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Abstract

Atmospheric turbulence is a major constraint on the resolution of ground-based astronomical
telescopes. By the passage of light trough the atmosphere, a by origin flat wavefront is
turned into a non-flat smooth surface. Depending on the weather conditions, turbulence
limits the angular resolution of large telescopes to a telescope with a diameter of only 5 to
20 cm. Without any form of compensation, increasing the telescope diameter beyond this
size will not improve the image quality any further. Adaptive Optics (AO) is a technique
to compensate for wavefront aberrations introduced by turbulence in optical systems. A
wavefront sensor (WFS) measures the distortions in the wavefront and a deformable mirror
(DM) actively adds the opposite of the optical path length perturbations by changing the
shape of its reflective surface.
Most AO systems use a simple control law consisting of a wavefront reconstruction step and
a mapping onto the DM, thereby neglecting the dynamics of the turbulence. More modern
optimal control strategies have been proposed lately with the ability to predict the evolution
of the wavefront in the near future. These methods are an improvement over the classical
approach in the compensation for temporal errors caused by the delay between measurement
and correction. However, the size of AO systems is growing to the point that problems
are occurring in terms of computational complexity and memory capacity. The purpose of
this thesis is to find a data-driven procedure that maintains a similar performance to the
optimal control methods in terms of accuracy, while having a scalable memory requirement
and computational complexity.
The essential step of the strategy used to achieve this goal is an efficient identification rou-
tine of sparse VARX (Vector Auto-Regressive with eXogenous input) models for large-scale
adaptive optics systems. Given the identified model, the control problem minimizes the mean
squared error of the estimated wavefront distortions. The identification requires open-loop
WFS data and fits the VARX coefficient matrices in a separable least-squares framework
by solving it for each row of the coefficient matrices independently. The dimensionality of
optimization problem is drastically reduced by assuming a rough estimation of the sparsity
pattern in a graphical modelling framework based on the sensor geometry and Taylor’s frozen
turbulence assumption. Because of the decreased dimensionality, it was shown that the com-
plexity of the VARX model identification algorithm scales linearly with the total number of
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outputs. This complexity forms a large contrast with the standard identification of a state-
space innovation model, solving a Riccati equation with a cubic complexity. The sparsity
is optimized by adding an `1-norm regularization term and the resulting separable regular-
ized least-squares problem is solved using the alternating direction method of multipliers
(ADMM).

Given the identified sparse VARX model, the control strategy has been chosen to minimize the
one-step-ahead prediction of the mean squared error of the phase slopes. It has been shown
that the control law can be written as a large sparse least-squares problem. By exploiting the
sparsity, an efficient solution is found, giving the new controller an advantage over the existing
control methods. Moreover, for a minimum-variance estimator, a sparse approximation of
the inverse covariance matrix of the stochastic input is required. An efficient solution to
this estimation problem is found either via covariance selection or from solving a separable
least-squares problem similar to the one in the identification routine.

The sparse VARX identification method is compared to a Kalman filter using accurate statis-
tical knowledge of the system. A validation study has shown that a low-order sparse VARX
approximation gives an accuracy similar to the Kalman filter. Furthermore, the added `1-
regularization term is able to enhance the sparsity significantly with only a limited increase of
the prediction error. However, increasing the measurement noise variance results in a decrease
in performance of the VARX model with respect to the Kalman filter. The new controller
has also been validated and was shown to outperform the conventional controller with a per-
formance comparable to the Kalman filter based algorithm. Especially when the turbulence
conditions get heavier and under mild noise conditions, the new method has shown to be
very effective in reducing the temporal error. This combination of accuracy and scalability
demonstrates the potential of the new method for large-scale AO systems.
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Chapter 1

Introduction

Atmospheric turbulence forms a major constraint on the resolution of ground-based tele-
scopes. Mixing air of different temperatures results in local inhomogeneities in the refractive
index, causing fluctuations in the optical path length. By the passage of light through the
atmosphere, a by origin flat wavefront is turned into a non-flat smooth surface. When this
distorted wavefront is observed, the image is blurred. Depending on the weather conditions,
turbulence limits the angular resolution of large telescopes to a telescope with a diameter
of only 5 to 20 cm. Without any form of compensation, increasing the telescope diameter
beyond this size will not improve the image quality any further.

Adaptive Optics (AO) is a technique to compensate for wavefront aberrations in optical
systems and is widely used in astronomy, microscopy and lithography. The distorted wavefront
is directed by a system of lenses towards a deformable mirror (DM), able to actively add a
phase correction by changing the shape of the reflective surface. The residual wavefront, the
difference between the turbulence induced wavefront and the applied correction, is directed
to a wavefront sensor (WFS) measuring the remaining phase aberrations. Based on the WFS
measurements, the controller should determine the actuator commands to the DM in such a
way that it removes the distortions.

Most AO systems use a simple control law consisting of a wavefront reconstruction step from
WFS data and a mapping onto the DM. This reconstructed wavefront is assumed constant
until the compensation by the DM is applied. Due to delays within the AO system and
the dynamic nature of turbulence, this method tends to compensate for the distortions that
occurred some time in the past rather than the actual aberration. There has been a large
focus on improving this random-walk prediction model by including turbulence models either
from first principles or from system identification (see e.g. Kulcsár et al., 2006; Hinnen et al.,
2008). However, the new extremely large-scale generation of ground-based telescopes requires
a scalable control law establishing a trade-off between a good performance in compensating
for the phase distortion and a low computational complexity.

Master of Science Thesis Pieter Piscaer



2 Introduction

1-1 Research motivation

The scale of ground-based telescopes is growing to the point that problems are occurring
in terms of computational complexity and memory capacity of conventional numerical algo-
rithms. For example, the European extremely large telescope (E-ELT) will contain a 39.3 m
primary mirror with a total number of actuators and sensors in the order of tens of thousands
(Gilmozzi and Spyromilio, 2007). Existing control methods are no longer efficient enough for
AO systems of these dimensions.

The main focus in the literature is either on creating a more efficient implementation of the
static classical approach, or on approximating the Riccati equation which needs to be solved
in the optimal estimation problem. However, the classical approach still remains static with
much lower performance than the optimal control strategies. The estimation of the Riccati
equation on the other hand is still relatively computationally demanding and is based on
first principle models. First principle models do not provide the most accurate predictions
since they are based on simplified physical laws and parameters that are difficult to determine
exactly in practice. Therefore, it is preferred to use data-driven methods, where the model is
derived from input and output data under the actual current atmospheric circumstances. By
identifying the model from the input-output data, the dynamics of the model will match the
one of the real system. A more detailed discussion on the limitations of classical control and
the advantage of data-driven identification can be found in the study of Hinnen (2007). The
main focus of this thesis will be on the extension of the data-driven optimal control framework
to a scalable routine for extremely large-scale AO systems.

Typically, studying large-scale systems requires a simplification of the analysis by exploiting
certain properties such as symmetry, structure or sparsity of the system matrices. When
sparsity is induced, it can be exploited in later stages, drastically reducing both the computa-
tional complexity and memory requirements. One tool for creating sparsity is by estimating
physical models as so-called graphical models (see e.g. Dahlhaus and Eichler, 2003). With an
eye on recent advances in the estimation of graphical VAR (Vector Auto-Regressive) models
from Gaussian time series, the idea originated to model turbulence in this framework.

In the graphical modelling framework, VAR and VARX (Vector Auto-Regressive with eXoge-
nous input) models have the promising property that the graph topology has a one-to-one
correspondence to the sparsity pattern of the VAR(X) coefficient matrices. In other words, by
simple reasoning, it can be determined beforehand which elements in the matrices are surely
zero and which are not. By only identifying the non-zero elements, the dimensionality of the
identification problem can be reduced significantly. Furthermore, because of their relative
high accuracy and low complexity, VAR models have been a popular choice in describing tur-
bulence dynamics in the literature. This trade-off between simplicity and accuracy is one of
the characteristics that the new method should have. With the aforementioned information,
a concrete goal of this thesis can be presented.

1-2 Goal of the thesis

This thesis will develop a scalable data-driven control procedure that outperforms the classical
methods significantly, while having a much lower computational complexity then existing
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1-3 Thesis synopsis 3

optimal control methods. The method will include an efficient routine for the identification
of sparse VARX models by exploiting the spatio-temporal correlations in the wavefront in a
graphical modelling approach. In essence, a trade-off is made between the loss of accuracy and
the improvement in terms of computational complexity in comparison with both the classical
and optimal approach.

1-3 Thesis synopsis

The remainder of the thesis is structured as follows. The theoretical background on system
identification and graphical modelling is presented in Chapter 2. It can be read indepen-
dently from the rest of the report and will be referred to when considered necessary. Chapter
3 contains the theory behind atmospheric turbulence and adaptive optics, but will also serve
as support and motivation for the results presented afterwards. The first three sections are
dedicated to the theory behind atmospheric turbulence and different modelling approaches.
Afterwards, the principle of adaptive optics is introduced. The possibilities in represent-
ing sensor and actuator dynamics are discussed, providing a motivation for choosing VARX
models. This chapter is concluded with the introduction of existing control strategies and
a discussion on the obstacles in the control of large-scale AO systems. The novel scalable
data-driven AO control method, forming the main contribution of this thesis, is presented in
Chapter 4. The complete procedure, from the selection of the model to the identification algo-
rithm and the control law, is discussed and the performance is supported in a validation study.
Finally, a brief summary of the main conclusions, followed by a number of recommendations
for future research is presented in Chapter 5.
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Chapter 2

Theoretical Considerations

Before discussing the novel identification and control method for the atmospheric turbulence
and adaptive optics application, there are a number of theoretical considerations that are
important for the complete understanding of the method and results. This chapter will serve
as a summary of some relevant theoretical background only and can be read separate from
the rest of the report. A certain level of linear algebra and signal analysis assumed in reading
this chapter. It includes a short introduction to system identification, in particular the identi-
fication of autoregressive models. Furthermore, the basics of graphical modelling is presented
including the definitions of causality and conditional independence, the application in mod-
elling multivariate time series and the covariance selection problem. All theory concerning
the application, i.e. atmospheric turbulence and adaptive optics, is included in Chapter 3.

2-1 Introduction to system identification

System identification is the method of obtaining a model from given data. There exist multiple
methods for system identification and it depends on many factors which method is the most
suitable for a certain application. In the case of modelling turbulence, it is important that the
method can address both the deterministic and stochastic part of the model. The objective is
to determine a one-step-ahead predictor of the turbulence. The classical approach of solving
these problems are the so called prediction error methods, that determines this one-step-ahead
predictor without using knowledge of the system and stochastic disturbances. A completely
different approach to this problem is referred to as subspace identification. These methods
are based on retrieving subspaces that are related to the system matrices that have to be
identified. The vast literature that has been written on the topic of system identification
is too extensive to discuss in this thesis. A complete discussion is presented in Verhaegen
and Verdult (2007). This section will be used to present the theory that is essential in
understanding the remainder of this thesis.

A general formulation of a linear system with no directed feed-through is the state-space
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6 Theoretical Considerations

model:

x(k + 1) = Ax(k) +Bu(k) +w(k)
y(k) = Cx(k) + v(k)

(2-1)

where w(k) ∼ N(0,Cw) and v(k) ∼ N(0,Cv) are the process noise and measurement noise
respectively. Moreover, x(k) ∈ Rn is the state of the system, u(k) ∈ Rm is a (deterministic)
input and y(k) ∈ Rp is the measured output. One different formulation of the state-space
model that is of particular interest to system identification is the so-called innovation form
representation. By writing the stochastic part in terms of the innovation sequence e(k) =

y(k)−Cx̂(k∣k−1) and by introducing the Kalman gain K, the output y(k) can be written as

x̂(k + 1∣k) = Ax̂(k∣k − 1) +Bu(k) +Ke(k)
y(k) = Cx̂(k∣k − 1) + e(k) (2-2)

The identification of the innovation representation amounts to finding the matrices A, B, C
and K from input-output data.

Another type of model that is central to this thesis is the VARX (Vector Auto-Regressive with
eXogenous input) model

y(k) =
na

∑
i=1
Aiy(k − i) +

nb

∑
i=1
Biu(k − i) +w(k) (2-3)

with stochastic input w(k) ∼ N(0,Cw) and a deterministic input u(k). In contrast to the
innovation form, the VARX model only represents the input-output relations. An important
property that relates the two models is that each stable model of type (2-1) can be represented
as a (higher order) VARX model (2-3).

In the following paragraphs, the identification of these type of models is introduced. Two
main classes of methods can be used for this purpose: the prediction error and subspace
identification methods. Moreover, special attention will be paid to enforcing sparsity onto
the system matrices. Another sub-problem in system identification is the identification of
purely stochastic models, which are obtained when modelling atmospheric turbulence.

2-1-1 Prediction error methods

Prediction error (PE) methods form a class of methods estimating the parameters in an LTI
model and estimates both the deterministic and the stochastic part of the model. If we assume
a set of input-output sequences on a certain time interval and return to the innovation model
(2-2), PE methods can be used to identify parametrized representations of the matrices A, B,
C, and K. The main step is the minimization of a desired cost function with the parameters θ
as optimization variables. A common way of doing this is inspired by the minimum-variance
state-reconstruction property of the Kalman filter. The predictor ŷ(k, θ) follows directly from:

x̂(k + 1, θ) = A(θ)x̂(k, θ) +B(θ)u(k) +K(θ) (y(k) −C(θ)x̂(k, θ))

ŷ(k, θ) = C(θ)x̂(k, θ)

Pieter Piscaer Master of Science Thesis



2-1 Introduction to system identification 7

A property of the Kalman filter is that the variance of the prediction error y(k) − ŷ(k, θ) is
minimized. Hence, when we denote the optimal parameter θ0, we know it should minimize

θ0 = arg min
θ

trace (E [(y(k) − ŷ(k, θ))(y(k) − ŷ(k, θ))T ]) (2-4)

Under the assumption that the variance is constant, the prediction error is ergodic and we
may approximate this by

min
θ

1
N

N−1
∑
k=0

∥y(k) − ŷ(k ∣ k − 1, θ)∥2
2 (2-5)

This linear least-squares problem is referred to as the prediction-error estimation problem and
forms the basis of PE methods. The relation (2-4) and in particular the approximation (2-5)
is important for the remainder of this report.

2-1-2 Subspace identification

Subspace identification methods retrieve certain subspaces related to the system matrices of
the state-space model. These subspaces are used to determine the system of matrices up to
a similarity transformation. In subspace identification, the model is not parametrized and
it can be obtained from simple linear algebra problems such as RQ factorization, SVD and
linear least-squares, instead of optimization methods.
The relationship between the inputs, states and outputs forming the basis of subspace iden-
tification is the so-called data equation. For a model of the form (2-2), the data equation
reads:

Yi,s,N = OsXi,1,N + TsUi,s,N + SsEi,s,N

Where Yi,s,N , Ui,s,N and Ei,s,N are block Hankel matrices storing the identification data,
defined as:

Yi,s,N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(i) y(i + 1) ⋯ y(i +N − 1)
y(i + 1) y(i + 2) ⋯ y(i +N)

⋮ ⋮ ⋱ ⋮

y(i + s − 1) y(i + s) ⋯ y(i + s +N − 2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2-6)

with s > n and similar definitions for Ui,s,N , Ei,s,N and Xi,1,N . Furthermore, Os represents the
extended observability matrix and Ts and Ss are two block lower-triangular Toeplitz matrices
of the form

Os =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C
CA
CA2

⋮

CAs−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ss =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 ⋯ 0 0
CK I ⋯ 0 0
CAK CK ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

CAs−1K CAs−2K ⋯ CK I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ts =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 0
CB 0 ⋯ 0 0
CAB CB ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

CAs−1B CAs−2B ⋯ CB 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The solution to the subspace identification problem starts with the estimation of the column
space of the matrix Os. From this subspace, the matrices C and A can directly be extracted
from an SVD up to a similarity transformation. The matrix B follows from a least-squares
problem or an RQ factorization and the Kalman gain is computed using a Riccati equation.
The complete procedure is described in Chapter 9 of Verhaegen and Verdult (2007) and is
too extensive to include in this chapter.
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8 Theoretical Considerations

2-1-3 Enforcing sparsity

There are multiple ways of enforcing sparsity in a system during identification. When the
sparsity pattern is known beforehand, the most straightforward method is to set all desired
elements in the system matrices to zero as constraints in the optimization procedure. When
the pattern is not known, adding an `1-norm (∥x∥1 = ∑

n
i=1 ∣xi∣) regularization term to the

objective function is a common way of enforcing sparsity (Donoho, 2006). The regularized
optimization problem becomes

min
x

f(x) + λ∥x∥1

where f(x) is the desired objective function and λ is a tuning parameter to enforce different
degrees of sparsity. When λ is increased, the sparsity in the matrix x will be larger than
for small λ. When a certain group sparsity needs to be enforced, i.e. a number of matrices
that should have the same sparsity pattern, it was shown in Yuan and Lin (2006) that the
regularization should be a sum of `2-norms (∥x∥2 =

√
∑
n
i=1 x

2
i ), better known as “Group lasso”.

In the literature, there have been many applications of `1-regularization including soft-
thresholding (Donoho, 1995), the lasso (Tibshirani, 1996), compressed sensing (Candès et al.,
2006) and learning of sparse graphical models (Meinshausen and Bühlmann, 2006; Songsiri
and Vandenberghe, 2010). Section 2-2 will present the basics of graph theory and how it can
be exploited to identify sparse VAR models.

2-1-4 Stochastic realization

The stochastic realization problem is the problem of finding a stochastic linear model from
the covariance matrices or time series measurements of the output only. This sub-problem
in system identification can be solved using either prediction error or subspace identification
methods. Since it is in general an extensive field, it is chosen not to go into detail on how
to solve the problem in general. More information on linear stochastic systems can be found
in many textbooks, for example the very recent book of Lindquist and Picci (2015). The
next section will revolve around the identification of AR models. Since they do not have a
deterministic input, this will be an example of stochastic realization. Moreover, the turbulence
models that will be used to simulate turbulence dynamics in the numerical simulations are
created following a stochastic realization approach since they are created from a certain
theoretical autocovariance sequence, see for example Assémat et al. (2006) and Beghi et al.
(2008). When there is no theoretical expression available of the autocovariance matrices, they
can be approximated from time series measurements. Assuming that there is a time sequence
of N output vectors available, the sample covariance matrix of E[y(k+i)y(k)T ] is constructed
via

Si =
1

N − i

N−i
∑
k=1

y(k + i)yT (k) (2-7)

2-1-5 Identifying vector auto-regressive models

A type of models that is very suited for modelling turbulence (Massioni et al., 2015), is the
Vector Auto-Regressive (VAR) model. This section will provide a brief overview of common
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2-1 Introduction to system identification 9

methods for estimating VAR models and its material can be found in many textbooks. A
VAR model is defined as

y(k) +
q

∑
i=1
Aiy(k − i) = w(k) (2-8)

with output y(k) ∈ Rp, stochastic input w(k) ∼ (0,Cw) and q the order of the VAR model. The
matrices Ai ∈ Rp×p are referred to as the coefficient matrices of the VAR model. Equivalently,
the VAR model can be written as

q

∑
i=0
Biy(k − i) = n(k)

with n(k) ∼ (0, I), which can, because of the identity noise covariance matrix, be more suitable
for some applications. The coefficient matrices of both types are related via B0 = C

−1/2
w and

Bi = C
−1/2
w Ai for i = 1, . . . , q.

Identifying VAR models is an example of the stochastic realization problem, i.e. the problem
of finding Ai and Cw given a time series of y(k) or its autocovariance sequence:

Ci = E [y(k + i)yT (k)]

for i = 0, . . . , q. When there is no theoretical expression available of the autocovariance
matrices, they can be approximated using (2-7). A common way of solving the identification
problem is using the so-called Yule-Walker equations. These equations are obtained if the
transpose of (2-8) is post-multiplied by y(k − i), i = 1, . . . , q and after taking the expectation
of both sides. When y(k) is real, C−i = CTi and the following set of linear equations is found

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0 C1 ⋯ Cq
CT1 C0 ⋯ Cq−1
⋮ ⋮ ⋱ ⋮

CTq CTq−1 ⋯ C0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

AT1
⋮

ATq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cw
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2-9)

These equations are usually referred to as Yule-Walker equations or normal equations. By
estimating the auto-covariance sequence from time series data, the Yule-Walker equations can
be used to derive the model parameters Ai and Cw.

Another way of finding the AR coefficients A1, . . . ,Aq is by minimizing the mean squared
prediction error. The prediction error e(k) is the difference between the measured output
and the output according to the model, i.e.

e(k) = y(k) − ŷ(k) = y(k) +
q

∑
i=1
Aiy(k − i)

The prediction-error estimation problem (2-5) for this example is given by

min
Ai

N

∑
k=q+1

∥y(k) −
q

∑
i=1
Aiy(k − i)∥

2
2
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10 Theoretical Considerations

Note that this is completely equivalent to the following formulation

min
A1,...,Aq

XXXXXXXXXXXXXXXXXXX

[I A1 A2 ⋯ Aq]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(q + 1) y(q + 2) ⋯ y(N)

y(q) y(q − 1) ⋯ y(N − 1)
⋮ ⋮ ⋱ ⋮

y(1) y(2) ⋯ y(N − q)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXXXXXXX

2

2

(2-10)

This problem can be solved for each row of [A1 A2 ⋯ Aq] separately. The mean squared
error can also be expressed in terms of the autocovariance sequence. It is straightforward to
show that the optimization problem (2-10) can be written as

min
A1,...,Aq

tr

⎛
⎜
⎜
⎜
⎜
⎝

[I A1 ⋯ Aq]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C0 C1 ⋯ Cq
CT1 C0 ⋯ Cq−1
⋮ ⋮ ⋱ ⋮

CTq CTq−1 ⋯ C0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

AT1
⋮

ATq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

if the autocovariance matrices are replaced by the sample covariance matrices of (2-7). More-
over, it can be shown that with this representation of the covariance matrix, a similar least-
squares problem in terms of B0, . . . ,Bq actually finds the maximum likelihood estimate. Both
the maximum likelihood problem and the least-squares problem can easily be solved by set-
ting the gradient of the cost function to zero. In both cases, it can be proven that this results
in solving the Yule-Walker equations (see e.g. Songsiri et al., 2009).

2-2 Graphical modelling

This section will present a brief introduction to graphical modelling. Graphical models are
widely used in a large variety of scientific fields. They offer insight in the structure of distribu-
tions and can exploit sparsity to improve the efficiency of statistical calculations. Throughout
this report, a graph will be represented as the triplet G = (V,A,E), where V is a finite set of
vertices, A ⊆ V ×V is the set of (directed) arcs E ⊆ V ×V the set of (undirected) edges. Directed
arcs represent a causality relation such as Granger causality, whereas undirected edges rep-
resent a conditional uncorrelatedness, often using the definitions of conditional orthogonality
or conditional independence.

Often in graphical modelling only linear association and linear Granger non-causality is con-
sidered. This non-causality can be expressed in terms of conditional orthogonality. For
random vectors x, y and z, x and y are conditionally orthogonal if x and y are uncorre-
lated after the linear effects of z have been removed. Conditional orthogonality is denoted
as x ⊥ y ∣ z. When non-linear relations are considered this can be extended by considering
conditional independence instead. For Gaussian processes the two are identical. Since this
thesis is restricted to Gaussian processes, the notation defined above will also be used to
denote conditional independence.

Next, two important definitions for causality and conditional independence are discussed
that form the basis of graphical models. More information on graphical models can be found
in many textbooks, for example Lauritzen (1996).
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2-2 Graphical modelling 11

2-2-1 Granger causality

Directed edges in graphical models denote causality. A general definition of causality was
defined by Granger (Granger, 1980):
Considering the stationary processes x(t) and y(t), then y(t) is said to cause x(t + 1) if

Pr(x(t + 1) ∈ A ∣ Ω(t)) ≠ Pr(x(t + 1) ∈ A ∣ Ω(t) − y(t)) for some A

where Ω(t) contains all knowledge at time t. In other words, y(t) causes x(t + 1) only if the
variable y(t) has some unique information about what the value of x(t+1) will be. Since it is
impossible to know all knowledge in the universe at time t, this definition on itself cannot be
tested on actual data. For this reason Granger introduced a number of constraints. Consider
the proper information set J(t) available at time t, consisting of terms of the vector series
z(t). Now suppose that z(t) includes x(t), but not y(t) and let J ′(t) denote the augmented
set {z(t − j), y(t − j), j ≥ 0}. Furthermore, F (x(t + 1) ∣ J ′(t)) is the conditional distribution
function of x(t + 1) given J ′(t). Two operational definitions follow:
y(t) does not cause x(t + 1) with respect to J ′(t) if

F (y(t + 1) ∣ J(t)) = F (x(t + 1) ∣ J ′(t))

and if

F (x(t + 1) ∣ J(t)) ≠ F (y(t + 1) ∣ J ′(t))

then y(t) is said to be a prima facie cause of x(t + 1) with respect to J ′(t).
This is clearly equivalent to the general definition when J ′(t) = Ω(t). An important difference
between the general and the operational definitions is that using the operational definitions,
true causality is impossible to prove since there can always be data missing from J(t) that
influence the value of x(t + 1).

2-2-2 Conditional independence

A missing undirected edge between two vertices often represent conditional independence,
which can be formalized as follows:
If x, y and z are random variables, we say that x is conditionally independent of y given z
(denoted as x ⊥ y ∣ z) if,

Pr(x ∩ y ∣ z) = Pr(x ∣ z)Pr(y ∣ z)

In other words: given that z occurs, knowledge of y is irrelevant for the likelihood of x and
vice versa.
Let x ∼ N(0,Σ) be an n-dimensional Gaussian random variable. It can be shown that
conditional independence of two elements of x (xi and xj), corresponds to zero entries in the
inverse of the covariance matrix (Dempster, 1972), (Lauritzen, 1996). Suppose x is partitioned
into components y and z such that its covariance matrix is

Σx = [
Σyy Σyz

Σzy Σzz
]
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12 Theoretical Considerations

where y = (xi, xj) are the two components of interest and let K ∶= Σ−1
x . The conditional

density is proportional to the joint density of y and z. Exploiting that z is fixed it can be
found that

f(y ∣ z) ∝ exp{[yT zT ] [
Σyy Σyz

Σzy Σzz
]

−1
[
y
z
]} (2-11)

∝ exp{−yTKyyy/2 − yTKyzz}

= exp{−yTKyyy/2 − yTKyyK
−1
yyKyzz}

∝ exp{−(y −K−1
yyKyzz)

TKyy(y −K
−1
yyKyzz)/2} (2-12)

Which is a normal distribution function with mean K−1
yyKyzz ∶= µy∣z and covariance K−1

yy ∶=

Σy∣z. Furthermore, use that

[
Σyy Σyz

Σzy Σzz
]

−1
= [
Kyy Kyz

Kzy Kzz
] = [

(Σyy −ΣyzΣ−1
zzΣzy)

−1
−(Σyy −ΣyzΣ−1

zzΣzy)
−1 ΣyzΣ−1

zz

⋆ ⋆
]

such that

K−1
yy = Σy∣z = Σyy −ΣyzΣ−1

zzΣzy (2-13)
K−1
yyKyzz = µy∣z = −ΣyzΣ−1

zz z

Restoring the original partition, it is found that

Σy∣z =K
−1
yy =

⎡
⎢
⎢
⎢
⎢
⎣

(Σ−1)
ii

(Σ−1)
ij

(Σ−1)
ji

(Σ−1)
jj

⎤
⎥
⎥
⎥
⎥
⎦

−1

(2-14)

where the subscript ij denotes the element on row i column j, proving that xi and xj are
conditionally independent given xz if and only if

(Σ−1)
ij
= (Σ−1)

ji
= 0 (2-15)

This property was first introduced by Dempster (1972) and forms the basis of the covariance
selection problem. That is, the problem of finding the maximum likelihood estimate of the
inverse covariance matrix (Σ−1) of a multivariate Gaussian variable N(0,Σ), subject to con-
ditional independence constraints as in (2-15). This problem is already very well-established
in the literature and was more recently extended to the time series case (Dahlhaus, 2000).
Further extensions to VAR model identification have been proposed by Songsiri et al. (2009).
Section 2-2-4 will give a quick literature overview on efficient algorithms to find the maximum
likelihood estimate of the inverse covariance matrix.

2-2-3 Graphical models for multivariate time series

In this paragraph, the methods proposed in Dahlhaus and Eichler (2003) will be discussed.
In here, three different types of graphical models for multivariate time series are defined. The
first class represents each time index of a certain variable as a separate vertex, resulting in
a generalization of classical graphical models such as the time series chain graph. In the
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2-2 Graphical modelling 13

second class the vertices do not consist of variables at different time instances, leading to
mixed graphs termed Granger causality graphs. Furthermore, there are the so called partial
correlation graphs, that are generalizations of the classical covariance selection models to the
time series situation (Dahlhaus, 2000). These three types of graphs will be shortly discussed
in the following. More information can be found in Dahlhaus and Eichler (2003) and the
references therein.
The notation that will be used in this section is as follows. Let x = {xi(t), t ∈ Z, i = 1, . . . , n}
be an n-variate stationary process and V = {1, . . . , n} the set of all indices. For any A ⊆ V
we define xA = {xA(t)}. Furthermore, x̄A(t) = {xA(s), s < t} denotes the past of xA at time
t. A backslash notation is used to exclude elements from certain sets, e.g. xV /i(t) is used to
exclude node i from the process xV (t).

Time series chain graphs

The first approach is an extension of the classical chain graph. In this type of graphs, each
time sample of the stochastic process x are represented by separate vertices.
The mixed graph G = (VTS ,ATS ,ETS) of a stationary process x with VTS = V ×Z and

(i, t − τ), (j, t) ∉ ATS ⇔ τ ≤ 0 or xi(t − τ) ⊥ xj(t) ∣ x̄V (t)/{xi(t − τ)}

(i, t), (j, t) ∉ ETS ⇔ xi(t) ⊥ xj(t) ∣ x̄V (t) ∪ {xV /{i,j}(t)}

is called a time series chain graph (TSC-graph).
In this type of graphs, the undirected edges represent the conditional dependence of the
vertices at the same time instance. The directed edges represent a causal relation between
nodes at different time instances. Both edges are shift invariant with respect to time.
In the case of VAR models, each causality relation is represented by one entry in one of
the matrices. Denoting i, j-th element of the q-th order VAR model coefficient matrices Aτ ,
τ = 1, . . . , q by (Aτ)ij , it can be found that

(i, t − τ), (j, t) ∈ ATS ⇔ τ ∈ {1, . . . , q} and (Aτ)ji ≠ 0

and the undirected edges are seen back in the inverse of the covariance of the noise K:

(i, t), (j, t) ∈ ETS ⇔Kij ≠ 0

with Kij denoting the i, j-th element in the matrix K. Only when there are missing arcs or
edges the entries above will be zero (Dahlhaus and Eichler, 2003).

Granger causality graphs

This type of graph uses the notion of Granger causality (Granger, 1969) for directed arcs and
the same definition of undirected edges as for time series chain graphs.
The mixed graph G = (V,AC ,EC) of a stationary process x such that for all (i, j) ∈ V

(i, j) ∉ AC ⇔ xj(t) ⊥ x̄i(t) ∣ x̄V /{i}(t)

(i, j) ∉ EC ⇔ xi(t) ⊥ xj(t) ∣ x̄(t), xV /{i,j}(t)
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is called a Granger causality (GC) graph.

A missing directed edge form i to j thus means that xi(t) and xj(t − k) are conditionally
independent (or conditionally orthogonal) for all k ≥ 1 given all the other relevant past
information.

Applying this definition and using the same notation as before, it can be derived that for
VAR models

(i, j) ∉ AC ⇔ (Ak)ij = 0 ∀k ∈ {1, . . . , p}
(i, j) ∉ EC ⇔ (K)ij = 0

Hence a missing directed edge between two nodes j and i, i.e. xi is not Granger-caused
by xj , creates a zero entry in all the coefficient matrices and thus eventually will provide a
sparse model when the topology is sparse. The main difference in the VAR example between
this definition and the TSC-graph is the fact that TSC-graphs can have a different sparsity
pattern for each matrix Ai, while GC-graphs have a certain group sparsity, i.e. all matrices
Ai have the same sparsity pattern.

Conditional independence graphs

Conditional independence graphs (or partial correlation graphs) only contain undirected edges.
The idea was introduced first in Dahlhaus (2000).

An undirected graph G = (V,E) is termed a partial correlation graph of a multivariate sta-
tionary process x when

(i, j) ∉ E ⇔ xi ⊥ xj ∣ xV /{i,j}

More precisely, an edge between i and j is missing if and only if xi(t) and xj(s) are uncorre-
lated for all t, s ∈ Z after removing all the linear effects of all other components xV /{i,j}.

Previously, it was shown that for Gaussian signals, conditional independence corresponds to
zeros in the inverse of the covariance matrix of that signal. For partial correlation graphs
there exists a similar characterization in terms of the inverse of the spectral matrix S(ω) of
the process. In Dahlhaus (2000) it is proven that for S(ω) full rank for all ω, the conditional
independence xi ⊥ xj ∣ xV /{i,j} holds if and only if the i, j-th element of the spectral matrix,
S−1
ij (ω) = 0 for all ω. With this relation mind, the inverse covariance selection problems can

be extended to the time-series case, by enforcing the sparsity pattern on the inverse spectrum
instead of the inverse covariance.

2-2-4 The covariance selection problem

Consider a the problem of estimating the covariance matrix C of a certain n-variate Gaussian
distributed sample dataset:

x(1), . . . , x(N) ∼ N(0,C)
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The maximum likelihood estimation of this unknown covariance matrix from its sample co-
variance matrix, S ∶= 1

N ∑
N
k=1 x(k)x

T (k), follows from the following optimization problem:

Ĉ ∶= arg max
C≻0

− log detC − tr(SC−1
)

By a change of variable: X = C−1, the problem becomes:

Ĉ = arg min
X≻0

log detX + tr(SX)

Now, assume that the signal x(k) is represented by a Gaussian graphical model, an undirected
graph describing conditional (in)dependence relations. As was shown in Section 2-2-2, defining
the topology of a Gaussian graphical model, is equivalent to enforcing a certain sparsity on
the inverse of the covariance matrix. This sparsity can be enforced on X either directly as
equality constraints or by adding an `1-regularization term to the objective function. The
problem of finding the topology of the graphical model, or equivalently the sparsity pattern
in C−1, is called the covariance selection problem and it can be formulated as:

min
X≻0

− log detX + tr(CX) + λ∥X∥1 (2-16)

This notation was first presented by Banerjee et al. (2008). In this work, two new methods
were introduced that can solve Gaussian processes with at least one thousand nodes in which
a block coordinate descent method is applied to the dual and Nesterov’s optimal gradient
methods too a smoothed approximation of the ML objective. In Lu (2010), Nesterov’s method
is applied to the dual problem and is compared to a projected spectral gradient method. Yuan
and Lin (2007) and Li and Toh (2010) solve the problem using interior point algorithms.
Duchi et al. (2008) uses the gradient projection method to solve the dual problem. Friedman
et al. (2008) uses the fact that block coordinate descent algorithms can be interpreted as
an iterative penalized regression, called graphical LASSO (GLASSO). Mazumder and Hastie
(2012) propose a primal algorithm, DP-GLASSO, that also operates by block coordinate
descent. Furthermore, in Scheinberg et al. (2010) and Yuan (2012), ADMM is used to solve the
covariance selection problem. It is shown that ADMM outperforms a number other algorithms
discussed above. In Wiesel and Hero III (2012), a distributed estimation of the inverse
covariance matrix is considered that is implemented using ADMM. Another recent approach is
via second order Newton methods and is studied in Wang et al. (2010), Hsieh et al. (2011) and
Dinh et al. (2013). In Hsieh et al. (2011), a second order algorithm is introduced that performs
Newton steps using iterative quadratic approximations of the Gaussian negative log-likelihood,
called QUIC. This algorithm has been shown to be able to solve problems up to n = 20.000.
In Hsieh et al. (2013) an adaptation to this algorithm, named BIG-QUIC, is presented and
is used solve 1 million dimensional `1-regularized Gaussian MLE problems. Other extremely
high-dimensional algorithms have been proposed in Wang et al. (2013) and Treister and
Turek (2014). Wang et al. (2013) presents a generalization of ADMM to multiple blocks,
called PDMM, that randomly updates some blocks in parallel, behaving like randomized
block coordinate descent. In Treister and Turek (2014), a new block coordinate descent
approach is presented that defines the blocks as subsets of columns of the inverse covariance
function and solves each block sub-problem by a quadratic approximation.
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Chapter 3

Atmospheric Turbulence and Adaptive
Optics

Adaptive optics is a well established technique to compensate for wavefront aberrations in-
troduced by light propagation through a turbulent medium. Before commencing a study of
designing a new adaptive optics (AO) control method, a basic understanding of the underly-
ing statistical properties of the turbulence is essential. As the turbulence is largely a random
process and changes quickly, it is a challenging phenomenon to model and correct.

In general, all physical phenomena, hence including turbulence, are represented by physi-
cal laws that are by nature essentially deterministic. This means that in principle we may
be able to model it analytically, provided that we have at our disposal all relevant informa-
tion of the atmosphere. It is however imaginable that this model would require an infeasibly
large number of equations and prior knowledge. The stochastics of turbulence on the other
hand are much easier to describe. In 1941, Kolmogorov proposed a theory to describe these
properties (Kolmogorov, 1941a,b).

Kolmogorov’s theory and everything it has produced will be considered in this chapter. Af-
terwards, the principle of AO and currently accepted control strategies are reviewed. In this
way, the main purpose of this chapter is to serve as a theoretical support and motivation of
Chapter 4, in which the main contribution of this thesis, a novel data-driven scalable control
method, is proposed.

3-1 The need of AO in astronomy

Nowadays, ground-based telescopes are probably the most important tools in astronomy and
many discoveries can be appointed to improving resolutions. Over the years, the telescopes
have become bigger and bigger and will grow to even larger scales. The European Extremely
Large Telescope (Gilmozzi and Spyromilio, 2007), which is currently being built, will be the
largest telescope on earth with a primary mirror of 39.3 meter and tens of thousands actuators

Master of Science Thesis Pieter Piscaer



18 Atmospheric Turbulence and Adaptive Optics

and sensors. There are two main reasons for this drive of increasing the telescope size, namely
the light collecting power and angular resolution. In principle, the resolution of each optical
system is limited by diffraction caused by the aperture of the telescope. An incoming plane
wave that is focussed by a circular lens will not be focussed to a spot, but forms a so-called
airy-disk with a certain diameter d. When we would consider two point-sources, the images
will become two airy-disks. When the sources are moved closer to each other, the disks will
start to overlap to the point that it becomes one. The Rayleigh criterion,

sin θ ≈ 1.22 λ
D

describes the angular resolution θ at which the two sources still can be resolved. Hence
increasing the diameter will lead to a smaller resolution.

However, as the diameter gets larger and larger, the limiting factor will be the aberrations
introduced by atmospheric turbulence rather than diffraction. Turbulence is ultimately caused
by the heat from solar radiation, which causes movements within the atmosphere. By mixing
air of different temperatures, local inhomogeneities in the refractive index are created. A
fluctuation in refractive index causes a so called optical path difference:

∆l = ∫ n(z)dz

where z represents the direction of the light propagation and n(z) the refractive index along
this line. When the function n(z) is not equal for all paths that are collected with our
telescope, some parts will be delayed more than others. A by origin perfectly flat wavefront
hence gets distorted and will no longer be flat after it passes the earth’s atmosphere. In
general turbulence conditions, the angular resolution is limited to approximately one arcsecond
(≈ 5µrad). Returning to the Rayleigh criterion, this corresponds to a telescope diameter in the
order of 10cm. Increasing the diameter of the aperture on ground-based telescopes to larger
dimensions will not improve the image quality any further. This limiting factor stresses the
need for adaptive optics. Only by taking counter measures in the form of adaptive optics
to compensate for the atmospheric wavefront distortions, increasing the diameter towards
extremely-large telescopes will actually improve the image quality. In order to design such
an adaptive optics system, a good understanding of atmospheric turbulence is crucial. The
next section will discuss the statistical properties following from Kolmogorov’s insights.

3-2 Kolmogorov theory

Kolmogorov (Kolmogorov, 1941a,b) explains turbulence using an energy cascade principle.
He suggested that in turbulent flow, the energy in the large inhomogeneities (or eddies) is
transferred into smaller and smaller inhomogeneities. The characteristic size of the largest
structures is defined as the outer scale L0. If the size of the smallest eddies get smaller than
a certain inner scale lo, the energy is dissipated as friction between molecules. The range
between the inner and outer scale is called the inertial subrange. Typical values for the inner
scale are 1mm to 10mm, the outer scale ranges from 10m up to 100m.
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3-2-1 Spatial structure of atmospheric turbulence

In Kolmogorov’s analysis, he shows that from dimensional analysis, the average speed of
turbulent eddies v must be related to the size of the eddies r via

v ∝ r1/3

If we assume turbulence to be homogeneous and isotropic, we are only interested in the
relative properties. To this intent, a structure function is defined describing the variance of
the difference in a certain function f(x) between two points separated by a distance r:

D(r) = ⟨∣f(x) − f(x + r)∣2⟩ (3-1)

with ⟨. . .⟩ representing the ensemble average of over different realizations of f(x) and is related
to the covariance C(r) = ⟨f(r1), f(r2)⟩ via

D(r) = 2(σ2
−C(r)) (3-2)

where σ2 is the variance. A particularly interesting property is the refractive index within the
medium. It was shown before how fluctuations in the refractive index inflict an optical path
difference resulting in aberrations. These fluctuations are related to the velocity fluctuations
such that the structure function that describes the difference in refractive index is of the form

Dn(r) = ⟨∣n(x) − n(x + r)∣2⟩ = c2
nr

2/3

with cn the refractive index structure coefficient (Roddier, 1981). This structure function is
a measure of the strength of the turbulence and is valid only within the inertial subrange
lo ≤ r ≤ L0.

From the structure function, the power spectral density (PSD) can be derived. It is usually
expressed as a function of the spatial wavenumber κ = 2π/l, where l is the size of the fluctu-
ations. Tatarski et al. (1961) showed that the Kolmogorov power spectrum can be found to
be

ΦK
n (κ) = 0.033c2

nκ
−11/3 (3-3)

and is only valid within the inertial subrange. There are however other models that are also
accurate at scales smaller than the inner scale and larger than the outer scale. For example,
the Von Kármán spectrum accounts for the outer scale

ΦV K
n (κ) =

0.033c2
n

(κ2 + κ2
0)
−11/6 (3-4)

and the modified Von Kármán spectrum also for the inner scale

ΦmVK
n (κ) =

0.033c2
n exp(−κ2/κ2

m)

(κ2 + κ2
0)
−11/6 (3-5)

where κm = 5.92/l0 and κ0 = 2π/L0 (Schmidt, 2010). Note that when l0 = 0 and L0 = ∞ ,
(3-4) and (3-5) collapse to the Kolmogorov PSD, (3-3).
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20 Atmospheric Turbulence and Adaptive Optics

3-2-2 Phase distortion through turbulence

To go from fluctuations in the refractive index to an aberration in terms of phase delays, the
wavefront phase deformation can be expressed in terms of the integral over the optical path
length z in the direction of the light propagation and the wave number:

φ = k∆l = k∫ n(z)dz (3-6)

where k = 2π/λ is the wavenumber of light with wavelength λ. In the same way as before, a
structure function can be constructed as

Dφ(r) = ⟨∣φ(x) − φ(x + r)∣2⟩ (3-7)

Assuming Kolmogorov’s structure function, it has been found that

Dφ(r) = 6.88(
r

r0
)

5/3
(3-8)

(see e.g. Roddier, 1999), where r0 is the Fried parameter (Fried, 1965)

r0 = [0.42 k2

cos(γ) ∫
c2
n(h)dh]

−3/5
(3-9)

with γ the zenith angle of the source and cn the refractive index structure coefficient as
function of the height h above the ground. The Fried parameter gives an intuitive measure
of turbulence strength. The ratio of the telescope diameter and the Fried parameter D/r0
represents the severity of the distortions due to turbulence. The Fried parameter can be
interpreted as the diameter over which turbulent effects begin to decrease the resolution: a
diameter D > r0 has a similar effective resolution as a telescope with D = r0. In other words if
D < r0, the resolution is limited by diffraction according to Rayleigh’s criterion and if D > r0,
it will be limited by the atmospheric turbulence. Another important property of r0 is that
the root mean square phase distortions over an area with diameter r0 is about 1 radian. The
Fried parameter is depending heavily on the weather conditions and ranges from 5cm in heavy
turbulence during daytime to 20cm under quiet circumstances at night.

From the structure function (3-8), the phase PSD can be calculated to be

ΦK
φ (κ) = 0.49r−5/3

0 κ−11/3 (3-10)

according to Kolmogorov’s theory and the (modified) Von Kármán PSDs are

ΦV K
φ (κ) = 0.49r−5/3

0 (κ2
+ κ2

0)
−11/6 (3-11)

and

ΦmVK
φ (κ) = 0.49r−5/3

0 (κ2
+ κ2

0)
−11/6 exp(−κ2

/κ2
m) (3-12)

respectively. A visualization of the Kolmogorov, Von Kármán and modified Von Kármán
phase PSDs is given in Figure 3-1. The influence of the inner and outer scales are clearly
visible. Moreover, note that the highest energy is in the lower frequency range.
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Figure 3-1: Kolmogorov, Von Kármán and modified Von Kármán phase PSDs

Throughout this thesis, we assume the Von Kármán spectrum as the underlying turbulence
spectrum. The Von Kármán structure function can according to (3-2) equivalently be written
as the difference between the variance and covariance of the two points as a function of the
distance between them. This can be computed from the analytical expression for the spatial
covariance and has been derived in Conan (2008):

Cφ(r) =
Γ(11/6)
25/6π8/3 (

48πrΓ(6/5)
5L0

)

5/6
(
r0
L0

)
−5/3
K5/6 (2π r

L0
) (3-13)

and

σ2
φ =

Γ(11/6)Γ(5/6)
π8/3 (

24
5

Γ(6/5))
5/6

(
r0
L0

)
−5/3

(3-14)

with K(⋅) the modified Bessel function of the second kind and Γ(⋅) the gamma function. The
equations (3-13) and (3-14) will later be used to generate dynamic turbulence in simulation
by exploiting the spatio-temporal correlations.

3-2-3 Layered turbulence model

If we consider more complex scenarios, it might not be possible to accurately describe the
statistics of the wavefront in closed form (Schmidt, 2010). A common technique for mathe-
matical simplification is to model the turbulence by a superposition of a number of discrete
layers. Each phase screen can be seen as a model for the atmosphere at a certain height. The
ith phase screen is the model of a part of the atmosphere from a distance zi−1 to zi above the
ground. Let such a phase screen be denoted by ψi(x, y, t), where (x, y) represents a certain
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22 Atmospheric Turbulence and Adaptive Optics

point on a plane and t the time instance. The total phase aberration equals

φ(x, y, t) =
l

∑
i

ψi(x, y, t) (3-15)

When all layers are assumed to have the same spatial statistical properties, i.e. they are
described by the same covariance function, it can be assumed that l = 1 without loss of gen-
erality (Beghi et al., 2008). Throughout this report, this assumption is assumed to hold such
that we only need to consider one layer. The next section will discuss turbulence dynamics
and how the spatio-temporal correlations can be exploited to model it.

3-3 Temporal behaviour of turbulence

The Kolmogorov model describes the spatial properties of the turbulence only. The temporal
evolution is usually described by the Taylor hypothesis of frozen turbulence (Taylor, 1938).
This section will present a number of methods used in the literature to model and simulate
turbulence dynamics.

3-3-1 The frozen flow assumption

Taylor’s frozen flow hypothesis is based on the layered turbulence model and assumes that
each layer moves with a constant wind speed and in a certain direction. Since the change of
the turbulent refractive index is assumed to be much slower than the the time needed for the
layers to cross the telescope aperture, all layers can be seen as a frozen phase screens. The
temporal behaviour of the wavefront of a single layer can thus be described entirely by the
wind transport. This makes it possible to express the temporal relation of the phase at a
point (x, y) as a spatial one:

φi(x, y, t + τ) = φi(x − vxτ, y − vyτ, t) (3-16)

where vx and vy represent the velocity of the wind in x- and y-direction and τ is a certain
time (see also Figure 3-2). A typical windspeed v =

√
v2
x + v

2
y is around 10 m/s, with peak

values up to 50 m/s. By using (3-8) after substituting r = vτ , the temporal phase structure
function is obtained for Kolmogorov turbulence. Moreover, Greenwood (1977) showed that
the temporal error due to the turbulence movements caused the the bandwidth specification
of the AO system is a function of the so called Greenwood frequency:

fG = 0.427 v
r0

(3-17)

fG typically has a value around 25 Hz under normal turbulence circumstances (e.g. r0 =

0.15m and v = 10m/s). The Greenwood frequency, and in particular the ratio Greenwood to
sampling frequency, is an important measure in adaptive optics to describe the influence of the
turbulence dynamics on telescope image and will be used in control performance validation
experiments.
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Figure 3-2: Visualization of the Taylor frozen flow hypothesis (Hinnen, 2007).

3-3-2 Simulating atmospheric turbulence

Atmospheric turbulence is a random process and so is the phase distortion that it causes.
Consequently, turbulence models only give statistical properties like the power spectrum,
making the simulation of atmospheric turbulence the problem of drawing individual realiza-
tions from a random process. In other words, generating a phase screen on a two dimensional
grid that has the same PSD, structure function and covariance as the theory.
Usually, the phase is reconstructed using a weighted sum of basis functions. Common basis
functions include Zernike polynomials and Fourier series. Other methods first generate a
dynamic turbulence model and use this model to simulate the turbulence. Many methods
for generating atmospheric phase screens can be found in the literature that focus either
on accuracy or computational efficiency. Since the main focus of this thesis is on large-
scale AO systems, the computational efficient methods are of most interest. A number of
recent examples in the literature include Massioni et al. (2015), Assémat et al. (2006), Beghi
et al. (2008) and Sriram and Kearney (2007). For other methods that focus on accuracy
or flexibility, see (Schmidt, 2010, Sec. 9.3) and the references therein. In this paragraph, a
number of these methods are discussed and the choice of simulation method that will be used
in Chapter 4 is motivated.

Moving frozen phase screen realization

Probably the most straightforward approach is to construct a very large realization of the
phase screen according to a theoretical power spectrum (e.g. the Von Kármán spectrum
(3-11)) and dragging it over the aperture in a certain wind direction and speed. The realization
can be constructed by writing the optical phase as a Fourier series

φ(x, y) =
∞
∑
n=∞

∞
∑
m=∞

cn,m exp (i2π(fxnx + fymy)) (3-18)

where fxn and fym are discrete spatial frequencies in x− and y−direction and cn,m are the
Fourier coefficients. By randomly drawing the coefficients from a Gaussian distribution and
using the inverse Fourier transform, the phase screen is synthesized.
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A pleasant feature of this method is the fact that it creates a phase screen that is periodic and
continuous across its opposite edges. This makes it possible to “roll” the screen around its
opposite edges to continue simulation when the end of the screen is reached. By simulating
multiple layers moving in different speeds and directions, the screens can be rolled around
without relapsing into a turbulence sequence that has occurred before in the same simulation.

A drawback of this method is that the FFT method is often not able to represent low-
order frequencies accurately enough, while the PSDs such as (3-11) have much of their power
in the low spatial frequencies (recall Figure 3-1). A solution that has been proposed in
Schmidt (2010) is to add so-called sub-harmonics to the FFT solution. This is, considering
only a 3-by-3 grid of frequencies and repeat the above FT procedure a number of times,
adding up each of these low-frequency realizations. Afterwards, this sum of screens is added
to the higher-frequency solution to represent the turbulence at both higher and low-order
spatial frequencies. Nevertheless, since the continuity across the edges is lost, the solution
without sub-harmonics sometimes the more convenient alternative for turbulence simulators
(for example in Reeves (2015)).

Turbulence as a first order VAR model

In a number of recent works (see Massioni et al. (2015) and the references therein), the
dynamics of each turbulence layer is modelled by a first (or sometimes second) order VAR
(Vector Auto-Regressive) model. For a first order VAR model, the turbulence vector φ(k)
evolves in time according to

φ(k + 1) = Aφ(k) +w(k) (3-19)

with w(k) ∼ N(0,Cw) a white process noise, which should be consistent with the chosen
spatial covariance matrix Cφ = E[φ(k)φT (k)], via the relation

Cw = Cφ −ACφA
T (3-20)

where Cφ is defined according to the Kolmogorov or Von Kármán’s theory and the sample grid
geometry, e.g. (3-13). So by ensuring (3-20), the turbulence realization φ(k) is in accordance
with the theoretical spatial properties (in our case the Von Karman PSD (3-11)).

The matrix A will describe the dynamics of the turbulence. In Massioni et al. (2015), the
matrix A is chosen as diagonal A = aI (with ∣a∣ < 1, usually around 0.99). The parameter a
can be chosen different for each turbulence layer, simulating a different dynamics such as wind
speed. This approach assumes a decoupling of the spatial and temporal dynamics where the
frozen flow assumption showed otherwise. Therefore, the dynamics are not very satisfying in
the sense that it does not follow the Taylor frozen flow hypothesis and only considers for each
element of φ(k) the dependence on itself rather than all its surrounding neighbours. This
assumption is only relatively accurate for very slow wind speeds. For larger wind speeds, the
spatio-temporal correlation cause A to become multi-banded rather than diagonal. A method
that will obtain such a model is discussed next.

As an alternative to defining A diagonal, one could estimate a VAR model of the form (3-19)
by solving the stochastic realization problem given the theoretical covariance matrix. As
discussed in Chapter 2, we can solve the Yule-Walker equations (2-9) to obtain A and Cw. In
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Figure 3-3: Example of the matrices obtained from (3-22) for the simulation of a small 8-by-
8 grid with an arbitrary wind direction. Darker pixels indicate a higher absolute value of the
corresponding entry in the matrix. (d) and (e) are the same matrices as (a) and (b), but now on
a logarithmic scale (log10)

this way, the dynamics can be simulated more accurately compared to assuming A diagonal.
The Yule-Walker equations for this example read

[
Cφ Cφ,1
CTφ,1 Cφ

] [
I

−AT
] = [

Cw
0 ]

where Cφ is the covariance matrix E[φ(k)φT (k)] that follows from (3-13) and the grid geom-
etry and Cφ,1 = E[φ(k + 1)φT (k)] can be derived using the relation (3-16). First, the second
block row is solved such that

A = Cφ,1C
−1
φ (3-21)

Next, the first block row together with (3-21) becomes (3-20) and is used to compute Cw.
Moreover, we could write the model (3-19) as

A0φ(k + 1) = A1φ(k) + n(k) (3-22)

with n(k) ∼ N(0, I), A0 = C
−1/2
w and A1 = C

−1/2
w A such that (3-22) and (3-19) are equivalent.

An example of the matrices for a certain layer and wind properties A0 and A1 are depicted in
Figure 3-3(a)-(b). Evidently, A = A−1

0 A1 in Figure 3-3(c) is in general not a diagonal matrix.

Looking at the matrices A0 and A1 it seems that the we have already obtained a high sparsity.
However, the white pixels in Figure 3-3(a)-(c) are not exactly zero. When we would plot the
logarithm of the absolute values of the entries, we can see this very clearly, as illustrated
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in Figure 3-3(d)-(e). Moreover, truncation might lead to a small shift in the poles of the
system. Turbulence models tend to have poles close to the unit circle such that truncation
might result in instability. Hence, in order to receive an exact sparse matrix, it has to be
implemented within the identification method, e.g. by estimating the VAR model via least
squares as discussed in Chapter 2 with an `1-norm regularization term.

Identifying a general VAR model

The methodology of the previous paragraph can be extended to identify a general VAR model
of an arbitrary order and this essentially has been done in the work of Assémat et al. (2006).
By interpreting this as a special form of the stochastic realization problem (Beghi et al., 2008),
it can be seen as the identification of the following state-space formulation:

x(k + 1) = Ax(k) +Bn(k)
y(k) = Cx(k)

(3-23)

where n(k) ∼ N(0, I) and x(k) is obtained by piling the vectors {φ(k), . . . , φ(k− q+1)}, with
q the order of the VAR model to be identified and

A = [
A1∶q−1 Aq
I(q−1)n 0 ] B = [B̃T 0 ⋯ 0]T C = [In 0 ⋯ 0]

with A1∶q−1 = [A1 . . . Aq−1] and Ai the ith VAR coefficient matrix. If the top block row of A
is denoted by Ã, it can be solved via:

Ã = [Cφ Cφ,1 ⋯ Cφ,q] C̄
−1
φ (3-24)

where Cφ,i = E[φ(k + i)φT (k)] and C̄φ denotes the large q × q block-Toeplitz matrix:

C̄φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cφ Cφ,1 ⋯ Cφ,q−1
Cφ,1 Cφ ⋯ Cφ,q−2
⋮ ⋮ ⋱ ⋮

Cφ,q−1 Cφ,q−2 ⋯ Cφ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note the equivalence of (3-24) as an extension of (3-21). The matrix B̃ follows from solving

B̃B̃T
= Cφ − ÃC̄φÃ

T (3-25)

and can be extracted for example via SVD. This systematic approach can efficiently create
a qth-order VAR model that satisfies our desired statistical properties. Because of its high
efficiency and sufficient accuracy, this method is used in the simulations of Chapter 4 to
generate the turbulence realizations. However, it should be briefly noted that this method is
not suitable for the efficient identification of a sparse VAR model (the main goal of Chapter
4). The matrix Cφ is generally dense and cannot be enforced to be sparse. Furthermore, the
large centralized dense inverse will become an obstacle at larger dimensions.
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Stochastic realization of state-space innovation model

For heavy and more complex turbulence (i.e. for many layers with diverse speeds and direc-
tions), a state-space model might be more suitable as the VAR model would be of a too large
order. One method that identifies a state-space innovation model is the method of Beghi
et al. (2008). This approach is again based on the fact that the spatial covariance according
to the Von Kármán theory (3-13), together with the Taylor assumption (3-16), can be used
to compute E[φ(k + i)φT (k)], i = 0,1,2, . . .. Next, it identifies a dynamic model of the form:

x(k + 1) = Ax(k) +Ke(k)
φ(k) = Cx(k) + e(k)

(3-26)

which can be used to generate the turbulence afterwards. The method proposed by Beghi
that identifies the matricess A, B, C and K is a form subspace identification. By exploiting
the fact that a large low-rank Hankel matrix can be constructed from the temporal output
covariance matrices, the system matrices are extracted in closed form using SVD.

With the obtained model (3-26), a realization of the turbulence can be derived by generating
a random white noise e(k) and simulating the system. Advantages of this simulation tech-
nique is that it is much more efficient than the moving frozen phase screen and can describe
more accurately complex turbulence models compared the identified VAR models of Assémat
et al. (2006). However, compared to the method of Assémat, the complexity and memory re-
quirements are still high. To avoid computational problems with the generation of turbulence
during the simulations of the next chapter, the method of Assémat is preferred to Beghi’s
method.

3-4 Introduction to adaptive optics

Section 3-1 already discussed the need of adaptive optics in astronomy. Since atmospheric
turbulence will even in quiet weather conditions become the limiting factor on the resolution,
large telescopes will not work without adaptive optics to compensate for the turbulence effects.
This section will discuss the principle of adaptive optics and its main components. The control
problem will be treated separately in Section 3-6.

Adaptive Optics (AO) is a technique to compensate for wavefront aberrations in optical
systems. A schematic representation of an AO system containing its main components is
shown in Fig. 3-4. By the passage of light through the atmosphere, a by origin flat wavefront
is turned into a non-flat smooth surface. This distorted wavefront is directed by a system
of lenses towards a deformable mirror (DM) that actively adds the optical path difference of
opposite phase by changing the shape of its reflective surface. The corrected (residual) beam
is split by a beam splitter such that one beam is focused in a science camera, while the other
is directed to a wavefront sensor (WFS). The measurements from the WFS are used as input
for the controller that regulates the shape of the DM. One fundamental complication in AO
control is that the WFS measures the slope of the residual wavefront rather than the residual
wavefront itself. Since the performance is measured in terms of the mean squared error of the
phase, there is usually an extra wavefront reconstruction step.
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Figure 3-4: Schematic representation of an AO system (Verhaegen et al., 2015)

3-4-1 Wavefront sensor

An often used WFS in AO is the Shack-Hartmann sensor. This type of sensor consists of
small lenses that partition the light on a regular grid. Each lens focusses a part of the total
wavefront on a photon sensor. The position of this image can be used to calculate the local
gradient at this point. Figure 3-5 illustrates this concept. The distance between the measured
centroid and the reference position in x- and y-direction (∆x and ∆y) are linearly related to
the local slopes of the wavefront in x- and y-direction respectively. Consequently, the WFS
gives information on the gradient of the wavefront at a number of sample points rather than
measuring the phase directly. The link between the gradient and the phase sample points at
the corners of the subaperture is illustrated in Figure 3-6 and can be written as

s =
1
2
[
(φb + φd) − (φa + φc)
(φa + φb) − (φc + φd)

] (3-27)

By following this reasoning for each subaperture, the relation between the phase φ(k) ∈ Rn,
or strictly speaking the residual wavefront denoted by ε(k), and slopes s(k) ∈ Rp can be
formulated in one linear expression:

s(k) = Gε(k) + v(k) (3-28)

where G ∈ Rp×n is a matrix representing the relations (3-27) for all spatial sample coordinates
and v(k) ∼ N(0,Cv) is the measurement noise. Note that there are two modes, the piston
mode (φa = φb = φc = φd in Figure 3-6) and the waffle mode (φa = −φb = −φc = φd), that are
invisible to the sensor since both result in a zero output of (3-27). For this reason, G will
have a rank deficiency of 2 and the null-space of this matrix will consist of both unobservable
modes.
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Figure 3-5: The principle of a WFS explained. (Hinnen, 2007)

Figure 3-6: Schematic representation of the WFS sensor geometry. The black dots represent
the sampling points. The grey areas are the subapertures of the sensor. (Massioni et al., 2015)

3-4-2 Deformable mirror

The deformable mirror (DM) is the actuator in the AO loop. It is responsible for the correction
of the distorted wavefront by introducing the opposite of the optical path length differences
induced by turbulence. Most DMs are a polished surface with a system of actuators behind
it to control the shape. When activating each actuator individually, the obtained surface is
called the influence function for that actuator. Hence, the set of shapes the mirror can realize
can be seen as all feasible linear combinations of the influence functions. By writing the phase
compensation as a matrix H ∈ Rn×m times the actuator commands u(k) ∈ Rm,

φm(k + 1) =Hu(k) (3-29)

the influence functions will form the columns of the matrix H. A standard influence function
is the exponential peak:

h(r) = e−(
r
σ
)2 (3-30)

where r represents the distance from the actuator location and σ is a parameter defining the
width of the peak. The value h(δact), where δact is the inter-actuator spacing, is called the
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(a) Fully actuated mirror (b) Mirror with only one actuator poked.

Figure 3-7: Example of a fully actuated DM shape and a single influence function

coupling of the mirrors since it is the height of the neighbouring actuator’s influence function
at the location of one of the other actuators. When the coupling is too small or too large, the
mirror might not be properly controllable.

An example of a fully actuated mirror and one influence function can be seen in Figure 3-7.
Figure 3-8 shows an example of the complete sensor and actuator configuration for a square
mirror. The configuration in Figure 3-8a is called Fried geometry, since it was proposed in
Fried (1977). The Fried geometry is also used in wavefront reconstruction to relate the slope
measurements and reconstructed phase locations, including the configuration of Figure 3-6.
In this thesis it is assumed that actuators are always evenly spread on a square grid. Except
from Fried geometry, this means that there can also be less actuators than measurement
locations as shown in Figure 3-8b.

This ideal static DM in Fried geometry is hardly ever satisfied for realistic systems, but still a
very interesting situation in simulations. If the influence function matrix is of full row-rank,
the DM will be able to compensate for any measured residual wavefront, i.e. there will be
no DM fitting error that cannot be removed by the controller. Therefore, the residual phase
only contains the prediction error.

3-4-3 Wavefront reconstruction

The process of estimating the residual phase distortion ε(k) form wavefront sensor mea-
surements is called wavefront reconstruction (WFR). Classical wavefront reconstruction tech-
niques were proposed in the works of Fried (1977), Hudgin (1977) and Southwell (1980).
These methods can be categorized as zonal (local) wavefront reconstruction methods. An-
other type of wavefront reconstruction are the modal (global) methods, which are usually
based on polynomials (such as Zernike polynomials and Karhoenen-Loève functions).

The most widely used zonal WFR methods are the so called finite difference methods. In these
methods, the wavefront is defined on a rectangular grid with linear functions interpolating
between the grid points. The methods differ in where the slopes are defined with respect to
the reconstructed phase points. As was already discussed before, the Fried geometry (Fried,
1977) is used throughout this thesis (Figure 3-8a).
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Phase
Actuator
Slopes

(a) Example of Fried geometry configuration.

Phase
Actuator
Slopes

(b) Example with less actuators than phase points.

Figure 3-8: The DM and WFS geometry that will be used throughout this report. Left shows
the special case of Fried geometry. However, the number of actuators can also be chosen smaller
as shown on the right.

Usually, wavefront reconstruction assumes a static relation of the form ε̂(k) = Fs(k) and aims
at finding the matrix F that minimizes the mean squared error, or equivalently, the variance
of the wavefront estimation error:

min
F
E [∥Fs(k) − ε(k)∥2

2]

With relation (3-28), a standard solution to retrieve F is to solve this problem neglecting the
stochastic nature of the turbulence. The resulting optimal reconstructor clearly reduces to
F = GT (GGT )−1. This method however is very sensitive for measurement noise, but can give
acceptable results for high signal to noise ratios.

By taking the stochastic properties into account, the reconstruction can be improved. Since
the covariance of the residual wavefront Cε is usually unknown, it is often approximated by
the covariance of the turbulent phase Cφ. Using the covariance matrices of φ(k) and v(k)
as a priori information, the so called minimum-variance of maximum a posteriori (MAP)
estimator (see e.g. Wallner, 1983) can be derived:

F = CφG
T (GCφG

T
+Cv)

−1 (3-31)

One interpretation is to see ε̂(k) = Fs(k) as the solution to the following regularized least-
squares problem:

min
ε(k)

∥s(k) −Gε(k)∥2
C−1
v
+ ∥ε(k)∥2

C−1
φ

(3-32)

where ∥x∥W = xTWx denotes the weighted 2-norm such that the first term is a weighted least-
squares problem to the sensor equation and the regularization term reduces the sensitivity to
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the unobservable modes. The optimal reconstruction ε̂(k) follows indeed the static relation
specified by (3-31), i.e.

ε̂(k) = CφG
T (GCφG

T
+Cv)

−1
s(k) (3-33)

This static reconstruction method plays an important role in classical AO control, which will
be discussed in Section 3-6.

Besides this classical way of wavefront reconstruction there are other more recent algorithms
such as Cure-D (Rosensteiner, 2012) and D-SABRE (de Visser et al., 2016) that are more
efficient. Optimizing the wavefront reconstruction is one way of reducing the complexity of
AO control. However, it is not the path that is taken in this thesis and these methods are
therefore out of the scope of this research.

3-4-4 Unobservable modes

Only the part of the wavefront that is in the row-space of G can be reconstructed from
measurements. The unobservable modes (which according to the definition in Section 3-4-1
are the piston and waffle modes) lie in the null-space of G. This means that the observable
and unobservable part can be split using the SVD of G:

G = UΣV = [U1 U2] [
Σ1 0
0 0] [

V T
1
V T

2
]

GV = U [
Σ1 0
0 0] = [C 0]

where U and V are orthonormal matrices and Σ is the diagonal matrix containing all singular
values. The partitioning is chosen such that Σ1 contains only non-zero singular values. By
substituting this representation into (3-28) and by defining

φ̄(k) = V T
1 φ(k)

φpw(k) = V
T

2 φ(k)

it can be concluded that V1φ̄(k) is the part of the turbulence containing only the observable
modes and V2φpw(k) is a sum of the unobservable piston and waffle mode present in φ(k).
The WFS measurement equation (3-28) can now be written as a function of φ̄(k) only

s(k) = Gφ(k) + v(k) = GV V Tφ(k) = [C 0] [ φ̄(k)
φpw(k)

] + v(k)

= Cφ̄(k) + v(k)

In this representation, s(k) describes only the informative part of the measurements and it
filters out the noise that cannot be caused by the wavefront. Furthermore, because of the
orthonormality of V1, φ(k) and φ̄(k) will have the same 2-norm. To obtain one reduced
formulation of the complete AO system, these definitions have to be extended to the DM.
The reduced representation of the DM phase is defined as

φ̄dm(k) = V T
1 Hu(k − 1)
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Figure 3-9: Schematic representation of an AO system as a closed control loop. The system
within the red dashed box contains the open loop AO model to be identified.

The main advantages of the reduced model over the full model is the dimensionality reduction
and the better numerical conditioning. On the other hand, the SVD will erase any structures
or sparsity that are naturally present in the system. Therefore, if the structure and sparsity is
crucial in obtaining an efficient method, this reduced formulation might not be a good option.
One interpretation of the signal φ̄(k) is to see it as a coefficient belonging to a column of V1
which is nothing more than one of the observable global modes. Intuitively, the structures
are lost because after the reduction the zonal formulation is changed into a modal one.

Dealing with the unobservable modes, while remaining in a zonal representation of the phase
is an interesting subject. However, the unobservable modes do not necessarily have to be
removed from the model to achieve satisfiable results. The piston mode does not affect the
image quality, hence it can just be removed afterwards without consequences. The most
direct method is to simply remove the mean of the obtained wavefront before processing it.
The waffle mode however does influence the image quality. However, as it is the mode with
the highest frequency that can be measured, it is expected to have only little influence since
the Kolmogorov spectrum has the most power at the lower frequencies (see Figure 3-1). One
possible danger is the appearance of the unobservable modes in the input signal. Since they
are not measured, they will often also not influence the control objective and might end up in
the phase of the DM. A random piston mode in the input might cause the saturation of the
actuators and a random waffle mode directly decreases the sharpness of the image. Therefore,
if the modes are not removed from the model, they should be removed from the input.

3-4-5 The AO system in closed loop

After the wavefront reconstruction step, the loop is closed by relating the reconstructed
residual wavefront ε̂(k) to the DM input u(k). A scheme of this loop is displayed in Figure
3-9. The red dashed box contains all elements to be modelled and identified.
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34 Atmospheric Turbulence and Adaptive Optics

In classical AO control, the controller exists of the wavefront reconstructor, a projection of this
residual onto the actuator space and an integrator. The wavefront reconstructor has been
discussed in Section 3-4-3 and is often represented by the relation (3-33). The projection
for the simple DM relation of (3-29) is usually also described by a static linear operation:
u(k) =Mε̂(k). This projection of the phase onto the actuators can be found by minimizing
the mean squared fitting error

min
M

∥ε̂(k) −HMε̂(k)∥2
2

In contrast to the WFR problem, the mapping onto the mirror is a standard deterministic
least-squares problem and for a tall matrix H, the projection on the mirror is given by

u(k) =Mε̂(k) = (HTH)
−1HT ε̂(k) (3-34)

This combined with the wavefront reconstructor (3-33) actually is the classical static control
approach that will be discussed in more detail in Section 3-6. The next section will proceed
on modelling the open loop AO system.

3-5 Modelling and identification of AO systems

One of the primary goals of this thesis is the identification of the open-loop AO system. As
was visualized in the control loop of Figure 3-9, the physical system has both a deterministic
input u(k) and a process noise w(k) due to the stochastic nature of the turbulence. There
are various possible model structures able to represent systems with both a deterministic
and stochastic part. One general separation can be made between identifying only a transfer
function from u(k) and w(k) to s(k) or identifying a state-space model with deterministic
input u(k) and process noise w(k).
In this thesis, the focus will lie mainly on identifying ARX (Auto-Regressive with eXoge-
nous input) models, or strictly speaking VARX models with “V” standing for vector. The
identification of a state-space innovation model has been investigated, but was discovered to
have difficulties scaling to large dimensions. VARX models have the advantage that they are
simple, while containing all sufficient information. This section will provide a quick motiva-
tion for choosing the VARX structure to represent the AO system in Chapter 4. Recall from
Chapter 2 that VARX models are models of the form

na

∑
i=0
Aiy(k − i) =

nb

∑
i=1
Biu(k − i) + r(k) (3-35)

where the Gaussian noise r(k) ∼ N(0,Cr) is independent from u. A more general description
of the AO system is given by a state-space model of the form

x(k + 1) = Ax(k) +Bu(k) +w(k)
y(k) = Cx(k) + v(k)

(3-36)

where w(k) ∼ N(0,Cw) and v(k) ∼ N(0,Cv) are uncorrelated with the input u(k). The
input-output transfer function of this system also follows by formulating (3-36) in innovation
form (Section 2-1).

x̂(k + 1) = Āx̂(k) +Bu(k) +Ky(k)
y(k) = Cx̂(k) + e(k)

(3-37)
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where Ā = A −KC and e(k) = y(k) − Cx̂(k) is the innovation sequence. The above model
can be seen as the Kalman predictor model of (3-36). Since e(k) is a zero mean white noise
sequence, a predictor of (3-37) now can be written as

ŷ(k + 1 ∣ k) = CĀx̂(k ∣ k − 1) +CBu(k) +CKy(k) (3-38)

which by recursively substituting in the state becomes

ŷ(k + 1 ∣ k) = CBu(k) +CĀBu(k − 1) + . . . +CĀkBu(0) + . . .
CKy(k) +CĀKy(k − 1) + . . . +CĀkKy(0) (3-39)

The obtained predictor can be interpreted as the predictor of a high-order VARX model of
the form (3-35). This shows how all stable models of the form (3-37) can be represented by
a higher order VARX model. Especially when there exists a relatively small integer q such
that Āi ≈ 0, ∀i > q, VARX models might be a very good representation.

Next, it is shown how the AO system fits in the general representations discussed above.

3-5-1 Modelling of the adaptive optics system

Under a number of assumptions, the AO system will be represented into a state-space form.
First, it is assumed that all layers are assumed to have the same spatial statistical properties
such that it can be reduced to one layer without loss of generality. Secondly, the Taylor frozen
flow is supposed to hold. Finally, the DM and WFS dynamics are neglected. Under these
conditions, the turbulence model can be accurately described by a first order VAR model as
in (3-19) and the DM is specified by (3-29), i.e.

{
φ(k + 1) = Aφ(k) +w(k)
φm(k + 1) =Hu(k)

with w(k) ∼ N(0,Cw). However, the derivation introduced in this section can straightfor-
wardly be extended to more complex higher order VAR turbulence models (see also Massioni
et al., 2015). The wavefront residual, ε(k) = φ(k) − φm(k), assuming the first order VAR
turbulence model simply follows from the difference of the relations above, that is:

ε(k + 1) = Aφ(k) −Hu(k) +w(k)

= A(ε(k) + φm(k)) −Hu(k) +w(k)

= Aε(k) −Hu(k) +AHu(k − 1) +w(k)

A state-space model is constructed with state ε(k) and output s(k) using the above equation
and output equation (3-28):

ε(k + 1) = Aε(k) −Hu(k) +AHu(k − 1) +w(k)
s(k) = Gε(k) + v(k)

(3-40)

The innovation form is obtained by the derivation of the Kalman filter:

ε̂(k + 1 ∣ k) = (A −KG)ε̂(k ∣ k − 1) −Hu(k) +AHu(k − 1) +Ks(k) (3-41)
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where the Kalman gain K is the outcome of a Riccati equation. However, solving the Ric-
cati equation might cause numerical problems when the measurement or process covariance
matrices get very small. For a more robust computation of the Kalman gain, it is computed
using the so-called square root covariance filter (Verhaegen and Verdult, 2007). The matrix
A can be derived by solving the Yule-Walker equations (2-9) when statistical knowledge of
the turbulence φ(k) is available. Alternatively, it could be derived from measurements s(k),
but this would mean that the model does not include the same unobservable modes as the
sensor.

3-5-2 Identifying the model

The next step is the identification of either the innovation model given by (3-41), or an
approximation in the form of a VARX model. The standard case has been briefly analysed in
Chapter 2 and the reader is referred to Section 2-1 for the basic theory on system identification.
Moreover, with an eye on the scalability of the control algorithm, it is crucial to enforce
sparsity within the system matrices. If it is assumed for now that the sparsity pattern is
not precisely known, such that adding `1-regularization to the identification problem seems
the most suitable tool for this purpose. Both a prediction error and subspace identification
method have been investigated in the process of this research.

The prediction error method is based on a VARX approximation of (3-41) and follows the
same approach as the VAR identification via least-squares from Section 2-1, but in a graph-
ical modelling framework (Section 2-2). It should be noted that (3-41) cannot be exactly
represented by a VARX model in general. Only for the special case that A−KC is nilpotent
a VARX model is obtained after substituting the state equation into the output equation. By
approximating the model as a VARX model, a trade-off between accuracy and complexity
has been made. Chapter 4 will present the identification routine step-by-step and the perfor-
mance of this method will be validated and compared to an accurate innovation model of the
form (3-41).

As an alternative to the prediction error method, a sparse state-space model has been derived
using subspace identification. A nuclear norm approach, similar to the N2SID method of
Verhaegen and Hansson (2014) or the SVD-free system identification approach of Signoretto
et al. (2013), was shortly investigated in its capability to identify a sparse model during the
process of this thesis. Although the method could be promising for small systems with only
a few inputs and outputs, it became clear very quickly that is had no potential of scaling up
to even small-scale adaptive optics applications. Since the main focus of this thesis lies on
a solution to the large-scale problem it was chosen not to pursue the method any further.
Nevertheless, for the sake of the completeness of this thesis, a concise summary of the method
is included in Appendix B.

3-6 Control methods for AO

Over the past decades, various methods have been proposed to control the DM. Each of them
establish a different trade-off between the effectiveness of minimizing the phase variance and
computational complexity. In this section, two main categories are discussed. The first one
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is the classical way of AO control, which assumes stochastic knowledge of the turbulence as
a priori information and a random-walk prediction model. The second more modern type
of control finds an optimal minimum-variance predictor for the turbulence phase and uses
for example the framework of LQG regulators (Kulcsár et al., 2006) or H2 optimal control
(Hinnen et al., 2008). The control problem for which a novel method will be proposed in
Chapter 4 will be outlined below, followed by its solution using the classical and optimal
control framework.

3-6-1 Control problem formulation

The goal of adaptive optics is to cancel out wavefront aberrations in optical systems by
actively adding a change in optical path length of opposite phase. In other words, the residual
wavefront has to be estimated and its inverse should be mapped onto the deformable mirror.
Because it is assumed in this thesis that there are no WFS or DM dynamics and that there
is only one single time delay, the computation of u(k) requires a one-step-ahead prediction of
the residual wavefront ε̂(k + 1). Furthermore, it is assumed that at time instance k, all prior
control actions and WFS measurements (at k − 1, k − 2, . . .) are known and that we can read
the WFS to get the current sensor measurement s(k) before computing the DM voltages.

Under these assumptions, the control problem reduces to an optimal estimation problem
finding ε̂(k + 1) and the computation of the input u(k) that flattens this predicted residual
wavefront. As a measure of the flatness of the wavefront, usually the mean squared error
is considered, such that the control law can be written as the following simple minimization
problem

min
u(k)

∥ε̂(k + 1)∥2
2 (3-42)

where ε̂(k + 1) is a function of the input u(k). Furthermore, to decrease the control effort, a
regularization term on the input might be added.

min
u(k)

∥ε̂(k + 1)∥2
2 + λ∥u(k)∥

2
2 (3-43)

Increasing λ will decrease the control effort and the sensitivity to model uncertainties.

To have a real-time implementation of this controller, both the sensor reading and the mapping
onto the mirror have to be within one sampling period. With a sparse model, problem (3-42)
can be computed faster and therefore the computations can be completed within a shorter
period of time or in the same period for a larger system, again emphasizing the advantage of
retrieving a sparse model.

Next, two different solutions to the AO control problem are introduced. First, the classical
static approach that maps the reconstructed wavefront on the mirror followed by a sequence
of separate single input single output temporal filters. The second method constructs the
optimal estimator (3-41) and minimizes the corresponding one-step-ahead predictor at each
time instance.
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3-6-2 Classical control for AO systems

In classical AO control methods, there is no turbulence model available for predicting ε(k+1).
Without a model, the temporal dynamics of the wavefront disturbance is neglected and the
next wavefront is estimated by the current reconstructed wavefront ε̂(k). Since this concerns
the residual wavefront, it implies that by using the measurements s(k), the obtained control
action will not be the control action u(k) but its increment ∆u(k) = u(k)−u(k−1). In other
words, the currently applied DM phase compensation is measured in the signal s(k) along
with the turbulence and the computed control signal has to be applied to the current actuator
commands.

The classical control approach furthermore assumes a static relation between actuator input
and the measurements given by ∆u(k) = Rs(k) such that the problem of finding ∆u(k) is
equivalent to finding the matrix R. Because of this simple relation, the method is often
referred to as MVM, standing for Matrix-Vector Multiplication. According to the above
definitions, minimizing the mean-square error of ε̂(k + 1) boils down to finding the mapping
R that optimizes

min
R
E [∥ε̂(k) −HRs(k)∥2

2] (3-44)

where the expectation E[⋅] is introduced because of the stochastic nature of ε̂(k). Under the
additional assumption that the difference between Cε and Cφ is negligible, the maximum a
posteriori estimate of R is given by

R = (HTH)
−1HTCφG

T (GCφG
T
+Cv)

−1 (3-45)

The matrix R is a combination of wavefront reconstruction (3-31) and a projection onto the
DM (3-34) as R =MF , i.e. it projects the reconstructed wavefront onto the mirror.

The control update u(k) will be the sum of the previous value plus the optimal increment,
i.e.

u(k) = u(k − 1) +Rs(k) (3-46)

This implies that the temporal filters should posses integrating action. Usually, two extra
tuning parameters are introduced in the parallel feedback loops

u(k) = R
c1

1 − c2z−1 s(k) (3-47)

where c1 is the integrator gain and c2 the loss factor. In this thesis, both parameters are
however fixed to c1 = c2 = 1, such that the control action follows from (3-46).

3-6-3 Optimal control for AO

The random-walk prediction model in MVM control neglects the turbulence dynamics. In-
stead of this simplification, one could try to find a one-step-ahead predictor ε̂(k+1 ∣ k) to get
an accurate estimation of what the wavefront residual is going to be in the next time step.
Examples of this more modern control point of view can be found in Kulcsár et al. (2006),
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Looze (2006) and Hinnen et al. (2008) amongst others.

In order to have a proper performance comparison for the new predictor introduced in Chap-
ter 4, a Kalman filter based equivalent of that controller is used besides the classical MVM
method. The method solves the control problem (3-42) with the predictor ε̂(k+1 ∣ k) obtained
from the Kalman filter (3-41). Substituting the estimator into the control problem gives the
following optimization problem

min
u(k)

∥(A −KG)ε̂(k∣k − 1) −Hu(k) +AHu(k − 1) +Ks(k)∥2
2 (3-48)

where ε̂(k∣k − 1) is the known previous one-step-ahead predictor. This standard least-squares
problem is solved by

u(k) = (HTH)
−1HT

((A −KG)ε̂(k ∣ k − 1) +AHu(k − 1) +Ks(k)) (3-49)
Because of its predictive capability, this method will improve the results compared to the
MVM method, provided that the identified system matrices (A,B,C,K) are accurate. The
main drawback of this approach is its lack of scalability, since for large systems it would
require solving a large Riccati equation to retrieve K. The next paragraph will proceed on
the obstacles of deriving a control method for large-scale AO systems.

3-6-4 Control for large-scale adaptive optics

As indicated before, the derivation of the Kalman filter (3-41) requires the solution to a Riccati
equation. When the number of actuators and sensors are in the order of n, the number of
operations required to solve the Riccati equation scales cubically with n. This exponential
increase in complexity with the systems dimension will eventually cause problems when the
number of actuators and sensors is increased. To achieve a scalable method, this complexity
should be brought down significantly.
There are two main directions of improving the efficiency of adaptive optics control for ex-
tremely large-scale AO applications such as the E-ELT (Gilmozzi and Spyromilio, 2007) in
the literature. First, the static MVM method can be made more efficient. This is not the path
taken in this thesis since it still neglects the turbulence dynamics. Secondly, the complexity
of the optimal control method can be reduced. However, the literature mainly focusses on a
more efficient solution to the Riccati equation (see e.g. Massioni et al., 2015). An additional
drawback of many techniques are that they rely on physical laws and cannot compensate for
discrepancies between the theoretical model and real system. Especially for modelling the
disturbance dynamics, data-driven methods that fit the model to the dynamics of the real
system are preferred above first principle models.
The next chapter will introduce a novel data-driven optimal control method that consists of a
scalable identification routine and a minimum-variance control law in terms of a sparse least-
squares problem. The trade-off between performance and efficiency is central to the design
of this method. Therefore, the open-loop AO system is approximated by a sparse VARX
model. The approximation should only have a slightly lower performance than the optimal
method discussed in Section 3-6-3, so still significantly outperforming MVM. Finally, the
computational complexity of the identification should preferably scale close to linear to the
number of sensors and the sparsity should be exploitable in the computation of the actuator
commands in order for the method to be actually scalable.
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Chapter 4

Sparse VARX model identification for
large-scale AO

This chapter introduces a novel data-driven optimal control method that consists of a scalable
identification routine and a minimum-variance control law in terms of a sparse least-squares
problem. To decrease the complexity of the identification step, the open-loop AO system is
approximated by a sparse VARX (Vector Auto-Regressive with eXogenous input) model. The
advantage of this approach over the innovation model is that the VARX model framework
can easily exploit the sparse nature of the physical system.

First, the validity of the VARX approximation is discussed in Section 4-1. The new data-
driven identification of a sparse VARX model for AO is presented in Section 4-2. This section
will include a routine to decrease the number of parameters in the identification problem by
following a graphical modelling framework. The final sparsity in the coefficient matrices is
determined by adding an `1-regularization term to the original prediction error estimation
problem. The performance of the identified model is validated in Section 4-3, where it is
compared to an innovation model. Finally, the new control law is discussed in Section 4-4,
followed by numerical simulations comparing the new method with MVM (Section 3-6-2) and
the controller based on the Kalman filter (Section 3-6-3).

4-1 AO system as a VARX model

Before the identification algorithm is presented, a more profound analysis of representing AO
systems as VARX models will be considered. Also recall that any stable model of the form
(3-37) can be described by a (higher order) VARX model. This implies that the expression

s(k) = A1s(k − 1) + . . . +Anas(k − na) +B1u(k − 1) + . . . +Bnbu(k − nb) + e(k) (4-1)

with e(k) ∼ N(0,Ce) should in theory be able to represent the model (3-37) for high enough
orders na and nb. By introducing the matrix A0 = C

−1/2
e , (4-1) can be rewritten in an
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equivalent formulation that is more convenient for some applications, that is

A0s(k) = Ā1s(k − 1) + . . . + Ānas(k − na) + B̄1u(k − 1) + . . . + B̄nbu(k − nb) + n(k) (4-2)

with n(k) ∼ (0, I), Āi = A0Ai and B̄i = A0Bi. Depending on the complexity of the turbulence
and system dynamics, the best model order to describe the VARX model might change.

However, when the turbulence is simulated using Taylor’s frozen flow assumption and the DM
and WFS dynamics are neglected, Section 3-5 has determined the fact that the AO system
can be represented by

ε(k + 1) = Aε(k) −Hu(k) +AHu(k − 1) +w(k)
s(k) = Gε(k) + v(k)

(4-3)

In practice, it appears that the VARX model already accurately approximates (4-3) for na = 1
and nb = 2, i.e.

s(k + 1) = A1s(k) +B1u(k) +B2u(k − 1) + e(k) (4-4)

Or equivalently, by introducing the matrix A0 = C
−1/2
e :

A0s(k + 1) = Ā1s(k) + B̄1u(k) + B̄2u(k − 1) + n(k) (4-5)

An interesting interpretation that explains this result follows when it is supposed that the
linear relation ε(k) = Fs(k) of (3-33) holds. An expression for s(k) can straightforwardly
be derived by substituting the state update equation into the output equation of (4-3) and
together with ε(k) = Fs(k), this can be converted into

s(k + 1) ≈ GAFs(k) −GHu(k) +GAHu(k − 1) + r(k)

with a certain white noise sequence r(k) ∼ N(0,Cr). Besides this simple reasoning, the low-
order VARX approximation and the influence of increasing the order on the model’s accuracy
will be validated with numerical simulations in Section 4-3.

It should be stressed that the general VARX model of (4-1) should be able to represent
also more complicated turbulence and system dynamics. However, this would require a more
general turbulence simulation method (e.g. the method of Beghi et al., 2008). Since these
simulators are problematic in terms of computational complexity, they are not used in this
thesis.

4-2 Sparse VARX model identification

In order to be able to have an accurate predictor of the residual wavefront, it is a necessity
to identify a model in the form of (4-1) or (4-2). The approach taken in this thesis follows
the prediction error methods presented in Section 2-1. In this framework, one possible way
of identifying (4-1) as sparse as possible would be to minimize the following regularized least-
squares problem

min
X

∥Y −XZ∥
2
2 + λ∥X∥1 (4-6)
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where

X = [A1 ⋯ Ana B1 ⋯ Bnb]

Y = [s(q + 1) s(q + 2) ⋯ s(N)] Z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(q) s(q + 1) ⋯ s(N − 1)
s(q − 1) s(q) ⋯ s(N − 2)

⋮ ⋮ ⋱ ⋮

s(q − na + 1) s(q − na + 2) ⋯ s(N − na − 1)
u(q) u(q + 1) ⋯ u(N − 1)

u(q − 1) u(q) ⋯ u(N − 2)
⋮ ⋮ ⋱ ⋮

u(q − nb + 1) u(q − nb + 2) ⋯ u(N − nb − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with q = max(na, nb). This problem can easily be decentralized by solving the problem for
each row of X separately, i.e. we get p distinct optimization problems. By denoting the i-th
row of X as X(i,⋆) and using similar definitions for the other matrices, the identification of
the i-th row of matrix X is reduced to

min
X(i,⋆)

∥Y(i,⋆) −X(i,⋆)Z∥
2
F + λ∥X(i,⋆)∥1 (4-7)

Although it is decentralized, the scalability of (4-7) is prohibited by the large dense matrix
Z containing all identification data. One way of avoiding this difficulty is by considering
a sparsity pattern a priori. If only a small number of elements in each row are known to
be non-zero, the number of parameters in the prediction error estimation problem will drop
significantly. The following paragraph will discuss a framework to determine such a pattern
using graphical modelling theory to exploit the spatio-temporal correlations.

4-2-1 Enforcing a sparsity pattern via graph theory

By expressing the WFS signal s(k) as (4-1), it implies that each element of s(k) depends
on past and current values of all other measurement points. However, based on the frozen
flow assumption, we know that for a high enough sampling frequency, the turbulence is just
a slightly shifted version of the turbulence in the previous time instance. Therefore, the
turbulence that is now above a certain location on our grid, was one time instance back
(approximately) above a point on the grid relatively close to this location. In other words,
we do not need to consider the influence of all the other measurements, but only of a small
number of neighbouring point. Graphical modelling, which was introduced in Chapter 2,
formalizes this kind of reasoning such that it can be exploited to increase the efficiency of
statistical calculations.

There are two main relations to be described in the graphical modelling framework. The first
group contains the relations between the slopes s(k) and its own past values s(k − i). The
underlying physical cause of these relations is mainly due to the turbulence dynamics. The
second set describes the influence of the past DM voltages u(k − i) on the current wavefront
s(k), caused by the coupling of the actuator influence functions. The WFS signal s(k) consists
of the slopes in the two directions of the measurement grid. The two slopes in each locations
are influenced by the same elements and thus are represented by one “measurement location”
in the square configuration grid of Figure 4-1. Moreover, a property of the new method should
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44 Sparse VARX model identification for large-scale AO

be that it is completely data-driven. Therefore, it is assumed that there is no knowledge on
the wind speed and wind direction available. This suggests that we have to look for a certain
circular “neighbourhood of influence” for both the turbulence movement and DM coupling.

An example of such a neighbourhood is shown in Figure 4-1. The black asterisk represents
the “measurement location” to be predicted, from now on denoted by si(k + 1), and only the
actuator or sensor locations within this circle are considered to contribute to its estimation.
For each separate relation between si(k + 1) and s(k), u(k), s(k − 1), u(k − 1), etc., such a
neighbourhood has to be defined. To this intent, a graphical model framework is imposed.

Referring to the theory presented in Section 2-2, the relations between the elements of s(k)
and its past own or control action values are described by causality relations. Because there is
no knowledge of the wind direction, each causality relation is assumed to be in both directions.
It would be possible to define certain relations as one-directional arcs if the wind direction
would be specified. Either the Granger causality graph framework or the time series chain
graph seems to be most suited for the application, where the latter can achieve a more specific
sparsity because of its more general structure. Furthermore, graphical VARX modelling in
these frameworks has the property that a missing arc means a zero in one of the coefficient
matrices. In the following, each measurement location and actuator location will be referred
to as nodes or vertices, with node si the measurement location to be predicted, and a causality
relation between two nodes is described by a directed arc. The set of vertices from which an
arc starts towards node si is denoted as Vi which hence can be interpreted as the columns
of X(i,⋆) which are possibly non-zero. The row X(i,⋆) with all zero values removed, will be
denoted as X(i,Vi). Using similar notations for the other matrices, the reduced identification
problem can be written as

min
X(i,⋆)

∥Y(i,Vi) −X(i,Vi)Z(Vi,⋆)∥
2
F + λ∥X(i,⋆)∥1 (4-8)

For the sake of the comprehensiveness of this section, we will consider only the low-order
approximation of the VARX model na = 1 and nb = 2 (4-4). By defining z(k − 1) = [sT (k −
1) uT (k − 1) uT (k − 2)]T ∈ Rp+2m, it can be concluded that

j ∉ Vi if si(k) ⊥ zj(k − 1) ∣ z/j(k − 1)

where zj(k) denotes the j-th element in z(k) and z/j(k) all elements except for the j-th
element. The conditional independence relations are directly linked to the distance between
the location of each sensor and actuator on the grid, i.e. we can define three radii (rA1 , rB1

and rB2) such that

si(k) ⊥ zj(k − 1) ∣ z/j(k − 1), for 1 ≤ j ≤ p if d(si, zj) > rA1

for p + 1 ≤ j ≤ p +m if d(si, zj) > rB1

for p +m + 1 ≤ j ≤ p + 2m if d(si, zj) > rB2

(4-9)

with d(⋅, ⋅) denoting the spatial separation in meters between the two specified nodes on
the grid and p and m are the dimensions of s(k) and u(k) respectively. Furthermore, zj
denotes the location of the actuator or sensor on the grid corresponding to the j-th element
in z(k). The following paragraphs will focus on finding the radii. It should be noted that this
discussion can straightforwardly be extended to the case of a higher-order VARX model.
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Phase
Actuator
Slopes

Figure 4-1: An example of a configuration of the reconstructed phase, slope measurements and
actuator locations. Only the elements within the circle will influence the prediction of the location
at the center (black *)

Topology of the AO graphical model

This paragraph will present a routine to roughly estimate the topology and hence the sparsity
pattern of the matrices A1, B1 and B2. It is stressed again that the same reasoning can also
be applied to higher order VARX approximations.
Note that in general we cannot simply shift the measured s(k − 1) to predict the influence of
the turbulence on s(k) since it also contains the DM shapes at k − 1. Therefore, to predict
s(k) we also need the value of u(k − 2) to exclude its influence from s(k − 1). This suggests
that B2 includes the DM information within s(k − 1) which makes it both dependent on the
mirror influence function and the turbulence graph. The matrices A1 and B1 are not coupled
and completely independent from each other, describing the turbulence dynamics and DM
influence functions respectively.
Since it is assumed that na = 1, only the relation between si(k) and s(k − 1) is considered
regarding the turbulence dynamics. That is, si(k) = A1,(i,⋆)s(k − 1) after removing all effects
of the DM from s(⋅). Due to the frozen flow dynamics, the turbulence will move vTs meter
per sampling period, where v is the wind speed in m/s and Ts the sampling time in seconds.
Because the direction is assumed to be unknown and only an (over)estimation of the speed v
is available, the neighbourhood that might influence element i is a circle with a radius of at
least rA1 = vTs meter. Therefore

si(k) ⊥ sj(k − 1) ∣ z/j(k − 1) if d(si, sj) > vTs

and since each conditional independence relation results in one zero in the coefficient matrix,
each of the following i, j-th elements of A1, denoted by A1,(i,j), will become zero

A1,(i,j) = 0 if d(si, sj) > vTs
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46 Sparse VARX model identification for large-scale AO

The topology of the graph belonging to the deformable mirror, i.e. the relation from u to s, is
very clearly described by a circle with a radius equal to the width of the influence functions.
So assuming the influence functions of (3-30), one can set a certain threshold ε under which
the height can be neglected, e.g. when it gets below 0.1% of the maximum height. The radius
of the circle on the spatial grid where the exponential function is equal to this height, given
by rB1 =

√
−σ2 ln ε, forms directly our radius to describe the graph. Therefore, the following

conditional independence relations can be specified

si(k) ⊥ uj(k − 1) ∣ z/j+p(k − 1) if d(si, uj) >
√
−σ2 ln ε

since zj+p(k −1) corresponds to uj(k −1), such that the elements of B1 that will become zero
are

B1,(i,j) = 0 if d(si, uj) >
√
−σ2 ln ε

Finally, the coupling between the DM input u(k−2) and the measurement s(k−1) is included
in the matrix B2. Its neighbourhood will consist of all actuator locations that influence the
region defined by rA1 somehow, which implies that rB2 = rA1 + rB1 . Writing it again in terms
of conditional independence relations gives

si(k) ⊥ uj(k − 2) ∣ z/j+p+m(k − 1) if d(si, uj) >
√
−σ2 ln ε + vTs

and the corresponding sparsity in the coefficient matrix B2 follows directly from

B2,(i,j) = 0 if d(si, uj) >
√
−σ2 ln ε + vTs

with these radii, the set Vi can be found from all elements j in (4-9) that are not conditional
independent of si(k).

Besides the causality relations, the time series chain graphs also contain undirected edges that
represent the conditional dependence of the nodes at the same time instance. In terms of
the AO system, these correlations appear in the process noise w(k). Recall that in Chapter
(2-2) it was shown how each missing edge corresponded to a zero value in the inverse of
the covariance of the VARX model’s stochastic signal (e(k) in (4-1)). With an eye on the
minimum variance control problem, where the inverse covariance matrix C−1

e is used as a
weighing matrix, a sparse estimation of this matrix is crucial. Following the same reasoning as
above, the dimensionality of this estimation problem can be significantly reduced by removing
all elements definitely corresponding to conditional independence relations.

When other turbulence models or multiple layers are considered, it is possible that a higher
order VARX model is necessary. When the order gets higher, the radius will get larger and
larger, as the uncertainties and overestimations in the radii will accumulate and more coupling
terms will appear. From this we can also conclude that when more terms are needed in the
VARX model to describe the AO systems’ dynamics, the new matrices get more dense if we
try to describe the sparsity using a circle of influence.

Finally, it should be underlined that the method described in this paragraph does not find the
most sparse solution to the problem, but rather serves as a rough tool to remove the obvious
zero values from the identification problem. Mainly because there are many parameters that
are highly dependent on the exact circumstances and that a circle of influence is not always
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the best way to describe the graphical structure, it is impossible to find the most optimal
sparsity by hand. When retrieving the sparsest solution is paramount to the time it takes to
solve the identification problem itself, an `1-regularization term should be added as done in
(4-7). The corresponding problem can be solved for example with the Alternating Direction
Method of Multipliers (ADMM) and will be discussed below.

4-2-2 Sparse VARX identification using ADMM

The next step of the new method is to solve the new reduced identification problem (4-8).
Since it is an `1-norm regularized problem, it can be solved by the Alternating Direction
Method of Multipliers (Boyd et al., 2011). The required background knowledge on ADMM
is summarized in Appendix A. For the ease of notation, all subscripts will be dropped, and
(4-8) is reformulated as

min
x

1
2
∥y − Z̃x∥2

F + λ∥x∥1 (4-10)

such that y = Y T
(i,⋆) ∈ RN , x = XT

(i,Vi) ∈ Rvi and Z̃ = ZT(Vi,⋆) ∈ RN×vi , where vi denotes the
number of elements in Vi . The problem (4-10) is also known as the LASSO (Tibshirani,
1996). In ADMM form, the LASSO problem is

min
x1,x2

1
2∥y − Z̃x1∥

2
F + λ∥x2∥1

s.t. x1 − x2 = 0
(4-11)

The ADMM updating steps for the LASSO can be found in Appendix A. The closed-form
expressions of this particular example are given by

xk+1
1 = (Z̃T Z̃ + ρI)−1

(Z̃T y + ρ(xk2 − u
k
)) (4-12)

xk+1
2 = Sλ/ρ(x

k+1
1 + uk) (4-13)

uk+1
= uk + xk+1

1 − xk+1
2 (4-14)

where Sa(b) = max (0,1 − a/∣b∣) b is the element-wise soft-thresholding operator for a vector
b. In addition, the step with the highest complexity (4-12) shows the drastic improvement to
the computational efficiency that the graph approach has realized by decimating the size of
the matrix Z. When the matrix Z would be left complete, the large inverse would become a
computational obstacle at large dimensions, scaling cubically with the number of sensors.

The stopping criteria of the algorithm are defined following the approach of Boyd et al. (2011).
In this work, an absolute and relative criterion are used to find feasibility tolerances for the
primal and dual feasibility conditions. For (4-11), the optimality conditions are

∥rk∥2 = ∥xk1 − x
k
2∥2 ≤

√
nxε

abs
+ εrel max(∥xk1∥2, ∥x

k
2∥2) (4-15)

∥sk∥2 = ∥xk2 − x
k−1
2 ∥2 ≤

√
nxε

abs
+ εrel∥ρuk∥2 (4-16)

where nx is the size of the vectors x1 and x2 and εabs and εrel represent the absolute and
relative tolerance with typical values around 10−3 or 10−4.

Master of Science Thesis Pieter Piscaer
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The algorithm (4-12)-(4-14) has two important parameters: ρ and λ, that have to be tuned
for the desired sparsity and speed of convergence. Usually, λ is kept constant, while ρ can be
updated during the iterations. A simple scheme that often works well is Boyd et al. (2011)

ρk+1
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

τρk if ∥rk∥2 > µ∥s
k∥2

ρk/τ if ∥sk∥2 > µ∥r
k∥2

ρk otherwise

such that the primal and dual residual norms remain within a factor µ of one another. For the
proof of convergence of the ADMM algorithm for the LASSO problem the reader is referred to
Boyd et al. (2011). In general, the ADMM algorithm converges quickly to a modest accuracy,
but can be very slow to converge to high accuracy.

4-2-3 Computational complexity

To quantify the decrease in computational complexity, usually the big O notation (O(⋅)) is
used to describe the limiting behaviour of the algorithm when the dimensions tend towards
infinity. Let us assume that in all sets Vi there are on average v elements, then step (4-12)
scales with O(Nv2 + v3) operations per iteration. The second and third ADMM update scale
linearly with v, independent of N , and can thus be neglected. Assuming an average number of
M ADMM iterations, the total number of operations becomes O(NMv2p+Mv3p) over all p
separate optimization problems. In addition, because all p problems are completely indepen-
dent, they can be distributed and computed in parallel over D different processors. Hence, the
average number of computations per processor equals approximately O(NMv2+Mv3

D p). Fur-
thermore, since v is independent of the number of outputs p, it can be concluded that the
VARX method scales linearly with the number of sensors of the system. Or alternatively,
considering a WFS measurement grid of n × n lenslets, the method scales with O(n2). This
forms a large contrast compared to the derivation of a dense state-space innovation model
which solves a Riccati equation that scales with O(n6).

4-3 Numerical validation of sparse VARX identification

In this section, the presented identification algorithm is tested in a validation study comparing
the VARX approximation with the original Kalman filter. First, the simulation procedure and
the performance metrics are discussed, followed by the main results In theory, the accuracy
of the identified VARX model will always be lower than the innovation model. Nevertheless,
it has the advantage that it is completely data-driven, has a linear computational complexity
and results into a highly sparse model.

4-3-1 Simulation procedure

The simulated turbulence is based on a single layer satisfying the Von Kármán spectrum for
r0 = 0.16m and L0 = 10m. The turbulence dynamics is modelled by an identified second order
VAR model following Assémat et al. (2006), based on the theoretical spatial covariance (3-13)
and Taylor’s frozen turbulence hypothesis (3-16). Furthermore, the wind direction is perfectly
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4-3 Numerical validation of sparse VARX identification 49

aligned with the x-direction of the grid and it moves with a speed of vx = 10m/s, resulting
in a Greenwood frequency of fG = 26.7Hz. The WFS is represented by a square of 16-by-16
lenslets and the actuators are placed in Fried geometry. The sampling frequency fs = 250Hz
and the inter-lenslet/actuator spacing δ = vx/fs = 0.04m such that for each sampling period,
the turbulence moves exactly a distance of one δ. Moreover, the DM influence functions
are described by (3-30) for a coupling of 30%. The measurement noise in the WFS adds
a white noise signal with Cv = σI, where σ is such that the SNR is 20 dB. The algorithm
parameters that need to be taken into consideration are the regularization parameter λ and
the VARX orders na and nb. The model order is based on the assumptions in Section 4-1, i.e.
na = 1, nb = 2. The regularization parameter has to be tuned such that an optimal trade-off
is achieved between accuracy and sparsity.

Each simulation runs over N = 5000 time samples with an input drawn randomly from a
normal distribution with unitary variance and a certain realization of the turbulence under the
aforementioned conditions. The validation data are newly drawn realizations of the input and
turbulence from the same spectra as used in the identification. In addition, each experiment
(identification plus validation) is repeated for nr different realizations. The results will be
presented in terms of mean values and standard deviations over these nr different realizations.

One way of representing the accuracy of a model, assumed that in simulation the real signals
are known, is the variance accounted for (VAF). The variance accounted for is defined as

VAF(y(k), ŷ(k)) = max

⎛
⎜
⎜
⎜
⎜
⎝

0,

⎛
⎜
⎜
⎜
⎜
⎝

1 −

1
N

N

∑
k=1

∥y(k) − ŷ(k)∥2
2

1
N

N

∑
k=1

∥y(k)∥2
2

⎞
⎟
⎟
⎟
⎟
⎠

⋅ 100%

⎞
⎟
⎟
⎟
⎟
⎠

(4-17)

where y is the real output and ŷ the output predicted by the model. This definition will give
a value between 0% and 100%, with 100% meaning a perfect fit. The VAF can be computed
both for each output separately, or for all outputs together. Normally, the average value over
all signal elements is taken such that only a scalar value describes the performance of the
whole estimator.

The sparsity of the model is described by the number of non-zero elements in each of the
matrices Ai and Bi. By dividing it by the total number of elements in the matrix, a normalized
sparsity is obtained that represents the fraction of non-zero elements in each matrix.

4-3-2 Numerical validation

First, the standard case discussed above is tested for 20 different realizations with the non-
regularized least-squares solution (i.e. λ = 0). The results in terms of VAF for each sensor
output separately is shown in Figure 4-2. Clearly, the VAF of the first 34 outputs, corre-
sponding to the edge of the grid where the new unknown turbulence enters, is much lower
than the rest of the outputs. The turbulence on this edge cannot be predicted accurately as
there only is statistical knowledge available, while at the rest of the grid the turbulence is
just a shifted version of the turbulence measured one time step before. Moreover, the VARX
model has an average VAF slightly smaller than the Kalman filter. The normalized sparsity
fraction under these circumstances are 0.038, 0.052 and 0.173 for A1, B1 and B2 respectively.
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(a) VAF for each output for for the Kalman filter
and VARX predictor on the validation data
.

(b) Detail of the same figure. The thicker lines
represent the mean and the transparent field the
standard deviation over the different realizations.

Figure 4-2
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Figure 4-3: Boxplot of the accuracy of the VARX model for different combinations of na and nb

over 20 different realizations.

This small difference in accuracy might be caused by the low-order VARX approximation.
However, since the difference is very marginal, it is already clear that increasing the VARX
order will not improve the accuracy of the model significantly. To illustrate the trade-off
between model order and accuracy, a number of combinations between na and nb are tested
in Figure 4-3. Even according to the approximation, na = 1 and nb = 1 does not contain enough
terms to become an accurate model and therefore is not considered. It is clear that orders
larger than na = 1, nb = 2 only improve the accuracy with 0.1%, supporting the approximation
proposed in Section 4-1. When the order is increased even further, the increasing number of
parameters even seem to cause a decrease in VAF. In conclusion, the accuracy varies only
slightly and with an eye on the trade-off between computational complexity and accuracy,
increasing the model order is not useful. However, it is important to note that this low
order approximation only holds since the turbulence simulation used in this validation study
behaves perfectly frozen. When the turbulence gets more complex, it is expected that the
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Figure 4-4: The influence of `1-regularization on the fraction of non-zero elements in the VARX
coefficient matrices.

VARX model order has to increase to maintain a sufficient accuracy. The implementation of
the method in more realistic circumstances forms an interesting subject for future research.

The sparsity induced by the assumed graph topology could be improved further by introducing
`1-regularization and solving the LASSO problem with ADMM as presented in Section 4-2.
The influence of the regularization parameter λ on the sparsity is shown in Figure 4-6. Clearly,
the sparsity can be decreased significantly without decreasing the accuracy too much. The
most improvement is seen in A1 and B2, which can be explained by their dependence on the
wind direction, i.e. many elements of the chosen circle that are not approximately in the
same direction as the wind are actually zero. The accuracy decreases very gradually when
the sparsity increases. The highest accuracy is reached for λ = 0 with a VAF of 97.7% and
for λ = 50 it is 96.8%.

To see how the identification performs as the turbulence gets heavier, the Fried parameter is
decreased, resulting in an increase of the Greenwood frequency. In Figure 4-5, r0 is varied
between 0.03m and 0.3m. Both the accuracy of the VARX model and the innovation model
decrease when the Fried parameter decreases. It can be concluded that within this range,
the VARX model does not have problems modelling heavy turbulence as it follows the same
trend as the Kalman filter.

Finally, the performance of the VARX model is tested for different signal to noise ratios.
A clear decrease in performance of the VARX model compared to the innovation model is
visible as the noise gets heavier. The trend is explained by the fact that Kalman gain of the
innovation model takes the measurement noise into account, while the VARX identification
algorithm is overfitting the noise. Possible solutions to this problem include adding an extra
regularization term to decrease the sensitivity to the noise or increasing the VARX model
order. This discussion will be continued in Section 4-5 where the influence of the SNR on the
control performance will be investigated.
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Figure 4-5: Influence of the Fried param-
eter, displaying the mean VAF and corre-
sponding standard deviation over the differ-
ent realizations.

Figure 4-6: VAF versus the SNR for the
VARX- and KF-based methods.

The sparse VARX model identification is only the first step of the new algorithm. Next,
the new efficient optimal control strategy will be discussed and be tested in a similar valida-
tion study in Section 4-5.

4-4 Sparse optimal control for AO

Suppose that a predictor for the VARX model has been successfully identified in the sparse
format (4-1). According to (3-42), a control law has to be derived such that the mean
squared error of the residual wavefront predictor ε̂(k + 1) is minimized. Since the model
gives a predictor of s(k) rather than ε(k), the wavefront reconstruction step of (3-33) would
be necessary to obtain our predictor, i.e. ε̂(k + 1) = F ŝ(k + 1). However, the matrix F
is not sparse, nor can it be enforced sparse without loosing accuracy since the covariance
matrix Cφ is generally a dense matrix. Moreover, the linear relation between the wavefront
residual and the WFS signal highlights the fact that minimizing ŝ(k + 1) could also serve as
objective function. The main difference between both is the fact that the phase contains two
unobservable modes (piston and waffle) as discussed in Section 3-4-1 that are not visible in
the slopes. Since the piston mode does not influence the image quality and the waffle mode
only has very little energy in a Kolmogorov spectrum due to its high frequency, it is chosen
to neglect both. Another difference is that minimizing ŝ(k + 1) flattens the wavefront slopes,
resulting in a larger compensation for the higher frequencies. In conclusion, since efficiency
and sparsity are very important to this method, it is chosen to replace ε̂(k + 1) by ŝ(k + 1) in
the objective function (3-42).

4-4-1 The control objective function

Let the following compact notation be used for the model (4-1):

s(k) = y(k − 1) +B1u(k − 1) + e(k) (4-18)
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with y(k − 1) ∶= ∑nai=1Ais(k − i) + ∑
nb
i=2Biu(k − i). A predictor of the slopes of the wavefront

according to the model (4-18), neglecting the stochastic signal e(k), could be written as

ŝ(k + 1) = y(k) +B1u(k) (4-19)

The optimal control input is defined as u(k) that minimizes the mean squared error of the
predicted wavefront slopes, i.e.

min
u(k)

∥ŝ(k + 1)∥2
2

s.t. ŝ(k + 1) = y(k) +B1u(k)
(4-20)

which by substitution evolves into the sparse least-squares problem

min
u(k)

∥y(k) +B1u(k)∥
2
2 (4-21)

This minimization problem has to be solved at each time instance. An important property
of the identified VARX model the fact that all matrices in this problem are very sparse.
The sparsity of the matrices within y(k) and B1 can be exploited to solve the problem more
efficiently (see e.g. Paige and Saunders, 1982). In addition, B1 is also highly structured and
has Kronecker rank 2. All of these properties create many opportunities to a scalable control
law that are not possible in the existing control frameworks.

For the minimum variance least squares estimate, one should compensate for the stochastic
nature of e(k) in the identified model of (4-1), resulting in a weighted least-squares problem
(see e.g. Verhaegen and Verdult, 2007, Sec. 2.7) given by:

∥ŝ(k + 1)∥2
C−1
e

= ∥y(k) −B1u(k)∥
2
C−1
e

(4-22)

such that the control law results in the following minimization problem

min
u(k)

∥y(k) +B1u(k)∥
2
C−1
e (4-23)

where ∥x∥W = xTWx. This weighted least-squares problem can be solved efficiently if the
matrix C−1

e is sparse. With the knowledge of the underlying graphical model of the AO
system and according to the influence of conditional independence relations on the inverse of
the covariance (see the definition in Section 2-2-2), the inverse covariance is indeed expected
to be highly sparse.

Moreover, the weighted least-squares problem can be interpreted as a standard least-squares
problem by considering the model of the form (4-2) rather than (4-1). If we define a matrix
A0 = C

−1/2
e , the estimate in (4-22) is equivalent to

∥A0ŝ(k + 1)∥2
2 = ∥ȳ(k) + B̄1u(k)∥

2
2

with ȳ(k − 1) = ∑nai=1 Āis(k − i) + ∑
nb
i=2 B̄iu(k − i) and Āi = A0Ai and B̄i = A0Bi the matrices

from (4-2). The control objective is to minimize this estimate, i.e.

min
u(k)

∥ȳ(k) + B̄1u(k)∥
2
2 (4-24)
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To put it in other words, we can rewrite (4-1) as (4-2), such that the noise term has an identity
covariance matrix. The least-squares for the right hand side of this equation will lead to the
minimum variance control law.

Even though there are many conditional independence relations describing the Gaussian signal
e(t), inverting its sample covariance matrix generally does not result in an exact sparse matrix.
Also, truncating the very small values might drive the resulting VARX model unstable and
is not a reliable option. Therefore, the task that still remains is to find a scalable routine
to estimate the inverse covariance C−1

e , or its square root represented by A0, as sparse as
possible. This will be of interest in the next paragraph.

4-4-2 Estimating a sparse covariance matrix

Chapter 2 introduced the problem of estimating a sparse inverse covariance matrix from a
dataset consisting of samples from a zero mean Gaussian distribution. With the model of the
previous section and real measurements, we can find the error signal e(k) which was assumed
to have a Gaussian distribution N(0,Ce). From a large number of samples of e(k), a sample
covariance matrix Se is constructed via (2-7). The topology of graphical models is usually
determined using the so-called covariance selection problem:

Ĉ−1
e = arg min

X
− log det(X) + trace(SeX) + γ∥X∥1 (4-25)

which results in the maximum likelihood estimate for γ = 0. Increasing γ trades off maximality
of the likelihood for sparsity. This problem can be solved using ADMM (see Appendix A),
but various other efficient algorithms have been proposed lately that solve the covariance
selection problem (see an overview in Section 2-2-4).

When the stochastic nature of e(k) is neglected, a direct sparse estimate of S−1
e can be

computed to approximate C−1
e . By defining the new variable X = S−1

e , the estimation amounts
to solving a regularized least squares problem:

Ŝ−1
e = arg min

X
∥I −XSe∥

2
F + γ∥X∥1

such that, with a similar reasoning to Section 4-2-1, we can solve this row-by-row only for the
non-zero elements that we can define from the spatial 2D graph topology that is expected for
e(k). Listing the measurement locations that connect with location i as Ve,i, and using the
notation of Section 4-2-1, the reduced optimization problem becomes:

min
X(i,Ve,i)

∥I(i,⋆) −X(i,Ve,i)(Se)(Ve,i,⋆)∥
2
F + γ∥X(i,Ve,i)∥1

The optimization problem above is much more efficient than the covariance selection problem
because of its distributed nature; however, it does not find the maximum likelihood solution.
Furthermore, it should be noted that this optimization problem, in contrast to the covariance
selection problem, does not specifically enforce positive definiteness of the variable. Since
in practice Se is diagonally dominant, it does not cause any problems in the considered
simulations and is very accurate in practice. It is still a question for future research how to
efficiently make this derivation more robust.
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4-4-3 Advantages of the sparse VARX model based control method

There are numerous advantages of the presented VARX based control method and most of
them already have been shortly mentioned. The main advantage over the MVM method
(Section 3-6-2) is the fact that an accurate model of the AO loop and turbulence is used to
accurately predict the wavefront slopes s(k).

Moreover, the identification is completely data-driven, where many other methods are based
on having accurate statistical knowledge of the atmospheric turbulence (such as Cφ). This
information is normally necessary for reconstructing the wavefront ε(k) from measurements
s(k). In the data-driven approach we assume that we have no knowledge of this turbulence
except for the information that is available in the measurements s(k).

Compared to the optimal approaches in the literature, the performance of the new method
is always inferior, since the VARX model is an approximation of the innovation model that
forms the basis of those methods. However, as was already stated in Section 4-2-3, the linear
complexity of the identification routine makes the method superior in terms of scalability.
The large-scale Riccati equation that scales cubically with the number of outputs is replaced
by a separable least-squares problem that can be solved in parallel.

The sparse VARX model also has the advantage of creating a more efficient control problem.
The control action requires a number of sparse matrix-vector multiplications and a solution to
a sparse least-squares problem, where all other methods do something similar but with dense
matrices. Exploiting both the sparsity and other structures within the least-squares problem,
it is has the potential of scaling up to very large-dimensions without explicitly computing a
pseudo-inverse.

4-5 Numerical validation of the new control method

In a similar fashion as Section 4-3, the new control method is tested in a validation study.
Under the same conditions as before, the performance of the controller is compared to its
Kalman filter based equivalent (see Section 3-6-3) and the classical MVM approach (Section
3-6-2). First, the simulation procedure and performance criteria are presented, followed by
the results.

4-5-1 Simulation procedure and performance metrics

Before commencing to the validation study, the simulation procedure and a number of per-
formance criteria need to be defined in order to quantify the improvements for all different
control methods.

The simulation of the turbulence dynamics is changed compared to the case discussed in
Section (4-3). In the identification validations, the wind speed was assumed to be such that it
always moves exactly one inter-lenslet spacing δ per sampling time. However, when the wind
speed is varied, choosing only integer multiples of δ per sampling time is way too restrictive to
represent a useful range. On the other hand, problems might occur when the turbulence does
not move in multiples of δ per sampling time. When the movement is (approximately) an
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integer number, the estimations are much more accurate than when it falls right in between,
since interpolation will cause errors. Therefore, the turbulence is simulated on a fictive fine
grid and the WFS centroid locations are centred between four non-adjacent phase grid points.
The wind velocity is chosen such that it moves an integer number of this finer grid sample
spacings each sampling time. This method makes it possible to select a wider range of wind
velocities without having to cope with interpolation issues.
After the model has been identified, M new realization of the same turbulence spectrum are
created over a timespan of N samples. The corresponding sensor data of these turbulence
realizations, without any action of the DM, will serve as the base line for quantifying the
performance. Also the MVM, Kalman filter based and new sparse VARX control method will
be applied on each of these realizations. The performance criteria, which will be discussed
below, are stored for each method and realization and compared to the situation with no
control and each other. From the values of the criteria over all M realization, the mean and
standard deviation are extracted and will be presented in this study. Moreover, it should be
expected that the MVM method is an improvement compared to the base line and that the
VARX- and KF-based optimal methods have a similar performance, much better than MVM.
Due to the fact that the VARX model is an approximation of the Kalman filter, a slightly
lower performance is expected for the new method.
The goal of the controller is to minimize the mean squared error of the phase residual ε(k) at
each iteration. The most straightforward performance measure would hence be the value of
this objective function. Equivalently, this means that the variance of ε(k) is our performance
measure, i.e. the lower the value of

σ2
ε =

1
n
trace(E[ε(k)εT (k)])

the better the performance of the controller, where n is the number of elements in ε(k).
However, since we only have a limited number of sample data, a sample estimate of the mean
squared residual wavefront error is computed via

σ̂2
ε =

1
N

N

∑
k=1

1
n
ε(k)T ε(k) (4-26)

This value will serve as the main performance metric in this validation study.
The most common performance metrics in adaptive optics use intensity information, in par-
ticular the point spread function (PSF). The Strehl ratio, defined as the ratio between the
measured peak intensity of the corrected PSF and the perfect peak intensity of the unaber-
rated PSF,

S =
Im
Ip

is one of the most used measures to define the effects of distortions in an optical system. A
perfectly compensated wavefront will result in a Strehl ratio of 1 and the lower the ratio gets,
the worse the controller performance is. However, in the simulations there is no intensity
information available such that the definition above is not very useful. As was shown in
(Maréchal, 1947), the Strehl ratio is directly related to the residual phase variance via

S ≈ exp(−σ2
ε )
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Since the Strehl ratio can be written in terms of σ2
ε , the mean square phase error contains

the same information as the Strehl ratio in this case.

In theory, the mean squared wavefront error σ2
ε is composed of a sum of various error sources,

such as the mean squared fitting error, temporal error and angular anisoplanatism. In the
case of Kolmogorov turbulence, the fitting error is caused by the fact that the DM cannot
take any arbitrary shape and it is defined as

σ2
f = af (

δact
r0

)

5/3
(4-27)

where δact is the inter-actuator spacing, r0 the Fried parameter and af is a coefficient depend-
ing on the influence functions (Hinnen, 2007). However, since an “ideal” mirror is assumed
in the simulation with H full row-rank, this fitting error should become approximately zero
in our observations.

The temporal error is caused by the fact that there are delays and other temporal limita-
tions within the system inhibiting the the temporal compensation at larger wind speeds. No
mirror and sensor dynamics are assumed in the simulations except from a single time delay.
Hence this delay will be the only error source in the simulated closed-loop AO system. The
effectiveness of the control strategy is directly related to the temporal error. For a classical
controller such as the MVM method, it can be found that in case of Kolmogorov turbulence,
the mean-square temporal error is approximately

σ2
t = at (

fG
fs

)

5/3
(4-28)

with fs the sampling frequency, fG the Greenwood frequency and at a constant depending on
the controller and bandwidth (Hinnen, 2007). Optimal control strategies, such as the method
proposed in this chapter, should be able to compensate better for this time delay as it tries to
take it into account by predicting the distortions one step ahead. However, since we consider
a simplified version of the turbulence, it is not guaranteed that this curve will hold. Therefore,
the exact steepness of the curve is not considered, but the curve of σ2

ε against the Greenwood
frequency in general is still of interest in our validation.

The controller performance is tested in a validation experiment that investigates the influence
of fG/fs on the mean squared error by changing the wind velocity. Furthermore, since it was
shown to influence the accuracy of the identified model, the SNR of the measurement noise
is varied. The atmospheric turbulence conditions remain the same with r0 = 0.16m and
L0 = 10m. The only parameters that will be varied are the wind speed and the signal to noise
ratio.

In the experiment, the WFS is an 11-by-11 grid with a spacing of δ = 4cm between each
location. The turbulence is propagated on finer a 34-by-34 grid, such that each sampling
location is separated by δ∗ = 4/3cm. The sample frequency is kept constant at 250 Hz. The
wind speed is varied such that it moves between 1 to 10 times δ∗ per sampling time along the
grid, corresponding to a wind speed ranging between 3.33m/s and 33.3m/s and a Greenwood
frequency fG = 0.427v/r0 between 8.9 Hz and 89 Hz. The experiments use one identified
model for each ratio, and the control performance is measured over 20 different realizations of
turbulence, simulating over 1000 sampling periods. The average of the mean squared phase
error (4-26) over these realizations is used as a measure of the control performance.
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Figure 4-7: Performance of the different controllers with respect to different Greenwood fre-
quency to sample frequency ratios. The line represents the mean over all realizations and the
surface the corresponding standard deviation.

4-5-2 Numerical validation

The numerical validation of the control is split into two parts. First, the wind speed is changed
to demonstrate the evolution of the temporal error. Afterwards, the SNR is increased to see
how the method performs under a range of noise variances.

Figure 4-7 shows the influence of the Greenwood frequency to sample frequency on the mean
squared error of the phase residual. Clearly, the line corresponding to the MVM method
increases much faster than the new control law. This result supports the effectiveness of the
new method compared to the classical approach. There is a small decrease in performance
visible in relation to the Kalman filter based optimal controller. This difference remains
approximately constant for all wind speeds and is explained by the more accurate predictor
of the Kalman filter as shown in Section 4-3. Moreover, the Kalman filter based method in
this simulation has the additional advantage that the grid spacing of the estimated phase
residual ε(k) is three times as small as that of s(k). Therefore, the VARX model method
indirectly still feels the consequences of the interpolation, since it is solely based on the wider
spaced WFS signal. It is expected that in real experiments, the Kalman filter and VARX
methods will get closer to each other, as was also visible in terms of the accuracy in Section
4-3. The essential conclusion that can be derived from this experiment is that the VARX
method significantly outperforms MVM and stays close to the performance of the Kalman
filter based method for a wide range of Greenwood to sample frequency ratios. It also should
be noted that the minimum-variance estimator does not improve the results significantly as
it is indistinguishable form the non-minimum-variance control law in Figure 4-7.

Next, the SNR is varied between 5dB and 30dB with a wind velocity corresponding to a
movement of one δ per sampling period. The mean squared phase error is plotted in Figure
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Figure 4-8: Performance of the different controllers with respect to different values for the SNR.
The line represents the mean over all realizations and the surface the corresponding standard
deviation.

4-8. The results resemble the trend that was visible during the validation of the model
identification. When the noise variance gets larger, the performance of the VARX model
based method seems to decrease in relation to the Kalman filter based controller. This can be
explained by the fact that the least-squares problem identifying the VARX model is overfitting
the noise without any form of compensation for it. Because of the lack of compensation
for the measurement noise, the controller is not very efficient in situations where the light
source is very dim, e.g. when observing a faint stars. It was discussed in Section 4-3 that
possible solutions to this problem include adding an extra regularization term to decrease
the sensitivity to the noise or increasing the VARX model order. This would mean that this
problem could be solved very quickly, but this still has to be confirmed in future research.
Furthermore, it is also noticeable that the minimum-variance estimator does not improve the
performance at smaller signal to noise ratios.

In conclusion, the combination of accuracy and scalability shows the potential of the new
method. The linear complexity and separable nature of the identification algorithm makes
the method very suitable for large-scale applications. In addition, it has shown significant
improvements over the classical control approach and a similar performance as its Kalman
filter based equivalent, especially under moderate measurement noise levels. All major findings
of this report will be summarized in the following chapter and a number of recommendations
for future research are presented.
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Chapter 5

Conclusions and Recommendations

This final chapter is divided into two sections. The first section will summarize the main
conclusions presented in this thesis. Afterwards, a number of recommendations for further
research are discussed in the second section.

5-1 Concluding Remarks

This thesis has presented a new scalable data-driven control method for large-scale adaptive
optics systems. The fundamental idea that created the method was the realization that
adaptive optics systems could be represented as graphical models, describing the conditional
(in)dependence relations between each output with all other in- and outputs. The spatially
separated nature of the WFS measurement grid combined with Taylor’s frozen flow hypothesis
sparked the idea that the evolution of one output element (i.e. one slope measurement of the
WFS) is described only by the measurements and actuator inputs in a close neighbourhood.
In a graphical modelling framework, VARX models are very effective as the graph topology
can directly be mapped as a sparsity pattern on the coefficient matrices and the inverse of
the stochastic input’s covariance.

The aforementioned reasoning finds a rough estimation of the sparsity pattern before solving
the identification problem. By only identifying the non-zero values, the number of elements
per row of the VARX coefficient matrices is decreased significantly. This number is depen-
dent on the nature of the sensor and actuator geometry, turbulence conditions and desired
precision; however, it is independent of the size of the system. That is, if the size of the mea-
surement grid is increased, it does not mean that one location is now influenced by a farther
neighbour than it was before. Because of this property, it was shown that the complexity
of the VARX model identification algorithm scales linearly with the total number of outputs
of the system. This computational complexity forms a large contrast with the identification
of a state-space innovation model, which requires solving a Riccati equation with a cubic
complexity.

Master of Science Thesis Pieter Piscaer



62 Conclusions and Recommendations

The identification routine requires one set of open-loop sensor data of the wavefront phase
distortion due to turbulence plus a persistently exciting actuation of the DM. All non-zero
elements of the VARX coefficient matrices are identified in a separable least-squares opti-
mization framework. The sparsity of the model can be improved even more by adding an
`1-regularization term and solving the regularized least-squares problem in parallel with the
Alternating Direction Method of Multipliers (ADMM). The increase in sparsity is due to
the overestimation of the region of influence in the graphical model and the fact that the
wind speed is only in one constant direction, while the selected neighbourhood stretches in
the same length along the direction of the wind speed as opposite or orthogonal to it. All
wrongly assumed conditionally dependence relations causing unnecessary non-zero values in
the coefficient matrices will in this step be forced to zero.
Given the identified model of the complete system, the AO control problem can be expressed
in an optimal control framework. However, the identified model gives the slopes of the
wavefront rather than the phase values. Where classical control methods first reconstruct
the phase from the measured slopes, it is chosen not to do so in the new method. The
main reason is that the reconstruction step would destroy the obtained sparsity in the model.
Moreover, the most important difference between the real phase and the measured slopes are
the unobservable piston and waffle modes. Since the piston mode does not influence the image
quality and the high frequency waffle mode has only a very low energy, they are neglected in
this thesis. Therefore, the new control law computes at each time instance the control input
that minimizes the one-step-ahead prediction of the mean squared error of the phase slopes.
The achieved sparsity of the control problem should be exploited to solve the resulting large
least-squares problem efficiently.
A minimum-variance control law requires the least-squares control problem to be weighted
with the inverse of the spatial covariance of the VARX model’s stochastic input. If the
same degree of sparsity has to be maintained, the estimated covariance matrix should also
be approximately as sparse as the coefficient matrices. A certain trade-off between maximum
likelihood and sparsity of the estimation can be found by solving the so-called covariance
selection problem. Solving this problem for large dimensions is very challenging and has
drawn a lot of attention in the literature over the last decade. Another estimate can be
obtained by directly computing a sparse estimate of the inverse sample covariance matrix in
a separable least-squares framework similar to the one used in the VARX model identification.
An advantage of this approach is that similar to the identification algorithm, all conditional
independence relations known beforehand can be used to decrease the dimensionality of the
system, resulting in a linearly scaling computational complexity.
The proposed data-driven sparse VARX model identification has been validated in simulation.
The turbulence is generated as a single layer of Kolmogorov turbulence following Taylor’s
frozen flow hypothesis. The experiments have shown that the sparse VARX approximation has
almost equal accuracy to an identified dense state-space innovation model. Furthermore, `1-
regularization will increase the sparsity caused by the unidirectional wind speed in some of the
matrices significantly, only decreasing the VAF value with less than one percent. Moreover,
any severity of turbulence can be modelled approximately with the accuracy of the innovation
model. The only difference is visible when the measurement noise variance is increased. The
accuracy of the VARX model deteriorates faster compared to the accuracy of the innovation
model when the SNR is decreased. This can be explained by the fact that the least-squares
problem identifying the VARX model is overfitting the noise.
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Also the controller performance is tested in a validation study, comparing the new method
with a classical control law without any predictive capability and an optimal controller based
on a Kalman filter. The simulations have demonstrated that the new control method out-
performs the conventional controller, especially for larger Greenwood to sampling frequency
ratios, and that it obtains a similar performance to the Kalman filter based technique. How-
ever, when the SNR is decreased, the temporal error of the new method starts to increase
in comparison with the optimal controller. This decrease in performance for high measure-
ment noise variances makes the method less suitable for correcting faint light sources. The
overfitting problem might already be solved by introducing an extra regularization term to
compensate for the noise, but this still has to be confirmed in future research. Also, the
minimum-variance control law obtains the same performance as the non-minimum-variance
controller under all circumstances.

In conclusion, the combination of accuracy and scalability demonstrates the potential of the
new method. The linear complexity and parallelizable algorithm make the method very
suitable for large-scale applications. It has shown significant improvements over the classical
control approach, and a similar performance to the much more complex optimal control law.

5-2 Recommendations

Despite the fact that the new procedure has been shown to have great potential as an efficient
control method for large-scale AO systems, the research in this field is far from finished. A
number of suggestions for future research are presented below.

First of all, the decrease in performance for lower signal to noise ratios should be addressed.
As discussed before, the overfitting of the noise in the identification algorithm might be
decreased by simply increasing the VARX model order or by adding an extra regularization
term to compensate for the measurement noise. These possibilities should be investigated
in further simulations and the improvements should be compared to the performance of the
Kalman filter based controller.

The results were obtained under ideal circumstances in simulation. Turbulence is very difficult
to simulate reliably and system dynamics might influence the accuracy of model identification,
changing the behaviour of the controller. Therefore, it is necessary to test the method in
more realistic circumstances in order to draw final conclusions. This means that either the
simulations need to include the system dynamics and a less simplistic turbulence generation,
or the algorithm has to be tested in a laboratory experiment. Since a realistic well-tested
simulation environment is not directly available, testing the method on a practical AO system
seems to be the best option of the two. The turbulence can be simulated by a circular plastic
plate which is sprayed or machined in such a way that the resulting wavefront distortions
have a Kolmogorov distribution. By adjusting the rotational speed, it is possible to simulate
different wind speeds to validate the influence of the Greenwood frequency on the controller
performance. A similar simulation has been realized in the study of Hinnen (2007).

It should also be noted that even this type of experiments might still use a too restrictive
representation of the turbulence. Therefore, it would be of great interest to have a clear, easily
accessible and well validated simulator that can model both the turbulence and complete AO
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system very accurately. With such a toolbox, it would be possible to have a clear comparison
between the performance of different control algorithms.

The new method has so far only been tested against the classical MVM method and a simple
Kalman filter based optimal control method. Further validation of the performance should
also include a comparison to the current state of the art AO control algorithms. It would be
very interesting to see if or under which conditions the new method can compete with state
of the art insights.

In practical applications, the turbulence conditions will slowly vary over time. To ensure an
accurate prediction, the identified model has to be updated as this happens. It would be a
challenge to construct a routine that detects big changes in the turbulence conditions and
updates the model during operation based on closed-loop WFS data, without breaking off
the observations. This method should then be compared to adaptive control strategies such
as the method proposed in Ellerbroek and Rhoadarmer (2001).

It was shown that by adding the regularization term, the sparsity of the VARX coefficient
matrices could be increased significantly. One cause is the fact that the causality relations in
the graphical model describing the turbulence dynamics in reality do not go in both directions
but are dependent on the direction of the wind. So when the wind direction is (approximately)
known, at least half of the assumed causality relations can be removed. In other words, the
assumed rough topology that reduces the dimension of the identification problem can be fine-
tuned if the weather conditions and other parameters are known more precisely. Of course,
this also means that the model is less data-driven and more depending on certain input
parameters, but it also might get the `1-regularization to become superfluous.

The sparse inverse estimation problem still requires an efficient and robust solution. The
covariance selection problem has drawn a lot of attention in the literature and should be
able to solve the problem for very large systems. For example the block-coordinate descent
method of Hsieh et al. (2011, 2013) shows great potential. However, since the algorithm is very
complex and difficult to implement, it is not an ideal solution. Furthermore, the separable
least-squares problem estimating a sparse inverse sample covariance matrix requires additional
constraints to guarantee positive definiteness and stability. Implementing these constraints is
far from trivial and might increase the complexity significantly.

In this thesis, the piston mode has been ignored and removed from the results afterwards.
The second unobservable mode, the waffle mode, which does have a deteriorating effect on
the image quality has not been considered since it was assumed to have only a very limited
influence. However, due to the fact that these modes do not influence the control objective
function (the mean squared error of the wavefront slopes), they can appear in the control
action where they will do more harm than good. In many AO control strategies, these modes
are removed from the model, which was also shortly discussed in this thesis. If the modes are
removed from the model, the computed input will never cause the piston and waffle mode
in the DM shape. This reduced model changes the physical meaning and transforms the
model into a modal basis. Therefore, the graphical modelling approach used to reduce the
dimensionality does not hold any more and the sparsity might even be completely erased.
However, another approach is not to remove the piston and waffle modes from the output,
but rather during the computation of the optimal control input. Adding constraints on the
control objective functions can also avoid the DM from creating these modes. Since both
modes will not influence the wavefront slopes, regularization on the input might already take
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care of this. It is an interesting question for future research to remove the unobservable modes
from the input as efficient as possible.

Finally, the control problem requires the solution of a very large-dimensional but highly
sparse least-squares problem. There have been several tools proposed to avoid explicitly
computing the pseudo-inverse by exploiting the sparsity pattern. A possible routine to solve
large-scale sparse least squares problems is the one of Paige and Saunders (1982). Besides
the sparsity pattern in the matrix B1, it is has several structural properties. The Kronecker
product structure can be exploited by using it as a pre-conditioner for the sparse least-squares
problem (Bardsley et al., 2011) or using the parallel method of Fausett et al. (1997). Another
possibility is to use pre-conditioned conjugate gradient methods similar to the one used to
solve the wavefront reconstruction problem in Gilles et al. (2002). Undoubtedly, there are
many other possibilities to obtain an efficient solution to the large-scale least squares problem
and it forms a very interesting topic for future research.
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Appendix A

Alternating direction method of
multipliers (ADMM)

ADMM is an algorithm belonging to the class of proximal algorithms which are a tool for
solving non-smooth, constrained, large-scale, or distributed versions of convex optimization
problems. A detailed overview of proximal algorithms, their interpretations and applications
can be found in the monograph of Parikh and Boyd (2013).

Let f ∶ Rn → R ∪ {−∞} be a closed proper convex function. The proximal operator proxλf ∶
Rn → Rn of a scaled function λf is defined by

proxλf(v) = arg min
x

(f(x) +
1

2λ
∥x − v∥2

2) (A-1)

This definition has many interpretations and it would be too extensive to explain them all.
Multiple algorithms exist that use proximal operators. Examples are proximal minimization,
the proximal gradient method, the accelerated proximal gradient method and the alternating
direction method of multipliers (ADMM). The ADMM has proven to be particularly efficient
for large scale problems and is easily integrated in a distributed framework (Boyd et al., 2011).

The alternating direction method of multipliers (ADMM) can be used to solve problems of
the form

min
x
f(x) + g(x)

where f, g ∶ Rn → R∪{+∞} are closed proper convex functions (but not necessarily smooth).
The method consist of three steps.

xk+1
∶= proxλf(zk − uk) (A-2)

zk+1
∶= proxλg(xk+1

+ uk) (A-3)
uk+1

∶= uk + xk+1
− zk+1 (A-4)
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68 Alternating direction method of multipliers (ADMM)

In this method, xk and zk will converge to each other and to optimality. The advantage of
this algorithm is that the objective functions are solved separately. Also, compared to the
other proximal algorithms, it is more easily parallelized.

ADMM combines the convergence properties of the method of multipliers with the decompos-
ability of the dual ascent. Consider an equality constrained optimization problem and split
the variable in two parts, here denoted as x and z, i.e.

min
x,z

f(x) + g(z)

s.t. Ax +Bz = c
(A-5)

with x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. Furthermore, f and g are considered
convex. Besides the formulation of proximal operators (A-2), ADMM can be formulated using
the augmented Lagrangian

xk+1
∶= arg min

x
Lρ(x, z

k, yk) (A-6)

zk+1
∶= arg min

z
Lρ(x

k+1, z, yk) (A-7)

yk+1
∶= yk + ρ (Axk+1

+Bzk+1
− c) (A-8)

with ρ > 0 and Lρ, the augmented Lagrangian of (A-5), is defined as

Lρ(x, z, y) ∶= f(x) + g(y)y
T
(Ax +Bz − c) + ρ/2∥Ax +Bz − c∥2

2

(B-6) is the x-minimization step, (A-7) the z-minimization step and (A-8) the dual variable
update using ρ as step size. Often the ADMM algorithm is written in the so called ’scaled
form’, by combining the linear and quadratic terms in the Lagrangian and scaling the dual
variable

xk+1
∶= arg min

x
(f(x) + ρ/2∥Ax +Bzk − c + uk∥2

2) (A-9)

zk+1
∶= arg min

z
(g(z) + ρ/2∥Axk+1

+Bz − c + uk∥2
2) (A-10)

uk+1
∶= uk +Axk+1

+Bzk+1
− c (A-11)

where u = y/ρ is the scaled dual variable. Note that if we consider the x-update step (A-9)
we get

x+ = arg min
x

(f(x) + ρ/2∥Ax − v∥2
2)

where v = −Bz + c− y is a constant. The right hand side is clearly equivalent to the proximal
operator proxλf(v) for λ = 1/ρ. By symmetry, the same can be derived for the z-update
(A-10).

A-1 ADMM for `1 regularized minimization

ADMM can be very efficiently used for `1 regularized problems. Consider the generic problem

min l(x) + λ∥x∥1 (A-12)
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where l is a convex function. In ADMM form, by taking g(z) = λ∥z∥1, this is

min l(x) + g(x)
s.t. x − z = 0

Whether or not there consists a closed-form solution to the x-update depends on l(x). For the
z-update, the closed-form solution can be found using subdifferential calculus (Boyd et al.,
2011)

zk+1
∶= Sλ/ρ(x

k+1
+ uk) (A-13)

where S is called the soft thresholding operator defined as

Sκ(a) ∶= max(0,1 − κ

∣a∣
)a (A-14)

with S(0) = 0. An important special case of the `1 regularized problem is the lasso, where
l(x) is the least squares 1

2∥Ax − b∥
2
2 in (A-12). Note that the x-update (A-9) is essentially a

ridge regression problem which has a closed-form solution

xk+1
∶= (ATA + ρI)−1

(AT b + ρ(zk − uk))

Another important example is the group lasso, where the regularizer ∥x∥1 is replaced by a sum
of `2 norms: ∑Ni=1 ∥xi∥2. The x-update remains the same as for the lasso and the z-updates
becomes

zk+1
i = Sλ/ρ(x

k+1
i + uk), i = 1, . . . ,N

where the vector soft thresholding, Sκ(a) is defined as

Sκ(a) = max(0,1 − κ

∥a∥2
)a (A-15)

with Sκ(0) = 0, which reduces to (A-14) when a is a scalar.

A-2 ADMM for sparse inverse covariance selection

For the covariance selection problem, ADMM has already been succesfully applied (for exam-
ple, see Scheinberg et al. (2010)). Recall that the problem at hand can be written as

min
X

trace(CX) − log detX + λ∥X∥1 (A-16)

with C the sample covariance matrix. To put it in the form of (A-12), l(X) = trace(CX) −

log detX. The ADMM algorithm for this problem is

Xk+1
= arg min

X
(tr(CX) − log detX +

ρ

2
∥X −Zk +Uk∥2

F)

Zk+1
= arg min

Z
(λ∥Z∥1 +

ρ

2
∥Xk+1

−Z +Uk∥2
F)

Uk+1
= Uk +Xk+1

−Zk+1
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The algorithm can be simplified by noting that the Z-minimization step is elementwise soft
thresholding

Zk+1
ij ∶= Sλ/ρ (X

k+1
ij +Uk+1

ij )

and the X-minimization can also be solved analytically. This can be derived by noting that
the gradient should be zero at the optimum, i.e.

C −X−1
+ ρ(X −Zk +Uk) = 0

ρX −X−1
= ρ(Zk −Uk) − S (A-17)

By taking the orthogonal eigenvalue decomposition of the right hand side (i.e., ρ(Zk−Uk)−S =

QΛQT , with Λ = diag(λ1, . . . , λn) and QTQ = QQT = I) and multiplying (A-17) by QT on the
left and Q on the right this gives

ρX̃ − X̃−1
= Λ

where X̃ = QTXQ, or equivalently we have that

ρX̃ii −
1
X̃ii

= λi (A-18)

X = QX̃QT satisfies the optimality condition (A-17), hence (A-18) is the solution of the X-
minimization step. Note that the computational effort of the X-minimization step is reduced
to just an eigenvalue decomposition of a symmetric matrix.
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Appendix B

Sparse Nuclear Norm Subspace
Identification

This appendix contains a study of finding a sparse Kalman filter from data to obtain an
optimal one-step-ahead predictor of the turbulence. It should be noted that this algorithm
itself requires a large computational effort and therefore is not directly applicable for the
large-scale adaptive optics application. However, for systems with only a few inputs and
outputs, it has shown to have more potential.

B-1 Problem description

As an alternative to the prediction error method presented in Chapter 4, a sparse state-space
model can be derived using subspace identification. When we consider an model in innovation
form (3-37), this amounts in identifying sparse system matrices Ā, B, C, and K. Following
a subspace identification approach, the following data equation is constructed:

Yi,s,N = OsXi,1,N + TsUi,s,N + SsSi,s,N

Where Yi,s,N , Xi,1,N , Ui,s,N and Si,s,N are Hankel matrices as defined in Section 2-1. Fur-
thermore, Os represents the extended observability matrix and Ts and Ss are two block
lower-triangular Toeplitz matrices of the form

Os =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CĀ

CĀ2

⋮

CĀs−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ss =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 0
CK 0 ⋯ 0 0
CĀK CK ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

CĀs−1K CĀs−2K ⋯ CK 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ts =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0 0
CB 0 ⋯ 0 0
CĀB CB ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

CĀs−1B CĀs−2B ⋯ CB 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Moreover, we know that the the matrix OsXi,1,N is of rank smaller than s, the matrix
OsXi,1,N = Yi,s,N − TsUi,s,N − SsSi,s,N is of low rank. Hence nuclear norm minimization could
be used to enforce this low-rank condition.
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72 Sparse Nuclear Norm Subspace Identification

Besides enforcing sparse system matrices (Ā,B,C,K), enforcing sparse Toeplitz matrices Ts
and Ss might be sufficient. Note that a predictor in the form of a VARX model follows from
the last block-row of the data equation:

ŝ(k + 1∣k) = [CĀs−1B CĀs−2B ⋯ CĀB CB]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u(k − s − 1)
u(k − s − 2)

⋮

u(k − 1)
u(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ [CĀs−1K CĀs−2K ⋯ CĀK CK]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k − s − 1)
s(k − s − 2)

⋮

s(k − 1)
s(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This predictor supports the primary focus of VARX models in this thesis. Specifically, if Ā
will be estimated as a nilpotent matrix, the model can be described by a low order VARX
model without the loss of accuracy.

B-2 The algorithm

It was proposed to solve the identification problem using nuclear norm minimization on OsX
and fit the data equation. To ease the notation, the subscripts are dropped from the Hankel
matrices. Moreover, the block-Toeplitz matrices are parametrized in their blocks, denoted by
ts,i and tu,i for Ss and Ts respectively and the estimate of Y , Ỹ , is parametrized in its vectors
ỹ(k), and ỹ is a concatenation of these vectors over all time instances. To take into account
that there is noise on the output, we should minimize its variance. One possible problem
formulation could be

min
ỹ(k),tu,i,ts,i,Os,X

∥Ỹ − Ts(tu,i)U − Ss(ts,i)S −OsX∥2
F +

1
2 (y − ỹ)T (y − ỹ) + ∥OsX∥⋆

where ∥ ⋅ ∥⋆ denotes the nuclear norm. If we now introduce the operator

A(a) = Ỹ − Ts(tu,i)U + Ss(ts,i)S

a = vec(ỹ, tu,i, ts,i)

we get a formulation that is also used in the N2SID method of Verhaegen and Hansson (2014).
Using the approximation proposed in Haeffele et al. (2014)

∥UV ∥⋆ = arg min
U,V

1
2
(∥U∥

2
F + ∥V ∥

2
F )

we obtain a problem that is very similar to that described in Signoretto et al. (2013). Namely,

min
˜y(k),tu,i,ts,i,Os,X

1
2 (ỹ − y)T (ỹ − y) + 1

2 (∥Os∥
2
F + ∥X∥2

F )

s.t. A(a) = OsX
(B-1)
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The main difference in our problem formulation compared to (B-1) is that we are looking for
a solution that is as sparse as possible. One possible way to achieve sparsity is by adding an
`1-norm regularization term on Os, Ss(ts,i) and Ts(tu,i). For this purpose, we introduce a
second operator O(o) = Os, where o is simply the vectorization of Os and a new variable α
for the `1-norm regularization. Below, all previously introduced and some new notations are
listed

Notation Size
a = vec(ỹ(k), tu,i, ts,i) Np+(s−1)mp+(s−1)p2

o = vec(Os,i) nps

α = vec(Os,i, tu,i, ts,i) nps+(s−1)mp+(s−1)p2

A(a) = Ỹ − Tu(tu,i)U + Ts(ts,i)S sp×N−s+1
Os(o) = Os sp×n
Pta = vec(tu,i, ts,i) (s−1)mp+(s−1)p2

y = vec(y(k)) Np

ay = vec(y(k),0) Np+(s−1)mp+(s−1)p2

(a − ay)
TPy(a − ay) = (ỹ − y)T (ỹ − y) 1

where p, m and N are the dimensions of the output vector, input vector and number of
identification time samples respectively. The final optimization problem can now be written
in the following form

min
a,o,X,α

1
2 (∥O(o)∥2

F + ∥X∥2
F ) +

1
2λy (a − ay)

T Py (a − ay) + γ∥α∥1

s.t. A(a) = O(o)X

α = [
o
Pta

]

(B-2)

In the following, (B-2) is solved using ADMM and the algorithm is tested in simulations.

B-2-1 ADMM formulation

In Appendix A, the basics of ADMM have already been discussed. The optimization problem
(B-2) is already in ADMM form and its augmented Lagrangian is

L(a, o,X,α,Z,Zα) =
1
2
∥O(o)∥2

F +
1
2
∥X∥

2
F +

1
2
λy(a − ay)

TPy(a − ay)+

⟨Z,A(a) −O(o)X⟩ +
ρ

2
∥A(a) −O(o)X∥

2
F+

⟨Zα, α − [
o
Pta

]⟩ +
µ

2
∥α − [

o
Pta

] ∥
2
F + γ∥α∥1 (B-3)
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with dual variables Z and Zα and ⟨⋅, ⋅⟩ denoting the inner product. By taking partial deriva-
tives of (B-3), we find the 6 updating steps

ak+1
= arg min

a

1
2
λy(a − ay)

TPy(a − ay) +
ρ

2
∥A(a) −O(ok)Xk

+
1
ρ
Zk∥2

F

+
µ

2
∥αk − [

ok

Pta
] +

1
µ
Zkα∥

2
2 (B-4)

ok+1
= arg min

o

1
2
∥O(o)∥2

F +
ρ

2
∥A(ak+1

) −O(o)Xk
+

1
ρ
Zk∥2

F

+
µ

2
∥αk − [

o

Pta
k+1] +

1
µ
Zkα∥

2
2 (B-5)

Xk+1
= arg min

x

1
2
∥X∥

2
F +

ρ

2
∥A(ak+1

) −O(ok+1
)X +

1
ρ
Zk∥2

F (B-6)

αk+1
= arg min

α
γ∥α∥1 +

µ

2
∥α − [

ok+1

Pta
k+1] +

1
µ
Zkα∥

2
2 (B-7)

Zk+1
= Zk + ρ (A(ak+1

) −O(ok+1
)Xk+1) (B-8)

Zk+1
α = Zkα + µ(αk+1

− [
ok+1

Pta
k+1]) (B-9)

There are many convergence results for ADMM that apply to the convex problem of Liu et al.
(2013), but do not immediately apply for our non-convex problem. The convergence can be
showed from simulations, but is not likely to be found for the algorithm described above, as
was also the case for the related problem of Signoretto et al. (2013).

B-2-2 Analytical solution to the update step

For all updating steps it is possible to find an analytic solution. Here we can use that for any
operator G(g) we can define its adjoint G∗(g) satisfying

⟨G(g),Γ⟩ = ⟨g,G∗(Γ)⟩ (B-10)

The derivative of this expression with respect to g is

∂ ⟨G(g),Γ⟩

∂g
= G

∗
(Γ)

Furthermore, since ⟨A,B⟩ = tr(ABT ) we can use the fact that it is invariant to cyclic permu-
tations, i.e.

⟨A,B⟩ = ⟨ABT , I⟩ = ⟨BT ,AT ⟩ = ⟨BTA, I⟩

Using these definitions we can derive the analytic expressions for the update steps. The a-
update can be found by setting the partial derivative ∂L

∂a (i.e. the right hand side of (B-4))
to zero, i.e.

(λyPy + ρMa + µP
T
t Pt)a = λyPyay +A

∗
(ρOs(o)X

T
−Z) + [0 P Tt ] (µα +Zα) (B-11)
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where

Maa = A
∗
(A(a)) (B-12)

Besides straightforward calculation, the matrix Ma can be calculated much more efficiently
by exploiting the Hankel structure and using MATLAB’s fast Fourier transform routine as
described in Liu et al. (2013). Also, Ma is block diagonal with equal blocks and the number
of blocks equal to the number of outputs of the system. Hence only one block needs to be
constructed and inverted to define the inverse of the term on the left-hand side of (B-11).

The o-update can be calculated similar to a, by setting ∂L
∂o to zero, i.e.

(λOIp + µIp + ρMo) o = (ρO∗s (A(a)XT
) +O

∗
(ZXT

)) + [Ip 0] (µα +Zα) (B-13)

where

Moo = O
∗
(O(o)XTX)

Since the operation O(o) is just reshaping a vector, O∗(O(o)) = I and the matrix Mo ends
up to be a large sparse matrix Mo = XX

T ⊗ Isp. This Kronecker structure can furthermore
be exploited in the efficient computation of the inverse.

Likewise, the X-update follows from straightforward calculations by setting ∂L
∂o to zero

(λXIn + ρO(o)TO(o))X = (ρO(o)TA(a) +O(o)TZ) (B-14)

The α-update can be found using subdifferential calculus

α = Sγ/µ ([
o
Pta

] −
1
µ
Zα) (B-15)

where Sκ(c) = max (0,1 − κ
∣c∣) c is the soft thresholding operator and should be interpreted

elementwise.

B-2-3 Stopping criteria and parameter selection

To test for optimality, one possibility is to follow the criteria proposed by Boyd et al. (2011).
For our specific example, they would read as:

rp1 = A(ak) −O(ok)Xk

rp2 = α
k
− [

ok

Pta
k]

rd1 = ρA
∗
(O(ok−1

)Xk−1
−O(ok)Xk

)

rd2 = µ([
ok−1

Pta
k−1] − [

ok

Pta
k])

εp1 =
√
pqεabs + εrel max {∥A(ak)∥F , ∥O(ok)Xk

∥F}

εp2 =
√
nαεabs + εrel max{∥αk∥F , ∥[

ok

Pta
k]∥

F

}

εd1 =
√
nxεabs + εrel∥A

∗
(Z)∥2

εd2 =
√
nαεabs + εrel∥Zα∥2
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There is however no general rule for selecting and/or updating the regularization parameters.
Since a higher value for γ will result in a higher sparsity, and a higher value of λy in a better
fit to the data, it is expected that the sparsity of the model is depending on both values. A
higher value for γ and a lower value for λy will increase the sparsity.

B-2-4 Simulation results

The algorithm described in this section has been tested in simple simulations. The simulations
are done using small-scale innovation models with randomly generated matrices A,B,C and
K, such that the poles of eigenvalues of A and A−KC lie within the unit circle. Furthermore
the parameters ρ = µ = 1 and γ = 0.1 are kept constant, while λ will be varied.

Figure B-1 show the results that are obtained. Clearly, it seems to work as well as N2SID for
small dimensions. When λ decreases in comparison to γ it becomes clear that the sparsity
increases while the accuracy of the model starts to decrease. The drop in accuracy for too
large values of λ can be explained by overfitting.
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Sparse SID

(a) VAF of the model compared to a model ob-
tained using N2SID.
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Figure B-1: An example of the identification results of sparse SID in comparison with N2SID.

B-3 Discussion

The main goal of this research was to find a scalable alternative to the standard Kalman
filter in modelling an adaptive optics system. The method that is described here does find a
sparse model, but the process of deriving this model is not efficient at all. The large matrices
(such asMa andMo) that grow exponentially when the size of the system increases are either
complex to derive or used in operations such as inversions. Since there is no clear solution to
this problem, this method was not further investigated in this thesis. For small-scale problems
it still might have some contributions. However, there are a number of problems that have
to be solved first.

The algorithm can obtain either a sparse ARX or state-space model. For the first case,
obtaining a sparse Os, Ss and Ts is sufficient, but a very complicated and inefficient approach
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compared to the method of Chapter 4. For the state-space model, we need one extra step of
extracting the matrices A, B, C and K as sparse as possible. Normally (e.g. in Verhaegen
and Hansson, 2014), one would extract C and A−KC from the matrix Os, then K using the
matrix Ss and then B from Ts. The problem is however that apart from C, the matrices will in
general be dense, since they are calculated as a simple least squares problem. A new method
has to be developed for this purpose that enforces sparsity in this problem, for example by
using the fact that we have sparse representations of the matrices C,CA,CB,CK, etc.

Another fundamental problem is that the matrices Os, Ss and Ts that have been estimated so
far are approximately sparse, but not exactly since the residual rp2 will never be exactly zero.
This means that all very small values in a, o (and α) should be truncated during the iterations.
It is however another parameter that would decide at what value it will be truncated. Also,
truncation might lead to a small shift in the poles of the system. Turbulence models tend to
have poles close to the unit circle such that truncation often results in an instability.
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