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Abstract

This research work presents the observations of the updated quasi-steady aerodynamic model of the
Atalanta project, a flapping wing Micro Air Vehicle (MAV) project, for additional velocity conditions.
The main focus of this research work is to update the existing quasi-steady model of Q.Wang[1] developed
for hovering conditions since its performance under additional velocity conditions remains unexplored.
This work thus examines the influence of the additional velocities on the computed aerodynamic loads
such as lift, drag, and also the influence on the passive pitching motion.

To incorporate the additional velocity into the quasi-steady model, the resultant translational velocity is
computed by the vector addition of the kinematic velocity of the wing and the additional velocity. This
is done by transforming the additional velocity in the inertial frame of reference to the co-rotating frame
of reference, followed by the proper vector addition of the translational velocity components to compute
the resultant translational velocity to be used in the aerodynamic load calculations.

Observations reveal that the generated aerodynamic lift and drag, and the passive pitching motion vary
depending on the orientation and the magnitude of the additional velocity with respect to the kinematic
motion of the wing, and that the significance of influence of the additional velocity magnitude depends
on the flapping frequency and the elastic hinge stiffness. The results observed are analyzed to understand
the influence of various additional velocity conditions on the computed aerodynamic loads and the passive
pitching motion.

The updated model provides valuable insights into the behaviour of lift, drag, and passive pitching motion
under various additional velocity conditions which can be used as a basis for approaching the solution of
forward flight. These observations contribute to a better understanding of the aerodynamic quasi-steady
model of the Atalanta project and pave the way for future research and experimental validation of the
model.
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1. Introduction to the Atalanta Project

The steady rise in the use of unmanned aerial vehicles has led to exploring the possibilities of using
Micro Air Vehicle (MAV), and the advancements in the fields of miniaturization of technologies such
as electronics have led to the possibility of these MAVs. MAVs have several advantages, of which the
advantages in the fields of drones and surveillance are paramount. The Atalanta project is also a MAV

project aimed at developing an autonomous MAV. The Atalanta project is a multi-disciplinary project,
where several domains such as mechanics, actuation, control, aerodynamics etc., must be researched in
order to obtain the ultimate goal. Extensive work still has to be done in all domains to reach the ultimate
goal of the project.
The project is aimed at several applications such as indoor surveillance, rescue operations etc., For
these applications, human safety is paramount, hence it makes more sense to employ MAVs such as the
Atalanta project. For such applications, MAVs can reach small spaces which the small Unmanned Air
Vehicle (UAV)s might struggle to. Figure 1.1 shows the present state of the Atalanta project, which is
the result of the previous works.

Figure 1.1.: Current state of the Atalanta project

1.1. Inspiration from insects and flapping wing flight

Aimed as a surveillance project, the ability to achieve hovering and slow-moving flight is important in
the Atalanta project. Thus insects are the major source of inspiration, because of their ability to hover,
their slow-moving flight and also the transition between them. Insects use flapping wing flight, because,
compared to fixed wing flight, flapping wing flight is better suited for the above-mentioned conditions of
hovering and slow-moving flight. This is primarily due to the aerodynamic differences between fixed-wing
flight and flapping-wing flight. The aerodynamics of fixed-wing flight primarily states that the body has
to be traveling with a certain velocity to generate the required lift. But flapping wing aerodynamics is
based on the unsteady flow of air which does not directly involve the velocity of the body, thus making
hovering and slow-moving flight possible.
In insects, the Flapping wing motion is achieved by various methods, which are mainly divided into two

sections.[2]

• Direct-drive mechanism:
In this mechanism, the muscles directly drive the wing, and there is no deformation of the thorax
region to produce the flapping frequency and amplitude. Figure 1.2(a) shows that the activation
of muscle fibers directly controls wing motion.

• Indirect-drive mechanism:
In this mechanism, the muscles deform the thorax region and the thorax deformation activates

1



CHAPTER 1. INTRODUCTION TO THE ATALANTA PROJECT

the wings which produce the required flapping frequency and amplitude. Figure 1.2(b) shows that
the muscle activation deforms the thorax region, which in turn activates the wing to produce the
required motion.

((a)) Direct-drive mechanism ((b)) Indirect-drive mechanism

Figure 1.2.: Illustration of Direct and Indirect drive mechanisms in insects[2]

1.2. Utilization of resonance

The resonant properties that indirect-drive insects exhibit help to reduce the inertial cost of wing

movement.[2] Weis-Fogh[5] showed that most insects have an elastic system to reduce the energetic cost
of wing movement and that this elastic system serves as an efficient spring to achieve resonance. The
Atalanta project takes inspiration from the indirect-drive mechanism, since in this mechanism, resonance
is employed by the insects to deform the thorax region, and the wing-thorax structure acts as the com-
pliant mechanism to activate the wings. Resonance in insects helps in producing efficient flight because
resonance produces the required flapping motion by using less energy. Resonance results in resonant
amplitude amplification, and thus by the use of a compliant system, the required flapping amplitude
is obtained by using the least amount of power. Thus utilization of resonance in the Atalanta project
serves in reducing the overall power required to produce the desired flapping motion.

1.3. Introduction to Flapping wing Micro Air Vehcile (FwMAV)

Flapping wing Micro Air Vehicle (FwMAV)s are a subset of MAVs, which use flapping wing motion for
their flight, inspired by insects. Several projects have been done on FwMAVs, with varied methods of
wing actuation methods and actuator technologies. Several previous works include The Lipca powered

flapping-wing MAV[6], The Harvard fly[7], Caltech Microbat[8], Vanderbilt University[9], etc., each em-
ploying a different type of actuator mechanism, such as Piezoelectric actuators, Electroactive polymer
actuators, Electromagnetic actuators, Shape memory alloy actuators, etc. The selection of the type of
actuator depends on various factors such as complexity, number of joints, flapping frequency, flapping
angle, and control etc., All of these actuators have their own advantages and disadvantages and depend-
ing on the choice, the required control method varies.
Of these types, the Atalanta project uses a linear electromagnetic actuator, the main reason being the
ease of controlling a linear actuator, done by the use of a control circuit. A conclusion derived from
observing various FwMAV projects is that a good option for the design of the wing flapping mechanism is

a low complexity compliant mechanism powered by a linear actuator technology.[2]

1.4. Body and wing structure of Atalanta project

The current structure of the Atalanta project is based on the work of Caspar Bolsman[2], where he
designed the body structure and the wing placement. The basic conceptual idea is to design a body
(thorax) region that deforms compliantly. The wings are attached to the body, and the compliant
deformation of the wing and body structure produces the required flapping motion. Several concepts
were designed and analyzed by Bolsman, which can be classified on the following ideas:

2
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1. Number of wings

2. Placement of wings on the body and the type of joints

3. Number of rings used in the body structure.

From the analysis done for the various concepts, a final design was generated which consists of a two-
ring structure as the body and four wings are attached to the body by means of a compliant elastic
connection.

((a)) Detailed design of the Atalanta project ((b)) Overview of dimensions in the
compliant mechanism

Figure 1.3.: Body and wing structure of the Atalanta project[2]

A linear actuator is used in the project, and it is placed inside the two-ring body structure. The linear
actuator produces the bending of the ring structure. This linear motion is converted to the rotation of the
wings by the compliant movement of the elastic connection. Figure 1.3(a) depicts the detailed design of
the current state of the Atalanta project and the elastic connection of wings to the body. Figure 1.3(b)
represents the various dimensions involved in the compliant mechanism of wing-thorax structure. ’u’
represents the linear input of the actuator, ’ϕ’ represents the output angle of rotation of wings (sweeping
angle), ’L1’ and ’L2’ represents the effective centers of the compliant links which defines the input-output
relationship.
Atalanta project utilises passive pitching for producing the required pitching angles. Thus the elastic
connection is to be of a certain pitching stiffness in order to produce the required motions.
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2. Literature Review

2.1. Aerodynamics of the Atalanta Project

The initial stages of the literature review involved going through various previous works in the Ata-

lanta project, which included the works of C.T. Bolsman[2], W. Veerhoek et al.[3], H.J. Peters[10], R.

Diekerhof[11] and Q. Wang[1], to get an idea of the varied domains of work done. From this search, the
domain of Aerodynamics was narrowed down as the topic to work on, because of the domain being com-
plex and the work of Q. Wang[1] having an obvious continuation. This section consists of an introduction
to the aerodynamics of a flapping wing flight, and a brief explanation of the quasi-steady aerodynamic
model of Q. Wang for hovering conditions.

2.1.1. Introduction to the aerodynamics of a flapping wing flight

The aerodynamics of a flapping wing flight is characterised by the unsteady flow of fluid surrounding the
wings. The flapping motion results in a large geometrical angle of attack, which would stall conventional
translating wings. This explains that the lift production in flapping-wing flight is based on different
mechanisms compared to fixed-wing translating flight. The unsteady flow generated by flapping wings
follows a cyclic nature. A brief explanation of the mechanisms that aid in the lift production in flapping-
wing flight, and make flapping-wing flight possible is explained below.

1. Leading edge vortex: When a flapping wing translates through a fluid, a vortex occurs on the
leading edge of the wing, and forms on top of the wing. As the wing continues its translation,
the vortex grows in size and the high velocities in the vortex create a low pressure region on top
of the wing which aids in lift generation. Leading edge vortex is the major contributor to the lift
generation of flapping wings. Several studies have proven that the leading edge vortex remains
stable until the wing changes its phase of kinematic stroke.

2. Rotational circulation: This mechanism states that the high rotational speeds associated with
the flapping wings cause low pressure zones which aid in lift generation. This effect is predominantly
present when the pitching velocities are very high, which happens during stroke reversal.

3. Wake capture: The vortex that was shed at the end of the previous stroke comes into contact
with the following stroke, which causes unsteadiness and in turn aids in lift generation.

4. Added mass effects: This effect states that there exists a region of influence of fluid surrounding
the wing which travels together with the wing during the translation phases. This region of fluid
effectively increases the effective mass/ inertia of the wing, which can aid in lift generation. The
order of added mass can be higher than the mass of the wing itself since generally the mass of the
wings in flapping flight are very light.

2.1.2. Kinematic description of flapping wing stroke cycle

Four strokes of a flapping motion:

The wing stroke in a flapping motion has to be kinematically described in order to generate analytical
equations to describe the motion and to predict the loads generated from the wing stroke. Thus an
understanding of the different phases in a flapping wing stroke is needed as the initial step. The four
phases in a flapping motion are:

1. Upstroke: The phase that happens when the wing translates upwards and backwards.

2. Pronation: The stroke reversal phase wherein the wing changes from an upstroke to a downstroke
motion.
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3. Downstroke: The phase that happens when the wing translates downward and forward.

4. Supination: The stroke reversal phase wherein the wing changes from a downstroke to an upstroke
motion.

Figure 2.1 schematically depicts the four phases in a flapping-wing motion.

Figure 2.1.: Four phases of a flapping wing stroke[3]

Frames of references and Euler angles:

These four phases of the flapping motion are generally a combination of wing translation and rotation,
which then can be divided into yaw, pitch, and roll. Four frames of reference are involved to describe
three rotations, an inertial frame, a co-rotating frame, and two intermediate frames of reference. The
inertial frame of reference is the global frame from where the successive rotations take place. Three
successive rotations which happen to start with respect to the inertial frame are:

1. Sweeping motion (yaw): The rotation about the inertial z-axis (zi). It is defined by the Euler
angle ϕ, which is the sweeping angle. This is the first rotation that happens with respect to the
inertial frame of reference, leading to an intermediate heaving frame of reference.

2. Heaving motion (roll): The rotation about the intermediate heaving frame y-axis (yθ). It is
defined by the Euler angle θ, which is the heaving angle. This rotation leads to an intermediate
pitching frame of reference, which is twice rotated with respect to the inertial frame of reference.

3. Pitching motion (pitch): The rotation about the intermediate pitching frame x-axis (xη). It
is defined by the Euler angle η, which is the pitching angle. This leads to the co-rotating frame
which catches all three successive rotations about the inertial frame of reference. This is the frame
of reference where all load equations are computed.
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Figure 2.2.: Visualisation of three Euler angles[2]

These three rotations describe the three Euler angles used in the model. Thus the flapping motion can

be quantified using three Euler angles: sweeping angle ϕ, heaving angle θ, and pitching angle η.[1] Figure
2.3 illustrate visually the four frames of references employed.

Figure 2.3.: Three successive rotations[1]

The Euler angles during flapping motion can be demonstrated in a semi-sphere constructed in the inertial

frame, as shown in Figure 2.4.[1] It can be seen that ϕ is the angle between the xi axis and the projection
of the xc axis on the stroke plane, θ is the angle between the xc axis and its projection on the stroke
plane, and η is the angle between the zc axis and the plane that is perpendicular to the stroke plane and

parallel to the xc axis.[1] With these Euler angles, three successive rotations, i.e., the sweeping, heaving,

and pitching motion, can be formulated.[1]
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Figure 2.4.: Euler angles and frames of references[1]

2.2. Quasi-steady aerodynamic model of Q. Wang[1]

Extensive research in the field of flapping-wing aerodynamics has led to a wide range of modeling meth-
ods, which can broadly be divided into two categories: Experimental models and Numerical models. Of

all the different available models, the previous work of Q. Wang[1] uses the Quasi-steady aerodynamic
model, which uses the Blade Element Momentum (BEM) theory to compute the aerodynamic forces and
torques on the wing. This is primarily due to the model being computationally efficient, making it pos-
sible to couple with it an optimization algorithm.

A quasi-steady aerodynamic model is a type of analytical model that assumes that at any instance
of time, the system (flow) is assumed to be in a steady state, so the transient loads on the flapping wing
are equivalent to those for steady motion at the same instantaneous translational velocity, angular ve-
locity and angle of attack. Thus, the aerodynamic forces and torques at any instance are dependent only
on the instantaneous motion of the body surface. As a result, the time dependence of the aerodynamic
loads arises from the time-varying kinematics.

Q. Wang has worked on the quasi-steady aerodynamic model of the Atalanta project, for hovering
conditions. In his work, to analytically predict the unsteady aerodynamic loads on flapping wings, it is
presumed that:

1. The flow is incompressible, i.e., the fluid density is regarded as a constant.

2. The wing is a rigid, flat plate.

3. The resultant aerodynamic force acting on the wing is perpendicular to the chord during the entire
stroke.

4. A quasi-steady state is assumed for an infinitesimal duration.

The quasi-steady aerodynamic model in his work is constructed in the co-rotating frame in order to
facilitate the application of the BEM method, explained in Section 2.2.2, while the lift and drag are
quantified in the inertial frame. Therefore the model requires the flapping velocity and acceleration
in the co-rotating frame. This is done by transforming the sweeping and heaving motion from their
corresponding frames to the co-rotating frame where pitching happens, by the Euler angles and frames
of references used as explained in Subsection 2.1.2. The equations for the angular velocity and angular
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acceleration in the co-rotating frame are given by,

ωc = RT
η R

T
θ R

T
ϕ ϕ̇ezi +RT

η R
T
θ θ̇eyθ

+RT
η η̇exη =

 η̇ − ϕ̇sinθ

θ̇cosη + ϕ̇cosθsinη

ϕ̇cosηcosθ − θ̇sinη

 (2.1)

αc = ω̇c =

 η̈ − ϕ̈sinθ − ϕ̇θ̇cosθ

ϕ̈cosθsinη + θ̈cosη − η̇θ̇sinη + ϕ̇(η̇cosηcosθ − θ̇sinηsinθ)

ϕ̈cosηcosθ − θ̈sinη − η̇θ̇cosη − ϕ̇(η̇cosθsinη + θ̇cosηsinθ)

 (2.2)

These equations for angular velocity ’ωc’ in Equation 2.1 and angular acceleration ’αc’ in Equation 2.2
are used to calculate the translational velocity and acceleration of a point in the pitching axis, which are
then used to compute the load equations on the wing. The translational velocity ’vc’ and acceleration
’ac’ are given by,

vc = ωc × r (2.3)

ac = αc × r + ωc × vc (2.4)

where ’r’ represents the position vector of a point along the pitching axis.

Rη, Rθ and Rϕ in the equation 2.1 represent the rotation matrices about the pitching axis, heaving
axis and sweeping axis respectively. These rotation matrices are,

Rη =

1 0 0
0 cosη −sinη
0 sinη cosη

 , Rθ =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 , Rϕ =

cosϕ −sinϕ 0
sinϕ cosϕ 0
0 0 1

 (2.5)

Thus the combined rotation matrix that represents all three successive rotations would be,

Rall = Rϕ ∗Rθ ∗Rη (2.6)

2.2.1. Aerodynamic load equations and Passive Pitching Motion

The two major sections in the work of Q. Wang[1] are the calculation of the aerodynamic load equations
and the calculation of the passive pitching motion. Instead of computing the total aerodynamic load as a
single term, the total load is separated into four parts: translation-induced load, rotation-induced load,
load due to the coupling between the wing translation and rotation, and load due to the added-mass
effects. This is because it is nontrivial to analytically formulate the total aerodynamic load in a single

term because of the unsteadiness of the fluid surrounding flapping wings.[1]

Of the above four loads, the first three loads are the pressure loads induced by the translation and/or
rotational velocities, and the fourth load is due to the energy dissipation or absorption by the fluid. For
all four individual loads, separate equations are set up for the resultant forces and torques. Thus for each
individual load, the load equations consist of both force computation and torque computation, where
the force is computed along the yc axis, and the torque computation is done about the respective axis of
rotation, which are the xc and zc axes. After computing the individual loads, the total aerodynamic load
on the wing is computed by the sum of these individual loads. The decomposition of total aerodynamic
loads on a flapping wing is depicted in Figure 2.5.
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Figure 2.5.: Decomposition of total aerodynamic load[1]

Q. Wang works on computing the passive pitching motion for a specified sweeping and heaving motion
in his work. The pitching motion is passive in nature in the Atalanta project, and also in most of the
insects [2], [12], [13], and the passive pitching motion depends on the stiffness of the elastic hinge at the
wing root. As explained, pitching motion is the rotation about the xc axis of the co-rotating frame. Thus
to compute the passive pitching motion of the wing, the torque generated about the xc axis from all four
individual loads is used, and this constitutes the aerodynamic torque τaeroxc

. The equation of motion of
the wing pitching is generated, which is solved to find the passive pitching motion. The idea of generating
the equation of motion is, since the moment of inertia of the wing is constant in the co-rotating frame,
the addition of the applied torque and the inertial torque should be zero. A detailed explanation of the
individual loads is given in Chapter 3

Wagner Effect:

The Wagner effect is a principle in aerodynamics that describes the increase in lift experienced by a body
as its speed approaches or exceeds the speed of sound in the surrounding medium, usually air. For the
study of aerodynamics of insect flights, the Wagner effect is generally ignored due to the rapidly formed
LEV as a result of high angle of attacks over the entire stroke and low Reynolds numbers.[1] Thus the
decision to include the Wagner effect is made on the Reynolds number value and the type of wing motion.

In the work of Qi Wang, if the Wagner effect is to be included, all the circulatory loads will be multiplied

by an approximate formula of Wagner’s function given by Jones[14]

Φ(t∗) = 1− 0.165e−0.0455t∗ − 0.335e−0.300t∗ (2.7)

where t∗ is a non-dimensional quantity defined as the number of semi-chords the wing has traveled.[1]

This equation is taken from the work of Q.Wang[1] In this thesis work for updating the model for
additional velocity conditions, the Wagner effect is not included.

2.2.2. Aerodynamic modelling of the wing using Blade element method

As explained, the work of Q.Wang[1] uses the BEM with the quasi-steady aerodynamic model. The wing
is discretized into a small number of strips, and in each strip, the load equations are computed, and the
total load on the wing is computed by the summation of the individual strip loads. All four individual
loads and the passive pitching motion calculation use the BEM. A visual representation of the BEM

employed is given in Figure 2.6
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Figure 2.6.: Blade element method of the wing[1]

The width is exaggerated in the depiction in Figure 2.6, but the idea is explained where the wing
is discretized into a small number of spanwise strips (dxc), and the load calculation is done on each
individual strip. i in Figure 2.6 represents the number of the strip, and dxc represents the width of
each strip in the xc direction. Accuracy and computational time increase when the width of each strip
decreases. For the computation of rotation-induced loads, in addition to the spanwise strips, the wing is
also discretized into chordwise strips (dzc).

2.2.3. Validation of Q. Wang’s quasi-steady aerodynamic model for hovering
conditions

The validation of Q. Wang’s model for simple cases shows good correlation between calculated and
measured values of lift, drag, and aerodynamic torque about the pitching axis, illustrated in Figure
2.7

Figure 2.7.: Comparison of lift, drag and aerodynamic torque about the pitching axis[1]

The work also validates the passive pitching motion produced by comparing the calculated values of Euler
angles to the measured values of Euler angles for a kinematic stroke. Figure 2.8 shows the correlation
between measured and calculated passive pitching motions.
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Figure 2.8.: Comparison of passive pitching motion of Q.Wang[1] with the model of Whitney & Wood[4]

From the validation of this model, it is concluded that this model can be used to predict the aerodynamic
loads on a wing, the passive pitching motion, and also can be used to design and optimize a flapping
wing for hovering conditions.

2.3. Changes required in using the same quasi-steady model for
forward flight

2.3.1. Differences between hovering and forward flight

Understanding the important differences between hovering condition and forward flight condition of
flapping wing motion is important for updating the quasi-steady aerodynamic model for additional
velocity conditions. Several studies have analysed the differences between the two conditions, where the
major differences can be summarised as:

1. In insects, the major difference between the two conditions is the geometric shape of the kinematic
stroke. In hovering, most of the insects produced a kinematic stroke with a symmetric motion
profile, thus the aerodynamic forces and pitching moment during both upstroke and downstroke

are identical.[15] But in forward flight, the kinematic stroke is asymmetric in such a way that the

wing in downstroke produces most of the lift force, enough to stay airborne.[15]

2. For forward flight, studies show that the amount of lift and thrust forces produced is sensitive
to the flapping conditions such as flapping frequency, flapping amplitude, and flow velocity etc.,
Results from [16] indicate that the thrust increases with flapping frequency. The average thrust
value increases with respect to the flapping frequency, like a quadratic function and the trends do
not change in different angles of attacks. An increase in wind tunnel speed and flow angle of attack

leads to a reduction in thrust value and increases the lift component.[16] The lifting force due to

flapping will increase with an increase in flapping amplitude and flapping frequency.[17] Also from
this study, the cruise speed is found as a function of the flapping frequency for various angles of
attack.

3. From the study of [15], it is found that the change of the advance ratio inflicts on the underlying

physics of the Leading Edge Vortex attachment.[15] This implies the implicit difference between
the aerodynamics of hovering and forward flight.

4. While setting up the analytical equations, forward velocity (additional velocity) should be included
as a parameter, either a dependent or free parameter, in the flight equations. This is not the case
while setting up the analytical equations for hovering flight.
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2.3.2. Major works on the changes in the quasi-steady model for forward flight
conditions and their discussions

Several studies have been done in updating the quasi-steady aerodynamic model for forward flight, by
accounting for the differences between hovering and forward flight. Of those, works of Jong-seob Han
[15],[18] are of major importance in updating the quasi-steady model. His work focuses on insect-like
flapping wings, thus implying the use of an asymmetric motion profile for the kinematic stroke in forward

flight. Another major work is of Dickson and Dickinson[19]. A brief description of the major work are:

1. Dickson and Dickinson[19] indicate that the lift and drag coefficients, for a fixed angle of attack, are
not constant for non-zero advance ratios, but rather vary in magnitude throughout the stroke. They
show that the dependence of the lift and drag coefficients upon advance ratio and stroke position can
be characterized effectively in terms of the tip velocity ratio - the ratio of the chordwise components
of flow velocity at the wing tip due to translation and revolution. They introduce a modified quasi-
steady model that is capable of incorporating the dependence of the force coefficients on the tip

velocity ratio.[19]

2. In the work of [15], a quasi-steady model was developed for forward flight, by accounting for the
differences in geometrical relationships of inclined stroke plane, induced flow, and effective angle of
attack in order to suit for forward flight. This change in the geometrical relationship of kinematics
was done because, an insect in forward flight not only changes the wing kinematics, but also the
stroke plane and the body pitch. However, the quasi-steady model including such a geometrical
relationship does not show a good agreement with the measurements, and the differences are grad-
ually increased with respect to the advance ratio. This implies that the effects of the advance ratio
brought on substantial changes in the underlying physics of the Leading Edge Vortex attachment.
This also implies that the quasi-steady aerodynamic model should be compensated for, by including
the advance ratio effect.

3. Work [18] is a continuation of the work of [15], where this model effectively compensated for the
influences of advance ratio, and shows good moment estimation. This was done by rebuilding the
correction factors of the potential and vortex force models, KP and KV as functions of advance
ratio and angle of attack, where these correction factors are empirical. With this model, it was
found that a lower value of the angle of attack during the downstroke would be an effective strategy
for generating the required lift. In the upstroke phase, the added mass component played a major
role in generating thrust. From the comparison of estimated and measured values of force and
moment produced, it is concluded that this model can be used as an effective quasi-steady model

for the forward flight of insect-like flapping motion[18].

2.4. Conclusions from literature retrieval

Major conclusions from the literature review include:

1. Regarding the aerodynamics of the Atalanta project, a quasi-steady aerodynamic model for hover-

ing condition is developed by Q. Wang[1], which uses BEM theory and computes the total aerody-
namic load by dividing it into four individual loads, which are, translation-induced load, rotation-
induced load, coupling load, and added-mass load.

2. An important recommendation from Q. Wang’s work[1] is that, for the study of forward flight,
the contribution of the velocity of forward flight to the resultant translational velocity has to be
included. This can be done by transforming the forward velocity from the inertial frame to the

co-rotating frame and then adding this to the translational velocity vc.
[1] This recommendation is

used as a major inspiration for this research work.

3. Q. Wang does not use any empirical variable to fit the model.

4. For insect-like flapping motion, i.e., the flapping motion that utilizes asymmetric kinematic profile
of motion for forward flight, the updation of the quasi-steady aerodynamic model should follow

the procedure of Han’s work[18], where the correction factors KP and KV are rebuilt as functions
of advance ratio and angle of attack. This model is a semi-empirical model meaning results from
experimental tests are used in generating the model.
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2.5. Research Question

The research gap pertaining to my project would be that, for the Atalanta project, the work on a quasi-
steady aerodynamic model for forward flight conditions (additional velocity conditions) is yet to be done.

This work would be a continuation of Q. Wang’s work[1], which deals with the quasi-steady model for
hovering conditions. Another research gap found was that the works [19], [15], [18] that deal with the
quasi-steady model for forward flight, all use an asymmetric kinematic profile for the flapping motion in
order to mimic the motion produced by an insect. The fundamental differences of aerodynamics between
symmetric and asymmetric kinematic profiles are studied in these works and the final result effectively
produces a good model for the asymmetric profile. Since the Atalanta project uses a linear actuator to
produce the required flapping motion and is aimed on minimizing the total power consumed, using an
asymmetric kinematic profile during upstroke and downstroke phases is nearly impossible, because of the
complex control of the linear actuator and the increased power requirement that are necessary for that.
And, since the prescribed symmetric sweeping motion profile is to be used in the Atalanta project, can
the results of works [19], [15], [18] be used to update the quasi-steady model for our project is another
research gap that needs to be addressed.

Thus the research questions for my project, from the identified research gaps would be, how to update
the quasi-steady aerodynamic model of Q. Wang for additional velocity conditions (mimicking forward
flight conditions) by still using the prescribed sweeping motion produced by a linear actuator? What are
the various observations made by incorporating the additional velocities into the updated quasi-steady
aerodynamic model?
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3. In-depth understanding of Q. Wang’s
quasi-steady model

Initial work included the choice of the general approach considered, to answer the research question. The
main choice made was not to use any empirical variable in the updated model for additional velocity
conditions, reasons being:

1. Q. Wang’s work did not use any empirical variable in the quasi-steady model, to enable the model for

application of shape and kinematics optimization.[1] Thus to continue the work on the aerodynamics
of the Atalanta project, the update of Q. Wang’s quasi-steady aerodynamic model to include
additional velocities was also done without the use of any empirical variables.

2. The scope of this thesis project is not concerned with the experimental verification and correction of
the aerodynamics of the Atalanta project, but rather focuses on the analytical methods to include
the additional velocities in the load calculations.

Various analytical methods were analysed to update the quasi-steady model to include additional veloc-
ities. Thus the initial step was to understand the quasi-steady model of Q. Wang in detail. The high
complexity of the model that uses multiple functions and equations required the need of breaking down
the entire process into smaller steps. A brief description of the steps to understand the work of Q. Wang
is included in this section.

3.1. Input Parameters and Kinematic motions

Several input parameters were employed in Q. Wang’s model, which is classified into vehicle param-
eters that include vehicle parameters such as the mass of the vehicle and the number of wings etc.,
morphological parameters that include parameters for wing description, kinematic parameters that in-
clude parameters for describing the kinematic strokes, control parameters that include parameters for
discretization and optimization control, and constant parameters that include the constants such as fluid
density and Young’s Modulus of spring steel. These parameters are used in various functions to generate
necessary inputs for the aerodynamic load and passive pitching calculation.

The morphology of the wing is described using three separate functions, namely WingShape function that
describes the wing discretization, WingThicknessDistribution function that describes the wing thickness
distribution all over the wing, and WingMassDistribution function that is used to compute the inertia
matrix, added mass coefficient matrix and mass center of the wing. These three functions cumulatively
describe the morphology of the wing, which is used in the analytical model.

The final section of input functions is the kinematic motions, which are the sweeping motion, the pitching
motion and the heaving motion. Q. Wang’s quasi-steady model uses a prescribed sweeping and heaving
motion, while the passive pitching motion is solved for as explained in Section 3.4. The prescribed sweep-
ing/ heaving motion takes in parameters such as flapping frequency in Hz, sweeping/ heaving amplitudes
in rad, sweeping/ heaving offsets in rad, etc. The output of these prescribed motions are the sweeping/
heaving angle, angular velocity, and angular acceleration. For this thesis project, the prescribed motions
are simple sinusoidal harmonic functions.

3.2. Angle of attack and aerodynamic load equations

This Section explains the calculation of the angle of attack and the aerodynamic load equations, by
briefly explaining the underlying concepts and the equations used.
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CHAPTER 3. IN-DEPTH UNDERSTANDING OF Q. WANG’S QUASI-STEADY MODEL

3.2.1. Angle of attack

The angle of attack for a rigid wing model can be calculated by the inverse cosine function of the absolute
value of the ratio of the translational velocity ’vzc ’ in the zc axis, and the translational velocity ’vc’ in

the co-rotating frame,[1] given by the equation,

AOA = arccos(|vzc/vc|) (3.1)

This can further be simplified by expanding vzc and vc based on their definition, which is given by,

vzc = xc ∗ ωyc
(3.2)

vc = xc ∗
√
ω2
yc

+ ω2
zc (3.3)

where xc is the coordinate of a point along the xc axis. Thus the angle of attack can be simplified for
hovering condition as,

AOA = arccos(|ωyc
/
√
ω2
yc

+ ω2
zc |) (3.4)

This angle of attack (AOA) is used in the model. If the real AOA is higher than π/2, then the Trailing
Edge (TE) is taken as the Leading Edge (LE), and then the AOA becomes π - AOA, thus the angle of
attack in the model is always less than π/2. This angle of attack is used in the calculation of the center
of pressure, lift coefficients and force coefficients.

3.3. Center of pressure, and coefficients of lift, drag, and force

The model of Q. Wang[1] calculates the center of pressure, lift coefficients and force coefficients in
different ways depending on the requirements and the complexity required in the model. The different
ways employed to calculate the center of pressure value are either an analytical method, a method from
the work of Dickson et.al.,[20], or a method from the work of Han et.al.,[21]. The two different ways
that were employed to calculate the Coefficient of Lift (CL), Coefficient of Drag (CD), and Coefficient
of Force (CF ) were a State-space method from Taha et.al.,[22] and a method that uses empirical force
coefficients. All these different methods that were employed in Q. Wang’s model[1] is explained in the
appendix section. But in this research work, for computing the center of pressure, the analytical method
was used, and to calculate the coefficients of lift, drag, and force, the State-space method from Taha
et.al.,[22] is used. The used equations to compute these values are,

d̂transcp = (0.5/90) ∗AOA/π ∗ 180 (3.5)

Ctrans
L = π ∗AR eff ∗ sin(2 ∗AOA)/(2 +

√
AR eff2 + 4) (3.6)

Ctrans
D = Ctrans

L ∗ tan(AOA) (3.7)

Ctrans
D = 2 ∗ π ∗AR eff ∗ (sin(AOA))2/(2 +

√
AR eff2 + 4) (3.8)

Ctrans
Fyc

= Ctrans
L /cos(AOA) (3.9)

Ctrans
Fyc

= 2 ∗ π ∗AR eff ∗ sin(AOA)/(2 +
√
AR eff2 + 4) (3.10)

where Equations 3.8 and 3.10 are expanded equations of Equations 3.7 and 3.9 respectively.
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3.3. CENTER OF PRESSURE, AND COEFFICIENTS OF LIFT, DRAG, AND FORCE

3.3.1. Translation-induced loads

The translation of the wing produced primarily due to the sweeping motion causes the translation-induced
load. The load equations employ the lift coefficient and the translational force coefficients calculated
from the angle of attack, given by Equations 3.5, 3.6, 3.8, and 3.10. The translation-induced loads are
subdivided into three which are, the wing translation-induced force F trans

yc
in the yc axis, the torques

about the xc axis, ’τ
trans
xc

’ and zc axis, ’τ
trans
zc ’ of the co-rotating frame due to translation. The equations

for these three load equations are given by,

F trans
yc

= −sgn(ωzc)(1/2)ρ
f (ω2

yc
+ ω2

zc)C
trans
Fyc

∫ R

0

x2
ccdxc (3.11)

τ transxc
=

{
−sgn(ωzc)(ρ

f/2)(ω2
yc

+ ω2
zc)C

trans
Fyc

(d̂transcp − d̂)
∫ R

0
x2
cc

2dxc, when ωyc
≤ 0

−sgn(ωzc)(ρ
f/2)(ω2

yc
+ ω2

zc)C
trans
Fyc

(1− d̂transcp − d̂)
∫ R

0
x2
cc

2dxc, when ωyc > 0
(3.12)

and,

τ transzc = −sgn(ωzc)(ρ
f/2)(ω2

yc
+ ω2

zc)C
trans
Fyc

∫ R

0

x3
ccdxc (3.13)

In all equations given in this work, ’xc’ represent the position of the strip along the wingspan, and
does not indicate the xc axis. It is important to understand the influence of translational velocity vc
in the calculation of the above load equations. For translation-induced loads, the squared value of the
translational velocity vc is used for the calculations, where vc is given in Equation 3.3.

3.3.2. Rotation-induced loads

When a wing rotates about an arbitrary axis in a medium, it experiences distributed loads, which leads
to rotation-induced loads. To calculate this load using BEM, the wing has to be discretized into chordwise
strips, and the resultant rotation-induced force is calculated by integrating the load on each infinitesimal
area over the entire wing surface. The rotation induced loads are divided into three, which are the
force ’F rot

yc
’ in the yc axis due to rotation, and torques about xc and zc axes, which are τ rotxc

and τ rotzc
respectively. These equations are given by,

F rot
yc

= (ρf/2)ωxc
|ωxc

|Crot
D

∫ R

0

∫ d̂c

d̂c−c

zc|zc|dzcdxc (3.14)

τ rotxc
= −(ρf/2)ωxc

|ωxc
|Crot

D

∫ R

0

∫ d̂c

d̂c−c

|zc|3dzcdxc (3.15)

and,

τ rotzc = (ρf/2)ωxc
|ωxc

|Crot
D

∫ R

0

∫ d̂c

d̂c−c

zc|zc|xcdzcdxc (3.16)

where Crot
D is the rotational damping coefficient. During stroke reversals, Crot

D is equal to the translational

drag coefficient Ctrans
D .[1] For rotation-induced loads, there is no direct dependence of the translational

velocity vc for the load calculation.

3.3.3. Loads due to the coupling between translation and rotation of the wing

Although the translation and rotation-induced loads have been modelled analytically and separately,
Sane and Dickinson [23] reported higher resultant force than just adding the translation and rotation
components. This additional force is explained by the coupling-induced loads. The coupling between
the translation and rotation can be explained by the projection of translational velocity on the zc axis,
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CHAPTER 3. IN-DEPTH UNDERSTANDING OF Q. WANG’S QUASI-STEADY MODEL

i.e. vzc on the circulation produced by wing rotation.[1] The resulting coupling-induced load equations
are given by the equations,

F coup
yc

=

πρfωxc
ωyc

[∫ R

0
((3/4)− d̂)c2xcdxc +

∫ R

0
(1/4)c2xcdxc

]
, when ωyc

≤ 0

πρfωxc
ωyc

[∫ R

0
(d̂− (1/4))c2xcdxc +

∫ R

0
(1/4)c2xcdxc

]
, when ωyc

> 0
(3.17)

τ coupxc
=

πρfωxc
ωyc

[∫ R

0
((3/4)− d̂)((1/4)− d̂)c3xcdxc +

∫ R

0
(1/4)((3/4)− d̂)c3xcdxc

]
, when ωyc

≤ 0

πρfωxc
ωyc

[∫ R

0
(d̂− (1/4))((3/4)− d̂)c3xcdxc +

∫ R

0
(1/4)((1/4)− d̂)c3xcdxc

]
, when ωyc

> 0

(3.18)

and,

τ coupzc =

πρfωxcωyc

[∫ R

0
((3/4)− d̂)c2x2

cdxc +
∫ R

0
(1/4)c2x2

cdxc

]
, when ωyc ≤ 0

πρfωxcωyc

[∫ R

0
(d̂− (1/4))c2x2

cdxc +
∫ R

0
(1/4)c2x2

cdxc

]
, when ωyc > 0

(3.19)

As explained in this section, these load calculations directly depend on the translational velocity vzc in
the zc axis, given by Equation 3.2

3.3.4. Added mass loads

When the flapping wing reciprocates, the accelerated fluid surrounding the fluid imposes a reaction on
the flapping wings. This reaction is modelled as the added mass loads, which are modelled by the added
mass coefficients multiplied by the acceleration of the flapping wings. The matrix of the added mass

coefficients is expressed as[1],

M =

[
m22 m24

m42 m44

]
= (π/4)ρfc2

[
1 c((1/2)− d̂0)

c((1/2)− d̂0) (1/32)c2 + c2((1/2)− d̂0)
2

]
(3.20)

With this added mass coefficient matrix, the added mass loads are calculated by,

[
F am
yc

τamxc

]T
= −

∫ R

0

M
[
ayc

αxc

]T
dxc (3.21)

where, ayc is the translational acceleration in the yc direction, and αxc is the rotational acceleration
about the xc direction. On expanding the equation 3.21, we get separate load equations for F am

yc
, τamxc

and τamzc , given by the equations

F am
yc

= −((αzc + ωxc
ωyc

)(π/4)ρf
∫ R

0

c2xcdxc)− (αxc
(π/4)ρf

∫ R

0

c3(((1/2)− d̂)dxc)) (3.22)

τamxc
= −((αzc+ωxc

ωyc
)(π/4)ρf

∫ R

0

c3((1/2)−d̂)xcdxc)−(αxc
(π/4)ρf

∫ R

0

c4((1/32)+((1/2)−d̂)2)dxc)

(3.23)

τamzc = −((αzc + ωxc
ωyc

)(π/4)ρf
∫ R

0

c2x2
cdxc)− (αxc

(π/4)ρf
∫ R

0

c3((1/2)− d̂)xcdxc) (3.24)

The contribution of these individual loads is added up corresponding to respective forces and torques,
to calculate the total loads in the co-rotating frame of the wing. To realize these forces in the inertial
frame, the combined rotation matrix of the three successive rotations, mentioned in Equations 2.5 and
2.6, is used to transform the forces from the co-rotating frame to the inertial frame. The forces in the
inertial frame provide information on the lift and drag.
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3.4. PASSIVE PITCHING MOTION

3.4. Passive pitching motion

As explained in Section 2.2.1, the passive pitching motion is computed in the quasi-steady model for a
prescribed sweeping and heaving motion, by setting up an equation of motion that states that sum of
the applied torque and the inertial torque should be zero. The applied torque τappliedxc

consists of the
elastic torque and the aerodynamic torque. The aerodynamic torque is the addition of all torques about
the xc axis. These would be the torques given in Equations 3.12, 3.15, 3.18, and 3.23. Thus the total
aerodynamic torque would be given by,

τaeroxc
= τ transxc

+ τ rotxc
+ τ coupxc

+ τamxc
(3.25)

The inertial torque τ inerxc
on xc axis can be divided into the term −Ixcxc η̈ and the inertial drive torque

τdrivexc
. The inertial drive torque τdrivexc

can be expressed as,

τdrivexc
= Ixcxc

[
(1/2)ϕ̇2cos2θsin(2η)− (1/2)θ̇2sin(2η) + 2ϕ̇θ̇cosθcos2η + ϕ̈sinθ

]
+ Ixczc

[
θ̈sinη + (1/2)ϕ̇2sin(2θ)sinη − ϕ̈cosθcosη + 2ϕ̇θ̇sinθcosη

]
(3.26)

The resulting equation of motion that is solved to generate the passive pitching motion is,

Ixcxc
η̈ + kηη = τaeroxc

+ τdrivexc
(3.27)

This equation of motion governs the passive pitching motion of the flapping wings. An ode solver is used
to solve the resulting Lagrangian equation, to solve for the pitching motion angle and angular velocity.
The pitching motion angular acceleration is computed by differentiating the computed pitching angular
velocity. The components of the moment of inertia matrix used in Equations 3.26, and 3.27 are computed
from the wing mass distribution of the wing. The computed passive pitching motion is used as input for
computing the load equations.

Thus the sequence of running the model would be first reading all the required parameters, comput-
ing the passive pitching motion, and then computing the aerodynamic loads. The following schematic
represents the sequence of flow of the various functions involved in the model.

Figure 3.1.: Flowchart of functions
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4. Assumptions made while updating the
quasi-steady model

The high complexity of the quasi-steady aerodynamic model used by Q. Wang[1] for hovering conditions
which uses multiple inputs, functions, and variables, as depicted in Figure 3.1 makes updating the model
for additional velocity conditions a complicated process that requires making some assumptions for the
initial update. This thesis work focuses on updating the load equations and angle of attack equations of
the quasi-steady model to include additional velocities. Some assumptions were made depending on the
complexity of the assumed function and whether the assumed function deviates from the core scope of
this project. This updated model assumes a simple wing shape, which is rectangular, and assumes that
the prescribed sweeping motion remains the same. Also, the wing is assumed to be a rigid one, which
is then used to compute the morphology parameters of the wing required. The updated model does not
use empirical variables to fit the equations. This section describes the assumptions made and the reason
for making those assumptions.

4.1. Same prescribed sweeping motion and no heaving motion

The existing quasi-steady model of Q. Wang uses prescribed sweeping and heaving motion and computes
the passive pitching motion as explained in Section 3.4. In the updated model, the same prescribed
sweeping motion is considered which has an amplitude of (60/180) ∗ π rad, and the vertical offset of the
sweeping angle is set as 0 rad. A prescribed sweeping motion is assumed since the Atalanta project uses
a linear actuator to produce the sweeping motion, and since forward flight parameters such as the power
required from the actuator, and the thrust produced are not studied in this work, the same prescribed
motion is assumed for the sweeping motion. Section 7.6 in Chapter 7 describes the effect of additional
velocities on the computed resultant translational velocities changes between the phases of the kinematic
cycle, thus gives insights on the induced stroke acceleration differences between the phases, as explained
in Section 9.2. Thus this work serves as an initial step to work on calculating the change of sweeping mo-
tion (sweeping motion acceleration), which in turn affects the setting up of the angular velocities which
influence the load calculations. This work assumes that there is no heaving motion from the kinematics
of the wing. The reason behind this is that this assumption makes the problem simple to understand
the variations of the load calculations compared to the hovering condition for various additional velocity
conditions.

These assumptions do not make the approach of updating the aerodynamic load equations of the quasi-
steady model conceptually wrong but rather serve as the initial step for the final quasi-steady model
that optimizes all the kinematic motions.

4.2. Wing root is fixed in the inertial frame of reference

The wing root is assumed to be fixed in the inertial frame in this research work. This is done in order to
analyze the loads that are generated on the wing when it does not move along with the inflow velocity.
This assumption also follows the work of Q. Wang[1], where in his work too the wing root was not
moving in the inertial frame. Thus the resultant velocity on the wing was only concerned with the
velocity components vyc

and vzc , implying that the wing root was fixed in the inertial frame and thus
there was no velocity in the xc axis of the co-rotating frame.
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CHAPTER 4. ASSUMPTIONS MADE WHILE UPDATING THE QUASI-STEADY MODEL

4.3. Wing parameters used for the observations

For almost all the observations made in this work, the flapping frequency is used as 30 Hz and the
elastic stiffness of the hinge is used as 10 e-04 N/m. These were the upper limits of the values used
in the work of Q.Wang[1]. The reason for using a fixed flapping frequency and elastic hinge stiffness is
to make getting the observations and analyzing them simple, thus the focus can be only on analyzing
the aerodynamic result variations due to additional velocities and neglecting the flapping frequency and
elastic hinge stiffness dependencies.

As explained, a rectangular wing is used in this model to reduce the complexities. The spanwise strip
width, ’dxc’ is kept as a constant which is 5 e-04 m, and the width of the chordwise strip, ’dzc’ is 2 e-04
m. The mass of the wing is also kept constant, with a value of 5 e-05 kg. The density of the wing is used
as 60 kg/ m3 and the effective aspect ratio, ’AR eff’ is 2.5. These values were not assumed randomly,
but the same values used in the work of Q.Wang[1]. These values are constant in all the observations
made in this work, expect for the sections 7.4 and 7.5, where the influence of the elastic hinge stiffness
on the computed passive pitching motion and the influence of flapping frequency on aerodynamic loads
respectively are studied individually, meaning both the flapping frequency and the elastic hinge stiffness
are not varied simultaneously. Future work may involve the study of varying these constant parameters
in the updated model.
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5. Updated quasi-steady aerodynamic model

The main goal of this thesis project is to update the quasi-steady aerodynamic model for additional ve-
locity conditions. The complexity of this research question requires a proper understanding of the present
quasi-steady aerodynamic model, as explained in Chapter 3. A decision was made to update the model
by explicitly using the translational velocity or its components in the angle of attack and aerodynamic
load equations, thus additional velocities can be added to compute the results. As explained in Section
3, the translation-induced and coupling loads are updated, while changes in results of rotation-induced
and added mass effects are due to the implicit changes of angular velocities. A detailed explanation of
the steps for updating the model is explained in this section.

The first approach considered was to convert the angular velocities to linear velocities at each strip
along the wingspan, using the relation between them given by Equation 2.3. The main idea behind this
approach was that all load equations as used in Q. Wang’s function explicitly use angular velocities.
This approach was dismissed quickly because of the naivety of considering the existence of one-to-one
mapping between angular and linear velocities when computing the linear velocities by the inverse of the
cross product of angular velocities. Computing the linear velocities by the inverse of the cross product
of angular velocities does not lead to a unique solution for all cases.

The main reason for the rejection of this approach is that this approach does not fully utilize the
mechanics of setting up the load equations by Q. Wang’s method. From a proper understanding of the
load equations, it is evident that the load equations utilize translational velocity or its components, and
that recalculation of the same translational velocity from the angular velocities was wrong and unnec-
essary, but proper use of translational velocity relations and equations was needed. This was a crude
initial approach that was quickly rejected for the said reasons and not many proceedings were done for
this approach.

5.1. Explicit velocity terms in equations

The decided final approach to update the model makes use of the proper definition of load equations and
angle of attack of Q. Wang’s quasi-steady aerodynamic model, that is the use of the proper definition of
each component of, and total translational velocity vc in the appropriate load equations as explained in
Section 3.2.1 and Equations 3.2 and 3.3. Thus the initial step was to update the angle of attack and the
load equations to explicitly contain the required translational velocity components and then additional
translational velocity can be added to compute the results. The rotation-induced load equations and
added mass load equations remain the same since these load equations do not explicitly contain trans-
lational velocity components, evident from Section 3.3.2 and Chapter 3.3.4. The updated equations to
explicitly include velocity terms would then become,

Translation induced loads:

F trans
yc

= −sgn(ωzc)(1/2)ρ
fCtrans

Fyc

∫ R

0

v2ccdxc (5.1)

τ transxc
=

{
−sgn(ωzc)(ρ

f/2)Ctrans
Fyc

(d̂transcp − d̂)
∫ R

0
v2cc

2dxc, when ωyc
≤ 0

−sgn(ωzc)(ρ
f/2)Ctrans

Fyc
(1− d̂transcp − d̂)

∫ R

0
v2cc

2dxc, when ωyc > 0
(5.2)

τ transzc = −sgn(ωzc)(ρ
f/2)Ctrans

Fyc

∫ R

0

v2cxccdxc (5.3)
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CHAPTER 5. UPDATED QUASI-STEADY AERODYNAMIC MODEL

Coupling loads:

F coup
yc

=

πρfωxc

[∫ R

0
((3/4)− d̂)c2vzcdxc +

∫ R

0
(1/4)c2vzcdxc

]
, when ωyc

≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))c2vzcdxc +

∫ R

0
(1/4)c2vzcdxc

]
, when ωyc

> 0
(5.4)

τ coupxc
=

πρfωxc

[∫ R

0
((3/4)− d̂)((1/4)− d̂)c3vzcdxc +

∫ R

0
(1/4)((3/4)− d̂)c3vzcdxc

]
, when ωyc

≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))((3/4)− d̂)c3vzcdxc +

∫ R

0
(1/4)((1/4)− d̂)c3vzcdxc

]
, when ωyc

> 0

(5.5)

τ coupzc =

πρfωxc

[∫ R

0
((3/4)− d̂)c2vzcxcdxc +

∫ R

0
(1/4)c2vzcxcdxc

]
, when ωyc ≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))c2vzcxcdxc +

∫ R

0
(1/4)c2vzcxcdxc

]
, when ωyc > 0

(5.6)

The angle of attack equation has to be set up to contain explicit velocity components as well to capture
the effects of additional velocities. The simplified equation of angle of attack, given by equation 3.4 is
used in Q. Wang’s model mainly because of computational efficiency, and the fact that the angle of attack
remains the same along the wingspan strips for the hovering case. But for additional velocity conditions,
the proper full definition of the angle of attack that uses translational velocity and its components,
given by Equation 3.1 has to be used to include additional velocities. Thus the updated model uses the
equation 3.1 to compute the angle of attack. This equation would be referred to as the updated angle of
attack equation in the further sections.

5.2. Updating load equations for additional velocities

The next step would be to account for the additional velocities in the equations by modifying the
translational velocities vc and vzc to include both velocities from kinematics and additional velocities.
Velocities from kinematics are given by Equations 3.2 and 3.3. Additional velocity is specified in the
inertial frame, and it is transformed into the co-rotating frame by using the inverse of the total rotation
matrix given by Equation 2.6. Thus the additional velocity in the co-rotating frame is given by Equation
5.7.

vcorotc,add = inv(Rall) ∗ vinerc,add (5.7)

where vcorotc,add represents the additional translational velocity in the co-rotating frame, and vinerc,add, repre-

sents the additional translational velocity in the inertial frame. The vcorotc,add equation in 5.7 contains the
components vxc,add, vyc,add, and vzc,add in their respective axes. Thus using these additional velocity
components, the resultant velocity on the wing is recomputed in the co-rotating frame.

5.2.1. Updated translation-induced loads

The translation-induced loads utilize the translational velocity vc in the load equation, thus the updated
resultant velocity should include vcorotc,add in the resultant velocity calculation. Understanding Equation
3.3 in detail shows that the translational velocity vc is the resultant of the components vyc

and vzc .
This is because the wing is fixed to the root, thus the co-rotating frame does not move about the xc

axis, and thus the velocity in the xc axis does not contribute to the resultant velocity equation. The
same is assumed in this thesis work, where the co-rotating frame does not move about the xc axis. The
translational velocity vc is represented by the equation

vc =
√
v2yc

+ v2zc (5.8)

where vyc
and vzc are given by the equations

vyc
= xc ∗ ωzc vzc = xc ∗ ωyc

(5.9)

24



5.2. UPDATING LOAD EQUATIONS FOR ADDITIONAL VELOCITIES

Thus for additional velocity conditions, the components vyc,add and vzc,add have to be added to vyc
and

vzc to compute the resultant translational velocity vc,res, given by the equation

vc,res =
√
(vyc + vyc,add)

2 + (vzc + vzc,add)
2 (5.10)

where,

vyc,res = vyc + vyc,add (5.11)

vzc,res = vzc + vzc,add (5.12)

The sign of the translation-induced load equations depends on the sign of ωzc in the model of Q. Wang.
But the main idea behind this is that the sign of these load equations depends on the sign of the velocity
in the yc axis since this value determines the sign of the translation-induced load. For additional velocity
conditions, it is imperative to use the sign of vyc,res instead of the sign of ωzc because this ensures that
the load equations have correct signs across the wingspan strips according to the motion of the wing
that includes the additional velocity. Moreover, the choice in Equation 5.14 for the translational torque
about xc has to be based on the sign of vzc,res to capture the effects of the additional velocities.

Thus the updated translation-induced loads become,

F trans
yc

= −sgn(vyc,res)(1/2)ρ
fCtrans

Fyc

∫ R

0

v2c,rescdxc (5.13)

τ transxc
=

{
−sgn(vyc,res)(ρ

f/2)Ctrans
Fyc

(d̂transcp − d̂)
∫ R

0
v2c,resc

2dxc, when vzc,res ≤ 0

−sgn(vyc,res)(ρ
f/2)Ctrans

Fyc
(1− d̂transcp − d̂)

∫ R

0
v2c,resc

2dxc, when vzc,res > 0
(5.14)

τ transzc = −sgn(vyc,res)(ρ
f/2)Ctrans

Fyc

∫ R

0

v2c,resxccdxc (5.15)

5.2.2. Updated coupling-loads

For coupling loads, the load equations depend on the translational velocity in the zc axis, as explained
in section 3.3.3. Thus vzc,res is used instead of vzc in the load equations, given by the equation,

vzc,res = vzc + vzc,add (5.16)

The condition for the choice of the equation for the coupling loads in Q. Wang’s model is the sign of ωyc .
But as in the translation-induced loads, the main idea here is to use the sign of vzc to make the choice.
Thus for additional velocity conditions, the sign of vzc,res has to be taken as the condition for making
the choice of the equation for coupling loads.

The resulting coupling load equations would then become,

F coup
yc

=

πρfωxc

[∫ R

0
((3/4)− d̂)c2vzc,resdxc +

∫ R

0
(1/4)c2vzc,resdxc

]
, when vzc,res ≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))c2vzc,resdxc +

∫ R

0
(1/4)c2vzc,resdxc

]
, when vzc,res > 0

(5.17)

τ coupxc
=

πρfωxc

[∫ R

0
((3/4)− d̂)((1/4)− d̂)c3vzc,resdxc +

∫ R

0
(1/4)((3/4)− d̂)c3vzc,resdxc

]
, when vzc,res ≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))((3/4)− d̂)c3vzc,resdxc +

∫ R

0
(1/4)((1/4)− d̂)c3vzc,resdxc

]
, when vzc,res > 0

(5.18)

τ coupzc =

πρfωxc

[∫ R

0
((3/4)− d̂)c2vzc,resxcdxc +

∫ R

0
(1/4)c2vzc,resxcdxc

]
, when vzc,res ≤ 0

πρfωxc

[∫ R

0
(d̂− (1/4))c2vzc,resxcdxc +

∫ R

0
(1/4)c2vzc,resxcdxc

]
, when vzc,res > 0

(5.19)
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5.2.3. Updated passive pitching function

Since the passive pitching motion takes into account the torque about the xc axis, and that the translation-
induced loads and coupling-loads are updated for additional velocity conditions, the updated torque
equations for τ transxc

and τ coupxc
(given by Equations 5.14 and 5.18) have to be used while computing the

aerodynamic torque τaeroxc
, which is necessary for setting up the equation of motion of passive pitching

motion, given in 3.27. The updated passive pitching function also uses the updated angle of attack
equations. The process of setting up the equation of motion and the lagragian equation, and the use of
the ode solver remain the same as in the hovering condition.

5.2.4. Proper vector addition

The incorporation of the additional velocities in the calculation of the resultant velocities should be
done with proper vector addition. The method used in this thesis updates the model by adding the
kinematic velocities vyc and vzc with additional velocities vyc,add and vzc,add to compute the resultant
velocities vyc,res and vzc,res, which is then used to compute the resultant translational velocity vc,res.
This is explained in the equations 5.10, 5.11, and 5.12. Since the velocities vyc

, vzc , vyc,add, and vzc,add
are in the same frame of reference, and more importantly vyc

and vyc,add, and vzc and vzc,add are in their
respective same axis, there is no mismatch in the vector addition of these velocities.

The initial approaches considered to include the additional velocities in the model had the issue of
the improper vector addition of velocities. A brief description of the previous approach considered and
its problem with vector addition is explained in this section.
In the initial approach of updating the model, the resulting velocity is calculated by keeping the velocity
from the kinematics and the additional velocity separate, instead of computing the resultant vyc,res and
vzc,res velocities and then computing the resultant translation velocity vc,res. This is explained by the
following equation,

vc,res = vc + vc,add,res (5.20)

, where vc is the translational velocity from the kinematics and vc,add,res is the resultant translational
velocity from the additional velocities, which are given by the equations,

vc =
√
v2yc

+ v2zc vc,add,res =
√
v2yc,add

+ v2zc,add (5.21)

Thus in the above approach, the translational velocities from kinematics and additional velocities are
added up after finding their respective resultant velocities. This leads to the problem of these two
resultant translational velocities not having the same direction, thus leading to the problem of vector
addition. Thus this approach was not used in updating the model.

5.3. Calculation of results at each strip along the wingspan

The major update in the quasi-steady model is to compute the loads and the angle of attack at each
strip along the wingspan, and the summation of all the individual strip loads gives the total loads acting
on the wing. Even the model of Q. Wang[1] computes the aerodynamic loads at each strip, as is required
by the BEM employed, several variables which were constant at all individual strips along the wingspan
were taken out of the integration loop. This is evident from the equations referred to in Chapter 3,
where variables such as the angular velocities and translational lift coefficient Ctrans

Fyc
were taken out of

the integration loop. But for additional velocity conditions, since at each strip, the ratio of the resultant
velocities vzc,res and vc,res differ, thus the analytical angle of attack, and hence the analytical coefficient
of lift, drag, and force values as given by Equations 3.6, 3.7, and 3.9 is different at each strip along the
wingspan. And as explained in Sections 5.1 and 5.2, the updated model uses the translational velocity
variables explicitly in load equations, which vary at each strip along the wingspan. And since the angle of
attack values influence the load calculations, the correct load equations at each strip can only be realized
when computation is done at each strip with the new method, where all variables are taken inside the
integration loop. Then the total load on the wing is the summation of all these individual loads and the
total load is used for studying the global aerodynamic load characteristics. An example of an illustration
where all variables are taken inside the integration loop is given by Equation 5.22. Equation 5.22 is
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5.3. CALCULATION OF RESULTS AT EACH STRIP ALONG THE WINGSPAN

the same as Equation 5.13, but all variables are taken inside the integration loop. In the description
of this section, the terminology ’updated method’ refers to this case where all variables are inside the
integration loop, and the terminology ’previous method’ refers to the case where the variables are outside
the integration loop except for the translational velocity, as in the equations in Section 5.2.

F trans
yc

= −
∫ R

0

sgn(vyc,res)(1/2)ρ
fCtrans

Fyc
v2c,rescdxc (5.22)

The difference in the ratio of the resultant velocities vzc,res and vc,res is because the velocity from
the kinematics of the wing is minimum at strips near the root and maximum at strips near the tip.
Thus the presence of additional velocities has varied impact on the resultant velocities at various strips
along the wingspan. This influences the analytical angle of attack, and in turn the load equations, thus
the reason for computing individual strip loads by taking all variables inside the integration loop. The
observations done along the wingspan explained in the section 7.7 explain in detail about the need for
computing the individual calculations by the updated method. But to explain this basic premise, the
effect of the translational force on the wing in the yc axis is analyzed. A sample case studied is the
inclusion of an additional velocity of 3 m/s in the inertial y-axis in the quasi-steady model. The resulting
translational force in yc axis, F trans

yc
is calculated by two methods, where the previous method has the

variables outside the integration loop and the updated method has all the variables inside the integration
loop. The results are given in the following graph,

Figure 5.1.: Comparison of Translational force in yc axis for the two methods for additional 3 m/s in
inertial y axis

From the graph above (Figure 5.1), it is evident that the previous method is incorrect for additional
velocity conditions, from the abrupt jumps it produces which is illogical for a physical result. Since the
previous method does not account for the individual angle of attack and velocity changes at strips along
the wingspan, the results produced show abrupt jumps. This method also overestimates the peak forces,
which is again due to improper capture of individual strip load variations.

This effect increasingly worsens as the magnitude increases, since as the magnitude increases, the differ-
ence in the magnitude of the velocity vyc,res along the wingspan increases, which is explained in detail
in the section 7.7. This case of abrupt jumps in the force value is very evident in the following graphs.
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Figure 5.2.: Comparison of Translational force in yc axis for the two methods for additional 0.5 m/s in
inertial y axis

Figure 5.3.: Comparison of Translational force in yc axis for the two methods for additional 5 m/s in
inertial y axis

From the graphs 5.2 and 5.3, the necessary for computing individual strip load equations using the
updated method is evident. For lower magnitudes of additional velocity, as in the graph 5.2, the previous
method works just fine. But for higher magnitudes of additional velocity, as in the graph 5.3, the presence
of abrupt jumps in force value is very prominent for the previous method. For the same higher magnitude
of additional velocity, the updated method produces a physically meaningful force value that remains
continuous throughout the cycle.
This effect is also present for additional velocities in different axes, as well as in all the load component
calculations. The updated method gives a physically meaningful force result, where there are no abrupt
jumps in force values during the kinematic cycle. Having abrupt jumps in aerodynamic load graphs
implies that the result produced is meaningless, because all these aerodynamic loads are physical terms
observed, and it is illogical to have abrupt jumps. Thus the updated model computes individual strip
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5.3. CALCULATION OF RESULTS AT EACH STRIP ALONG THE WINGSPAN

loads and angles of attacks by calculating all the variables inside the integration loop, so the updated
method accounts for the proper definition of all analytical equations in additional velocity conditions.
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6. Verification of the updated model

The scope of this thesis project does not include validating the model with experimental results, thus
verification of the updated model is done by comparing the results with the conclusions of related
literature, and also the results are confirmed compared with the hovering case of Qi Wang. Also, the
results are checked if the produced results provide logical patterns since the idea is that the hovering
case has symmetric kinematic motion and force generation during both the strokes, and that when
additional velocities are in opposite directions, the produced results should be mirrored, and for increasing
magnitudes of additional velocity the produced results should vary according to the magnitude of the
additional velocity. Thus this section discusses the various methods employed to affirm the correctness
of the updated model.

6.1. Conformity with Q. Wang equations for hovering conditions

The working of the updated quasi-steady model can be confirmed by comparing the results and graphs of
the updated model with the results and graphs of the Q. Wang model[1]. The main idea is, the updated
model incorporates the additional velocities in the inertial frame and then uses them to compute the
resultant translational velocity of the wing in the co-rotating frame, and thus when the additional
velocities are zero, the updated model should compute the same aerodynamic results as in the hovering
case. Moreover, the cases of very small magnitudes of additional velocities in any axes should not alter
the results drastically compared to the hovering case, since the additional velocities are very small. Thus
to summarize, conformity with Q. Wang equations for hovering conditions, to prove the validity of the
updated model can be done in two steps.

1. For zero additional velocity case, the results of the updated model should exactly match the results
of Q. Wang model

2. For very small magnitudes of additional velocities in any axes, the results of the updated model
should not vary drastically compared to the hovering case.

6.1.1. Zero additional velocity case

In this section, the case of zero additional velocity in the inertial frame is observed. Thus the resultant
translational velocity of the wing in the co-rotating frame should be the same compared to the hovering
case computed by Q. Wang. By comparing the graphs of various calculations of both models, it can be
verified that both models produce the same results, but the updated model has way more computational
time explained in section 7.8. The conformity of lift and drag produced, and the computed passive
pitching motion is explained in this section since these observations are analyzed in detail in this thesis
work.
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Figure 6.1.: Total lift vs Time comparison for zero additional velocity case

Figure 6.2.: Total drag vs Time comparison for zero additional velocity case
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Figure 6.3.: Angle of Pitching Motion vs Time comparison for zero additional velocity case

6.1.2. Very small magnitudes of additional velocities

As mentioned, very small magnitudes of additional velocities should not alter the results drastically
compared to the hovering case of Q. Wang. Observing the kinematic velocities produced, the maximum
translational velocity in the co-rotating frame vc is about 9.86 m/s, and the maximum mean translational
velocity is about 5 m/s. Thus an additional velocity of 0.2 m/s in any direction should not affect
the observed results since this additional velocity is about 4% of the maximum mean translational
velocity. The observed results confirm this hypothesis. When the magnitude of the additional velocity is
comparable to the velocity from the kinematics, then the results do vary and produce various observations
explained in chapter 7

Figure 6.4.: Lift comparison for very small additional velocities
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Figure 6.5.: Drag comparison for very small additional velocities

Figure 6.6.: Pitching Angle comparison for very small additional velocities

Observing the average lift and drag values produced for these small magnitudes of additional velocities,
and comparing them with hovering conditions, it is evident that the results do not vary considerably.
Table 6.1 illustrates this observation.
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Average lift and drag values

Additional velocity case Average lift (N) Average drag (N)

Hovering condition 0.0205 -3.0193 e-04

Additional velocity of 0.2 m/s in iner-
tial y-axis

0.0206 -9.0437 e-04

Additional velocity of -0.2 m/s in iner-
tial y-axis

0.0206 2.9999 e-04

Additional velocity of 0.2 m/s in iner-
tial z-axis

0.0195 -2.9057 e-04

Additional velocity of -0.2 m/s in iner-
tial z-axis

0.0216 -3.1213 e-04

Table 6.1.: Average lift and drag produced for very small magnitudes of additional velocities

6.2. Logical patterns of observed results

A logical affirmation of the observed results is done to ensure that the results produced by the updated
model make sense for varied additional velocity cases. These include checking the asymmetry of results
when the additional velocity is predominantly in the inertial y-axis, since this velocity opposes the sym-
metry of kinematic motion, leading to huge variations in the magnitude of the resultant velocity between
the two strokes. Simultaneously, when the additional velocity is predominantly in the inertial x-axis or
z-axis, the produced results are symmetric, signifying that these additional velocities do not affect the
symmetry since these do not oppose the symmetry of sweeping, and thus the effect remains the same for
both the strokes.

This effect of asymmetry is evident when observing the translational force variations when the addi-
tional velocity is purely in the inertial y-axis. This velocity case then increases the translational velocity
in one stroke and reduces it in the other stroke depending on the direction of the additional velocity.
But for additional velocities purely in the x or z-axis, the symmetry remains since the effect is the same
during both strokes. This asymmetric effect is also observed in lift and drag production for additional
velocities in the inertial y-axis, and this observation agrees with the conclusions of related literature,
explained in section 6.3.
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Figure 6.7.: Translational force in yc comparison for various additional velocities in inertial y-axis

Figure 6.8.: Translational force in yc comparison for various additional velocities in inertial z-axis

Figure 6.7 shows that for varying magnitudes of additional velocity in the inertial y-axis affects the
resultant translational velocity, which thus affects the produced translational force in yc axis, as a trans-
lational force in yc is directly dependent on the translational velocity in the co-rotating frame. When the
wing travels with the direction of the additional velocity, the additional velocity increases the resultant
translational velocity, and the opposite happens during the other phase. It can also be seen that when the
additional velocity is in the opposite direction, the translational force is higher in the other stroke, since
now the phases of the kinematic cycle that travel with or against the additional velocity are switched.

It can be seen from figure 6.8 that when the additional velocity is purely in the inertial z-axis, the
produced translational force in yc axis is symmetric since this additional velocity affects the translational
velocity in both the phases the same. This is the same for additional velocities purely in the inertial
x-axis, also the observation of symmetry remains the same for lift and drag generations too. These
observations of logical patterns of observed results are validated by looking at the average lift and drag
produced for these said additional velocity conditions, given by Tables 7.1 and 7.2.
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6.3. Verifying results with literature conclusions

Even though the updated model produces logical results as explained in section 6.2, it was imperative
to affirm the results with some of the related literature conclusions. The starting idea of approaching
this research problem was a suggestion in Q. Wang’s work that states that to study the forward flight
(additional velocity conditions), the contribution of the velocity of forward flight (additional velocity) to

the resultant translational velocity has to be included.[1] This can be done by transforming the forward
velocity (additional velocity) from the inertial frame to the co-rotating frame and then adding this to the

translational velocity vc.
[1] This idea is employed in this thesis work to update the quasi-steady model for

additional velocity conditions. Thus the major conclusion of this research work is to affirm the validity
of this recommendation by Q. Wang[1].

Since this updated model observes the result changes of the aerodynamic loads when the kinematic
cycle is with or against the additional velocity, and not explicitly uses whether the stroke is upstroke or
downstroke in relation to the motion of the Atalanta project, it is very hard to find matching literature
to compare the updated model. This is because this updated model does not consider the propulsion
of the Atalanta project, thus it is not possible to assign which stroke is upstroke and which is down-
stroke, rather the model focuses on the relative directions of the kinematic velocities and additional
velocities to compute the resultant velocities. But to compare with literature conclusion, an assumption
is made in this section that, when the additional velocity is in a said direction, the wing is assumed
to move in this direction, making the stroke with the direction of additional velocity the downstroke
and the opposite stroke the upstroke. This also makes sense since downstroke is the forward stroke
and upstroke is the backward stroke. Thus in this section to compare with literature conclusions, these
terminologies are used. These assumptions for the terminologies are validated by the statement in the
work of Han et.al.,[15] where it is stated that the wing in the upstroke may lose its own stroke veloc-
ity, and the wing in the downstroke gains both the enhanced stroke velocity and the aerodynamic forces.

The results of this updated model are compared with some literature conclusions to affirm the ob-

servations. The work of Han[15] states that as advance ratio increases, the wing in downstroke produces
most of the lift force to stay afloat. This effect is observed in the updated model as well, where when
the wing is in downstroke, the lift generated is much higher and the effect increases as the magnitude of
the additional velocity in the inertial y-axis increases.

Figure 6.9.: More lift during downstroke when additional velocity increases
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Figure 6.10.: More lift during downstroke when opposite additional velocities

In the above Figure 6.9, the second peak (around time interval 0.125 s to 0.14 s)represents the downstroke
in this condition where the additional velocity is in the positive inertial y-axis. Clearly, it is evident that
for higher magnitudes of additional velocity, the downstroke produces most of the lift, and for higher
magnitudes of additional velocity, the peak lift in upstroke is not even the same as the weight of the
wing, implying that the lift in downstroke is responsible to stay afloat, agreeing with the observation of

Han[15]. Even for the comparatively lesser magnitude of the additional velocity (here, 3 m/s), the total
lift produced during downstroke is higher than the lift from upstroke, compared to the hovering condi-
tion, evident from the area under the lift curve and prolonged production of lift during the downstroke.
Moreover from figure 6.10, it is clear that when the same additional velocity is in the opposite direction,
which means now the downstroke is shifted to the other stroke (the other peak), still the corresponding
downstroke produces more lift, confirming that the model works fine for corresponding additional veloc-
ity conditions.

Average lift values during upstroke and downstroke

Additional velocity case Average lift during
upstroke (N)

Average lift during
downstroke (N)

Hovering condition (additional velocity
of 0 m/s)

0.0205 0.0205

Additional velocity of 0.2 m/s 0.02 0.0208

Additional velocity of 0.5 m/s 0.0195 0.0214

Additional velocity of 3 m/s 0.0156 0.0319

Additional velocity of 5 m/s 0.0113 0.0411

Additional velocity of -3 m/s 0.0319 0.0157

Table 6.2.: Average lift produced during the kinematic cycle for increasing additional velocities in the
inertial y-axis

This phenomenon of more lift production during the downstroke is more evident when looking at the
average lift produced during upstroke and downstroke for increasing additional velocity conditions. From
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the prescribed sweeping motion angle, the duration and timing of the two strokes are computed, and
depending on the direction of the additional velocity in the inertial frame, the stroke may be identified as
the upstroke or the downstroke as explained, i.e., when the kinematic velocities and additional velocity
is in the same direction, it is downstroke and the upstroke being the opposite. The observed average lift
produced during upstroke and downstroke for increasing magnitudes of additional velocity in the inertial
y-axis is given in Table 6.2. It is evident from Table 6.2 that as the magnitude of the additional velocity

increases, the average lift produced during downstroke increases confirming with the work of Han[15].

The work of Faisal et.al.,[24] it is stated that the thrust/ weight ratio is higher during downstroke than
upstroke, meaning more thrust in downstroke compared to upstroke for the same weight of the wing, and
that the peak value is found at the midpoint of the stroke. This work does not study the thrust values
on the wing, but since for stable flight, the thrust produced should be at least equal to the total drag so
that the wing does not drift along with the additional velocity, and since this thesis works on additional
velocity conditions and not forward flight propulsion, the minimum thrust can be assumed to be equal to
the drag produced. The effect of more thrust (in our case drag) is also observed in the updated model,
where during the downstroke, the drag is higher and hence the drag(thrust)/ weight ratio is also higher
during the downstroke compared to the upstroke. The peak value also happens during the midpoint of

the stroke, thus confirming the statements of Faisal et.al.,[24] The Figure 6.11 depicts these observations
and also depicts that for additional velocity in the opposite direction, the corresponding downstroke
produces more drag.

Figure 6.11.: More drag during downstroke when opposite additional velocities

In the work of Han et.al.,[15], the blade element method is used in the quasi-steady aerodynamic model
to compute the aerodynamic loads on the wing in forward flight conditions. It is stated in that work
that each blade element has a different effective angle of attack along the continuously changed motion
profiles.[15]. This is the case in our updated quasi-steady aerodynamic model as well, since the influence
of the additional velocity is different for blade strips along the wingspan, explained in Sections 5.3 and
7.7, where the analytical angle of attack is different for blade strips along the wingspan for additional
velocity conditions.
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7. Observations in additional velocity
conditions

A plethora of observations can be obtained from the updated model for additional velocity conditions,
ranging from observations in the global scale looking at the peak/ average lift and drag produced, to the
observations along the wingspan looking at the force sign differences of strips along the wingspan. In
this study, the observations done are classified into:

• Observations on average lift and drag produced

• Global peak lift and drag observations

• Observations on passive pitching motion changes

• Observations on the elastic hinge stiffness dependence on the passive pitching motion

• Observations on the influence of flapping frequency

• Observations on translational force and translational velocities

• Observations along the wingspan strips

• Observations on computational time

These varied observations were done because, for additional velocity conditions, multiple changes of
results compared to the hovering condition were observed and thus it was important to observe varied
results in order to sense the change of results and overall behavior of the system. But the main focus
on the observations done is on the lift and drag produced for various additional velocity conditions,
since these analysis on these observations are vital in understanding the possibility of forward flight for
the Atalanta project. A detailed description of the various observations done in the updated model is
explained in this section.

Figure 7.1.: Kinematic cycle with a rectangular wing[1]
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Figure 7.1 represents the stroke cycle used in making all the observations using the updated model
with the rectangular wing that is used. As explained in Section 4.1, there is no heaving motion in the
kinematic cycle used for the observations, evident from Figure 7.1. The prescribed sweeping stroke can
be visualized from the continuous dots in Figure 7.1, described by the sweeping angle ϕ. The prescribed
sweeping motion is sinusoidal in nature, and the resulting sweeping motion angle during the kinematic
cycle is given by Figure 7.2.

Figure 7.2.: Prescribed sweeping motion angle

From Figure 7.2, it can be deduced that the prescribed sweeping motion in the kinematic cycle used
starts with an angle of 0 rad, meaning the wing is aligned with the inertial x-axis, ’xi’ which is repre-
sented in Figure 7.1. A positive slope of the values of the sweeping angle indicates an anti-clockwise
rotation about the inertial z-axis ’zi’, and the sign of the kinematic velocity ’vyc

’ in this sweeping phase
has a positive sign. Thus the kinematic cycle used in these observations starts with half a stroke in the
anti-clockwise direction about zi axis, then a full stroke in the clockwise direction about zi axis, then
half a stroke in the anti-clockwise direction about zi axis, reaching the initial sweeping position of 0 rad.
This constitutes a single kinematic cycle, and in these observations, two consecutive kinematic cycles are
used, and this is illustrated in Figure 7.2. These strokes resulting from the direction of rotation about zi
axis refer to the strokes of the sweeping motion or phases of the sweeping motion. It is to be noted that,
the description in this Section uses the terms strokes and phases interchangeably, and it is important
to note these terminology use. Also, this Section uses the terms, phases of the sweeping motion and
the phases of the kinematic cycle interchangeably, meaning the phases of the kinematic cycle implicitly
means the phases of the sweeping motion in the kinematic cycle. This terminology understanding is im-
portant when visualizing the phases of the kinematic cycle that is with or against the additional velocity
direction.

This observations section makes use of additional velocities in different orientations in the inertial frame
of reference. These are described as additional velocity in the inertial y-axis, or in the inertial z-axis, or
oriented between the inertial y-axis and z-axis. As explained, yi represents the inertial y-axis, and zi rep-
resents the inertial z-axis. These can be visualized in Figure 7.1, where the sign of the arrows represents
the positive direction of the corresponding axes. This is important for visualizing the additional velocity
directions, and the interaction of the additional velocity with the kinematic velocity of the wing.

7.1. Observations on average lift and drag produced

Observations on the average lift and drag produced during the kinematic cycle give us information on the
global force production by the wing under various additional velocity conditions and provide us insights
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into possible forward flight possibilities. For the prescribed kinematic cycle explained at the beginning
of this section, the average lift produced for the hovering condition is 0.0205 N and the average drag
produced is -3.0193 e-04 N. The average drag produced in the hovering condition is close to zero, because
of the symmetric nature of the kinematic cycle and kinematic velocities, thus leading to identical drag
production during both phases of the kinematic motion. The average lift produced in the hovering condi-
tion is not zero since both the phases of the kinematic cycle aid in lift production and neither negate the
lift produced in the other phase. Figure 7.3 depicts the lift and drag produced for the hovering condition.

The presence of additional velocities should affect the average lift and drag produced in the observed
kinematic cycle, since now the resultant velocities during the phases of the kinematic motion are not the
same, thus leading to asymmetric drag and lift produced in both the phases, affecting the average drag
and lift values. This is reflected in the updated model and the observations made are explained in this
section.

Average lift and drag values

Additional velocity case Average lift (N) Average drag (N)

Hovering condition (additional velocity
of 0 m/s)

0.0205 -3.0193 e-04

Additional velocity of 0.2 m/s 0.0206 -9.0437 e-04

Additional velocity of 0.5 m/s 0.0206 -0.0018

Additional velocity of 3 m/s 0.024 -0.0078

Additional velocity of 5 m/s 0.0265 -0.01

Additional velocity of -3 m/s 0.024 0.0072

Table 7.1.: Average lift and drag produced for increasing additional velocities in the inertial y-axis

The presence of an additional velocity affects the average lift and/ or drag produced depending on
the orientation of the additional velocity in the inertial frame. Table 7.1 shows that when the additional
velocity is purely in the inertial y-axis, the average drag value is influenced the most and the average
lift value is affected in a meager way. This is because the additional velocity purely in the inertial y-axis
directly opposes or aids the kinematic velocities generated by the wing leading to highly asymmetric
drag produced during the kinematic cycle. It is evident from Table 7.1 that the average drag increases
for increasing magnitudes of additional velocity in the inertial y-axis. Another interesting observation is
that, even though the average lift value for these additional velocity conditions does not vary much com-
pared to the hovering condition, the average lift produced during the individual phases of the kinematic
cycle is vastly different as the magnitude of the additional velocity increases, as shown in the Table 6.2.
Thus the varying average lift produced during the individual phases of the kinematic cycle for additional
velocity conditions should also be considered, even though the total average lift does not change much
for additional velocities in the inertial y-axis.

When the additional velocity is purely in the inertial z-axis, the average lift value is influenced the most,
since the lift technically means the force produced by the wing in the inertial z-axis, and thus additional
velocity in the inertial z-axis affects the lift produced the most. For these additional velocity conditions,
the average drag produced is almost the same as the hovering condition, since the additional velocity
purely in the inertial z-axis does not affect the symmetric profile of wing kinematic motion. These ob-
servations are evident from the average drag and lift values observed and reported in Table 7.2

And when the additional velocity has components in both the inertial y-axis and z-axis, resulting
from its orientation in the inertial frame, depending on the magnitude of the components in the respec-
tive axis directions, the average drag and lift values are affected accordingly. For an additional velocity
of 3 m/s, depending on its orientation in the inertial frame the observed average lift and drag values
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Average lift and drag values

Additional velocity case Average lift (N) Average drag (N)

Hovering condition (additional velocity
of 0 m/s)

0.0205 -3.0193 e-04

Additional velocity of -0.2 m/s 0.0216 -3.1213 e-04

Additional velocity of -2 m/s 0.0323 -3.6664 e-04

Additional velocity of -3 m/s 0.0403 -3.7143 e-04

Additional velocity of 2 m/s 0.0117 -1.9509 e-04

Table 7.2.: Average lift and drag produced for increasing additional velocities in the inertial z-axis

are listed in Table 7.3. Thus it can be concluded from the observations that, an additional velocity

Average lift and drag values

Additional velocity of 3m/s Average lift (N) Average drag (N)

Purely in the inertial y-axis 0.024 -0.0078

Oriented 25o to the inertial y-axis 0.0298 -0.0071

Oriented 37o to the inertial y-axis 0.0326 -0.0058

Oriented 53o to the inertial y-axis 0.0358 -0.0039

Oriented 65o to the inertial y-axis 0.0379 -0.0027

Purely in the inertial -z-axis 0.0403 -3.7143 e-04

Table 7.3.: Average lift and drag produced for 3m/s additional velocity oriented in both the inertial
y-axis and z-axis

purely in the inertial y-axis considerably affects the average drag, an additional velocity purely in the
inertial z-axis considerably affects the average lift, and an additional velocity with components both in
the inertial y-axis and z-axis depending on the magnitudes of the respected components the average drag
and lift are affected.

7.2. Global peak lift and drag observations

A plethora of global observations can be done but this study focuses on the observations of lift and drag
produced since these observations can be of great help in understanding the basics of approaching the
solution for the problem of forward flight generation for the Atalanta project. The global peak lift and
drag observations are done in this section to sense the effect of varied additional velocity conditions on
the peak aerodynamic lift and drag produced.

The observations made on the peak lift/ drag ratio for varied additional velocity conditions provide
interesting insights on the utilization of the optimum tilting angle of the Atalanta project that can be
employed to achieve different peak lift/ drag ratios during the kinematic cycle. This is not the case in
hovering conditions, where the peak lift/drag ratio remains the same for both phases of the kinematic
motion.
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7.2. GLOBAL PEAK LIFT AND DRAG OBSERVATIONS

For the hovering case, the peak lift/ drag ratio remains the same for both phases of the kinematic motion,
both phases implying the clockwise and anti-clockwise rotation of the kinematic motion, because of the
symmetric nature of the velocities generated from the kinematics, as evident from the Figure 7.3. It is
to be noted that the drag depicted in these graphs are absolute values, thus no negative drag values in
the graph.

Figure 7.3.: Lift and Drag vs Time for hovering condition

For an additional velocity in the inertial y-axis, the peak lift/ drag ratios vary depending on whether
the kinematic motion is against the incoming velocity or with the incoming velocity. This is because,
during the kinematic motion when the wing travels along with the additional velocity, the drag observed
to be produced is much more than the lift generated leading to the asymmetric peak lift/ drag ratio,
even though the lift generated during this phase is also higher than that of the kinematic motion against
the flow velocity. When the direction of the same additional velocity is reversed, the peak lift/ drag
ratios are mirrored, as now the other phase of the kinematic motion makes the wing move along with the
additional velocity. For an additional velocity of 3 m/s in the inertial y-axis, the peak lift/ drag ratio
with the flow was 0.746, and against the flow was 0.936, implying more drag in one kinematic phase
compared to the other, i.e., when the wing travels along with the additional velocity. Thus the inference
when the additional velocity is purely in the inertial y-axis is that the peak lift/ drag is lower when with
the flow, and higher when against the flow, but in both phases, the peak drag is more than the lift.
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CHAPTER 7. OBSERVATIONS IN ADDITIONAL VELOCITY CONDITIONS

Figure 7.4.: Lift and Drag vs Time for additional 3 m/s in inertial y-axis

For an additional velocity in the inertial z-axis, the peak lift/ drag ratios during both phases of kinematic
motion are symmetric, since this additional velocity does not asymmetrically affect the kinematics of
the wing motion. For lesser magnitudes of additional velocities in the inertial z-axis, the peak lift/drag
ratios are less than 1, but more than the hovering condition, meaning the peak lift produced during
both phases keeps increasing compared to the drag. This follows the explanation in the section 6.1.2,
wherein when the magnitudes of additional velocities are less compared to the kinematic velocities, the
results observed are comparable to the hovering condition. For considerably high values of magnitudes,
the peak lift produced during both strokes is more than the peak drag. For an additional velocity of
-3 m/s in the inertial z-axis, the peak lift/ drag ratio is 1.0621 during both with and against the flow.
These observations are well illustrated in Table 7.4

When the orientation of this additional velocity is changed in a way so that the velocity has com-
ponents in both the y-axis and the z-axis, observations on the peak lift/ drag show that depending
on the orientation, the phases of kinematic motion produce different peak lift/ drag ratios because of
the varying influence of the ’y’ and ’z’ components of the additional velocity. Thus depending on the
requirement, an optimum orientation can be found to suit the peak lift and drag produced from the
kinematic cycle. For the same additional velocity of 3 m/s, and for a requirement to produce more drag
in one phase of the kinematic cycle and more lift in the other phase of the kinematic cycle, the optimum
orientation is observed to be at 37o to the inertial negative z-axis, where the peak lift/ drag ratio during
one phase was 0.88 and during the other phase was 1.132, signifying more drag during one phase and
more lift during the other. The optimum orientation depends on the magnitude of the incoming velocity
and the requirement. These observations are given in Table 7.5

From Table 7.5 it is also observed that the influence of the z-component of the additional velocity
on the peak lift/ drag ratio is higher when the wing is along the direction of additional velocity, meaning
during this phase of kinematic motion, the orientation of the additional velocity in the inertial z-axis
influences the lift production the most compared to the phase where the wing is against the additional
velocity direction. As orientation in the negative z-axis increases, the peak lift produced during the
phase along with the flow also increases, whereas the effects during the other phase are meager. The
severity of this effect increases with an increase in the magnitude of incoming velocity. The observed lift
and drag graphs for various orientations of an additional velocity of 3 m/s between the positive y-axis
and the negative z-axis are included in the appendix.
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7.3. OBSERVATIONS ON PASSIVE PITCHING MOTION CHANGES

Peak Lift/ Drag ratio

Additional velocity case Peak L/D against
the flow

Peak L/D with the
flow

Hovering condition (additional velocity
of 0 m/s)

0.827 0.827

Additional velocity of 0.5 m/s in iner-
tial y-axis

0.855 0.795

Additional velocity of 3 m/s in inertial
y-axis

0.936 0.746

Additional velocity of -3 m/s in inertial
y-axis

0.746 0.936

Additional velocity of -0.2 m/s in iner-
tial z-axis

0.837 0.837

Additional velocity of -3 m/s in inertial
z-axis

1.0621 1.0621

Table 7.4.: Peak lift/ drag ratios for increasing additional velocities in the inertial y-axis and z-axis

Peak Lift/ Drag ratio

Additional velocity of 3m/s Peak L/D against
the flow

Peak L/D with the
flow

Purely in the inertial y-axis 0.936 0.746

Oriented 25o to the inertial y-axis 0.86 0.957

Oriented 37o to the inertial y-axis 0.8566 1.0487

Oriented 53o to the inertial y-axis 0.88 1.132

Oriented 65o to the inertial y-axis 0.921 1.15

Purely in the inertial -z-axis 1.0621 1.0621

Table 7.5.: Peak lift/ drag ratios for 3m/s additional velocity in both the inertial y-axis and z-axis

7.3. Observations on passive pitching motion changes

As in the Q. Wang model, the updated model computes the passive pitching motion and uses prescribed
sweeping and heaving motion. Thus the presence of the additional velocities should affect the computed
passive pitching motion compared to the hovering condition, by influencing the computed total torque
about the xc axis. The observed results of the computed passive pitching motion for varied additional
velocity cases are in accordance with the above statement, where depending on the magnitude and di-
rection of the additional velocity, the passive pitching angle varies accordingly. This section discusses
those observed changes in the passive pitching motion, for the flapping frequency of 30 Hz and elastic
hinge stiffness of 10 e-04 Nm/rad.

The major observation is that additional velocity in the inertial y-axis affects the pitching motion angle
when the wing changes its pitching stroke along with the direction of incoming additional velocity. Thus
the additional velocity in the inertial y-axis makes the pitching motion asymmetric and this effect is
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CHAPTER 7. OBSERVATIONS IN ADDITIONAL VELOCITY CONDITIONS

mirrored when the additional velocity is in the opposite direction. The observed asymmetric pitching
motion exhibits a short interval of stalling when the pitching stroke reversal happens at the time the
sweeping motion is along the additional velocity direction. This effect is observed to be increasing, when
the magnitude of the additional velocity opposing the kinematic cycle in the inertial y-axis increases.
This effect of temporary stalling of the passive pitching angle is shown in Figures 7.5 and 7.6.

Figure 7.5.: Pitching Angle differences for additional velocity in inertial y-axis

Figure 7.6.: Pitching Angle differences for additional velocities in opposite directions in inertial y-axis

A possible reason for this peculiar observation is deduced to be due to very high aerodynamic torques
about the xc axis at the time the passive pitching motion appears to stall. This affects the computation
of the passive pitching motion which uses the equation of motion given by the Equation 3.27. This effect
is also observed when the additional velocity is in the opposite direction, where now the total aerody-
namic torque about the xc axis is very high in the other phase of the kinematic cycle, thus leading to
the observed stalling in the passive pitching motion.
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7.4. OBSERVATIONS ON THE ELASTIC HINGE STIFFNESS DEPENDENCE

This effect is also observed when looking at the angular velocity of the wing about the xc axis, which
is ωxc

. The angular velocity about xc axis gives an indication of the pitching motion, since pitching is
basically the rotation about the xc axis, as explained in section 2.1.2. At the same instance where the
passive pitching motion seems to stall, ωxc

is observed to be reducing in magnitude and approaching
zero even though the passive pitching stroke has reversed, thus not following a continuous increase in
magnitude after the change of pitching stroke as in the hovering condition but rather sudden decrease in
magnitude of angular velocity indicating stalling. This reduction in the angular velocity after pitching
stroke reversal is observed to stop at the same instance where the passive pitching motion seem to recover
from the stalling. This observed effect in the angular velocity ωxc

is illustrated in the Figure 7.7

Figure 7.7.: Angular velocity variations for additional velocity conditions

When the same additional velocity of 3 m/s is oriented between the inertial y-axis and z-axis, de-
pending on the component of the additional velocity in the inertial y-axis the effect of temporary stalling
of pitching stroke is observed to reduce. This is due to the reduction of the magnitude of the additional
velocity in the inertial y-axis when the additional velocity is oriented more to the inertial z-axis, which
directly affects the angular velocity about xc axis which affects the calculation of the passive pitching.
Graphs that illustrate the comparison of pitching angle with the case of additional velocity purely in
the inertial y-axis are added in the appendix section. Another interesting observation made is looking
at the aerodynamic lift and drag produced during this period of temporary stalling. It is noted that
the aerodynamic lift and drag produced during this time is higher compared to the hovering condition,
when the temporary stalling of the pitching angle takes place, due to the wing travelling along with the
additional velocity direction during this phase, and the pitching angle during this phase being close to
maximum. This is evident from Figure 7.4.

Thus from these observations it is concluded that in the presence of additional velocities in the inertial
y-axis, there appears to be a presence of temporary stalling in the pitching motion when the pitching
stroke changes during the period at which the wing travels along with the direction of additional velocity.
And it is noted that this effect is highly influenced by the choice of the elastic hinge stiffness, as explained
in sections 7.4.

7.4. Observations on the elastic hinge stiffness dependence

Section 3.4 explains the influence of the elastic hinge stiffness, ’kη’ on the calculation of the passive pitch-
ing motion, where the elastic hinge stiffness is used to compute the elastic torque, and the elastic torque
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CHAPTER 7. OBSERVATIONS IN ADDITIONAL VELOCITY CONDITIONS

is a part of the equation of motion used to compute the passive pitching motion. This is explained in
Equation 3.27. The elastic torque together with the aerodynamic torque equates to the applied torque,
thus studying the influence of the elastic torque along with the various aerodynamic torques induced by
additional velocity conditions reveals interesting observations on the computed passive pitching motion.
Thus this section observes and analyses the influence of the elastic hinge stiffness on the passive pitching
motion.

The same flapping frequency of 30 Hz is employed for observations in this section. Figure 7.8 illus-
trates the passive pitching motion angle comparison for the hovering condition for different elastic hinge
stiffness of 7 e-04 Nm/rad, 8.5 e-04 Nm/rad and 10 e-04 Nm/rad. It can be inferred from Figure 7.8
that a lesser value of elastic hinge stiffness allows for higher pitching angles.

Figure 7.8.: Pitching angle comparison for different kη for hovering condition

The aerodynamic torque produced during the kinematic cycle is influenced by the additional velocity
condition, and the produced aerodynamic torque is asymmetric as explained in Sections 7.2, 7.1, 7.3.
Having different elastic hinge stiffness means the elastic torque computed is different, thus leading to
different applied torques which is a combination of elastic torque and aerodynamic torque. Thus the
effect of the same additional velocity on the passive pitching motion is different for different elastic
hinge stiffness, as illustrated in Figures 7.9, 7.10 and 7.11, where the additional velocity case used is an
additional velocity of 3 m/s in the inertial y-axis.
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7.4. OBSERVATIONS ON THE ELASTIC HINGE STIFFNESS DEPENDENCE

Figure 7.9.: Pitching angle comparison for kη of 7 e-04 Nm/rad

Figure 7.10.: Pitching angle comparison for kη of 8.5 e-04 Nm/rad
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Figure 7.11.: Pitching angle comparison for kη of 10 e-04 Nm/rad

From Figures 7.9, 7.10 and 7.11 it is evident that the effect of temporary stalling as explained in Section
7.3 is lesser at lesser values of kη and this effect increases as the value of kη increases for the same
magnitude of additional velocity. This is attributed to the low values of elastic torques produced by
lesser kη values thus the applied torque value is not extremely high in the Equation of motion 3.27 when
the pitching stroke reversal happens at the time the sweeping motion is along the additional velocity
direction, leading to no stalling in computed passive pitching angle. This effect of temporary stalling in
the pitching angle increases for increasing magnitudes of additional velocity in the inertial y-axis, and
the significance of influence is higher for higher elastic hinge stiffness values.

Thus it can be concluded that the value of chosen elastic hinge stiffness for a given flapping frequency
influences the effect of temporary stalling produced in the pitching angle, and lesser values of elastic
hinge stiffness are better to avoid this effect being present in additional velocity conditions.

7.5. Observations on the influence of flapping frequency

As explained in section 4.3, a fixed flapping frequency of 30 Hz is used for all the observations made in this
research work. But the aerodynamic loads produced on the wing are highly dependent on the flapping
frequency of the wing, as evident while comparing the lift and drag produced in hovering condition
for different flapping frequencies. Figures 7.12, 7.13 and 7.14 illustrate the influence on lift, drag and
pitching angles for different flapping frequencies, for a given elastic hinge stiffness.
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7.5. OBSERVATIONS ON THE INFLUENCE OF FLAPPING FREQUENCY

Figure 7.12.: Lift produced for different flapping frequencies in hovering condition

Figure 7.13.: Drag produced for different flapping frequencies in hovering condition
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Figure 7.14.: Pitching angles for different flapping frequencies in hovering condition

It can be seen that, for lesser values of flapping frequency and for the same elastic hinge stiffness, the lift
and drag values produced are lesser compared to the values produced by higher flapping frequencies for
the same elastic hinge stiffness. This is because of the lesser values of kinematic velocities produced by
the wing in lesser flapping frequency conditions, leading to lesser aerodynamic loads on the wing. This
observation can also serve as a method for validation of the updated model, where the concept of more
aerodynamic loads on the wing when the resultant velocities on the wing are higher hold true, when the
wing travels along with the direction of the additional velocity.

Looking at the pitching angles for different flapping frequencies, it is clear that the pitching angles
are higher and more stable when the flapping frequency increases for the same elastic hinge stiffness
value. It is to be noted that, as explained in section 4.3, the selected elastic hinge stiffness value is the
maximum of the range used by Q. Wang[1], which might affect the lower flapping frequency results.

For additional velocity conditions, depending on the flapping frequency and the selected elastic hinge
stiffness, the influence of the additional velocity on the resultant translational velocity, and thus the total
aerodynamic loads vary, since for lesser flapping frequencies the kinematic velocities produced by the
wing are lesser. An additional velocity of 3 m/s in the inertial y-axis is used to observe the influence of
various flapping frequencies on the generated aerodynamic lift and drag. Three flapping frequencies of
20 Hz, 25 Hz and 30 Hz were employed to make the observations on the influence of the said additional
velocity condition. Figures 7.15 and 7.16 compare the lift produced between the hovering condition and
the additional velocity condition of 3 m/s for flapping frequencies of 25 Hz and 30 Hz. Graphs that com-
pare the hovering condition and the additional velocity condition of 3 m/s for the three above mentioned
flapping frequencies for the results of lift, and drag produced are illustrated in the appendix section.
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7.5. OBSERVATIONS ON THE INFLUENCE OF FLAPPING FREQUENCY

Figure 7.15.: Lift vs time for flapping frequency of 25 Hz

Figure 7.16.: Lift vs time for flapping frequency of 30 Hz

Figures 7.15 and 7.16 clearly indicate that the significance of the influence of the same additional velocity
is higher when the flapping frequency is lower, because of the lesser kinematic velocities produced at
lesser flapping frequencies. This can be observed by looking at the comparison of average lift and drag
produced between hovering and additional velocity conditions for different flapping frequencies, given by
Tables 7.6, 7.7 and 7.8

Thus it can be concluded that the significance of influence of the additional velocity on the aerodynamic
lift and drag of the flapping flight increases as the flapping frequency reduces for a given high value of
elastic hinge stiffness.
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Average lift and drag values

Flapping frequency of 20 Hz Average lift (N) Average drag (N)

Hovering condition 0.0045 -1.1528 e-04

Additional velocity of 3 m/s in inertial
y-axis

0.0094 -0.0109

% variation compared to hovering con-
dition

208.8% 9455.23%

Table 7.6.: Average lift and drag produced for flapping frequency of 20 Hz

Average lift and drag values

Flapping frequency of 25 Hz Average lift (N) Average drag (N)

Hovering condition 0.0105 -2.0691 e-04

Additional velocity of 3 m/s in inertial
y-axis

0.0158 -0.0087

% variation compared to hovering con-
dition

150.47% 4204.72%

Table 7.7.: Average lift and drag produced for flapping frequency of 25 Hz

Average lift and drag values

Flapping frequency of 30 Hz Average lift (N) Average drag (N)

Hovering condition 0.0205 -3.0193 e-04

Additional velocity of 3 m/s in inertial
y-axis

0.024 -0.0078

% variation compared to hovering con-
dition

117.07% 2583.38%

Table 7.8.: Average lift and drag produced for flapping frequency of 30 Hz

7.6. Observations on translational force and translational velocities

As explained in the section 6.2, the presence of an additional velocity opposing the kinematics of the
wing motion produces asymmetric resultant translational velocity between both strokes, thus resulting
in asymmetric translational force production. The translational force in the yc equation is set up such
that depending on the direction of the velocity in the yc direction, the translational force has a direction
opposite to it, refer Equation 5.13. This variation in the rate of change of the resultant translational
velocity when the wing travels along with the additional velocity or against it leads to an asymmetry in
the rate of change of translational force on the wing during the phases of the kinematic cycle. This can
be visualized in Figure 7.17.
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Figure 7.17.: Changes in the rate of change of translational force

Figure 7.17 shows that the rate of change of translational force, thus the rate of change of transla-
tional velocity is higher when the wing travels along with the additional velocity and the opposite in the
other phase of kinematic cycle. This effect of reduced resultant translational velocity against the flow
increases with increase in magnitude of the additional velocity. Thus at a certain magnitude of additional
velocity in the inertial y-axis, the peak translational force observed in the co-rotating frame on the wing
when moving opposite to the additional velocity direction is about zero, and the entire translational
force profile in the co-rotating frame for this magnitude always has one sign, meaning the direction of vyc

remains same for the entire kinematic cycle since the sign of the translational force produced depends
on the sign of the velocity component vyc

.

For the selected wing parameters as explained in section 4.3, this magnitude of additional velocity when
the entire translational force profile has only one sign is found to be about 5.75 m/s when purely in the
inertial y-axis. This implies that the sign of the translational velocity component vyc

always remains the
same, which theoretically should imply that the sweeping motion should not be possible for additional
velocities greater than this magnitude. The resulting translational force graph for an additional velocity
of 5.75 m/s purely in the inertial y-axis is given in Figure 7.18.
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Figure 7.18.: Translational force for an additional velocity of 5.75 m/s in inertial y-axis

7.7. Observations along wingspan strips

The presence of additional velocities impact the translational velocities and forces along the wingspan
strips, compared to the hovering condition, since depending on the position of the strip in the wingspan,
the magnitude of the impact of additional velocity is different. This is because the kinematic velocities
at the tip are very high compared to the kinematic velocities of the strips along the wingspan that are
near the root. Thus the impact of the additional velocities will be different near the root and at the tip.
This leads to translational velocity and force direction differences along the wingspan strips in additional
velocity cases, which is not the case in hovering conditions, where at all strips along the wingspan, the
direction of translational velocity and translational force are the same. At the extreme cases, this effect
can be visualized in Figure 7.19, where the translational force differences along the wingspan strips can
be seen.

Figure 7.19.: Translational force differences illustration along the wingspan strips
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7.8. OBSERVATIONS ON COMPUTATIONAL TIME

This also leads to the analytical angle of attack differences along the wingspan strips, which is not the
case in hovering conditions. The analytical angle of attack discrepancy is due to the varied effect of ve-
locities vzc and vc at each strip along the wingspan, and also the direction of the resultant translational
velocity at each strip along the wingspan, thus the analytical angle of attack varies along the wingspan.
The analytical angle of attack difference increases as the magnitude of the additional velocity increase.
The reason behind this observation is that the updated model and Q.Wang’s model[1] compute the an-
alytical angle of attack from the Equation 3.1, thus individual strips along the wingspan have different
ratios of translational velocity leading to the analytical angle of attack changes along the wingspan.

The main reason for these observations are to highlight the importance of calculating the load equa-
tions and angle of attack at each wingspan strip by calculating all variables inside the integration loop,
explained in Section 5.3 and thus to use the blade element method in the correct manner, rather to
incur physical meanings from these observations. This is because, finally the total load on the wing
is computed for aerodynamic load calculations since the wing travels as a whole and not as individual
strips.

7.8. Observations on computational time

A minor observation is made on the computational time of the updated model versus the computational
time of Q. Wang’s model to observe the effect of load calculations at each strip along the wingspan by
calculating all variables inside the integration loop as explained in Section 5.3. This is done so since
Q. Wang’s model was aimed for use in optimization problems, thus an increase in computational time
works against that idea. But, as explained in section 5.3, it is necessary to make calculations at each
strip along the wingspan using the updated method. Thus a trade-off on the computational time has
to be made while updating the model. The observed computational time differences between the two
models for the hovering condition, when both models use the same input parameters are given below. It
is to be noted that these observations were done to include an iteration of different flapping frequencies
and elastic hinge stiffness to highlight the computational differences in a better way.

• Computational time for Qi Wang model - 115.04 s

• Computational time for updated model (hovering condition) - 550 s

• Computational time for updated model (additional velocity case) - 520 to 630 s, depending on the
velocity condition

It can be seen that for the hovering condition, the computational time for the updated model is almost
5 times the computational time for Qi Wang model that produces the same results. Thus it is very
inefficient to use the updated model for the hovering case, but the trade-off in computational time has to
be done to calculate for additional velocity conditions. A potential future work could involve optimizing
this updated model to reduce computational time.
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8. Discussions

This section discusses on the observations that were made in the updated model but those which were
not analyzed in detail since these were outside the scope of this thesis work. These discussions mainly
build on ways to improve the model to eliminate the hard bound constants that were employed in this
research work, such as using a fixed flapping frequency and elastic hinge stiffness, weight of the wing
etc., These discussions provide valuable information on potential future work that can be done as a
continuation of this thesis work.

8.1. Discussions on the power calculations

One of the important research work of Q. Wang[1] was to design power efficient flapping wings for the
hovering condition. This involved computing the power during the flapping cycle by considering three
components: Aerodynamic power to overcome aerodynamic drag, inertial power to accelerate the wing
and surrounding fluid, and elastic power due to the resistance from the elastic spring.[1] Then by ana-
lyzing for different conditions, such as different flapping frequencies while varying elastic hinge stiffness,
the optimum power was calculated for the hovering condition, and the corresponding flapping frequency
and elastic hinge stiffness were found as the optimum values to have for efficient power consumption.

For hovering condition, the power consumed for different flapping frequencies and elastic hinge stiff-
ness is given by the Figure 8.1, which illustrates the lift produced at those flapping conditions as well.
Thus theoretically, for a required lift value, an optimum flapping frequency and elastic hinge stiffness
can be found such the resulting flapping flight under hovering condition is the most power efficient.

Figure 8.1.: Power consumed in hovering condition[1]

From chapter 7, it is observed that the presence of an additional velocity affects the peak and average
lift/ drag during the kinematic cycle, and the orientation of the additional velocity has an influence on
the produced lift and drag. Thus a couple of major discussions can be made on the power consumed
during the kinematic cycle, which are explained in this section.
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Variation in power consumed during the phases of the kinematic cycle:

As discussed, a component in the power consumption calculation during the kinematic cycle is the aero-
dynamic power, which takes into account the aerodynamic drag. And as discussed from the observations
in Chapter 7, the aerodynamic drag is higher during the phase when the wing travels along with the
additional velocity, and the aerodynamic drag is lower during the phase when the wing travels against
the additional velocity. Thus in the presence of additional velocity, the aerodynamic drag produced is
asymmetric during the phases of the kinematic cycle, leading to asymmetric power consumed during
the kinematic cycle. Future work may study the difference in power consumed during the kinematic
cycle for various additional velocity conditions, which may provide insights on the control required for
maintaining flight for these additional velocity conditions and for forward flight.

Power efficient flight for additional velocity conditions

Chapter 7 observes that the presence of additional velocities influence the average lift and drag produced,
and that the orientation of the additional velocity also play a huge influence on the produced lift and
drag. Thus theoretically for different additional velocity conditions and the different orientations, the
amount of power consumed and the optimum conditions for power efficient flight varies depending on the
additional velocity and its orientation. Thus different graphs, like Figure 8.1 can be made for different
velocity conditions, from which the resulting power consumed can be studied. Future work might study
the power consumed and the power efficient flight conditions for different additional velocity conditions.

8.2. Discussions on optimal pitching axis

Q. Wang’s work[1] also works on finding the optimal pitching axis for the passive pitching motion during
the hovering condition. This was done by setting up an optimization model to investigate the influence
of the pitching axis location on the power efficiency. This was done by optimizing the parameters d̂r and
d̂t, where these parameters defined the pitching axis location. The objective of this optimization model
was to find the optimum values of d̂r and d̂t, so that the power consumed was the least to produce the
same lift requirement. It was concluded in that work [1] that the amount of power that can be saved
was at least 21% for QE-wings.

For this research work, to reduce complexity, the d̂r and d̂t parameters were set as zero, meaning the
straight leading edge (LE) is used as the pitching axis. Thus a potential future work would involve

using the same optimization to optimize the parameters d̂r and d̂t, to find the optimal pitching axis for
different additional velocity conditions. Since this optimization model works on finding the least power
consumed to produce the same lift requirement, and as discussed in section 8.1, the power consumed
and the optimum flight conditions on the power consumed may depend on the additional velocity con-
ditions, it is interesting to study the influence of the optimal pitching axis on the power consumption.
Interestingly, it is fair to assume that the optimal pitching axis location would be different during the
phases of the kinematic cycle in additional velocity conditions, since the aerodynamic drag and hence the
aerodynamic power consumed would be different during the phases. Hence a detailed study on this topic
would provide huge insights on obtaining the most power-efficient flight for different additional velocity
conditions.

62



9. Conclusions and Recommendations

9.1. Conclusions

This research aimed at updating the aerodynamic quasi-steady model of Q.Wang[1] for additional veloc-
ity conditions and to make observations of the updated model for various additional velocity conditions
to incur insights on the load changes for varied additional velocity conditions. This work proposes a
method to update the model and analyses the observations made. The research answers the following
sub-questions as:

1. How to update the quasi-steady aerodynamic model for additional velocity conditions?

To incorporate the additional velocities in the quasi-steady aerodynamic model, the resultant trans-
lational velocity on the wing is computed by the proper vector addition of the additional velocity with
the kinematic velocity of the wing. This is done by transforming the additional velocity in the inertial
frame of reference to the co-rotating frame of reference by using the inverse of the total rotation ma-
trix. After the transformation, the additional velocity components ’vyc,add’ and ’vzc,add’ are added with
kinematic velocity components ’vyc

’ and ’vzc ’ to compute the resultant translational velocity ’vc,res’ on
the wing. The updated translation-induced loads uses ’vc,res’ and the updated coupling-induced loads
uses ’vzc,res’. The setting up of the updated quasi-steady aerodynamic model equations are explained in
Chapter 5 in detail.

The updated quasi-steady aerodynamic model computes the aerodynamic loads at all wingspan strips
individually, by using all variables inside the integration loop and then the sum of these individual loads
would give the total (global) aerodynamic load on the wing. This is done to account for the varied influ-
ence of the additional velocity at different strips along the wingspan on all variables in the aerodynamic
equations. This is explained in detail in Sections 5.3 and 7.7. The updated model was verified to produce
logical results and affirmed with literature conclusions as explained in Chapter 6.

2. What observations are made from the updated quasi-steady aerodynamic model for various addi-
tional velocity conditions?

A plethora of observations were made from the updated quasi-steady aerodynamic model for various
additional velocity conditions with different orientations in the inertial frame of reference and the obser-
vations were analysed to incur valuable insights on the behaviour of the resulting aerodynamic loads and
the passive pitching motion, which are explained in detail in Chapter 7. The major observations found
are:

• The average lift and drag produced are highly influenced by the magnitude and orientation of the
additional velocity with respect to the kinematic motion. An additional velocity in the inertial
y-axis affects the symmetry of the kinematic motion, thus the average drag values produced in
these conditions are considerably higher than the hovering condition, while the average lift value
is also higher for increasing magnitudes of additional velocity in the inertial y-axis. An additional
velocity in the inertial z-axis influences the average lift generated the most, but does not affect the
symmetry of kinematic motion thus the average drag values remain close to the hovering condition.
An additional velocity oriented in both axes influence the average lift and drag values depending
on the magnitude of the individual components in the respective axis.

• An additional velocity in the inertial y-axis produces asymmetric peak lift/ drag ratios during the
phases of the kinematic cycle, depending on whether the wing travels with or against the additional
velocity direction. An additional velocity in the inertial z-axis increases the peak lift/ drag ratio in
both phases of the kinematic cycle, but the ratio remains symmetric. An interesting observation
made is that for certain orientations of the additional velocity in both the inertial y-axis and z-axis,
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peak lift is more in one phase of the kinematic cycle and peak drag is more in the other phase,
which makes the peak lift/ drag highly asymmetric which is not the case in the hovering condition.

• For a flapping frequency of 30 Hz and a fixed elastic hinge stiffness of 10 e-04 Nm/rad, the presence
of additional velocities in the inertial y-axis appears to produce an effect of temporary stalling on
the passive pitching angle, evident from observing the calculated passive pitching angle, when the
pitching stroke changes during the period at which the wing travels along with the direction of
additional velocity.

• For a fixed flapping frequency, the influence of chosen elastic hinge stiffness value for additional
velocity conditions is observed in this work. It is observed that the value of chosen elastic hinge
stiffness influences the effect of temporary stalling produced in the pitching angle for additional
velocities in the inertial y-axis, and higher values of elastic hinge stiffness produce a more temporary
stalling effect. This effect increases for increasing magnitudes of additional velocities in the inertial
y-axis.

• For a fixed elastic hinge stiffness, the significance of influence of the additional velocity on the
aerodynamic lift and drag of the flapping flight increases as the flapping frequency reduces, since
the kinematic velocities produced by low flapping frequencies are lesser.

• For an additional velocity purely in the inertial y-axis, the rate of change of translational force is
asymmetric between the phases of the kinematic cycle, meaning the rate of change of translational
velocity is asymmetric in this additional velocity condition. Moreover, it is observed that for a
magnitude of about 5.75 m/s in the inertial y-axis, the entire translational force profile has only
one sign, meaning the sign of the translational velocity component ’vyc ’ always remains the same
for magnitudes above 5.75 m/s in the inertial y-axis.

• The computational time for the updated quasi-steady aerodynamic model is about 5 times more
than that of Q. Wang model[1] for computing the same results in the hovering condition. This is
because of computing the aerodynamic loads at each wingspan strip by calculating all the vari-
ables inside the integration loop to account for the proper definition of all analytical equations in
additional velocity conditions, as explained in Section 5.3.

9.2. Limitations of the updated model

Observations in Section 7.6 reveal that the rate of change of translational velocity (from the rate of change
of translational force) is different between the phases of the kinematic cycle depending on whether the
wing is with or against the direction of the additional velocity. This theoretically means that there is an
induced stroke acceleration variation between the phases of the kinematic cycle due to the interaction
of the additional velocity with the kinematic velocity and this effect is not captured in the updated
quasi-steady aerodynamic model for added mass induced load calculations.

Calculating the induced stroke acceleration variation would mean that the resultant translational ve-
locity history has to be considered in the quasi-steady model since the rate of change of the resultant
translational velocity would give the induced stroke acceleration variation. This is a huge update from
the current model which computes all the aerodynamic loads and the passive pitching motion at each
timestep and does not consider the history of the velocity values. Future work might work on including
this induced stroke acceleration variation in the calculation of the added mass induced loads. Thus it
can be observed that this updated quasi-steady aerodynamic model for additional velocity conditions
slightly overestimates the added mass loads when the wing travels against the direction of additional
velocity and slightly underestimates the added mass loads when the wing travels with the direction of
additional velocity.

9.3. Recommendations

As with any research work, there is always room for further improvements and investigations. This
section gives some recommendations for potential future work in updating the quasi-steady aerodynamic
model.
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• As explained in the Limitation section 9.2, future work might work on including the induced
stroke acceleration variation in the calculation of the added mass induced loads and then study the
resulting changes in the aerodynamic loads and the passive pitching motion.

• Experimental validation and CFD validation of the updated quasi-steady model for the analyzed
additional velocity conditions would provide valuable insights on the validity of the proposed model
and is a possible potential future research work.

• As explained in Chapter 8, the study on the power calculations and the power asymmetry between
the phases of the kinematic cycle for additional velocity conditions, and the study on the optimal
pitching axis for additional velocity conditions can be a potential research work that can be studied
as a continuation of this work.
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A. Appendix

A.1. Different ways to compute center of pressure, and coefficients
of lift, drag, and force

Section 3.3 explains that Q. Wang’s model[1] uses different methods to compute the center of pressure,
and coefficients of lift, drag, and force. All these different ways can also be used in this updated model
since no new variables or new empirical variables are added in the updated quasi-steady aerodynamic
model. The updated model uses the analytical method to compute the center of pressure, and the State-
space method from Taha et.al.,[22] was used to compute the coefficients of lift, drag, and force, and these
are explained in Section 3.3. This appendix section explains the other methods that were also employed
in Q. Wang work[1].

Method from Dickson et.al.,[20] to compute center of pressure:

d̂transcp = (0.82/π) ∗AOA+ 0.05 (A.1)

Method from Han et.al.,[21] to compute center of pressure:

d̂transcp = 0.005008 ∗AOA/π ∗ 180 + 0.06238 (A.2)

Method of using empirical force coefficients to compute coefficient of lift, drag, and force:

Ctrans
L = 1.8 ∗ sin(2 ∗AOA) (A.3)

Ctrans
D = 1.9− 1.5 ∗ cos(2 ∗AOA) (A.4)

Ctrans
Fyc

=
√
(Ctrans

L )2 + (Ctrans
D )2 (A.5)

A.2. Global peak lift and drag graphs

This section illustrates the graphs that were utilized for the description of the section 7.2. These graphs
represent the Lift and Drag vs Time for various additional velocity conditions that were observed in Sec-
tion 7.2. Figures A.1, A.2 and A.3 illustrate the produced lift and drag values for increasing magnitudes
of additional velocities in the inertial y-axis. It is to be noted that the drag values are mentioned as
absolute values.
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Figure A.1.: Lift and Drag vs Time for additional 0.5 m/s in inertial y-axis

Figure A.2.: Lift and Drag vs Time for additional 3 m/s in inertial y-axis
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A.2. GLOBAL PEAK LIFT AND DRAG GRAPHS

Figure A.3.: Lift and Drag vs Time for additional 5 m/s in inertial y-axis

Figures A.4, A.5 and A.6 illustrate the produced lift and drag values for increasing magnitudes of
additional velocities in the negative inertial z-axis. These graphs illustrate that the peak lift/ drag ratio
increases for increasing magnitudes of additional velocities in the negative inertial z-axis.

Figure A.4.: Lift and Drag vs Time for additional 0.2 m/s in inertial -z-axis
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Figure A.5.: Lift and Drag vs Time for additional 2 m/s in inertial -z-axis

Figure A.6.: Lift and Drag vs Time for additional 3 m/s in inertial -z-axis

Section 7.2 describes that the peak lift/ drag ratio for an additional velocity of 3 m/s generated for the
phases of the kinematic cycle depends on the orientation of the velocity with respect to the inertial y-axis
and z-axis. This is illustrated in Figures A.7, A.8, A.9, and A.10
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Figure A.7.: Lift and Drag vs Time for additional 3 m/s oriented 25% to the inertial y-axis

Figure A.8.: Lift and Drag vs Time for additional 3 m/s oriented 37% to the inertial y-axis
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Figure A.9.: Lift and Drag vs Time for additional 3 m/s oriented 53% to the inertial y-axis

Figure A.10.: Lift and Drag vs Time for additional 3 m/s oriented 65% to the inertial y-axis

A.3. Passive pitching motion variation graphs

Section 7.3 describes that the increase in the magnitude of additional velocity in the inertial y-axis
increases the effect of temporary stalling observed in the passive pitching motion angles. Figure A.11
illustrate that effect.
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A.4. INFLUENCE OF ELASTIC HINGE STIFFNESS GRAPHS

Figure A.11.: Pitching angle comparison for increasing additional velocity in inertial y-axis

Figure A.12 represents the pitching angle computed for the same additional velocity of 3 m/s oriented
to have components in both the inertial y-axis and z-axis.

Figure A.12.: Pitching angle comparison for various orientations of 3 m/s additional velocity in inertial
y-axis

A.4. Influence of elastic hinge stiffness graphs

Section 7.4 states that even for increasing magnitudes of additional velocity, the significance of the
influence of the additional velocity on the temporary stalling of pitching angle is higher for higher elastic
hinge stiffness values. Figures A.13, A.14 and A.15 illustrate the above-mentioned observation, where
the additional velocity of 5 m/s in the inertial y-axis is considered.
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Figure A.13.: Pitching angle comparison for kη of 7 e-04 Nm/rad for 5 m/s in inertial y-axis

Figure A.14.: Pitching angle comparison for kη of 8.5 e-04 Nm/rad for 5 m/s in inertial y-axis
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A.5. INFLUENCE OF FLAPPING FREQUENCY GRAPHS

Figure A.15.: Pitching angle comparison for kη of 10 e-04 Nm/rad for 5 m/s in inertial y-axis

A.5. Influence of flapping frequency graphs

The graphs illustrated in this Section explain the influence of the flapping frequency on the computed
aerodynamic drag. Section 7.5 states that the significance of the influence of additional velocity on
the aerodynamic lift and drag increases as the flapping frequency reduces for a given value of elastic
hinge stiffness. Figures A.16 and A.17 illustrate this observation for the observed aerodynamic drag for
flapping frequencies of 25 Hz and 30 Hz, and it is clear that the significance of the influence of the same
additional velocity is higher when the flapping frequency is lower.

Figure A.16.: Drag vs Time for flapping frequency of 25 Hz
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Figure A.17.: Drag vs Time for flapping frequency of 30 Hz
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