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Abstract The interaction between the large-scale velocity fluctuations (uL) and the small-scale velocity gradient phenomena, such as

dissipation and the vortex stretching term, are examined in a turbulent free-shear flow. The difference between the probability density

functions of these small-scale quantities conditioned on the sign of uL is quantified by means of the Kullback-Leibler divergence. It

is observed that the interaction between uL and the velocity gradient phenomena is maximised at a filter length of 4λ, where λ is the

Taylor length-scale. It is postulated that this is consistent with a mean shear mechanism.

INTRODUCTION AND NUMERICAL DATA

In the Richardson-Kolmogorov phenomenology of turbulence the fine-scales are considered to be “universal” and thus

independent of the larger, energy-containing scales. However, starting with the work of [1], closer attention has been

paid to the interaction between the large- and small-scales in shear flows, including wall bounded flows. By drawing an

analogy to a large eddy simulation (LES), in which the largest scales present in the flow are resolved whilst the sub-grid

scales (SGS) are modelled, [5] used their highly resolved experimental data to show a clear interaction between the large-

scale and SGS fluctuations. It was observed that large-scale organised structures in a turbulent free shear flow have a

significant impact on the statistical distribution of the SGS dissipation, even with filter lengths (separating the large-scales

from the SGS) well into the inertial range. Additionally [6] showed that the SGS stresses had a significant effect on

the evolution of the filtered velocity gradients. More recently [2] has shown that a concurrent interaction exists between

the large- and small-scales in the far-field of a turbulent mixing layer such that low momentum fluctuations amplify the

small-scale activity, with this effect being observed despite a significant separation in spectral space between the large-

and small-scales. This manuscript examines the concurrent interaction between the large-scale velocity fluctuations and

the fine-scale velocity gradient phenomena, such as dissipation (ǫ) and the vortex stretching term (Ω = ωisijωj) in which

ω is the vorticity vector and sij is the fluctuating strain-rate tensor. Three independent snap shots of a direct numerical

simulation (DNS) of a planar turbulent mixing layer are used as the basis for this abstract. A region of the domain, in

which the flow is observed to be self-preserving, is isolated and a threshold based on enstrophy (ω2) is used to discriminate

between the turbulent and non-turbulent regions of the flow. The Reynolds number based on the Taylor length scale of

Reλ = 220 is observed for the entirety of this region of the flow. More details on the simulation can be found in [3].

METHODOLOGY AND RESULTS
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Figure 1. (a) pdfs of small-scale velocity fluctuations, uSλ, conditioned on the sign of the concurrent large-scale fluctuation, uLλ. (b)

Kullback-Leibler divergence (KLD) of the pdfs of uSλ conditioned on uLΛ < 0 and uLΛ ≥ 0 concurrently for filter length Λ.

The data was initially filtered at a cut-off length scale of λ with a fully three-dimensional sharp spectral filter. The low

wavenumber content, corresponding to length scales greater than λ is denoted uLλ and is used to condition probability

density functions (pdfs) of the concurrent high wavenumber content (uSλ), corresponding to length scales less than λ. [2]

observed an amplification of the “roughness” of the small-scale turbulent fluctuations concurrent with large-scale negative

uLλ fluctuations in a region to the high speed side of the location of peak Reynolds stresses in a turbulent mixing layer



with comparable Reynolds number to this study. In this way they were able to postulate a convective mechanism, in which

a negative uLλ fluctuation (coupled to a positive vLλ fluctuations due to the positivity of the turbulence production term)

to attempt to explain this scale interaction. For consistency with this previous study, we present results in the high speed

side of the mixing layer (y > 0). Figure 1(a) shows pdfs of the small-scale fluctuations (uSλ) conditioned on the sign

of the large-scale fluctuations (uLλ). The distribution is less “peaky” for uLλ < 0 verifying the increased small-scale

activity for negative velocity fluctuations for the high speed side of the mixing layer. This result is, however, asymmetric

due to the adjacency of uLλ and uSλ in spectral space, but the scale modulation is present nevertheless.

We subsequently investigate the modulation of uSλ, which remains filtered at length-scale λ, by large-scale velocity

fluctuations filtered at increasing filter lengths Λ, such that there is a separation in wavenumber space between uSλ and

uLΛ. We may quantify the difference between the pdfs of uSλ conditioned on the sign of uLΛ by means of the Kullback-

Leibler divergence (KLD) defined as DKL(P‖Q) =
∫
∞

−∞
ln [p(x)/q(x)] p(x)dx, where p(x) and q(x) are the pdfs

of fluctuating variables P and Q [4]. It originates from information theory and physically it represents the information

loss in modelling distribution p(x) by q(x) and is non-commutative. Figure 1(b) shows DKL (between the pdfs of uSλ

conditioned on uLΛ < 0 and uLΛ ≥ 0) as a function of filter length Λ. It can be seen that there is a significant modulation

of the finest-scales by the large-scales, despite the separation in wavenumber space between them, up until Λ ≈ 10λ.
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Figure 2. KLD for the pdfs of the small-scale dissipation rate, ǫ, (a) and the small-scale vortex stretching term, Ω, (b) conditioned on

uLΛ < 0 and uLΛ ≥ 0 concurrently for filter length Λ. N.B. to respect the Nyquist sampling theorem no data is presented for Λ > 18λ

after which the filter is constrained in the y direction.

Figures 2(a) and (b) illustrate DKL for the pdfs of ǫ and Ω conditioned on uLΛ < 0 and uLΛ ≥ 0. For both figures it

is observed that there is an initial sharp increase in the KLD up to a maximum which coincides with Λ ≈ 4λ, which is a

peculiar length scale with no obvious physical interpretation. 4λ roughly corresponds to L11/4, where L11 is the integral

length scale for the flow at this Reynolds number. This is also observed for the amplitude modulation of the small-scale

enstrophy by the large-scale velocity fluctuations, which follows a quantitatively very similar trend to that for dissipation

but is not shown in this abstract for brevity. It is thus postulated that the mechanism behind this “peak interaction length

scale” is driven by the mean shear of the flow. The final paper will further investigate this hypothesis. Whilst it can be

seen that figure 2(a) plateaus from Λ > 10λ the scale modulation of Ω decreases until DKL(Ω
−

Sλ|Ω
+

Sλ) becomes smaller

than the value for Λ = λ, in which there is no separation in spectral space, at Λ ≈ 15λ. The final paper will also explore

the origins of the seemingly linear slope of DKL(Ω
−

Sλ|Ω
+

Sλ) with Λ as opposed to the plateau for DKL(ǫ
−

Sλ|ǫ
+

Sλ). This

tells us that dissipation is always “aware” of the concurrent large-scale velocity fluctuation whereas this is not the case for

the vortex stretching term. This can potentially be explained by the scale dependency of the alignment tendencies of the

eigenframe of the fluctuating strain-rate tensor with the vorticity vector, which is crucial in determining Ω.
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