Hamiltonian formulation of
water waves

1D-formulation, numerical evaluations and examples

A K. Otta and M.W. Dingemans

May 1994




Hamiltonian formulation

H782

May 1994

delft hydraulics

——




Hamiltonian formulation

H782 May 1094

delft hydraulics

Executive's summary

This report describes the formulation, numerical implementation and application of
a weakly nonlinear wave model for finite depth based on a Hamiltonian formulation
(see Radder, 1992). Due to the type of nonlinearity explicitly accounted for in the
expansion of the kernel of the Hamiltonian density (sum of kinetic and potential energy
per unit surface area), the model is valid for waves of small, but finite amplitude and
fairly long wave length (compared to the water depth) in roughly the same sense
many ‘Boussinesq-type’ models are. There are, however, a few significant differences.
Firstly, the Hamiltonian density in the present formulation is always positive definite:
a condition necessary to ensure good dynamical behaviour of the model equations for
numerical computation. Secondly, the dispersion equation obtained from the linearised
version of the equations is exact. This property results in a better modelling of the
phase relations (hence the wave asymmetry at a given location) of the superharmonic
field which evolves from the primary wave system due to surface nonlinearity. More
importantly, it is possible to remove the restriction of waves being long through a
proper inclusion of the ‘short-wave’ nonlinearity in the expansion of the kernel. This
results in a uniformly valid model unlike most of the weakly nonlinear models which
are valid over either deep or shallow water. Further, it is discussed in the text that even
for long waves the ‘short-wave’ nonlinearity becomes locally important near the crest of
a wave as the surface curvature increases. Implementation of ‘short-wave’ nonlinearity
is therefore considered as one of the first priorities in the future developments of the
model.

Two numerical models have been developed: a time-domain model and a pseudo-
spectral model based on the sinc-series for the global approximations. The numerical
code based on the sinc-series requires less computing time and gives the option of
choosing higher-order interpolation for computing derivatives and integrals over local
intervals. We present here a figure as an example of the model prediction of nonlinear
evolution of a train of non-breaking waves passing over an underwater bar. An incident
train of sinusoidal waves has been represented in the computation by a packet of
sinusoidal waves of finite length with the leading edge a few wave-lengths behind the
bar. Details of the geometry and significance of this test can be found in chapter 7. In
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spite of a practical disadvantage due to the way the input conditions must be specified
in the code (we have an initial-value problem) these models can now be used to study
nonlinear evolutions of nonbreaking waves over varying depth.
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Attempts to introduce effects of wave breaking have not met with much success yet. In
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the first phase, an integral criterion has been implemented to determine if the instanta-
neous surface shape should lead to breaking. Application of the criterion to computed
surface elevation for conditions observed to have given rise to mild breaking in labora-
tory tests shows that breaking stage is not reached. It is believed that this difference
between the computed results and the laboratory observations is caused by the omis-
sion of the ‘short-wave’ nonlinearity (underprediction of the surface steepness), rather
than the failure of the integral criterion. This is another aspect which underscores the
importance of implementation of ‘short-wave’ nonlinearity.

Finally to conclude, comparison of the computed results with the experimental mea-
surements and in a wider context with several ‘Boussinesq-type’ models (see Dinge-
mans, 1994a) provides strong motivation for further developments of the model. This
is further supported by the inherent theoretical appeal of the formulations used. As
summarised in chapter 9, the major recommendations for future work are:

e The formulation of a boundary-value problem instead of an initial-value prob-
lem. This greatly enhances the practical usefulness of the program.

e Inclusion of short-wave nonlinearity. For applicability over the full range of deep
to shallow water of a nonlinear wave model, inclusion of short-wave nonlinearity
is needed. Furthermore, it has been shown that for wave breaking also the
inclusion of short-wave nonlinearity is needed to obtain more realistic breaker
indices.

e Further study of wave breaking characteristics after inclusion of short-wave
nonlinearity.

s [Effect of steeper bottom slopes on the wave behaviour.
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1 Introduction

In this report the study into the properties and numerical behaviour of the equations
proposed by Radder (1992) is described.

At first, in Chapter 2, the mathematical formulation is given. This follows closely
Radder (1992). It is important to note that the present treatment is strictly valid
only for 1D wave propagation. This is due to the fact that the methods rest upon
conformal transformations. Furthermore, in course of the derivation, use is made of
the assumption that the variation of the still-water depth is absent in the Hamiltonian.
This may be compared with the way in which the mild-slope equation is derived: for the
classical mild-slope equation no variation of the depth is included in the Hamiltonian,
but for the extended equation variations of the depth in the Hamiltonian have to be
included, see Dingemans (1994b, Chapter 3).

The numerical evaluation of the evolution equations for the time-domain model is
described in chapter 3.

A spectral approach based on an expansion in terms of sinc functions is described
in chapter 4. The basic idea behind such a spectral description is to obtain improved
numerical efficiency. The time-domain model still takes much computer time, especially
because the evaluation of the kernel log tanh() which has to be evaluated over the whole
computational domain. Earlier attempts to terminate the computation of this kernel
beyond a local interval to take advantage of the rapid decay of the kernel had no
success. Instabilities developed then very soon from near the ends of the geometry. It
should be emphasised that spectral solution based on the Fourier-series expansion over
a finite span has been found to be unsuccessful for the present Hamiltonian formulation.
Three possible approaches based on sinc series have been discussed in chapter 4. The
numerical procedure for one of the three approaches has been described in chapter 5.

A short description of the programs is given in chapter 6. Some numerical examples
have been given in chapter 7.

An approach to modelling wave breaking has been discussed in chapter 8, followed by
the conclusions in chapter 9.

The research has been carried out by A.K. Otta and M.W. Dingemans, while the
constant guidance of A.C. Radder of Rijkswaterstaat has been invaluable.
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2 The mathematical model

2.1 The Hamiltonian formulation

The governing equations for irrotational wave motion on an incompressible inviscid
fluid are given by the Laplace equation and the three boundary conditions:

?®

V2o + 27 =0 5 —hl@)<z<((a1) (2.1a)
0 o
%, 1 {(V<I>) (2 }_Tm+gc =0 5 r=(y) (D)
0 0®
DEVEVC=Z 5 o= ((a) (2.1c)
%‘3 +Ve-Vh=0 ; z=-h=), (2.1d)
where
T[¢]=7V: _.._____VC , (2.1e)

(1+1v¢P) i

and 7 is the surface tension and two-dimensional vectors have been used, = (:c,y)T.
It has been shown that the Hamiltonian constitutes a variational principle when it is
expressed in terms of the free surface elevation { and the value of the velocity potential
at the free surface ¢(z,t) = ®{(«,{(x,?),t}, see, e.g., Zakharov (1968) and Broer
(1974). The total energy of the fluid is given by

H = //.d:vdyH://dmdy(V-l—T):
p//dfcdy {1942+7[W—1]
+/ drr [(v‘p) + (‘3‘1’) H . (2.2)

In the sequel of this report no effect of surface tension is accounted for, i.e., T = 0 is
taken. Then we have

Il

V—_pgg2 and T = ,0/ dz [(V(I)) + (‘Z’)] . (2.3)

The variation of the Hamiltonian, given by (2.2), is equivalent with the original full set
of water wave equations. However, one has the opportunity to find approximate equa-

_tions from an approximation of the Hamiltonian with the advantage that good dynam-
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ical behaviour is guaranteed when the positive definiteness of the exact Hamiltonian
density H is also carried over to the approximate density H,. Every approximation
H, which maintains the symmetries of H guarantees automatically the corresponding
conservation laws to hold.

Notice that the Hamiltonian density is effectively a function of the free surface variables
¢ and ¢. Variation of H to ¢ and ¢ gives the two canonical equations:

FH 9

1 7 _ 0
5go_p8t

and -%_—pat ,

(2.4)

where 6 denotes the variational derivative. Notice that Eqs. (2.4) are the free sur-
face conditions (2.1b) and (2.1c) while Egs. (2.1a) and (2.1d) have been used as side
conditions. The major difficulty in applying the Hamiltonian is that the kinetic en-
ergy density should be formulated in terms of the surface elevation ¢ and the velocity
potential ¢ along the free surface.

In the sequel we will use a Hamiltonian which is scaled with the density: H := H/p
and similarly scaled potential and kinetic energy (V and 7 respectively) to comply
with the notation used in Radder (1992).

2.2  1D-formulation

For problems with one horizontal dimension an approximate Hamiltonian can be de-
veloped which is uniformly valid from deep to shallow water (Radder, 1992). In this
case, the kinetic energy density T can be written as

_ 10 10p
T="5%% = 200 (25)

where ¥ = ¥ {z,((z,t),t} is the stream function evaluated at the free surface.

To express 1 in terms of the canonical variables ¢ and (, a conformal mapping of the
fluid domain Z = 2 + ¢z into an infinite strip in the complex W —plane W = x + ¢{ is
used (Woods, 1961)

7w = 5 [ i frann [5 7 =0 €0+ cott [ 7 =) | )}

—00

(2.6)

A solution for the stream function ¥(z,z,t) at the free surface is sought for in two
steps:

1. Solve the problem in the W—plane
2. Find the inverse transformation x(z) along the free surface.
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2.2.1 Solution in the W—plane

A solution of the linear problem 227%’ + %26—? =0in 0 < ¢ < 1 and the boundary

conditions ¥ = 0 at { = 0 and ¥ = 9(x) at £ = 1 by means of Fourier transforms gives
at the free surface £ = 1

_ 17 LAV A
900 == [~ Etogtann (T 1x - x]) v’ (27)

where log is the natural logarithm. In the transformed plane the Hamiltonian H
becomes

_1 24z dp )
=3 [ax (5255 + v (2)
and with () substituted from (2.7) one obtains
_1 2de | Op / 1 9¢ / )
H=y /dx (gC e T oy ) W g R6X) (29)
with the kernel R(x, x’) given by

1 T
R(x,x') = —;logtanh <Z Ix — X’|> . (2.10)
2.2.2 The inverse transformation

To express (2.7) in terms of variables of the physical plane, an expression for the
function x(z) along the free surface has to be found. The imaginary part of the
transformation (2.6) reads

_ 1y sin ¢ o
“68) = 2 /—oo coshm (x — x') + cos 7T£C(X )dx
1 fe sin m¢ "o
9 /_oo coshm (x — x') — cosmé h(X') dx (2.11)

Through a Fourier transform of this imaginary part a symbolic operator equation is
obtained (Radder, 1992, Eq. (26)):

1 1
() = | —= | €00+ | —7 | k) - (2.12)
o () (=) ~

This equation has to be inverted to obtain the required function x(z). The subsequent
analysis presented by Radder is valid in the strict sense for the simplified case of a
horizontal bottom for which (2.12) simplifies to
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where the notation
w(z) = h+((2) (2.13b)
is used.

An unknown function e(z) is introduced through

d»
é =(1+4+e)n. (2.14)

Notice that this relation at this stage is merely another way of writing relation (2.13a).

The kinetic energy 7 can be rewritten in terms of the physical variables in the following
way. First notice that

dy g o dpds

dX_)dmdm an 3X—>8wdx’

so that

12 120 i) = S [ g

=T = %/da: @w/da:’g%/R(:v,x’) .

Introducing the kinetic energy density by

T = %/ de'pp 0 Re(z,2'), (2.15)
we then have 7 = [da T . The kernel R, now follows from (2.10) by noting that (2.14)

gives

dz ¢ dr g |7 dr
dxzm = X:/m = {X—X{—‘/m —(1+5)77‘.

We then have the symmetric function R, given by:

/: a—jfrm{) . (2.16)

It is noted that the kinetic energy functional, expressed in the y-variable, is positive
definite, and this property is preserved on transforming from y to z when the Jacobian
(2.13a) is positive and bounded.

1 T
Az, ¢';n) = ——logtanh [ —
Re(z,2'sn) —logtan (4
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The Hamiltonian in the physical plane then is

1 0
H= 5/ dz (gC2 +/ dm/(PwSDx’Rs(waml;n)) . (2'17)

Either to be able to use (2.17) directly to obtain evolution equations from, or to trans-
form results obtained in the x plane to the physical plane, it is necessary to find a
prescription for the unknown function e(z). This is the subject of next subsection.

2.2.3 Non-linear integral equation
We now seek an explicit expression for the function e(z). We first notice that equation

(2.13a) can be written in the form of a nonlinear integral equation (Radder, 1992) as

dz Lo [ 0 =X) =0(x) 4o (2.18)

—_— [
dx (x) 4" Jooo  sinh® %Wx’

To solve this nonlinear integral equation, an expansion in partial fractions, which is
valid for all values of the argument, is used by Radder (1992):

dz X d 1 1
— =7+ — . 2.19
dx " mZ::lded;—mvr %-}—mw K (2.19)
With the notation
T dr d d
= ot D= — = p— : 2.20

and the function ¢(z) defined according to (2.14), an equation for € is obtained from
the expansion (2.19) as

1 ad 1 1
8:;(1+8)m2=:1p[(1+5)D—m7r+(1+5)D—|-m7r 7 (2:21)

To solve this equation for ¢(z), Radder introduces the operators Ggm) and Gc(,m) by

D

(m) — (m) — 2.22
Ge " (14e)D—mnr and  Gq “D—-—mn’ ( )
and because G’gm) can be expressed iteratively in terms of G(()m) we have
> A
G =3 (-1 (a5 (2.23)
A=0
For the function £(z) we then obtain the equation
6
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e=(1+¢e)d (-, (2.24a)
A=0
with
1 S m m A —m —m A
IA:EZ[GS)(gGO)) +G5™ (26 >)]n. (2.24b)
m=1

Equation (2.21) or (2.24a) can now be solved iteratively as

Io Io — Il

= = = 2.25
©=0, a=y7p o @770 (2.25)
where Iy is given to be (see Radder, 1992)
1 o dg d
fo=-— [ % oo+ 0) + 00— 9] » 2.96
O ) Jo xplrg) —1dg " T F 2~ 9] (2.26)

and I follows as

b= n(p)/ / expwgquiQIQ)—l

xE;[al(p+q)?‘l—,n(p+q+q)+81(p—q)?n(p g—dq)| - (2:27)

Solution for €, k = 0,1,2,- -+ can in principle be obtained through a recurring proce-
dure in this way.

Finite depth

m)

For water of finite depth we have! ||D|| < 7 and a Taylor series expansion of G(() may
be used (Radder, 1992, Eq. (43)):

Ggm):__%[1+£+(£>2+<£)3+...] , (2.28)

mm mm mmw

and likewise for G’g_m) . The expansion of (2.24a) may then be given in a more conve-
nient form. The following quantities are introduced:

1
F, = ;Dkn i Fo=1. (2.29)

The following recurrence relations may then be derived from (2.29) and (2.20):

F(’I]Fk) = 77Fk+1 and DFk = Fk+1 - FkFl . (230)

! A bounded operator P is defined by (£, P) < (f, f) with { some well-behaved function and (-,-) an
inner product. The norm of the operator, ||P| is defined as the maximum of (Pf, Pf)/(f, f).




Hamiltonian formulation H782 ) May 1994

delft hydraulics

Substitution of the series expansion (2.28) in (2.23) and using the recurrence relations
(2.30) then leads to an expansion of ¢ in terms of the functions Fj,. Up to fourth order
Radder obtains (his equation (46)):

1 1
e=—3h- (Fi—5FsFy = 10F} +5F,F) ~ -+ | (2.31)

which can be rewritten as® (cf. Radder, 1992, Eq. (B6))

8(:1:,t) = —%(773;'{"77771717)4‘
1
45

(=972 = 6 (472 + 10) 1o + 207 Moo + 7P104) — <+ -
(2.32)

It is important to note that crucial for this approximation is the validity of the ex-
pansion (2.28). In the first place the expansion is only valid for water of finite-depth,
and in the second place the expansion is a Taylor-type expansion, not yielding positive-
definite approximations for the class of square integrable functions with 7 > 0. Perhaps
a better approximation can be obtained by using a Padé -type approximation for the

functions G(()m).
With the Hamiltonian given by (2.17), the evolution equations for the canonical vari-
ables ¢ and ¢ are in principle given by the defining equations (2.4). However, due to

the complicated dependence on ¢, derivation of the evolution equations is not a trivial
task, except for the case of ¢ = 0.

2.2.4 Limiting cases

Consider the expression (2.16) for R.. For a constant depth of h, we can write

(z,2';m) = ——logtan z 2.33
R ! 7];1 h 1

1 e dr
. (1+e>(1+</h)D'

Linear theory is obtained for ¢ = 0 and # = A (i.e., infinitesimal waves, and thus ¢
is neglected); the expression for R, = Ry then coincides with the one given by Broer
(1974) for linear waves. For deep water it turns out that £¢ = O(ka) and then Stokes’
theory is appropriate, 7 & h, so that

< dp
sz 1+e¢

T

4h

1
Re(z,2';h) = —;1ogtanh <

) . (2.34)

For shallow water we have ¢ = O(kh - ka) and we can put ¢ = 0 (Boussinesq approxi-
mation). Then:

I

With Fi = (772 D*n) /n = [(n9s)"] n we have F1 = (1/n)ndsn = o and F = [(1/n) (n82)*] 7
9z (n0z) n and thus, F» = 7% + nnee. For F3 we have F3 = 8, (99s (19:)) 7, yielding F3 =
[n:az + 3"777z83; + 7777.'5:1:393 + 772 33] 7.
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) . (2.35)

1 o dr
Ro(z,2'sm) = ——1ogtanh ( /
4h |Jo 144
The advantage of a Hamiltonian model based on (2.35) over a Boussinesg-type model
is that in the former model the linear theory is recovered in case of deep water. For

practical applications, such as the evolution of a solitary wave over an uneven bottom,
numerical solution of the resulting integral equations is needed (see Zwartkruis, 1991).

2.3 The evolution equations

In the following we describe the evolution equations in the physical plane including the
short-wave nonlinearity function & which depends on 7 and its derivatives. Thereafter,
we look at the possibility of the evolution equations in the transformed plane.

2.3.1 Equations in the physical plane
Surface elevation (

To obtain the evolution equations it is necessary to evaluate the variational derivatives.
Using the general formulation

dH _0H 0 <6H) (2.36)

5o 0p 0a \Bps

we note for the Hamiltonian H, given by (2.17), that

c_or 0 (amy ooy
ot bp — Oz \ Oy 0z’ \ Opy
8

Y

= /d.’l) (Pa:' /d TPz 3 o (2'37)

Due to the symmetry of R.(z,2';n) with respect to = and 2/, (2.37) can also be ex-
pressed as

o¢ 0 , .. _ ,  OR.
.= 9. /da: @y Re(z,2'sn(e)) = — /da: Zarml (2.38)

The differentiation of R, proceeds as follows. We introduce the notation

! dr
v=1=\" ool
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From R, given in (2.16) we have R, = —llog tanh gv and thus,
T

OR. 1 dv/dz
dz ~ 2sinh (Zv)
dv dd dv 1
ith — = si — _———— i
Wi T s1gn(’t9)dm and T 5o we obtain
OR. 1 sign(+)
dz  2(1+e¢e)n(z) sinh ($v)

(2.39)

Consider now the term sign(#9)/ sinh (Zv):

sign(9)  sign(¥) +1
sinh (Zv)  sinh (Z]9]) —  sinh (39)
-1 1

= Sinh(~Zv)  sinh (39) it <0,

if 9>0

We can therefore write

on. _ 1
9z 2(1+¢)n(x) sinh (£49)
- ! ! (2.40)

2+ )W) sinh (3 12 o%0)

The evolution equation for the free surface elevation ( finally becomes

¢

1 /°° ! Pa! |
6 1 e | 2.41
o 20+e)n(@) oo sinh (5 [ ) -

Velocity potential ¢

The evolution equation for the free surface wave potential ¢ is more difficult to obtain.
This is due to the fact that e(z,t) is a function of 7(z,t) and therefore also a function
of ((,t). Since h is only a variable constant,

8n = 6h+6¢ =8¢ (2.42)

Thus, §¢ may be replaced by én. Next, §H, the increment in the Hamiltonian due to
&7, a small increment in 7 and the associated §e can be expressed as

o= [ (5

delft hydraulics 10
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/ gCo¢da’ —
! 1 6 fU" 1
/ da’ / da" e gpf §n— / d'r————' . (2.43)
4 sinh 7 | [ (1+ v ' én (I+¢)n
Si 191 = i has f (2.43)
ince ——- =74 = =5 one rom (2.
§H = / oC8cda’ —
1Ot § ! 1
/ dz' / dz" ('% ('D,,m on— </ d’r———)
4 sinh % $, (1+ ) ) én \Jo/ (14¢e)n
= [ gscaa'+
/ d(l} / d’B// (P:B’SD:L‘” / d’l'(l + 8)677;_27765. (2.44)
4 sinh 7 ;, (1+5) ) ! (1+¢)

One may proceed from here to derive a suitable expression by carrying out integration
by parts of the right-hand side. Alternatively, a similar approach as used in appendix
E of Radder (1992) may be adopted. Since (2.44) must hold for all én € C, 67 may be
replaced by any sequence f,(z) approaching the delta function 6(z).

The following properties related to the delta function will be useful during the deriva-
tion. First, as in Radder (1992, Appendix E), use will be made of

(E//

/x " drF(n)b(r - o) = F(@)U(a — )0 (a" - 2) (2.45)

where F'(z) represents a well-behaved function and U(z) the unit Heaviside function.
We further use the fact that (e.g., Greenberg, 1978; p. 71)

wll

L " drF(r)s;(r — o) = (~1 Fi(@)U(z - U (" ~ o). (2.46)

The subscript j in (2.46) denotes the order of differentiation of the function. We now
turn to evaluate 8e. Using (2.32) for ¢ and carrying out the operation to O(ka)?, we
have

1
be(r) = —3(20:6m, + 6% + Ny 81) = -+ (2.47)

Approximating én(r) by 6(r — z) in (2.47), one has

be = _é [32771"51(7' — @)+ nb2(r — @) + 9 b(r — )} =+ . (2.48)

Hence,

delft hydraulics 11




Hamiltonian formulation H782 ) May 1994

z!! (1 + 6)677+ 7758 /a}// [ 677 58
d = d
L o T T aTem
= Uz —2")U(z" - z)B1(2) (2.49)

where By up to O [(ka)?] is given by

1
(1+¢)n? *

1| e 0 2110 0? 7
el U A (/R [T G/ w— O W)
3[(1+8)2n2 3$<(1+6)2n2 Yoo\ ere) | Y

by using a reduced form of ¢(z); i.e.,

B1(7778) =

e(w,t) = —% (72 + ) - (2.51)

Using (2.49) in (2.44) yields

DE_ gee
sc 7
~1 d:L / do'— 285" pie _a\U(2" —2).  (2.52)
sinh I | [ (1iT)|
:v e)n

Rewriting the integral on the second line of (2.52), we obtain

SH . By

s / PR - — (2.53)
N P " d
—oo sinh 5 ( I Tt +2)n)

Consequently, the resulting evolution equation for ¢ is

dp M
T T
v o0 o' Palt
= —g( - §B1(77,5) /_Oo d:p'/ da'"— h(chfm" — ) . (2.54)
sin 2 Jo! (1+€)7](7‘)-

It may be noted that equation (72b) of Radder (1992) results as a special case of (2.54)
for ¢ = 0.

2.3.2 Exact evolution equations

As discussed so far approximations have to be used for the inverse transformation in
order to express the evolution equations in the physical plane. An alternative is to
investigate the workability of using the exact equation on the transformed plane. The

delft hydraulics 12
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exact Hamiltonian  and R(x,x’) are given respectively by (2.9) and (2.10).
Surface elevation (

For the evaluation of §H /8¢ we need only the kinetic energy part and we have

§H 8T

bp b
Since the variable y depends on 7, we need to rewrite the exact expression of 7 partly

in terms of the physical variable  to be able to obtain the variational derivative 67 /6¢.
Observing that dx/p,s = dz'p,, we have

1
T=5 / dz s / da' o R(X', ;1) - (2.55)
. . \ 8T o (07T a (0T
Since 7 has no explicit dependence ¢ itself, we have &; =5 (8_9/;;7) ~ % (89%)
and we obtain
8T o [* ., ,
- ' . 2.
5 = o /_OO da' R(X: X') (2.56)
0 dx 0
Along the free surface £ = 1 we have e d_b—)—( and therefore 6H /6 can be exactly
; x

expressed as

Qg = éﬂ — @(__a_ /oo / !
Bt = Bp = dn iy Joo XX TOOXD (2.57)

Since one has % = (;Z_;

(which is true for the mapping used), dx/dz can be calculated exactly from (2.12) or
for a horizontal bottom from (2.18). Thus, (2.57) defines the evolution equation for ¢
exactly in the transformed variables.

-1
> subject to the condition that the Jacobian is not zero

Velocity potential ¢

The exact evolution equation for ¢ follows from the free surface conditions to be

dp 1,
A

1 (Ct + (Pa:Co:)z

3 1te —gC (2.58)

where again all the derivatives can be expressed in the transformed plane by using the
Jacobian of the transformation.
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An important point to note is that the evolution rates, given by (2.57) and (2.58),
correspond to the rates at a fixed physical location z and not at a fixed y. A fixed
x-node does not correspond to the same z-location due to the change in the surface
elevation with time. For this reason, the numerical values need to be mapped from the
set of x-nodes to the set of the fixed z-locations and vice-versa at each time-step. This
is one of the basic disadvantages of using the exact evolution equations on the y-space.

14




Hamiltonian formulation H782 May 1994

3 Numerical evaluation of the time-domain model

In the present chapter, we describe the numerical model which is based on the formu-
lations in the physical plane. The numerical model described here will be later referred
to as ‘hamilT’.

3.1 Regularised evolution equations

As the integrands in (2.38) and (2.54) are singular at 2 = &/, regularised forms are first
derived in a way similar to the one adopted in Zwartkruis (1991). Further, we derive
a modified form of (2.54) where the outer double integrals need not be numerically
evaluated.

Surface elevation {

With
v(z) = g—(’f
N R TOM
M) = o) ey ) ™)
* (= dr
f(ne) = Z/w (ten
we write

/ d:z:’A(m',:v)logtanh]f(?],s)|:/ da'v(a")logtanh | f(n, )| —

o1+ @) [ dm/IO[g(ﬁﬂ;)lfﬂ%)l

It follows from the definition of f(7,¢) by using Leibnitz’s rule that

. (3.1)

g 1
da' 4(1+5)77(w)'

(3.2)

Noting that f — 0o as 2’ — 00 and f — —o0 as 2’ — —oo we can further write

Il

o, 1 f 4 [ /
/_Oo dx Wlogtanhv(m,m | ;/_Oo df log tanh | f(z,z")|

= -7. (3.3)
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Using (3.3) in (3.1) yields

/oo da'A(e’,z)log tanh | f(z,2")| = =w[o(1 +e)n)(z) +

/:: dz'v(2")log tanh | f(z,2")] . (3.4)

Alternatively,

/_o:odm'v(m’)logta,nh|f(fc,m’)l = —rfo(1+e)n)(2)

—I-/_(><> da'\(z',z)log tanh | f(z,2")] . (3.5)

The integrand (2, 2)log tanh | f(z,2')| is regular at 2 = 2’ and the numerical integra-
tion of the right hand side of (3.5) can be carried out by using a standard numerical
technique like trapezoidal rule (or Gauss-quadrature for higher accuracy). Thus, the
starting equation for the numerical evolution of the free surface is

= 2wl eple) + [ dalA@ ologtanh [f(a,2)]| - (36)

Velocity potential ¢

The double integral and the singular behaviour of the denominator at ' = 2/ in

(2.54) make a direct numerical implementation difficult. Expression (2.54) is further
simplified as follows. Differentiation of (2.54) w. r. t. to & gives

Pro = —9a—3 [ddBl]/ dv:/ da"g(a’, ")

——Bld/ d:L/ da'g(a’, 2" (3.7)

where

Po! P (3 8)
. - 2! d : :
sinh 9 <fa:l (1+2.)77)

Using Leibnitz’s rule, one has

%/ d:l)l/ dz"g(z',2") = / d:v—/ da'g(a', 5"
—I-/ dz"g(z,2")
/ dm'[—9($>w)]+/ dz"g(z,z")  (3.9)

g(:v/, w//) —
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It follows from the definition of ¢ that
g(xl,w) = —g(:v,rc'). (3.10)

Hence,

—d—/ da:’/ d2"g(a',a") = / da:'[—g(a;',:v)]-i—/ dz"g(z, ")
— o0 x —00 T

da
- / da'g(z, ). (3.11)
We recall from (2.41) that
/ da'g(z,2") = —2(1 + &)npy ;. (3.12)
Using (3.11) and (3.12) in (3.7) we get
dB;] [°
Prw = —glo+ [—lﬁl]/_ da'(1 + &)mepwr (i
+B1(1 + €)npes. (3.13)

Substituting v for ¢, (3.13) is finally expressed as

w=get |S2] [ da' (o014 eyn) + Bafo(1 + e (3.14)

Expression (3.14) is the starting equation for the numerical evolution of v (or conse-
quently of ¢). The regularised set of equations is then given by

G = %% [—W[U(l + &)n)(z) + /_O:o dz'A(2',2) log tanh | f(z,2")| (3.15a)
v = —gC + [%] /_ a; da' [v(1 + e)nls] + By [v(1 + €)ndi] (3.15b)

In the numerical code ‘hamilT’, the derivatives in the evolution equations are de-
termined by using a fourth-order mid-point rule! and the integration is carried out
according to the trapezoidal rule. Nodes are uniformly distributed over the entire
domain.

3.2 Time integration

Time integration of the two evolution equations (3.15a) and (3.15b) are performed
according to either an explicit scheme (Euler) or a predictor-corrector scheme (Adams-

1A Lagrangian polynomial approximation based on discrete values at 5 nodes are used, with the
node of interest being the middle one. Higher-order interpolation can also be later implemented.
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Bashford-Moulton, henceforth referred to as ‘ABM’). From known values of ( and v at
an instant ¢, values at the next instant At later are given in the Euler procedure by

((z,t+ A = ((z,t) + At =22 aC(’” ) + O(At)? (3.16)

(%(:v 1)

v(z,t+ A = o(z,t)+ At ——= o

+ 0(AL)? (3.17)

where (; and v; are computed from the evolution equations (3.15a) and (3.15b).

For an ordinary differential equation dy/dt = f(y,t), the value of y At later is given
by a two-step procedure in the ABM scheme:

At

¥ ="+ o 24 (55yt — 59y; " + 37y; 9y;3) (3.18a)
At - -

y' ="+ o (Qytlp + 19y? — by; Ty Yy 2) (3.18D)

where the superscripts denote the number of time-steps with respect to the present
instant, 1p being the predicted value and 1 the corrected one. In the context of the
present evolution equations, the predicted values of { and v are evaluated first. The
evolution rates ¢;” and v;” are then calculated from (3.15a) on the basis of the cal-
culated ¢'? and v'P. Since evolution rates from three previous time-steps are used in
the ABM procedure, the explicit Euler scheme is used for a few time-steps at the start
of the computation. For this purpose, a much smaller time-step (four times smaller)
is used than the intended time-step to be eventually used with the ABM scheme. We
note that the truncation error is of O (A¢%) in the Euler scheme while that of the ABM
scheme is O (At®).

3.3 The choice of step size

The guidelines to choose step sizes are as follows. The spatial step Az is chosen first
based on some important physical length scale of the problem. The time step At then
follows by considering a Courant-Friedrichs-Lewy (CFL) condition: cAt < Az, or, for
restricted depth,

CFL = \/_——<1 . (3.19)

The value of At depends on the integration method. We now take
Euler CFL < 0.5

ABM CFL<0.8.

We use ABM integration more or less standardly.

For problems of solitary waves, the grid size may be determined on the basis of the
water depth h. An indicative value of Az/h for moderately high solitary waves is 1/5.
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The step-size may also be based on the width of the solitary wave. With

C(z,t) = H sech? (”’ Z”t) (3.20)

the width A can be estimated from?.

3
A= ,/g%. (3.21)

As an example, for the case of a solitary wave with height H = 4 m progressing on
water of depth 2 = 10 m, we have A = 18.3 m. Choosing Az = 2 m, we then have 9
mesh points over the width of the solitary wave. Correspondingly, At < 0.16 s.

For periodic waves the smallest wave length of interest should be considered. Consider,
for example, a submerged bar with the water depth changing from 0.40 m at the
toe to 0.10 m at the top and an incident train of period 2.02 s. Usually the third-
harmonic component, which is generated through nonlinearity, is of importance for
such problems. We have the following wave lengths A; for the four harmonics with
period T; = T'/4 at 0.10 m and 0.40 m depth.

T; 2.02 1.01 0.67 0.505

h
0.40 3.74 149 070 039
0.10 1.97 093 0.56 0.37

Table 3.1: Wave lengths ); for the harmonics T; = T'/¢, i =1,...,4.

With Az = 0.10 m we have 5 points per wave length for the third harmonic at the
shallower part. A sensitivity test shows the difference between choices of Az = 0.1
m and Az = 0.05 m. For the smaller Az the representation of the smaller features
seems to be more accurate than for the larger Az. The general picture of the two wave
profiles is the same in both cases.

2For solitary waves as resulting from different one-way equations, the precise form of the width A
and the celerity ¢ may differ, but these differences are not large (Dingemans, 1994b, section 6.3)
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4 Spectral approach

In the present chapter, we discuss spectral or pseudo-spectral solution of the nonlinear
water wave propagation based on the explicit Hamiltonian model. One of the basic
ideas behind a spectral solution is to improve the numerical efficiency of the solution by
achieving higher spatial resolution with a few spectral parameters. We had seen that
using a Fourier series over a finite span was not feasible in connection with the present
Hamiltonian formulations. On the other hand, the constraint of finite energy and the
restriction of the initially specified disturbance to finite span points to the sinc-series
as a natural choice. We discuss several possibilities of the numerical method using the
sinc approximation.

4.1 Method A: z-space

We recall from section 3.1 that the (regularised) evolution equations including the
short-wave nonlinearity ¢ are:

G = %d—i— [—W [v(1 + &)n] (z) + /—O; dz'\(z/, w)iogtanh |f(z,2)||. (4.1a)
v = —gCs + [%Bl] /_xoo da’ [v(1 + &)nce] + B1 [v(1 + €)ny] . (4.1b)

In the simplest adoption of sinc-series, ((¢) and v(z) in (4.1a) and (4.1b) can be
approximated through the cardinal series:

o) = Y G(®sine (1), (4.22)
7=0

o(z,t) = ;vj(t)sinc<w;::j>. (4.2b)

Further simplification is achieved by recognising that the function
A(z',z)logtanh | f(z,2")| belongs to the Paley-Wiener class of B(Az) (Lund and Bow-
ers, 1992; chapter 2) and hence can be expressed by the sinc-series, .e.

Mz', z)log tanh |f(z,a")| = i/\j(w)sinc <T/A_a;cj) (4.3)

5=0

where
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X;(a’) = 0, [¢v=jAxz]

LA+ enl(=) , A
(”(J) - m”(m)) logtanh|f(z,z;)| [= # jAz]. (4.4)

[l

Introducing the expression (4.3) into (4.1a) and using the integral relation (e.g., Lund
and Bowers, 1992; p25)

©0 Iy
/ sinc (7; A ay) da' = Az (4.5)

oo 2

yields the following simplified evolution equation for surface elevation:

(=L [—w[v(l +e)n)(z) + Aw i&*} : (4.6)

T dx =

The replacement of (4.1a) through (4.6) is in fact the same as the trapezoidal integra-
tion. However, the formalism of the sinc series under the assumption that the function
A(z',z)log tanh | f(z,2")| belongs to the Paley-Wiener class of B(Az) gives justification
to the exactness of (4.6).

In the integral over (—oo, z] in (4.1b) we note that the combined function v(1 + &)n¢;
can be approximated through the orthogonal sinc series since v,(; € B(Az) while
(14 ¢) and 5 are bounded (O(1)). Introducing the series

o1+ EGua’) = Solo(1 + piine (L) (@7)

=0

into (4.1b) results in the following simplified evolution equation for v:

ve = —gC + B1[v(1+ e)nd]
d n @ ! .
+ [ B ot + el [ da'sine (S (4.8)

J=0

Note that for = kAz and z; = jAx the integral

x I o, o ! . T ! ..
de' s <:v :z:]> _ /Jd" (:c—:z:J> / /. (a:—:L]
/_Oo 2’ sinc s - 2’ sinc ~ 4+ . dz’ sinc e

Az Az (k-7 ging
= 2t g% (4.9)

is time invariant and can be easily computed.
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4.2 Method A: y-space

One of the disadvantages of the method using (4.6) is associated with the evaluation
of the integral function f(z,z;) appearing in Aj. This can be avoided by using the
evolution equations in x-space (Radder, 1992) given by:

1
m = ;/ dxv(X')logtanh Ix — x| (4.10a)
.. D1 ! YL
¢ = —g¢ / dx’ / Ay V-~ (4.10Db)

Under the assumption that the short-wave nonlinearity £ = 0, we have

Bi = —~, and © -, (4.11)

Expressing v(x) in sinc-series in the uniform y-grid, the evolution equations become

mo= Zv*[“ (4.12a)
¢ = —g( - —ZD* () (4.12b)
7=0 k=0

where v} is the value of v at x; = jAx and

o] /
F(x) = l/ dy’ sinc (X Ax >1ogtanh Ix - x|, (4.13a)
b - X =%\ o (X' — Xk)
Ig,k(X) = / dx' / smh |X ] sinc ( Ax ) sinc ( Ax
(4.13D)

The integrals I ;(X) and I b k(X) are time-independent and can be accurately evaluated.
Note, however, that the evolutlon rates m and ¢ are the Fulerian evolution rates and
do not therefore correspond to the evolution rates at a fixed x-grid point. This means
that a correspondence between the uniform y-grid and the z-grid has to be made at
each time step unless the evolution rates of m and ¢ are derived at fixed x-grid points.

4.2.1 Evolution rate at fixed x-grids

Let z% = @(x;). The evolution rate at a fixed x; is then
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a»¢) dyp da

( ) 8:1; dt (4.14)

where 04)/0t is the Eulerian evolution rate of 9 (mass m or potential ¢). The convective
term can be expressed entirely in the y-space, .e.;

oy _opox _ 1%
9x = Bx 0w 70y (4.152)

and

dzt 4 i de d %

@y _ e de , _ d _ |

dt  dt /_oo X~ @ /_ _éx /_ G (4.15b)
4.3 Method B

In this procedure, one begins with the expression for the Hamiltonian

H= / —g(zdm— —/ dw/ dz v(’u)v(:c’)logtanh

(4.16)

Using the same sinc series (4.2a)-(4.2b), the Hamiltonian H can be expressed as

1 n 1 " n )
H=59> (GAw—o-3 % viwE(j,k,n) (4.17)
j=0

where

—_— I—
E(j,k,n) = / da:/ da’ [smc <wA;J) sinc (x A;”“) .

log tanh H (4.18)

The basic evolution equations are then obtained from

1 OH 1 OH

M= A dn, T TRAwag, (4.19)
Hence, from (4.17) and (4.19) one has

‘ 1 .

e = %:vjE(y,p,n) : (4.20a)

delft hydraulics 23




Hamiltonian formulation H782 May 1994

delft hydraulics

_— _ 1 o2
Op = —ng'*‘QW(Az);zk:”J”kanE(Jak,ﬁ)- (4.20D)

Basic to the efficiency of this approach is a smart evaluation of the integral related to
the kinetic energy using the property of the sinc and logtanh functions.

4.4 Method C

Radder (1993a, appendix A) has shown that 7, the kinetic energy part of the total
Hamiltonian, can be expressed in the form:

T =3 > vjul(li - kl; Ax) (4.21)
3=0 k=0
where
Ay = Ax 1 tanh(TA/Ax) :
1 - K Ax) = = /Od/\ ATy coslai — B (4.222)

and v} denotes v at the j-th point along the equidistant x grid or in other words,

o(x) = 3 of sine (%) . (4.22b)

Note that I(]j — k|; Ax) is exact (evaluated exactly on the x-space without using any
approximate transformation to z-space) and needs to be evaluated on the x-grid once
at the start of the computation. The disadvantages of using (4.22a), however, become
apparent if the evolution equations are looked at.

4.4.1 Evolution equation: 7

Since the pseudo-spectral variables v’s are not canonical, the evolution rates cannot
be expressed as simple functional derivatives of the Hamiltonian in terms of v}’s; v.e.,
the equation

e = T o Sl pl; Ax) (4.23)

Mp = _A_X(S'u;‘

is not valid. On the other hand, the evolution equation for mass (consequently,
surface elevation) should be determined from

i, = LM 1~ 0By
P Awdv, Az ; 5'0}‘6’01,'

(4.24)

The term (5'0;‘ / 6vp) can be evaluated from the expression
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2t — a2
vf = v(ak) =) vgsinc ( ]Afli k) (4.25)
k

where CEg denotes the 2-coordinate of the j-th grid point on the x-space.
4.4.2 Evolution equation: ¢

The expression

V= %g > GAx (4.26)

is exact for the potential energy V where (; denotes the surface elevation from the still
water level at the j-th point along the uniform z—grid. Using (4.26) and (4.21) the
evolution equation for ¢, becomes

. 1 . 0 4«
Pp = —ng+A—$EZI(IJ _k|§AX)a_vaj'vk- (4.27)

We have treated the integral I(|j — k|; Ax) in (4.27) invariant (on uniform x-grid)
leaving the discrete v}’s to respond to increments in surface elevation {; (on uniform
z—grid). The derivative 8(v}v})/0(, can be computed in the following way.

Let a:"; denote the 7—th point on a nonuniformly distributed x-grid such that {L; = z(x;)
and Aw§ represent the shift in m§ due to A(p. Av;‘(Cp), the increment in v} due to Agy,
is then given by

* (9’0
Av%((y) = v(a,g + Amﬁ) - v(mf]) = Am;%(mj) 4

Thus,

o . . ov, , Az ov, , Azt
vt = lim (v} (2})——L + vf—(ab)——k
9Cp 1 F T ALp—0 L@w( J)Agp T 5 Al
The order to which depth variation and surface nonlinearity are explicitly accounted
for in the model depends on the form of the approximation of the actual Woods

transformation. In first instance, we shall use the relation g—g = 7 which gives
X
i
z(x) = 2(xo0) + / ’ ndy. An integral expression for dz?/d(, then results:
X
[mt(j) 0 On dx % Oy 1 z /w§ 1sinc (a:—:vp) d (4.28)
m—— = _ = —_— - = - €T, .
¢y x 0C z§ Cp n wf 7 Az
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4.5 Summary

The procedure outlined in Method A eliminates a significant amount of numerical
computation by utilising the properties of sinc functions. Besides, one expects that
smaller number of grid points are required than that in the previous time-domain
model to achieve the same degree of accuracy. The numerical efficiency of Method B
depends largely on how the integral E(j,%,7) can be further simplified.

The procedure used in Method C has one distinct advantage from the physical point of
view: the evolution equations are kept exact, the approximation being introduced only
through the transformation from 2 to x and vice versa. This allows easier modification
of the numerical code to incorporate higher-order formulations. The disadvantage is
related to the fact that the numerical operations are distributed over uniform z-grid
and x-grid involving continuous interpolation from one to another.
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5  Numerical method using sinc-series

In the previous chapter we discussed possible formulations based on sinc method of
which we set out the reasons for the choice of the evolution equations in the z-space
of Method A (repeated here for convenience):

G = %ad; li—ﬂ[v(l +e)nl(z) + Amjg())\;{l , (5.1)
vy = —gC+ Bi[v(1+ e)nli]
d n x ; ! _ 2.
+ [y Sl + [ dotsine (S5 (5.2)

with A* defined in (4.4). Note that the choice of the sinc-series for the global ap-
proximation requires the grid points to be uniformly spaced and for 2, = kA2 and
@; = jAx, one has

T, (:v’—a:j)_ézg Ag [mk=d) sin0d0
/_oo da' sinc A = + A 5 . (5.3)

5.1 Numerical procedure

The numerical procedure proceeds in two steps: computation of the evolution rates
and the time integration of the evolution. There are two available options in the code
for carrying out the time integration: a first order explicit method (Euler) and a fourth
order predictive-corrective method (ABM). It has been seen from previous computa-
tions using the time-domain model that much larger time steps can be successfully
used while using the ABM method for the time integration of the evolution rates. The
time-integration procedure is the same in both the models.

Before describing some specific aspects of the computation of the evolution rate of sur-
face elevation, we look at two main numerical operations, involved in the computation

of the evolution equations. These are integration of a function over an interval and the
estimation of the derivative at a nodal point.

5.1.1 Integration procedure
Consider the evaluation of

Tip1
I, = / o(2)de (5.4)

i
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where z; is the z-coordinate of the grid point ¢ and g is an arbitrary regular function. A
Gauss-quadrature procedure is implemented in order that this integral can be evaluated
accurately for relatively large 6z. This means that the function value needs to be
known at the integration points in the interval [z;, z;41]. Estimation of these values
is done through a higher-order approximation based on shape-function method (see
Zienkiewicz and Morgan, 1983 for the definition of shape functions). In terms of the
shape functions N;(u)’s defined in parameter p, an approximation to the function g(z)
is expressed in the form

1=2m

g(e()) = Y 9(@(i—mtn)Ni(p) (5.5)
=1

One can now rewrite the integral I, as

l=2m w@it1)

=) g(i—m+l)/
1=1 ﬁ‘( )

dz

N Ni(p) d#du- (5.6)
Note that the order of the approximation is (2m — 1) and the approximation of the
function over @; < @ < z;41 is based on the discrete values of the function at nodes
surrounding the interval(i.e., m number of nodes on either side of the interval are
used for the approximation). In a general way for both uniform and nonuniform grids
mapping of & to u can take place in a similar way (known as ‘isoparametric’ approach)
in the form

[=2m
e(1) = Y @imminyNilp) - (5.7)
=1

A simpler transformation valid only for uniformly spaced grids is

(1) = ooy + A 1) (5.)

It is convenient to express the integral (5.6) over the interval [-1,1] for the Gauss-qua-
drature integrations. This is done by another transformation, defined by

= ) 4 ML M) 6 gy (5.9

where

1
o2m—1"

wlei) = —5—,  eg) = (5.10)

Finally, one has

I, = G(i—m+l / Ny——-d¢ = Gi—mi i ' (5.11
! =1 (tmm+) —1 dpdg =1

where
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dz d
I = /N,d d’g (5.12)

I;, which is computed through Gauss-quadrature, is computed only once at the start
of the computation.

5.1.2 Computation of the derivative

The derivative of a function at a grid point 7 is computed by interpolation from its
values at the adjacent grid points from the relation:

[=m
(@)=Y wfGE+10) (5.13)

[=—m

where the coefficients w;’s are independent of 7 (though dependent on Az) for uniform
grids. The order of interpolation is 2m (based on 2m + 1 nodes).

5.1.3 Evolution rates

Computation of the evolution rate of v from (5.2) is rather straight-forward using the
integration and derivative procedures just described. Computation of the evolution
rate of surface elevation needs some specific considerations.

Computation of the term A} (see Eq. (4.4)) involves the expression

log tanh |f(ex, ¢;)| = logt h/wk d 5.14)
og tan zg,z;)| = logtan — .
& S & o (1+e)m (
The integral argument of logtanh is evaluated through
*:  da
—— = |F}, - F; 5.15
L gy = b (5.15)
where
¢ dx
F = —_ [ =1,2,:" .
l o (1 +5)77’ y &y )y T (5 16)

It is further true that the value of A} decreases rapidly away from the point ¢ due to
the logtanh operator. It is possible therefore to limit the sum to smaller number of

nodes, e.g.,
j=n .—2+p
DN YN (5.17)
3=0 j=i-p
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-2. -1, 0. 1. 2.
Figure 5.1: The function log tanh(z)

where the minimum value of (¢ — p) and the maximum value of (¢ 4 p) are limited by
the computational grid points used. The index p at a grid-point 1 is calculated by using
a simple criterion based on the local water depth 7;:

pAz

> Ry (5.18)

/o
where R; is an user specified limit. The value of R; should never be lower than 3. It
is, however, safer to use a somewhat larger value (say around 10). The behaviour of
the function logtanh(z) is shown in Fig. 5.1, where it has to be understood that at
@ = 0 an asymptote is present. Here the graph is such that we stay clear from = = 0
by 0.005 units.

5.1.4 End treatment

The basic formulations which constitute the numerical model here are based on an
infinite span. The validity of a finite computational length rests on the fact that the
entire wave action is contained well within the finite span. This is difficult to meet in
practice if the computations are to be run for a long time of wave propagation. A proper
physical treatment of this problem, though rather important, is not yet undertaken.
In the following, numerical aspects of the ‘end treatment’ are briefly described.

The procedures used for computing the integrals and derivatives as described earlier
assume that the required number of grid points are available on either side (of an
interval or a grid-point) and are therefore not strictly valid at the ends. This means
that the procedures need to be modified at the ends. An attractive alternative is
to define the necessary number of artificial grid-points to be able to use the same
procedures for all the real nodes. Presently, the function value f at an artificial grid-
point 2* is defined through the simple relation:

f(=®) = f(=°) (5.19)

where 2° is the closest real grid-point. The artificial grid-points are also assumed to be
equidistant in the same manner as the real grid points. Though the simple form (5.19)
can be modified, it is not considereded really important with the assumption that the
wave action should be non-significant near the ends.
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5.2 The choice of step size

The choice of the spatial step size has already been discussed on physical grounds in
section 3.3. In the numerical code ‘sinctm’, the step-size depends on the adequacy of
the global approximation through the sinc-series and further on the order of interpola-
tion used for the evaluation of the derivatives and the local integrals. This feature can
be illustrated by referring to the Figure 5.2. The top left figure shows a clear difference

x=17.3m, [-] dx=10cm, [--] dx=5cm

(-1 (4,5); [--] (4,5]

(-1 (6,735 [--]1 (4,5]

2.0 L n

1o [f /\ /\ : /\ /\

0 Py — VN S S
-1.0 | \ 7 \ N \/ \/
-2.0 [, i ‘\I’ | | 1 \\Il ! i i 1 I 1 i

meds .

2.0 L

1.0 N

.0 _ u _
-1.0 , w3
2.0 f |

25.0 26.0 27.0 28.0 29.0 25.0 26.0 27.0 28.0 29.0

Figure 5.2: Comparison of computed and measured surface elevation at z = 17.3m on the
back-slope of a bar (Fig. 7.27). The parameters n and m in (n,m) in the figure above denote
the number of grid points used locally for the purpose of computing integration and derivative
respectively. The dotted line represents the computed results with Az = bem. The solid line
represents the computed results with Az = 10cm except in the bottom right where it shows
the measured value in an experiment.

in the computed results with the two step-sizes. It is shown in the top right figure
that this difference is made negligibly small by using a higher order local interpolation
with the larger step-size. This indicates that the larger step-size is nearly sufficient
for achieving an accurate global representation through the sinc-series. This is further
confirmed in the bottom left figure where decreasing the step-size while still using the
higher order local interpolation results in a much smaller change. It is also clear that
a decrease in the step-size with the same order of interpolation or an increase in the
order of interpolation with the same step-size has the desired effect of reproducing
the measurement more accurately. The ratio of the time-step to the spatial step-size
used during these computations is held constant. This numerical experiment strongly
suggests that the required step-size could be significantly reduced by using a higher or-
der local interpolation provided sufficiently accurate global approximation is achieved
through the sinc-series.
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6  The programs

6.1 The main programs

We have two main programs hamilT and sinctm and some service programs to gener-
ate input and to analyse output. With hamilT and sinctm input files with the fixed
names hamil.inp and sinctm.inp are required together with files *.ham in which
the initial wave profile and the velocity potential at the free surface are given. The
*.,ham files are generated with the program solphi for the generation of a solitary
wave according to Tanaka’s (1986) method or with perphi for the case of a train of
period waves. Output of hamilT and sinctm consists of files *.out in which at se-
lected times the { and ¢ are given as function of z, files *.tiz in which time series
of ( at selected stations are contained, files *.tip with analogous time series for ¢,
a file *.ene in which the integral measures for mass, kinetic and potential and total
energy are contained for each time step. Lastly a *.log file is generated in which some
administration is contained.

An example of a file hamil.inp is given below for the computation p3.

p3.ham
p3.out
p3.ene
p3.tiz
p3.tip
p3.log
p3.chk
0

2

Notice that the file p3.ham should exist (it is input). The file names are free, but it is
recommended to use the extensions proposed so that the meaning is clear. The given
sequence of file names is obligatory. The parameters 0 and 2 stand for icleps denoting
the way nonlinearity is taken into account and the procedure for time integration
respectively. For the integration method one may choose either Euler’s integration
(choice 1) or Adams-Bashford-Moulten (ABM) integration method (choice 2). The
meaning of icleps is as follows.

We consider the following cases:

1
icleps=0 : ¢ = 0 and By = —

1
icleps=1: e=—— (7]3, + 777]3,3,> and Bj according to (2.50)

3
. 1 1
1cleps:2 P E= —g (772. + 7777333;) and B1 = m.
Instabilities have been found to develop very socon if the parameter ‘icleps’ is taken to

be 1.

In fact, we almost always use ABM’s integration method and the option ‘icleps = 0.
For a computation with name p3 the following files are defined:
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p3.ham This is the main input file for the computation. The initial value for ¢ and
the potential at the free surface ¢ are given, together with the grid z/h and
the depth h. Also parameters such as At, Az, the number of time steps and
the number of x-steps are given. Because this file is difficult to compose, it is
made by a separate program, in which the initial condition is defined together
with the bottom geometry. For the different types of initial conditions we have
separate programs: one for solitary waves (solphi.for) and one for periodic
waves (perphi.for).

p3.out In this file the requested output is given for the wanted time steps. At time
t =0 and t = nt * At, 2/h, ¢ and ¢ are written for all mesh-points 2 in this
file. First a line is written with "TIME STEP = --- Dt = ..., Such output is
not written for each time step but after nwrt * At, where nwrt is given in the
input. For analysis purposes, the resulting long file p3.out can be split up by
using a separate program (trans.for), which is also delivered. The *.out file is
the main output file.

p3.ene In this file the mass, kinetic, potential and total energy density is given for
each time step.

p3.tiz Time signals of { are given at pre-selected stations.

p3.tip Time signals of ¢ are given at pre-selected stations (the same as those for ().

p3.log A file in which the computed time step is logged. Also the CPU time of the
computation is given.

p3.chk A file which served as a check on some numerical tests. The use of this file
is ‘commented out’ now, but may be needed later to test variations in the
numerical scheme. '

For the model sinctm some further input parameters are needed. An example of these

is

4 5 8 / node appr., node derivation, integration
1 10.0 / logtanh truncation yes, distance (x0-xh)/h
0 1 10 301 / fixed grid, number of gridpoints, number dt,

/ last gridpoint

The last line is for a moving grid, which has also been made possible, but is still under
investigation. The same input file .inp which is correct for sinctm may also be used
for the program hamilT.

6.2 The input-generating programs solphi and perphi

In order to make the *.ham file, the program solphi.for for solitary-wave input and
the program perphi.for for periodic wave input are available. In each of the programs
the bottom-geometry is also organised. Only special forms of 1D-bottom geometries
can be generated, but they are quite general. A bar can be defined in the following way.
The region in z is divided in three parts: before, above, and behind the bar: wg, wq
and wy. The corresponding water depths are given by hg,hy and he. Two (mean)
bottom slopes have to be given also. The depth A as function of 2 is given in the same
way as in Dingemans et al. (1991):
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—h(z) = ho + %(1 + tanh ag) Ahy + % (1+ tanh ay) A, (6.1)
with

o= —==(@~w;), j=1,2 (6.2)

where Ah; is the change in depth over the first region of inhomogeneity and sy is the
bottom slope in the middle (in absolute value the maximum one). The length of the
computational domain is given in m by w; + we + w3 and Az is given in the input. For
the time At is given together with the number of time-steps, nt and the value of nwrt.
For solphi an example of an input file is given below. In this case we have a horizontal
bottom. In the example for perphi a shelf is defined.

#
# Inputfile voor berekeningen nov 1992
# 2 solitary waves, opposing; here the first one

#
# Time parameters : dt , Nt , Ntwrt (1 real,2 integers)
0.1, 600 , 5
#
#Width foreland (m) , Width bar (m) , Width hinterland (m) (format : 3 reals)
1000.0 , 0.0 , 0.0
#Increment x , Nr. of segments , (1 real,l integer,one should be zero !)
2.0 , 0
#Depth foreland (m) , Deptht bar (m) , Depth hinterland (3 positive reals)
10.0 , 10.0 , 10.0
#Steepness 1st , 2nd slope , (2 reals , uphill = + , downhill = - )
0.0 s 0.0
#Amplitude (m) ,Maximum nr. of iterations (1 real,l integer)
3. s 50
#Plaats van top van solitaire golf in m
700.0
2
350.0 650.0

Notice that the solitary wave so computed with solphi travels to the right (i.e., in
the direction of increasing ). For the case of two opposing solitary waves of equal
amplitude, the program solphi is run twice with different locations @o for the crest of
the solitary wave. For the wave traveling in the negative z—direction, the value of ¢
in the .ham file should change. With the program hamcom.for the values of ¢ in the
two files are subtracted and the  values are added, while the rest remains unchanged.
The program hamcom.for is also delivered. For the case that the waves travel in the
same (z+) direction, both the ¢ and the ¢ values in both files have to be added. (This
obvious modification of hamcom is given as hamcomp.for.)

6.3 Periodic wave input

For the periodic input we use a kind of wave group composed of a number of frequencies,
amplitudes and phases. The method in which a time signal of bounded variation can
be defined is given in this section.
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6.3.1 Introduction

Initially the evolution equations based on the Hamiltonian approach have been solved
for the case that the initial value has been given by a solitary wave. The profile of this
solitary wave has been computed according to Tanaka’s (1986) method. We have an
initial-value problem and for the computation of periodic waves in the present setting
we have to comply with the initial-value problem and therefore we cannot let the wave
profile coming in through the left-hand boundary so as to simulate a wave maker. We
have to specify the initial wave form in @ and this initial form has to be of bounded
variation. '

As a wave profile we presently have

((z,t) = zaj cosy; with x;(z,t) =kjz —w;t+9;. (6.3)
j=1

By taking the frequencies close together we have a group. As we have to have a signal
of bounded variation, we should have { — 0 for # — Foo. This may be achieved by
applying a taper function of the signal, i.e., we consider

77((12,0) = f(.’E)C(CE,O) > (64)

with f(z) = 1 near the centre of the group and f(z) — 0 for # — £oo and consider

“the evolution of 7.

For the free surface potential ¢(z,t) it follows from the linear theory that

a;g cosh[k(z + h)]

®;(z,2,t) = w;  coshbh sin x; . (6.5)

We now define the free surface potential ¢ at z = 0, which is consistent with linear
theory?:

Bo,t) = 8(w,0,8) = L siny; . (6.6)
J

Because of the linearity, the same tapering function as used for ¢ is now applied on ¢
and we get ¢ as

p(z,t) = f(m)¢(%,t) . (6‘7)
6.3.2 The tapervfunction f(z)

As taper functions for the left and right-hand sides we take

1t is easily possible to define ¢ at z = 5, but this is deemed not td be necessary.
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fi(e) = % + %tanh [be (& — o)
(69)

fr(z) =

tanh [b, (@ — z,)]

DO | =
DO |

Notice that as the argument of the tanh function is dimensionless and as & has the

dimension of m, the coefficients b, and b, have dimension m~'. The domain [z, 2,]

depends on the signal used and the parameters by and b, control the effective width
of the transition. As it is known that tanh7 = .9963 = 1, we should have at least
be (@ — @) + b, (z, — ) > 2. With the obvious choice by, = b, = b this becomes

b(w, —zg) > 21 . (6.9)

Choosing a transition width L,, with the proviso that 2L,, < (&, — ), an initial choice
for the value b follows as

/Ly, . (6.10)
The length of a wave group

The sum of two waves is given as

(=C(+4{=a1cosx1 + agcosxs = acos(x — f) , (6.11)
where the x; have been given in (6.3), x is given as

x(z,t) = kz — wt (6.12)
and

itk and =192 (6.13)

k 2 2

This signal may be written as
((@,t) = alw,2) cos (x - ) , (6.14)

where ¢ and g are given by

a® = i+ a3+ 2a1ay cos (1 — Q)
(6.15)
tanf = a1 sin q + agsin g
an - @y cos 1 + ag cos )y
with
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Ql =X1—X and ‘Q’Z =X2— X (6.16)
so that
91—92:(kl—-kz)fv—(wl——w2)t+191—z92. (617)

The variation in « of the squared amplitude a? occurs with cos[(k1 — k2) ] so that the
variation in @ occurs with cos (% (ky — kg)) and the group length L, is thus®

™
Ly= ——. 6.18
g lkl_k2| ( )

For the tapering we should thus have preferably

T
. _ _ 1
(2, —2g) > Ly o — Foal (6.19)

It should be stressed that it is not necessary to apply the tapering over one wave group,
we also could have a number of groups and the tapering applied only at the outside
groups. However, it should be realised that the initial wave profile should fit as a
whole on a horizontal part of the bottom. With a long initial profile the computation
necessarily takes more computer time in order to be able to see the same features of
evolution of the waves. The computational domain is necessarily larger.

6.3.3 Example of input file

An example of an input-file for perphi (for the case p3) is given below.

#

# Inputfile voor berekeningen perphi

#

# Time parameters : dt , Nt , Ntwrt (1 real,2 integers)
it

.1 500 5

#Depth foreland (m) , Depth bar (m) , Depth hinterland (3 positive reals)
0.50 0.25 0.25

#Slope ist ,  2nd slope , (2 reals , uphill = + , downhill = - )
#
.05 0.
#Width foreland (m) , Width bar (m) , Width hinterland (m) (format : 3 reals)
60. 60. 0.0
# gravity

9.81

# no. of components

2A simplification is obtained for equal phase shifts, ¥ = ¥3; then 3 = —, and for tan g is

obtained tan g = %%‘-_F_SL tan €2 . A further simplification is obtained when the amplitudes are equal,
1 2
a1 = az. Then f = 0 and a®(z,t) = 243 [1 4 cos (U — Q)] = 443 cos® {% (fu — Qz)}, and thus,

a(z,t) = 2a1 cos (% (k1 — k2)z — %(wl - wz)t> .
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# frequencies (in Hz)

0.48 0.39

# amplitude (dimensional, in m)
0.054 0.012

# phases (rad.)

0.0 0.0

# dinterval (dim) for damping: xL and xr, and x0
8.0 32.0 20.

# rate(6/[L_d]) of damping

0.4 0.4

# dx (in m)

0.6

#Aantal uitvoerstations (max 6)

6

#Plaatsen (in m)

30.0 40.0 65.0 80.0 95.0 110.0

delft hydraulics 38




Hamiltonian formulation ‘ H782 May 1994

7  Numerical examples

Some numerical examples will be discussed in this chapter. Both the time-domain
model, hamilT and the sinc-based spectral model sinctm are used. The numerical
examples are carried out either to show the possibilities of the programs or to estimate
the accuracy of the computations. The problems considered in the present chapter
correspond to non-breaking waves leaving the comments on breaking waves to the next
chapter,

7.1 Solitary waves

To meet the purposes stated above we start with computing the evolution of a solitary
wave over a horizontal bottom. With the help of the program solphi a free surface
elevation ((z) and the corresponding free surface velocity potential ¢(2) are computed,
given the height of the wave. The profile so computed is the exact solitary wave profile
determined according to a method by Tanaka (1986). In fact, a modification of Tanaka’s
program has been used. Presently the inversion of a matrix has been carried out using
a routine from the NAG library, which is available for MSDOS. It is the objective to
use another routine (e.g., from Numerical Recipes, see Press et al., 1992) so that the
program becomes portable.

A single solitary wave

As Tanaka’s profile gives the exact solitary wave solution, and our formulation is an
approximate one, the initial solitary wave profile is not expected to remain conserved
upon propagation. The computed example with H/h = 0.4 and h = 10 m shows what
kind of oscillatory tail develops. The computed profiles at time ¢t = 0, ¢ = 30 and
t = 60 s are shown in Figure 7.1 for hamilT and in Figure 7.2 for sinctm. These
computations are performed with ¢ = 0 and the ABM integration method has been
used. Figure 7.3 shows that the results with both programs are indeed identically.

.4 T T T T T T T T T T
¢ | " i
.3 n
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.1 'I \‘ \
0 \J\JI \\ :Yl\v.‘\v:\"rf\\—‘—"
-1 ) ] ] 1 ) 1 ' 1 ] 1 )
0. 20. 40, 60. 80. 100, 120.
x/h

Figure 7.1: Solitary wave with H/h = 0.4, h = 10m, hamilT; ¢ = 0, 30 and 60 s.

As the inclusion of some more nonlinear terms is possible in the programs, the pa-
rameter icleps has been set equal to 2 so that is taken for By the expression By =
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Figure 7.2: Solitary wave with H/h = 0.4, h = 10m, sinctm; ¢ = 0, 30 and 60 s.
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Figure 7.3: Solitary wave with H/h = 0.4, h = 10m, for both hamilT and sinctm; ¢t = 0, 30
and 60 s.

1/ [(1 + £)n?] and the expression for ¢ follows from (2.51). The result is given in Fig-
ure 7.4. The difference with the case ¢ = 0 is only very slight. That the case icleps
= 1 in which ¢ is given by (2.51) and B; follows from the full expression (2.50) leads
to rapid development of instabilities is seen in Figure 7.5. Within 13 time steps of
At = 0.05s the program stops.
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Figure 7.4: Solitary wave with H/h = 0.4, h = 10m, nonlinearity according to icleps = 2,
sinctm; t = 0, 30 and 60 s.

Two opposing solitary waves

The evolution of two solitary waves of equal height, but propagating in opposing di-
rection in water of constant depth is shown in Figures 7.6 - 7.16. The individual wave
height H/h is 0.3 with the depth A = 10 m, and At = 0.1 s and Az = 2 m. The ki-
netic, potential and total energy are shown as function of time step in Figure 7.17. As
could be expected beforehand, at the moment of total overlapping the resulting velo-
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¢/h

O S N W b

Figure 7.5: Solitary wave with H/h = 0.4, h = 10m, nonlinearity according to icleps = 1,
sinctm; f = 0 and 0.6 s

city equals zero and all energy is potential energy. The total energy remains constant,
except for the last time steps when the solitary waves pass through the boundaries.

.3 T T T T
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"o, 20. 40, 60. 80. 100.
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Figure 7.6: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according to
icleps = 2, hamilT, ¢t =0s

.3
¢/h

"o, 20. 40, 60. 80. 100.
x/h

Figure 7.7: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according to
icleps = 2, hamilT, ¢ =10 s
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Figure 7.8: Two opposing solitary waves with H/h = 0.3, h = 10m, nonhnearlty according to
icleps = 2, hamilT, t =15 s
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Figure 7.9: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according to
icleps = 2, hamilT, ¢ = 16.5 s
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Figure 7.10: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, ¢t = 17 s
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Figure 7.11: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, t = 17.5 s
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0. 20, 40, 60, 80. 100,
x/h

Figure 7.12: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, t =18 s
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Figure 7.13: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, time = 20 s
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Figure 7.14: Two opposing solitary waves with H/h = 0.3, A = 10 m, nonlinearity according
to icleps = 2, hamilT, { = 27.5 s
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Figure 7.15: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, ¢ = 50 s

delft hydraulics 43




Hamiltonian formulation H782 May 1994

¢h

0. 20. 40. 60. 80. 100.
x/h

Figure 7.16: Two opposing solitary waves with H/h = 0.3, h = 10 m, nonlinearity according
to icleps = 2, hamilT, ¢t = 59.5 s
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Figure 7.17: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according
to icleps = 2, hamilT, kinetic, potential and total energy as function of time step
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7.2 Periodic waves

As we have an initial value problem, at most a finite wave train is permitted. The whole
of the wave train has to be contained in the computational domain at time ¢ = 0.

Wave group

We fist give some results of the progress of a (linear) wave group on a shelf-like bottom
geometry. We show results of computation p3, of which the input has been given in
section 6.3.3. A biharmonic signal is considered with frequencies 0.39 and 0.48 Hz and
amplitudes of 1.2 cm and 5.4 cm. As we need zeroes at both ends the artificial damping
method has been applied. In this way we get an initial wave profile as shown in Figure
7.18. Notice that because this is a linear wave group we have symmetry around z = 0.
Upon evolution with the nonlinear model (with ¢ = 0), a recurrent behaviour is seen to
occur (Figs. 7.19 - 7.22), as is also the case with, e.g., Boussinesq-type of programs in
which a sinusoidal wave profile at the boundary is used. On the shelf larger nonlinear
behaviour is seen to develop, see Figures 7.23 - 7.26 for the time steps 750, 1125, 1200
and 2175.
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Figure 7.22: Wave group p3, ¢t = 300A¢
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Figure 7.24: Wave group p3, t = 1125A¢
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7.3 Confrontation with measurements

The Hamiltonian model has been applied to the problem of wave propagation over an
underwater bar. The bottom geometry and the location of the wave gages are indicated
in Figure 7.27.
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Figure 7.27: The bottom geometry and the location of the wave gauges.

In this case the incoming wave consists of a sinusoidal wave with wave height H =1
cm and wave period T = 2.02 s. This is one of the cases measured by Battjes and Beji
(1993), and repeated on a linear scale of 0.5 (i.e., the initial depth equals 80 cm instead
of 40 cm) by Klopman. The measurements of Klopman are used because of the active
wave absorption and the compensation of bound long waves; two important processes
which have not been accounted for in the measurements of Battjes and Beji. A further
description of the measurements is given in Dingemans (1994a). Here we consider the
measurement condition A.

It is not possible at the moment to let waves enter the region through the left-hand
boundary (a so-called boundary value problem) in the numerical Hamiltonian model.
Only the treatment of initial value problems are possible. Therefore we have to impose
a wave train and to be able to do so we have to extend the initial horizontal bottom
region leftwards. A train of sinusoidal waves is used, where at the front and the end
of the train the free surface elevation goes to zero smoothly. The specification of the
initial condition goes in the same way as before. For the numerical example shown
here the initial wave packet is a monochromatic signal, consisting of seventeen waves
(fig. 7.28). From the time records of elevation at the locations of the wave gauges we
take the midportion of the signal for comparison with the measurements. Computed
(Hamiltonian, with ¢ = 0), measured and computed (exact nonlinear) elevations are
shown in Figure 7.29 over a few wave periods.

In order to show the performance more clearly, we also plot the computed and measured

free surface profiles at 21 m together. This is done in Figure 7.30 for the Hamiltonian
model and for the boundary element program Hypan.
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Figure 7.30: Comparison of the Hamiltonian model (left) and the Boundary-Element model
(right) with the measurement at 21 m.

delft hydraulics 50




Hamiltonian formulation H782 May 1994

delft hydraulics

8  Modelling of breaking

In this chapter we consider extending the Hamiltonian model of wave propagation for
breaking waves. This amounts to simulating the effects of breaking in a model which
is strictly valid for nonbreaking waves. The motivations behind this are twofold: the
model can then be used from offshore to onshore without problems of numerical insta-
bilities if wave breaking should occur; secondly, as many breaking-related phenomena
(for example, decay in wave energy, set-up of mean water level) as possible can in
some realistic way be simulated through the model. Since the evolution equations
are approximate, the physical phenomenon of breaking may manifest in the form of
other mechanisms in the mathematical model. Two primary aspects of the simula-
tion of breaking are therefore a criterion for wave-breaking and secondly, a model for
adjusting the surface variables near the breaking region. From the point of the first mo-
tivation alone, mathematical behaviour of the evolution equations in situations where
waves do physically break need to be investigated. In fact, this aspect may necessitate
that the breaking criterion to be imposed is model-specific.

8.1 Criterion for breaking

The breaking criterion used here is based on the Jacobian of the transformation from
the physical space to the y-space. We assume breaking to occur if

ax _

X0, (8.1)

An approximate integral expression of (8.1) is given by (Dingemans and Radder, 1991)

T}(p)-l-/ooo&%—_—la%[qp-l— )+C(p—q)]=0 (8.2)
with
p(z)) = /:o %; q(2',r) = /: o % (for » > 0) (8.3)

The criterion (8.1) comes from the mathematical requirement that the transformation
remains nonsingular and well-behaved. It has been subsequently shown by Radder
(1993b) that (8.2) does indeed predict the critical steepness in a reasonable manner
in several different situations; namely deep-water Stokes waves, solitary wave, an asy-
metric wave and standing waves.

Before applying the criterion (8.2) in the numerical scheme, the question of singular
behaviour of the function 1/ [exp (7¢) — 1] at ¢ = 0 is first investigated. Secondly, a
more amenable form of the expression is discussed in connection with the numerical
scheme based on the physical space.
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8.1.1 Behaviour of the integrand near ¢ = 0

It follows through Taylor’s expansion around ¢ = 0 that

G+ 0)+ Co =) = 260) + 4 S50) + O4) (8.4)
and
exp(mq) —1=mqg+ ~—+ (ma)” q)2 4 (8.5)
leading to
Hl+)+r-0] 2 ax \
exp (7rq) 1 o (1 + %q_) d_qz(p) + O(q ) (8'6)
for small q.

8.1.2 Integral criterion in physical space

The breaking criterion (8.2) is not convenient for numerical evaluation since the evo-
lution equations are computed on uniformly spaced grids in the physical space. In
deriving an equivalent expression in the physical space special attention has to be paid
to the behaviour of the integrand near » = 0. We proceed as follows.

W)+ [ e 2 )+ (- )] =

exp (7q)
n(p) + /0 g{p—(ﬂ%t‘i [ ((p+q) - (p)]
o0 dq /
/O oxp (rq) = 1 [d—q,C(P -¢)+ a‘q‘;(?)] (8.7)

where

e+ dp e dp
qg(z,r) = / — , d(z,m)= / o (8.8)
z Ui x n

Note that each of the integrand in (8.7) near ¢ = 0 is still well-behaved through the
introduction of the term d(/dg(p). The breaking criterion in the physical space can
then be written as ‘

w)+ [ o [d<<w+T>_U(Z(j>T)%m)]+

/0 d—T/[ ((z—71)+ ((x)r)jg( )],:0 (8.9)

exp (mq’)
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Both the integrands in (8.9) have removable singularity at » = 0, z.e.,

At - fELE0)| Ao+ R E0)

n(z+r) dr nlz—r) dr
exp (mg) — 1 exp (mg’) — 1 L
1| d% d¢\?
=7 lnﬁ + (@) . (8.10)

Equivalent to the breaking criterion (8.9), a breaking index B,, given by,

B,(z) = _7[](—'1:% (8.11)

[with [---] denoting the values of the two integrals in (8.9)] may be defined requiring
B, = 1 as the criterion of breaking,.

Since the maximum contribution to the integral in (8.11) comes from the value of the
integrand near 7 = 0 (or ¢ = 0), an interpretation of the breaking index is easily
obtained from (8.10). The breaking criterion depends on both the slope and the cur-
vature of the surface. Further, it is clear after dividing (8.10) by # [as in (8.11)] that
the curvature is dominant in deeper water and slope becomes increasingly important
on shallower water.

8.2 Modification of surface evolution

The surface elevation ( is modified if the breaking index B, exceeds the limiting value
at a point . Let the modified surface elevation be (’. The modification is based on
two principles:

Breaking index The surface elevation ¢’ is such that the maximum value of the break-
ing index at a3 calculated on the basis of ¢/ is B, the allowable limit for B,
(mathematically 1).

Mass conservation The modified surface elevation does not lead to change in the
mass; i.e., the mass of water contained under the unmodified surface elevation
is maintained.

From the first requirement of breaking index, ¢’ must satisfy the equation

o] d’f‘ d ’ , B "o m
/0 W‘{@K@H)H(p—q)]——n(wb)Br (8.12)

with p and ¢ defined on the basis of {/ and from the second requirement of maintaining
the mass the condition that

/_o:o (dz = /_O:o (dz . (8.13)

The two conditions given by (8.12) and (8.13) govern the way surface elevation should
be modified at two grid points. We fix these two grid points to be the grid point where
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the breaking index exceeds its limit and the next adjacent grid in the direction of
wave propagation. A direct solution of the equations to solve for the modified surface
elevation will be immensely time consuming and may be unnecessary since the values
of elevation at only two grid points near ; are modified. A local solution of (8.12) and
(8.13) will therefore be adopted.

8.3 Modification of velocity evolution

Consider first an approach where the breaker front is stationary with respect to a
reference frame moving at speed c;. Following Banner and Phillips (1974) we impose
that

0 (1, r) _
5 (502 +0¢) =0 (8.14)

or, equivalently

(%uf + gC') = const (8.15)

where us is the tangential velocity on the free surface with respect to the moving
reference frame. Expressing (8.14) with respect to the fixed frame, we have

_ 2
%(clb_}_—;)/z) + g¢' = const (8.16)

The modified velocity v’ can now be obtained through (8.16) using the modified surface
elevation provided the speed ¢ of the breaker front is known. An estimation in the
form of ¢, = ay/gmy with 7, as the local maximum of 7 near the breaking point and «
as a constant coefficient is likely to be less than satisfactory. This is due to the question
about both the right value of the speed ¢; and the validity of (8.15).

An alternative approach suggested by Radder is to modify the velocity through an
estimation of the energy lost to the rotational field. The approach is as follows. The
exact kinematic condition on the free surface, for irrotational and rotational field as
well, gives

% ds

where v, is the velocity normal to the surface. Let Av, represent the induced rotational
velocity due to the process of breaking. The rotational velocity Aw, is then related
to the change in surface elevation so as to satisfy the kinematic free surface condition
(8.17) on the modified surface,i.e.,

¢ a¢  ds
A(t—— "a—t' — 'é;— Z{;(A'Un) .
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Expressing the rotational kinetic energy density 7, to be T, = 0.5 (A'vn)2, modification
of the surface velocity is governed by the principle that

T =T-T, (8.18)

where T is the unaltered kinetic energy density, given by,

BIRIC e

Assuming that ds/dz remains constant, we have from (8.18)

(02 4+ ) = (02 + ) — (AG)?

leading to the relation
0% =02 — 2/ AG (8.20)

Expression (8.20) is the basis for computing the modified velocity v’ at the grid points
where the surface elevation is modified.

We note from previous discussion of modification of mass flux that the change in ( is
positive at one of the points and negative at the other. This has the consequence that

the magnitude of the modified velocity is decreased at one point (the point where A(
is positive) and increased at the other as can be seen from (8.20).

8.4 Study of breaking criterion

The breaking index in the numerical code is evaluated according to the formulation
(8.11) with the value of the integrand at 7 = 0 being determined from (8.10). In the
following, we present a few numerical examples of the computation of the breaking
index.

8.4.1 \Verification of computation of breaking index

First, a few examples are selected so that the computation of the breaking index can
be compared against analytical solutions.

The first case studied is that of a Stokes fifth-order wave in deep water. The breaking
index obtained from analytical evaluation of (8.11) for a surface form given by

(= Ea, cos lka (8.21)
=1
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is (Radder, 1993b)

n
B, = Z lka; cos lkz (8.22)
=1

for the limiting case of infinite depth. The value of ka; = 0.458 leads to a breaking
index of 1 at the crest of the waves. Breaking index as computed numerically over
different depths and that as computed for the limiting case of infinitely deep water
from (8.22) are shown in Fig. 8.1 where the coefficients a;’s are assumed according to
Stokes fifth-order waves in deep water. In the numerical examples, a train of waves
with leading and trailing edges are considered while the wave train in the analytical
solution is infinitely uniform. The maximum value of the computed breaking index
is lower than 1, though it tends toward 1 with increasing depth. Omne of the reasons
for the difference between the computed and the analytical values is that the shown
computed values are for specific depths while the analytical values are for infinitely
deep water.

Computed and analytical breaking index for a train of asymmetric waves are shown in
Fig. 8.2. The surface elevation is assumed to be of the form (up to two terms):

((e)=a [— sinkz — Elisin 2k:z:] . (8.23)

and the corresponding analytical breaking index (Radder, 1993b) is given by
. 1,
B,(z) = —ka [sm kz + 2 sm2ka:] . (8.24)

The computed values are again somewhat different from the analytical values, though
the differences may be due to the finite depth used in the computation.

8.4.2 Breaking index for waves over a bar

For the specific purpose of waves breaking during propagation due to variation in depth,
we consider a train of waves propagating on to a bar similar to the situation in the
experimental setup of Luth et al. (1994). For the case presented in Fig. 8.3, wave
period is 2.5254 s and the incident wave height H; is 0.0279 m over an uniform depth
of 0.4 m. These conditions were observed to generate a spilling breaker over the bar in
the experiment.

To check if breaking is predicted in the numerical model maximum value of the breaking
index B,(z) as computed from (8.11) and its location 2 are recorded at each time step.
These maximum values and the spatial coordinates of their occurrences are shown in
Fig. 8.3. The maximum value of the computed breaking index is around 0.2, far too
low to indicate any breaking.

In order to gain some insight into the rather low value of the breaking index in the
numerical computation, a comparison of the measured and numerical surface elevation

56




Hamiltonian formulation H782 A May 1994

delft hydraulics

is shown in Figs. 8.4 and 8.5. The measured elevation at z = 12.5 m (Fig. 8.4) and
¢ = 13.5 m (Fig. 8.5) show much sharper and higher peak than the computed time
record though the computed peaks are higher than the measured peaks at the stations
on the back-slope of the bar. In the experiment spilling breakers were observed in the
region from 13.5 m to 15 m. It is seen clearly that the high crest value before the
breaking region is underpredicted in the numerical model. The height of the measured
wave is subsequently lower than the numerical values on the back slope of the bar due
to the energy loss due to breaking. The comparison indicates that the model prediction
of the sharp, high value of the crest is unsatisfactory (possibly due to the absence of
the short-wave nonlinearity from the formulation).

8.5 Summary

Based on the computed results presented in Figs. 8.3, 8.4 and 8.5 the low value
of the breaking index can be attributed to the model (under)prediction of sharper,
higher crests since the breaking criterion (8.11) is found to be reasonable (see Fig.
8.1) provided the surface form has the right curvature and slope. It is believed that
the short-wave nonlinearity ¢ has a significant contribution to the surface form near
the crest. Though the inclusion of the short-wave nonlinearity as described in chap-
ter 6 led to unstable computations, partial (ad-hoc) nonlinearity (icleps=2) has been
found to give better results during the propagation of a solitary wave. An important
step in the future developments of the model should therefore be a stable formula-
tion/implementation of the short-wave nonlinearity.
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Figure 8.1: Computed (top three) and analytical (bottom) breaking index for a surface form
given by (8.21) where the coefficients a;’s are specified according to Stokes fifth order waves in

deep water.
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Figure 8.2: Computed (top) and analytical (bottom) breaking index for an asymmetrical surface
form, given by (8.23), for ka = 0.64.
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Figure 8.3: Maximum value of the breaking index and its spatial occurrence at each time step
of computation. Breaking index is nondimensional while depth of the bar is plotted in units of
meters.
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Figure 8.4: Time record of surface elevation from experimental measurement and numerical
prediction. The time origin of the experimental measurement is shifted to roughly match the

numerical record for the station at 12.5 m.
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Figure 8.5: Time record of surface elevation from experimental measurement and numerical
prediction. The time origin of the experimental measurement is shifted to roughly match the

numerical record for the station at 13.5 m.
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9 Conclusions

Two numerical models, ‘hamilT’ and ‘sinctm’ have been developed based on the
approximate Hamiltonian, given by (2.17). Applications of these models to problems
of both solitary and periodic waves over varying depth show their applicability as tools
for modelling nonlinear wave transformation and interactions. A much larger time-step
can be used by adopting ABM method of time integration instead of the first order,
explicit Euler integration method without losing accuracy. The model ‘sinctm’ based
on the sinc approximation requires less computing time than the time-domain model
‘hamilT"’.

One of the advantages of the formulation used here is the exact dispersion relation-
ship exhibited in the linearised form. Secondly, the structure of the present approxi-
mate Hamiltonian allows developing the model formulation to be uniformly valid from
deep to shallow water. From applications of the numerical model with the parameter
icleps= 0 in chapters 7 and 8, it is seen that wave transformation and generation of
higher harmonics are reasonably predicted for moderately long waves. It is believed
further that even for moderately long waves short-wave nonlinearity plays an important
role at least near regions of sharp crest and more so for higher waves. The formulation
of short-wave nonlinearity through the function ¢ as described in chapter 2 (specified
through the parameter icleps=1) has not been successful due to quick growth of insta-
bilities. Ad-hoc inclusion of the positive definite part of £ (specified by the parameter
icleps=2) indicates improvement in the model performance as shown through the prop-
agation of a solitary wave. However, a complete and consistent procedure of including
short-wave nonlinearity is still lacking. Extending the model formulation to include
short-wave nonlinearity should therefore be one of the most important tasks in the
future. This step is also necessary before further investigation into including effects of
wave breaking can be carried out through this model.

As pointed out earlier, the formulations used here are derived on the basis of mildly-
sloping bottom. This assumption can possibly be relaxed to account for steeper vari-
ation of the bottom along with a procedure to include short-wave nonlinearity. Then
also the depth-dependent part in the function z(x) has to be accounted for, see (2.12).

As the problem now solved is an initial-value problem, application of the model to prob-
lems of periodic waves is now carried out by an initial specification of a wave packet
in front of the region of interest. This is computationally inefficient for problems of
practical applications. More importantly, there is no clear procedure at the moment to
translate input to the program in the form of a time-series of surface elevation or veloc-
ity as measured or recorded at a point to an z—series. It is desirable from this aspect
to introduce procedures to effectively simulate generation and radiation boundaries.
An associated problem is the numerical instabilities arising at the ends. Numerical
instabilities begin to develop as the waves reach the boundaries of the computational
domain. These instabilities may be reduced by a careful numerical treatment at the
ends. Alternatively, this problem may be looked at in a consistent way along with the
task of simulating generation and radiation boundary conditions.
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Finally, application of the model to breaking waves shows that the computed breaking
index with the assumption of ¢ = 0 is much lower than expected. The breaking
criterion used has been found to be reasonable provided the shape and height of the
surface corresponds to that of breaking. The low value of the computed breaking index
is therefore attributed to model underprediction of crest height and sharpness before
breaking. It is believed that this feature may be significantly improved by including
short-wave nonlinearity.

Recommendations

A recapitulation of various points of further research is given below. The points are
mentioned in order of importance for engineering applications.

1. The formulation of a boundary-value problem instead of an initial-value prob-
lem. This greatly enhances the practical usefulness of the program.

2. Inclusion of short-wave nonlinearity. For applicability over the full range of deep
to shallow water of a nonlinear wave model, inclusion of short-wave nonlinearity
is needed. Furthermore, it has been shown that for wave breaking also the
inclusion of short-wave nonlinearity is needed to obtain more realistic breaker
indices. A different formulation of ¢(z) in free surface quantities is needed
because the present formulation leads to instability.

3. Further study of wave breaking characteristics after inclusion of short-wave
nonlinearity.

4, Effect of steeper bottom slopes on the wave behaviour. The influence of the
depth-dependent terms on z(x) in (2.12) has to be accounted for then.
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