

Delft University of Technology

Can we trust tests to automate dependency updates?
A case study of Java Projects
Hejderup, Joseph; Gousios, Georgios

DOI
10.1016/j.jss.2021.111097
Publication date
2022
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Hejderup, J., & Gousios, G. (2022). Can we trust tests to automate dependency updates? A case study of
Java Projects. Journal of Systems and Software, 183, 1-13. Article 111097.
https://doi.org/10.1016/j.jss.2021.111097

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2021.111097
https://doi.org/10.1016/j.jss.2021.111097

The Journal of Systems & Software 183 (2022) 111097

J
D

w
s
d
m
p
p
i
(
2
a

(

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Canwe trust tests to automate dependency updates? A case study of
Java Projects✩

oseph Hejderup ∗, Georgios Gousios
elft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 February 2021
Received in revised form 30 July 2021
Accepted 10 September 2021
Available online 24 September 2021

Keywords:
Semantic versioning
Library updates
Package management
Dependency management
Software migration

a b s t r a c t

Developers are increasingly using services such as Dependabot to automate dependency updates.
However, recent research has shown that developers perceive such services as unreliable, as they
heavily rely on test coverage to detect conflicts in updates. To understand the prevalence of tests
exercising dependencies, we calculate the test coverage of direct and indirect uses of dependencies
in 521 well-tested Java projects. We find that tests only cover 58% of direct and 21% of transitive
dependency calls. By creating 1,122,420 artificial updates with simple faults covering all dependency
usages in 262 projects, we measure the effectiveness of test suites in detecting semantic faults in
dependencies; we find that tests can only detect 47% of direct and 35% of indirect artificial faults on
average. To increase reliability, we investigate the use of change impact analysis as a means of reducing
false negatives; on average, our tool can uncover 74% of injected faults in direct dependencies and 64%
for transitive dependencies, nearly two times more than test suites. We then apply our tool in 22 real-
world dependency updates, where it identifies three semantically conflicting cases and three cases of
unused dependencies that tests were unable to detect. Our findings indicate that the combination of
static and dynamic analysis should be a requirement for future dependency updating systems.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern package managers facilitate reuse of open source soft-
are libraries by enabling applications to declare them as ver-
ioned dependencies. Crucially, when a new version of a depen-
ency is made available, package managers will automatically
ake it available to the client application. This mechanism helps
rojects stay up-to-date with upstream developments, such as
erformance improvements or bug fixes, with minimal fuss. Typ-
cally, package managers implement a set of interval operators
dependency version ranges) on top of the SemVer protocol (npm,
018) that developers use to declare update constraints. For ex-
mple, a dependency declared with the range >= 1.0.0 < 1.5.0

restricts updates to backward-compatible changes up to 1.5.0. On
the other hand, >= 1.0.0 welcomes automatic updates of all new
version releases starting from 1.0.0. Given a new library release
with version 1.5.0, the latter constraint will allow an update but
the former will not.

In practice, most package managers use a liberally inter-
preted version of the SemVer protocol with no vetting, allowing

✩ Editor: Aldeida Aleti.
∗ Corresponding author.

E-mail addresses: j.i.hejderup@tudelft.nl (J. Hejderup), g.gousios@tudelft.nl
G. Gousios).
https://doi.org/10.1016/j.jss.2021.111097
0164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
library maintainers to release new changes based on their self-
interpretation of backward compatibility (npm, 2018; Bogart
et al., 2016). As a consequence, client programs may unexpectedly
discover regression-inducing changes, such as bugs or semantic
changes that break code contracts. Discovering, debugging and
resolving such issues, as exemplified in Fig. 1, remains a chal-
lenging task for development teams (Bogart et al., 2016). In fact,
unexpected regressions are one of the main reasons that deter
developers from upgrading dependencies to new versions (Kula
et al., 2018).

Developers can mitigate the risk of integration errors by either
using restrictive strategies, such as version locking, or permissive
strategies involving dependency update tooling. Version locking
effectively makes the dependency tree of client programs im-
mutable and disables automated updates. This strategy offers
maximum stability but is prone to incurring technical debt due
to outdated dependencies. Moreover, developers need to man-
ually discover and apply security hotfixes. On the other hand,
dependency update checkers analyze version compatibility before
deciding to update. There are two main techniques for deciding
version compatibility, breaking change detection (Mezzetti et al.,
2018; Brito et al., 2018; Foo et al., 2018b) and regression test-
ing (Agrawal et al., 1995; Cleve and Zeller, 2005). Detecting
potential breaking changes (i.e., backward API incompatibilities)
prevents client programs from updating to versions that will

result in compile failures. A major shortcoming of this technique

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.111097
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111097&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:j.i.hejderup@tudelft.nl
mailto:g.gousios@tudelft.nl
https://doi.org/10.1016/j.jss.2021.111097
http://creativecommons.org/licenses/by/4.0/

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

i
t
i
o
g
a

n
f
I
a
s
o
u
d
c
a
d
s

a
a

p
d
a
s
t
a
s
u
s
o

f
a
d
4
W
i
d
e
a
c
f
f
e

t

r
t
t
g
w

2

2

R
t
l
i
R
n
p
h
b
r
s

e
d
q
o
q
d
W
b
C
i
c
u
e
t
d
t
f
2
2

2

J
t
n
o
m
o
c

s that it depends on the compilation and the existence of a static
ype system; many of today’s most popular languages are dynam-
cally typed. A more popular option among developers is the use
f services providing automated dependency updating, such as
reenkeeper.io (greenkeeper.io, 2019), Dependabot (Depend-
bot, 2019), and renovate (Renovate, 2019), that use project test

suites to detect regression changes on every new update.
The effectiveness of such services depends highly on the qual-

ity of end-users test suites (Inozemtseva and Holmes, 2014).
Poor test coverage of dependency usage in client code can lead
to missing update-induced regressions. Recent studies (Hilton
et al., 2018; Kochhar et al., 2017) suggest that high statement
coverage in test suites does not guarantee to find regressions
in code changes. Failing to detect regressions stemming from
updates can have dire consequences for client programs: for
example, users dependent on npm’s event-stream package did
ot notice a malicious maintainer planting a hidden backdoor
or stealing bitcoin wallets inside the library’s source code (npm
nc., 2018). Moreover, a recent qualitative study (Mirhosseini
nd Parnin, 2017) also revealed that developers are generally
uspicious of automatically updating their dependencies. One
f the prime reasons is that developers perceive their tests as
nreliable. To reduce the number of false negative updates, we
evelop a static change impact analysis for dependency updates
alled Uppdatera. By statically identifying changed functions and
pproximating call-relationships between an application and its
ependencies, change impact analysis can fill in gaps where test
uites have limited coverage or cannot reach.
In this paper, we set out to empirically understand how reli-

ble developer tests are in automated dependency updating by
ddressing the following research questions:

• RQ1: Do test suites cover the uses of third-party libraries in
projects?

• RQ2: How effective are project test suites and change impact
analysis in detecting semantic changes in third-party library
updates?

• RQ3: How useful is static analysis in complementing tests for
compatibility checking of new library versions?

To study the prevalence of tests exercising dependencies in
rojects, we first establish all uses of library functionality from
irect and transitive dependencies in 521 well-tested projects
nd then measure how much test suites cover those usages. By
ystematically mutating dependency uses in 262 projects, we
hen conduct a comparative study on the adequacy of test suites
nd change impact analysis in detecting artificial updates with
imple faults. To understand the strengths and weaknesses of
sing static analysis as a complement to tests in a practical
etting, we evaluate the performance of test suites and Uppdatera
n 22 newly created pull requests that update dependencies.
Our results indicate that tests lack considerable coverage of

unction calls in projects that target library dependencies; aver-
ge coverage is 58% for direct dependencies and 21% for transitive
ependencies. Similarly, the average effectiveness of test suites is
7% for direct dependencies and 35% for transitive dependencies.
hen using change impact analysis, the average effectiveness

ncreases to 74% for direct dependencies and 64% for transitive
ependencies, suggesting that static analysis can cover open cov-
rage gaps in tests. Through our manual analysis, Uppdatera was
ble to catch three unsafe updates and three unused dependen-
ies, suggesting that it is potentially more effective in avoiding
aulty updates than tests. However, it is also more prone to
alse positives due to difficulties in evaluating over-approximated
xecution paths.
Our findings raise awareness of the risks involved with au-

omated dependency updating. Tool creators should consider
2

Fig. 1. Update failure in okta/okta-sdk-appauth-android, #81.

eporting how adequately project tests exercise changed func-
ionality in libraries under update. In future updating systems,
ool creators should investigate hybrid workflows to complement
aps in regression testing with static analysis and help developers
ith prioritizing testing efforts.

. Background

.1. Package managers

Package managers such as Java’s Maven, JavaScript’s npm, or
ust’s Cargo provide tooling to simplify the complexities of main-
aining, distributing, and importing external third-party software
ibraries in development projects. As a community service to
ts users, package managers also host a public Online Package
epository (OPR) where developers can freely contribute with
ew packages (e.g., a database driver) or build upon existing
ackages (e.g., use a parser library to build a JSON parser). This
elps package manager users to reduce development efforts by
enefitting from existing functionality in their language envi-
onments. In a nutshell, a package is a distributable, versioned
oftware library.
Because of the relative ease of building packages on top of

ach other, OPRs today grow quickly and become evermore inter-
ependent (Decan et al., 2017; Kikas et al., 2017). As a conse-
uence, package manager users experience a dynamic growth
f new hidden dependency imports in their projects and fre-
uent dependency updates that increase the risk of build failures
ue to breaking backward compatibility (Decan et al., 2018b,a;
ittern et al., 2016; Bogart et al., 2016). The risk of breaking
ackward compatibility varies between OPRs: npm and Maven
entral move the burden of checking incompatible changes on
ts users while R/CRAN minimize this risk by requiring a mutual
hange-cost negotiation between library maintainers and their
sers (Bogart et al., 2016). Users of OPRs, such as npm or Maven,
ither uses additional tooling or disable dependency updates
hrough version-locking as a protective measure. Version-locking
ependencies guarantee a stable build environment. Additional
ooling provides an extra layer control by scanning dependencies
or vulnerabilities (Decan et al., 2018a), freshness (Cox et al.,
015) or update compatibility (Mezzetti et al., 2018; Foo et al.,
018b).

.2. Safe backward compatible updates

Update checkers such as cargo-crusador (Anderson, 2018),
APICC (Ponomarenko, 2011), and dont-break (Bahmutov, 2014)
ypically determine backward compatibility by ensuring that the
ew version is consistent with the public API contract of the
ld version. Removals or changes in method signatures, access
odifiers, and types (e.g., classes and interfaces) are examples
f inconsistencies that can lead to compile failures in client
ode (Dietrich et al., 2014; Raemaekers et al., 2017).

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

e
F
t
c
c
i

p

w

3

a
v
s
l

t
c
t
f
p
b

p

t
p
t
a
c
d

p
u

p
u
p

c

g
v
e
r

4

t
a
r
t

1 package client {
2 import p2.B;
3 class Main {
4 void int main {B.b(); B.z();}
5 }
6 }
7 package p2 {
8 import p1.A;
9 class B {

10 int b() {
11 int y = 1;
12 if A.v(y){y+2;}
13 int x = A.a();
14 if x > 0 {return 0;}
15 return x + y;
16 }
17 //...
18 - bool z() {return false;}
19 + bool z() {return make_false();}
20 //...
21 + bool make_false() {return false;}
22 }
23 }
24 package p1 {
25 class A {
26 //...
27 - int a() {return 0;}
28 + int a() {return 1;}
29 //...
30 - bool v(int a) {a > 0 ? true : false}
31 + bool v(int a) {a == 0 ? true : false}
32 }
33 }

Listing 1: Changes in dependencies that break client semantics

Checking dependency updates for API inconsistencies is a nec-
ssary precondition to a safe update, but not a sufficient one.
rom Listing 1, we consider an additional class of changes, seman-
ic changes, that are API-compatible (i.e., respects the public API
ontract) but introduces incompatible behavior (i.e., regression
hanges) for clients after dependency updates. The code example
llustrates a client that depends on p2 which in turn depends
on p1. There are two changes that are not semantic preserv-
ing in p1: a() returns 1 instead of 0 (line 27–28) and v(int
a) compares variable a with a different comparison operator
(line 30–31). On the other hand, the change in p2 is semantic
reserving: z() still returns false despite replacing it with a

method call to make_false (line 18–21). Given a scenario in
which client automatically updates to the next release of p1,
and p1 updates to the next release of p2. The changes made in
p1 will indirectly impact the behavior of client despite seeming
hidden and distant. The change in a() of p1 results in b() to
match the if statement on line 14 and return 0 instead of doing an
addition of x and y in p2 (line 15). This further propagates to the
clientwhere b() is called. Similarly, the change in v() flips the
condition to false instead of true in p2which result in skipping
y+2 at line 12. These two code changes illustrate how the client
behavior or the execution flow is not honored after updating to
a newer version.

Unlike breaking API contracts, semantic changes are not in-
herently bad: the refactoring of z() in p2 introduces a new
execution path (e.g., new behavior) to make_false which con-
tinues to return false after the change. Source code changes
that preserve the same behavior before and after an update are
semantic backward compatible changes. Deciding semantic back-
ward compatibility is also a contextual problem: Given another
client, client2 that use the same dependency p2 as client but
don’t call b() and z() (line 4). The same update we illustrate
for client is semantic backward compatible for client2 as it
functions the same way before and after the update.
3

Following the observations in Listing 1, we denote a semantic
backward compatible update or safe update as the following: We
denote Lib1, Lib2 ∈ Library as two versions of the same library
and a client C with dependency tree as TC = (V , E) where V
is a set of resolved versioned libraries used by C , and E is the
directed dependence between them. Let PDGTC represent a sound
program-dependence graph (Ferrante et al., 1987) of TC connecting
data and control dependencies between program statements in
both client and dependency code. The transition [Lib1 → Lib2]C
represents replacing Lib1 with Lib2 in client C . We arrive at the
following definition of a safe update:

Definition 2.1. Given that Lib1 ∈ TC and a request by a package
manager to perform [Lib1 → Lib2]C , let D = Lib1 \Lib2 be a source
code diff mapping between Lib1 and Lib2, and function f : D → Y
determine semantic compatibility for diff di ∈ D in client C where
Y ∈ {true, false}, an automatic update (or safe update) can only
be made if and only if ∀di ∈ D, f (d1) ∧ f (d2) . . . ∧ f (dn) = true
here i varies from 1 to n and n is the cardinality of set D.

. Research questions

The goal of this paper is to understand how reliable test suites
re as a means to evaluate the compatibility of updated library
ersions in projects. To that end, we study a large number of test
uites from Maven-based Java projects that depend on external
ibraries.

Bogart et al. (2016) report that developers create strategies
o select high-quality libraries based on signals such as active
ontributors, project history, and personal trust in project main-
ainers to reduce the exposure of unwanted changes. Thus, in our
irst research question, we investigate whether testing of third-
arty libraries is prevalent and a strategy to minimize the risk of
reaking changes:
RQ1: Do test suites cover the uses of third-party libraries in

rojects?
A qualitative study by Mirhosseini and Parnin (2017) suggests

hat developers have trust issues with automated updates and
erceive tests as unreliable. A compelling complement to evaluate
he effect of dependency changes is the use of change impact
nalysis. We set to measure how capable both test suites and
hange impact analysis can catch simple semantic faults in both
irect and indirect uses of third-party libraries:
RQ2: How effective are project test suites and change im-

act analysis in detecting semantic changes in third-party library
pdates?
While static analysis can yield higher coverage, it is also more

rone to false positives by classifying safe updates as unsafe. To
nderstand the strengths and weaknesses of static analysis in a
ractical environment, we ask:
RQ3: How useful is static analysis in complementing tests for

ompatibility checking of new library versions?
We extract a set of real-world update cases from pull requests

enerated by the popular service Dependabot and manually in-
estigate the correctness of each pull request. Then, we analyze
ach pull request using change impact analysis to compare the
esults with the test suite and our ground truth.

. Research method

We follow the study design depicted in Fig. 2 to evaluate
he reliability of test suites for automated dependency updating
nd the potential of using static analysis. First, we select Java
epositories with high-quality assurance badges and at-least one
est class from GitHub 1 . Then, we build each repository to
infer a complete dependency tree of the project along with its

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

w
d
o
p
p

a
b

Fig. 2. Overview of our study infrastructure.
Table 1
Mutation operators (based on Papadakis et al., 2019).
Names Description Example

ABS Absolute Value Insertion v ↦−→ abs(v) |-abs(v) | 0
AOR Arithmetic Operator Replacement x op y ↦−→ x + y | x % y | x / y
LCR Logical Connector Replacement x op y ↦−→ x || y | x && y | x ˆ y
ROR Relational Operator Replacement x op y ↦−→ x > y | x ! = y | x >= y
UOI Unary Operator Insertion v ↦−→ v++, ++v, !v
i
l
c
b
(

source- and test classes in 2 . Second, we feed the source classes
together with the dependencies of a project to the call extractor
and statically extract all its direct and indirect uses of third-party
libraries 3 . Third, we use instrumentation to learn all invocations
from a project to its dependencies via its test suite 4 . Then,
e use the information from the previous step to calculate the
ependency coverage of a project. Fourth, we generate mutations
f dependencies by inserting simple faults (See Table 1) in de-
endency functions executed by tests. Here, we use dynamic call
aths (from 4) to identify such functions 5 . We can then run

both the test suite and the change impact analysis to measure the
detection score 6 . Finally, we harvest Dependabot pull requests
in a real-time fashion and then manually evaluate how both test
suites and change impact analysis perform in practice 7 .

4.1. Identifying usages of third-party libraries

We refer to the use of third-party libraries as using func-
tionality from externally-developed libraries in software projects.
Specifically, we focus on functionality exposed as functions in
libraries as they are among the most widespread forms to achieve
code reuse. Thus, we consider a function call from a project
to a library dependency as third-party library use. As projects
depend on an ordered tree of library dependencies, there are both
implicit and explicit third-party uses. An explicit use is a direct
function call between a project and one of its declared libraries.
On the other hand, implicit use is when a function in a project
transitively calls underlying libraries in a dependency tree. Given
the following example scenario: project A depends on library B,
nd library B depends on library C. If there is a function call path
etween a function a() in A to a function c() in C via called

functions in B, project A is implicitly using functionality in library
C.

To identify explicit use of third-party libraries, we statically
extract all function calls to functions that are neither part of the
project under analysis or the Java standard library. By deduc-
tion, all such method invocations represent calls to third-party
libraries. For implicit use of third-party libraries, we statically
4

derive call graphs capturing call paths between a project and its
dependency tree, similar to Ponta et al. (2018). Finally, we prune
function and call sequences belonging to the Java standard library
to derive a graph representing interactions between a project and
its transitive dependencies.

To measure dependency coverage in a project in RQ1, we use
nstrumentation to record all project invocations to third-party
ibraries during test suite execution. Using the recorded set, we
alculate the proportion of statically inferred functions covered
y the test recorded set of function as dependency coverage
Recorded functions ⊂ Declared functions):

Covdep =
Recorded functions
Declared functions

Effectively, dependency coverage is function coverage (Myers
et al., 2011), but only restricted to dependency calls.

4.2. Heuristics for static impact analysis

The central task of automated dependency updating is to fa-
cilitate the continuous integration of new compatible library ver-
sions with minimal developer intervention. Unlike static analysis
that may contain false warnings (Beller et al., 2016), automated
updating suffers instead from false negatives. A faulty update has
a potentially high maintenance penalty if merged into the project
and could cascade into breaking the build of externally depending
projects.

As a step towards reducing false negatives, we are investi-
gating change impact analysis as a means to potentially reduce
coverage gaps where tests are not able to reach in dependen-
cies. Change impact analysis estimates the reach and fraction
of affected execution paths in a program given a set of code
changes (Arnold, 1996). While there are advancements towards
inference of semantic changes in static analysis such as data flow
analysis with equivalence relations (Gyori et al., 2017) and mining
techniques (Nguyen et al., 2019), precise static interpretation of
semantic changes such as faulty updates is an undecidable prob-
lem (Emanuelsson and Nilsson, 2008). Moreover, most of these

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

t
f

f
c
c
e
i
n
w
a
c
r
p
h

D
c

w
f

a
a
a
c
i
p
p
u

4

p
w
t
p
i
e
t
s
y
f
m
t
s
p
e

p
t
d
o
m
M
a

(
d

t
a
p

C
c
t
u
v
t
t
t
c
o
m
s
T
(
p
u
f
h
d
w
u
i
o
o
s
a
a
t
t
w
t
h
t

echniques only analyze method bodies, and thus not practical
or inter-procedural analysis of projects and their dependencies.

Without possibilities to precisely determine if an update is
aulty or not, we approximate a faulty update (or semantic
hange) as a change to the execution flow of a project. We use
ontrol flow graphs (CFGs) (Allen, 1970) to represent all possible
xecution paths of functions. There are two types of statements
n CFG terminology that affect the execution flow of a program,
amely control and write statements (Zeller, 2009). A change to a
rite statement can affect the program state (i.e., assign a value to
variable). A change to a control statement changes the program
ounter (i.e., determine which statement to be executed next). By
eading the program state, changes to the two other statements
assively impacts read statements. Thus, we derive the following
euristics to classify unsafe updates:

efinition 4.1. Given a diff mapping D = Lib1 \ Lib2 between
ode entities in Lib1 and Lib2, we consider a code change as not
semantic preserving if and only if di ∈ D has a source location
ith a reachable control flow path to client C and maps to the

ollowing potential actions in a CFG:

1. di translates to change in the expression of write or read
statements (data-flow change)

2. di translates to moving a statement from position x to y
(control-flow change)

3. di translates to removing or expanding with new control
flow paths (control-flow change)

4. di translates to changes in branch conditions (control-flow
change)

The definition is an over-approximation; code changes such
s code refactorings would be classified as an unsafe update if
nd only if affected functions are reachable. As services such
s Dependabot present only the outcome of test results and a
hangelog between the old and new version of a library, change
mpact analysis instead precisely pinpoint affected execution
aths in an update. Such information help project maintainers
rioritize testing efforts or determine the potential risk of the
pdate.

.3. Creating unsafe updates in project dependencies

For seamless integration, it is important for automated de-
endency updating services to detect incompatibilities that arise
hen updating a library dependency. By using mutation analysis
o seed artificial faults in all uses of third-party libraries in a
roject, we can derive an adequacy test of detecting incompat-
bilities in automated dependency updates. We first dynamically
xtract a set of called third-party functions in a project and
hen apply mutation operators defined in Table 1 to construct a
et of artificial updates that are false negatives. As static anal-
sis can over-approximate execution paths (i.e., risk creating
alse-positive cases), we resort to dynamic analysis to ensure
utations of truly invoked functions. For the selection of muta-

ion operators, we choose operators common in mutation testing
tudies (Just et al., 2014; Papadakis et al., 2019) that focus on sim-
le logical flaws and exclude mutation operators with a limited
ffect such as deleting statements (Just et al., 2014).
In comparison to using actual update cases, the mutation setup

rovides a systematic way to introduce simple faults in all uses of
hird-party libraries in a project to measure the effectiveness of
etecting faulty updates. Manually curating false-negative cases
f dependency updates limits to specific project-library pairs and
ay not generalize to other projects that use the same library.
oreover, finding such pairs for all libraries in a project to create
n overall assessment may not be possible in most projects.
5

For RQ2, we denote mutation detection score for dependencies
an adaption of mutation score (Just, 2014)) as a tool’s ability to
etect a mutated reachable dependency function as (mutants):

Detection Score =
Detected mutants

All mutants

4.4. Manual analysis of pull requests

As the artificially created updates address only false negatives,
we also need to understand how static analysis performs in
practice. Thus, we manually analyze the applicability of static
analysis using pull requests through a lightweight code review.
Due to the absence of established ground truth or a benchmark,
we resort to manually creating a ground truth of libraries under
update. As understanding the use context of a project-library
is challenging, we also, attempt to corroborate our findings by
posting our assessment as pull request comments. Below, we
define our setup for the manual analysis:

Selection criteria. We select pull requests generated from the
popular service Dependabot on GitHub that supports automated
updates of Java projects using the Maven-build system. To select
significant and high impactful projects and increase the chance
for a response by a project maintainer, we harvest newly cre-
ated pull requests using GHTorrent’s event stream (Gousios and
Spinellis, 2012) and adopt the following filter criteria: (1) high
stargazer, watchers or forks count indicate popularity, (2) no pas-
sive users indicate projects that assign reviewers and frequently
merge Dependabot-pull requests, (3) dependency type indicates
hat we only consider Maven compile and runtime dependencies,
nd (4) project buildability indicates that we can compile the
roject out of the box.

ode review protocol. After a pull request meets the selection
riteria, we first inspect the diff in the pull request to iden-
ify the old and the new version number of the library under
pdate. Then, we download the source jar of the old and new
ersion from Maven Central and use a diffing tool to localize
he set of changes. By reviewing the change location, consulting
he changelog, inspecting the tests of the library, we classify
he nature of a change as refactoring, structural (i.e., breaking
hange), or behavioral (i.e., semantic change). Next, we check
ut the project at the commit described in the pull request and
anually localize uses of the library by first performing keyword
earch of import statements leading to the library under update.
hen, we track the data- and control-flow of imported items
e.g., object instantiations, function invocations, and interface im-
lementations) to map out how the project uses the library under
pdate. If the library under update is a transitive dependency, we
irst trace how the project uses its direct dependency and then
ow the used subset of the direct dependency uses the transitive
ependency. After mapping out uses of the library under analysis,
e can then establish whether a project directly or indirectly
ses any of the changed classes and function signatures identified
n the diff and whether those changes make the update safe
r not. If the changes do not alter the logic (e.g., refactorings)
f the project, we consider the update safe. Refactorings are in
ome cases highly contextual and can yield different outcomes
s exemplified in the following: the changed function foo(x)
dds a new IF-statement with the condition x > 50 that breaks
he original functionality. Project A uses foo(x) indirectly, and
hrough the manual analysis (including inspection of its tests),
e can establish that the threshold is x < 20 in all cases, and
hus the update is safe to make. On the other hand, project B
as a public function bar(x) that passes x in a function call
o foo(x). Here, we cannot assume anything around x as users

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

o

a

f B could call bar(x) with any x. In this case, we consider the
update unsafe.

After manually evaluating pull requests, we classify them us-
ing one of the three categories:

• Safe: the update is safe to perform and will not negatively
impact the functionality of the project.

• Unsafe: the update is risky and could lead to potential un-
expected runtime changes.

• Unused: the update of an unused dependency (i.e., it is only
declared in the project but not used).

Based on the outcome of the update tooling, we compare it
with the classification above and consider the following:

• False Negative (FN) when classifying an unsafe update as
safe.

• False Positive (FP) when classifying a safe update as unsafe
or falsely updating an unused dependency.

• True Positive (TP) when both our manual classification and
update tooling has the same conclusion.

• True Negative (TN) when not creating an update for an
unused dependency.

4.5. Dataset construction

We sample 1823 repositories from GitHub that have Java
s the primary language, Maven as the primary build system,

and have at-least a high-quality assurance badge (i.e., Travis
CI, CodeClimate, coveralls, and CodeCov) as a signal for hav-
ing tests (Trockman et al., 2018). Services such as Dependabot
can update dependencies in projects as long as there is a valid
pom.xml file. Next, we build and then dry-run projects on both
the instrumentation and mutation pipeline to eliminate incom-
patible projects. In total, there are 818 repositories that compile
to Java 8 bytecode and have at least one compiled test class.
Out of the 818 built projects, 521 projects successfully run the
instrumentation pipeline, and a subset of 262 projects are com-
patible with the mutation pipeline. The number of projects in the
mutation pipeline is nearly double the ratio of a recent previous
study (Zhang et al., 2018). Table 2 presents descriptive statistics
on four aggregated variables for projects belonging to the instru-
mentation pipeline. The median number of declared methods is
210 (mean: 668) with a heavily positive skewed distribution. 75%
of all projects in our sample cluster around 588 or less declared
methods with 36 projects having more than 1400 methods. The
largest project is oracle/oci-java-sdk with 22,264 methods.
As per Section 4.1, we measure test coverage of all function calls
made in a project. We can observe that the test coverage is gen-
erally high: half of the projects have coverage of 67% or more. For
the number of dependencies, we can observe that the distribution
does not drastically change: the median changes from 7 to 16,
indicating a small expansion of transitive dependencies. Overall,
our dataset represents mid-sized projects that use a significant
number of dependencies with varying test coverage.

4.6. Implementation

We discuss the implementation of Uppdatera, a tooling for
performing change impact analysis of library dependencies in
Maven, and our pipeline to run our experiments. We have open-
sourced the tooling and docker images for automation and repro-
ducibility of our study (see Section 6.3).
6

Fig. 3. Example of updating rxjava from 1.3.4 to 1.3.8 in the project
opentracing-contrib/java-rxjava.

4.6.1. Uppdatera
Given a request to update a dependency to a new version

in a pom.xml file, Uppdatera first performs AST differencing
of the current and new version of the dependency to iden-
tify a list of functions with potential behavioral changes us-
ing SpoonLabs/GumTree (Falleri et al., 2014). Then, Uppdatera
computes a call graph inferring all control-flow paths between
client and dependency functions following Ponta et al. (2018)’s
approach for call graph construction (using WALA). Finally, Up-
pdatera performs a reachability analysis using the list of pos-
sible behavioral changes on the call graph to find reachable
paths to the client code. Fig. 3 demonstrates an example of us-
ing Uppdatera for updating the library io.reactivex:rxjava
from version 1.3.4 to 1.3.8 in opentracing-contrib/java-
rxjava. The report features a call stack to the changed func-
tion along with a set of AST diffs. In this particular case, the
onError() function in the class TracingSubscriber tran-
sitively calls getPluginImplementationViaProperty() in
the dependency class RxJavaPlugins. The addition of a try-
catch block in the function takes care of unhandled exceptions
which may have been handled by clients in previous versions
(i.e., potential regression change)

In the following paragraphs, we motivate our implementation
choices for a change impact analysis tool designated for updating
library dependencies.

Diffing. Uppdatera performs source code differencing at the ab-
stract syntax tree (AST) level of both the current and the new
version of a dependency to identify functions with code changes.
AST differencing algorithms (Fluri et al., 2007; Falleri et al., 2014)
produce fine-grained and accurate information about the type
and structure of source code changes. Following Definition 4.1,
we capture AST transformations at the statement level and map
the following as regression changes:

• Any method-level move operation mirrors moving a state-
ment from line x to y.

• deletion, update or insertion of Expression ASTs mirrors data-
flow changes.

• deletion, update or insertion of control struct ASTs such as IF,
While, FOR mirrors control-flow changes.

• deletion, update or insertion of Call-Expression ASTs repre-
sents changes mirrors control-flow changes.

As an alternative to AST differencing, we could consider byte-
code differencing. Bytecode (e.g., LLVM’s IR or JVM code) differ-

encing compute edit scripts at the instruction level. Although

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

a
U
c
p
d

4

t
l
i
D
p

Table 2
Descriptive Statistics for 521 GitHub projects (each variable aggregated per project).
Variable Unit Q0.05 Mean Median Q0.95 Histogram

Project methods Count 20 668 210.5 2320.5
Test coverage (function calls) % 7 72 64 97
Direct dependencies Count 1 10 7 31
Transitive dependencies Count 1 31 16 105
o
a
c

t
p
a
c
2
n
g
a
s
d
a
a
w
a

this technique offers a fine-grained and a compelling alternative
to AST differencing, instruction-level changes can be difficult to
understand for developers not familiar with low-level details.

Call graph construction. Uppdatera constructs a call graph cap-
turing inter-procedural control-flow paths between client and
dependency functions. Each node in the call graph represents a
fully resolved function identifier and should be identical to the
identifiers in the changeset of the Diffing phase.

We advocate the use of call graph algorithms that are both
soundy (Livshits et al., 2015) and scalable for analyzing projects
in the wild as a general guideline. The call graph algorithm
should support and resolve as many language features as possible.
Limited support of language features could potentially leave gaps
in the coverage of projects making use of unsupported features.
Similar to static analyses of security applications, achieving high
recall is more crucial than precision to avoid recommending
faulty updates.

As recent studies (Kikas et al., 2017; Decan et al., 2018b)
suggest that irrespective of the OPR, the majority of packages
have a small number of direct dependencies, but a high and
growing number of transitive dependencies. For example, 50%
of all packages in Crates.io have a dependency tree depth of at
least 6 (Decan et al., 2018b). Therefore, performing static anal-
ysis at the boundary of a project and its dependency tree can
become computationally expensive and impractical in DevOps
environments. Moreover, as Uppdatera can expect to analyze
any compatible project in the wild, the algorithm should be
scalable to cater large projects and cheap to construct to cut down
computation time.

Finally, a potential trade-off of using call graphs instead of
CFGs is the loss of analysis precision due to the absence of
data-flow paths in the graph. However, taking into account pro-
gram features such as aliases, arrays, structs, and class objects
in dataflow analysis adds additional complexity and scalability
problems when moving the analysis boundary to include project
dependencies. Supporting such analysis adds extra precision but
may not yield extra actionability.

Reachability analysis. For each changed function identified in
the Diffing phase, Uppdatera performs a reachability analysis on
the call graph to detect paths connecting changed dependency
functions to functions in the analyzed project. If Uppdatera finds
such paths, it marks the update as potentially unsafe. If no such
paths are found, Uppdatera marks it as a potential safe update
nd recommends the update to the package manager. Finally,
ppdatera also reports the impacted paths between dependen-
ies and project functions, to inform developers of the program
aths that need to be inspected in response to an update in a
ependency.

.6.2. Experimental pipeline
To implement our methodology, we first develop a call extrac-

or that records complete call sequences between a project and its
ibrary dependencies. The implementation builds on instrument-
ng library classes using ASM (Bruneton, 2011) and the Maven
ependency Plugin. To infer function calls to libraries from a
roject (RQ1), we use ASM to statically extract call sites for direct
7

dependencies. We generate call graphs using WALA (IBM Re-
search, 2006) configured for the CHA algorithm for extracting
calls to transitive dependencies. Following Reif et al. (2019)’s
comprehensive benchmark of call graph algorithms for Java, we
find that the CHA algorithm supports the most language features
and has a lower runtime in comparison to more precise points-to
analysis algorithms such as 0-1-CFA or N-CFA.

For RQ2, we implement the update emulation pipeline (i.e.
mutation analysis) on top of PITest (Coles et al., 2016), a popular
in-memory-based mutation testing framework that works with
the popular test runners JUnit and TestNG by limiting mutations
to library functions identified from the call extractor. We exclude
the use of experimental mutation operators that cannot guaran-
tee non-equivalent mutations. For each mutated class, we use
Procyon (Strobel, 2016) to decompile into a source file for AST
diffing in the case of Uppdatera.

5. Results

Here, we report the results of our research questions.

5.1. RQ1: Dependency coverage

Fig. 4 presents a violin plot of dependency coverage on the
left-hand side, and dependency coverage including transitive de-
pendencies on the right-hand side. Overall, 13% (67/521) projects
have less than 10% coverage, suggesting at large that a majority
of projects have some tests exercising at least one dependency
use. We observe that the median coverage is 58% (mean: 55%):
half of the GitHub projects miss coverage of more or at least 42%
f all dependency function calls. In practice, there is a risk that
utomated dependency updating may not have tests that exercise
hanges in dependencies.
The right-hand side of Fig. 4 shows the dependency coverage

aking into account reachable paths to transitive dependencies in
rojects. The distribution has a bimodal shape with two peaks
t, 9%, and at 52%, suggesting two classes of projects. In the first
lass, half of the projects have a median dependency coverage of
1% (mean: 26%), indicating that project test suites at large do
ot exercise dependencies in depth. This is not surprising: an er-
onomic factor of third-party libraries is that they are well-tested
nd should in principle not need extra tests (Cox, 2019). In the
econd class, we can observe that projects have tests that exercise
ependencies in-depth, suggesting the presence of projects with
dequate test suites. As mentioned in Section 4.1, these results
re indicative as we compare against statically inferred call paths,
hich, being over-approximating, may not be representative of
ctual calls.

Findings from RQ1: Half of the 521 projects exercise less than
60% of all direct dependency calls from their tests; this drops
to 20% if paths to transitive dependencies are considered.

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

5

f
s
a
l
d
a
t
g
a
a
s
d
s
t
s
O
n
m
d

o
f
s
d

d
f
t
g
u
s
d
u
t
p
a
m

t
c
a
l
t
i
d
H
c
d
p
w
o

u
b
k
t
g
i
g
c

Fig. 4. Test coverage of dependencies.

Fig. 5. Mutation detection score.

.2. RQ2: Detecting simple faults in dependencies

Our benchmark generated in total 1,122,420 artificial updates
or 311 Maven modules belonging to 262 GitHub projects. Fig. 5
hows a violin plot of the mutation detection score for both direct
nd transitive dependencies, split by project test suites on the
eft-hand side and Uppdatera on the right-hand side. The median
etection rate score is 51% (mean: 47%) for direct dependencies
nd 36% (mean: 35%) for transitive dependencies. We can observe
hat 25% of the projects have a high test suite effectiveness
reater or equal to 80% for direct dependencies. When looking
t transitive dependencies, the median of direct dependencies
nd the third-quantile of transitive dependencies are similar,
howing that only one-fourth of the test suites remain effective in
etecting faults in transitive dependencies. Moreover, we can also
ee more dispersion in effectiveness among direct dependencies
han transitive dependencies, half of the projects have a detection
core ranging between 16 to 54% for transitive dependencies.
verall, the results indicate that tests are effective for a limited
umber of cases and dependencies. At large, however, a small
inority of projects have test suites that can comprehensively
etect faulty updates.
On the other hand, Uppdatera, has a median detection score

f 97% (mean: 74%) for direct dependencies and 88% (mean: 64%)
or transitive dependencies. Generally, we see that static analy-
is is highly effective in detecting simple faults with a slightly
ecreased effectiveness for transitive dependencies. Half of the
8

projects with a low detection score (<50%) using tests now have
etection score greater than 80%. In the lower half of the median
or both direct and transitive dependencies, we see large varia-
ions between the projects. As change impact analysis is largely a
eneric technique, we manually investigate why Uppdatera was
nable to detect changes in 76 modules having a low detection
core of less than or equal to 39% and 22% for direct and transitive
ependencies, respectively. We perform a manual investigation
sing the following protocol: (1) back-track from the dynamic call
race to test suite, (2) identity potential tests cases that invoke the
ath in the call trace, and (3) investigate both the test case setup
nd source code in-depth to understand how Uppdatera could
iss the regression change in the update.
In total, we identified four potential reasons for Uppdatera

o miss faulty updates: 29 cases involving code generation, 26
ases involving class loading, 19 cases involving instrumentation,
nd 2 cases of instantiations of generic methods. Dynamic class
oading along with code generation makes use of Java’s Reflec-
ion API such as Class.forName(DynClass). A majority of the
nspected cases stem from libraries such a FasterXML Jackson-
atabind, Jersey REST framework, Spring framework, JAI ImageIO,
ibernate Validator, and Google Guice. Reflection is useful in
ases such as the creation of data bindings (jackson-databind),
ata validation (hibernate or guice) or generation of HTTP end-
oints from annotated user methods (jersey or spring frame-
ork). Resolving cases involving reflection is a known limitation
f static analysis (Reif et al., 2019).
Although we do not instrument JUnit and Maven (which we

se to power our setup), projects can bypass our exclusion filter
y putting those libraries under a different namespace, a practice
nown as class shading. We identify several instances of bypassing
he filter, an effect we cannot easily control. Finally, in two cases,
eneric methods defined in user projects were only instantiated
n tests but not in the project source code. Generally, call graph
enerators do not resolve generic methods unless there is a
oncrete instantiation of it.

Findings from RQ2: Project tests are effective in a limited
number of cases but not at large. Uppdatera can detect twice
as many faulty artificial updates as opposed to project test
suites. Libraries making use of Java’s reflection API could affect
its applicability.

5.3. RQ3: Change impact analysis in practice

We conducted our online monitoring for two weeks between
13–27 Apr 2020 evaluating in total 22 Dependabot pull requests.
On average, we harvested around 350 pull requests per day
between Mondays and Wednesdays, 150 pull requests per day
between Thursday and Fridays, 50 pull requests per day on the
weekends. While the number of pull requests may seem high,
a majority of them were updates of Maven plugins or test de-
pendencies, uncompilable, or superseding previous pull requests.
Thus, we posted on average two pull requests per day taking
anywhere between one to four hours to manually evaluate pull
requests and post our findings as comments.

Table 3 presents the analyzed pull requests along with the
update type, ground truth class (i.e., Class column), external
confirmation (i.e., Confirm column), results from the tooling, and
execution times (in minutes). In total, our ground truth consists
of 15 pull requests where the update is safe (i.e., S class), three
pull requests where the dependency under update is unused
and only declared (i.e., N class), and four pull requests where
the updates that are unsafe (i.e., U class). The test suites of
the analyzed pull requests classified 15 update as true posi-
tives (TP), four update cases as false positives (FP), and three

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

u
t
w
t
e
t
c
d
p
(
s
t
l
c
d
A
m
u
o
i

c
t
m
a
a
c
i
e

Table 3
Results of running Uppdatera on 22 Dependabot pull requests.
Pull Request Update Type Class Confirm Test Suite Uppdatera Test Runtime Uppdatera Runtime

spotify/dbeam#189 Patch S ✓ FP FP 3.11 2.31
airsonic/airsonic#1622 Minor S ✓ TP FP 77 7.5
bitrich-info/xchange-stream#570 Patch S ✓ TP FP 2.78 1.93
CROSSINGTUD/CryptoAnalysis#245 Major S ✓ TP FP 12 2.6
dbmdz/imageio-jnr#84 Patch S ✓ TP FP – 0.7
dnsimple/dnsimple-java#23 Minor S ✓ TP TP 2 11
smallrye/smallrye-config#289 Patch S ✓ TP TP 1.1 0.6
dropwizard/metrics#1567 Patch S ✓ TP TP 2.6 8.73
s4u/pgpverify-maven-plugin#96 Minor S ✓ TP TP 4 1.2
JanusGraph/janusgraph#2094 Minor N ✓ FP TN 365 33
UniversalMediaServer/UniversalMediaServer#1989 Major U ✓ FN TP 11 8.3
premium-minds/pm-wicket-utils#71 Patch N ✓ FP TN 1.56 0.51
UniversalMediaServer/UniversalMediaServer#1987 Minor N ✓ FP TN 11 7.7
CSUC/wos-times-cited-service#36 Patch S ✗ TP FP 0.55 0.5
Grundlefleck/ASM-NonClassloadingExtensions#25 Major S ✗ TP FP 4 0.5
RohanNagar/lightning#211 Major U ✗ TP TP 2 7.8
zalando/riptide#932 Minor U ✗ FN TP 7.5 20.5
pinterest/secor#1273 Patch S ✗ TP TP 390 13.5
michael-simons/neo4j-migrations#60 Patch S ✗ TP TP 3.45 0.8
zaproxy/crawljax#115 Minor U ✗ FN TP 17.35 1.3
hub4j/github-api#793 Minor S ✗ TP TP 1.3 4
zalando/logbook#750 Patch S ✗ TP TP 6.1 18.38
update cases as false negatives (FN). Uppdatera classified 12
pdate cases as true positives (TP), seven cases as false posi-
ives (FP), three cases as true negatives (TN). There are 12 cases
here the two techniques report differently as highlighted by
he colors in Table 3. Most notable are false positives; Uppdat-
ra incorrectly reports six updates (highlighted yellow in the
able) as unsafe that test suites can detect as safe. In those
ases, the heuristics failed to account for refactorings or falsely
erived call paths due to dynamic dispatch. In four cases, Up-
datera could not detect that the changes were refactorings
i.e., semantic-preserving changes). One such example is air-
onic/airsonic#1622, where a confirmed minor update of
he Apache commons-lang3 library involved refactoring array
ength and null checks into a new function. In the two remaining
ases, all reachable call paths were over-approximations. The up-
ate of org.eclipse.emf.common in CROSSINGTUD/Crypto-
nalysis#245 included changes to List structures implementing
ethods of Java’s List Interface (such as addAll()), resulting in
nrelated interface calls being linked to it. This is a limitation
f the CHA algorithm as it links interface calls to all available
mplementations. In the three confirmed N-cases (highlighted
blue in the table) where tests would falsely pass the updates,
Uppdatera correctly identified no use of the dependency under
update in the projects. The project maintainers in two of the
reported cases have started refactoring work to remove those
identified dependencies.

Uppdatera was able to complement test suites in three false-
negative cases (highlighted red in the table). In our confirmed
case of an unsafe update, Uppdatera identified the Apache
commons-lang3 library to break the application logic in Uni-
versalMediaServer/UniversalMediaServer#1989 due to
hanges in calculating string edits using the Jaro–Winkler dis-
ance. Generally, we can observe that solely using static analysis
ay risk falsely classifying safe updates as unsafe. Finally, we
lso make a comparison of execution times between running tests
nd Uppdatera. The results reveals that Uppdatera has faster or
omparable times in 16 out of 22 cases, suggesting that change
mpact analysis can be a viable option to complement tests in CI
nvironments.

Findings from RQ3: Semantically equivalent changes (refac-
torings) and over-approximated function calls are the main
sources of false positives in Uppdatera. However, Uppdatera
helped project maintainers identify risky updates and unused
dependencies.
9

6. Discussion

6.1. Evaluating library updates

Updating to a new version of a third-party library is not a
trivial task, and for good reasons: interface refactorings induce
additional maintenance burden and integrating untested behavior
can jeopardize project stability. Services such as Dependabot
advocate a modest update strategy focusing on project compati-
bility: only update if the tests pass with the new library version.
Effectively, developer-written tests act as the first-line defense
against library updates introducing regression changes.

A key insight in our work is that automated dependency
updates are not reliable. Our results strongly suggest that ex-
isting developer-written tests lack specifications that exercise
dependencies in depth. This finding is in line with the work by
Mirhosseini and Parnin (2017), where developers report being
suspicious of integrating automated updates due to fear of break-
age. When selecting to adopt a third-party library, Bogart et al.
report that developers look at aspects such as reputation, code
quality standards and active maintenance to build up trust (Bog-
art et al., 2016). Perceived high-quality libraries can eliminate
the need for extensive testing. In our case, we found evidence
against this practice. The minor backward-compatible update of
org.apache.commons:commons-lang3, a high-quality library,
had changes that would break the application logic in one project
if the pull request was merged in our manual analysis. In addition,
the practice of testing third-party libraries is not common among
popular testing books (Whittaker, 2002; Myers et al., 2011; Hetzel
and Hetzel, 1988), very few research papers suggest testing of
third-party libraries (Kropp et al., 1998; Mariani et al., 2007).

Directing testing efforts to dependencies would be a potential
solution to the problem. Therefore, we recommend practitioners
to use automated updating services cautiously and complement
with tests for critical library dependencies. For tool creators in
the domain, we argue for increased transparency in automated
updating. With a small minority of projects having both coverage
and tests capable of detecting simple regressions, pull requests
could feature a confidence score on how well it is able to test new
changes in a library under update. As a first step, tool creators
can make use of our study setup to measure both coverage
and quality of tests as an indication of confidence. A confidence
score could also help reduce false negatives: if no tests are ex-
ercising a changed functionality of a dependency under update,
Dependabot could avoid recommending it.

https://web.archive.org/web/20210129101235/https://github.com/spotify/dbeam/pull/189
http://web.archive.org/web/20210129101154/https://github.com/airsonic/airsonic/pull/1622
http://web.archive.org/web/20210129101154/https://github.com/bitrich-info/xchange-stream/pull/570
http://web.archive.org/web/20201204024101/https://github.com/CROSSINGTUD/CryptoAnalysis/pull/245
http://web.archive.org/web/20200904205121/https://github.com/dbmdz/imageio-jnr/pull/84/
http://web.archive.org/web/20210129101216/https://github.com/dnsimple/dnsimple-java/pull/23
http://web.archive.org/web/20210129101236/https://github.com/smallrye/smallrye-config/pull/289
http://web.archive.org/web/20200906190402/https://github.com/dropwizard/metrics/pull/1567/
http://web.archive.org/web/20210129101235/https://github.com/s4u/pgpverify-maven-plugin/pull/96
https://web.archive.org/web/20210129101255/https://github.com/JanusGraph/janusgraph/pull/2094
http://web.archive.org/web/20210129101256/https://github.com/UniversalMediaServer/UniversalMediaServer/pull/1989
http://web.archive.org/web/20210104114503/https://github.com/premium-minds/pm-wicket-utils/pull/71
https://web.archive.org/web/20210129101309/https://github.com/UniversalMediaServer/UniversalMediaServer/pull/1987
http://web.archive.org/web/20210129101308/https://github.com/CSUC/wos-times-cited-service/pull/36
http://web.archive.org/web/20210129101313/https://github.com/Grundlefleck/ASM-NonClassloadingExtensions/pull/25
http://web.archive.org/web/20210129101329/https://github.com/RohanNagar/lightning/pull/211
http://web.archive.org/web/20201114175459/https://github.com/zalando/riptide/pull/932
http://web.archive.org/web/20210129101334/https://github.com/pinterest/secor/pull/1273
http://web.archive.org/web/20210129101335/https://github.com/michael-simons/neo4j-migrations/pull/60
http://web.archive.org/web/20210129101350/https://github.com/zaproxy/crawljax/pull/115
http://web.archive.org/web/20210129101356/https://github.com/hub4j/github-api/pull/793
http://web.archive.org/web/20210129101401/https://github.com/zalando/logbook/pull/750

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

6

t
p
l
t
t
w
a
s
A
n
t
a
c
f
i
(
a
t
i
t
d
O
i
p
c

6

.2. Strengths and weaknesses of static analysis

Without needing to maintain additional dependency-specific
ests, static analysis can be effective in deterring updates with
otential regression changes. For a large number of projects with
imited test quality, change impact analysis can fill the gap where
ests are unable to reach and would be a compelling option for
ool creators to consider. For a minority of projects, however,
e identify certain third-party libraries that impede the overall
nalysis accuracy. Libraries heavily relying on code generation
uch as the Spring framework makes use of the Java Reflection
PI that are known to be statically difficult to analyze (Anto-
iadis et al., 2020), could miss critical execution paths in projects
hat make use of them. Moreover, by linking interface calls to
ll its implementations, call graphs contain over-approximated
all paths. We could observe non-existing interface calls from
unctions in the unused dependency to classes implementing the
nterface in the project during the manual analysis. As Ponta et al.
2018) approach base on building a call graph with the project
nd its dependencies together, we make preliminary observations
hat projects having library dependencies with several common
nterfaces between them are likely to have many unrelated func-
ion calls. Exploring improvements such as using type hints with
ata flow analysis could potentially eliminate such function calls.
verall, we argue that static analysis is a useful complement
n use cases where tests lack coverage. By also revealing and
resenting gaps and quality issues in test suites, static analysis
an help developers in prioritizing testing efforts of dependencies.

.3. Threats to validity

Sampling random projects from GitHub pose threats to our
results: tests or dependencies in projects may not exercise pro-
duction classes. To mitigate this risk, we configure our call extrac-
tor to only record call paths originating from the project source
code. Call paths that do not traverse via project source code are
excluded (e.g., test class directly calling a dependency).

The use of mutation analysis to emulate source code changes
in dependency functions has several potential threats to valid-
ity. First, we acknowledge that the applied mutation operators
do not substitute actual regression changes in library updates.
Our objective is to exercise all uses of libraries in a project by
injecting simple faults to uncover potential coverage gaps in
updating tools. Using real-world cases for this purpose would be
challenging and potentially adding hidden uncontrolled factors.
Second, our ground truth in RQ2 represents reachable call paths
inferred from running project tests, making it a subset of all
possible executions and is a limitation of the benchmark. A po-
tential avenue to explore is the use of test generation techniques
such as EvoSuite (Fraser and Arcuri, 2011) to discover new call
paths. However, EvoSuite generates tests at the class level with-
out considering its interaction with other classes or dependencies,
generating artificial tests that may not represent valid use cases.

The false-positive rate in RQ3 is indicative and not represen-
tative. Without domain knowledge of the interplay between a
project and a dependency, the code reviews may state incorrect
or incomplete information. To mitigate this risk, we post our code
review assessment in the update for the project maintainer to
react in case of incorrect analysis. Finally, for the reproducibility
of our study, we have made the source code,1 the experimental
pipeline,2 and our data publicly available (Hejderup and Gousios,
2021). Specifically, we include the examined projects, applied
mutation changes, and their dynamic and static call graph.

1 https://github.com/jhejderup/uppdatera.
2 https://github.com/jhejderup/uppdatera-pipeline.
10
7. Related work

Updating library dependencies in projects. To assist developers
with updating dependencies in projects, researchers have stud-
ied practices around updating dependencies (Kula et al., 2018;
Mirhosseini and Parnin, 2017; Bogart et al., 2016; Dietrich et al.,
2019, 2014; Raemaekers et al., 2017) and proposed tools leverag-
ing both static- and dynamic analysis (Foo et al., 2018b; Mezzetti
et al., 2018; Møller and Torp, 2019). Kula et al. (2018) empirical
study of 2700 library dependencies in 4600 Java project found
that 81.5% remain outdated, even with security problems. The
study found that factors such as uncertainties around estimat-
ing refactoring efforts and other task priorities as reasons for
developers to not update dependencies. To address the update
fatigue for developers, automated dependency updaters such as
Dependabot and greenkeeper.io actively reminds and sug-
gests dependency updates to developers through the use of pull
requests. A study by Mirhosseini and Parnin (2017) found that
pull requests encourage developers to update dependencies more
frequently but the frequency of updates and lack of convincing
arguments defer them from updating. On similar lines, the work
of Bogart et al. (2016) also suggests that developers perceive the
use of monitoring tools to have a high signal-to-noise ratio than
giving actionable insights. Finally, the empirical work of Dietrich
et al. (2014) suggests that 75% of emulated library updates in
the Qualitas dataset has breaking changes. However, only a few
updates resulted in an error, motivating the need for contextual
analysis.

Recently researchers have started to explore the use of static-
and dynamic analysis to identify library updates with breaking
changes, saving developers time, and review efforts of library up-
dates. NoRegrets (Mezzetti et al., 2018; Møller and Torp, 2019)
is a tool that detects breaking changes in test suites of dependent
npm packages before releasing an update of the library. Although
helpful in minimizing the chances of breaking changes for clients,
the identified subset of clients may not be representative of other
clients. Similarly, Foo et al. (2018b) describes a static approach
using simple diffing and querying Veracode’s SGL (Foo et al.,
2018a) graph to find clients affected by breaking changes. In
contrast to this approach, Uppdatera analyzes at the project level
(e.g., does not search for affected clients), targets diff with data-
and control flow changes (i.e., not only interface changes), and
includes a benchmark to compare updating tools.

Change impact analysis. Change Impact analysis is a widely
studied problem in program analysis research (Li et al., 2013;
Lehnert, 2011). Propagation of changes in package repositories
have become an important research area in light of incidents
such as the left-pad incident, and recent moves to emulate these
problems on package-based networks (Abdalkareem et al., 2017;
Kikas et al., 2017). Several techniques (Ryder and Tip, 2001;
Badri et al., 2005; Ren et al., 2004; German et al., 2009; Li
et al., 2012) use call graphs as an intermediate representation
for change impact analysis. Alternative techniques to call graphs
are static and dynamic slicing (Tip, 1994; Arnold, 1996), profil-
ing (Law and Rothermel, 2003; Orso et al., 2003) and execution
traces (Orso et al., 2004). Due to cost-precision trade-offs, several
proposed approaches use a combination of these techniques. One
such example is Alimadadi et al. (2015)’s work on Tochal, that
leverages both runtime data and call graphs to more accurately
represent changes to dynamic features such as the DOM. For
a comprehensive overview of impact analysis techniques and
change estimations, we refer the reader to Li et al. (2013)’s survey
on code-based change impact analysis techniques

An application of change impact analysis is regression test
selection techniques (Yoo and Harman, 2012) (RTS) such as class-
based STARTS (Shi et al., 2019; Legunsen et al., 2017) and proba-
bilistic test selection (Machalica et al., 2019) that find relevant

https://github.com/jhejderup/uppdatera
https://github.com/jhejderup/uppdatera-pipeline

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

t
u
t
d
m

O
u
l
w

o
r
c
c
t
i
d
r
w
a
s

d
s
d
i
f
a

ests for evaluating new code changes. We found in our eval-
ation that test suites have limited coverage of dependencies,
hus RTS may not be able to find tests relevant for changes in
ependencies or have enough test data to build a prediction
odel for average GitHub projects. Finally, Danglot et al. (2020)

and Da Silva et al. (2020) investigate the use of search-based
methods such as test amplification and automated test generation
for detecting semantically conflicting changes. Although search-
based methods are effective in reducing false positives and to
some degree eliminating false negatives present in static analysis,
they are limiting for integration test scenarios such as automated
dependency updating. Da Silva et al. (2020) found that automated
test generation such as EvoSuite (Fraser and Arcuri, 2011) have
difficulties in generating effective tests for complex objects with
internal or external dependencies.

8. Conclusions and future work

In this paper, we empirically investigate the reliability of test
suites for automating dependency updates. With an increasing
number of developers relying on services that automate updates
of dependencies, our goal was to uncover to what degree project
tests exercise utilized functionality in library dependencies, how
effective they are in catching simple regressions, and their per-
formance in practice. As recent research highlights the need for
conservative techniques, we explored the use of change impact
analysis to reduce false negatives.

Our findings show that half of 521 well-tested projects with
tests cover less than 60% of their function calls to direct depen-
dencies. The coverage drops to 21% when considering call paths
to transitive dependencies. By artificially injecting simple faults
in library dependencies to 262 projects, we observe that one-
forth of the projects can detect 80% or more faults in functions
of direct libraries. When considering transitive dependencies, the
number of projects drop to one-eighth. Conversely change impact
analysis, can detect 80% of potentially breaking in changes in
both direct and transitive dependencies, two times more than
using test suites. Although change impact analysis is a promising
direction to flag faulty updates, we also manually investigate
whether it can complement tests in 22 Dependabot pull requests.
ur results show that change impact analysis could avoid unsafe
pdates in three cases where tests failed and spotted unused
ibraries in three cases. However, there are more false positives
ith change impact analysis as it is more imprecise than tests.
Our findings suggest that developers that are making use

f automated dependency updating need to be aware of the
isks with using project tests for compatibility checking. Without
overage or adequate tests for all usages of library dependen-
ies, updates can silently introduce unintended functionality over
ime. As services such as Dependabot do not advertise risks
nvolved with updating dependencies, tool creators could intro-
uce reliability measurements such as scoring test suites in pull
equests. As we investigate the use of change impact analysis,
e argue that tool creators should explore combining dynamic
nd static analysis to derive verification techniques that do not
trongly depend on users’ test suites.
In future work, we aim to establish best practices for up-

ating third-party libraries. As a first step, we aim to under-
tand whether developers direct testing efforts towards depen-
encies and uncover the strategies they use. Moreover, we also
ntend to explore hybrid workflows through data-driven methods
or efficient update checking by combining dynamic and static
nalysis.
11
CRediT authorship contribution statement

Joseph Hejderup: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing
– original draft, Writing – review & editing, Visualization, Project
administration. Georgios Gousios: Conceptualization, Methodol-
ogy, Validation, Writing – review & editing, Supervision, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We thank Moritz, Xunhui, Mauricio, Ayushi, and Arie for re-
viewing drafts of this paper. The work in this paper was partially
funded by NWO, The Netherlands grant 628.008.001 (CodeFeedr)
and H2020 grant 825328 (FASTEN).

References

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E., 2017. Why
do developers use trivial packages? an empirical case study on npm. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, pp. 385–395.

Agrawal, H., Horgan, J.R., London, S., Wong, W.E., 1995. Fault localization using
execution slices and dataflow tests. In: Proceedings of Sixth International
Symposium on Software Reliability Engineering. ISSRE’95. IEEE, pp. 143–151.

Alimadadi, S., Mesbah, A., Pattabiraman, K., 2015. Hybrid dom-sensitive change
impact analysis for javascript. In: LIPIcs-Leibniz International Proceedings in
Informatics. 37, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Allen, F.E., 1970. Control flow analysis. In: ACM Sigplan Notices. 5, (7), ACM, pp.
1–19.

Anderson, B., 2018. Test the downstream impact of rust crate changes be-
fore publishing. https://github.com/brson/cargo-crusader (Accessed on 09
November 2018).

Antoniadis, A., Filippakis, N., Krishnan, P., Ramesh, R., Allen, N., Smaragdakis, Y.,
2020. Static analysis of java enterprise applications: Frameworks and caches,
the elephants in the room. In: Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation.

Arnold, R.S., 1996. Software Change Impact Analysis. IEEE Computer Society
Press.

Badri, L., Badri, M., St-Yves, D., 2005. Supporting predictive change impact
analysis: a control call graph based technique. In: Software Engineering
Conference, 2005. APSEC’05. 12th Asia-Pacific. IEEE, pp. 9–pp.

Bahmutov, G., 2014. Do not break dependant modules. https://glebbahmutov.
com/blog/do-not-break-dependant-modules/ (Accessed on 09/11/2018).

Beller, M., Bholanath, R., McIntosh, S., Zaidman, A., 2016. Analyzing the state of
static analysis: A large-scale evaluation in open source software. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 1, IEEE, pp. 470–481.

Bogart, C., Kästner, C., Herbsleb, J., Thung, F., 2016. How to break an API:
cost negotiation and community values in three software ecosystems. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, pp. 109–120.

Brito, A., Xavier, L., Hora, A., Valente, M.T., 2018. Apidiff: Detecting API breaking
changes. In: 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, pp. 507–511.

Bruneton, E., 2011. Asm 4.0 a java bytecode engineering library. https://asm.
ow2.io/ (Accessed on 18 April 2019).

Cleve, H., Zeller, A., 2005. Locating causes of program failures. In: Proceedings
of the 27th International Conference on Software Engineering. ACM, pp.
342–351.

Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A., 2016. Pit: a prac-
tical mutation testing tool for java. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, pp. 449–452.

Cox, R., 2019. Surviving software dependencies. Commun. ACM 62 (9), 36–43.
Cox, J., Bouwers, E., Van Eekelen, M., Visser, J., 2015. Measuring dependency

freshness in software systems. In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, pp. 109–118.

http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb4
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb4
https://web.archive.org/web/20210129103021/https://github.com/brson/cargo-crusader
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb8
https://web.archive.org/web/20210129102926/https://glebbahmutov.com/blog/do-not-break-dependant-modules/
https://web.archive.org/web/20210129102926/https://glebbahmutov.com/blog/do-not-break-dependant-modules/
https://web.archive.org/web/20210129102926/https://glebbahmutov.com/blog/do-not-break-dependant-modules/
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb12
https://web.archive.org/web/20210129103128/https://asm.ow2.io/
https://web.archive.org/web/20210129103128/https://asm.ow2.io/
https://web.archive.org/web/20210129103128/https://asm.ow2.io/
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb16
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb17

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

D

D

D

D

D

D

D

D

E

F

F

F

F

F

F

G

G

g

G

H

H

H

I
n

I

J

J

a Silva, L., Borba, P., Mahmood, W., Berger, T., Moisakis, J., 2020. Detecting
semantic conflicts via automated behavior change detection. In: 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 174–184.

anglot, B., Monperrus, M., Rudametkin, W., Baudry, B., 2020. An approach
and benchmark to detect behavioral changes of commits in continuous
integration. Empir. Softw. Eng. 25 (4), 2379–2415.

ecan, A., Mens, T., Claes, M., 2017. An empirical comparison of dependency
issues in OSS packaging ecosystems. In: 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
pp. 2–12.

ecan, A., Mens, T., Constantinou, E., 2018a. On the impact of security vulnerabil-
ities in the npm package dependency network. In: International Conference
on Mining Software Repositories.

ecan, A., Mens, T., Grosjean, P., 2018b. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw.
Eng. URL https://doi.org/10.1007/s10664-017-9589-y.

ependabot, 2019. Automated dependency updates. https://dependabot.com/
(Accessed on 17 April 2019).

ietrich, J., Jezek, K., Brada, P., 2014. Broken promises: An empirical study
into evolution problems in java programs caused by library upgrades. In:
2014 Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, pp. 64–73.

ietrich, J., Pearce, D., Stringer, J., Tahir, A., Blincoe, K., 2019. Dependency
versioning in the wild. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, pp. 349–359.

manuelsson, P., Nilsson, U., 2008. A comparative study of industrial static
analysis tools. Electron. Notes Theor. Comput. Sci. 217, 5–21.

alleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M., 2014. Fine-
grained and accurate source code differencing. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering.
ACM, pp. 313–324.

errante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph
and its use in optimization. ACM Trans. Programm. Lang. Syst. 9 (3), 319–349.

luri, B., Wuersch, M., PInzger, M., Gall, H., 2007. Change distilling: Tree
differencing for fine-grained source code change extraction. IEEE Trans.
Softw. Eng. 33 (11), 725–743.

oo, D., Ang, M.Y., Yeo, J., Sharma, A., 2018a. Sgl: A domain-specific language
for large-scale analysis of open-source code. In: 2018 IEEE Cybersecurity
Development (SecDev). IEEE, pp. 61–68.

oo, D., Chua, H., Yeo, J., Ang, M.Y., Sharma, A., 2018b. Efficient static checking
of library updates. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, pp. 791–796.

raser, G., Arcuri, A., 2011. Evosuite: automatic test suite generation for object-
oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, pp.
416–419.

erman, D.M., Hassan, A.E., Robles, G., 2009. Change impact graphs: Determining
the impact of prior codechanges. Inf. Softw. Technol. 51 (10), 1394–1408.

ousios, G., Spinellis, D., 2012. Ghtorrent: GitHub’s data from a firehose. In: 2012
9th IEEE Working Conference on Mining Software Repositories (MSR). IEEE,
pp. 12–21.

reenkeeper.io, 2019. Automated dependency management. https:
//greenkeeper.io/ (Accessed on 17 April 2019).

yori, A., Lahiri, S.K., Partush, N., 2017. Refining interprocedural change-impact
analysis using equivalence relations. In: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM,
pp. 318–328.

ejderup, J., Gousios, G., 2021. Can we trust tests to automate dependency
updates? A case study of java projects. Zenodo, URL https://doi.org/10.5281/
zenodo.4479015.

etzel, W.C., Hetzel, B., 1988. The Complete Guide To Software Testing. QED
Information Sciences Wellesley, MA.

ilton, M., Bell, J., Marinov, D., 2018. A large-scale study of test coverage
evolution. In: ASE. pp. 53–63.

BM Research, 2006. Tj watson libraries for analysis (WALA).
pm Inc., 2018. Details about the event-stream incident. https://blog.npmjs.org/

post/180565383195/details-about-the-event-stream-incident (Accessed on
27 November 2018).

nozemtseva, L., Holmes, R., 2014. Coverage is not strongly correlated with test
suite effectiveness. In: Proceedings of the 36th International Conference on
Software Engineering. ACM, pp. 435–445.

ust, R., 2014. The major mutation framework: Efficient and scalable mutation
analysis for java. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. pp. 433–436.

ust, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G., 2014. Are
mutants a valid substitute for real faults in software testing? In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, pp. 654–665.
12
Kikas, R., Gousios, G., Dumas, M., Pfahl, D., 2017. Structure and evolution of
package dependency networks. In: Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE press, pp. 102–112.

Kochhar, P.S., Lo, D., Lawall, J., Nagappan, N., 2017. Code coverage and postrelease
defects: A large-scale study on open source projects. IEEE Trans. Reliab. 66
(4), 1213–1228.

Kropp, N.P., Koopman, P.J., Siewiorek, D.P., 1998. Automated robustness testing
of off-the-shelf software components. In: Digest of Papers. Twenty-Eighth
Annual International Symposium on Fault-Tolerant Computing (Cat. No.
98CB36224). IEEE, pp. 230–239.

Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K., 2018. Do developers update
their library dependencies? Empir. Softw. Eng. 23 (1), 384–417.

Law, J., Rothermel, G., 2003. Whole program path-based dynamic impact
analysis. In: Proceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, pp. 308–318.

Legunsen, O., Shi, A., Marinov, D., 2017. Starts: Static regression test selection.
In: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, pp. 949–954.

Lehnert, S., 2011. A taxonomy for software change impact analysis. In: Proceed-
ings of the 12th International Workshop on Principles of Software Evolution
and the 7th Annual ERCIM Workshop on Software Evolution. ACM, pp. 41–50.

Li, B., Sun, X., Leung, H., 2012. Combining concept lattice with call graph for
impact analysis. Adv. Eng. Softw. 53, 1–13.

Li, B., Sun, X., Leung, H., Zhang, S., 2013. A survey of code-based change impact
analysis techniques. Softw. Test. Verif. Reliab. 23 (8), 613–646.

Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang, B.-
Y.E., Guyer, S.Z., Khedker, U.P., Mø ller, A., Vardoulakis, D., 2015. In defense
of soundiness: a manifesto. Commun. ACM 58 (2), 44–46.

Machalica, M., Samylkin, A., Porth, M., Chandra, S., 2019. Predictive test se-
lection. In: Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice. IEEE Press, pp. 91–100.

Mariani, L., Papagiannakis, S., Pezze, M., 2007. Compatibility and regression test-
ing of COTS-component-based software. In: 29th International Conference
on Software Engineering (ICSE’07). IEEE, pp. 85–95.

Mezzetti, G., Møller, A., Torp, M.T., 2018. Type regression testing to detect break-
ing changes in node. js libraries. In: 32nd European Conference on Object-
Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Mirhosseini, S., Parnin, C., 2017. Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies? In: Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, pp. 84–94.

Møller, A., Torp, M.T., 2019. Model-based testing of breaking changes in node.
js libraries. Changes 4, 15.

Myers, G.J., Sandler, C., Badgett, T., 2011. The Art of Software Testing. John Wiley
& Sons.

Nguyen, H.A., Nguyen, T.N., Dig, D., Nguyen, S., Tran, H., Hilton, M., 2019. Graph-
based mining of in-the-wild, fine-grained, semantic code change patterns. In:
Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, pp. 819–830.

npm, 2018. How to use semantic versioning. https://docs.npmjs.com/getting-
started/semantic-versioning (Accessed on 21 October 2018).

Orso, A., Apiwattanapong, T., Harrold, M.J., 2003. Leveraging field data for impact
analysis and regression testing. In: ACM SIGSOFT Software Engineering Notes,
vol. 28. (5), ACM, pp. 128–137.

Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., Harrold, M.J., 2004. An
empirical comparison of dynamic impact analysis algorithms. In: Proceedings
of the 26th International Conference on Software Engineering. IEEE Computer
Society, pp. 491–500.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M., 2019. Mu-
tation testing advances: an analysis and survey. In: Advances in Computers,
vol. 112. Elsevier, pp. 275–378.

Ponomarenko, A., 2011. Java API compliance checker. https://lvc.github.io/japi-
compliance-checker/(Accessed on 17/04/2019).

Ponta, S.E., Plate, H., Sabetta, A., 2018. Beyond metadata: Code-centric and
usage-based analysis of known vulnerabilities in open-source software. In:
2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. 449–460.

Raemaekers, S., van Deursen, A., Visser, J., 2017. Semantic versioning and impact
of breaking changes in the maven repository. J. Syst. Softw. 129, 140–158.

Reif, M., Kübler, F., Eichberg, M., Helm, D., Mezini, M., 2019. Judge: identifying,
understanding, and evaluating sources of unsoundness in call graphs. In:
Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, pp. 251–261.

Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O., 2004. Chianti: a tool for change
impact analysis of java programs. In: ACM Sigplan Notices, vol. 39. (10),
ACM, pp. 432–448.

Renovate, 2019. Automated dependency management. https://renovatebot.com/
(Accessed on 26/07/2019).

http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb18
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb21
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb21
https://doi.org/10.1007/s10664-017-9589-y
https://web.archive.org/web/20190402062622/https://dependabot.com/
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb34
https://web.archive.org/web/20191018011151/https://greenkeeper.io/
https://web.archive.org/web/20191018011151/https://greenkeeper.io/
https://web.archive.org/web/20191018011151/https://greenkeeper.io/
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb36
https://doi.org/10.5281/zenodo.4479015
https://doi.org/10.5281/zenodo.4479015
https://doi.org/10.5281/zenodo.4479015
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb38
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb40
https://web.archive.org/web/20191031163820/https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://web.archive.org/web/20191031163820/https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://web.archive.org/web/20191031163820/https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb42
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb43
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb43
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb43
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb43
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb43
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb46
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb47
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb48
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb49
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb50
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb51
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb52
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb53
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb55
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb57
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb58
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb60
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb60
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb60
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb61
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb63
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb63
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb63
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb63
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb63
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb65
https://web.archive.org/web/20210129103053/https://lvc.github.io/japi-compliance-checker/
https://web.archive.org/web/20210129103053/https://lvc.github.io/japi-compliance-checker/
https://web.archive.org/web/20210129103053/https://lvc.github.io/japi-compliance-checker/
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb67
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb68
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb68
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb68
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb69
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb70
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb70
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb70
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb70
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb70
https://web.archive.org/web/20201209214724/https://www.whitesourcesoftware.com/free-developer-tools/renovate

J. Hejderup and G. Gousios The Journal of Systems & Software 183 (2022) 111097

R

S

S
T

T

W

W

Y

Z
Z

yder, B.G., Tip, F., 2001. Change impact analysis for object-oriented programs.
In: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering. ACM, pp. 46–53.

hi, A., Hadzi-Tanovic, M., Zhang, L., Marinov, D., Legunsen, O., 2019.
Reflection-aware static regression test selection. Proceedings of the ACM on
Programming Languages 3 (OOPSLA), 1–29.

trobel, M., 2016. Procyon/java decompiler.
ip, F., 1994. A Survey of Program Slicing Techniques. Centrum voor Wiskunde

en Informatica.
rockman, A., Zhou, S., Kästner, C., Vasilescu, B., 2018. Adding sparkle to social

coding: an empirical study of repository badges in the npm ecosystem. In:
Proceedings of the 40th International Conference on Software Engineering.
ACM, pp. 511–522.

hittaker, J.A., 2002. How To Break Software: A Practical Guide To Testing with
Cdrom. Addison-Wesley Longman Publishing Co., Inc..

ittern, E., Suter, P., Rajagopalan, S., 2016. A look at the dynamics of the
JavaScript package ecosystem. In: Mining Software Repositories (MSR), 2016
IEEE/ACM 13th Working Conference on. IEEE, pp. 351–361.

oo, S., Harman, M., 2012. Regression testing minimization, selection and
prioritization: a survey. Softw. Test. Verif. Reliab. 22 (2), 67–120.

eller, A., 2009. Why Programs Fail: A Guide To Systematic Debugging. Elsevier.
hang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., Zhang, L., 2018. Predictive

mutation testing. IEEE Trans. Softw. Eng..
13
Joseph Hejderup is a Ph.D. student at the Delft Uni-
versity of Technology, the Netherlands. His primary
research interest is to make package management sys-
tems more intelligent, safe, and robust using program
analysis and empirical methods. He is the main au-
thor of Präzi, a technique that constructs fine-grained
dependency networks using call graphs. He holds an
M.Sc. from the Delft University of Technology, the
Netherlands.

Georgios Gousios, is a research engineer at Facebook
and an associate professor at the Delft University of
Technology, The Netherlands (on leave). He works in
the fields of software analytics, software ecosystems,
software processes, and machine learning for software
engineering. He is the main author of the GHTorrent
data collection and curation framework and various
widely used tools and datasets.

http://refhub.elsevier.com/S0164-1212(21)00194-1/sb72
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb72
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb72
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb72
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb72
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb73
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb73
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb73
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb73
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb73
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb74
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb75
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb75
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb75
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb76
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb77
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb77
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb77
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb78
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb78
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb78
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb78
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb78
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb79
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb79
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb79
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb80
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb81
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb81
http://refhub.elsevier.com/S0164-1212(21)00194-1/sb81

	Can we trust tests to automate dependency updates? A case study of Java Projects
	Introduction
	Background
	Package managers
	Safe backward compatible updates

	Research questions
	Research method
	Identifying usages of third-party libraries
	Heuristics for static impact analysis
	Creating unsafe updates in project dependencies
	Manual analysis of pull requests
	Dataset construction
	Implementation
	Uppdatera
	Experimental pipeline

	Results
	RQ1: Dependency coverage
	RQ2: Detecting simple faults in dependencies
	RQ3: Change impact analysis in practice

	Discussion
	Evaluating library updates
	Strengths and weaknesses of static analysis
	Threats to validity

	Related work
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

