics system can betiftbd by

considering the underlying data handling sub-preegsand

tasks involved. A suite of data analytics suppoolg must:

» Facilitate acquisition and storage of raw data.

» Support ubiquitous data acquisition by using loVices
such as sensors and embedded computing deviceim with
the existing Internet infrastructure, protocolsd an wide
range of open source platforms.

* Support processing of the raw data acquired bygusie
traditional data gathering techniques as well as dhta
acquired by using advanced data acquisition toath s

sensors, embedded computing devices, and other IoT

devices.

» Support transformation of raw data in the eventadat
missing, requiring enrichment, or if there is a dde
transform the way the values are represented.

[39], the data analytics software components missi attain

the desirable efficiency, maintainability, portétyil usability

and other desirable quality characteristics. Aesoit software
tools, consisting of a mix of dedicated tools anths selected
everyday applications can be stringed togethersed to meet
the above described data analytics requirements.

4. PROPOSED DATA ANALYTICS PIPELINE

One of the principal functional requirements fore th
pipeline is to support users to perform analytiocghe acquired
raw data with a view to extracting useful insighBslilding a
pipeline for carrying out scalable analytics onwminous and
high velocity datasets acquired by using loT devicethrough
traditional data gathering techniques coming imiany varied
formats is one of the challenges that need to beeaded. The
pipeline in its final form will combine several k& made and
existing applications to support activities in fbowing broad
data analytics steps: (1) acquiring and storingasi product
data, (2) preprocessing and transformation of datd,(3) data
analytics (Figure 4). The two pre-exploration stsp®wn in
Figure 1, namely, theomponents and features identification
step—in which the needs, wishes, and the prelingiganeral
requirements for the product or system are ideatifind used
as the basis for identifying the components andufea, and
the modeling and representation step—in which concrete and
more specific requirements are formulated and asethie basis
for modeling or representing the product or systeriously,
precede these three broad analytics steps.

Acquiring and storing raw product data is the initial step of
the proposed data analytics workflow. To this enbde
traditional data gathering techniques such as whten,
interview, and questionnaire survey can be adoptetl used.
Also, myriad protocols can facilitate raw data dsiion by
using loT devices (such as sensors, implants, gaargers, or
any other embedded computing devices). These deviwey
connect to the network using connections such astBbth,
cellular, Wi-Fi, or a hardware connection, whichukb send
messages using defined protocols. Protocols widepported
by IoT applications such as Message Queue Telemetry
Transport (MQTTJ[22], Constrained Application Protocol
(CoAP) [23], Extensible Messaging and Presence oPobt
(XMPP) [24], and others can be applied. Considenatiin
choosing a protocol to use include ubiquity and dbdity to
provide a wide range of support. Using any choseatopol

2 Mosquitto—see, e.g., [29], is one of the widelgdi®pen source MQTT
brokers which could be used.

4 Copyright © 2015 by ASME



Acquiring and storing raw product data

Broker

Real-time stream
processing engine

A

Pre-processing and transformations

/ \

Enrichment Re-representation

10 devices

—— o = —

Protocols

\__l__'l

Persistence
store

Develop/choose
analytics algorithm

\[/ Other

traditional

Perform analytics data sources

Useful
values?

Discard

Figure 4 Broad data analytics steps.

will help to get the messages in hand—i.e. to caack data, the ability to store very large datasetsabd}i and to
represent events or observations from connectetekein the stream those datasets at high bandwidth to clieans, the
event data is acquired by using connected loT @svi©nce a ability to write data directly to a distributeddisystem.

message is received by a broker, it can be handedto an Custom code to enable continuous writing and stielg
analytics system for the downstream activities refopocessing data can be written and appended to the messagerb@odes
and data transformation. It is recommended thatattiginal can also be written to enable pushing messages nto a
source data must be stored before any preprocessing intermediate messaging brokers or moving messages t
performing transformation. This can be very helgfolvn the different elements of the pipeline. One possibtategy is to

road, e.g., should there be any debugging issuethgdu have in place separate mechanisms for writing rata do a
transformation or preprocessing, or if there iadcto replay a persistence store and for moving the data into a-ti@me

sequence of messages, e.g., for analysis or tqatiqpgses. stream processing engine.

There are several options for storing data acquiyedsing As far as preprocessing and transformation step is
IoT devices. These include using data warehousing concerned, it is important to recognize that rawdpct data
infrastructures or frameworks such as Hadoop [2f] Hive derived from loT devices or gathered by using tradal
[26], or working with NoSQL document databases [&7¢h as methods may not necessarily be suited for analyticsertain
Couchbase [28]. The key storage requirements iecltice circumstances, data may be missing—thus requiring
ability to offer a good combination of high-throymh and low- enrichment, or representation of values may nedzbtaltered.
latency characteristics, schema-less feature, thidityato Consequently, there is always the need for a pogging and

handle high data volume input, flexibility, easisde add new transformation step to manage enrichment and neseptation

5 Copyright © 2015 by ASME



of gathered raw data. However, it is imperativbawe in place
strategies and mechanisms for storing both theleedi and re-
represented product datasets as well as for stthiegriginal

raw product dataset. It should be noted that prgssing and
transformation can be very expensive processes. iflag also

add significant latency to the data analytics wioskf From the

implementation perspective, preprocessing, transftion, and
data storage can be institutionalized in severié¢raint ways.

Frameworks or systems such as Pig [30] and Stofidan be

used in batch mode analysis and in writing data tlstributed

file system. In this way, both the original rawalas well as the
transformed or enriched data can be stored fordutise. One
of the key requirements in preprocessing and toainsdtion is

to achieve low-latency characteristics. In this arelg it is

important to note that running multiple jobs in sence will

obviously add a lot of latency to the workflow.

Data analytics is the final step of the pipeline, which starts
once the data has been preprocessed or transfofithedyoal
here is to analyze data (i.e., large amounts dd eaypically
obtained in design office environments) with a vidw
capturing trends and patterns in data. An apprtgadvanced
analytics tool needs to be selected or developed used to
handle data, including continuous streams of d&ach a
technique should be able to manage high-volume statams
and capable to perform operations such as evemélation,
rolling metric calculations, and aggregate stattanalyses if
needed. Examples of advanced analytics technidpaesan be
used to capture patterns and trends in data inciodehine
learning techniques such as Artificial Neural Netkgo(ANNS)
[32]. Another key requirement is that an analytmsl, as a key
element of an analytics pipeline, should be a gfibdor
working with all sorts of data, including data streed by IoT
devices. Some of the obtained analytics values soayetimes
be discarded directly while other values may neebe stored
in a persistent store—and it always make sensesép knore
data than the data that is discarded. Most of iaflable tools
such as the Waikato Environment for Knowledge Asialy
(WEKA) [33] and MATLAB [34], [35] are open sourcen i
nature, and this allow users to implement additi@realytics
algorithms as required—i.e., their functionalitiezan be
accessed from other programming environments, €d.,
WEKA, there is an interface for Python and for #iatistical
programming language R.

5. ILLUSTRATION

In this section we explain how the proposed datdygins
pipeline and strategies can be used in predictamgus aspects

of an engineering product or system such as cefgbility,
performance, and assembly time. Consider the ptoduc
development assignment summarized in Figure 5.

The hand-operated noodle making machine (Figure 6)
needs to be conceptualized (i.e., its componentsfeatures
identified) and then modelled or appropriately esgnted first.
Once the product model or representation (i.e., laad-
operated noodle making machine model or represenjat
created by taking into consideration usability,fpenance and

COMPANY'S BACKGROUND

AAER § Co. Is o company that develops various kinds of
homee utensils. (t has vecelved an assignment to develop a
noodlle press machine (see Figure &). This small machine
will be sold in department stores and used wmainly
domestically. The user should be able efther to fix the
machine—e.g., on the kitchen table, or to holdl it with one
hand while operating it. The woodle press machine will be
produced I large quantities and should be fairly
inexpensive.

ASSIGNMENT

Design the noodle press waching and show analytically
(using a suitable parametric mathematical wodel) that the
designed components and comnections cam withstand the
loading whew the machine is tn use. Whewn designing, take
into considerntion the need for minbmum usage of material
(for all components) and wmake sure that the design meets
functional and non- functional requirements for the noodle
press wachine. The components can taRe awny shapes or
appearance. The wmain dimensions for the woodle press
maching are shown in Flgure 5 (these dimensions can be
changed/varied slightly). Choose sultable materials for the
components. Consider possible real scenarios of ex‘veme
Londing.

Figure5 An example product development assignment.

other quality requirements—is in place, then aspectch as
cost, performance, reliability, or assembly timen che
predicted. The feature-based upfront design spapmmtion
scheme—see Figure land refer also to [1], [2], [B]sed to
guide the conceptualization, modeling and repregiem, and
exploration processes. Various aspects of the baedated
noodle making machine can be predicted accordinpeaata
analytics workflow we propose in this paper (seguké 4 and
refer also to Figure 3).
According to the feature-based upfront design space

exploration scheme (see Figure 1), components aature

/
S —— 400
=] y mm
press
handle
spmdle
container &
\‘ w‘ \A\\\‘\\
= " top
\ e cover
e~ N
bottom ) N press
cover b — 4 plate
holding
handle
Figure 6 A case-study product (a hand-operated noodle making

machine)
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identification (also referred to as conceptual@atiin this
article) is the first process step, which is guidsdthe sub-
scheme depicted in Figure 7. This sub-scheme discand
defines three sets of features that a product mmpbex system
may encompass, which are: (1) set of paradigmaticdnd
complexity manifestation (CM) features?(_); (2) set of

paradigmatic high-end CM featuresf(_); and (3) set of
basic-system manifestation features; (. Based on the

viewpoints and constraints—gathered through useteced
techniques such as interviews and focus group masethe
basic-system as well as CM physical, software, apder
components can first be identified (see Table 1—ibuis
important to note here that for the case study yed.e., the
intended hand-operated noodle making machine, tliere no
any software or cyber components). The processilenta
identification of functional-physical, software, ocyber
components that would make the hand-operated naooakéng
machine meet its functional as well as other qualit
requirements, and brainstorming on how the compisnenil
operate together and which features will make ierafe as
desired.

functionality, the components with certain partaaufeatures
must be aggregated in different ways as desiredrder to
come up with combinations or assemblies of comptngre.,
complex mechanisms) that work collectively, and wéo
combined actions enable the eventual product otesygo
function as desired. Features (i.e., the eIemehtsMFQ P

LE’

and P ) that must be incorporated into the components in

order for them to function properly must be idaatifby taking
into consideration functional and other quality uiggments.
The elements of these sets of features may be qabysi
software, or cyber in nature. In short, it is imgare to
recognize that a feature or a given set of featwas be
manifested on components, and this will allow thend:
operated noodle making machine to function or dpeis
required. And depending on the types of featuresrporated
into or onto the components of the hand-operateddleo
making machine, it may function or operate diffehen
Practically, the process of identifying the featurdhat
should be incorporated onto or into the identif@mponents
of the hand-operated noodle making machine simplgils
specifying the elements of _, *f _, and®f,_. The applicable

As shown in Table 1, the hand-operated noodle ngakin paradigmatic features can be identified in sevensalys,

machine consists of
functional components that will enable it to operand offer
services to meet functional and other quality rezpents.
These basic-system components, among other thamghle
the hand-operated noodle making machine to functisn
required. There were no any specific requiremeimis talled
for incorporation of paradigmatic CM functional cpaments in
this hand operated machine. To achieve the

needs
analysis

physical, software,
cyber components

constraints (p)
Ps PP

-

@ % 4
View points (@)

physical, software,
cyber components

needs
analysis

(classified and tagged
appropriately)

U{fMF’PfHE'PfLE}

some basic-system manifestation including, for instance, through expert judgemdotus group

discussions, or by making associations, analogiesferences
to prior similar products or past experiences. Tdentified

features can further be classified differently,.eigto the sets
of form featuresfunctional featuresinterface featuresand so
on. Through the above-described process, the fumatlti
components and features of a hand-operated noodleéng

required machine summarized in Table 1 were identified.

Low-end paradigmatic features

Pf P

p
LE; fLEz fLE,,

physical, software,
cyber components

QP

needs
analysis

needs
analysis

physical, software,
cyber components

Pf P

Pt
HE, HE, HE,

High-end paradigmatic features

Figure 7 Components and features identification schemealsed3].
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Table 1 Deriving components and features of the noodle ngakiachine.

. ' High-end paradigmatic CM features,
Basic-system manifestation features, fur L;);v-end paradigmatic CM features, P f
HE
Components (refer fue ={f f foe LE
Iso to Figure 5 MF MRy MR ""tr TMR, Pe P P P Pf. ={Pf., Pf. .. °f
also to Figure 5) fLE ={ fLEll fLEz""' fLEn} HE { HE! 'HE, HEm}
Designation Description
f,\,,,:1 Fastening threads (bottom cover interface)
Container fM,:2 Fastening thread (top cover interface)
f,\,,,;3 Groove (holding handle interface)
fue, Power thread
Spindle fM,:5 Fastening thread (press handle interface)
2
‘g fMFE Fastening thread (press plate interface)
g
é Press handle fM,:7 Fastening thread (spindle interface)
P _ P —
% fLE =0 fHE =U
E Top cover fM,:B Fastening thread (container interface) (None) (None)
s
ag)- Press plate fM,:g Fastening thread (spindle interface)
2
©
= fM,;m Groove (container’s handle interface)
f,\,,,;11 Outer hole
HOldlng handle fMFJ.z Inner hole
I‘M,:13 Varied cross-section area (gripping)
fMF“ Fastening thread (container interface)
Bottom cover
I‘M,:15 Noodle discharging holes

Based on the sets of the identified components beasic
paradigmatic features, a hand-operated noodle makachine
can then be modelled or represented accordingeastheme
shown in Figure 8. Modeling techniques such as Rt [36],
or low-fidelity prototyping techniques [37] such abstract
prototyping [38], [39], [40], and paper prototypif#l] may be
used to represent the product or system architdbtuor to
model the operations of the product or system. Otiee
product or system has been modelled, various aspmécthe
hand-operated noodle making machine such as cosls
assembly time can subsequently be predicted. T® e¢hd,
advanced analytics techniques such as machindrgaana well
as statistical analysis routines incorporated theopipeline can
then be applied to enable the designers to analgzimus
datasets to gain insights into different aspectshef hand-
operated noodle making machine.

The proposed roadmap (see Figure 1) allows us to

conceptualize, to model or represent the produckystem

early on, and to explore, e.g., in this case, hbe hand-
operated noodle making machine will be like and hbwill

function or operate. The resulting models or regméations
also allow the designers to investigate informatioraterials,
and/or energy flows within the hand-operated noadbking
machine and to evaluate the performance, operattiability,

or any other quality characteristics. In this wtye potential
problems can be uncovered and addressed early lsn, &n
architectural representation (e.g., a skeletonessgrtation) of
the hand-operated noodle making machine can be and
used to visualize the layout of the components. hSac
representation can be used as the basis, e.gletermining the
optimal arrangement of components, evaluating therkatics
and dynamics of the system, or as the basis fimashg the
cost of the hand-operated noodle making machinehisoend,
the appropriate data needed to predict cost, leigjgrical cost
data of comparable prior products, should be abkgElan a
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Figure 8 Components and features aggregation scheme, s RlS].

usable form, and suitable prediction tool must beated or
selected, and applied.
Overall, specification of the components of the dian

6. SUMMARY, CONCLUSIONS, AND FUTURE WORK
The paper has addressed the issues pertainingilitafang

operated noodle making machine in advance—based onand supporting data analytics in complex productsystems

knowledge of the design constraints as well as lof t
requirements for the product or system and wisliegsdous
stakeholders—and identification of the featurest thilae
components should have in order for them to opeaaté to
function as desired, are the key pre-exploratidn stieps that
the design process must go through, particularlgrwhoing
analytics in new product development processeswiatpe of
the design constraints and of the requirementgherproduct
or system, as well as of the components and feataréghem
allows the designers to conceptualize, to modekpresent the
product or system appropriately, and to subsequargé the
analytics pipeline proposed in this paper to predarious
aspects of the product or system such cost, pedioce and
assembly time early on (i.e., according to the rhafi data-
processing steps specified in the pipeline). Sueldiption can
be effected by comparing the design of the producystem
with the designs of prior products or systems—tmsdiction
relies on the availability of prior historical da#s (e.g., based
on prior comparable product’s or system’s costfquarance, or
assembly time datasets).

(with mechanical, electrical, software, cyber, andéensing
elements) development processes. The challengesterapted
to address included how to acquire data by usintp boe
traditional data acquisition methods and loT deyjideow to
preprocess and transform gathered raw data intvma $uited
for data analytics, and how to deal with analytithke paper
has introduced strategies and a pipeline which istn®f a
chain of data-processing stages in which advancedytics
techniques are applied. These strategies and pledin@ can be
used against large and diverse datasets to preditbus
aspects of complex product or system. The datay@rsl
pipeline can be scaled or adapted, and used inousri
application domains to support processing of déffertypes of
data such as structured, unstructured, streamduhtohn data of
different sizes—including large datasets (i.e., Hayd) that

3 According to the literature, a dataset is takeheobig data’ if it cannot
be handled by a traditional relational databaseagament systems (RDMS).
For instance, Naveenkumar and Selvavinayagam [#Jihel big data as
‘datasets whose size or type is beyond the abditytraditional relational
databases to capture, manage, and process thewiatdow-latency’. The
defining characteristics for big datasets are Wiglsme, high-velocity, and/or
high-variety.

9 Copyright © 2015 by ASME



require capabilities beyond those of the traditiordational
database management systems (RDBMS).

A case-study application example has been used to
illustrate how the pipeline can be used in a pecatti
engineering product or system development prodesshort,
the proposed pipeline is a constituent of a broddsign space
exploration workflow scheme designed for predictiof
various aspects of complex products or systemsonpfiThis
design space exploration scheme defines a fouptmredural
workflow, which starts with needs analysis, follalvey the
identification of the components and features ef phoduct or
system. The product or system can then be modeted o [3].
represented as desired (i.e., the requirementthéoproduct or
system need to be formulated first, and then usethe basis
for modeling—i.e., building a functional, structyraor a
complete product or system model as desired). Mugl@h this
sense entails aggregating the identified featufeébenproduct
or system to achieve the required architecturalpmsition and
functionality. Modeling techniques such as Petrt,Ng low-
fidelity prototyping techniques such as abstraotgiyping and
paper prototyping may be used to model or to remtethe
architecture or the operations of the intended pcbdor
complex system. Various aspects of the produciystem such
as cost, assembly time, or performance can substyguze
predicted.

The proposed pipeline and strategies allow usessdoire
data and to insightfully and intelligently explotbe design
space of products or systems. The incorporatiopaferful
advanced analytics techniques such as machinarigaaa well
as various statistical analyses into the pipelinesao allow the
designers to analyze untapped data sources ortl@tanay
otherwise deemed to be inaccessible or unusabgmito new
insights, resulting in faster exploration of desigpace and
sensible decisions. The reported research conesbtd the
complex products and systems conceptualization ledmye, in
particular to the research efforts on applying datelytics
techniques upfront in a way that could have a pnodbimpact
on the processes of development of complex engirgeer
products or systems. Apart from complex engineegrapuct
or system development, the proposed data anahickflow
can be adapted and used for prediction in otheficapion
domains with high societal impact such as healtte and
business. Future works include delving deeper iissues
concerning the validity of the proposed strategiad of the
data analytics workflow, including their applicatyil and
manifestation in different practical settings. Thisuld entail
developing additional dedicated algorithms that inayeeded,
e.g., to process or manage high-volume data stream$o
perform certain specific operations such as eventetation,
metric calculations, or any other statistical comagons
needed to make predictions.
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