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� Obtain predictive models for the drag coefficient of a sphere using symbolic regression.
� The drag coefficient of the sphere depends on logarithmic terms of the Reynolds number.
� The logarithmic drag models have a higher extrapolation range than the power-based models.
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a b s t r a c t

At the beginning of the second half of the twentieth century, Proudman and Pearson (J. Fluid. Mech.,2(3),
1956, pp.237–262) suggested that the functional form of the drag coefficient (CD) of a single sphere sub-
jected to uniform fluid flow consists of a series of logarithmic and power terms of the Reynolds number
(Re). In this paper, we will explore the validity of the above statement for Reynolds numbers up to 106 by
using a symbolic regression machine learning method. The algorithm is trained by available experimental
data and data from well-known correlations from the literature for Re ranging from 0:1 to 2� 105. Our
results show that the functional form of CD contains powers of log Reð Þ, plus the Stokes term. The logarith-
mic CD expressions can generalize (extrapolate) better beyond the training data than pure power series of
Re and are the first in the literature to predict with acceptable accuracythe onset of the rapid decrease
(drag crisis) of CD at high Re, but also to follow the right behaviour towards zero Re. We also find a con-
nection between the root of the Re-dependent terms in the CD expression and the first point of laminar
separation. The generalization behaviour of power-based drag coefficient equations is worse than
logarithmic-based ones, especially towards the zero Re regime in which they give non-physical results.
The logarithmic based CD correctly describes the physics from the low Re regime to the onset of the drag
crisis. Also, by applying a minor modification in the logarithmic based equations, we can predict the drag
coefficient of an oblate spheroid in the high Re regime.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Predicting the drag force on an object fixed in a planar flow has
been the subject of extensive investigation from the early days of
fluid mechanics when it emerged as an independent discipline.
The analytical solution for the drag force experienced by a rigid
sphere for creeping flow conditions, found by Stokes (1851) in
1851, is one of the first known analytical expression in the fluid
mechanic’s community. Stokes assumed in his solution that iner-
tial effects of the fluid could be neglected throughout the solution
domain. However, Oseen (1910) found an inconsistency in the
Stokes solution. Specifically, he found that inertial fluid effects can-
not be neglected far away from the sphere. He derived a new form
of equations, known as Oseen equations Oseen (1910), that can
handle this inconsistency, and he came up with an improved
approximation for the drag coefficient, defined as

CD ¼ FD=
1
2qv

2
1

p
4 d

2
� �

, where FD is the drag force, q the fluid den-

sity, v1 the fluid flow velocity far away from the sphere, and d
the sphere diameter Oseen (1913). There are additional solutions
to the Oseen equations, such as those of Goldstein (1929) and
Faxen (1923). Proudman and Pearson (1957) and Kaplun and
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Lagerstrom (1957) used the matched asymptotic method to solve
the Navier–Stokes equations to resolve the fluid flow around differ-
ent blunt bodies. Proudman and Pearson (1957) divided the flow
field around the sphere into two stream function expansions. The
first one, which they called the Stokes expansion, controls the flow
near the surface of the sphere. The second expansion, which they
called the Oseen expansion, controls the flow far from the surface
of the sphere. Both expansions are based on the Navier–Stokes
equations, and the two expansions are matched at a certain dis-
tance from the sphere using the method of matched asymptotics.
Evaluating stresses from the Stokes expansion they arrived at the
following expression for the CD of a sphere:

CD ¼ 24
Re

1þ 3
16

Reþ 9
160

Re2 log
Re
2

� �� �
ð1Þ

Here Re ¼ qv1d=l is the Reynolds number. They made the follow-
ing statement (conjecture) about the expansions that govern the
flow field Proudman and Pearson (1957): ‘‘The non-linearity of the
Navier–Stokes equation then shows that both expansions must involve
powers of log Reð Þ, and it seems reasonable to suppose that both expan-
sions are in powers of Re, each term of which is multiplied by a polyno-
mial in log Reð Þ”. This statement also reflects on the functional form
of the drag coefficient. However, the authors did not mention the Re
range for which the statement is valid. From now on, we will call
this conjecture P&P. Graebel (2007) supported the P&P statement
by mentioning that the CD functional form that will result from
asymptotic expansions of the Navier–Stokes equations will always
be a function of log Reð Þ. A few years later, Chester et al. (1969)
added an extra term to Eq. (1), which was the last addition that
came from the expansion of the Navier–Stokes equations. The loga-
rithmic terms are not confined to solutions of flows of low Re, but
also they appear in asymptotic solutions of high Re regime. For
example, they appear in the asymptotic solution of the local coeffi-
cient of skin friction for the case of a semi-infinite plate Van Dyke
(1975):

Cf ¼ 0:664ffiffiffiffiffiffiffi
Rex

p � 0:551
log Rexð Þ
Re3=2x

þ C1

Re3=2x

ð2Þ

where Rex is the local Reynolds number, and C1 is a constant.
Recently, Khair and Chisholm (2018) obtained an expression for
the drag force, on an elongated particle using matched asymptotic
expansion by solving the Navier–Stokes equations for Re up to a
value of 200. The derived drag force shows a logarithmic depen-
dence on Re as follows:

FD

4p
� 1

log 1
�

� �þ log Reð Þ
log2 1

�

� � ð3Þ

where FD is the non-dimensional drag force and � is the ratio of the
characteristic width to the length of the particle. Also for a shear
free cylinder, the drag coefficient shows a logarithmic dependence
on Re, and it holds for Re as high as 105 as described by Kumar
et al. (2021). They described the appearance of logarithmic terms
as ‘‘atypical ”. They used the matched asymptotic method to solve
the inviscid and boundary layer equations, and they came up with
the following drag coefficient:

CD ¼ 16p
Re

1þ 0:24 log Reð Þ � 1:74ffiffiffiffiffiffi
Re

p
� �

ð4Þ

The appearance of logarithmic terms (alternatively known as loga-
rithmic switchback terms Lagerstrom and Reinelt (1984)) in the
asymptotic expansions have intrigued the scientific community,
because in some instances they were not forced by the governing
equations Popović (2005). Van Dyke (1975) dedicated a section in
his book describing the proliferation of logarithmic terms in differ-
2

ent fluid mechanics problems, and he made the following com-
ment: ‘‘one can philosophize that description by fractional powers
fails to exhaust the myriad phenomena in the universe, and logarithms
are the next simplest function”. Initially, the logarithms were tied
with paradoxes in fluid mechanics, or to the singular perturbation
techniques themselves. However, Lagerstrom and Reinelt (1984)
showed that logarithmic terms are part of the solution of the gov-
erning equations, and the asymptotic expansion method is just
one way to reach to the solution. This view is supported by other
investigations using different mathematical methods Holzer and
Kaper (2014), Popović and Szmolyan (2004).

There are analytical solutions for the Stokes and Oseen regimes
for some non-spherical particles such as oblate or prolate spher-
oids, circular cylinders and few other particle geometries (Happel
and Brenner, 2012; Cox, 1965; Breach, 1961; Aoi, 1955). Eq. (1)
and all other analytical solutions, regardless of the shape of the
particles, are valid up to Re � 1.0.

For higher Re, analytical solutions for the Navier–Stokes equa-
tions cease to exist due to its non-linearity. The flow around a
sphere at high Re consists of a mosaic of different flow morpholo-
gies, depending on Re as described by Achenbach (1972), Kamble
and Girimaji (2020). High Reynolds number flows (Re P 104) are
usually classified into four flow regimes. In the subcritical flow
regime, the CD value is independent of Re. In contrast, in the critical
flow regime, CD starts to decrease rapidly as Re increases until a
minimum is reached at a critical Reynolds number. For a smooth
sphere Recr � 3:7� 105. This critical flow regime sometimes is
referred to as the drag crisis. Beyond the critical Re, in the so-
called supercritical regime, the drag coefficient slowly increases
with increasing Re until it reaches a maximum value. Further
increasing Re, the drag coefficient stays constant and this regime
is called transcritical. For the prediction of CD at high Re one usu-
ally resorts to numerical simulations (Dennis and Walker, 1971;
Jenson, 1959; Nakhostin and Giljarhus, 2019; Constantinescu
et al., 2002) or experiments (Achenbach, 1972; Deshpande et al.,
2017; Maxworthy, 1969). The results of these numerical simula-
tions and experiments are translated into fitting correlations, with
a range of applicability limited to the range of the data that is used
in the fitting process. This has resulted in a zoo of correlations that
take different mathematical forms (Rouse, 1961; Engelund and
Hansen, 1967; Clift, 1970; Morsi and Alexander, 1972; Graf,
1984; Flemmer and Banks, 1986; Khan and Richardson, 1987;
Swamee and Ojha, 1991), as shown in the extensive list published
in the recent review by Goossens (2019). The majority of correla-
tions focus on the subcritical regime and take the following func-
tional form:

CD ¼ 24
Re

C1 þ C2Re
a� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Schiller and Naumann

þ C3

1þ C4
Re|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Brown and Lawler

ð5Þ

The second term of Eq. (5) arises from boundary layer theory
(Schlichting and Gersten, 2016), which accounts for the inertial
effects of the fluid. The value of the exponent a ranges from 0.5 to
0.68. These type of correlations are suitable for Re up to 2� 105,
right before drag-crisis. There is a similarity between the structure
of Eq. (5) and the analytical solution of the Oseen equations for high
Re obtained by Weisenborn and Ten Bosch (1995), who provided
the following equation for CD:

CD ¼ 1:058þ 4:58
Re2=3

þ 53:67
Re2

ð6Þ

Oseen equations are used as a gauging tool for understanding the
more complex behaviour of the Navier–Stokes equations. However,
we know that there is significant difference between the solutions



Yousef M.F. El Hasadi and J.T. Padding Chemical Engineering Science 265 (2023) 118195
of the Navier–Stokes equations, and those of the Oseen equations,
and this difference already starts at very low Re (Van Dyke, 1970).

In summary, almost all correlations for drag found in literature
are expressed as power law expansions, similar to Eqs. (5) and (6).
Correlations with logarithmic terms, such as Eqs. (1)–(4), are very
rare and seem to have been largely overlooked.

The improvement of high-performance computer architectures,
plus the availability of data from numerical simulations and exper-
iments, sparked an increase in interest to use machine learning
methods to solve problems in many scientific disciplines. This
has led to label machine learning as the fourth paradigm in science,
next to experimentation, theory and simulation (Butler et al.,
2018). When it comes to fluid mechanics, applying machine learn-
ing methods constitutes a challenge for several reasons, such as the
transient nature of most fluid mechanics problems, the hetero-
geneity of most available data, the extensive non-linearities that
govern fluid mechanics, and the multi-scale nature of most prob-
lems at hand (Brunton et al., 2020). To deal with these challenges,
an ideal machine learning algorithm for fluid mechanics, should
possess features such as interpretability, explainability, generalis-
ability, and convergence (Brunton et al., 2020). One of the most
popular machine learning frameworks that are used extensively
in different fluid mechanics problems, from solving partial differ-
ential equations (Dissanayake and Phan-Thien, 1994; Raissi and
Karniadakis, 2018), discovering physics (Iten et al., 2020), learning
active-nematic hydrodynamics (Colen et al., 2016), to predicting
physical properties (Kushvaha et al., 2020) are artificial neural net-
works (ANN). Other machine learning methods that are used for
scientific discovery are sparse identification of nonlinear dynami-
cal systems for discovering differential equations from sparse data
(Brunton et al., 2016), and symbolic regression that is used for dis-
covering laws of nature (Schmidt and Lipson, 2009), discovering
new materials (Weng et al., 2020), and solving fluid flow problems
(El Hasadi and Padding, 2019).

The main purpose of this paper is to explore existence of the
logarithmic terms in the mathematical functional form that
describes the variation of the drag coefficient with Re. For this pur-
pose, we need a predictive method, whose output is a mathemat-
ical functional form, so we can check its nature consistently. The
only method available in the literature is symbolic regression,
which is a tool for unbiased determination of correlations (Koza,
1992). Symbolic regression provides mathematical functions that
may describe the training data as its output. However, we did
not only select symbolic regression because of its output, but also
because it generalizes and needs less computational time to obtain
suitable results compared to other machine learning methods
(Thompson et al., 2020).

In this paper we will use symbolic regression to re-investigate
known data on drag. We will show that symbolic regression actu-
ally rediscovers the logarithmic terms, suggesting that logarithmic
expansions may represent the physics better than power law
expansions. As a side result, we will show that there is an intrigu-
ing connection between the found logarithmic terms and the point
of first boundary layer separation. In Appendix A we will show that
similar logarithmic terms can be discovered in correlations for heat
transfer coefficients.
2. Methodology

The principle that we will use in this investigation to drive our
predictive equations will be based on symbolic regression, as will
be explained in the next paragraph, using information about the
possible mathematical formulation of the solution of the Navier -
Stokes equations for the case of uniform flow over a sphere. The
sources that we are basing our solution space on is the P&P conjec-
3

ture (Proudman and Pearson, 1957), Lagerstrom and Reinelt
(1984),Van Dyke (1975) who all indicated that logarithmic terms
could constitute the solution. We will not use a physics basis for
the choice of our guess functions, beyond the fact that the drag
force will be expressed in terms of relevant physical dimensionless
quantities. Because we could not find any physics-based theory
that can merge the low, medium, and high Reynolds number
regimes, the challenge we gave ourselves is to find mathematical
relations that cover all three regimes. As we will show in the com-
ing section, the symbolic regression algorithm finds a very similar
form as the drag coefficient equation obtained by Abraham (1970),
the only drag coefficient correlation that has been derived from
physics principles. We will use three distinctive rules to distill
which equations are best describing the physical phenomena at
hand, and those rules are the following:

1. The equations must fit the training data. Equations with high
correlation coefficient and low values of absolute errors will
be selected. This rule is common for selecting fitting equations.

2. The equations must generalize (extrapolate beyond the training
data). The equation that will generalize for more than one
known flow regime will be selected. This rule will distill the
equations that follow the anticipated physics. Most equations
in the literature do not follow the second rule, which is why
we label them as fitting equations.

3. The asymptotic behaviour of certain parts of the selected equa-
tion should comply with specific predefined physical laws in
flow regimes where we have a detailed physical understanding.
This rule is supplementary to the second rule and will be used
only when we have sufficient information.

In this paper, we will use the symbolic regression machine
learning method proposed by Koza (1992). Symbolic regression is
a powerful tool for searching the mathematical space for an
approximate functional relation between a certain number of input
and output variables, and it is based on genetic programming pro-
posed by Holland (1992). The framework of genetic programming
is probabilistic, and is not based on mathematical principles, such
as correctness, consistency, justifiability, certainty, orderliness, and
decisiveness as outlined by Koza (1992), but solely on the princi-
ples of Darwinian evolution (Darwin, 1859). The idea of the genetic
programming is simple, and it is based on transforming an initial
population (in our case a population of mathematical functions)
to a new population that survived a particular fitness constraint.
The main operators that are used to create the new population
are similar to those found in nature, namely that of reproduction
and crossover (Koza, 1992).

The algorithm first generates a random pool of functions, that
undergo genetic operations such as crossover, which corresponds
to the combination of two functions to give a new offspring func-
tion. Another operation is a mutation in which a certain part of
the mathematical function is changed randomly. Two indices mea-
sure the fitness of the newly obtained functions. The first index is
minimizing the mean square difference between the training and
predicted dependent values. The second index is to check the
mathematical complexity of functions, and select the simplest
ones, to prevent over-fitting. The guessed functional forms will
constrain the search space for the symbolic regression algorithm,
and helps to improve the generalizability of the predicted equa-
tions. The equations that will show significant generalization beha-
viour beyond the training data will be considered to have a
physical significance and may represent the physical reality. We
used the Eureqa software (Schmidt and Lipson, 2009) as symbolic
regression platform. A rigorous description of the symbolic regres-
sion algorithm in use in the current investigation is given in El
Hasadi and Padding (2019).
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In Appendix B we illustrate that the machine learning algorithm
we use can capture a known function’s series expansion. It shows
the ability of symbolic regression to find expansions of functions,
that are valid beyond the training data used to obtain them, which
gives symbolic regression an advantage compared to, artificial neu-
ral networks.
3. Results

3.1. Symbolic regression of CD Data

We will start by exploring the CD dependency on Re for the case
of a sphere. We will create three data sets for the regression pro-
cess. The first one will be generated from the correlation of
Brown and Lawler (2003) which has the functional shape of Eq.
(5). This data set contains about 8500 points in the range
0:1 < Re < 1:9� 105, which is enough to capture the smallest
details in the CD variation. The second data set that we will use
is the exact experimental data that Brown and Lawler (2003) used
themselves to derive their correlation. It contains about 450 points
in the range 0:1 < Re < 1:975� 105. The final data set is based on
the Schiller and Naumman (1933) correlation, and contains of
5020 points in the range 0:1 < Re < 700.

We will start by examining the first data set, and we will let the
symbolic regression algorithm guess about the functional form of
the CD dependence on Re. We can do this by specifying the most
general initial functional form:

CD ¼ f Reð Þ ð7Þ
The algorithm derived several regression equations, but here we
will show two, one because it accurately fits the results, and the
other because it is simple. Both equations follow the first rule (fit-
ting the data with reasonable accuracy). The equations are the
following:

CD ¼ a1 þ a2
Re

þ a3

ffiffiffiffiffiffi
Re

p
þ a4ffiffiffiffiffiffi

Re
p þ a5

a6 þ Reð Þ þ a7Re ð8Þ

CD ¼ a1 þ a2
Re

þ a3ffiffiffiffiffiffi
Re

p ð9Þ

The coefficients of Eq. (8), and (9) are listed in Table 1. Eq. (9) con-
tains the Stokes 1

Re term, and the first-order term from boundary
layer theory 1ffiffiffiffi

Re
p . The first known dependency of CD on 1ffiffiffiffi

Re
p came from

the Blasius solution (Blasius, 1908) of the boundary layer equations
proposed by Prandtl (1904) for the case of a flat plate. The CD for
blunt bodies, like a sphere, has a similar dependency on Re (Leal,
2007; Abraham, 1970). A similar form as Eq. (9) was obtained pre-
viously by fitting experimental data (Brauer and Mewes, 1972;
Hölzer and Sommerfeld, 2008), and also by using concepts of
boundary layer theory (Abraham, 1970). Brauer and Mewes
(1972), Holzer and Sommerfeld(2008) used non-linear fitting tools
to obtain their correlations, which require a priori knowledge of
the functional structure. A comparison between the coefficients of
Table 1
Coefficients for Eq. (8), Eq. (9), and (12).

Coefficients Eq. (8) Eq. (9) Eq. (12)

a1 0.251 0.412 0.505
a2 23.620 23.311 23.224
a3 0.001 4.119 2.762
a4 3.255 - -
a5 49.291 - -
a6 97.537 - -
a7 -2:709� 10�6 - -

4

Eq. (9), and those of Brauer and Mewes (1972),Hölzer and
Sommerfeld (2008), Abraham (1970) is given in Table 2. The coeffi-
cients of Eq. (9) have similar values to those of Brauer and Mewes
(1972). Compared to those of Hölzer and Sommerfeld (2008) thereis
only significant difference in the value of a3. There is also a signifi-
cant difference between the coefficients of Eq. (9) and those of
Abraham (1970). This may be due to the pure theoretical nature
of the equation proposed by Abraham.

It is important to note that both the Stokes term and the bound-
ary layer term have been found without using any sophisticated
mathematical approach. On the contrary, they have been found
by a probabilistic genetic algorithm. The emergence of the bound-
ary layer term in Eqs. (8) and (9) without human intervention can
be added to the experimental and numerical results that support
boundary layer theory, even though there is no general mathemat-
ical proof of its existence, as mentioned by Batchelor (2000).

We will now try to explore the existence of logarithmic switch-
back terms for the drag on a sphere for the higher Re regime. We
will use for this the first data-set (i.e. data from the Brown and
Lawler (2003) correlation). We will start by imposing the following
initial functional form:

CD ¼ f
24
Re

; log Reð Þ;Re log Reð Þ; log2 Reð Þ
� �

ð10Þ

We choose this form of the initial function because we want to
ensure that logarithmic switchback terms similar to Eq. (1) will
be part of the initial soup of functions that the symbolic algorithm
will further evolve. The symbolic regression algorithm converged to
the following equation:

CD ¼ a1 þ a2
Re

þ a3 log Reð Þ þ a4log
2 Reð Þ þ a5log

4 Reð Þ ð11Þ

The values of the coefficients of Eq. (11) are listed in Table 3. Eq.
(11) depends on powers of log Reð Þ and also contains the Stokes
law term, Interestingly the value of a1 coefficient for Eq. (11)
matches that of Hollandbatt (1972) drag coefficient correlation
(Hollandbatt, 1972). The form of Eq. (11) is partially fulfilling the
P&P conjecture (Proudman and Pearson, 1957) for Re as high as
2� 105. Overall, Proudman and Pearson (1957) made a profound
statement more than 64 years ago, using only mathematical intu-
ition, and they may have been right when they suspected that log-
arithmic switchback terms are part of the solution. It may be
difficult for the current form of the genetic algorithm to spot the
entire logarithmic switchback series, because reducing the com-
plexity of the equations is part of its optimization process. There-
fore, terms that do not play a significant role in the variation of
the dependent variable (CD) will die out during the evolution pro-
cess. The failure of detection of Renlogn Reð Þ terms, where n is an
integer, after a significant number of mathematical formula evalua-
tions exceeding 1011, suggests that their signal is weak (a metaphor
for their insignificant role in the dependence of CD on Re). If we read
more carefully the conjecture, we find that Proudman and Pearson
(1957) used the following wording :‘‘It seems reasonable to suppose
that both expansions are in powers of Re”. They used the word ‘rea-
sonable to suppose’, expressing doubt, while for the log Reð Þ terms
they used the word ‘must’ which reflects that the authors were sure
Table 2
Relative difference in the values of coefficients of Eq. (9) to that of Brauer and Mewes
(1972),Hölzer and Sommerfeld (2008), and Abraham (1970).

Coefficients Brauer and Mewes
(1972)

Hölzer and Sommerfeld
(2008)

Abraham
(1970)

a1 2.9% �1.94% 29.01%%
a2 �2.95% �2.95% �2.87%
a3 2.88% 27.16% �28.40%



Table 3
Coefficients for Eq. (11) and (13).

Coefficients Eq. (11) Eq. (13)

a1 3.286 3.272
a2 24.205 23.26
a3 �0.818 0.112
a4 0.064 �0.652
a5 �0.000107 0.035
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about their appearance in the two expansions. Adding to that,
Chester et al. (1969) was frustrated about the poor convergence
of his equation, mainly because it is only valid for extremely low
values of Re. He suggested that the expansion in powers of Re
may be a poor idea (Chester et al., 1969; Hunter et al., 1990).

To further validate the ecosystem of equations we obtained, we
will compare their predictions with various sources in the litera-
ture, as shown in Fig. 1. The first insight from Fig. 1 is that Eq.
(1) is valid only at low Re, and this was one of the main reasons
we believe that the scientific community did not further explore
the use of logarithmic terms, even as fitting functions. Eqs. (8)
and (11) follow closely the correlation of Brown and Lawler
(2003), and also the experimental data used to obtain their corre-
lation. The average relative errors between the predictions of Eqs.
(8) and (11) with respect to the experimental results of Brown
and Lawler (2003) are 3.87% and 3.39%, respectively. We see that
Fig. 1. Comparison between the drag coefficient CD predicted by Eqs. (8), (9), (11) and (1
Symbols indicate experimental values.

5

Eq. (9) follows closely the results of Hölzer and Sommerfeld
(2008),Brauer and Mewes (1972), while it deviates from the pre-
dictions of Abraham (1970) especially for values of Re above 103.
This is expected because the equation provided by Abraham
(1970) is valid for Re up to 103. Also, Eq. (9) and those of references
(Brauer and Mewes, 1972; Hölzer and Sommerfeld, 2008;
Abraham, 1970) cannot capture the local minimum for Re between
103 and 104 that the experimental results of Brown and Lawler
(2003) show.

Comparing Eqs. (8) and (11), we find that their complexity
index is 34 and 19, respectively. The complexity index shows that
the logarithmic series representation of CD is mathematically sim-
pler compared to the power series representation, making Eq. (11)
more favourite to represent the physical phenomena of the CD vari-
ation according to Occam’s razor statements (Domingos, 1999).
One of these statements is: ‘‘Given two models with the same gener-
alization error, the simpler one should be preferred because simplicity
is desirable in itself.”. However, when it comes to the accuracy of fit-
ting the data, both equations show a similar level of accuracy. For
example, the power-based Eq. (8), has a mean square error of
5:9� 10�5, while the same error metric for the logarithmic based
Eq. (11) is 9:74� 10�5. Even though both equations have similar
fitting behaviour, their extrapolation behaviour is very different,
as we will show in the coming subsection.
6)different sources from the literature. Dashed lines indicate literature correlations.
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Now we will use the second (experimental) data set, to explore
the feasibility of getting predictive equations for CD from a limited
amount of noisy experimental data. We will start by letting the
algorithm guess the CD dependence,by using the same initial func-
tional form as that of Eq. (7).

The symbolic regression algorithm found the following equation:

CD ¼ a1 þ a2
Re

þ a3ffiffiffiffiffiffi
Re

p ð12Þ

The coefficients of Eq. (12) are listed in Table 1. Using the second
data set we next explore if the data show any logarithmic depen-
dence by imposing the following initial set of functions similar to
Eq. (10).

We got the following equation for CD:

CD ¼ a1 þ a2
Re

þ a3log
2 Reð Þ

Re
þ a4 log Reð Þ þ a5log

2 Reð Þ ð13Þ

The values of the coefficients are listed in Table 3. Eq. (12) is of the
same functional form as Eq. (9), but the coefficients are not identi-
cal, because the second data set contains far less data, and also con-
tains some noise. The derivation of Eq. (12) from pure experimental
data, without imposing knowledge of any physics, except the defi-
nition of Re, shows that the symbolic regression algorithm discov-
ered the Stokes limit and the term attributed to boundary layer
theory without any external help. However, the human factor is still
required since we have to select the equations that we think repre-
sent physical reality from the population of equations that the algo-
rithm suggests. Eq. (13) shows that we can get the logarithmic
dependence from a pure experimental data set, and it partially ful-
fils the P&P conjecture. Eqs. (13) and (11) are quite similar. We

believe that Eq. (13) failed to capture the log4 Reð Þ term because this
term influences CD in the high Re regime where there are significant
fluctuations in the experimental data set. Probably if there was a

higher volume of data, especially at higher Re, the log4 Reð Þ term
could also be captured from pure experimental results. A compar-
ison of the performance of the power expansion Eq. (12) and the
logarithmic expansion Eq. (13) against existing data in the literature
is shown in Fig. 2. The average relative error for Eqs. (12) and (13) is
13.7% and 12.0%, respectively, against the experimental results of
Brown and Lawler (2003). Eq. (13) shows a local minimum in the
range of the Re close to that of the experimental results of Brown
and Lawler (2003), while Eq. (12) fails to show any local minimum.

We will use the third and final data set from the Schiller and
Naumman (1933) correlation which contains information about
the variation of CD for Re ranging from 0.1 to 700. We will use
the following general initial functional form as that of Eq. (7).
The symbolic regression algorithm found the following equation
for CD:

CD ¼ a1 þ a2
Re

þ a3 log Reð Þ þ a4log
2 Reð Þ ð14Þ

The coefficients of Eq. (14) are listed in Table 4. The genetic algo-
rithm came up with the logarithmic dependence of CD on Re with-
out any external help, and it discovered the P& P conjecture
partially. The value of a1 = 3.1406, differs from the value of p by
only about 0.03%. It will be very interesting in the future to investi-
gate the value of a1 by fitting to very accurate numerical or exper-
imental data. Eq. (14) follows the Brown and Lawler correlation
(Brown and Lawler, 2003) up to Re of 103, as shown in Fig. 1. This
behaviour is expected because higher power logarithmic terms
are missing from Eq. (14), since the training data was limited to
Re up to 700.

Up to this point we have discussed the drag without referring to
the flow around the sphere. The flow around a sphere is a rich
mosaic of phenomena, and usually drag correlations fail to predict
6

them. Among these phenomena is the emergence of a laminar sep-
aration point, which is well known to occur for sufficiently blunt
objects, including a sphere. The point of laminar separation is iden-
tified by the formation of a closed recirculating ring eddy at the
rear of the sphere. The first emergence of separation is difficult
to detect either experimentally or theoretically. For this reason,
there is some discrepancy in the literature on the value of the
reported critical Res, and corresponding drag CDs, at first separation.
The first experimental observations by Nisi and Porter (1923) sug-
gested that Res = 10. This was confirmed by numerical simulations
of Rimon and Cheng (1969). On the other hand, Proudman and
Pearson (1957),Van Dyke (1975), by using the Stokes second
expansion, estimated that Res = 16, close to the numerical results
of Bourot (1969) and Jenson (1959) of 15.2 and 17, respectively,
and the experiments of Payard and Coutanceau (1974) indicating
Res = 17. Other simulation results (Dennis and Walker, 1971;
Chang and Maxey, 1994) show that Res is equal to approximately
20, and the experiments of Taneda (1956) predict that Res = 24.

If we inspect a1 of the logarithmic expansion Eq. (11) in Table 3
we see that its value is 3.286, which is quite similar to the value of
the drag coefficient CDs at the initial laminar separation reported by
Payard and Coutanceau (1974), which is 3.306. If the constant a1 is
the drag coefficient at initial laminar separation, then the following
transcendental equation must have a positive root at the corre-
sponding Reynolds number Res:

a2

Re
þ a3 log Reð Þ þ a4log

2 Reð Þ þ a5log
4 Reð Þ ¼ 0 ð15Þ

By solving Eq. (15) we find that Rert = 14.06 is its only root. That
makes Rert the only Re value that zeroes off all terms beyond the
constant a1. This Rert is close to values of Res reported in literature.
For example, the relative error with respect to the results of Bourot
(1969) and Chang andMaxey (1994) is 8% and 30%, respectively. We
conjecture that Rert is representing Res, even though we do not have
any proof for this. We believe we are witnessing an instance where
the machine learning algorithm found a mathematical description
of a physical phenomenon, which needs human abilities to be inter-
preted in terms of physical laws. Otherwise, it will be a good
approximation, that can describe some of the physics involved in
the process of flow separation. As far as the authors are aware, there
is only one analytical prediction for the point of first flow separa-
tion, from slow motion viscous theory (Proudman and Pearson,
1957; Van Dyke, 1970). However, that result was disputed by the
authors of (Proudman and Pearson, 1957; Van Dyke, 1970), as we
will show later. In practice, we depend on numerical simulations
to find the point of zero local shear stress, as described by boundary
layer theory (Schlichting and Gersten, 2016). However, Batchelor
(2000) raised serious doubts about estimating the onset of separa-
tion by this method.

Beyond this point, we will assume that (the smallest, real) root
Rert is equal to Res. Using the same procedure to calculate Res, from
the logarithmic Eq. (13) by solving the following transcendental
equation:

a2

Re
þ a3log

2 Reð Þ
Re

þ a4 log Reð Þ þ a5log
2 Reð Þ ¼ 0 ð16Þ

we found the two following roots: Res = 15.76, and 9:52� 107. The
large root value of 9:52� 107, is a non-physical result, which we
believe is caused by the missing higher power log Reð Þ term from
Eq. (13). However, Res = 15.76 compares very well with the results
of Bourot (1969) and Chang and Maxey (1994), with a relative dif-
ference of 3.68% and 21.2%, respectively. If we do the same analysis
for the logarithmic Eq. (14), we will find that Res = 15.19, and
3:518� 106. For the smallest root, the relative difference with the



Fig. 2. Comparison between drag coefficient CD predicted by Eq. (12) and (13), and different sources from the literature. Dashed lines indicate literature correlations. Symbols
indicate experimental values.

Table 4
Coefficients for Eq. (14).

Coefficients Eq. (14)

a1 3.140
a2 24.270
a3 �0.716
a4 0.047
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results of Bourot (1969) and Chang and Maxey (1994) is 0.13%, and
24.0%, respectively.

We will next calculate Rert from the more popular power-law
expressions Eq. (8) and (9) in the same way. For Eq. (8)
Rert ¼ 3� 105. This root closely approximates the critical Reynolds
number (Recr � 3:7� 105) for the critical flow regime (drag crisis)
as reported by Achenbach (1972). We will further discuss the phys-
ical significance of Rert in the generalization subsection since the
value of Rert3 is outside the training data range. As for power-law
Eq. (9), it does not have any roots.

Returning to the logarithmic ecosystem of equations, in their
seminal works, Proudman and Pearson (1957) and Van Dyke
(1975) calculated the Res value to be 16 analytically from the first
and second terms in the Stokes expansion. Proudman and Pearson
(1957) made the following comment: ‘‘This Reynolds number is far
too large to make estimates based on only two terms of the Stokes
expansion at all reliable. In fact, it cannot seriously be claimed that
7

slow-motion theory gives even a qualitative expansion of the phenom-
ena.” However, Van Dyke (1975) and Ranger (1972) tried to con-
firm the result of Proudman and Pearson (1957), by using extra
terms in the Stokes expansion that contain the logarithmic terms
from the results of Proudman and Pearson (1957) and those of
Chester et al. (1969). They failed because the Stokes expansion
equation that includes the logarithmic terms has only complex
roots. Van Dyke (1975) commented on this issue saying that‘‘the
logarithm needs reinterpretation.” In our work we now see that
the values of Res from Eqs. (11), (13), and (14) are converging with
different degree of accuracy toward a value of approximately 16.
3.2. Generalization beyond the training data

In this subsection, we will test our newly derived equations
generalisation behaviour, for flow regimes that were not included
in the training data. Specifically, we will test their behaviour for
the low Reynolds number regime for Re down to 10�4, and for
the critical flow regime for Re up to 106.
3.2.1. Low Re flow regime
In the low Re regime, 24Re is the dominant term for the drag coef-

ficient, which will make it difficult to assess the performance of our
equations, against the existing correlations, analytical solutions,
experimental and numerical results. For this reason, we will use
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the way Maxworthy (1965) plotted his drag coefficient data. He
plotted the quantity CD

CDs
� 1 against Re, where CDs= 24

Re is the Stokes

drag. This way, we eliminate the divergence of the Stokes term,
which makes the comparison with different sources from the liter-
ature more precise. From low Reynolds number theory we know
that CD

CDs
� 1 converges to 3

16Re (Oseen term).

The predictions for the variation of CD
CDs

� 1 against Re from our

models and numerous sources from literature are shown in
Fig. 3. In the range of Re 10�1 to 10, which is within the range of
the training data, all our derived equations, plus the Brown and
Lawler (2003) correlation, follow with reasonable accuracy the
experimental results of Maxworthy (1965),John Veysey and
Goldenfeld (2007), in addition to the numerical results of Jenson
Fig. 3. Comparison between the CD
CDs

� 1 predictions in the low Re limit by Eqs. (8), (9), (11
represents experiments, and squares represents numerical simulations.

8

(1959),Dennis andWalker (1971). In the same Re range, the analyt-
ically derived equations of Proudman and Pearson (1957),
Goldstein (1965), and Oseen (1910) deviate from experimental,
and numerical results, because of their limited applicability range.

Next we turn to the Re range between 10�4 to 10�1, which is
beyond the training data range. In this flow regime, the
logarithm-based Eqs. (11) and (14) follow closely the analytical
results of Proudman and Pearson (1957),Goldstein (1965),Oseen
(1910), and the semi-empirical and empirical correlations of
Lewis and Carrier (1949),Beard and Pruppacher (1969), and the
numerical simulations of Le Clair et al. (1970). On the contrary,
the power-based Eqs. (9) and (8), as well the Brown and Lawler
(2003) correlation, divert significantly from the analytical, experi-
mental, and numerical data. For example the relative difference
), (13), and (14), and different sources from the literature for low Re regime. Circles
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for the prediction of CD
CDs

� 1 between Eq. (11) and the analytical

solution of Proudman and Pearson (1957) is 240% at Re = 10�4.
At the same conditions, the relative difference between the Brown
and Lawler (Brown and Lawler, 2003) correlation and Proudman
and Pearson (1957) is 1410%, which is significantly higher than
the error generated by both logarithmic equations. The five times
increase in the accuracy of the logarithmic based Eqs. (11) and
(14) compared to the power-based Eqs. (8) and (9) suggests that
the logarithmic equations contain terms that describe the physical
reality better. Another interesting aspect of the results of Fig. 3 is
that it shows that we can improve the accuracy of machine learn-
ing models for the same training data set, by using previous phys-
ical knowledge about the problem at hand. The observation from
Fig. 3 is similar to our observations for the Maclaurin expansion
of the sin xð Þ function in the Appendix B. In both cases, only equa-
tions that have similar terms to the actual representation of a func-
tion, or the physical law that they are approximating, generalize
well beyond their training data. The results from Fig. 3, show that
the popular power-based representations of CD fail to extrapolate
beyond the range of Re that is used for their training, which indi-
cates that power-based representations may have only been a con-
venient mathematical fit, rather than having physical significance.
Finally, we want to explain why Eq. (13) diverges even though it
consists of logarithmic terms similar to the previous two. The rea-

son for the divergence is the a3log
2 Reð Þ

Re term which increases its value
as the value of Re decreases. This term can be considered an over-
fitting parameter, which is easy to spot, due to the interpretable
nature of the results of symbolic regression. From the short analy-
sis above, we conclude that the power-based equations violate the
second rule because they erroneously extrapolate beyond their
training data. We will further analyze the predicted equations’
behaviour in the low Re regime to further assess their behaviour.

If we rearrange the Proudman and Pearson (1957) drag coeffi-
cient equation to take the following form:

CD � CDs ¼ 4:5þ 1:35Re2 log
Re
2

� �
ð17Þ

then, in the limit Re ! 0, the value of CD � CDs converges to 4.5. This
shows that all terms that depend on Re except the Stokes term van-
ish. This behaviour conserves the correct physics that any drag coef-
ficient predictive equation must follow. Also, it paves the way to
test the third rule that we suggested for the predictive equation
selection. The evolution of CD � CDs for the different predictive
equations and correlations from the literature are shown in Fig. 4
for Re values ranging from 10�12 to 10�3. The value of CD � CDs for
Proudman and Pearson (1957) is constant, and it is 4.5 as expected
for the range of Re tested. On the other hand, for the case of the
power-based Eq. (8) and (9), Brown and Lawler (2003),Abraham
(1970) correlations the value of CD � CDs is increasing steeply with
decreasing Re which is non-physical. On the contrary, the values
of CD � CDs from the logarithmic equations Eqs. (11) and (14) follow
closely that of Proudman and Pearson (1957), and thus describe the
correct physics more precisely. Specifically, Eq. (14) shows a very
slow increase of the CD � CDs value as Re is deceasing. By increasing
the number of logarithmic terms as in Eq. (11), the value of CD � CDs

attains a constant value of � 25 as shown in Fig. 4. At extremely low
Re, the CD � CDs predicted by Eq. (11) drops to a value very close to
that of Proudman and Pearson (1957), which shows that Eq. (11)
follows the correct physics at extremely low Re.

Due to the violation of the second and third rules by the power-
based equations in the low Re regime, we conclude that those
equations can not describe the drag coefficient in all Re regimes,
making them unsuitable to describe the physical evolution of the
drag coefficient. In the following subsection, we will add more
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proof by comparing power-based equations with logarithmic
based equations also in the large Re limit.

3.2.2. Critical flow regime
The critical flow regime is less well investigated, either experi-

mentally or numerically, compared to the subcritical or lower Re
regimes. There are no any analytical approximations for CD in the
critical flow regime. Even direct numerical simulations (DNS) are
limited to the onset of the subcritical flow regime at Re = 104

(Beratlis et al., 2019). Current computational fluid dynamics
(CFD) simulations that deal with the critical flow regime use differ-
ent approximations to deal with turbulence. Constantinescu et al.
(2002) use Detached-Eddy-Simulations (DES), which is a hybrid
method that combines Reynolds-Averaged Navier–Stokes (RANS)
and Large Eddy Simulations (LES). Nakhostin and Giljarhus
(2019) used RANS turbulence models for their simulations, and
Muto et al. (Muto et al., 2012) used Large Eddy Simulations cou-
pled with the a subgrid-scale turbulence model. The most exten-
sive numerical simulations in the critical and supercritical regime
have been conducted by Geier et al. (2017) using a Cumulant Lat-
tice Boltzmann method, and they do not use any turbulence mod-
els. Their high fidelity model uses a fourth-order accurate diffusion
approach, suitable for low viscosity high Re flows. The accuracy of
the Cumulant Lattice Boltzmann depends on the optimization of its
parameters. The authors used a spectrum of three different mesh
grid schemes, namely a course one with 40� 106 nodes, a medium
one with 75� 106 nodes, and a fine grid mesh with 133� 106

nodes.
Fig. 5 explores the performance of the power-based Eq. (8) and

logarithm-based Eq. (11) in the subcritical, critical, and supercriti-
cal flow regimes, and compares their performance against experi-
mental and numerical results. The training data for Eq. (8) and
(11) was limited to Re up to 2� 105. There is a significant discrep-
ancy between the different experimental results, for different rea-
sons, such as the turbulence intensity the positions of the sensors
around the sphere (Batchelor, 2000). Eq. (8) follows the anticipated
trend in the critical flow regime in which the CD is decreasing with
increasing Re. Note that on the contrary, the value of CD from the
correlation of Brown and Lawler (2003) stays constant for Re values
higher than 104. The onset of the critical flow regime for the
power-based equation Eq. (8) starts at approximately Re � 105,
earlier than most experimental and numerical results, except the
experimental data of Maxworthy (1969), in which the critical flow
regime starts at much lower Re. At approximately Re ¼ 3� 105 Eq.
(8) drops to zero, and its values resemble the experimental values
of Achenbach (1972). The drop of Eq. (8) to zero at Re = 3� 105 was
already predicted algebraically in the previous section, and (8) is
the first in literature that predicts with good accuracy the value
of Recr reported by the experiments of Achenbach (1972). From
Fig. 5, we can see that even the high fidelity simulations of Geier
et al. (2017) with fine grid failed to predict Recr since they failed
to resolve the Kolmogorov length scale at such high Re. The numer-
ical results for the medium grid scheme of Geier et al. (2017) are
close to the predictions of Eq. (8) for Re until the critical Reynolds
number. The logarithmic based Eq. (11) predicts the onset of the
critical flow regime with great accuracy since it follows the CD val-
ues from the experiments of Suryanarayana et al. (1993),
Achenbach (1972) from Re = 5� 104 to about 3� 105. Eq. (11) does
not drop to zero at Recr as Eq. (8), however it follows very closely
the high fidelity numerical results of Gerier et al. (Geier et al.,
2017) for the coarse grid case for Re up to 106. This shows that
Eq. (11) follows an approximately physical reality for Re up to
106, since the results of Gerier et al. (Geier et al., 2017) are gener-
ated by solving an approximate form of the Navier–Stokes equa-



Fig. 4. Comparison between the CD � CDs predictions in the low Re limit by Eqs. (8), (9), (11), (13), and (14), and different sources from the literature for low Re regime.
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tions. Both Eq. (8) and (11) fail to predict the increase of CD after
the end of the critical flow regime, and the start of the supercritical
flow regime at which the boundary layer attached at the surface of
the sphere changes from being partly laminar to being fully turbu-
lent. This failure is attributed to the fact the training data used to
obtain Eqs. (8) and (11) are far from the critical flow regime. Pre-
dicting CD for the critical flow regime is difficult even for high fide-
lity solvers. For example, the non-optimized (Nonopt) solver of
Geier et al. (2017) failed to predict the drag crisis. Instead, it pre-
dicts that CD does not change with Re, similar to what the correla-
tion of Brown and Lawler (2003) predicts. Eq. (8) and (11) performs
better in the critical regime than the fitting correlation of Morrison
(2013) which is a result of fitting experimental data from the liter-
ature. Another interesting observation is that the rate of change of
CD with Re in the critical flow regime, for both Eq. (8) and (11), fol-
lows the smooth trend similar to the experiments of Maxworthy
(1969) and the high fidelity simulations of Geier et al. (2017),
rather than the sharp nearly discontinuous change of CD observed
in the experiments of Achenbach (1972),Suryanarayana et al.
(1993), Wieselsberger (1922).

To illustrate further the performance of the power-based Eq. (8),
and that of the logarithmic Eq. (11) we will compare their predic-
tions with the experimental results of Suryanarayana et al. (1993),
and those of Achenbach (1972) as shown in Tables 5 and 6, respec-
tively. The comparison shows that the logarithmic based Eq. (11)
performance is superior to that of the power-based Eq. (8) since
the relative error metric is always greater than that of the
10
logarithmic-based Eq. (11), and always in the two-digit range.
The power-based equation Eq. (8) only outperforms that of the log-
arithmic equation Eq. (11) in the thin diverging region. However,
the overall performance of the logarithmic based Eq. (11) is better
than the power-based equation Eq. (8) in the critical flow regime if
we compare all their predictions with the available numerical and
experimental data, as shown in Fig. 5. The power-based equation
Eq. (8) perform better compared to its performance at the low Rey-
nolds number regime. However, it still can not generalize well
enough compared to logarithmic based equation Eq. (11). For this
reason, we concluded that power-based equations cannot describe
the evolution of the physics of the drag coefficient in different flow
regimes.

Both Eqs. (8) and (11) predict different stages of the critical flow
regime with surprising accuracy. They are the first in literature to
make such predictions without being exposed to the critical flow
regime, but only by using a limited amount of physics stored in
the training data and the imposed functional forms. The question
may arise whether these predictions are just a product of chance?
Our short answer is no, for several reasons. The first reason is that
the Re number changes by orders of magnitude in the critical flow
regime, which gives many possibilities for the output of the predic-
tive function, but Eq. (11) predicts with small error the experimen-
tal results of Suryanarayana et al. (1993) concerning the onset of
the critical flow regime. The same applies to the Recr predicted
by Eq. (8) compared to the experimental results of Achenbach
(1972). The second and more supportive reason is that symbolic



Fig. 5. Comparison between the CD predictions by Eq. (8) and (11), and different sources in the high Re regime where the drag crisis occurs.

Table 5
Comparison between the values of the drag coefficient CD from our predictive equations Eq. (8) and (11) with the experimental values of Suryanarayana et al. (1993) for different
Re values.

Re Suryanarayana et al. (1993) Eq. (8) Error % Eq. (11) Error %

2:1� 105 0.468 0.367 21.5 0.447 4.4

2:5� 105 0.457 0.313 31.5 0.451 1.3

2:7� 105 0.454 0.287 36.7 0.447 1.5

2:9� 105 0.449 0.259 42.3 0.443 1.3

3:1� 105 0.441 0.240 45.4 0.440 0.2

Yousef M.F. El Hasadi and J.T. Padding Chemical Engineering Science 265 (2023) 118195
regression can generalize and predict the approximated function’s
unexpected behaviour, similar to the example shown in Appendix
B about the sin xð Þ approximation. The algorithm was trained to
predict the peaks; however, it also accurately predicts the exis-
11
tence of valleys. We strongly believe that Eq. (11) contains terms
that approximate the fundamental physical law that CD is follow-
ing, which is why it managed to generalize both the Stokes and
critical flow regimes. This makes the logarithmic representation



Table 6
Comparison between the values of the drag coefficient CD from our predictive equations Eq. (8) and (11) with the experimental values of Achenbach (1972) for different Re values.

Re Achenbach (1972) Eq. (8) Erorr % Eq. (11) Error %

2:0� 105 0.502 0.373 25.6 0.461 8.16

2:3� 105 0.489 0.339 31.0 0.453 7.27

3:3� 105 0.450 0.202 55.1 0.434 3.4

3:4� 105 0.388 0.196 49.38 0.433 -11.8
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of CD a serious candidate of an analytical mathematical formula-
tion that governs the variation of CD with the Re.

In summary, we showed that the functional form of CD could be
represented by both powers and logarithmic functions of Re. How-
ever, the logarithmic representation conveys the physics in a dif-
ferent way than the power representation, and illuminates new
physical phenomena, which are beyond the reach of current ana-
lytical or empirical CD formulas. Because of the logarithmic equa-
tions’ good generalization behaviour, especially Eq. (11), such
equations should not be considered as merely fitting equations,
but rather as semi-analytical equations. When appealing to math-
ematical aesthetics, our results suggest that the drag coefficient of
a sphere might be well described by the form
CD ¼ pþ 24=Reþ f logReð Þ, with CD ¼ p at the first point of separa-
tion, occurring at a Reynolds number Res given by the transcenden-
tal equation 24=Res þ f logResð Þ ¼ 0. Van Dyke (1975) described the
appearance of logarithms in the asymptotic expansions as obscure,
but it appears that these obscure entities can speak the language of
fluid dynamics much better than powers. A similar situation exists
in the field of turbulence, especially regarding channel flow, where
there is an open debate in the scientific community whether power
or logarithmic expansions best describe the velocity at the wall in
certain flow regimes (Schultz and Flack, 2013). Note that the loga-
rithmic dependence of the drag coefficient CD also exists for
geometries different than a sphere such as spherocylinders and
prolate spheroids, as shown in our previous work (El Hasadi and
Padding, 2019).

3.3. Drag coefficient for an oblate spheroid

This subsection is a continuation of testing the generalization
behaviour of the derived equations. This time we will test their
ability to predict the drag coefficient of a different geometry than
a sphere. We selected the single geometry of an oblate spheroid
with an aspect ratio pa equal to 0.25 for the case that the flow is
parallel to the equatorial diameter of the particle. We selected this
specific geometry because the oblate spheroid and sphere are both
parts of the geometrical space of spheroids, whichmakes their drag
coefficient formulas share many similarities between them. In
addition, we can compare our predictions with the direct numeri-
cal simulation results of Sanjeevi et al. (Sanjeevi et al., 2018) for a
wide range of Reynolds numbers.

In line with the compression of the oblate geometry, we will
modify Brown and Lawler (Brown and Lawler, 2003) correlation,
power-based Eq. (8), and logarithmic based Eq. (11) equations.
We will follow the work of Livi et al. (Livi et al., 2022), and we will
multiply Brown and Lawler (Brown and Lawler, 2003) correlation,
and Eq. (8) with the correction factor K for the Stokes drag derived
by Happel and Brenner (2012), we leading to the following modi-
fied equations:

CD ¼ K
24
Re

1:0þ 0:15Re0:681
� �

þ 0:407
1þ 8710

Re

 !
ð18Þ
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CD ¼ K a1 þ a2
Re

þ a3
ffiffiffiffiffiffi
Re

p
þ a4ffiffiffiffiffiffi

Re
p þ a5

a6 þ Reð Þ þ a7Re
� �

ð19Þ

The Re here after in this section is based on the diameter of equiv-
alent sphere, the value of K for the specific particle geometry
selected is 1.083. For the logarithmic based Eq. (11) we will multi-
ply the geometry correction factor only with the Stokes term fol-
lowing our findings in our previous work (El Hasadi and Padding,
2019) for non-spherical particles. The new modified logarithmic
equation for the oblate geometry has the following form:

CD ¼ a1 þ Ka2

Re
þ a3 log Reð Þ þ a4log

2 Reð Þ þ a5log
4 Reð Þ ð20Þ

The performance of the specially modified equations (Eqs. (18)–
(20)) are tested against the numerical simulations of Sanjeevi
et al. (Sanjeevi et al., 2018) as shown in Fig. 6. The predictions of
the logarithmic modified equation (Eq. (20)) is closer to the numer-
ical results of Sanjeevi et al. (2018) compared to the modified
Brown and Lawler Eq. (18), and the modified power-based equation
Eq. (19), at the moderate Reynolds numbers, while at high Re, the
predictions of the three equations are similar. However, if we
slightly modify further Eq. (20) by changing the value of the coeffi-
cient a1 by 4.5% from 3.28 to p we will get the following equation:

CD ¼ pþ Ka2

Re
þ a3 log Reð Þ þ a4log

2 Reð Þ þ a5log
4 Reð Þ ð21Þ

Eq. (21) predicts the numerical results of Sanjeevi et al. (2018) clo-
sely for the whole range of the Re and confirms that the logarithmic
based equation Eq. (11) that we found for a sphere can be easily
extended to predict the drag coefficient for a non-spherical geome-
try. We assigned p for the value of coefficient a1 because, as men-
tioned in the previous section, we suspect that the value of a1
converges toward p. This generalization behaviour shows that log-
arithms can represent the evolution of the drag coefficient beyond
the spherical geometry. Eq. (21) is the first in literature that is cap-
able to predict the drag coefficient for particle geometry without
using experimental or numerical data from that specific geometry.
We are also preparing a new study for the applicability of using
Eq. (11) to predict the drag coefficient for non-spherical particles.

The worst performing predictive equation is the general-
purpose correlation of Hölzer and Sommerfeld (2008). It predicts
the results of Sanjeevi et al. (2018) for Re up to 100. After that,
its predictions diverge significantly from the numerical results of
Sanjeevi et al. (2018). The Hölzer and Sommerfeld (2008) correla-
tion is derived to predict the drag coefficient of arbitrary particle
geometry by fitting the drag coefficient data from different particle
geometries, including disks and spheres. In principle the Hölzer
and Sommerfeld (2008) correlation was exposed to a more exten-
sive data set of non-spherical geometries than Eqs. 20,21.

We illustrate the accuracy of the predictive equations for the
oblate particle geometry in Table 7. The worst predictive
logarithmic-based equation Eq. (20) is about 10% more accurate
compared to that of the power-based Eq. (19), and the modified
Brown and Lawler (2003). Imposing a change of only 4.5% in the



Fig. 6. Comparison between the CD predictions by Eqs. (18), (20), (21) and (19), Holzer and Sommerfeld (Hölzer and Sommerfeld, 2008) correlation, and the numerical results
of Sanjeevi et al. (Sanjeevi et al., 2018) for the case of an oblate spheroid with aspect ratio(pa) of 0.25, and a wide range of Reynolds numbers.

Table 7
Comparison between the drag coefficient values CD for the oblate particle geometry pa =0.25 from the numerical simulations of Sanjeevi et al. (2018) with those from derived
predictive equations for different Re values.

Re Sanjeevi et al. (2018) Eq. (18)(%) Eq (19)(%) Eq. (20)(%) Eq. (21)(%)

1000 0.340 0.501 (47%) 0.505(49%) 0.471 (39%) 0.327(4%)
2000 0.282 0.440 (57%) 0.455(61%) 0.421 (49%) 0.277(2%)
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value of the a1 coefficient in the logarithmic based equation Eq.
(20) enhances the accuracy substantially by about 46%. The accu-
racy enhancement is far greater than the change in the coefficient’s
value. It supports our argument that the logarithmic-based equa-
tions far better interpret the physics of the drag coefficient around
particles of different geometries compared to power-based equa-
tions. We also changed the values of the a1 coefficient in Eq. (19),
and the value of the constant of 0.407 in Eq. (18) by 4.5% but their
predictive behaviour did not change compared to the original
equations. In order for Eqs. (18) and (19) to have similar predictive
accuracy as the logarithmic Eq. (21), the constant 0.407 and the
coefficient a1 their values must change by 75%, and 60%, respec-
tively. For both equations, the change in the coefficients is substan-
tially bigger than their predictive accuracy in their unchanged
13
form, which could indicate that their predictions could be a result
of over-fitting.
4. Conclusions

In this investigation, we explored the possibility of a logarith-
mic dependence of the drag coefficient CD on the Reynolds number
Re inspired by asymptotic solutions for creeping flow conditions.
We used a symbolic regression machine learning algorithm, and
our training data are based on experiments and data from well-
known empirical correlations available in the literature. We can
make the following conclusions:



Yousef M.F. El Hasadi and J.T. Padding Chemical Engineering Science 265 (2023) 118195
� The drag coefficient CD can be expressed as a function of powers
in log Reð Þ, partially fulfilling the Proudman and Pearson (1957)
conjecture P&P.

� If an expansion in terms of log Reð Þ is made for the drag coeffi-
cient CD, the value of the Re at which all the Re dependent terms
go to zero is closely resembling the Re at the first emergence of
laminar separation, as predicted analytically by Proudman and
Pearson (1957).

� The logarithmic dependence of CD on Re is found independently,
without any prior knowledge, by the symbolic regression
algorithm.

� The logarithmic based Eq. (11) can generalize in both low and
high Re regimes. In the high Re regime Eq. (11) can predict
the drag crisis, its results closely following experimental and
numerical predictions from literature.

� Since Eq. (13) is derived from the experimental data of Brown
and Lawler (2003), the appearance of the logarithmic terms in
CD equations is independent of the correlation that is used as
a source of the training data.

� Eq. (11) is the only equation in literature that correctly
describes the physics of the drag coefficient from the zero Re
regime to the onset of the drag crisis, even though it is derived
from data that does not include any information about those
two regimes.

� Power-based equations, such as Eq. (8) and (9), do not describe
the drag coefficient evolution for the entire Re range. For this
reason, we believe they only represent a reasonable approxima-
tion of the real solution.

� We recommend using Eq. (11) for engineering applications, due
to its generalization behaviour and following the appropriate
physics in the low and high Re regimes. Also, we believe that
the logarithms reassemble a functional form for the drag coeffi-
cient that can be applied to other particle shapes.

The bigger picture of our results is that, although our method
cannot give answers as rigid mathematical proofs, it is highly prob-
able that if one day we manage to solve in a closed form the
Navier–Stokes equations, around a sphere, this solution will be
expressed in terms of logarithms rather than powers. The logarith-
mic terms that symbolic regression found are related to the veloc-
ity and pressure fields around the sphere. Symbolic regression is an
excellent candidate to further investigate the functional form of
these fields, and we intend to conduct a future study toward this
goal. Finally, we note that the machine learning framework that
we developed is general and can be used in different scientific dis-
ciplines with the condition that experimental and numerical data
exists, plus the availability of some limited analytical solutions.
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Appendix A

Nusselt number Nu

In this Appendix will explore the possibility of a logarithmic
dependence of the Nusselt number Nu on the Peclet number Pe
and Reynolds number Re. First, we will briefly describe the avail-
able literature, and after that, we will explain our results
thoroughly.

Concerning the heat transfer rate from a particle fixed in a fluid,
most investigations available in the literature are related to the
case of forced convection. In this type of flow, the velocity profile
is decoupled from that of the temperature. For further simplifica-
tion, there is also no variation in the transport properties of the
fluid with temperature. These simplifications pave the way of
obtaining several analytical solutions for a single sphere (Acrivos
and Taylor, 1962) for limited cases of low Re and Peclet number
Pe ¼ v1d=a, where a is the thermal diffusivity of the fluid.
Acrivos and Taylor (1962) used asymptotic expansions and the
velocity profile of the Stokes solution to find the following relation
for the Nusselt number Nu ¼ hd=k, where h is the (convective and
surface mean) heat transfer coefficient and k is the thermal con-
ductivity of the fluid (linked to the thermal diffusivity through
k ¼ aqcp, with cp the specific heat capacity of the fluid), for the case
of Pe !0 and Re !0:

Nu ¼ 2þ 1
2
Peþ 1

4
Pe2 log Peð Þ þ 0:034Pe2 þ 1

16
Pe2 log Peð Þ ðA:1Þ

In practice, this solution is limited to ReK 0.03. Rimmer (1968)
added an extra term to Eq. (A.1) from asymptotic expansions, and
as far as we know this is the last term that evolved from the
matched asymptomatic expansions in the low Pe and Re ! 0
regime. Conversely, for Pe ! 1 and Re ! 0, Acrivos and Goddard
(1965) used the matched asymptotic expansions to arrive at the fol-
lowing relation for Nu:

Nu ¼ 0:922þ 1:249Pe
1
3 ðA:2Þ

As for the case of drag, for higher Re we need to rely on semi-
empirical relations to express the variation of Nu with the flow field
parameters. Whitaker (1972) provided a correlation, which is still
considered one of the most accurate available in literature
(Sparrow et al., 2004):

Nu ¼ 2þ C4Re
a1 þ C5Re

a2
� �

Pra3 ðA:3Þ
where Pr ¼ cpl=k is the Prandtl number (note that Pe ¼ RePr). The
values of a1; a2, and a3 are 1

2 ;
2
3, and 0.4, respectively. The Whitaker

correlation is valid for 1 6 Re 6 105 and a wide range of Pr. The sec-
ond, and third terms represent inertial fluid effects, and their func-
tional form is inspired by boundary layer theory. Although the first
term comes from the analytical solution for pure conduction from a
sphere, all exponents in Eq. (A.3) are obtained from empirical
fitting.

For the purpose of evaluating the existence of logarithmic terms
for the problem of convective heat transfer over a sphere. We will
create a data set of 26,796 points from the Whitaker (1972) corre-
lation Eq. (A.3) for Pr in the ranging from 0.74 to 7.0, and Re in the
range of 10�1 to 104. We will start with the simplest assumption by
allowing the symbolic regression algorithm to guess about the
dependency of Nu on Re; Pr and, or Pe, through the following initial
function:

Nu ¼ f Re; Pr; Peð Þ ðA:4Þ



Yousef M.F. El Hasadi and J.T. Padding Chemical Engineering Science 265 (2023) 118195
The resulting Nu correlation is the following:

Nu ¼ a1 þ a2
ffiffiffiffiffi
Pe

p
þ a3

ffiffiffiffiffiffi
Re

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ a5

ffiffiffiffiffi
Pe

pq
þ a6Peþ a7Re ðA:5Þ

The coefficients are listed in Table A.1. Most equations that the algo-
rithm produces show that Nu is a function of Re and Pe, and
excludes the explicit dependence on Pr. This is different from the
source of our data (the Whitaker correlation Eq. (A.3)), which
explicitly depends on Pr and Re. Even when we used a substantial
amount of data, the algorithm failed to predict the exact structure
of the Whitaker correlation (Whitaker, 1972). The recent investiga-
tion of Udrescu and Tegmark (2020) showed, consistent with our
results, that Eureqa failed to predict the exact functional structure
of many functions included in the Feynman lectures (Feynman
et al., 1965). They attributed this failure due to the complexity of
those functions, and the number of variables that they contain.

Examining the properties of Eq. (A.5), we find that as Re ! 0, Eq.
(A.5) reduces to a1 þ a2

ffiffiffiffiffi
Pe

p
, which bears similarities with Eq. (A.2)

for the Pe dependency, because for both cases the power of Pe is
less than one, and both equations show that even at very low Re
convection affects the heat transfer rate. This type of dependency
did not exist in the Whitaker correlation Eq. (A.3), where for
Re ! 0 (outside the range of validity of the Whitaker correlation)
Nu converges to a value of 2.0, corresponding to pure conduction
from a single sphere.

We will now examine the full dependence of Nu on logarithms
of Pe;Re, and Pr. This structure of dependency is based on our pre-
vious knowledge of the physics of the problem of forced convection
over a sphere. We know that for Re ! 0 and Pe < 1;Nu depends on
log Peð Þ (Acrivos and Taylor, 1962) (Eq. A.1), so there may exist an
intermediate Pe regime where logarithms will play a role as well,
until we reach a high Pe regime where Eq. (A.2) is dominant. For
the high Re regime we already showed that the drag coefficient
CDis a function of logarithms of Re, so because of the tight relation
between flow and heat transfer (Duan et al., 2015) we expect that
logarithms of Rewill play a role in the convective heat transfer pro-
cess as well. The initial function has the following form:

Nu¼ f log Peð Þ;Pelog Peð Þ;log2 Peð Þ;log Reð Þ;Relog Reð Þ;log2 Reð Þ;log Prð Þ;Pr log Prð Þ;log2 Prð Þ
� �

ðA:6Þ

As initial guess we gave equal weight to all functional forms, to
avoid any bias, toward any of the independent variables. The sym-
bolic regression algorithm found the following two correlations:

Nu ¼ a1 þ a2log
2 Reð Þ log Peð ÞPea3 þ a4Pe

a5 ðA:7Þ

Nu ¼ a1 þ a2log
2 Reð Þ þ a3Pe

a4 þ a5log
2 Reð Þ log Peð ÞPea6

þ a7 log Peð Þ ðA:8Þ

The second equation is more complex than the first. The coefficients
of both Eqs. (A.7), and (A.8) are listed in Table A.1. Both equations
posess very interesting features. We will start with Eq. (A.8), where
the term a1 þ a3Pe

a4 resembles closely the approximation of Eq.
(A.2). The relative difference of the a1; a3 coefficients and those of
Eq. (A.2) is 15%, and 8%, respectively. The relative error is remark-
Table A.1
Coefficients for Eqs. (A.5), (A.7), and (A.8).

Coefficients Eq. (A.5) Eq. (A.7) Eq. (A.8)

a1 2.0 1.582 1.063
a2 0.343 0.003 0.0067
a3 0.0454 0.326 1.351
a4 9.341 1.0 0.299
a5 1.0 0.322 0.0028
a6 �7:0� 10�5 - 0.332

a7 �0.00131 - �0.128
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ably small, if we take into account that the source of the data set
is coming from an empirical correlation that has an average predic-
tive error of 30%. The logarithmic Eqs. (A.7), and (A.8) follows the
second and the third rules, similar to their drag coefficient counter-
parts. On the other hand, the power-based based Eq. (A.5) fails to
extrapolate, especially in the low Re regime.

We believe that the combination of the logarithmic dependence
of Pe and Re plays an essential role in the emergence of an asymp-
totic solution. It seems there are very few possible ways to repre-
sent the data of Whitaker (1972) using logarithms of Pe and Re and
one of those few is using terms similar to Eq. (A.2). Our findings
show the essential role played by previous physical knowledge of
the problem in specific regimes, to help the machine learning algo-
rithm to reach a physically meaningful result.

The genetic algorithm predicted the asymptotic solution for the
high Pe (Eq. A.2) case, rather than for low Pe (Eq. A.1), probably
because our training data is more biased toward the high Pe
regime. Since the lowest Re and Pr used are 0.1 and 0.7 respec-
tively, the lowest Pe we used is 0.07, which lies at the boundary
of the high Pe regime. We could not use lower Pe because the Whi-
taker correlation (Whitaker, 1972) is based on Re ranging between
3.5 and 7:6� 104, and Pr ranging between 0.7 and 380. Note that
we did use the Whitaker correlation (Whitaker, 1972) also for
lower Re, 0:1 < Re < 3:5, to generate our training data. We test
its validity against the experimental data of Will et al. (2017) for
the lowest Prandtl number that we used, Pr = 0.7, and for Re as
low as 0.1, and we found that the Whitaker correlation
(Whitaker, 1972) follows closely the results of (Will et al., 2017),
as shown in Fig. A.1. An indication that the hydrodynamics in the
highly inertial regime may be governed by logarithmic terms of

Re, is the the appearance of log2 Reð Þ terms both in Eqs. (A.7) and
(A.8), similar to the case of CD (see Eqs. (11), (13) and (14)). Also,

the log2 Reð Þ terms for both Nu and CD share the same sign, and
their pre-factors are of the same order of magnitude.

We compare the performance of our predictor equations for dif-
ferent Pr, and Re numbers, in Fig. A.1. We select four cases, two of
them lie within the training data set (Pr = 0.7 and 7.0) that we sup-
plied to the algorithm. The other two test cases (Pr =50 and 300) lie
outside the training data set to test the extrapolation capabilities of
our predictor equations. For Pr = 0.7, Eqs. (A.5), (A.7) and (A.8) per-
fectly follow the Whitaker (1972) correlation and the experimental
results of Will et al. (2017). At high Re they also follow the numer-
ical results of Feng and Michaelides (2000). As expected, our
ecosystem of equations do not follow the asymptotic solution of
Acrivos and Goddard (1965) since their solution is only valid in
the low Re and high Pe regime. For the case of Pr = 7.0, our ecosys-
tem of equations predicts the evolution of Nu with great accuracy.
For the cases of Pr = 50 and 300, Eqs. (A.7) and (A.8) predict with
great accuracy the results of the Whitaker (1972) correlation,
except in a very narrow region at low Re. The conditions in this
low Re - high Pr regime are applicable to the asymptotic solution
of Acrivos and Goddard (1965). This is why the whole ecosystem
of our equations deviate from the results of the Whitaker (1972)
correlation, and follow by different degrees of accuracy the asymp-
totic solution of Acrivos and Goddard (1965), Eq. (A.2). All of our
equations are functions of Pe and Re. However, for low Re the Nu
correlations switch to a dependency on Pe only, which is consistent
with the physics of Eqs. (A.1) and (A.2).

If we perform a simple mathematical analysis on the Whitaker
(1972) correlation such as taking the limit Re ! 0, and Pr ! 1,
which is the applicable range for the Acrivos and Goddard (1965)
analytical solution, the result is 2.0. This shows that the
Whitaker (1972) correlation does not contain any elements of
the asymptotic solution of Acrivos and Goddard (1965). To further
investigate the behaviour of our predictive equations in the range



Fig. A.1. Comparison between the results of different predictor equations for the Nusselt number Nu with those from literature for four different Prandtl numbers Pr.
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of applicability of the Acrivos and Goddard (1965) asymptotic solu-
tions, we selected two cases with Pr equal to 1000, and 3000, and
Re ranging between 10�2 to 10�1, the results are shown in Fig. A.2.
It is clear that the logarithmic based predictive equations are supe-
rior in their predictions compared to the power-based equations
since they follow the solution of Acrivos and Goddard (1965) clo-
sely. Specifically, for the case of Re = 0.05, the Nu values from dif-
ferent sources are illustrated in Table A.2. For example the
Whitaker (1972), correlation predictions differ by 35% to 41% with
the respect to the Acrivos and Goddard (1965) predictions. The log-
arithmic based equations Eqs. (A.7), and (A.8) their values only dif-
fer only 0.2% to 4.0% from those of Acrivos and Goddard (1965). As
for the power-based equation Eq. (A.5), the relative error is 19.14%,
16
and 17% with respect to Acrivos and Goddard (1965) predictions.
While, the predictions of Feng and Michaelides (2000) differ from
those of Acrivos and Goddard (1965), by 14.09%, and 14.85%.

The high relative error of the Whitaker (1972) correlation indi-
cates that it is not applicable in the range of Re and Pr where the
asymptotic solution of Acrivos and Goddard (1965) is valid. This
proves the correctness of the simple mathematical analysis that
we did above. Thus, it is clear proof that in the training data that
we use, there will be no trace of the Acrivos and Goddard (1965)
asymptotic solution. Thus, the only reason for the high accuracy
of the logarithmic based equations Eqs. (A.7) and (A.8) is that they
describe the governing physics of the problem. This is similar to
our conclusion on the drag coefficient. The inclusion of logarithmic



Fig. A.2. Comparison between the results of different predictor equations for the Nusselt number Nu with those from literature for four different at Prandtl Pr, numbers, and
low Reynolds numbers Re.

Table A.2
Comparison between our predictive equations, and correlations from the literature with the results of Acrivos and Goddard (1965) for the cases of Pr = 1000, 3000, and Re =0.05.

Pr =1000 Relative Error (%) Pr ¼ 3000 Relative Error (%)

Eq. (A.5) 4.46 -19.14 6.23 -17.41
Eq. (A.7) 5.05 �0.2 7.33 -2.93
Eq. (A.8) 5.35 -2.95 7.23 -4.25

Whitaker (1972) 3.546 -35.74 4.4 -41.74
Feng and Michaelides (2000) 4.79 14.09 6.43 -14.85
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terms leads to a generalization of derived functions, leading to a
description of physics not included in the training data. This leads
us to conclude that the logarithmic terms could be part of the ana-
lytical solution of the two problems described in this investigation.
A surprising observation is that the correlation of Feng and
Michaelides (2000), which includes an approximate form of
Acrivos and Goddard (1965) asymptotic solution, failed to make
accurate predictions at high Pe numbers and shows how complex
is the process of getting close to the predictions of the analytical
solution of Acrivos and Goddard (1965). This shows the difficulty
of capturing the asymptotic solution of Acrivos and Goddard
(1965) even by using numerical data and parts of the asymptotic
solution itself and supports our argument indirectly that the loga-
rithmic terms represent part of the solution of the Navier–Stokes
and energy equations.

The above shows that symbolic regression can find an asymp-
totic solution by using previous physical knowledge, rather than
depending completely on the training data set. Feeding machine
learning algorithms previous physical knowledge for the problem
that they try to optimize, increases substantially the probability
of better extrapolation predictions. For further discussion on how
to implement previous knowledge into symbolic regression, the
readers is referred to our recent publication (El Hasadi and
Padding, 2019).

From this appendix we can make the following conclusions:

� The Nusselt number of a single sphere depends on logarithms of
Re; Pe, as well as powers of Pe.
17
� If logarithmic functions of Re and Pe are used as initial functions
for the symbolic regression algorithm, the algorithm produces
with high accuracy the asymptotic solution derived by Acrivos
and Goddard (1965) from the matched asymptotic method, in
the low Re and high Pe regime. Interestingly, the training data
that we used does not follow the asymptotic solution of
Acrivos and Goddard (1965).

� There is a connection between the appearance of the logarith-
mic terms in both CD and Nu expressions, and the ability of
those expressions to generalize outside the training data range.
This connection makes the logarithmic representation a strong
candidate for the functional form of CD and Nu that could result
from solving the Navier–Stokes equations analytically for the
problem of flow over a single sphere at high Re, and be a result
of a generalized fluid mechanics theory that applies to both low
and high Re regimes.

Appendix B

Maclaurin expansion of Sin function

A well-known result of applied mathematics is the representa-
tion of continuous functions by the Taylor expansion(Taylor,
1717):

f xð Þ ¼
X1
n¼0

f n að Þ x� að Þn
n!

ðB:1Þ



Table B.1
Coefficients for Eqs. (B.4) and (B.5).

Coefficients Eq. (B.4) Eq. (B.5)

a1 0.9999 1.0001
a2 0.1665 0.1682
a3 0.00826 0.0031
a4 0.000173 0.0065
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When a = 0, the Taylor series reduces to the Maclaurin series. The
following expansion gives the Maclaurin series for sin xð Þ:

sin xð Þ ¼
X1
n¼0

�1ð Þn
2nþ 1ð Þ! x

2nþ1 ¼ x� x3

3!
þ x5

5!
� x7

7!
þ . . . ðB:2Þ

One of the reasons we choose the sin xð Þ function as our test case for
the symbolic regression algorithm is its non-monotonic nature,
specifically its transition from an increasing to a decreasing func-
tion. This feature will help us assess the generalization behaviour
of the algorithm. We generated 5000 uniform training points in
the range [0,p2]. We selected this specific range because we wanted
to feed the algorithm only the monotonically increasing part of the
sin xð Þ function, and see if it can generalize, and predict the decreas-
ing part of the function between [p2 ;p]. The algorithm does not pos-
sess any prior knowledge of the sin xð Þ function and starts by
assuming the most primitive initial function for the symbolic
regression algorithm:

y ¼ f xð Þ ðB:3Þ
Fig. B.1. The influence of different terms of Eq. (B.4) on its vari
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The symbolic regression algorithm suggested many equations,
including the following two:

y xð Þ ¼ a1x� a2x3 þ a3x5 � a4x7 ðB:4Þ

y xð Þ ¼ a1x� a2x3 þ a4x4 þ a5x5 ðB:5Þ
The values of the coefficients of Eq. (B.4) and (B.5) are listed in
Table B.1. Eq. (B.4) contains the first four terms of the Maclaurin
series for the sin xð Þ function. Although this may seem to be trivial,
to the best of our knowledge this is the first time that a machine-
learning algorithmmanaged to derive a Taylor or a Maclaurin series
out of pure data. For the derivation of any Taylor series of a function
we need to use the calculus invented simultaneously by Newton
(1833) and Leibniz (1682).

First, we want to illustrate the effect of the different terms of Eq.
(B.4) on its accuracy and generalization, as shown in Fig. B.1. For the
[0; p2] domain, except for the first linear term, regardless of the num-
ber of terms we add, the decreasing nature of sin xð Þ for x > p

2 is pre-
dicted. Adding more terms increases the accuracy. While the first
three terms are enough to predict with great accuracy the training
data, the fourth termplays a significant role for values of x > p

2 which
is beyond the range of the training data. We chose Eq. (B.4) not only
because of its accuracy but due to its resemblance of the Maclaurin
series, thus our selection is based on our own previous knowledge.
What is missing is a generalization theoremwhich can tell us about
the generalization behaviour of a specific machine learning algo-
rithm, trained at a specific range of data. Without this theorem, we
ation with x. Blue bars indicate the range of training data.



Table B.2
Coefficients of polynomials of degree n = 3, and 7.

Coefficients n = 3 n = 7

a0 �0.002 �4.70�10�8

a1 1.027 1.0
a2 �0.069 �2.339�10�5

a3 �0.138 �0.166
a4 - �2.45�10�4

a5 - 0.008
a6 - �2.046�10�4

a7 - �1.377�10�4
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will always be hesitant to use machine learning predictions beyond
their training range, specifically when dealing with problems for
which we have minimal knowledge about the behaviour outside
the training range. Finally, we want to compare the performance
of the symbolic regression algorithm with other popular machine
algorithms in literature, such as polynomial regression and artificial
neural networks (ANN) for the same sin xð Þ case. Polynomial regres-
sion may be considered as one of the oldest machine learning algo-
rithms (Brunton and Kutz, 2019), inspired by Legendre and Gauss’s
works, and implemented in a robust algorithm by Gregonne in
1815 (Stigler, 1974). Polynomial regression is the most appropriate
‘‘traditional” regressionmethod to arrive at polynomials such as the
Maclaurin series. In polynomial regression, the structure of the fit-
ting equation and the degree of the polynomial are predefined. For
our case we will use two different polynomials one with a degree
Fig. B.2. Comparison between different machine learning methods for
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of n = 3, and other one with n = 7. We use the same training data
set that we used for the symbolic regression, and for implementa-
tion, we will use the Polyfit function from the open-source Numpy
library written in python (www.numpy.org/doc/stable/user/,
xxxx). Themain output of the algorithm is the coefficients of the fol-
lowing equation:

y xð Þ ¼ a0 þ a1xþ . . . anxn ðB:6Þ

The coefficients for the two polynomials that we used are listed in
Table B.2.

We selected the artificial neural network because it is consid-
ered as a universal function approximators (Cybenko, 1989;
Hornik, 1991), but also because it does not need any prior knowl-
edge about the structure of the equation to best fit the training
data, similar to the symbolic regression algorithm. Contrary to
symbolic regression, the product of a neural network approach is
not a function but the trained neural network itself. We will use
a feed-forward deep neural network, with eight hidden layers.
The first hidden layer consists of 64 neurons, while, the remaining
hidden layers contain 32 neurons, and finally an output layer con-
taining a single neuron (Brunton and Kutz, 2019). In each hidden
layer we use the Relu activation function, and also we apply L2 reg-
ularization to avoid overfitting. The algorithm minimizes the mean
square difference between the predicted and training data, using a
gradient descent algorithm. We use the open-source library
TensorFlow (Abadi et al., 2016) to implement the artificial neural
network framework. For training, we use 40,000 training points,
the sin xð Þ example. Blue bars indicate the range of training data.
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which is a much higher volume compared to the other two algo-
rithms, because deep neural networks require a large amount of
data to be trained appropriately(Brunton et al., 2020).

A comparison between the performance of the three algorithms
is shown in Fig. B.2. Symbolic regression and polynomial regression
were the only algorithms that predict the peaks and valleys of the
sin xð Þ function within the range of [-p;p]. This success can be
attributed to the fact that both algorithms represent the sin xð Þ
function as a polynomial. For the case of the symbolic regression,
it discovered the polynomial representation by itself. On the con-
trary, the ANN failed to generalize beyond the training data. We
hoped that by making the network deeper, we could help the net-
work extract sufficient features from the training data, and gener-
alize. However, what we observe is that the ANN memorizes the
training data instead of generalizing it. For example for x > p

2 the
output of the ANN is always a constant value of one, which is the
value of sin p

2

� �
, and for x < 0 the output of the ANN is always a con-

stant value of zero, which is the value of sin 0ð Þ. This type of mem-
orization by an ANN is also observed in several other studies such
as Zhang et al. (2016). Also, the work of Kim et al. (2020) showed
that if feed-forward ANN is integrated with symbolic regression,
one obtains a better generalization behaviour compared to pure
ANN. Another interesting observation is that despite the fact that
both symbolic regression and ANN optimize the mean square dif-
ference, they come up with totally different generalization
behaviour.

This Appendix showed that symbolic regression can generalize
beyond the training data, and can predict a change in the original
function occurring beyond the training range. This shows the use-
fulness of using interpretable machine learning results, as recom-
mended by Rudin (2019), and it helps us understand the output
function behaviour within and beyond the training range.
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