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Abstract
Detection of hazardous toxic gases for air pollution monitoring and medical diagnosis has
attracted the attention of researchers in order to realize sufficiently sensitive gas sensors. In this
paper, we fabricated and characterized a Titanium dioxide (TiO2)-based gas sensor enhanced
using the gold nanoparticles. Thermal oxidation and sputter deposition methods were used to
synthesize fabricated gas sensor. X-ray diffraction analysis was used to determine the anatase
structure of TiO2 samples. It was found that the presence of gold nanoparticles on the surface of
TiO2 enhances the sensitivity response of gas sensors by up to about 40%. The fabricated gas
sensor showed a sensitivity of 1.1, 1.07 and 1.03 to 50 ppm of acetone, methanol and ethanol
vapors at room temperature, respectively. Additionally, the gold nanoparticles reduce 50 s of
response time (about 50% reduction) in the presence of 50 ppm ethanol vapor; and we
demonstrated that the recovery time of the gold decorated TiO2 sensor is less than 40 s.
Moreover, we explain that the improved performance depends on the adsorption-desorption
mechanism, and the chemical sensitization and electronic sensitization of gold nanoparticles.

Keywords: titanium dioxide, thermal oxidation, gas sensors, room temperature, volatile organic
compounds

(Some figures may appear in colour only in the online journal)

1. Introduction

The ever-increasing use of automated vehicles in our era
poses significant threats to human health and the environment.

Volatile organic compounds (VOCs) and hydrocarbons are
examples of such threats. It has been demonstrated in many
reports that the level of these pollutions can exceed the
threshold limit value in residential areas. Monitoring and esti-
mating these harmful toxic VOCs require highly precise, effi-
cient, and reliable analytical devices. Metal oxide-based chemo-
resistive sensors are advantageous over other chemical sensors
such as acoustic-based, optical and electro-analytical due to
their ease of production, low cost and good portability [1].
Different metal oxides such as WO3, SnO2, ZnO, and TiO2

have been reported as potentially promising candidates for gas
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sensing, whether applied individually or in composite structures
[2]. TiO2, an n-type semiconductor material with high resist-
ance and a bandgap of approximately 3 eV, has received great
attention in the field of gas sensing as it is eco-friendly, che-
mically stable, and also has catalytic properties and allows for
structural modulation [3]. The anatase phase of TiO2 exhibits a
high ability to react with gas molecules due to the large number
of oxygen vacancies [4]. Thus, it is more commonly used in gas
sensors than the Rutile and brookite phases. Various n-type
TiO2 structures -pristine or doped, composites- are employed to
sense different types of VOCs such as ethanol, propanol,
acetone, nitrogen oxide, carbon disulfide, and toluene [5].

Limitations of pristine TiO2 sensors such as low sensitivity,
high operating temperature, weak electrical stability, and non-
selectivity are the most prominent remaining challenges. Thus,
various methods have been proposed to overcome these

limitations. A reliable and effective method is the addition of
noble metals such as gold, silver, platinum, and palladium, which
can be performed during the synthesis of TiO2 or after its com-
pletion [6, 7]. These noble metals change the electronic char-
acteristics of TiO2, redesign the crystalline phases, and increase
the density of surface defects. Thus, noble metals act as activators
to improve gas response and selectivity and reduce the response
and recovery time and operating temperature [8, 9]. in addition,
noble metals have a greater impact on the gas sensing of TiO2

nanostructures than other structures [5, 8].
One of the low-cost synthesis methods of Titanium

dioxide nanoparticles in the form of thin-film is thermal oxi-
dation. This growth method can lead to the formation of tita-
nium dioxides in the anatase phase by controlling the air
pressure in deposition systems [10]. The Titanium dioxide
phase variance reported in the literature is generally attributed
to the difference between the titanium layer nanostructure and
its grain size [11, 12]. Oxidation starts from the surface and
boundaries of the grains that the titanium film is composed of.
The oxidation process continues until the titanium grain turns
into titanium dioxide. The induced stress in the oxide changes
its surface energy and controls the phase determination process.
The oxidation temperature, pressure, and grain size affect the
stress level. The higher the stress level gets, the higher the
surface energy of the oxide becomes, and the oxide phase
becomes anatase [13, 14]. Extensive research has been con-
ducted regarding gold-decorated TiO2 gas sensors [15–17].
However, a detailed review of existing studies demonstrates
that nanoparticle-based gold-doped TiO2 sensors still face
challenges such as nanocomposites synthesis, operating
temperature, response time, recovery time, and lifespan.

In this work, a VOC vapor sensor based on the decoration
of TiO2 nanoparticles was fabricated. The growth of TiO2

nanoparticles was performed using the thermal oxidation
method and the decoration of gold nanoparticles using a sputter
deposition. Metal contacts were used to measure and analyze
the electrical properties of the fabricated sensor. The structure,
morphology, and topology of Au-TiO2 layers were studied
using the SEM, XRD, AFM, and EDX characterizations. The
absorbance of the active layer was presented to evaluate the

Figure 1. SEM images of the TiO2 sample grown by thermal oxidation at 600 °C for 4 h. (a) The surface of the oxide sample. (b) Cross-
section image of the oxide.

Figure 2.XRD analysis pattern of the titanium dioxide sample at 600 °C.
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Figure 4. EDX spectrum of (a) TiO2 (b) TiO2 with gold nanoparticles and elemental mapping analysis of (c) TiO2 (d) TiO2 with gold
nanoparticles.

Figure 3. SEM images of the presence of gold nanoparticles on the surface of TiO2.
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bandwidth. Moreover, the gas sensor’s sensitivity, selectivity,
and transient response were studied.

2. Experimental section

2.1. Growth of titanium dioxide

A silicon wafer substrate with the dimensions of 5 mm ×
10 mm was ultrasonically cleaned in acetone, ethanol, and
distilled water consecutively for 5 min. A titanium thin film
was deposited on the surface of Si/SiO2 using an e-beam
evaporator system. The Si/SiO2 substrate was fixed on a
rotating holder. The device was cleaned under vacuum

conditions for 15 min by argon ion beam and with 100 V DC
voltage and 2 A current. A titanium layer of 100 nm was
grown at a rate of approximately 0.05 nm per second. The
growth temperature was kept at 100 °C before the deposition
process and then at 150 °C during the growth process. During
the growth process, the holder’s spin speed was determined at
5 rpm so that a uniform growth is performed. Next, the
sample was placed inside a furnace in the presence of air and
at 600 °C for 4 h. This annealing process resulted in the
growth of a titanium dioxide layer with a thickness of
approximately 50 nm on a titanium layer with a thickness of
about 70 nm. Obtained SEM top and cross-sectional images
of TiO2 are shown in figure 1. As shown in figure 1(a), the
growth of the oxide on the surface of titanium has increased

Figure 5. (a) The fabricated Au/TiO2 sensor before connecting platinum wires. (b) Schematic diagram of the gas sensing measurement
system.
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the thickness of the sample, which corresponds to the positive
coefficient of titanium’s thermal oxidation growth rate [18].
Figure 1(b) displays high porosity on the surface of the
obtained oxide. The mentioned porosity and the existence of
grain boundaries are important factors in gas sensing
[12, 19, 20].

XRD analysis (Inel, EQUINOX3000, 40 kV and 25 mA)
was employed to determine the crystalline phase of the
obtained TiO2 layers. In XRD equipment monochromatic
optic Kα1 or Kα1/2 were used. It was found that the oxide
grown on the titanium layer at 600 °C exhibits an anatase
phase. Figure 2 shows the XRD pattern of this sample.

2.2. Growth of gold nanoparticles

Decoration of the fabricated TiO2 sample with gold nano-
particles was accomplished using a sputtering device under
certain conditions. For this purpose, a 99.99% purity 2-inch
diameter gold target was used. The chamber’s temperature
was kept at room temperature, and the pressure was held at
1 × 10–5 mTorr. The voltage and current for the argon beam
were set to 100 V and 3 A, respectively. The distribution and
size of gold nanoparticles were controlled by the sputtering
time which was set to 2, 4, 6, 8 or 10 s.

After the deposition process, the sample was annealed at
100 °C for 5 h. Figure 3 shows SEM images of the decorated
TiO2 samples. As shown in figure 3, gold metal nanoparticles
have grown irregularly and randomly on the porous surface of
TiO2.

Identification of the elements present in the sample is
possible through energy dispersive x-ray (EDX) analysis. The
fabricated TiO2 sensor was characterized by EDX, before and
after its decoration with gold, using an FEI Nova Nanosem
equipped with EDAX Octane detector. As shown in figure 4,
the EDX spectrum of the sample containing gold nano-
particles has an energy peak of approximately 2 eV, which
demonstrates the presence of gold in the sample. From the
EDX analysis, it is roughly estimated that the atomic ratio
percentage of gold to TiO2 is 10%. This recognition was
made because of the registered energy, which is characteristic
of gold nanoparticles. The Si signals originate from the sub-
strate. The homogenous distribution of constituent element
can be seen in elemental mapping presented in
figures 4(c)–(d).

2.3. Fabrication of the gas sensor

Gas sensing equipment and gas sensing test methods have
been explained in our previous studies [21, 22]. Two ∼3 mm
wide, 200 nm thick gold stripe electrodes and a tantalum
adhesive layer were deposited on the TiO2 sample. Silver
paste was used to ensure the electrical connections of the
platinum wires. A sample of the prepared sensor and the
schematic diagram of the measurement system is shown in
figures 5(a) and (b), respectively.

The gas response was obtained by measuring the resist-
ance of the two electrodes using a Sanwa handheld digital

Figure 6. Nitrogen adsorption-desorption of TiO2 and TiO2/Au sensors.

Table 1. Surface area, pore-volume, and pore diameter of the TiO2

and TiO2/Au sensors.

Sample SBET (m2 g−1) Vp (cm
3 g−1) Dp (nm)

TiO2 16.78 0.11 33.2
Au/TiO2 17.03 0.05 30.8
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CAT II multimeter. Room conditions were kept constant
throughout all experiments (25 °C–27 °C temperature and
35%–45% Relative humidity).

The sensitivity of the gas sensor is expressed by the ratio
of the measured resistance before exposure to gas to the
measured resistance after it and is defined by the expression:

( )R

R
SensitivityResponse 1a

g
=

where Ra and Rg are the sensor’s resistance under room
conditions (clean air) and in the presence of gas, respectively.

3. Results and discussion

3.1. Structural and morphological characteristics

N2 adsorption-desorption isotherms were applied to the sen-
sor. The surface area was investigated using a Brunauer–
Emmet–Teller (BET) method.

Figure 6 displays N2 adsorption-desorption isotherms
and the pore size distribution diagram (BJH) of Au/TiO2 and
pure TiO2 samples. The sample shows an isotherm similar to
type IV, which is representative of mesoporous solid [23].
Data regarding the pores’ structure have been listed in table 1.
Both samples demonstrate similar N2 adsorption-desorption
isotherms. Although surface areas with wide pore distribution
can be seen in both samples, the gold-decorated sample has a
larger pore volume and a smaller pore size compared to the
TiO2 sample. This difference in size and pore volume leads to
an increase in the surface-to-volume ratio in the sensor.
Increasing the volume-to-surface ratio course increases the
sensitive surface to detect gas molecules. Therefore, gas
response increases.

The output characteristics (I–V ) of TiO2 sensors before
and after the decoration of gold on the TiO2 are presented in
figure 7(a). Both I–V curves show Schottky contact which
indicates same contact before and after the decoration with
gold nanoparticles. Due to the sparse nature of the gold
nanoparticles, they had only a small impact on the con-
ductivity of the sample [9, 24]. The I–V characteristic of the
Au-TiO2 sample at different temperatures has been demon-
strated in figure 7(b) in order to investigate the electrical
contact of the electrodes [25]. Since gold’s work function
(WAu = 5.1 eV) [26] is larger than titanium dioxide’s work
function (WTiO2 = 4.6 eV) [27], the contact between TiO2 and
Au causes the charge to transfer from the semiconductor
(TiO2) to gold (Au), and hence, a Schottky barrier forms at
the junction. It has been demonstrated that the barrier height
of the gold-titanium dioxide contact corresponds to the
Schottky-Mott model, and the barrier’s value varies between
0.9 and 1.2 eV [28, 29]. This difference is attributed to
undesired surface states [30]. With due attention to the formed
Schottky diode in the contact, all samples’ resistance mea-
surements were recorded at a voltage of 1 V to ensure reliable
gas sensing results.

The optical response and optical bandgap of the layer are
other criteria that help determine gold’s dispersion in the TiO2

thin film. Figure 8(a) shows the UV–vis absorption spectrum
of TiO2 and Au/TiO2 at room temperature. To removal
substrate absorption effect in obtained UV–vis spectrum,
original samples, samples on the glass substrate and Si sub-
strate were measured separately. As can be observed in
figure 8(a), TiO2 exhibits a sharp absorption edge at about
400 nm, which is related to the bandgap excitation of TiO2

[31]. Due to the uneven distribution of gold nanoparticles on
the surface of Titanium dioxide, gold does not exhibit any
evident absorption. Moreover, as SEM and EDX character-
izations demonstrate, the actual Au content of Au/TiO2 is not

Figure 7. Typical current-voltage (I–V ) characteristics of (a) TiO2-
based sensor with and without Au nanoparticles and (b) in normal
coordinates for Au/TiO2 contact at different temperatures. The inset
curve in figure (b) presents a plot of I–V characteristics in semi-
logarithmic scale.
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much, which might lead to the lack of a prominent absorption
peak. Nevertheless, as can be seen in figure 8(a), a slight
increase in light absorption is apparent in the Au/TiO2

sample compared to the TiO2 sample.
As shown in figure 8(a), the average adsorption in the

range of 400–500 nm is below 10%. The bandgap of
Au/TiO2 can be determined using the adsorption of TiO2 thin
film in various wavelengths. Figure 8(b) shows the Tauc plot
used to calculate the Eg of the Au/TiO2 sample. This plot was
used to obtain Eg and is based on equation (2):

( ) ( ) ( )h A h E , 2n
ga n n= -

where α is the adsorption coefficient, A is the constant
coefficient (band tailing parameter), hν is the energy of the
incident photon, and Eg is the bandgap energy. Extrapolation of
the linear region obtains the bandgap on the hν axis. The
obtained Eg for the TiO2 sample was calculated to be
approximately 3.4 eV which corresponds to the literature [32].
Moreover, figure 8(b) demonstrates band gap energy obtain for
the both samples. Based on the optical band-energy spectra
shown in figure 8(b), it is clear that gold particles could change
the light absorption behavior, as well as alter the optical
bandgap of TiO2. The optical bandgap is found to be composed
and there is a slight increase in the bandgap of the TiO2 with
gold decoration. The doping of various transitional metal ions
into TiO2 could shift its optical absorption edge from the UV
into the visible light range. Unlike TiO2, which only absorbs
light energy in the range of the UV spectrum, Au/TiO2 absorbs
additional light energy in the visible range due to the presence
of the plasmonic phenomenon in the Au nanoparticles [33].

3.2. Gas sensing results

The fabricated sensors using bare TiO2 and decorated TiO2 were
tested for sensing different VOC vapors. Figure 9 and the table
inside it shows the sensing response of two gas sensor samples to
50 ppm of acetone, ethanol and ethanol vapors. As can be seen in
figure 9, gold decoration does not lead to a significant change in
sensitivity of the fabricated samples. As the gold-decorated TiO2

has a sensitivity response of 1.13 to 50 ppm acetone vapor, while
the intrinsic TiO2 has a sensitivity of 1.1 in similar conditions.
Gold decoration does significantly impacted the sensors’
response time, such that the 100 s response time in the TiO2

sensor decreased to about 50 s in the Au/TiO2 sensor for 50 ppm
of all tested VOC vapors. It should attribute to the catalytic
promotion effect of Au, which leads to the decrease of activation
energy and results in an increase of gas adsorption for the gas-
sensing performance [34].

When the gas sensor is exposed to different concentrations
of gas, the electrical conductivity of the active layer modulates
the adsorption rate of gas molecules on the sensor surface.
Gold nanoparticles in the form of discrete islands modify the
surface structure of TiO2. In an oxygen-rich atmosphere, oxi-
dation of the nanometer islands provides a pair of Au+ and
neutral Au in the equilibrium [35]. These redox pairs cause the
formation of an electron depletion layer around the gold
islands. The Schottky potential barrier formed at the Au0/Au+

pairs boundary causes carriers to increase [36]. This increase in
effective carriers in gas sensing leads to the spillover effect.
Therefore, the number of free electrons in the Au/TiO2 sample
is much larger than the number of free electrons in TiO2. This
fact is also confirmed by the current-voltage characteristic
shown in figure 7(b). Because of the spillover effect, these
trapped electrons cause the electron region to thicken and
increase the oxygen adsorption sites [37]. Thus, the presence of
gold nanoparticles on the surface of TiO2 improves the
Schottky barrier modulation in the oxidation process.

The sensing mechanism of the TiO2 sensor is based on
changes in the electrical conductivity of the sample at different
atmospheric conditions. TiO2, as an n-type semiconductor,
adsorbs oxygen molecules to its surface when exposed to air,
which results in the trapping of the electrons from the conduction
band as shown in figure 10(a). The oxygen molecules are
adsorbed in the forms of O2ads

− , Oads
− , or Oads

2−. Hence, the released
h+ creates a space charge and causes a larger potential barrier to
form [3, 38]. The increase in this potential leads to reduced
electrical conductivity (see diagram on the left in figure 10(a)).

Figure 8. (a) Optical absorption spectrum of TiO2 and Au/TiO2 samples. (b) Optical band-energy spectra for TiO2 and Au/TiO2 thin films
(αhν versus photon energy).
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This adsorption process can be defined according to equation (3):

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

O gas O ads
O ads e O ads
O ads e 2O ads

O ads e O ads . 3

2 2

2 2

2
2


+ 
+ 
+ 

- -

- - -

- - -

When the sensor is exposed to gas molecules (see dia-
gram on the right in figure 10(a)), its conductivity changes
due to the reaction of the adsorbed oxygen species with gas
molecules, and it releases back electrons to the conduction
band. This process results in a smaller potential barrier and,

Figure 9. (a) Sensitivity response results of TiO2 and Au/TiO2 sensor toward 50 ppm methanol, ethanol, and acetone gas at room
temperature. (b) Response area of Sensitivity curve of TiO2 and Au/TiO2 sensor toward 50 ppm acetone gas at room temperature (table inset
is comparison of gas sensing parameters of TiO2 and Au/TiO2 samples).
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thus, increased conductivity. This process can be defined
according to equation (4):

( ) ( ) ( ) ( )VOC gas O ads X gas e . 4+  +- -

As figure 10(b) demonstrates, the increase in gas
response can be described by electronic sensitization and
chemical sensitization of Au catalyst. The different work
functions of Au and TiO2 on the gas adsorbent surface can
lead to electron interaction between Au and TiO2 and the

formation of an extra electron depletion layer on the joint
surface. Therefore, when the surface oxygen molecules react
with gas molecules, more carriers are released, which results
in further change in electrical conductivity.

Figure 11 demonstrates the dynamic performance of
Au/TiO2 towards different concentrations (1–200 ppm) of
ethanol gas at room temperature. Moreover, this figure shows
the transient sensing curves and stable sensing and recovery
of the TiO2 sample. As can be seen in figure 11, increasing
ethanol concentration causes more molecules to react with the
adsorbed oxygen molecules, which leads to an increase in the
sensor sensitivity. The sensitivity of the sensor to 1 ppm, 5
ppm, 10 ppm, 50 ppm, 100 ppm and 200 ppm ethanol gas
was found to be 1.0014, 1.0069, 1.02, 1.07, 1.138 and 1.263,
respectively. The fabricated sensor shows an acceptable
response to low concentrations of ethanol vapor at room
temperature, hence making it an appropriate option for low-
power applications.

The dependency of the response as a function of ethanol
concentration for the Au/TiO2 sample is shown in the inset of
figure 11. As can be seen in the figure, linearly increasing the
concentration from 1 to 200 ppm significantly increases the
response sensitivity. This linear dependency can be modeled
by equation (5):

⎜ ⎟
⎛

⎝

⎞

⎠
( )S

R

R
C0.00139 1 5a

g
= = +

where S is the sensitivity and C is ethanol vapor concentra-
tion. Moreover, the detection limit of the sensor of 0.22 ppm
was recorded. The limit of detection was obtained theoreti-
cally by using extrapolation of the sensitivity curve till it hits
the noise level of the device [39].

Figure 10. A schematic diagram of the reaction mechanism of the (a) TiO2 and (b) Au/TiO2 based gas sensor clean air and the presence
of gas.

Figure 11. Typical dynamic response curves of Au/TiO2 sensor for
1–200 ppm ethanol vapor at room temperature. The inset plot is the
corresponding linear relationship of the sensitivity to concentration.
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Another important factor when studying sensor perfor-
mance is selectivity, which is the ability of sensors to show a
precise response to the target gas in the presence of different
gases [22, 40]. Both TiO2 and Au-TiO2 sensor structures were
exposed to 50 ppm six different gases, including acetone,
ethanol, methanol, 1-propanol, ammonia, and carbon mon-
oxide. Figure 12 shows the sensitivity of the fabricated sen-
sors in the presence of different gases. The decorated sample
did not exhibit increased selectivity for any of the studied
gases.

Long-term stability is another one of the gas sensor’s
important factors, and it demonstrates the reliability of the
sensor [41]. The stability of the decorated TiO2 sensor in the

presence of 50 ppm ethanol was evaluated at room temper-
ature. As is evident in figure 13, the relative deviation of the
gas response sensitivity was less than 2% in the first 15 d and
about 3% in the following 15 d.

Moreover, the effect of humidity on the sensing mech-
anism of the fabricated sensors was investigated. Figure 14
shows the response sensitivity as a function of the applied
relative humidity to TiO2 and Au/TiO2 sensors when exposed
to 50 ppm acetone vapor. it is found that the effect of
humidity on tested TiO2 and Au/TiO2 gas sensors is similar
to the impact of humidity on the nanowire TiO2 ethanol vapor
sensors [3]. To ensure the responses obtained from the gas
testing results, two other samples with the same experimental

Figure 12. Comparison of the sensitivity response of the fabricated sensors in the presence of 50 ppm of 6 different gases.

Figure 13. Long-term stability of Au/TiO2 sensor towards 50 ppm ethanol vapor at room temperature.
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conditions were fabricated for each type of sensor. Recorded
gas sensitivity parameters of other samples guarantee all
results.

Table 2 demonstrates a comparison of the current
research with similar studies in key sensing parameters such
as sensitivity, gas concentration, response and recovery time.
As can be observed, different TiO2 structures (such as TiO2

nanobelt, Au-TiO2 nanoparticles, etc) were employed to
detect different VOC gases, especially ethanol. Among them,
we employed a simple growth method to obtain porosity and
Au decoration at room temperature, which demonstrated
satisfactory results compared to other works.

4. Conclusion

A TiO2 gas sensor was fabricated through thermal oxidation
with process control to increase porosity. Gold nanoparticles
were deposited on the surface of the fabricated sensor by the
sputtering technique. The developed sensors are capable to
detect low concentrations of VOC vapors at room temper-
ature. Close observation indicates that gold decoration leads
to an increased sensitivity towards VOC vapors. Pure TiO2

and Au/TiO2 exhibited a sensitivity percentage of 3% and 7%
towards 50 ppm ethanol vapor, respectively. Moreover, it was
found that the response time of the decorated sample had
improved by 50% compared to pure TiO2. The sensors
showed no degradation in their response over a period of 30
d. Thus, this research can provide the basis for further
extensive studies on enhancing the gas sensor’s performance
of VOC sensors. To continue this research using other noble
metals as catalysts are recommended.
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