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Executive's summary 

This report describes the formula t ion , numerical implementa t ion and application of 

a weakly nonlinear wave model for finite depth based on a Hami l ton ian fo rmula t ion 

(see Radder, 1992). Due to the type of nonlineari ty expl ic i t ly accounted for i n the 

expansion of the kernel o f t h e Hami l ton ian density (sum of kinetic and poten t ia l energy 

per un i t surface area), the model is val id fo r waves of small , bu t finite ampli tude and 

f a i r l y long wave length (compared to the water depth) i n roughly the same sense 

many 'Boussinesq-type' models are. There are, however, a few significant differences. 

Fi rs t ly , the Hami l ton ian density i n the present fo rmula t ion is always positive definite: 

a condi t ion necessary to ensure good dynamical behaviour of the model equations for 

numerical computat ion. Secondly, the dispersion equation obtained f r o m the linearised 

version of the equations is exact. This proper ty results i n a better model l ing of the 

phase relations (hence the wave asymmetry at a given locat ion) of the superharmonic 

field which evolves f r o m the p r imary wave system due t o surface nonlinearity. More 

impor tan t ly , i t is possible to remove the res t r ic t ion of waves being long th rough a 

proper inclusion of the 'short-wave' nonlineari ty i n the expansion of the kernel. This 

results i n a u n i f o r m l y val id model unlike most of the weakly nonlinear models which 

are va l id over either deep or shallow water. Further, i t is discussed i n the text tha t even 

for long waves the 'short-wave' nonlineari ty becomes local ly impor t an t near the crest of 

a wave as the surface curvature increases. Implementa t ion of 'short-wave' nonl inear i ty 

is therefore considered as one of the first priorit ies i n the fu tu re developments of the 

model . 

Two numerical models have been developed: a t ime-domain model and a pseudo-

spectral model based on the sinc-series for the global approximations. The numerical 

code based on the sinc-series requires less computing t ime and gives the op t ion of 

choosing higher-order in terpola t ion for computing derivatives and integrals over local 

intervals. We present here a figure as an example of the model predict ion of nonlinear 

evolut ion of a t r a in of non-breaking waves passing over an underwater bar. A n incident 

t r a i n of sinusoidal waves has been represented i n the computat ion by a packet of 

sinusoidal waves of finite length w i t h the leading edge a few wave-lengths behind the 

bar. Details of the geometry and significance of this test can be found i n chapter 7. I n 

21 m 

spite of a pract ical disadvantage due to the way the i n p u t conditions must be specified 

i n the code (we have an init ial-value problem) these models can now be used to study 

nonlinear evolutions of nonbreaking waves over vary ing depth. 

A t t empt s to introduce effects of wave breaking have not met w i t h much success yet. I n 
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the f i rs t phase, an integral cr i ter ion has been implemented to determine i f the instanta­

neous surface shape should lead to breaking. Appl ica t ion of the cr i ter ion to computed 

surface elevation for conditions observed to have given rise to m i l d breaking i n labora­

t o r y tests shows tha t breaking stage is not reached. I t is believed tha t this difference 

between the computed results and the laboratory observations is caused by the omis­

sion o f t h e 'short-wave' nonlineari ty (underprediction o f t h e surface steepness), rather 

t han the failure of the integral cr i ter ion. This is another aspect which underscores the 

importance of implementat ion of 'short-wave' nonlinearity. 

F ina l ly to conclude, comparison of the computed results w i t h the experimental mea­

surements and i n a wider context w i t h several 'Boussinesq-type' models (see Dinge­

mans, 1994a) provides strong mot iva t ion for fur ther developments of the model . This 

is fu r ther supported by the inherent theoretical appeal of the formulat ions used. As 

summarised i n chapter 9, the ma jo r recommendations for fu tu re work are: 

• The fo rmula t ion of a boundary-value problem instead of an init ial-value prob­

lem. This greatly enhances the practical usefulness of the program. 

e Inclusion of short-wave nonlinearity. For applicabil i ty over the f u l l range of deep 

to shallow water of a nonlinear wave model , inclusion of short-wave nonlineari ty 

is needed. Furthermore, i t has been shown tha t for wave breaking also the 

inclusion of short-wave nonlineari ty is needed to obta in more realistic breaker 

indices. 

• Further study of wave breaking characteristics after inclusion of short-wave 

nonlinearity. 

• Effect of steeper b o t t o m slopes on the wave behaviour. 
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1 Introduction 

I n this report the study in to the properties and numerical behaviour of the equations 

proposed by Radder (1992) is described. 

A t first, i n Chapter 2, the mathemat ical fo rmula t ion is given. This follows closely 

Radder (1992). I t is impor t an t t o note tha t the present treatment is s t r ic t ly va l id 

only for I D wave propagation. This is due to the fact tha t the methods rest u p o n 

conformal t ransformations. Furthermore, i n course of the derivation, use is made of 

the assumption tha t the variat ion of the sti l l-water depth is absent i n the Hami l ton ian . 

This may be compared w i t h the way i n which the mild-slope equation is derived: for the 

classical mild-slope equation no var ia t ion of the depth is included i n the Hami l ton ian , 

b u t fo r the extended equation variations of the depth i n the Hami l ton ian have t o be 

included, see Dingemans (1994b, Chapter 3) . 

The numerical evaluation of the evolution equations for the t ime-domain model is 

described i n chapter 3. 

A spectral approach based on an expansion i n terms of sine functions is described 

i n chapter 4. The basic idea behind such a spectral description is to obta in improved 

numerical elRciency. The t ime-domain model s t i l l takes much computer t ime , especially 

because the evaluation o f t h e kernel l o g t a n h ( ) which has to be evaluated over the whole 

computat ional domain. Earlier attempts to terminate the computat ion of this kernel 

beyond a local in terval to take advantage of the r ap id decay of the kernel had no 

success. Instabil i t ies developed then very soon f r o m near the ends of the geometry. I t 

should be emphasised tha t spectral solution based on the Fourier-series expansion over 

a finite span has been found to be unsuccessful for the present Hami l ton ian fo rmula t ion . 

Three possible approaches based on sine series have been discussed i n chapter 4. The 

numerical procedure for one of the three approaches has been described i n chapter 5. 

A short description of the programs is given i n chapter 6. Some numerical examples 

have been given i n chapter 7. 

A n approach to model l ing wave breaking has been discussed i n chapter 8, fol lowed by 

the conclusions i n chapter 9. 

The research has been carried out by A . K . O t t a and M . W . Dingemans, while the 

constant guidance of A . C . Radder of Rijkswaterstaat has been invaluable. 
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The mathematical model 

2.1 The Hamiltonian formulation 

The governing equations for i r ro ta t iona l wave mo t ion on an incompressible inviscid 

fluid are given b y the Laplace equation and the three boundary conditions: 

= 0 -h{x) <z< Cix,t) 

0 $ 

dt 

— + V $ - V / i = 0 
dz 

z^Ci^,t) 

z = C{x,t) 

z = —h(x), 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

where 

T[C] = 7 V 
VC 

( l + IVCP) 1/2 
(2.1e) 

and 7 is the surface tension and two-dimensional vectors have been used, x = {x,y^. 

I t has been shown tha t the Hami l ton ian constitutes a variat ional principle when i t is 

expressed i n terms of the free surface elevation C and the value of the velocity potent ia l 

at the free surface ( f { x , t ) = ^{(x,({x,t),t}, see, e.g., Zakharov (1968) and Broer 

(1974). The t o t a l energy of the fluid is given by 

n = J J dxdyH = J J dxdy (V + T ) 

< J J dxdy I ^ K ^ + 7 ^ 1 + |VCP - 1 

+ / / 4 
(9$ 

(2 .2 ) 

I n the sequel of this repor t no effect of surface tension is accounted for , i.e., T = 0 is 

taken. Then we have 

V=^pgC' and T =\p J^_^ dz (2.3) 

The var ia t ion of the Hami l ton ian , given by (2.2), is equivalent w i t h the or iginal f u l l set 

of water wave equations. However, one has the oppor tun i ty to find approximate equa­

tions f r o m an approximat ion of the Hami l ton ian w i t h the advantage tha t good dynam-
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ica l behaviour is guaranteed when the positive definiteness of the exact Hami l ton ian 

density H is also carried over to the approximate density Ha- Every approximat ion 

Ha which maintains the symmetries of H guarantees automatical ly the corresponding 

conservation laws to ho ld . 

Notice tha t the Hami l ton ian density is effectively a func t ion of the free surface variables 

( and (p. Var ia t ion of to { and ip gives the two canonical equations: 

SH dc . SH dip 

where S denotes the var ia t ional derivative. Notice tha t Eqs. (2.4) are the free sur­

face conditions (2.1b) and (2.1c) while Eqs. (2.1a) and ( 2 . I d ) have been used as side 

conditions. The m a j o r d i f f i cu l ty i n applying the Hami l ton ian is tha t the kinet ic en­

ergy density should be formula ted i n terms of the surface elevation ( and the velocity 

po ten t ia l (p along the free surface. 

I n the sequel we w i l l use a Hami l ton ian which is scaled w i t h the density: H := Hip 

and s imilar ly scaled potent ia l and kinetic energy (V and T respectively) to comply 

w i t h the no ta t ion used i n Radder (1992). 

2.2 ID-formulation 

For problems w i t h one horizontal dimension an approximate Hami l ton ian can be de­

veloped which is u n i f o r m l y va l id f r o m deep to shallow water (Radder, 1992). I n this 

case, the kinet ic energy density T can be w r i t t e n as 

2^ dx 2dx^' 

where i/) = ŷp̂  {x,({x,t),t} is the stream func t ion evaluated at the free surface. 

(2.5) 

To express i/> i n terms of the canonical variables (p and a conformal mapping of the 

f l u i d domain Z = x + iz i n t o an in f in i t e strip i n the complex T1^—plane W = x + "^C '^^ 

used (Woods, 1961) 

C(x') + coth 
TT 

{w-x') Kx') . 

(2.6) 

A solution for the stream func t ion ^{x,z,t) at the free surface is sought for i n two 

steps: 

1. Solve the problem i n the 11^—plane 

2. F i n d the inverse t ransformat ion %(a;) along the free surface. 
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2.2.1 So lu t ion in the W-p\ane 

A solut ion of the linear problem ^ + = O i n O < ^ < l and the boundary 

conditions ^ = 0 at = 0 and $ = '4>{x) at ^ = 1 by means of Fourier transforms gives 

at the free surface ^ = 1 

where log is the na tura l logar i thm. I n the transformed plane the Hami l ton ian H 

becomes 

and w i t h V>(x) substi tuted f r o m (2.7) one obtains 

w i t h the kernel TZ{x-,x') given by 

7e(x,x') = - - l o g t a n h Ix - x'|) • (2-10) 

2.2.2 T h e inverse t rans fo rmat ion 

To express (2.7) i n terms of variables of the physical plane, an expression for the 

f u n c t i o n x(a^) along the free surface has to be found. The imaginary par t of the 

t ransformat ion (2.6) reads 

- ^ / I c o s l . ( x - ° x 1 - c o . . { " ' ^ ' " ' ^ ' <^-"' 

Through a Fourier t ransform of this imaginary par t a symbolic operator equation is 

obtained (Uadder, 1992, Eq . (26)): 

/ 1 ^ ( I \ 

This equation has to be inverted t o obta in the required func t ion xi.^)- The subsequent 

analysis presented by Radder is val id i n the strict sense for the s implif ied case of a 

horizontal b o t t o m for which (2.12) simplifies to 
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dx__d_ r_d_ 

dx dx \ \dx 
vix) 

where the nota t ion 

r]ix) = h + C(x) 

(2.13a) 

(2.13b) 

is used. 

A n unlcnown func t ion s(x) is in t roduced through 

dx 

; ^ = (l + e ) , . 
( 2 .14 ) 

Notice tha t this relat ion at this stage is merely another way of w r i t i n g relat ion (2.13a). 

The kinet ic energy T can be r ewr i t t en i n terms o f t h e physical variables i n the fo l lowing 

way. F i rs t notice tha t 

d dx'^^ and dip^dipdx^ 

dx dx dx dx ' 

so t h a t 

ld(f f , . d ( p ^ , 1 dx f,,dx' d x ' , 

z^T =^ J dx(px J dx'(p^iR{x,x') 

In t roduc ing the kinetic energy density by 

dx'(pa,(px''^eix,x') , (2.15) 

we then have T = f dxT . The kernel TZ^ now follows f r o m (2.10) b y no t ing tha t (2.14) 

gives 

dx = 
dx 

We then have the symmetric func t ion TZ^ given by: 

/ / ^ 11 ^ T, /^'^ r ' 
IZs{x,x;7]) = l o g t a n h — / 

TT V 4 Ja, 

dr 

x - x = I (1 

dr 

(2.16) 

I t is noted tha t t j i e kinetic energy func t iona l , expressed i n the x-variable, is positive 

definite, and this property is preserved on t ransforming f r o m x t o x when the Jacobian 

(2.13a) is positive and bounded. 
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The Hami l ton ian i n the physical plane then is 

^^ = 7, dxigCi- dx'cpa:<pa;'ne{x,x';ri)) . (2.17) 
^ J — CO \ J — (X> J 

Either to be able to use (2.17) directly to obtain evolution equations f r o m , or to trans­

f o r m results obtained i n the % plane to the physical plane, i t is necessary to f i n d a 

prescript ion for the unknown func t ion e{x). This is the subject of next subsection. 

2.2.3 Non- l inear in tegra l equat ion 

We now seek an explicit expression for the func t ion £ ( x ) . We f i r s t notice tha t equation 

(2.13a) can be w r i t t e n i n the f o r m of a nonlinear integral equation (Radder, 1992) as 

^ ^ - ï ï U J ^ ^ ] _ ^ sinh^iTTx' ^ 
(2.18) 

To solve this nonlinear integral equation, an expansion i n pa r t i a l fract ions, which is 

val id for a l l values of the argument, is used by Radder (1992): 

dx OO I 

m-

1 1 
+ 

— mTT 4-. + m-K dx 
V • (2.19) 

W i t h the nota t ion 

rx dr 
P 

Jo V ^ dp ^ dx ' 
(2.20) 

and the func t ion e{x) defined according to (2.14), an equation for e is obtained f r o m 

the expansion (2.19) as 

m = l 

1 
+ V (2.21) 

Xl + s)D-nnr (1 + s) D + mir 

To solve this equation for e{x), Radder introduces the operators G^™^ and GQ™^ by 

D , „r™) D 
= and GS™) = ^ 

and because Gi"^^ can be expressed i terat ively i n terms of GQ™^ we have 

(2.22) 

) ^ G ( ™ ) ( £ G ( ' " ) ) ' . 

For the func t ion e{x) we then obtain the equation 

G'(-) = ^ (_ l )AGM(£GMy 
A=0 

(2.23) 
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A=0 

w i t h 

-| OO r 1, 

V 

Equat ion (2.21) or (2.24a) can now be solved i tera t ively as 

Io Io - I l 
£0 = 0 , £ l = £2 l - I o ' l - I o + I i 

where Iq is given to be (see Radder, 1992) 

dq d 
Io 

V(p) Jo Tjip) Jo exp(7rg) -Idq 

and II follows as 

Hp + l) + v{p -1)] , 

(2.24a) 

(2.24b) 

(2.25) 

(2.26) 

1 _ j"^ r 

[p] Jo Jo 

dqdq" 

vip) 

dq 

exp TT (g + g') - 1 

£1 (p + e)-^vip + q + q') + £i{p- q)-^v{p-q-a') (2.27) 

Solution for £fc, ^ = 0 ,1 ,2 , • • • can i n principle be obtained th rough a recurring proce­

dure i n this way. 

Fin i te depth 

For water of f in i t e depth we have-"̂  \\D\\ < TT and a Taylor series expansion of GQ™^ may 

be used (Radder, 1992, Eq . (43)): 

mir rmr \m7rj yrmr J 
(2.28) 

and liliewise for "^K The expansion of (2.24a) may then be given i n a more conve­

nient f o r m . The fo l lowing quantities are introduced: 

Fk = -D''7j; Fo = l . 
V 

The fo l lowing recurrence relations may then be derived f r o m (2.29) and (2.20): 

F (r^Fk) = i]Fk+i and DF^ = F^+r - Ff,Fi . 

(2.29) 

(2.30) 

^A bounded opeiatoi T is defined by (ƒ, V) < (ƒ, ƒ) with f some well-behaved function and (•, •) an 
innei pioduct. The norm of the opeiatoi, HT'H is defined as the maximum of ( V f , V f ) /(ƒ, ƒ). 
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SubstitTition of t l ie series expansion (2.28) i n (2.23) and using the recurrence relations 

(2.30) then leads to an expansion of e i n terms of the functions F},. Up to f o u r t h order 

Radder obtains (his equation (46)): 

£ = -̂ î 2 - ^ (I4 - - lOFi + bF2Fl) , (2.31) 

which can be rewr i t t en as^ (cf. Radder, 1992, Eq. (B6)) 

{-^vt - 6 (4r;^ + VV<v) mxx + '^''if'Vxx'nxxx + V^Vio) — • 

(2.32) 

I t is impor t an t t o note tha t crucial for this approximation is the va l id i ty of the ex­

pansion (2.28). I n the f i rs t place the expansion is only va l id for water of f in i te-depth , 

and i n the second place the expansion is a Taylor-type expansion, not yielding positive-

definite approximations for the class of square integrable functions w i t h ?/ > 0. Perhaps 

a better approximation can be obtained by using a Fade -type approximat ion for the 

funct ions g'q^\ 

W i t h the Hami l ton ian given by (2.17), the evolution equations for the canonical var i ­

ables C and are i n principle given by the defining equations (2.4). However, due to 

the complicated dependence on £, derivation of the evolution equations is not a t r i v i a l 

task, except for the case of £ = 0. 

2.2.4 L i m i t i n g cases 

Consider the expression (2.16) for TZ^. For a constant depth of h, we can wr i t e 

7le{x, x'; rj) = l o g t a n h ( - - r ' 

V4 hJx 

dr 

(! + £)(! +CM) 
(2.33) 

Linear theory is obtained for £ = 0 and 77 = h (i.e., inf in i tes imal waves, and thus ( 

is neglected); the expression for Re = Ri then coincides w i t h the one given by Broer 

(1974) for linear waves. For deep water i t turns out tha t s = 0{ka) and then Stokes' 

theory is appropriate, rj = h, so tha t 

Re{x,x';h) = l o g t a n h 
Ah 

dr 

+ £ 
(2.34) 

For shallow water we have e = 0{kh • ka) and we can put £ = 0 (Boussinesq approxi­

mat ion) . Then: 

^With Fk = {v~^D''ri) /v = [iv^xf] V we have Fi = {l/r])Tida:Ti = and F2 = [(1/??) {vda:f] V = 
dm{r)dx)r) and thus, F2 = vl + VVxx- For Fs we have ƒ3 = {Tjdx (ndx)) V, yielding F3 = 
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Ro{x,x';r)) = - i l o g t a n h ( ^ L 
^' dr 

1 + ^ 

(2.35) 

The advantage of a Hami l ton ian model based on (2.35) over a Boussinesq-type model 

is t h a t i n the former model the linear theory is recovered i n case of deep water. For 

pract ical applications, such as the evolution of a solitary wave over an uneven b o t t o m , 

numerical solut ion o f t h e result ing integral equations is needed (see Zwar tkruis , 1991). 

2.3 The evolution equations 

I n the fo l lowing we describe the evolution equations i n the physical plane inc luding the 

short-wave nonlineari ty func t ion e which depends on rj and i ts derivatives. Thereafter , 

we look at the possibihty of the evolution equations i n the t ransformed plane. 

2.3.1 Equat ions in the physical plane 

Sur face e levat ion C 

To ob ta in the evolution equations i t is necessary to evaluate the variat ional derivatives. 

Using the general formula t ion 

sn dH d fdH 
6ip d(p dx \dipx 

we note for the Hami l ton ian H, given by (2.17), tha t 

(2.36) 

dt ' èif 

d (dE d f dH 

dx \dipxJ dx' \d(p^ 

= ƒ dx''^Re{x,x'-rj{x)) dx^Re{x,x';v{x)) 

= - J dx'cpxi^ - J dx<px^ . (2.37) 

Due t o the symmetry of Rs{x,x';ri) w i t h respect to x and x', (2.37) can also be ex­

pressed as 

dC 
dt 

= ƒ dx'ipa;'Re{x,x']r}{x)) = - J dx'ip.. 
dRe 

^' dx 
(2.38) 

The di f ferent ia t ion of R^ proceeds as follows. We introduce the nota t ion 

1' 

dr 

+ 
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1 TT 
From Re given i n (2.16) we have 71^ = l o g t a n h —v and thus, 

TT 4 

dRe _ 1 dvldx 

dx 2 sinh ( f t ; ) " 

Txr- ^ dv . . ^.dê dê 1 
W i t h — = sign('!7)-— and — = . , , we obta in 

dx ^ ^ Ux dx ( l + £)? ; (a ; ) 

dRe _ 1 sign(i?) 

dx 2 ( l + £)7?(a;) sinh ( f - y ) " 

Consider now the t e r m sign('!?)/sinh ( f t ; ) : 

sign(i?) sign('!?) + 1 

(2.39) 

sinh ( f - y ) sinh ( f | i ? | ) sinh ( f i ? ) 

- 1 

s i n h ( - f i ? ) s i n h ( f i ? ) 

i f 1? > 0 

i f 1? < 0 . 

We can therefore wr i t e 

dRe 1 1 

dx 2 ( 1 + £) ri{x) sinh ( f i?) 

1 1 
(2.40) 

n i + e),ix) s i n h d r ^ ^ ) 

The evolution equation fo r the free surface elevation ( f ina l ly becomes 

Ve loc i t y po ten t ia l </? 

The evolution equation for the free surface wave potent ia l ip is more d i f l icu l t to obtain . 

This is due to the fact tha t e{x,t) is a func t ion of rj{x,t) and therefore also a func t ion 

of C(*?*)- Since h is only a variable constant, 

6r] = Sh + 6C = SC . (2.42) 

Thus, 6( may be replaced by 6r]. Next , SH, the increment i n the Hami l ton ian due to 

7̂7, a small increment i n t] and the associated Ss can be expressed as 

J-oo \0C, J 
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/

CO 

-OO 

i r r — 
4 7 -c 

Since 1̂1 

4 j_oo 
(l+^)'7 

8rj 
St] Jx' 1 + {l + e)r] 

(2.43) 

— one lias f r o m (2.43) 
s i n l i f | Ö | s i n h f ö 

/

OO 

gCSCdx' -
-OO 

1 fOO POO 

- I dx' dx" / » ^ N 

/

OO 

gCèCdx' + 
-OO 

( r '^(iT 

OO s inl i I 

^x"Px" 

ii:" dr 
(1+ )̂77 

(1 + e) V 
(2.44) 

One may proceed f r o m here t o derive a suitable expression by carrying out in tegrat ion 

by parts of the r ight -hand side. Alternat ively, a similar approach as used i n appendix 

E of Radder (1992) may be adopted. Since (2.44) must ho ld for a l l 6r) G C , St] may be 

replaced by any sequence fn(x) approaching the delta f u n c t i o n ^(a;). 

The fo l lowing properties related to the delta f u n c t i o n w i l l be useful dur ing the deriva­

t i o n . F i rs t , as i n Radder (1992, Append ix E ) , use w i l l be made of 

fx" 
/ drF(r)S{r - x) = F{x)U{x - x')U{x" - x) 

Jx' 
(2.45) 

where F{x) represents a well-behaved func t ion and U{x) the un i t Heaviside func t ion . 

We fu r the r use the fact t ha t {e.g., Greenberg, 1978; p . 71) 

rx" 
/ drF{r)Sj{r - x) = {-iyFj{x)U{x - x')U{x" - x). 

Jx' 
(2.46) 

The subscript j i n (2.46) denotes the order of di f ferent ia t ion of the func t ion . We now 

t u r n to evaluate Se. Using (2.32) for e and carrying out the operation to 0(kay, we 

have 

Se(r) = + V^Vrr + VrrSri) • 

Approx ima t ing Srj^r) by S{r — x) i n (2.47), one has 

(2.47) 

Se = --[2r]rSi{r - x) + 7]S2{r - x) + VrrK'^ - x)] (2.48) 

Hence, 
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Jx' (1 + £)V 1" 
Jx' 

dr 
êrj 

+ 
Se 

= U{x-x')U{x" -x)Bi{x) 

where B\ up to 0 [(fca)^] is giveu by 

(2.49) 

5 i ( 7 ? , £ ) 
( l + £)7?2 

+ 

d / 27;r7, 
+ 

92 

. ( 1 + 6 ) ^ 2 d x \ { i ^ e f r j ^ ) dx-^y^l^efri^, 

by using a reduced f o r m of e(a;); i.e., 

Using (2.49) i n (2.44) yields 

(2.50) 

(2.51) 

SH 
= K + 

/

OO poo 
dx' / t^a;" 

• 0 0 J—00 4 j-00 

<Px"Px" 

0 0 sinh I 0 
a;" rfr 

Ï7(a; - x')U(x" - x) . (2.52) 

Rewr i t ing the integral on the second line of (2.52), we obta in 

Consequently, the resulting evolution equation for (p is 

(2.53) 

sn 

1 fx fOO 

- 9 C - M v , e ) dx' dx" 
^Px^Px" 

(2.54) 

I t may be noted tha t equation (72b) of Radder (1992) results as a special case of (2.54) 

for £ = 0. 

2.3.2 Exact evo lu t ion equat ions 

As discussed so fa r approximations have to be used for the inverse t ransformat ion i n 

order to express the evolution equations i n the physical plane. A n alternative is to 

investigate the workabi l i ty of using the exact equation on the t ransformed plane. The 
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exact Hami l ton ian H and 7^(x,x') are given respectively by (2.9) and (2.10). 

Surface elevat ion C 

For the evaluation of SH/Scp we need only the kinetic energy par t and we have 

6n_ST_ 

Since the variable x depends on 7], we need t o rewri te the exact expression of T p a r t l y 

i n terms o f t h e physical variable x to be able to obta in the variat ional derivative 8T /Sip. 

Observing tha t dxl^Px' = dx'fx'i we have 

r=\jdxcpx jdx'<px'R{x\x;V) • (2-55) 

. , 8r d f dT\ d f d r \ 
Since T has no explicit dependence cp i tself , we have — = " " ^ ^ \d(p ) ~ ~dx \dïp' 

and we obta in 

-f = - ^ dx'cp,>n{x,x') • (2-56) 
8(p ox J-oo 

A l o n g the free surface ^ = 1 we have -w^ = -t^tt- and therefore 8H/8ip can be exactly 
OX CIX 

expressed as 

dx (dx\~^ 
Since one has — = I —- subject to the condit ion tha t the Jacobian is not zero 

dx \dxJ 

(which is t rue fo r the mapping used), dx/dx can be calculated exactly f r o m (2.12) or 

for a horizontal b o t t o m f r o m (2.18). Thus, (2.57) defines the evolut ion equation f o r ( 

exactly i n the transformed variables. 

Ve loc i t y po ten t ia l <p 

The exact evolution equation for (p follows f r o m the free surface conditions to be 

where again al l the derivatives can be expressed i n the transformed plane by using the 

Jacobian of the t ransformat ion. 
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A n impor t an t poin t to note is t l i a t the evolution rates, given by (2.57) and (2.58), 

correspond t o the rates at a f ixed physical locat ion x and not at a f ixed %. A f ixed 

X-node does not correspond to the same x-location due to the change i n the surface 

elevation w i t h t ime . For this reason, the numerical values need to be mapped f r o m the 

set of x-nodes to the set of the f ixed x-locations and vice-versa at each time-step. This 

is one o f t h e basic disadvantages of using the exact evolution equations on the x-space. 
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3 Numerical evaluation o f t h e t ime-domain model 

I n t l i e present chapter, we describe the numerical model which is based on the f o r m u ­

lations i n the physical plane. The numerical model described here w i l l be later referred 

to as ' h a m i l T ' . 

3.1 Regularised evolution equations 

As the integrands i n (2.38) and (2.54) are singular at a; = a;', regularised forms are f i r s t 

derived i n a way similar to the one adopted i n Zwartkruis (1991). Further, we derive 

a modi i ied f o r m of (2.54) where the outer double integrals need not be numerically 

evaluated. 

Surface e levat ion ( 

W i t h 

dr 

( l + £)r / 

we wr i t e 

/

OO fOO 

da ; 'A(a ; ' , a ; ) log tanh!ƒ(? ] ,£ ) | = / (ia;' 'y(a;')logtanh | / ( 7 7 , £ ) | -
-OO J — OO 

^ T / X /•'^ , / l og t anh I f (7?,£) I , ^, 
K l + e ) , l w / _ ^ x ' ^ J | J i . (3,1) 

I t follows f r o m the def in i t ion of / (T/ , £) by using Leibnitz 's rule tha t 

N o t i n g tha t ƒ ^ oo as a;' —> oo and ƒ ^ — oo as — oo we can fur ther wr i t e 

. o o ^ " ' [ ( l + £ ) ^ ] ( x O ^ ° ' * " ^ ' ^ ^ ' ' ' ' ^ ' = - y _ c ^ / l o g t a n h | / ( . , . 0 | 

= -TT . (3.3) 
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Using (3.3) i n (3.1) yields 

/

OO 

da;'A(a;',cc)logtanh \f{x^x^) 
-OO 

T T K I + e)77](a;) + 

/

OO 

da;' 'y(a; ')logtanli | /(a;,a; ') | . (3.4) 
-OO 

Alternat ively , 

/: dx'v{x')logta,niL\f(x,x')\ = -7 r [ 'y ( l + £)r/](a;) 

roo 

+ / rfa;'A(a;',a;)logtanh|/(a;,a;')| . (3.5) 

Tl ie integrand X{x', x) log t anh | / ( s , a;')| is regular at a; = a;' and t l ie numerical integra­

t i o n of the r ight hand side of (3.5) can be carried out by using a standard numerical 

technique like trapezoidal rule (or Gauss-quadrature for higher accuracy). Thus, the 

start ing equation for the numerical evolution of the free surface is 

TT dx /

oo 

rfa;'A(a;', a;) logtanh I / (a ; ,« ' ) 
-OO 

(3.6) 

Ve loc i t y po ten t ia l (p 

The double integral and the singular behaviour of the denominator at x' — x" i n 

(2.54) make a direct numerical implementat ion d i f f i cu l t . Expression (2.54) is fu r the r 

s implif ied as follows. DifFerentiation of (2.54) w. r. t . to x gives 

f i a -gCx -

1 „ d 

1 
^ ] r dx' r dx"g{x',x") 

dx J J—oo Jx 

\ H /'OO 

--Bif-^ / dx' / dx"g{x',x") 
Z dX J—cx> Jx 

where 

g{x',x") 
f x ' f x " 

Using Leibnitz 's rule, one has 

dx /

X roo rx -7 /•oo 

dx' dx"g{x',x") = / dx'^ dx"g{x',x") 
•OO Jx J—OO dX J(jQ 

fOO 

+ / dx"g{x,x") 
Jx 

(3.7) 

(3.8) 

/

X roo 
dx'[-g{x',x)]+ / dx"g{x,x") (3.9) 

-OO J X 
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I t follows f r o m the def in i t ion of g tha t 

g{x',x) = -g{x,x'). 

Hence, 

(3.10) 

dx 

7 nx rco rx poo 
- dx' dx"g{x',x") = / dx'[-g{x',x)]+ dx"g{x,x") 
X J—oo Jx J-oo Jx 

/

OO 

dx'g{x,x'). (3.11) 
-OO 

We recall f r o m (2.41) tha t 

/

°° 
dx'g(x,x') = -2{l+ e)wxCt. (3-12) 

-oo 

Using (3.11) and (3.12) i n (3.7) we get 

f i x = -gCx + 
dBr 

j dx'{l + e)Wx'Ci 
J—oo dx 

+ 5 i ( l + e)r]ipxCt. 

Subst i tu t ing v fo r (px, (3.13) is f ina l ly expressed as 

Vt = -gCx + 
dx 

r dx' [v{l + e)vCt] + Bl [v{l + e)vQ 
J—oo 

(3.13) 

(3.14) 

Expression (3.14) is the s tar t ing equation for the numerical evolution of v (or conse­

quently of (p). The regularised set of equations is then given by 

Ct = - ¬
TT dx 

Vt = -gCx + 

7r[ 'u (H-e) r / ] («) + / (ia;'A(a;',a;)logtanh|/(a;,a;') 

dx 
r dx' [v{l + e)riCt] + Bl [v{l + e)v(t] • 

J—oo 

(3.15a) 

(3.15b) 

I n the numerical code ' h a m i l T ' , the derivatives i n the evolution equations are de­

termined by using a fourth-order mid-poin t rule^ and the integrat ion is carried out 

according to the trapezoidal rule. Nodes are un i fo rmly dis t r ibuted over the entire 

domain. 

3.2 Time integration 

T i m e integrat ion of the two evolution equations (3.15a) and (3.15b) are performed 

according to either an explicit scheme (Euler) or a predictor-corrector scheme (Adams-

Lagrangian polynomial approximation based on discrete values at 5 nodes are used, with the 
node of interest being the middle one. Higher-order interpolation can also be later implemented. 
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Bashford-Moul ton , liencefortlx referred to as ' A B M ' ) . F rom known values of ( and v at 

an instant t, values at the next instant At later are given i n the Euler procedure by 

C{x,t + At) = ((x,t) + A t ^ ^ ^ ^ + OiAty (3.16) 

v{x,t + At) = i ; ( x , i ) + A i ^ ^ ^ + 0 ( A t ) 2 (3.17) 

where and Vt are computed f r o m the evolution equations (3.15a) and (3.15b). 

For an ordinary differential equation dy/dt = f ( y , t ) , the value of y At later is given 

by a two-step procedure i n the A B M scheme: 

= / + ^ (552/^° - 59%-i + 37%-2 - 9%-3) (g . iga) 

= ^ ° + i i^y''+^^y" - ^y^'+y^') (^-i^^) 

where the superscripts denote the number of time-steps w i t h respect to the present 

instant , Ip being the predicted value and 1 the corrected one. I n the context of the 

present evolut ion equations, the predicted values of ( and v are evaluated f i r s t . The 

evolution rates (l^ and -yj^ are then calculated f r o m (3.15a) on the basis of the cal­

culated Ĉ ï' and v^P. Since evolution rates f r o m three previous time-steps are used i n 

the A B M procedure, the explicit Euler scheme is used for a few time-steps at the start 

of the computat ion. For this purpose, a much smaller time-step (four times smaller) 

is used than the intended time-step to be eventually used w i t h the A B M scheme. We 

note tha t the t runcat ion error is of O ( A t ^ ) i n the Euler scheme while tha t of the A B M 

scheme is 0 (At^). 

3.3 The choice of step size 

The guidelines t o choose step sizes are as follows. The spatial step Aa; is chosen f i r s t 

based on some impor t an t physical length scale of the problem. The t ime step At then 

follows by considering a Courant-Friedrichs-Lewy ( C F L ) condit ion: cAt < Aa;, or, for 

restricted depth, 

C F L = < 1 . (3.19) 

The value of At depends on the integrat ion method. We now take 

E u l e r C F L < 0.5 

A B M C F L < 0.8 . 

We use A B M integrat ion more or less standardly. 

For problems of solitary waves, the g r id size may be determined on the basis of the 

water depth h. A n indicative value of Ax/h for moderately high solitary waves is 1/5. 
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The step-size may also be based on the width of the solitary wave. W i t h 

'x - cV 
C{x,t) = Hsech' 

A 
(3.20) 

the w i d t h A can be estimated f rom^ . 

A (3.21) 

As an example, for the case of a solitary wave w i t h height H = A m progressing on 

water of depth / i = 10 m , we have A = 18.3 m . Choosing Aa; = 2 m , we then have 9 

mesh points over the w i d t h of the solitary wave. Correspondingly, A t < 0.16 s. 

For periodic waves the smallest wave length of interest should be considered. Consider, 

fo r example, a submerged bar w i t h the water depth changing f r o m 0.40 m at the 

toe to 0.10 m at the top and an incident t r a i n of per iod 2.02 s. Usually the t h i r d -

harmonic component, which is generated through nonlinearity, is of importance fo r 

such problems. We have the fol lowing wave lengths for the four harmonics w i t h 

per iod Ti = T / i at 0.10 m and 0.40 m depth. 

Ti 2.02 1.01 0.67 0.505 

h 

0.40 3.74 1.49 0.70 0.39 

0.10 1.97 0.93 0.56 0.37 

Table 3.1: Wave lengths Aj for the harmonics Ti = T/i, 1,.. . ,4. 

W i t h Aa; = 0.10 m we have 5 points per wave length for the t h i r d harmonic at the 

shallower par t . A sensitivity test shows the difference between choices of A a; = 0.1 

m and Aa; = 0.05 m . For the smaller Aa; the representation of the smaller features 

seems to be more accurate than for the larger Aa;. The general picture of the two wave 

profiles is the same i n b o t h cases. 

•^Foi solitary waves a.s resulting from different one-way equations, tlie precise form of tlie widtli A 
and the celerity c may differ, but these differences are not large (Dingemans, 1994b, section 6.3) 
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4 Spectral approach 

I n the present chapter, we discuss spectral or pseudo-spectral solution of the nonlinear 

water wave propagation based on the explicit Hami l ton ian model. One of the basic 

ideas behind a spectral solution is to improve the numerical efiiciency of the solut ion by 

achieving higher spatial resolution w i t h a few spectral parameters. We had seen tha t 

using a Fourier series over a f in i t e span was not feasible i n connection w i t h the present 

Hami l ton ian formulat ions. On the other hand, the constraint of f in i te energy and the 

restr ict ion of the i n i t i a l l y specified disturbance to f in i te span points to the sinc-series 

as a na tura l choice. We discuss several possibilities of the numerical method using the 

sine approximation. 

4.1 Method A: a;-space 

We recall f r o m section 3.1 tha t the (regularised) evolution equations including the 

short-wave nonlineari ty s are: 

1 d \ 
Ci = - - T^[v(l + e)v]ix)+ / (ia;'A(a;',a;)logtanh|/(a;,3;') 

TT ax I J-oo 

(4.1a) 

- B l 
dx 

r dx'[v{l^-e)nCt]^Bi[v{l-^e)7jCt]. (4.1b) 
J—oo 

I n the simplest adoption of sinc-series, C,{x) and v{x) i n (4.1a) and (4.1b) can be 

approximated th rough the cardinal series: 

i=o 

CM = E C i W « i i ^ c ( ^ ) , (4.2a) 

vix,t) = E ^ i W ^ i ^ M ^ l • (4-2b) 
i=o 

Further s implif icat ion is achieved by recognising tha t the func t ion 

A(a;', x ) l o g t a n h \f(x,x')\ belongs to the Paley-Wiener class of B(Ax) ( L u n d and Bow­

ers, 1992; chapter 2) and hence can be expressed by the sinc-series, i.e. 

A(a;', a;) l o g t a n h |/(a;,a;') | = E A | ( a ; ) s i n c f ^ ^ ^ ^ ) (4.3) 
i=o V Aa; y 

where 
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\*Ax) = 0, [x = jAx] 

( i ) - % X ^ * ^ K ^ ) V o g t a i i l i | / ( a ; , a ; , - ) | [ x ^ j A x ] . (4.4) 
[1 + S j j t j j I 

I n t i o d u c i n g the expression (4.3) i n to (4.1a) and using the in tegral re la t ion {e.g., L u n d 

and Bowers, 1992; p25) 

/•°° . f x ' - X j \ , , 
/ sine •—;—- dx = Ax 

J-oo \ Ax J 

yields the fo l lowing s impl i f ied evolut ion equation fo r surface elevation: 

(4.5) 

TT dx -7r[v{l+e)7]]{x) + AxJ2^j 
3=0 

(4.6) 

The replacement of (4.1a) t h rough (4.6) is i n fact the same as the t rapezoidal integra­

t i o n . However, the f o r m a l i s m o f t h e sine series under the assumption t h a t the f u n c t i o n 

X{x', a ; ) logtanh \ f { x , x')\ belongs to the Paley-Wiener class of B{Ax) gives ju s t i f i ca t ion 

t o the exactness of (4.6). 

I n the integral over (—oo, x] i n (4.1b) we note tha t the combined f u n c t i o n v{l + e)r]Ci 

can be approximated th rough the or thogonal sine series since v,(i E B{Ax) whi le 

( 1 + e) and 77 are bounded ( 0 ( 1 ) ) . In t roduc ing the series 

v{l + s)r)Ct{x') = Y^[v{l + s)vCi]j sine 

i=o 
Aa; 

(4.7) 

i n to (4.1b) results i n the fo l lowing s impl i f ied evolut ion equation fo r v: 

-gC. + Bl [v{l + e)r)Ct] 

+ - B l 
dx 

jy{l + eU,]i r dx' 
j=o 

smc 
X — x^ 

Ax 
(4.8) 

Note t h a t for x = A;Aa; and Xj = j 'Aa ; the in tegral 

/ dx smc — - — - = dx smc — — - -j- dx smc 
J-00 \ Ax J J-00 \ Ax J Jxi Ax 

Ax Ax r^^-j) sin 6» 
— + ^ r - ' ^ '-^dO (4.9) 

TT Jo o 

is t i m e invariant and can be easily computed. 
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4.2 Method A: x -space 

One of the disadvantages of the method using (4.6) is associated w i t h the evaluation 

of the integral func t ion f { x , X j ) appearing i n X j . This can be avoided by using the 

evolution equations i n x-space (Radder, 1992) given by: 

1 f°° TT 

m = - dx'v(x')logtanli-\x-x'\ (4.10a) 
TT J - o o 4 

Under the assumption tha t the short-wave nonlineari ty £ = 0, we have 

1 r/r 

Bl = ^ , .nd - = , . (4.11) 

Expressing v[x) i i i sinc-series i n the u n i f o r m x-grid, the evolution equations become 

m = E ^ i ^ i ( x ) (4-12a) 
i=o 

^ = - ö C - ^ E E ^ > f c ^ i , A - ( x ) (4.12b) 
j=ok=o 

where Vj is the value of v at Xj = j^X and 

^ i (x ) = ^^X'sine l o g t a n h I | x - x ' | , (4.13a) 

A I smc 
Ax y V Ax 

(4.13b) 

The integrals I j { x ) and I j j . { x ) are time-independent and can be accurately evaluated. 

Note , however, t ha t the evolution rates ih and cp are the Eulerian evolution rates and 

do not therefore correspond to the evolution rates at a fixed x-gr id poin t . This means 

tha t a correspondence between the u n i f o r m x-gr id and the s-grid has to be made at 

each t ime step unless the evolution rates of m and ip are derived at fixed x-gr id points. 

4 .2 .1 Evo lu t ion rate at f ixed x-gt'ids 

Let a;*- = x { x j ) - The evolution rate at a fixed Xj is then 
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dt ^ dt ^ dx dt 
(4.14) 

where dip/dt is the Euler ian evolut ion rate of ip (mass m or po ten t ia l (p). The convective 

t e r m can be expressed entirely i n the x-space, i.e.; 

and 

dip _ dip dx _ dip 

dx dx dx Tj dx 

dx] d dx , d r^i 

dt dt J-oo dx 

m dx, d [XJ , f^i . , 
/ -i-dx = T I / Vdx= Cidx • 

J-oo ClX dt J-oo J-oo 

(4.15a) 

(4.15b) 

4.3 Method B 

I n th i s procedure, one begins w i t h the expression f o r the Hami l ton ian 

/

oo 2̂  ]̂  roo roo rx 

^gCdx - — dx J^^ dx'v(x)v(x')logt<inh- ^ 

dr 

(4.16) 

Using the same sine series (4.2a)-(4.2b), the Hami l ton i an H can be expressed as 

^ = E e l A x - ; ^ E E ^ i ^ ' ^ ^ O ' ' ^ ' ^ ) (4-17) 

where 

/

CO poo 

dx / dx' 
-oo J—oo 

smc 
Ax 

smc 
X - Xk 

l o g t a n h • 
L 

Ax 

^' dr 

The basic evolut ion equations are then obtained f r o m 

1 dn 1 dn 
m„ = -

Ax dvp' Ax dCp' 

Hence, f r o m (4.17) and (4.19) one has 

(4.18) 

(4.19) 

(4.20a) 
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Basic to t l ie efficiency of this approach is a smart evaluation of the in tegra l related to 

the kinet ic energy using the proper ty of the sine and l o g t a n h funct ions . 

4.4 Method C 

Radder (1993a, appendix A ) has shown tha t T , the kinet ic energy par t of the t o t a l 

Hami l ton ian , can be expressed i n the f o r m : 

r = Y.Y.^>mj-k\-Ax) (4.21) 
j=0k=0 

where 

and Vj denotes v at the j-th poin t along the equidistant x g r i d or i n other words, 

<x) = T . ^ ] s m c ( ^ ^ y (4.22b) 

Note tha t — k\; Ax) is exact (evaluated exactly on the x-space w i t h o u t using any 

approximate t rans format ion t o a;-space) and needs t o be evaluated on the x-gr id once 

at the start o f t h e computa t ion . The disadvantages of using (4.22a), however, become 

apparent i f the evolut ion equations are looked at. 

4 .4 .1 Evo lu t i on e q u a t i o n : 7] 

Since the pseudo-spectral variables v^'s are not canonical, the evolut ion rates cannot 

be expressed as simple func t iona l derivatives of the Hami l ton ian i n terms of Vj's; i.e., 

the equation 

^* = - ^ . j i = - 2 E ^ K I i - ^ ' l ; Ax) (4.23) V Ax Sv; 

i s n o t v a l i d . On the other hand, the evolution equation f o r mass (consequently, 

surface elevation) should be determined f r o m 

. L \ - ^ Z 1 M (A9A^ 

AxSvp- Ax^Sv^Svj,- ^ 

The t e r m (^Sv'j/Svp^ can he evaluated f r o m the expression 
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k \ J 
wliere rcj- denotes t i e ^-coordinate of the j - t h g r id point on the x-space. 

4.4.2 Evo lu t ion equa t i on : cp 

The expression 

is exact for the potent ia l energy V where ( j denotes the surface elevation f r o m the s t i l l 

water level at the j-th poin t along the u n i f o r m a ; -gr id . Using (4.26) and (4.21) the 

evolution equation for ipp becomes 

f p = -sCv + ^ E E ^ d i - k\;Ax)^^v*vl . (4.27) 

We have treated the integral I{\j - k\; Ax) i n (4.27) invariant (on u n i f o r m x-gi'id) 
leaving the discrete t»|'s to respond to increments i n surface elevation ( j (on u n i f o r m 

x - g r i d ) . The derivative d{vjVl)/dCp can be computed i n the fo l lowing way. 

Let xtj denote the j—th poin t on a nonnni formly dis t r ibuted x - g r i d such tha t a;*- = x ( x j ) 

and Aa;*- represent the shif t i n a;*- due to A^p . Avj(Cp), the increment i n v*j due to ACp, 

is then given by 

Av^iCp) = v(x) + Ax}) - vix}) = ^ x } ^ i x } ) + 

Thus, 

TrrV-iVi, = l i m 
dCp ^ ^ ACp^o 

The order to which depth var ia t ion and surface nonlineari ty are expl ic i t ly accounted 

fo r i n the model depends on the f o r m of the approximat ion of the actual Woods 

t ransformat ion. I n f i rs t instance, we shall use the re la t ion = t] wh ich gives 
dx 

x{x) — x{xq) + / rjdx- A n integral expression for dx^/d(p then results: 
Jx 

d x \ . . dri , r ) d r ] l , P i 1 . f x - X p \ ^ ,^ 
1 ^ ^ ) = / 1^'^X= / •7~-dx= / - s m c — - ^ ] d x . (4.28) 
dCp Jx dCp Jxl dCpV 7? V Aa; y 
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4.5 Summary 

Tlie procedure out l ined i n Me thod A eliminates a significant amount of numerical 

computa t ion by ut i l is ing the properties of sine funct ions. Besides, one expects tha t 

smaller number of g r id points are required than tha t i n the previous t ime-domain 

model to achieve the same degree of accuracy. The numerical efficiency of M e t h o d B 

depends largely on how the integral E{j,k,'q) can be fur ther simplif ied. 

The pxocedure used i n M e t h o d C has one distinct advantage f r o m the physical po in t of 

view: the evolution equations are kept exact, the approximation being introduced only 

th rough the t ransformat ion f r o m a; to x and vice versa. This allows easier modi f ica t ion 

of the numerical code to incorporate higher-order formulat ions. The disadvantage is 

related to the fact tha t the numerical operations are dis t r ibuted over u n i f o r m x -g r id 

and x-grid involv ing continuous in terpola t ion f r o m one t o another. 

delft hydraulics 26 



Hamiitonian formuiation H782 IVIay 1994 

5 Numerical method using sinc-series 

I n the previons chapter we discussed possible formulat ions based on sine method of 

which we set out the reasons for the choice of the evolution equations i n the x-space 

of M e t h o d A (repeated here for convenience): 

Ct = 
1 d 

TT dx 
-ir[v{l+e)r]]{x) + AxY^X] 

3=0 

Vt = -gCx + Bi[v{l + e)r]Ct] 

^ " ^ E K l + e)vCt]j r dx' 
• n J — OO 

+ dx 
3=0 

smc , 
oo V A x 

(5.1) 

(5.2) 

w i t h A* defined i n (4.4). Note tha t the choice of the sinc-series for the global ap­

p rox imat ion requires the g r id points to be u n i f o r m l y spaced and for x^ = kAx and 

Xj = jAx, one has 

, , . f x ' - x , - \ A x A x r 
/ dx smc — - — - = —— H / 

y_oo V A x y 2 TT Jo 

Ax . A x ri''-^) s i n ö 

1" 
de. (5.3) 

5.1 Numerical procedure 

The numerical procedure proceeds i n two steps: computa t ion of the evolut ion rates 

and the t ime in tegra t ion of the evolution. There are two available options i n the code 

for carrying out the t ime integrat ion: a f i rs t order explici t method (Euler) and a f o u r t h 

order predictive-corrective method ( A B M ) . I t has been seen f r o m previous computa­

tions using the t ime-domain model tha t much larger t ime steps can be successfully 

used whi le using the A B M method for the t ime in tegra t ion of the evolution rates. The 

t ime-integrat ion procedure is the same i n b o t h the models. 

Before describing some specific aspects of the computa t ion of the evolution rate of sur­

face elevation, we look at two ma in numerical operations, involved i n the computa t ion 

of the evolution equations. These are integrat ion of a func t ion over an in terva l and the 

est imation o f t h e derivative at a nodal po in t . 

5.1 .1 In teg ra t ion procedure 

Consider the evaluation of 

Ig = g{x)dx (5.4) 
Jxi 
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where Xi is the x-coordinate o f t h e g r id point i and g is an arbi t rary regular func t ion . A 

Gauss-quadrature procedure is implemented i n order tha t this integral can be evaluated 

accurately for relat ively large êx. This means tha t the func t ion value needs t o be 

known at the in tegrat ion points i n the interval [xi, S j + i ] . Es t imat ion of these values 

is done through a higher-order approximation based on shape-function method (see 

Zienkiewicz and Morgan, 1983 for the def ini t ion of shape funct ions) . I n terms of the 

shape functions A^;(/i)'s defined i n parameter /x, an approximat ion to the func t ion g{x) 

is expressed i n the f o r m 

l=2m 

^ ( « ( M ) ) = E ff(«(i-m+o)^K/^) (5.5) 

One can now rewri te the integral Ig as 

/=2m fl-tixi+i) dx 
h=2Z9{i-m+l)l^ Ni{p)-r-dii. (5.6) 

Note tha t the order of the approximation is ( 2 m — 1) and the approximation of the 

func t ion over Xi < x < x^^i is based on the discrete values of the func t ion at nodes 

surrounding the interval( i .e , , m number of nodes on either side of the interval are 

used for the approximat ion) . I n a general way for b o t h u n i f o r m and nonuni fo rm grids 

mapping of a; to yti can take place i n a similar way (known as ' isoparametric' approach) 

i n the f o r m 

X{fi) = E ^{i-m+l)Nl{l^) • (5.7) 
1=1 

A simpler t ransformat ion va l id only for un i fo rmly spaced grids is 

a;(/«) = + ^ ^ {fx + 1) . (5.8) 

I t is convenient t o express the integral (5.6) over the in terval [-1,1] for the Gauss-qua­

drature integrations. This is done by another t ransformat ion, defined by 

^ = ^ ( , , ) + / < £ i ± l t i M ( f + i ) , ( 5 . 9 ) 

where 

M(xO = - ^ , M(^ (W = ^ - (5-10) 

Final ly , one has 

'=2™ nl dx da 
= E Hi-m+l) ]_^^^-d{xW^^ Si-m+lll (5.11) 

where 
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(5.12) 

which is computed th rough Gauss-quadrature, is computed only once at the start 

of the computat ion. 

5.1 .2 C o m p u t a t i o n o f t he der ivat ive 

The derivative of a f u n c t i o n at a g r id point i is computed by in terpola t ion f r o m i ts 

values at the adjacent g r id points f r o m the relat ion: 

J2 wjf{i + l) (5.13) 

where the coefficients w;'s are independent of i ( though dependent on Aa;) for u n i f o r m 

grids. The order of in terpola t ion is 2m (based on 2m + 1 nodes). 

5.1.3 Evo lu t ion rates 

Computa t ion of the evolution rate of v f r o m (5.2) is rather s t ra ight-forward using the 

integrat ion and derivative procedures just described. Computa t ion of the evolution 

rate of surface elevation needs some specific considerations. 

Computa t ion of the t e rm A | (see Eq . (4.4)) involves the expression 

logtanh | / (a ; fc ,a ; j ) | = l o g t a n h L 
^* dx 

( l + £)7? • 

The integral argument of l o g t a n h is evaluated th rough 

where 

/ = 1,2,. 

(5.14) 

(5.15) 

_ dx 
, n (5.16) 

I t is fu r the r t rue tha t the value of decreases rapidly away f r o m the point i due to 

the l o g t a n h operator. I t is possible therefore to l i m i t the sum to smaller number of 

nodes, e.g., 

3=n 

j=0 3=i—p 

(5.17) 
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0. 
-2 -1. 0. 1. 2. 

Figure 5.1; The function logtanh(a;) 

where the m i n i m u m value of (i - p) and the m a x i m u m value of (i + p) are l i m i t e d by 

the computat ional g r i d points used. The index ^) at a grid-point i is calculated by using 

a simple cr i ter ion based on the local water depth 

pAx 
> Rl (5.18) 

where Ri is an user specified l i m i t . The value of Ri should never be lower than 3. I t 

is , however, safer to use a somewhat larger value (say around 10). The behaviour of 

the func t ion logtanh(a;) is shown i n F ig . 5.1, where i t has to be understood tha t at 

a; = 0 an asymptote is present. Here the graph is such tha t we stay clear f r o m a; = 0 

by 0.005 units . 

5.1.4 End t r e a t m e n t 

The basic formulat ions which constitute the numerical model here are based on an 

in f in i t e span. The va l id i ty of a finite computat ional length rests on the fact tha t the 

entire wave action is contained wel l w i t h i n the finite span. This is difRcult to meet i n 

practice i f the computations are to be r u n for a long t ime of wave propagation. A proper 

physical t reatment of this problem, though rather impor tan t , is not yet undertaken. 

I n the fol lowing, numerical aspects of the 'end t reatment ' are br ief ly described. 

The procedures used for computing the integrals and derivatives as described earlier 

assume tha t the required number of g r id points are available on either side (of an 

interval or a gr id-point ) and are therefore not s t r ic t ly va l id at the ends. This means 

tha t the procedures need to be modif ied at the ends. A n at tract ive alternative is 

to define the necessary number of a r t i f i c ia l grid-points t o be able to use the same 

procedures for a l l the real nodes. Presently, the func t ion value ƒ at an a r t i f i c ia l gr id-

point x"- is defined through the simple relation: 

/(^") = f i x ' ) (5.19) 

where x'^ is the closest real gr id-point . The ar t i f ic ia l grid-points are also assumed to be 

equidistant i n the same manner as the real g r id points. Though the simple f o r m (5.19) 

can be modif ied , i t is not considereded really impor t an t w i t h the assumption tha t the 

wave action should be non-significant near the ends. 
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5.2 The choice of step size 

The choice of the spatial step size has alieady been discussed on physical grounds i n 

section 3 .3 . I n the numerical code ' s i n c t m ' , the step-size depends on the adequacy of 

the global approximat ion th rough the sinc-series and fu r the r on the order of interpola­

t i o n used for the evaluation of the derivatives and the local integrals. This feature can 

be i l lus t ra ted by referring to the Figure 5.2. The top le f t f igure shows a clear difference 

x-17.3m, [ - ] dx=10cm, [ — ] dx'-Scm 

[ - ] [ 4 , 5 ] ; [ - ] [ 4 , 5 ] r - l [ 6 . 7 1 ; [ - ] [ 4 , 5 ] 

r - 1 [ 6 . 7 ] . - [ - ] [ 6 . 7 ] r — 1 [ 6 , 7 ] ; r - 1 WL megs 

25.0 26.0 27.0 28.0 29 .0 25.0 26.0 27.0 28.0 29.0 

Figure 5.2: Comparison of computed and measured surface elevation at a; = 17.3m on the 
back-slope of a bar (Fig. 7.27). The parameters n and m in (n ,m) i n the figure above denote 
the number of grid points used locally for the purpose of computing integration and derivative 
respectively. The dotted line represents the computed results wi th Aa; = 5cm. The solid line 
represents the computed results wi th Aa; = 10cm except in the bottom right where i t shows 
the measured value in an experiment. 

i n the computed results w i t h the two step-sizes. I t is shown i n the top r ight f igure 

tha t this difference is made negligibly small by using a higher order local in te rpo la t ion 

w i t h the larger step-size. This indicates tha t the larger step-size is nearly sufficient 

for achieving an accurate global representation through the sinc-series. This is f u r the r 

confirmed i n the b o t t o m le f t f igure where decreasing the step-size while s t i l l using the 

higher order local in terpola t ion results i n a much smaller change. I t is also clear t h a t 

a decrease i n the step-size w i t h the same order of in terpola t ion or an increase i n the 

order of in terpola t ion w i t h the same step-size has the desired effect of reproducing 

the measurement more accurately. The ra t io of the time-step to the spatial step-size 

used dur ing these computations is held constant. This numerical experiment s t rongly 

suggests tha t the required step-size could be significantly reduced by using a higher or­

der local in terpola t ion provided sufficiently accurate global approximat ion is achieved 

th rough the sinc-series. 
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6 The programs 

6.1 The main programs 

We have two m a i n programs h a m i l T and s i n c t m and some service programs to gener­

ate i npu t and t o analyse output . W i t h h a m i l T and s i n c t m i npu t files w i t h the f ixed 

names h a m i l . i n p and s i n c t m . i n p are required together w i t h files * . h a m i n which 

the i n i t i a l wave profi le and the velocity potent ia l at the free surface are given. The 

* . h a m files are generated w i t h the program s o l p h i for the generation of a solitary 

wave according to Tanaka's (1986) method or w i t h p e r p h i for the case of a t r a i n of 

per iod waves. Ou tpu t of h a m i l T and s i n c t m consists of files * . o u t i n which at se­

lected times the ( and (p are given as func t ion of x, files * . t i z i n which t ime series 

of ( at selected stations are contained, files * . t i p w i t h analogous t ime series for (p, 

a f i le * . e n e i n which the integral measures for mass, kinetic and potent ia l and t o t a l 

energy are contained for each t ime step. Las t ly a * . l o g f i le is generated i n which some 

adminis t ra t ion is contained. 

A n example of a file h a m i l . i n p is given below for the computat ion p 3 . 

p3.ham 
p3.out 
p3.ene 
p S . t i z 
p3 . t ip 
p3.log 
p3.chk 
0 
2 

Notice tha t the f i le pS.ham should exist ( i t is i n p u t ) . The f i le names are free, but i t is 

recommended t o use the extensions proposed so tha t the meaning is clear. The given 

sequence of f i le names is obligatory. The parameters 0 and 2 stand for i c l e p s denoting 

the way nonlineari ty is taken i n t o account and the procedure for t ime integrat ion 

respectively. For the integrat ion method one may choose either Euler's in tegrat ion 

(choice 1) or Adams-Bashford-Moulten ( A B M ) integrat ion method (choice 2) . The 

meaning of icleps is as follows. 

We consider the fol lowing cases: 

i c l e p s = : 0 : e = 0 and Bi = — 

i c l e p s = l : £ = — - ( j j l + r/rjxx^ and Bi according to (2.50) 

i c l e p s = 2 : e = (rjl + rj-q^^^ and B^ = 

Instabili t ies have been found to develop very soon i f the parameter 'icleps' is taken to 

be 1. 

I n fac t , we almost always use A B M ' s in tegrat ion method and the op t ion 'icleps = 0'. 

For a computa t ion w i t h name p 3 the fo l lowing files are defined: 
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p S . h a m This is the m a i n i npu t tile for the computat ion. The i n i t i a l value for ( and 

the potent ia l at the free surface are given, together w i t h the g r id x/h and 

the depth h. Also parameters such as A t , A x , the number of t ime steps and 

the number of x-steps are given. Because this f i le is d i f f icu l t to compose, i t is 

made by a separate program, i n which the i n i t i a l condi t ion is defined together 

w i t h the b o t t o m geometry. For the different types of i n i t i a l conditions we have 

separate programs: one for solitary waves ( s o l p h i . f o i - ) and one for periodic 

waves ( p e r p h i . f o r ) . 

p S . o u t I n this f i le the requested output is given for the wanted t ime steps. A t t ime 

t = 0 and t = nt * èd, x/h, ( and (p are w r i t t e n fo r a l l mesh-points x i n this 

f i le . F i rs t a l ine is w r i t t e n w i t h " T I M E STEP = ••• Dt = Such output is 

not w r i t t e n fo r each t ime step but after nwrt * At, where nwrt is given i n the 

inpu t . For analysis purposes, the result ing long f i le pS.out can be split up by 

using a separate program ( t r a n s . f o r ) , which is also delivered. The *.out f i le is 

the m a i n output f i le . 

p S . e n e I n this f i le the mass, kinet ic , potent ia l and to t a l energy density is given for 

each t ime step. 

p S . t i z T ime signals of ( are given at pre-selected stations. 

p 3 . t i p T ime signals of (p are given at pre-selected stations (the same as those for ( ) • 

p 3 . l o g A f i le i n which the computed t ime step is logged. Also the C P U t ime of the 

computa t ion is given. 

p 3 . c h k A f i le wh ich served as a check on some numerical tests. The use of this f i le 

is 'commented ou t ' now, but may be needed later to test variations i n the 

numerical scheme. 

For the model s i n c t m some fur the r inpu t parameters are needed. A n example of these 

is 

4 5 8 / node appr. , node der ivat ion, integration 
1 10.0 / logtanh truncation yes , distance (xO-xh)/h 
0 1 10 301 / f ixed gr id , ntunber of gridpoints , nimber dt , 

/ l a s t gridpoint 

The last l ine is f o r a moving g r id , which has also been made possible, bu t is s t i l l under 

investigation. The same inpu t f i le .inp which is correct for s i n c t m may also be used 

for the program h a m i l T . 

6.2 The input-generating programs solphi and perphi 

I n order to make the * . h a m f i l e , the program s o l p h i . f o r fo r solitary-wave inpu t and 

the program p e r p h i . f o r fo r periodic wave inpu t are available. I n each of the programs 

the bot tom-geometry is also organised. Only special forms of I D - b o t t o m geometries 

can be generated, but they are quite general. A bar can be defined i n the fo l lowing way. 

The region i n x is d ivided i n three parts: before, above, and behind the bar: Wq, 

and W2. The corresponding water depths are given by ho,hi and /z.2. Two (mean) 

b o t t o m slopes have t o be given also. The depth h as f u n c t i o n of x is given i n the same 

way as i n Dingemans et al . (1991): 
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-h{x) = ho + - ( 1 - l - t a n l i a i ) A/ i - i + - (1 + t a u t 0:2) A/12 (6.1) 

with. 

where Ahi is the change i n depth over the f i rs t region of inhomogeneity and si is the 

b o t t o m slope i n the middle ( i n absolute value the m a x i m u m one). The length of the 

computat ional domain is given i n m by Wi + '^2 + Ws and Aa; is given i n the inpu t . For 

the t ime At is given together w i t h the number of time-steps, nt and the value of nwrt. 

For solphi an example of an inpu t f i le is given below. I n this case we have a horizontal 

b o t t o m . I n the example fo r perphi a shelf is defined. 

# 
# I n p u t f i l e voor berekeningen nov 1992 
# 2 s o l i t a r y waves, opposing; here the f i r s t one 
# 
# Time parameters : dt , Nt , Ntwrt (1 r e a l , 2 integers) 

0.1 , 600 , 5 
# 
#Width foreland (m) , Width bar (m) , Width hinterland (m) (format : 3 r e a l s ) 

1000.0 , 0.0 0.0 
#Increment x , Nr. of segments , (1 r e a l , l integer,one should be zero !) 

2.0 0 
#Depth foreland (m) , Deptht bar (m) , Depth hinterland (3 pos i t ive r e a l s ) 

10.0 10.0 10.0 
#Steepness 1st , 2nd slope , (2 r e a l s , u p h i l l = + , downhill = - ) 

0.0 0.0 
#Amplitude (m) .Maximtun n r . of i terat ions (1 r e a l . l integer) 

3. 50 
#Plaats van top van s o l i t a i r e golf i n m 

700.0 
2 
350.0 650.0 

Notice tha t the solitary wave so computed w i t h solphi travels to the r ight (i.e., i n 

the direction of increasing a;). For the case of two opposing solitary waves of equal 

ampli tude, the program solphi is r u n twice w i t h different locations a;o for the crest of 

the solitary wave. For the wave traveling i n the negative a;—direction, the value of (p 

i n the .ham file should change. W i t h the program h a m c o m . f o r the values of (p i n the 

two files are subtracted and the ( values are added, while the rest remains unchanged. 

The program hamcom.for is also delivered. For the case tha t the waves t ravel i n the 

same (a;-|-) direction, b o t h the ( and the (p values i n b o t h files have to be added. (This 

obvious modi f ica t ion of hamcom is given as hamcomp.for.) 

6.3 Periodic wave input 

For the periodic inpu t we use a l d n d of wave group composed of a number of frequencies, 

amplitudes and phases. The method i n which a t ime signal of bounded variat ion can 

be defined is given i n this section. 
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6.3 .1 I n t roduc t i on 

I n i t i a l l y the evolution equations based on the Hami l ton ian approach have been solved 

for the case tha t the i n i t i a l value has been given by a solitary wave. The profi le of this 

solitary wave has been computed according to Tanaka's (1986) method. We have an 

ini t ial-value problem and fo r the computa t ion of periodic waves i n the present sett ing 

we have to comply w i t h the ini t ial-value problem and therefore we cannot let the wave 

prof i le coming i n th rough the le f t -hand boundary so as to simulate a wave maker. We 

have to specify the i n i t i a l wave f o r m i n x and this i n i t i a l f o r m has to be of bounded 

variation. 

As a wave profi le we presently have 

C{x,t) = cosxj w i t h Xj(x,t) = kjX - LOjt + . (6.3) 

B y t ak ing the frequencies close together we have a group. As we have to have a signal 

of bounded var ia t ion, we should have ( 0 for a; ± o o . This may be achieved by 

applying a taper func t ion of the signal, i.e., we consider 

V(x,0) = fix)ax,0), (6.4) 

w i t h f { x ) = 1 near the centre of the group and f { x ) ^ 0 for a; ± o o and consider 

the evolution of 77. 

For the free surface potent ia l (j){x,t) i t follows f r o m t i e linear theory tha t 

a,-g c o s h f A ; ( ^ ; - j - . r \ 

We now define the free surface poten t ia l </> at ^ = 0, which is consistent w i t h linear 

theory-^: 

<Pix,t) = ^x,0,t) = ^ s m x j . (6.6) 

Because of the l ineari ty, the same taper ing func t ion as used for ( is now applied on </> 

and we get (f as 

(p(x,t) = f{x)cf>ix,t). (6.7) 

6.3.2 T h e taper f unc t i on f ( x ) 

As taper funct ions for the le f t and r ight-hand sides we take 
^It is easily possible to define ip a,i, z = i], but this is deemed not to be necessary. 
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fi{x) = ^ + ^ t anh [bi (x - x^)] 

(6.8) 

/ r ( « ) = - - - tanh[br{x-Xr)] 

Notice t t a t as t l i e argument of t i e t anh f u n c t i o n is dimensionless and as x lias t l ie 

dimension of m , the coefficients b^ and br have dimension m ~ ^ . The domain [a;^,*^] 

depends on the signal used and the parameters b^ and b^ control the effective w i d t h 

of the t rans i t ion . As i t is known tha t tanhrr = .9963 = 1, we should have at least 

bi (x — Xi) + br (xr — x) > 27r. W i t h the obvious choice bi = b^ = b this becomes 

b(xr - Xi)>2Tr . (6.9) 

Choosing a t r ans i t ion w i d t h L^u w i t h the proviso tha t 2Lw < (x^ — Xi), an i n i t i a l choice 

fo r the value b follows as 

b ^ w / L ^ . (6.10) 

T h e leng th o f a wave g roup 

The sum of two waves is given as 

C = Cl + C2 = a i c o s x i + a2Cosx2 = acos(x - ^ ) , (6.11) 

where the Xj have been given i n (6.3) , x is given as 

X{x,t) = kx -ojt (6.12) 

and 

k = h ± h , = (6.13) 
Zl Zl 

This signal may be w r i t t e n as 

C(a;,t) = a ( a ; , t ) c o s ( x - / ? ) , (6.14) 

where a and /3 are given by 

a} = al + + 2aiC2 cos ( f l i — Ü2) 

^ ai sin Cli + 02 sin ^2 
t a n p = — 

ai cos Sil + «2 C0SS22 

w i t h 

(6.15) 
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^i = Xi-X and Ü2 = X2 - X (6-16) 

so tha t 

Üi-Ü2 = i h - k 2 ) x - (Wi -U2)t + êi-l}2 . (6.17) 

The var ia t ion i n x of the squared amplitude occurs w i t h cos [{ki — k2) x] so tha t the 

var ia t ion i n a occurs w i t h cos {k\ — k^)^ and the group length Lg is thus^ 

For the tapering we should thus have preferably 

( x , - Xi) >Lg = p - f ^ . (6.19) 

I t should be stressed tha t i t is not necessary to apply the tapering over one wave group, 

we also could have a number of groups and the tapering applied only at the outside 

groups. However, i t should be realised tha t the i n i t i a l wave profi le should f i t as a 

whole on a hor izonta l par t of the b o t t o m . W i t h a long i n i t i a l profi le the computa t ion 

necessarily takes more computer t ime i n order to be able to see the same features of 

evolution of the waves. The computat ional domain is necessarily larger. 

6.3.3 Example o f i npu t f i le 

A n example of an input - f i l e for perphi (for the case p3) is given below. 

# 
# I n p u t f i l e voor berekeningen perphi 
# 
# Time parameters : dt , Nt , Ntwrt 
# 
.1 500 5 
#Depth foreland (m) , Depth bar (m) 
0.50 0.25 0.25 
#Slope 1st , 2nd slope 
# 
.05 0. 
#Width foreland (m) , Width bar (m) 
60. 60. 0.0 
# gravity 

9.81 
# no. of components 

(1 r e a l , 2 integers) 

Depth hinterland (3 pos i t ive r e a l s ) 

, (2 r e a l s , u p h i l l = + , downhill = - ) 

, Width hinter land (m) (format : 3 r e a l s ) 

A simplification is obtained for equal phase shifts, t?i = t92; then Hi = —Ü2 and foi tan/? is 

obtained tan/? = t an f i i . A fuither simplification is obtained when the amplitudes are equal, 
Ol -|- 02 

ai = a2. Then 9̂ = 0 and a'^{x,t) = 20? [1 + cos (Oi - ^2)] = 4a? coŝ  | i ( f i i - n 2 ) | , and thus, 
/I I \ 

a{x,t) = 2ai cos - (fei - ^2) s - - (wi - W2) t . 
\^ I / 
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2 
# frequencies ( i n Hz) 
0.48 0.39 
# amplitude (dimensional, i n m) 
0.054 0.012 
# phases (rad. ) 
0.0 0.0 
# in terva l (dim) for damping: xL and x r , and xO 
8.0 32.0 20. 
# ra te (6 / [L_d] ) ol damping 
0.4 0.4 
# dx ( in m) 
0.6 
#Aantal uitvoer stat ions (max 6) 
6 
#Plaatsen ( i n m) 
30.0 40.0 65.0 80.0 95.0 110.0 

delft hydraulics 38 



Hamiitonian formulation H782 May 1994 

7 Numerical examples 

Some numerical examples w i l l be discussed i n this chapter. B o t h the t ime-domain 

model , h a m i l T and the sinc-based spectral model s i n c t m are used. The numerical 

examples are carried out either to show the possibilities of the programs or t o estimate 

the accuracy of the computations. The problems considered i n the present chapter 

correspond to non-breaking waves leaving the comments on breaking waves to the next 

chapter. 

7.1 Solitary waves 

To meet the purposes stated above we start w i t h computing the evolution of a soli tary 

wave over a horizontal b o t t o m . W i t h the help of the program s o l p h i a free surface 

elevation ((a;) and the corresponding free surface velocity potent ia l (p{x) are computed, 

given the height of the wave. The profi le so computed is the exact soli tary wave profi le 

determined according to ame thod by Tanaka (1986). I n fact , amod i f i ca t i on of Tanaka's 

p rogram has been used. Presently the inversion of a m a t r i x has been carried out using 

a rout ine f r o m the N A G l ibrary , which is available for MSDOS. I t is the objective to 

use another rout ine {e.g., f r o m Numerica l Recipes, see Press et a l . , 1992) so tha t the 

program becomes portable. 

A single sol i tary wave 

As Tanaka's profi le gives the exact soli tary wave solution, and our fo rmula t ion is an 

approximate one, t i e i n i t i a l soli tary wave profile is not expected t o remain conserved 

upon propagation. The computed example w i t h H/h — 0.4 and / i , = 10 m shows what 

k i n d of oscillatory t a i l develops. The computed profiles at t ime t = 0, t = 30 and 

t = 60 s are shown i n Figure 7.1 fo r h a m i l T and i n Figure 7.2 fo r s i n c t m . These 

computations are performed w i t h e = 0 and the A B M integrat ion method has been 

used. Figure 7.3 shows tha t the results w i t h b o t h programs are indeed identically. 

I I I I 1 I I 1 1 1 1 1 1 

0. 20. 40. 60. 80. 100. 120. 
x / h 

Figure 7.1: Solitary wave wi th H/h = 0.4, / i = 10 m, hamilT; i = 0, 30 and 60 s. 

As the inclusion of some more nonlinear terms is possible i n the programs, the pa­

rameter icleps has been set equal to 2 so tha t is taken for Bx the expression B\ = 
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I I I I 1 I I I I I I 1 I 

0. 20. 40. 60. 80, 100, 120, 
x / h 

Figure 7.2: Solitary wave with H/h = 0.4, h = 10m, sinctm; i = 0, 30 and 60 s. 

I I I I I I I I I I I I I 

0, 20. 40. 60. 80. 100. 120. 
x / h 

Figure 7.3: Solitary wave wi th H/h = 0.4, h = 10m, for both hamilT and sinctm; i = 0, 30 
and 60 s. 

1 / [(1 + £)'>f] and the expression for e follows f r o m (2.51). The result is given i n F ig ­

ure 7.4. The difference w i t h the case £ = 0 is only very slight. Tha t the case icleps 

= 1 i n which s is given by (2.51) and Bi follows f r o m the f u l l expression (2.50) leads 

t o rap id development of instabilities is seen i n Figure 7.5. W i t h i n 13 t ime steps of 

At — 0.05s the program stops. 

1 1 1 

? 
1 
1 

v . . ..s. 

1 1 1 1 1 

/ 1 -

0, 20. 40. 60. 80. 100. 120. 
x / h 

Figure 7.4: Solitary wave wi th H/h = 0.4, h = 10 m, nonlinearity according to icleps = 2, 
sinctm; i = 0, 30 and 60 s. 

T w o oppos ing sol i tary waves 

The evolution of two solitary waves of equal height, but propagating i n opposing di­

rect ion i n water of constant depth is shown i n Figures 7.6 - 7.16. The ind iv idua l wave 

height H/h is 0.3 w i t h the depth h = 10 m, and A t = 0.1 s and Aa; = 2 m . The k i ­

netic, potent ia l and t o t a l energy are shown as func t ion of t ime step i n Figure 7.17. As 

could be expected beforehand, at the moment of t o t a l overlapping the result ing velo-
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x/h 

Figure 7.5: Solitary wave wi th H/h — 0.4, h = 10m, nonlinearity according to icleps = 1, 

sinctm; i = 0 and 0.6 s 

ci ty equals zero and a l l energy is potent ia l energy. The t o t a l energy remains constant, 

except for the last t ime steps when the solitary waves pass th rough the boundaries. 

I I 1 I I 1 1 1 1 1 1 

0. 20. 40. 60. 80. 100. 
x / h 

Figure 7.6: Two opposing solitary waves with H/h = 0.3, ft = 10m, nonlinearity according to 

icleps = 2, hamilT, i = Qs 

I 1 I I I I 1 1 1 1 1 

0. 20. 40. 60. 80. 100. 
x / h 

Figure 7.7: Two opposing solitary waves wi th H/h = 0.3, li = 10m, nonlinearity according to 
icleps = 2, hamilT, < = 10 s 
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I 1 1 1 1 1 I I I I I 

0. 20. 40. 60. 80. 100. 
x / h 

Figure 7.8: Two opposing solitary waves wi th H/h = 0.3, h = 10m, nonlinearity according to 
icleps = 2, hamilT, t = lb s 

i 1 I I I I I I I I I 

0. 20. 40. 60. 80. 100. 
x/h 

Figure 7.9: Two opposing solitary waves wi th H/h = 0.3, h = 10m, nonlinearity according to 
icleps = 2, hamilT, t = 16.5 s 

Figure 7.10: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according 
to icleps = 2, hamilT, t =11 s 

Figure 7.11: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according 
to icleps = 2, hamilT, t = 17.5 s 
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f / h .3r I I 1 r - - I 1 1 r -

.1 • 

.0-

- • 1 . 
_1 I L . 
20 . 40 . 60 . 80. 100. 

x / h 

Figure 7.12: Two opposing solitary waves with H/h = 0.3, h = 10m, nonlinearity according 

to icleps = 2, hamilT, t = 18 s 

I I I I I 1 I 1 1 1 1 

0. 20. 40. 60, 80. 100. 
x/h 

Figure 7.13: Two opposing solitary waves wi th H/h = 0.3, / i = 10m, nonlinearity according 

to icleps = 2, hamilT, time = 20 s 

1 1 1 1 1 1 1 1 1 

J 1 I I I 1 — I — I — i — 

'O. 20. 40. 60. 80. 100. 
x / h 

Figure 7.14: Two opposing solitary waves wi th H/h = 0.3, h = 10m, nonlinearity according 
to icleps = 2, hamilT, t = 27.5 s 

. 3 

.2 

.1 

.0 

0. 20. 40. 60. 80. 100. 
x / h 

.2 

.1 

.0 

Figure 7.15: Two opposing solitary waves with H/h = 0.3, / i = 10m, nonlinearity according 
to icleps = 2, hamilT, i = 50 s 
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_ . . I 1 I I I I I I I 1 I 

' 0. 20. 40. 60. 80. 100. 
x / h 

Figure 7.16: Two opposing solitary waves wi th H/h = 0.3, ft = 10m, nonlinearity according 
to icleps = 2, hamilT, t = 59.5 s 

E 

T 

V 

Figure 7.17: Two opposing solitary waves wi th H/h = 0.3, ft = 10m, nonlinearity according 
to icleps = 2, hamilT, kinetic, potential and total energy as function of time step 
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7.2 Periodic waves 

As we have an i n i t i a l value problem, at most a f in i te wave t r a i n is pe rmi t t ed . The whole 

of the wave t r a i n has to be contained i n the computat ional domain at t ime t = 0. 

W a v e group 

We fist give some results of the progress of a (l inear) wave group on a shelf-like b o t t o m 

geometry. We show results of computa t ion p3, of which the inpu t has been given i n 

section 6.3.3. A biharmonic signal is considered w i t h frequencies 0.39 and 0.48 Hz and 

amplitudes of 1.2 cm and 5.4 cm. As we need zeroes at b o t h ends the a r t i f i c ia l damping 

method has been applied. I n this way we get an i n i t i a l wave profi le as shown i n Figure 

7.18. Notice tha t because this is a linear wave group we have symmetry around ^ = 0. 

Upon evolution w i t h the nonlinear model ( w i t h £ = 0) , a recurrent behaviour is seen t o 

occur (Figs. 7.19 - 7.22), as is also the case w i t h , e.g., Boussinesq-type of programs i n 

which a sinusoidal wave profi le at the boundary is used. On the shelf larger nonlinear 

behaviour is seen to develop, see Figures 7.23 - 7.26 for the t ime steps 750, 1125, 1200 

and 2175. 
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80. 120. 160. 200. 
x/h 

240. 

2/h 
- . 5 

-1 .0 

Figure 7.18: Wave group p3, t = 0 

. 25 

0. 40. 80. 120. 150. 200. 240, 
x/h 

Figure 7.19: Wave group p3, t = 75At 

.25 

0. 40. 80, 120. 160. 200. 240. 
x/h 

Figure 7.20: Wave group p3, t = 150Ai 
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160. 200. 
x/h 

240. 

Figure 7.21: Wave group p3, t = 225At 

160. 200. 
x/h 

240. 

Figure 7.22: Wave group p3, t = 300At 

.25 
,20 
15 
10 

,05 
, 00 
,05 
10 
15 

\ 

1 1 1 1 I l l l l l l 

0. 40, 80, 120, 160, 200, 240, 
x/h 

Figure 7,23: Wave group p3, t = 750At 

0. 40, 

Figure 7,24: Wave group p3, t = 1125At 

80, 120, 160, 200, 240, 
x/h 
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.25 

0. 40, 80. 120. 160. 200. 240. 
x/h 

Figure 7,25: Wave group p3, t = 1200Ai 

^ . I I I II K •••WVVVVIjM 

1 1 1 1 1 1 1 1 

u 
1 1 1 

40. 80. 120. 160. 200. 240. 
x/h 

Figure 7,26: Wave group p3, t = 2175At 
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7.3 Confrontation with measurements 

T i e Hami l ton ian model i a s been applied to t i e problem of wave propagat ion over an 

underwater bar. The b o t t o m geometry and t i e locat ion of t i e wave gages are indicated 

i n Figure 7.27. 

X m m 

Figure 7.27: The bottom geometry and the location of the wave gauges. 

I n this case the incoming wave consists of a sinusoidal wave w i t h wave height E = 1 

cm and wave per iod T = 2.02 s. This is one o f t h e cases measured by Bat t jes and B e j i 

(1993), and repeated on a linear scale of 0.5 (i.e. , the i n i t i a l depth equals 80 cm instead 

of 40 cm) by Klopman . The measurements of K l o p m a n are used because of the active 

wave absorption and the compensation of bound long waves; two impor tan t processes 

which have not been accounted for i n the measurements of Bat t jes and B e j i . A fu r the r 

description of the measurements is given i n Dingemans (1994a). Here we consider the 

measurement condi t ion A . 

I t is not possible at the moment to let waves enter the region th rough the le f t -hand 

boundary (a so-called boundary value problem) i n the numerical Hami l ton ian model . 

Only the t reatment of i n i t i a l value problems are possible. Therefore we have to impose 

a wave t r a i n and to be able to do so we have t o extend the i n i t i a l hor izontal b o t t o m 

region leftwards. A t r a i n of sinusoidal waves is used, where at the f ron t and the end 

of the t r a i n the free surface elevation goes to zero smoothly. The specification of the 

i n i t i a l condit ion goes i n the same way as before. For the numerical example shown 

here the i n i t i a l wave packet is a monochromatic signal, consisting of seventeen waves 

( f ig . 7.28). F r o m the t ime records of elevation at the locations of the wave gauges we 

take the m i d p o r t i o n of the signal for comparison w i t h the measurements. Computed 

(Hami l ton ian , w i t h e = 0) , measured and computed (exact nonlinear) elevations are 

shown i n Figure 7.29 over a few wave periods. 

I n order to show the performance more clearly, we also p lo t the computed and measured 

free surface profiles at 21 m together. This is done i n Figure 7.30 for the Hami l ton ian 

model and for the boundary element p rogram Hypan . 
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e [ c m ] 
1 .5 

-1 .5 

T 1 1 1 1 1 1 1 1 p 

_ l I L_ 

-90. - 6 0 . - 3 0 . 0. 30. 60. 90. 
X [ m ] 

Figure 7.28: The ini t ia l value C{x,0). 

•-'24. 2 5 . 26. 27. 2 8 . 

H i n l l ( s i n e ) : t e a t A , b » r 3 

2 7 . 23 . 2 9 . 3 0 . 

H y p i n ( B r o e z e ) : t e a t A, b«p 

Figure 7.29: A Hamiltonian model (left), measurements (middle) and the Hypan model of 
Broeze (right), test A. 

Hypan 

meas. 

I — , — , — , — , — , — , — , — I I — , — , — , — , — , — , — L _ 
• 2 4 . 25 . 26 . 27 . 2 8 . 29 . 30 . 3 1 . 3 2 . 

Figure 7.30: Comparison of the Hamiltonian model (left) and the Boundary-Element model 
(right) with the measurement at 21 m. 
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8 Modell ing of breaking 

I n this chapter we consider extending the Hami l ton ian model of wave propagation for 

breaking waves. This amounts to simulat ing the effects of breaking i n a model wh ich 

is s t r ic t ly val id fo r nonbreaking waves. The motivations behind this are twofo ld : the 

model can then be used f r o m offshore t o onshore w i thou t problems of numerical insta­

bili t ies i f wave breaking should occur; secondly, as many breaking-related phenomena 

(for example, decay i n wave energy, set-up of mean water level) as possible can i n 

some realistic way be simulated through the model. Since the evolut ion equations 

are approximate, the physical phenomenon of breaking may manifest i n the f o r m of 

other mechanisms i n the mathemat ica l model. T w o p r imary aspects of the simula­

t i o n of breaking are therefore a cri ter ion for wave-breaking and secondly, a model for 

adjust ing the surface variables near the breaking region. F r o m the poin t of the f i rs t mo­

t iva t ion alone, mathemat ical behaviour of the evolution equations i n situations where 

waves do physically break need to be investigated. I n fac t , this aspect may necessitate 

tha t the breaking cr i ter ion to be imposed is model-specific. 

8.1 Criterion for breaking 

The breaking cr i ter ion used here is based on the Jacobian of the t ransformat ion f r o m 

the physical space to the x-space. We assume breaking to occur i f 

^ = 0. (8.1) 
dx 

A n approximate in tegral expression of (8.1) is given by (Dingemans and Radder, 1991) 

w i t h 

- ; q { x \ T ) = / - ( f o r r > 0 ) (8.3) 
-oo Tj Jx' f ] 

The cri terion (8.1) comes f r o m the mathemat ica l requirement tha t the t ransformat ion 

remains nonsingular and well-behaved. I t has been subsequently shown by Radder 

(1993b) tha t (8.2) does indeed predict the cr i t ica l steepness i n a reasonable manner 

i n several different situations; namely deep-water Stokes waves, solitary wave, an asy-

metr ic wave and standing waves. 

Before applying the cr i ter ion (8.2) i n the numerical scheme, the question of singular 

behaviour of the func t ion 1 / [exp (7rg) - 1] at g = 0 is f i r s t investigated. Secondly, a 

more amenable f o r m of the expression is discussed i n connection w i t h the numerical 

scheme based on the physical space. 
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8.1.1 Behaviour of the integrand near q = 0 

I t follows th rougl i Taylor's expansion around g = 0 tha t 

and 

Cip + + Cip - q ) = 2Cip) + + 0(g'^) (8.4) 

e x p ( 7 r g ) - l = 7 r g + ^ ^ + --- (8.5) 

leading to 

i [ C ( P + g) + C (P -g ) ] _ 2 d - c , ^ . 2 . 

e x p ( 7 r g ) - l ' ir {l + f ) d^^^^ + ^ ^^"^^ 

for small q. 

8.1.2 Integral criterion in physical space 

The breaking cr i ter ion (8.2) is not convenient for numerical evaluation since the evo­

l u t i o n equations are computed on un i fo rmly spaced grids i n the physical space. I n 

deriving an equivalent expression i n the physical space special a t tent ion has to be pa id 

to the behaviour of the integrand near r = 0. We proceed as follows. 

v{p) + f 
Jo 

dq d 

exp (irq) — 1 dq 

v{p)+ I 
Jo 

Up + q) + C{p-q)] = 

dq 

0 exp {-Kq) - 1 

dq' 

+ 

where 

, , /^+'- dr , [^-'^ dr 
qM = l - , ^i-,r) = l 

'o e x p ( 7 r g O - l L | ^ ^ ^ ^ " ' ' ^ + l ^ ^ ^ ^ . 

w-T dr 

(8.7) 

(8.8) 

Note tha t each of the integrand i n (8.7) near g = 0 is s t i l l well-behaved th rough the 

in t roduc t ion of the t e rm d(/dq(p). The breaking criterion i n the physical space can 

then be w r i t t e n as 

v{x) + r 
Jo 

f 
Jo 

dr 

exp (7rg) - 1 

dr 

exp (nq') — 1 

d X f]{x) dC, ' 

dr^^ ' ri{x + r)dr^ \ 

' d , ??(a;) dC, ' 

+ 

= 0 (8.9) 

delft hydraulics 52 



Hamiltonian formulation H782 May 1994 

B o t h the integrands i n (8.9) have removable singulari ty at r = 0, i.e., 

exp (irq) — 1 
r=0 

exp (tt^') — 1 
r-O 

1 

TT ^ dr"^ \dr 
(8.10) 

Equivalent to the breaking cr i ter ion (8.9), a breaking index Br, given by, 

[ . . . ] 
Br{x) = -

7]{x) 
(8.11) 

[ w i t h [• • •] denoting the values of the two integrals i n (8.9)] may be defined requir ing 

i?r = 1 as the cr i ter ion of breaking. 

Since the m a x i m u m contr ibut ion to the integral i n (8.11) comes f r o m the value of the 

integrand near r = 0 (or g = 0) , an in terpre ta t ion of the breaking index is easily 

obtained f r o m (8.10). The breaking cr i ter ion depends on b o t h the slope and the cur­

vature of the surface. Further, i t is clear after d iv id ing (8.10) by 7] [as i n (8.11)] t h a t 

the curvature is dominant i n deeper water and slope becomes increasingly impor t an t 

on shallower water. 

8.2 Modification of surface evolution 

The surface elevation ( is modi f ied i f the breaking index B^ exceeds the l i m i t i n g value 

at a poin t xjy. Let the modif ied surface elevation be The modi f ica t ion is based on 

two principles: 

B r e a k i n g i n d e x The surface elevation ( ' is such tha t the m a x i m u m value of the break­

i n g index at xi, calculated on the basis of ( ' is 5 ™ , the allowable l i m i t fo r Br 

(mathematical ly 1). 

M a s s conservat ion The modif ied surface elevation does not lead to change i n the 

mass; i.e., the mass of water contained under the unmodif ied surface elevation 

is maintained. 

F rom the f i r s t requirement of breaking index, ( ' must satisfy the equation 

L 0 exp 
( ^ ^ K ' { P + , ) + c ' ( . - , ) i = - , ' W f i ; (8.12) 

w i t h p and q defined on the basis of ( ' and f r o m the second requirement of main ta in ing 

the mass the condi t ion tha t 

C'dx = / 
-oo J—c 

(dx . (8.13) 

The two conditions given by (8.12) and (8.13) govern the way surface elevation should 

be modi f ied at two g r id points. We f i x these two gr id points to be the g r id point where 
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the breaking index exceeds i ts l i m i t and the next adjacent g r id i n the direction of 

wave propagation. A direct solution of the equations to solve for the modif ied surface 

elevation w i l l be immensely t ime consuming and may be unnecessary since the values 

of elevation at only two g r id points near are modif ied. A local solution of (8.12) and 

(8.13) w i l l therefore be adopted. 

8.3 Modification of velocity evolution 

Consider f i rs t an approach where the breaker f ron t is stat ionary w i t h respect to a 

reference f rame moving at speed c;,. Following Banner and Phi l l ips (1974) we impose 

tha t 

Ö / I o A 

Ysir-^ "<')=<> 
or, equivalently 

+ ^C) = const (8.15) 

where Ug is the tangential velocity on the free surface w i t h respect to the moving 

reference f rame. Expressing (8.14) w i t h respect to the f ixed f rame, we have 

J ^ 7 f # + K' = const (8.16) 

The modif ied velocity v' can now be obtained through (8.16) using the modif ied surface 

elevation provided the speed of the breaker f ron t is known. A n estimation i n the 

f o r m of Cb = a^grjb w i t h rjb as the local m a x i m u m of ij near the breaking point and a 

as a constant coefficient is l ikely to be less than satisfactory. This is due to the question 

about bo th the r igh t value o f t h e speed ci and the va l id i ty of (8.15). 

A n alternative approach suggested by Radder is to m o d i f y the velocity th rough an 

estimation of the energy lost to the ro ta t ional f ie ld . The approach is as follows. The 

exact kinematic condit ion on the free surface, for i r ro ta t iona l and rota t ional f ie ld as 

wel l , gives 

where Vn is the velocity normal to the surface. Let Avn represent the induced rota t ional 

velocity due to the process of breaking. The rotat ional velocity Avn is then related 

to the change i n surface elevation so as to satisfy the kinematic free surface condit ion 

(8.17) on the modi f ied surface,i.e.. 
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Expressing t l ie ro ta t ional l i inetic energy density to be = 0.5 (Ai ; „ )^ , modif ica t ion 

of tbe surface velocity is governed by the principle tha t 

T' = T-Tr (8.18) 

where T is the unaltered kinet ic energy density, given by. 

Assuming tha t ds/dx remains constant, we have f r o m (8.18) 

{v" + cf) = (v' + Cl) - (AC.)^ 

leading to the re la t ion 

v'^ = v ' - 2 C / A 0 (8.20) 

Expression (8.20) is the basis fo r computing the modif ied velocity v' at the g r id points 

where the surface elevation is modif ied . 

We note f r o m previous discussion of modif ica t ion of mass f l u x tha t the change i n C is 

posit ive at one of the points and negative at the other. This has the consequence tha t 

the magnitude of the modif ied velocity is decreased at one poin t (the point where AC 

is positive) and increased at the other as can be seen f r o m (8.20). 

8.4 Study of breaking criterion 

The breaking index i n the numerical code is evaluated according to the fo rmula t ion 

(8.11) w i t h the value of the integrand at r = 0 being determined f r o m (8.10). I n the 

fo l lowing , we present a few numerical examples of the computa t ion of the breaking 

index. 

8.4 .1 Ver i f i ca t ion o f c o m p u t a t i o n o f break ing index 

Firs t , a few examples are selected so tha t the computat ion of the breaking index can 

be compared against analytical solutions. 

The f i r s t case studied is t ha t of a Stokes f i f th-order wave i n deep water. The breaking 

index obtained f r o m analytical evaluation of (8.11) for a surface f o r m given by 

n 

(= Y^aicoslkx (8.21) 
;=i 
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is (Radder, 1993b) 

n 

Br = Ikai cos Ikx (8.22) 

; = i 

for the l i m i t i n g case of in f in i te depth. The value of kai = 0.458 leads to a breaking 

index of 1 at the crest of the waves. Breaking index as computed numerically over 

different depths and tha t as computed for the l i m i t i n g case of in f in i t e ly deep water 

f r o m (8.22) are shown i n F ig . 8.1 where the coefficients a;'s are assumed according to 

Stokes f i f th-order waves i n deep water. I n the numerical examples, a t r a i n of waves 

w i t h leading and t ra i l ing edges are considered while the wave t r a i n i n the analytical 

solution is i n f in i t e ly un i fo rm. The m a x i m u m value of the computed breaking index 

is lower t han 1, though i t tends toward 1 w i t h increasing depth. One of the reasons 

for the difference between the computed and the analytical values is t ha t the shown 

computed values are for specific depths while the analytical values are for in f in i t e ly 

deep water. 

Computed and analytical breaking index fo r a t r a in of asymmetric waves are shown i n 

F i g . 8.2. The surface elevation is assumed to be of the f o r m (up to two terms): 

C{x) = a — sin kx — sin 2kx (8.23) 

and the corresponding analytical breaking index (Radder, 1993b) is given by 

Br{x) = —ka sin kx -]— sin 2kx (8.24) 

The computed values are again somewhat different f r o m the analyt ical values, though 

the differences may be due to the f in i te depth used i n the computat ion. 

8.4.2 Break ing index for waves over a bar 

For the specific purpose of waves breaking dur ing propagation due to variat ion i n depth, 

we consider a t r a i n of waves propagating on to a bar similar t o the s i tuat ion i n the 

experimental setup of L u t h et al. (1994). For the case presented i n F i g . 8.3, wave 

per iod is 2.5254 s and the incident wave height B.i is 0.0279 m over an u n i f o r m depth 

of 0.4 m . These conditions were observed t o generate a spilling breaker over the bar i n 

the experiment. 

To check i f breaking is predicted i n the numerical model m a x i m u m value of the breaking 

index Br{x) as computed f r o m (8.11) and i ts location x are recorded at each t ime step. 

These m a x i m u m values and the spatial coordinates of their occurrences are shown i n 

F i g . 8.3. The m a x i m u m value of the computed breaking index is around 0.2, far too 

low to indicate any breaking. 

I n order to gain some insight in to the rather low value of the breaking index i n the 

numerical computat ion, a comparison of the measured and numerical surface elevation 

delft hydraulics 56 



Hamiltonian formulation H782 May 1994 

is sliowE i n Figs. 8.4 and 8.5. The measured elevation at a; = 12.5 m (Fig . 8.4) and 

X = 13.5 m (Fig . 8.5) show much sharper and higher peak than the computed t i m e 

record though the computed peaks are higher than the measured peaks at the stations 

on the back-slope of the bar. I n the experiment spilling breakers were observed i n the 

region f r o m 13.5 m to 15 m . I t is seen clearly tha t the h igh crest value before the 

breaking region is underpredicted i n the numerical model. The height of the measured 

wave is subsequently lower than the numerical values on the back slope of the bar due 

to the energy loss due to breaking. The comparison indicates tha t the model predic t ion 

of the sharp, h igh value of the crest is unsatisfactory (possibly due to the absence of 

the short-wave nonlineari ty f r o m the fo rmula t ion ) . 

8.5 Summary 

Based on the computed results presented i n Figs. 8.3, 8.4 and 8.5 the low value 

of the breaking index can be a t t r ibu ted to the model (under)predict ion of sharper, 

higher crests since the breaking cri terion (8.11) is found to be reasonable (see F i g . 

8.1) provided the surface f o r m has the r ight curvature and slope. I t is believed tha t 

the short-wave nonhnearity e has a significant contr ibut ion to the surface f o r m near 

the crest. Though the inclusion of the short-wave nonlineari ty as described i n chap­

ter 6 led t o unstable computations, par t ia l (ad-hoc) nonlineari ty ( i c l e p s = 2 ) has been 

f o u n d to give better results dur ing the propagation of a soli tary wave. A n i m p o r t a n t 

step i n the fu tu r e developments of the model should therefore be a stable formula­

t ion / implementa t ion of the short-wave nonlinearity. 
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Figure 8.1: Computed (top three) and analytical (bottom) breaking index for a surface fo rm 
given by (8.21) where the coefficients a;'s are specified according to Stokes f i f t h order waves in 
deep water. 
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1 .00 

-1 .oo ' ^ 
- 1 8 . 0 - 1 5 . 0 - 1 2 . 0 - 9 . 0 - 6 . 0 - 3 . 0 .0 

Figure 8.2: Computed (top) and analytical (bottom) breaking index for an asymmetrical surface 
form, given by (8.23), for ka = 0.64. 

H=0.0279m, T= 2.52538s, h=0.4m 

Figure 8.3: Maximum value of the breaking index and its spatial occurrence at each time step 
of computation. Breaking index is nondimensional while depth of the bar is plotted in units of 
meters. 
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Figure 8.4: Time record of surface elevation f rom experimental measurement and numerical 
prediction. The time origin of the experimental measurement is shifted to roughly match the 
numerical record for the station at 12.5 m. 

s o L L d : expt .^ dashed; num. 

^ I I I I 1 I 1 I I I I 

20. 21 . 22 . 23 . 24 . 25 . 26 . 27 . 28. 29 . 30 . 

Figure 8.5: Time record of surface elevation f rom experimental measurement and numerical 
prediction. The time origin of the experimental measurement is shifted to roughly match the 
numerical record for the station at 13.5 m. 
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9 Conclusions 

Two numerical models, ' h a m i l T ' and ' s inc tm' have been developed based on the 

approximate Hami l ton ian , given by (2.17). Applicat ions of these models t o problems 

of b o t h solitary and periodic waves over varying depth show their appl icabi l i ty as tools 

for model l ing nonlinear wave t ransformat ion and interactions. A much larger time-step 

can be used by adopting A B M method of t ime integrat ion instead of the f i rs t order, 

explici t Euler integrat ion method w i t h o u t losing accuracy. The model ' s i n c t m ' based 

on the sine approximat ion requires less computing t ime than the t ime-domain model 

' h a m i l T ' . 

One of the advantages of the fo rmula t ion used here is the exact dispersion relat ion­

ship exhibi ted i n the linearised f o r m . Secondly, the structure of the present approxi­

mate Hami l ton ian allows developing the model fo rmula t ion to be u n i f o r m l y va l id f r o m 

deep to shallow water. F rom applications of the numerical model w i t h the parameter 

i c l e p s = 0 i n chapters 7 and 8, i t is seen tha t wave t ransformat ion and generation of 

higher harmonics are reasonably predicted for moderately long waves. I t is believed 

fu r the r tha t even for moderately long waves short-wave nonlineari ty plays an i m p o r t a n t 

role at least near regions of sharp crest and more so for higher waves. The f o r m u l a t i o n 

of short-wave nonl inear i ty th rough the f u n c t i o n e as described i n chapter 2 (specified 

th rough the parameter i c l e p s = l ) has not been successful due to quick g rowth of insta­

bi l i t ies . Ad-hoc inclusion of the positive definite par t of e (specified by the parameter 

icleps=2) indicates improvement i n the model performance as shown th rough the prop­

agation of a solitary wave. However, a complete and consistent procedure of inc luding 

short-wave nonlineari ty is s t i l l lacking. Extending the model fo rmu la t i on to include 

short-wave nonlineari ty should therefore be one of the most impor t an t tasks i n the 

f u t u r e . This step is also necessary before fu r the r investigation into inc luding effects of 

wave breaking can be carried out th rough this model. 

As pointed out earlier, the formulat ions used here are derived on the basis of m i l d l y -

sloping b o t t o m . This assumption can possibly be relaxed to account fo r steeper var i ­

a t ion of the b o t t o m along w i t h a procedure to include short-wave nonlinearity. Then 

also the depth-dependent par t i n the f u n c t i o n x{x) ia-s to be accounted fo r , see (2.12). 

As the problem now solved is an init ial-value problem, application of the model to prob­

lems of periodic waves is now carried out by an i n i t i a l specification of a wave packet 

i n f r o n t of the region of interest. This is computat ional ly inefficient for problems of 

pract ical applications. More impor tan t ly , there is no clear procedure at the moment to 

translate i npu t to the program i n the f o r m of a time-series of surface elevation or veloc­

i t y as measured or recorded at a point to an a;—series. I t is desirable f r o m this aspect 

t o introduce procedures to effectively simulate generation and rad ia t ion boundaries. 

A n associated problem is the numerical instabihties arising at the ends. Numer ica l 

instabili t ies begin to develop as the waves reach the boundaries of the computat ional 

domain. These instabili t ies may be reduced by a careful numerical t reatment at the 

ends. Al ternat ive ly , this problem may be looked at i n a consistent way along w i t h the 

task of s imulat ing generation and radia t ion boundary conditions. 
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Final ly , applicat ion of t l ie model to breaking waves shows tha t the computed breaking 

index w i t h the assumption of £ = 0 is much lower t han expected. The breaking 

cri terion used has been found to be reasonable provided the shape and height of the 

surface corresponds to tha t of breaking. The low value of the computed breaking index 

is therefore a t t r ibu ted to model underprediction of crest height and sharpness before 

breaking. I t is believed tha t this feature may be significantly improved by including 

short-wave nonlinearity. 

Recommendat ions 

A recapitulat ion of various points of fu r ther research is given below. The points are 

mentioned i n order of importance for engineering applications. 

1. The fo rmula t ion of a boundary-value problem instead of an init ial-value prob­

lem. This greatly enhances the practical usefulness of the program. 

2. Inclusion of short-wave nonlinearity. For appl icabi l i ty over the f u l l range of deep 

to shallow water of a nonlinear wave model , inclusion of short-wave nonlineari ty 

is needed. Furthermore, i t has been shown tha t for wave breaking also the 

inclusion of short-wave nonlinearity is needed to obtain more realistic breaker 

indices. A different fo rmula t ion of e{x) i n free surface quantities is needed 

because the present fo rmula t ion leads to instabi l i ty . 

3. Further study of wave breaking characteristics after inclusion of short-wave 

nonlinearity. 

4. Effect of steeper b o t t o m slopes on the wave behaviour. The influence of the 

depth-dependent terms on a;(x) i n (2.12) has to be accounted for then. 
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