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ABSTRACT Pedestrian detection is an important branch of computer vision, and has important applications
in the fields of autonomous driving, artificial intelligence and video surveillance. With the rapid development
of deep learning and the proposal of large-scale datasets, pedestrian detection has reached a new stage
and has achieved better performance. However, the performance of state-of-the-art methods is far behind
expectations, especially when occlusion and scale variance exist. Therefore, many works focused on
occlusion and scale variance have been proposed in the past few years. The purpose of this article is to make
a detailed review of recent progress in pedestrian detection. First, a brief progress of pedestrian detection in
the past two decades is summarized. Second, recent deep learning methods focusing on occlusion and scale
variance are analyzed. Moreover, the popular datasets and evaluation methods for pedestrian detection are
introduced. Finally, the development trends in pedestrian detection are discussed.

INDEX TERMS Deep learning, pedestrian detection, occlusion handling, scale variance.

I. INTRODUCTION

One of the most exciting opportunities at the intersec-
tion of robotics and deep learning is autonomous driving,
a comprehensive intelligent system that integrates percep-
tion, positioning, planning, decision making and motion
control [1]-[3]. As the top layer of autonomous driving, the
perception system needs to be further improved to achieve a
comprehensive understanding of the scene to make the best
driving decisions.

As an important part of the real world, pedestrians often
occupy the largest number in most datasets, as shown in
Figure 1. Therefore, human-centered tasks (e.g., pedestrian
re-identification [4], pedestrian detection [5], [6], pedes-
trian trajectory prediction [7], person search [8] and pedes-
trian counting [9]) have received considerable attention.
Among them, pedestrian detection is a basic task in real-
world applications. Pedestrian detection aims to detect all
instances and predict their bounding boxes from a given
input image or a video, which requires high accuracy and
efficiency. Compared to image detection, video detection
can utilize temporal context information. Making full use of
the temporal context can solve data redundancy in videos
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and improve the detection speed. It can also improve the
detection performance and solve the problems of motion
blur, occlusion, and various poses. During the last decade,
object detection has made breakthroughs and achieved high
performance in popular datasets, such as ImageNet [10],
Pascal VOC [11], and MS COCO datasets [12], which is
driven by machine learning, especially deep learning tech-
niques. Pedestrian detection has also received considerable
attention as a specific category of generic objects, as shown
in Figure 2.

Pedestrian detection methods can mainly be divided into
two categories: hand-crafted features based [13]-[16] and
deep features based [17]-[21]. In first category, hand-crafted
features such as Histogram of Oriented Gradients (HOG) [13]
and Integral Channel Features (ICF) [14] are extracted to
train classifier. These methods are sufficient for some simple
cases. However, the efficiency is low, and the performance is
not satisfactory. With the rapid development of deep learn-
ing, especially the proposal of generic object detection, deep
learning-based methods for pedestrian detection achieves
significant improvements in terms of speed and accuracy.
However, state-of-the-art pedestrian detection performance
is still not comparable to that of human perception. Pedes-
trian detection still faces many challenges, such as following
points:
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FIGURE 1. Most frequent object classes in (a) PASCAL VOC and (b) COCO.
The size of each word is proportional to the frequency of that class in the
training dataset.

1) Large differences in appearance Environment con-
dition is various in the real world, such as light-
ing (i.e., dawn, day, and dusk), weather conditions,
backgrounds, illuminations, occlusion, and viewing
distances. On the other hand, there are many differ-
ences among people, such as clothing, and attachments
on the body. All these conditions produce significant
variations in pedestrian appearance, such as pose, scale,
occlusion, clutter, shading, blur, and motion, as shown
in Figure 3.

2) Occlusion In many real-time applications, pedestrians
are extremely dense. Pedestrians are often occluded
by other objects (Figure 3(a)) or dense pedestrians
(Figure 3(b)); therefore, only a part of the human body
can be seen. Highly overlapped instances are likely to
have very similar features, which poses great difficulty
in detection.

3) Scale variance Pedestrians with different spatial scales
may exhibit dramatically different features, as shown
in Figure 3(c). Small-scale pedestrians are very com-
mon in real scenes, and accurately localizing them is
challenging owing to blurred boundaries and obscure
appearance.

4) Complex background The background is very
complex both indoors and outdoors, as shown in
Figure 3(d). Some objects resemble human bodies in
appearance, shape, color, and texture, making it diffi-
cult to accurately distinguish pedestrians.
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FIGURE 2. The increasing number of publications about pedestrian
detection from 2000 to 2020. The red bars represent the publications
since DCNN achieves great success. The search results are from Google
Scholar using allintitle: “Pedestrian Detection.”

5) Real-time performance Pedestrian detection is essen-
tial in real-time applications; therefore, it must meet
real-time requirements. Driven by deep learning, com-
plex models have been applied for pedestrian detection,
which requires a large amount of computation and
poses challenges to real-time performance.

Faced with these challenges, pedestrians can still be stud-
ied as an independent problem, although they are a category
of generic object detection. In [22], Zhang et al. compare
the state-of-the-art methods with human baseline and find
that there is a large gap in the performance of occluded and
small-scale pedestrian detection. Based on their conclusion,
occlusion and scale variance are two key challenges affecting
pedestrian detection. This conclusion is also easily obtained
from the recently proposed datasets, such as CityPersons [23]
where occlusion accounts for 43% and CrowdHuman [24]
where occlusion accounts for 70%. The impact on the per-
formance of pedestrian detection is obvious. The state-of-
the-art method [25] obtains an 8.3% miss rate (MR) on the
reasonable subset in CityPersons while 43.5% on the heavily
occluded subset. Figure 4 shows the performance (measured
as miss rate) comparison of the several representative works
over the years, which is evaluated on the reasonable (R)
and heavily occluded (HO) set of Caltech and CityPersons.
The methods evaluated in Caltech perform better overall
than those in CityPersons because the intra-class occlu-
sion in CityPersons is relatively serious. In addition, deep
learning techniques have significantly improved pedestrian
detection. The performance of deep learning methods (e.g.
MS-CNN [18]) is better than that of hand-crafted features
based methods (e.g. LDCF [26]). It is also clear that the
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FIGURE 3. Some challenges of pedestrian detection. (a) Inter-class
occlusion. (b) Intra-class occlusion. (c) Pedestrian of different scales,
small-scale pedestrian in red box and large-scale pedestrian in blue box.
(d) Complex background. The dummy in the green box. (e) lllumination.
(f) Rainy day and blur.

performance on the R set is approaching saturation, and the
gap between performance in two sets is narrowing. However,
the detection performance is far behind expectations, espe-
cially when heavy occlusion exists.

As a common problem in generic object detection, scale
variance has also gradually received widespread attention.
Pedestrians with different scales have large intra-category
variance in features that may severely hurt the performance
of detectors. Statistically, over 60% of the instances in the
Caltech training set have a height smaller than 100 pixels. It is
very challenging to accurately locate them. To achieve better
performance in real-world applications, occlusion handling
and multi-scale pedestrian detection have become the main-
stream. Besides detecting pedestrian as a simple category
with general detectors, many studies have specially addressed
occlusion and scale-variation problems.

A. COMPARISON WITH PREVIOUS REVIEWS

A series of reviews on pedestrian detection has been pub-
lished, as summarized in Table 1. However, there are
relatively few recent surveys focusing on the deep learning
methods, except for the work by Cao et al. [33] who con-
duct a comprehensive survey on pedestrian detection from
hand-crafted to deep features. However, the development of
pedestrian detection is very rapid, and we mainly focus on
the current research hotspots, that is, occlusion handling and
multi-scale detection based on deep learning.

B. SCOPE
As shown in Figure 2, the quantity of publications on pedes-
trian detection is very large, and we cannot make a detailed
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FIGURE 4. Pedestrian detection performance of representative works
over the years in Caltech and CityPersons. R and HO represent reasonable
subset and heavy occlusion subset, respectively.

summary for all of them. We mainly limit our focus to papers
from conferences and some top journals. In addition, as we
discuss above, occlusion and scale variance are the two main
challenges. In this way, we can pay more attention to pedes-
trian detection based on deep learning to solve occlusion
and scale variance and provide a relatively comprehensive
summary. In addition, this survey focuses only on pedestrian
detection from images.

This paper aims to review the progress of deep learning-
based methods for handling occlusion and scale-variation
problems in pedestrian detection over the past few years and
propose future research directions. The remainder of this
paper is organized as follows. Section II briefly introduces
the progress in pedestrian detection over the past two decades.
Section III and IV discuss methods for occlusion and scale-
variation problems. Section V introduces the popular datasets
and evaluation protocol for pedestrian detection. Section VI
mentions about the discussion, followed by the research
trends. Finally, Section VII provides a summary of the review.

Il. A BRIEF REVIEW TO PROGRESS

OF PEDESTRIAN DETECTION

Pedestrian detection is a fundamental research topic in com-
puter vision. It can be divided into two main categories:
hand-crafted features based and deep learning features based.
In recent years, a lot of works have been proposed to improve
pedestrian detection. The success relies heavily on large-scale
datasets, such as KITTI [34], CityPersons [23], Caltech [35],
and CrowdHuman [24]. The milestones of pedestrian detec-
tion in recent years are presented in Figure 5. The following
is a brief summary of the progress in pedestrian detection.

A. HAND-CRAFTED FEATURES BASED
Before the emergence of deep learning, traditional meth-
ods applied the sliding window to obtain patches of
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TABLE 1. Summary of related pedestrian detection surveys.

Title Year Publication Description
Monocular Pedestrian Detection: Survey and Overview of the current state of the art in person detection
. 2009 TPAMI . . .
Experiments [27] from both methodological and experimental perspectives.
. . . A survey about technology of pedestrian protection systems,
Survey Ot. Pedestr%an Detection for Advanced 2010 TPAMI the different methods are analyzed according to each
Driver Assistance Systems [28] .
processing stage.
Pedestrian Detection: An Evaluation of the . . . .
State of The Art [29] 2012 TPAMI A comprehensive evaluation of detectors in monocular images.
Ten Years of Pedestrian Detection, What Have 2014 ECCV A complete evaluation of trends in improving pedestrian detection.

We Learned [30]

Computer Vision and Deep Learning Techniques for
Pedestrian Detection and Tracking: A Survey [31]
Pedestrian detection in automotive safety:
Understanding state-of-the-art [32]

From Handcrafted to Deep Features for Pedestrian
Detection: A Survey [33]

2018  Neurocomputing
2019 IEEE Access

2021 TPAMI

A survey about pedestrian detection using Machine Learning and
Deep Learning.
A study of different techniques used in pedestrian detection in
automotive application
A review of pedestrian detection based on handcrafted features
and deep features.

different scales. Hand-crafted features such as HOG [13],
LBP [47], SIFT [48], and Haar [49] were extracted to train
classifiers such as SVM, AdaBoost, and random forest to
filter background.

In 2003, Viola and Jones applied their VJ detector [15] to
the task of pedestrian detection. In 2005, Dalal and Triggs
proposed Histogram of Oriented Gradients (HOG) [13] fea-
ture descriptor for representing pedestrians, which is also a
milestone of pedestrian detection. The HOG feature describes
the shape and appearance of pedestrians and is insensitive
to changes in light and spatial translation. However, HOG
features only focus on edge and shape information, making
it difficult to handle occlusion. Moreover, HOG feature is
sensitive to noise owing to the characteristics of the gradi-
ent. Although some works have changed SVM to Adaboost
to solve the problem of complex computation, the feature
extraction is still not improved. Therefore, Dollar et al. pro-
posed Integral Channel Features (ICF) [14], which combine
channels of LUV, gradient magnitude and gradient histogram.
These channels can be computed efficiently and capture dif-
ferent types of information from the input image. Compared
with HOG feature, ICF has faster detection speed and better
detection performance. Subsequently, it has been improved
in various aspects, including ACF [16] and LDCF [26].
In 2010, Felzenswalb et al. proposed a deformable part
model (DPM) [36] to address object deformation. Humans
are divided into different parts, and the features extracted
from different parts are fused to detect pedestrians. Owing
to the use of HOG features and independent modeling of
different pedestrian parts, DPM achieved good performance.
However, DPM also has obvious limitations, such as complex
feature computation, low computational efficiency, and poor
performance for pedestrians with different poses.

Although the combination of hand-crafted features and
classifiers was effective for some simple cases, these
hand-crafted features presented limited performance. First,
the detection performance for pedestrians with different
appearances and poses remains poor. Second, feature extrac-
tion is inefficient, and the extracted features are too simple

19940

and not compact enough. Finally, low computational effi-
ciency cannot meet the real-time requirements.

B. DEEP FEATURES BASED

The detection pipelines of hand-crafted features dominated
computer vision until Deep Convolution Neural Network
(DCNN) achieved record-breaking results in 2012. Influ-
enced by the success of the DCNN, object detection develops
rapidly. The models designed for generic object detection
are applied to pedestrian detection after appropriate changes.
These methods can be divided into two categories: two-stage
methods and single-stage methods. In two-stage frameworks
(i.e., RCNN [50], SPPNet [51], Fast RCNN [52], Faster
RCNN [37]), the input image is first processed to gener-
ate region proposals by sliding window, or selective search.
Subsequently, the convolutional features of these regions are
extracted by CNNs, and classifiers are utilized to determine
the classes of these proposals. For pedestrian detection, many
methods are variations of Faster R-CNN [37], as shown in
Figure 6. It generates proposals by region proposal network
(RPN), and then Fast RCNN [52] leverages feature maps and
proposals to detect objects. In RPN+BF [53], researchers
find that the classifier in the second stage degrades the results
because of insufficient resolution. They replace the classifier
with boosted forests and achieve better performance. Adapted
FRCNN [23] proposes key adaptations including finer feature
stride and ignore region handling to enable FRCNN to obtain
state-of-the-art results. MS-CNN [18] extends Faster R-CNN
with a multi-scale network to deal with scale variance. Two-
stage frameworks have achieved significant breakthroughs in
detection performance. Nevertheless, two-stage frameworks
are computationally expensive, and their detection speed is
relatively slow.

After compromising on speed and accuracy, single-stage
frameworks are proposed. They speed up detection by
removing the region proposal generation stage. For single-
stage framework, they directly predict class probabilities
and bounding box offsets from full images simultaneously.
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FIGURE 5. Some representative works of pedestrian detection including detection frameworks [13], [15], [17], [20], [21], [35]-[43] and

datasets [13], [23], [24], [34], [35], [44]-[46].
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FIGURE 6. Structure of Faster R-CNN [37]. In the first stage, it generates
proposals by region proposal network (RPN), and then Fast RCNN [52]
leverages feature maps and proposals to detect objects.

The representative works of single-stage frameworks include
YOLO series [54], [55]. To improve the accuracy of
single-stage pedestrian detection, ALFNet [56] proposes an
asymptotic localization fitting module to refine the default
anchor boxes of SSD [57] step by step into final detection
results.

Over the past two decades, pedestrian detection has
evolved from hand-crafted features to deep learning features
and the latter can be divided into two-stage and single-
stage methods. In general, single-stage methods exhibit fast
performance; however, two-stage methods can more easily
achieve a more robust performance. However, with the pro-
posal of some large datasets, such as CityPersons [23], and
CrowdHuman [24], researchers have found that occlusion
and scale variance limit pedestrian detection performance.
Therefore, occlusion handling and multi-scale detection have
become popular topics in pedestrian detection.

IIl. OCCLUSION HANDLING FOR PEDESTRIAN DETECTION
Occlusion can usually be categorized into inter-class and
intra-class occlusions as one of the main factors affecting
the detection performance. Inter-class occlusion occurs when
pedestrians are occluded by other objects (i.e., trees, cars,
and traffic signs). Intra-class occlusion generally occurs in
crowded scenes and seriously affects performance for the
following reasons. First, highly overlapped instances have
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similar features, which is difficult for the detector to gen-
erate different predictions for each proposal. Second, some
predictions are likely to be incorrectly suppressed by NMS
because instances overlap heavily. Many novel works have
been proposed to solve occlusion. These methods are sum-
marized in Table 2.

A. PART-BASED METHODS

A common solution for alleviating the occlusion problem is
to focus on instance parts. Most methods handle occlusion by
exploiting visible parts as additional supervision to improve
detection performance. These methods adopt a strategy of
learning and integrating a set of part detectors or using more
distinctive body parts (e.g., the head or visible region) to learn
extra supervision, reweight feature maps, or guide the anchor
selection.

Before some large-scale datasets are proposed, most of
the methods still solve the inter-class occlusion problem.
Some works [17], [85] train ensemble models for different
occlusion patterns. In [17], Tian et al. propose DeepParts
which makes decisions based on an ensemble of exten-
sive part detectors. Nevertheless, the computational cost is
extremely high for real-time applications. To solve this prob-
lem, Zhou et al. [86] propose a joint learning part detector to
mine part associations and reduce calculation costs. In con-
trast to these methods, more recent works ( [39], [66], [68],
[87]) aim to use visible information as auxiliary supervision
to address occlusion. OR-CNN [39] proposes a part-aware
Rol pooling unit to integrate the prior structural information
of the human body with visibility prediction into the Fast
R-CNN module of the detector. Xie et al. [64] propose a
part spatial co-occurrence module that captures intra-part and
inter-part spatial co-occurrence of different body parts using
a graph convolutional network.

Several recent pedestrian detection methods utilize
visible-part proposals to boost the full-body detection per-
formance. PRNet [62] first performs visible-part estimation.
Subsequently, a statistical analysis of occlusion patterns
on two popular datasets is derived to bridge the gap
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TABLE 2. Summary of typical methods for Occlusion Handling. CA, CH, CP and IN represent Caltech, CrowdHuman, Citypersons and INRIA.

Methods Backbone Datasets Stage Anchor Publication
DeepParts [17] - - - - ICCV2015
OHNH [58] - CA/CP Single-stage Anchor-Based CVPR2018
OR-CNN [39] VGG16 CA/CP/ETH/IN Two-stage Anchor-Based ECCV2018
PCN [59] VGG16 CA/IN Two-stage Anchor-Based BMVC2018
g PDOE [19] VGGI16 CA/CP Two-stage Anchor-Based ECCV2018
8 DA R-CNN [60] ResNet-50 CH/COCOPersons Two-stage Anchor-Based arXiv2019
f JointDet [61] ResNet-50 CP/CH/CA Two-stage Anchor-Based AAAI2020
& PedHunter [25] ResNet-50 CA/CP/CH Two-stage Anchor-Based AAAI2020
PRNet [62] ResNet-50 CA/CP/ETH Single-stage Anchor-Based ECCV2020
FC-Net [63] ResNet-50 CA/CP Two-stage Anchor-Based 1TS2020
PSC [64] VGG16 CA/CP Two-stage Anchor-Based arXiv2020
V2F-Net [65] ResNet-50 CH/CP - Anchor-Based arXiv2021
FRCNN+ATT [66] VGG16 CA/CP/ETH Two-stage Anchor-Based CVPR2018
-q: GDFL [67] VGG16 CA/KITTV/IN Single-stage Anchor-Based ECCV2018
s SSA-CNN [6] VGGI16 CA/CP Two-stage Anchor-Based CVPR2019
g MGAN [68] VGG16 CA/CP Two-stage Anchor-Based ICCV2019
b= AGNN [69] VGG16 CA/CP Two-stage Anchor-Based PR2020
2 Beta RCNN [70] ResNet-50 CP/CH Two-stage Anchor-Based NIPS2020
= PS-RCNN [71] ResNet-50 CH/WP Two-stage Anchor-Based ICME2020
PED [72] - CP/CH Single-stage Anchor-Free arXiv2021
Reploss [21] ResNet-50 CP - - CVPR2018
OR-CNN [39] VGG16 CA/CP/ETH/IN Two-stage Anchor-Based ECCV2018
= W Adaptive NMS [41] VGG16 CP/CH - Anchor-Based CVPR2019
El g SG-Det [73] ResNet-50/ResNet-101 KITTI/CP Two-stage Anchor-Based arXiv2019
§ § PBM [74] Resnet-50/VGG16 CP/CH Two-stage Anchor-Based CVPR2020
.‘-5 2 NOH NMS [75] ResNet-50 CP/CH - Anchor-Based ACM MM2020
2 ‘é APD [76] ResNet-50/DLA34 CP/CH Single-stage Anchor-Free TMM 2020
= &~ MAPD [77] ResNet-50 CP/CH Single-stage Anchor-Free Neurocomputing
LLA [78] ResNet-50/ResNet-101 CP/CH - Based/Free arXiv2021
NMS-ped [79] Resnet-50 CA/CP - Anchor-Based arXiv2021
EMD-RCNN [80] ResNet-50 CP/CH/COCO - Anchor-Based CVPR2020
" TFAN [81] ResNet-101 CA/KAIST Single-stage Anchor-Based CVPR2020
E W3Net [40] ResNet-50 CA/CP Single-stage Anchor-Free CVPR2020
3 CaSe [82] ResNet-50 CP/CH Two-stage Anchor-Based ECCV2020
AEVB [83] ResNet-50 CP/CH - Based/Free CVPR2021
IterDet [84] ResNet-50 CH/WP - Anchor-Based arXiv2021

between the visible and full-body anchors. The new proposed
module refines the final full-body localization. Similarly,
V2F-Net [65] first detects the visible regions of all pedes-
trians and then estimates the full-body box from the visible
box. To improve the accuracy of full-body estimation from
visible region, the feature of detected visible region is utilized
to compute its response on each part to determine whether
it is visible in the given visible box. In contrast to using
visible proposals to guide the detection of full-body, some
other methods utilize different branches to generate proposals
separately. Bi-Box [19] proposes to perform the full-body
estimation and visible-part estimation simultaneously so that
the visible part estimation can be fused with the full-body
estimation to improve the detection performance. In [88], two
different branches generate visible-part proposals and full-
body proposals separately. The proposed mutual-supervised
feature modulation module calculates the similarity loss
between full-body boxes and visible-body boxes to learn
more robust feature representations of occluded pedestri-
ans. In [74], the pair RPN generates visible proposals and
full-body proposals simultaneously. The aggregate pair of
proposal features are utilized to predict pairs of BBoxes.
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In other novel methods, additional visibility classifiers are
used to incorporate the predicted confidence into the final
score. In [58], Noh et al. use the confidence of the visible
parts to correct the final detection confidence of a pedestrian
to address the low confidence of occluded pedestrian. Simi-
larly, PCN [59] also divides the pedestrian box into several
part grids and produces score maps, but it uses LSTM to
process different permutations of part scores as sequences.
Some methods utilize score-level fusion to further improve
the final score. Bi-box [19] and MSFMN [88] construct
visible-part and full-body branches and then fuse the scores
of two branches during inference.

As another intuitive clue in a crowd, the head generally
has less overlap. The head features are more stable and
robust than the human body, which can be used as aux-
iliary information to full body prediction to boost pedes-
trian detection performance. In DA R-CNN [60], double
anchor RPN generates proposals in pairs of heads and bodies
simultaneously. A proposal crossover strategy is utilized to
generate high-quality proposals for both parts. In addition,
features of heads and bodies are aggregated efficiently to
make the final prediction more reliable. In JointDet [61],
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RPN only generates head proposals, then they apply a sta-
tistical head-body ratio on these head proposals to obtain
full-body proposals. A relationship discriminating module is
designed to learn to discriminate the relationships between
the head-body pairs and recalls suppressed body detections
by head detections. In [89], Lin et al. propose PedJointNet,
which incorporates the prediction of head-shoulder region
and full-body region into a unified architecture. Different
from DA-RCNN and JointDet, proposals in PedJointNet are
produced independently in two branches. Then an adap-
tive weighted fusion layer is used to fuse the detection of
two branches adaptively. Different from the above methods,
Chi et al. [25] design a mask guidance module to enhance
the feature representation of the backbone by using head
information. In HBAN [90], Lu et al. propose an extra branch
to conduct semantic head detection parallel with traditional
body detection to improve the performance and robustness to
occlusion.

B. ATTENTION-BASED METHODS

Attention mechanism is originally used in machine transla-
tion and has become an important concept in neural networks.
It has been widely used in natural language processing and
computer vision. In a crowd, the full-body detector would
be deceived by the blurred features of occluded pedestrians.
Therefore, attention mechanisms are employed to enable the
detectors to focus on the features of the visible parts. Some
methods use attention mechanisms to enhance the features of
pedestrians and suppress background, while others leverage
semantic segmentation features with convolutional feature
maps to boost pedestrian detection accuracy.

Zhang et al. [66] find that many channel features are local-
izable and often correspond to different body parts. Hence,
they propose a channel-wise attention mechanism that can
focus more on visible parts to handle occlusion. They add
a separate part attention net on Faster R-CNN to generate a
channel-wise attention vector to reweight the channel features
to handle various occlusion patterns, as shown in Figure 7(a).
In [91], Guo et al. leverage a semantic segmentation map
from the depth images to guide the reweighting of the con-
volutional features extracted from RGB images, as shown in
Figure 7(b). In GDFL [67], Lin et al. leverage scale-aware
pedestrian attention masks and a zoom-in-zoom-out module
to improve the capability of the feature maps to detect small
and occluded pedestrians. In AGNN [69], Zou et al. propose
an attention-guided network that guides LSTM to focus on
the important feature sequences of pedestrians. Transformers
are introduced as a new attention-based building block for
machine translation. Carion et al. apply it to object detection
and propose the DETR [92] that views object detection as
a direct set prediction problem. It replaces hand-designed
components such as NMS and anchors using the transformer
architecture. However, DETR is unsuitable for pedestrian
detection in a crowd. In [72], they find that cross attention
is not suitable for crowd detection, so they propose a RF
(Rectified attention Field) module to rectify it. In addition,
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they also propose a new decoder for DETR, which signif-
icantly improves DETR for pedestrian detection. In [70],
Xu et al. adopt an attention mechanism with 2D beta distri-
bution to highlight the features of visible parts and suppress
other noise simultaneously, which could induce the network
to pay more attention to the discriminative features and
achieve better localization accuracy and higher confidence.

Some methods use attention mechanism to enhance pedes-
trian features of pedestrians and suppress background.
In MGAN [68], Pang ef al. introduce a novel mask-guided
attention network, that emphasizes visible pedestrian regions
while suppressing the occluded parts by modulating extracted
features. Similarly, Zhang et al. [63] propose a self-activation
module that can reinforce the features in the visible parts
while suppressing those in occluded regions. Ge et al. [71]
propose a PS-RCNN with two parallel RCNN modules. The
P-RCNN module is used for the first round of detecting
instances with non or slightly occluded instances. Then the
features of the heavily occluded pedestrians are highlighted
by suppressing the detected pedestrians with human-shaped
masks. Then the S-RCNN module is used to detect the rest
missed pedestrians. Finally, they ensemble the outputs from
these two RCNNS.

In addition, some works leverage semantic segmenta-
tion to boost pedestrian detection accuracy. Zhou et al. [6]
design a multi-task network to co-learn semantic segmen-
tation and pedestrian detection with weak box annotations.
The semantic segmentation feature map is connected to the
corresponding convolution feature map to provide more dis-
criminating features for pedestrian detection. Brazil et al. [5],
and Du et al. [93] leverage additional semantic segmentation
to supervise pedestrian detection. SDS RCNN [5] presents a
multi-task infusion framework for joint supervision on pedes-
trian detection and semantic segmentation while segmenta-
tion in [93] is an optional module to improve the performance.

C. LOSS-BASED AND POST-PROCESSING METHODS

Generally, object detectors employ non-maximum suppres-
sion (NMS) as a post-processing strategy. Several previous
works have investigated improving NMS for generic object
detection [94]-[96]. However, it is still very challenging
for crowded detection using these NMS. In generic object
detection, the traditional pipeline works well because the
instance rarely stands with highly overlapped cases. However,
an instance is often highly overlapped with multiple instances
in crowd scenes, which will be ambiguous for NMS. Usually,
it is difficult for the traditional pipeline to choose bounding
boxes in a crowd. As shown in Figure 8, it is challenging to
distinguish the bounding boxes generated by multiple pedes-
trians occluded together using a rigid threshold because a
lower threshold will increase the miss rate while a higher
threshold will keep more false positives. Improving NMS for
occluded pedestrian detection is an open problem, as most
existing pedestrian detectors still employ traditional post-
processing strategies. In [21], [39], the effect of the NMS
threshold for crowded detection is explored. To alleviate

19943



IEEE Access

F. Li et al.: Occlusion Handling and Multi-Scale Pedestrian Detection Based on Deep Learning: A Review

RPN
Proposals
Conv

Features

Feature Map ROI Pooling

Conv Layers
: /’
([ Classifier

Channel-wise
reweighted
conv features

Reweight

Attention Net

’
1
1
I- -
1
1
1
1

Feature

|
(a) FRCNN+ATT
Conv
Conv Layers Feature Map ROI Pooling  Features
Depth Guided ROI Filtering Net
- ) Classifier
]
5
| Rorfiter )
Reweighted
Depth Guided Feature Reweighting Net conv features
I i ) I
Pepth Mep Depth Binary Feature
Regions  Maps Weights
(b) FRCNN+FR+RW

FIGURE 7. The comparison of two attention-based methods.

In FRCNN+ATT [66], they propose a channel-wise attention mechanism.
In FRCNN+FR+RW [91], they utilize depth information to reweight the
convolutional features.

the influence of rigid threshold to detection, some advanced
NMS strategies ( [41], [74], [75], [97]) are proposed.

Soft NMS [95] tries to degrade the score of nearby highly
overlapped proposals instead of eliminating them, but just
like Greedy NMS, it still blindly penalizes the highly over-
lapped boxes. Some works apply additional information (i.e.,
density, diversity) beyond location and many object proposals
to NMS to solve rigid thresholds. Adaptive NMS [41] uses a
larger one of the predicted density around the instance and
the initial threshold as the dynamic suppression threshold to
refine the bounding boxes, which means the threshold rises
as instances occlude each other and decays when instances
appear separately. However, novel loss is still required to
achieve better performance. Although Adaptive NMS can
predict the density of proposals, it is not aware of the locations
and spread of the crowded regions, so in [75], Zhou et al.
propose NOH NMS to pinpoint the objects nearby each
proposal with a Gaussian distribution, which is aware of
the existence of other nearby objects to address the rigid
NMS threshold problem in pedestrian detection. In APD [76],
Zhang et al. propose an attribute-aware pedestrian detector
to explicitly model semantic attributes of the pedestrian in a
high-level feature detection manner. Meanwhile, they apply
an attribute map that includes density and diversity informa-
tion to NMS to reject the false-positive results adaptively.
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(c) NMS threshold = 0.5

(d) NMS threshold = 0.7

FIGURE 8. lllustration of results using greedy-NMS with different
thresholds. The bounding boxes in (b) are generated using Faster R-CNN.
The blue boxes show the false negative, while the red ones highlight false
positives. In a crowd, a lower NMS threshold may remove true positives
(c) while a higher NMS threshold may increase false positives (d).

In MAPD [77], Wang et al. improve the APD and propose
a novel multi-attribute NMS algorithm based on density and
id information, which can adaptively distinguish predicted
boxes of different pedestrians. In [74], Huang et al. propose
R?> NMS. They find that the IOU between the boxes of
full-body is large while the IOU between boxes of the visible
area is relatively small in occlusion. Therefore, the relatively
low IOU threshold can effectively remove the redundant
boxes and avoid many false positives based on the visible
area. Some essentially identical NMS algorithms are shown
in Figure 9, which shows the similarities and differences
between different NMS algorithms. Furthermore, other NMS
strategies have been proposed to adapt to their own methods
such as joint NMS [60], set NMS [80], Beta NMS [70],
SG NMS [73], pos NMS [98] and CAS NMS [82].
Additionally, some works propose novel loss to address
pedestrian detection in a crowd. OR-CNN [39] proposes
aggregation loss to enforce proposals to be close to the
corresponding objects and to minimize the internal region
distances of proposals associated with the same objects.
RepLoss [21] introduces a bounding box regression loss to
not only push each proposal to reach its designated target
but also to keep it away from other surrounding objects.
In [79], Luo et al. propose NMS-Loss, which pulls predic-
tions with the same objects close to each other and pushes
predictions with different objects away from each other so
that the false detections caused by NMS can be reflected in the
loss function. In [82], Xie et al. propose an approach by lever-
aging pedestrian count and proposal similarity information
within a two-stage pedestrian detection framework. More-
over, they introduce a count-weighted detection loss function
that assigns higher weights to the detection errors occurring
at highly overlapping pedestrians. LLA [78] proposes a loss
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FIGURE 9. Pseudo codes of Greedy NMS, Soft NMS [95], Adaptive NMS [41] and NOH NMS [75].

as a new label assignment strategy to boost the performance
in crowd scenarios.

D. OTHERS

In addition to aforementioned methods, some other novel
methods are also effective to address occlusion. In Iter-
Det [84], Danila et al. propose an iterative detection scheme.
In each iteration, a new subset of objects is detected, and
all boxes detected in previous iterations are considered in
the current iteration to ensure that the same objects will not
be detected repeatedly. W3Net [40] decouples the pedes-
trian detection task into where, what, and whether problem
directing against pedestrian localization, scale prediction, and
classification by generating a bird view map to address occlu-
sion. In severe occlusion, it is difficult for single image to
provide effective features. Therefore, local temporal context
is utilized to enhance the feature representations of heavily
occluded pedestrians in TFAN [81]. Chu et al. [80] utilize the
concept of multiple instance prediction and propose a method
which let each proposal predict an instance set. In [83],
Zhang et al. redefine single-stage pedestrian detection as a
variational inference problem and propose a auto-coding vari-
ational bayesian algorithm to optimize the problem. In [99],
Lu et al. propose a visible IoU which can select positive
samples correctly to improve the training results. Moreover,
a box sign predictor is designed at the final stage to improve
localization accuracy.

Summary Occlusion is a critical challenge in pedestrian
detection. The performance of the different methods for
occlusion handling on CityPersons [23], and Caltech [35] are
shown in Figure 10. It is clear that the detection performance
is still far from satisfactory when occlusion exists. There-
fore, solving the occlusion problem is critical for improv-
ing the overall pedestrian detection performance. Occlusion
can be categorized into inter-class occlusion and intra-class
occlusion. Inter-class occlusion occurs when pedestrians are
occluded by other obstacles such as trees, cars, and traffic
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signs. The background features confuse the model, leading
to a high missing rate. The most important information for
addressing the inter-class occlusion is the visible information.
Part-based methods utilize this information to learn extra
supervision, reweight feature maps, guide the anchor selec-
tion or generate part proposals to improve the quality of full-
body prediction. Other methods utilize attention mechanisms
to enhance the features of the visible parts while suppress-
ing the features of other obstacles or background. Intra-
class occlusion is also called crowd occlusion and occurs in
crowded scenes where pedestrians have large overlaps with
each other. Highly overlapped instances have very similar
features, which makes it difficult for detector to generate
different predictions. As a result, detectors may give a lot of
positives in overlapped areas. Therefore, some methods pro-
pose additional penalties to remove the redundant BBoxes.
On the other hand, the highly overlapped BBoxes may also be
suppressed by non-maximum suppression (NMS). To solve
this problem, some methods utilize head proposals or visible
proposals to recall suppressed body detections. Besides, vari-
ants of NMS are proposed to soften the sensitivity of NMS
threshold in a crowd, which is helpful for removing redun-
dant BBoxes or recalling suppressed detections. Although
many works have been proposed to solve occlusion, there is
still a huge gap between detectors and human. As shown in
Figure 10, the performance on the reasonable set is approach-
ing saturation, and the gap between different methods is
narrowing. However, the detection performance under heavy
occlusion is far behind expectations. In term of different
methods, part-based and loss-based methods are popular at
present. In general, part-based method is more effective than
other methods.

IV. MULTI-SCALE PEDESTRIAN DETECTION
Multi-scale object detection is one of the basic challenges

in computer vision. Objects have a large variance of scales,
which is critical for accurate detection owing to the difference
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FIGURE 10. MR of different methods for occlusion handling on CityPersons [23] and Caltech [35]. "*' in Caltech means the methods use new annotations
from [22], and in CityPersons means the images used in methods are 1.3« the original image size.

of features between small and large instances. The existing
methods are not friendly to small-scale pedestrian detection.
Firstly, large downsampled factors lead to the loss of informa-
tion of small objects. Secondly, large receptive field contains
many surrounding features, which may be blurred for detec-
tor. Lastly, most detection methods do not achieve the balance
between deep and shallow feature maps in terms of semantic
and localization information. Therefore, many methods have
been developed to solve these problems. Table 3 provides an
overview of some methods whose results are published on
the Caltech and CityPersons pedestrian detection benchmark
and Figure 11 shows the timeline of multi-scale detection
methods.
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A. LEVERAGE MULTI-SCALE FEATURE FUSION

In generic object detection, the main idea to address scale
variance is to use multi-scale feature map for detection. The
multi-scale image pyramid [108] is a common strategy to
improve the detection performance. It uses images of differ-
ent scales as input to extract multi-scale feature maps and
detect instances independently (Figure 12(a)). These methods
are effective but suffer from the problem of long infer-
ence time. With hand-crafted features replaced by deep fea-
tures, most methods extract high-level semantic features for
regression and classification [37], [51], [52] (Figure 12(b)).
However, detection based on single-scale feature maps is
not sufficiently robust to scale variance, which leads to
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TABLE 3. Some methods for multi-scale pedestrian detection. Note that the symbol *-" means the results are unavailable.

Citypersons

Caltech

Methods Backbone Stage Anchor Small  Middle Targe Near Middle Far Publication
SADR [100] VGG-16 Two-stage Anchor-based - - - - - - ACCV2016
MS-CNN [18] VGG-16 Two-stage Anchor-based - - - 2.6 49.13  97.23  ECCV2016
FRCNN-+seg [23] VGG-16 Two-stage Anchor-based 8 6.7 22.6 0 51.8 100 CVPR2017
SAF R-CNN [38] VGG-16 Two-stage Anchor-based - - - 0 51.83 100 TMM2017
FDNN+SS [93] VGG-16 Two-stage Anchor-based - - - 2.82 3315 7747 WACV2017
SAM-RCNN [101] VGG-16 Two-stage Anchor-based - - - - - - arXiv2018
TLL+MREF [102] ResNet-50 Single-stage Anchor-free - - - 0.67 25.55 67.69 ECCV2018
GDFL [67] VGG-16 Single-stage ~ Anchor-based - - - - 325 - ECCV2018
ADM [103] ResNet-50 Two-stage Anchor-based - - - 0.41 30.82 74.53 TIP2018
CSP [20] ResNet-50 Single-stage Anchor-free 16 3.7 6.5 - - - CVPR2019
MagnifierNet [104] ResNet-101 Two-stage Anchor-based 12.6 5.5 7.7 - - - ICPR2020
PRF-Ped [105] ResNet-50 Single-stage Anchor-free 12.9 3.9 5.8 - - - ICPR2020
DHRNet [106] DHRNet-W18 Two-stage Anchor-based  13.43 2.69 6.21 - - - ICPR2020
W3Net [40] ResNet-50 Single-stage Anchor-free - - - - - 51.05 CVPR2020
AP2M [107] ResNet-50 Single-stage Anchor-free 15.3 3.5 5.3 - - - AAAI2021
SADR SAFR-CNN SAM-RCNN ADM  CSP PRF-Ped DHRNet AP'M algorithm to design a new pyramidal representation, whereas
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FIGURE 11. Timeline of multi-scale pedestrian detection. The red font
represents anchor-free, the black font represents anchor-based, the red
arrow represents single-stage methods, and the blue arrow represents
two-stage methods.

insufficient and inaccurate information for detecting smaller
objects. To solve this problem, some methods e.g., SSD [57]
and MS-CNN [18], predict objects at multiple layers of the
feature hierarchy independently (Figure 12(c)). However, the
feature maps of different depths exhibit significant semantic
differences. The shallow feature map has a strong activation
effect on small-scale objects but lacks rich semantic infor-
mation. Deeper ones tend to encode large instances while
ignoring small instances and losing more accurate local-
ization information. Therefore, researchers have explored
various effective multi-scale feature representations. As the
representative model architectures to generate pyramidal fea-
ture representations, Feature pyramid network (FPN) [109]
(Figure 12(d)) proposes lateral connections and top-down
pathway to combine multi-scale features. This structure can
combine low-resolution feature maps with strong seman-
tic information and high-resolution feature maps with rich
spatial information under the premise of increasing less
computation. However, there is a long path from low-level
structure to topmost features, increasing difficulty to access
accurate localization information. To improve this problem,
PANet [110], which is originally used for segmentation, adds
an additional bottom-up path augmentation to shorten the
information path and further enhance the feature hierarchy
with accurate localization signals in low-level layers. Then,
YOLOv4 [111] and YOLOVS use this structure for detec-
tion (Figure 12(e)). More recently, some variations, such as
Bi-FPN [112] and NAS-FPN [113] also develop more novel
network structures. NAS-FPN uses neural architecture search
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role in generic object detection. Some works like [67],
[103], [105], [114], [115] borrow from these ideas and
propose some new fusion strategies to adapt to pedestrian
detection. Some typical frameworks are shown in Figure 13.
Zhang et al. [103] propose a method that uses an active detec-
tion model based on a set of initial bounding box propos-
als, executes sequences of coordinate transformation actions
across multi-layer features representations to deliver accu-
rate prediction of pedestrian locations. In GDFL [67], they
introduce a scale-aware pedestrian attention mask and a
zoom-in-zoom-out module to improve the capability of the
feature maps to identify small pedestrians. In [115], Xie et al.
propose a feature enrich unit which involves semantic seg-
mentation feature learning to enrich features to improve
detection. In SADR [100], Zhu et al. introduce the decon-
volutional layers to adaptively upsample the feature map
for small pedestrians. In addition, they fuse features from
multiple layers to provide both local characteristics and
global semantic information, which improves the detection
performance. Du et al. [93] propose F-DNN, which leverage
SSD to generate pedestrian candidates and fuse multiple
DNNSs in parallel to detect pedestrians by using a soft-reject
strategy. In PRF-Ped [105], Tan et al. present a bidirec-
tional feature enhancement module (BFEM), which enhances
the semantic information of low-level features and enriches
the localization information of high-level features. In [116],
Zhang et al. build a cross-scale feature aggregation module,
which merges a top-down path, lateral connections and a
bottom-up augmented path by addition to adaptively aggre-
gating multi-scale context information from convolutional
layers at adjacent scales to generate more discriminative
features. Subsequently, a newly proposed scale-aware hierar-
chical network uses feature maps of different scales to detect
pedestrians of different scales, respectively.
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FIGURE 12. (a) Building feature pyramid from image pyramid to detect objects of different scales. (b) Detecting on a single feature map. (c) Using
ConvNet to build pyramidal feature hierarchy. (d) Feature pyramid network(FPN). (e) FPN+PAN.

In general, multi-scale feature fusion considers both shal-
low localization information and deep semantic information,
which can effectively improve the performance of small-scale
pedestrian detection. However, existing multi-scale detection
methods also increase the computation cost, and compromise
the real-time performance.

B. ANCHOR-FREE METHODS

Anchors play an important role in object detection. Many
state-of-the-art object detection methods have been designed
based on the anchor mechanism, which is very unfriendly
to small object detection. The existing design of anchor
is difficult to balance the contradiction between recall and
computation cost of small objects. These methods also lead
to an extreme imbalance between positive samples of small
objects and large objects, which makes the model pay more
attention to the detection performance of large objects, while
ignoring the performance of small objects. In addition, the
use of anchor introduces extra hyperparameters, such as the
number of anchors, aspect ratio and size, which makes it
difficult to train the network. Anchor-based methods can
achieve satisfactory performance, but it also brings extra
computing overhead. In recent years, anchor-free mechanism
has become a research hotspot and has achieved good results
in small object detection.
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In [102], Song et al. propose a novel method integrated
with somatic topological line localization and temporal
feature aggregation for detecting multi-scale pedestrians.
In [20], Liu et al. propose CSP, which selects and fuses the
optimal combination of multi-scale feature maps from each
stage and simplify pedestrian detection to a straightforward
center and scale prediction task, which breaks the limita-
tion of anchor-based methods and eliminates the complex
post-processing of keypoint pairing based detectors. After
that, Wang further refines the CSP in [117]. CSP uses the
vanilla ResNet50 to extract multi-level feature maps and then
simply fuses them into a single one for predicting. Although
CSP achieves brilliant accuracy, it ignores the fact that the
difference of semantic information of feature map with dif-
ferent depth may harm the effect of feature fusion. Moti-
vated by these observations and analysis of feature fusion,
Cai et al. [118] propose PP-Net, an anchor-free method for
center-based pedestrian detection. They leverage a novel deep
guidance module to tackle the dilemma of information spar-
sity on the top-down pathway of standard FPN architecture
and fuse FPN structure and the output of DGM to solve
the problem of ignoring the semantic gap between feature
maps of different depths when directly fusing them in CSP.
In W3Net [40], Luo et al. model the dependency between
depth and scale to generate depth-guided scales to address
scale-variation problems.
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C. DATA AUGMENTATION

In recent years, deep learning methods, which rely heavily
on datasets, have become increasingly popular. Therefore,
the quality and quantity of data have a great impact on
detection performance. In some datasets, the distribution of
objects with different scales is not balanced, which may cause
inconsistent detection performance for objects with different
scales. Using data augmentation strategies can enrich the
diversity of datasets, so as to enhance the robustness and
generalization of the frameworks. In early studies, strate-
gies such as elastic distortions, random pruning, and trans-
lation have been widely used in object detection. In recent
years, some state-of-the-art methods use other data aug-
mentation strategies to improve detection performance, for
example, the standard horizontal image flipping used in
Fast R?7CNN [52] and CSP [20], the random adjustment
of exposure and saturation in the HSV color space used
in YOLO [54] and YOLOV2 [55]. In addition, more novel
data augmentation strategies (Mixup [119], Cutout [120],
CutMix [121], Mosaic [111]) are also widely used. In [122],
popular data augmentation methods are evaluated in terms of
model robustness, and then they propose a data augmentation
scheme that uses stylization but only patches of the original
image.

Data augmentation is a simple and effective method to
improve the performance of small object detection. It can
effectively improve the generalization ability of the network.
However, it also brings an increase in computation cost.
In addition, if the data augmentation causes a large differ-
ence in sample distribution, the model performance may be
damaged, which also brings challenges.

D. OTHERS

In addition to several categories summarized above, there
are many other novel methods in the field of multi-scale
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pedestrian detection. In recent years, with the increase of
computing power, more and more networks are using cas-
cading thinking to improve performance. In WIDER pedes-
trian challenge, many methods use Cascade RCNN [123] as
basic detection framework and add some powerful structures
to achieve better performance. Another idea is to leverage
parallel branches to detect pedestrians at different scales
separately. In [38], Li er al. propose SAF R-CNN which
incorporated a large-size sub-network and a small-size sub-
network into a unified architecture, final results are outputs of
the two weighted sub-networks with weights learned from the
scale-aware weighting layer. In [106], Ding et al. construct
multiple branches in DHRNet to generate scale-specific fea-
ture maps. Then, different branches are used to detect objects
of different scales.

Summary The limitations of small-scale pedestrian detec-
tion are obvious. Large-scale instances can provide rich infor-
mation, while small-scale instances are difficult to recognize.
The best solution for scale variance is to fuse multi-scale fea-
ture maps in network structure. Various effective multi-scale
feature representations are explored to handle scale-variation
problems. Besides, some other methods leverage different
data augmentation strategies to reduce the impact of unbal-
anced data distribution on detection performance, while
anchor-free methods remove the anchor design to reduce
the influence of anchors on small-scale pedestrian detection.
In addition, other tips can also be helpful, e.g., replacing Rol
Pooling with Rol Align, changing the design of anchors, and
multi-scale training. All these methods are effective and have
achieved good performance.

V. DATASETS AND PERFORMANCE EVALUATION

A. DATASETS

During the last decades, significant efforts have been
made to develop various methods for learning supervised
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pedestrian detectors. Therefore, their success depends sig-
nificantly on large-scale datasets. In contrast to the generic
object detection datasets, some datasets specially used for
pedestrian detection have been collected over the years, such
as MIT [124] INRIA [13], ETH [44], USC [125], [126],
TUD-Brussels [127], and Daimler [27]. In addition, some
datasets, such as KITTI [34], Caltech [35], CityPersons [23],
and ECP [45] are acquired by sensors mounted on actual vehi-
cles, so they are more suitable for solving autonomous driving
tasks. In recent years, more diverse datasets, e.g., Crowd-
Human [24], WidePedestrian and WiderPerson [46] are pro-
posed. These datasets are more diverse and more dense,
which can greatly help improve the robustness and generality
of the network. The attributes of these datasets are summa-
rized in Table 4, and the selected example images are shown
in Figure 14. Table 2 and Table 3 state that Caltech [35],
CityPersons [23], CrowdHuman [24], and KITTI [34] are
widely used for validation; therefore, a detailed introduction
is provided here.

Caltech [35] The Caltech Pedestrian Dataset consists of
approximately 10 hours video taken from a vehicle driv-
ing through regular traffic in an urban environment. About
250,000 frames (in 137 approximately minute-long seg-
ments) with a total of 350,000 bounding boxes and 2300
unique pedestrians are annotated. The annotation includes
temporal correspondence between bounding boxes and
detailed occlusion labels.

CityPersons [23] The CityPersons dataset is a subset of
Cityscapes which only consists of person annotations. There
are 2975 images for training, 500 and 1575 images for vali-
dation and testing. The density of pedestrians in the dataset is
very high, and the average number of pedestrians in an image
is 7. What’s more, scenarios of the datasets are rich, and it
contains multiple occlusion cases.

KITTI [34] The KITTI dataset is the popular dataset
for evaluating computer vision algorithms in autonomous
driving. The dataset is used to evaluate the performance of
computer vision technologies such as Stereo, Optical Flow,
Visual Odometry, 3D Object Detection, and 3D Tracking.
KITTT contains real image data from urban, rural and high-
way scenes, with up to 15 cars and 30 pedestrians per image,
with varying degrees of occlusion and truncation.

CrowdHuman [24] CrowdHuman is a benchmark dataset
to better evaluate detectors in crowd scenarios. The Crowd-
Human dataset is large, rich-annotated and contains high
diversity. There is a total of 470K human instances from
train and validation subsets and 23 persons per image,
with various kinds of occlusions in the dataset. Each
human instance is annotated with a head bounding-box,
human visible-region bounding-box and human full-body
bounding-box.

B. EVALUATION METHODS
There are two main criteria for evaluating the performance

of detection model: average precision (AP) and log miss
rate (MR).
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Average Precision AP is the most commonly used metric
in generic object detection and is typically evaluated in a
category-specific manner. Before explaining the calculation
of AP, we first explain how to choose true positives. A pre-
dicted detection is regarded as a True Positive (TP) If

(1) The predicted category equals the ground truth label;

(2) The IOU(Intersection Over Union) between the pre-
dicted BBox by and the ground truth by, as shown in (1)
is not smaller than a predefined threshold A.

area(bpre N bg;

10U (bpre, by ) = ) e))

area(bpr, U bg;

Otherwise, it is considered as a False Positive (FP). The
specific algorithm can be found in [11]. The confidence level
is usually compared with a threshold § to determine whether
the prediction is accepted.

The precision and recall curve is computed from output of
the network. AP is computed separately for each of the object
classes, based on the Precision and Recall curve. Recall is
defined as the proportion of all ground truths that are from the
true positives. Precision is the proportion of all predictions
that are from the true positives. Their calculations can be
shown in (2) and (3).

N
Recall = S L — 2)
(N1p + NFN)
N
Precision = L 3)
(N1p + Nrp)

For a given task and class, the results returned by a detector
are ranked by confidence in decreasing order. Each detection
is determined as TP or FP according to the algorithm in [12].
Based on the TP and FP detections, the precision P(8) and
recall R(8) can be computed as a function of the confidence
threshold 8. P-R curve can be obtained by varying the confi-
dence threshold, and then the Average Precision (AP) can be
found.

Log-average miss rate The log-average Miss Rate is a bit
similar to recall and refers to the objects that are not detected.
MR is defined as the ratio of the number of False Negatives
(NFn) to the number of ground truth (Ngr) in test set as
_ New

MR 4

Ngr
In addition, false positives per image (FPPI) can be cal-
culated by dividing False Positives (Nrp) by the number of
images (N) as

N,
FPPI = —£2 5)
N

Similar to the PR curve, miss rates against false positives
per image (FPPI) can be plotted in the log-space by varying
the detection confidence threshold. Finally, the log-average
miss rate (lower is better) is calculated by averaging miss
rates under 11 FPPI equally spaced in [1072 : 10°].
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TABLE 4. Summary of pedestrian datasets. ‘full’ means fully-body bounding-box, ‘visible’ means visible-body bounding-box, and ‘head’ means head

bounding-box.

Dataset Publish Total Pedestrians Annotations Description
Name Year Images Full Head Visible P
MIT [124] 2000 924 924 v An earlier published pedestrian dataset.
INRIA [13] 2005 2573 3542 v A widely used dataset for pedestrian detection.
ETH [44] 2007 1803 12K v A pair of images in busy shopping streets.
TUD-Brussels [127] 2009 508 1326 v Pedestrians in the inner city of Brussels.
Daimler [27] 2009 112K 11K v Including PNG image, disparity map and
ground truth shape,rig in an urban environment.
Caltech [35] 2009 250K 289K v v A widely used dataset which 1nclude§
larger amount data and complete annotations.
KITTI [34] 2012 15K 9K v A very popular dataset for computer vision tasks.
. A rich and diverse pedestrian detection dataset
CityPersons [23] 2017 K 32K v v on top of the Cityscapes dataset.
CrowdHuman [24] 2018 24K 470K v v v A large, rich-annotated and high-diversity dataset
ECP [45] 2019 47K 219K v Images in multiple European Cities
WiderPerson [46] 2019 13.5K 400K v A large and dlverse.datjdset for Qane pedestrian
detection in the wild.
WIDER Pedestrian 2019 97K 307K v Covering traffic and surveillance scenarios,

with a large number of occlusion instances.

C. COMPARISON

In this subsection, we compare and discuss the performance
of some methods mentioned in this article on three popular
datasets (Caltech [35], CityPersons [23], CrowdHuman [24]).

Table 5 presents a comparison of the results of several
methods in Caltech [35]. On R subset, the best perfor-
mances under original annotations and new annotations are
obtained by NMS-Ped [79] which proposes a NMS loss to
address the crowd occlusion, and PedHunter [25] which is
an anchor-based and two-stage method. In addition, some
methods (i.e., JointDet [61], AP?M [107], MSFMN [88]
and W3Net [40]) also achieve relatively low miss rate on R
subset. On the HO subset, the best performance is obtained
by W3Net [40] which leverages multi-modal information.
Moreover, it can be seen that the performance of methods
based on new annotations is better than that of methods based
on original annotations, which demonstrates that the quality
of the dataset has a significant influence on performance.

Table 6 compares some methods on CrowdHuman bench-
mark [24]. Since each image in the dataset contains dense
pedestrians, the MR of all methods is higher than that on
Caltech [35], and CityPersons [23]. The MR of most meth-
ods ranges between 40% and 50%. The best performance
is obtained by MAPD [77] (12%™24% improvement than
other methods) which adapts a better positive settings strat-
egy to mitigate class imbalance problems and proposes a
novel piecewise NMS algorithm to reduce false positive.
MAPD [77] is an improvement of APD [76]. Similarly,
APD [76] also obtains better performance compared with
other methods, which proves that the anchor-free method can
be effective in crowd detection.

Table 7 shows the results of several advanced methods in
CityPersons validation dataset. We separate these methods
according to the different image sizes used. It is similar
to the other two datasets that APD [76], MAPD [77], and
W3Net [40] achieve almost the best performance. Apart from
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these methods, part-based methods e.g., MSFMN [88] and
attention-based methods e.g., MGAN [68], CaSe [82] also
achieve satisfactory performance in HO subset.

Table 8 shows the performance and runtime comparisons
on Caltech and CityPersons. Although nearly all works aim
to develop a fast and accurate pedestrian detector, they end
up compromising on speed and accuracy. Many of them
add some modules to the baseline to improve accuracy, but
they also increase inference time. Among reported methods,
GDFL [67] significantly outperforms the others in terms of
both speed and accuracy, while other methods e.g., [62],
[63], [76] achieve a favorable trade-off between speed and
accuracy.

V1. DISCUSSION AND RESEARCH TRENDS

Pedestrian detection is a challenging problem in computer
vision and has received considerable attention. After deep
learning achieved great success in generic object detection,
pedestrian detection based on deep learning also made great
progress. Despite the excellent detection performance, recent
results on popular benchmarks show that there is still much
room for improvement in occlusion handling and multi-scale
detection. In this section, we discuss some open issues and
future research trends according to the existing limitations.

A. DISCUSSION

With many dozens of methods discussed throughout this
paper, we would now like to make a brief discussion to open
issues that have emerged in pedestrian detection focusing on
scale variance and occlusion based on deep learning.

1) SINGLE-STAGE VS. TWO-STAGE

Pedestrian detection based on deep learning can be divided
into two categories: two-stage and single-stage. As shown
in Table 2 and Table 3, most existing methods employ a
two-stage strategy as their model architectures, especially
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FIGURE 14. Some example images from CrowdHuman [24], WiderPerson [46], Caltech [35] and KITTI [34].

for occlusion handling, because they are better able to add
different modules to meet different challenges. Although
the best performance in some benchmarks is achieved by
two-stage methods like JointDet [61] and PedHunter [25],
these methods have higher computational cost, and the detec-
tion speed is relatively lower. Therefore, single-stage methods
are becoming more and more popular owing to their faster
detection speed. In early works, the detection performance for
small-scale objects of single-stage methods like YOLO and
SSD is relatively poor. Some recent methods like W3Net [40]
and AP?M [107] have been modified to improve multi-scale
detections. Therefore, more attempts should be made to inte-
grate the advantages of single-stage and two-stage methods
to build faster and more accurate detectors.

2) ANCHOR-BASED VS. ANCHOR-FREE

Anchor-based methods achieve state-of-the-art performance
in generic object detection and are also very popular in pedes-
trian detection, as shown in Table 2 and Table 3. However,
it remains challenging to accurately distinguish pedestrians
in a crowd for anchor-based methods because of highly over-
lapped instances. Generally, there are more hyperparameters,
which makes the network difficult to train. Some researchers
have attempted to explore anchor-free methods. They aban-
don the troublesome anchor setting and use CNN to directly
predict the scale and location. Some methods [20], [40]
demonstrate the effectiveness of anchor-free methods. How-
ever, their performance is still worse than that of anchor-based
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methods in general. Therefore, effective anchor design or
complete removal of anchor needs to be further explored
to obtain better performance than the original anchor-based
methods.

3) DETECTION ACCURACY AND DETECTION SPEED

In pedestrian detection, accuracy and speed are usually
mutually compromised. In real-world applications, a balance
between detection accuracy and speed is desirable. However,
most of these methods have higher detection accuracy while
the detection speed is lower. Therefore, it is very important to
design a detector that can meet the requirements of accuracy
and detection speed.

4) GENERALIZATION

Although current methods achieve high performance, they
are almost always trained and tested on a single dataset.
In [43], Hasan ef al. find that most existing state-of-the-art
pedestrian detectors though perform quite well when trained
and tested on the same dataset, and generalize poorly in
cross dataset evaluation. Consequently, their performance
on different datasets is often inconsistent. For example, the
detector trained on the Caltech has a good performance, but
its performance on KITTI may be poor. The reason why such
a problem occurs may be that the diversity of existing datasets
is not enough. In addition, the detector obtained by training
with a single dataset is more dependent on the dataset and its
designs (e.g., anchor settings). Therefore, the generalization
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TABLE 5. Miss rates (MR) of selected methods on the Caltech pedestrian

dataset. The results of top parts are based on the original annotations

from Caltech dataset [35], and the results bottom part are based on new

annotations from [22].

Methods Backbone R HO Publications
DeepParts [17] - 11.9 60.4 ICCV2015
MS-CNN [18] VGG-16 10.0 60.0 ECCV2016
PCN [59] VGG-16 9.4 55.8 BMVC2017
SDS-RCNN [5] VGG-16 74 58.6 ICCV2017
SAF R-CNN [38] VGG-16 9.7 64.4 TMM2017
FRCNN+ATT [66] VGG-16 10.3 452 CVPR2018
PDOE+RPN [19] VGG-16 7.6 44.4 ECCV2018
GDFL [67] VGG-16 7.9 43.2 ECCV2018
FDNN [93] VGG-16 8.7 55.1 ECCV2018
TLL+TFA [102] ResNet-50 7.4 28.7 ECCV2018
ADM [103] ResNet-50 8.6 304 TIP2018
UDN+ [85] VGG-16 11.5 70.3 PAMI2018
AR-Ped [128] VGG-16 6.5 48.8 CVPR2019
FRCNN+A+DT [87] VGG-16 8.0 379 ICCV2019
MGAN [68] VGG-16 6.8 38.2 ICCV2019
W3Net [40] ResNet-50 6.4 28.3 CVPR2020
TFAN [81] ResNet-101 6.7 30.9 CVPR2020
MSFMN [88] VGG-16 6.5 38.0 ICPR2020
PSC-Net [64] VGG-16 6.4 34.8 SCIS2021
NMS-Ped [79] ResNet-50 59 - ICML2021
MS-CNN [18] VGG-16 8.1 - ECCV2016
PCN [59] VGG-16 8.5 - BMVC2017
SAF R-CNN [38] VGG-16 7.5 - TMM2017
SDS-RCNN [5] VGG-16 6.4 - ICCV2017
HyperLearner [129] VGG-16 5.5 - CVPR2017
Adapted FRCNN [23] VGG-16 5.8 - CVPR2017
FRCNN+ATT [66] VGG-16 8.1 - CVPR2018
RepLoss [21] ResNet-50 4.0 - CVPR2018
FDNN+SS [93] VGG-16 6.7 - ECCV2018
GDFL [67] VGG-16 6.3 - ECCV2018
ALFNet [56] MobileNet 4.5 - ECCV2018
OR-CNN [39] VGG-16 4.1 - ECCV2018
SAM-RCNN [101] VGG-16 4.9 - arXiv2018
CSP [20] ResNet-50 4.5 - CVPR2019
JointDet [61] ResNet-50 3.0 - AAAI2020
PedHunter [25] ResNet-50 2.3 - AAAI2020
W3Net [40] ResNet-50 38 - CVPR2020
FC-Net [63] ResNet-50 4.4 - 1TS2020
PRF-Ped [105] ResNet-50 4.2 - ICPR2020
MSFMN [88] VGG-16 2.8 - ICPR2020
AP2M [107] ResNet-50 33 - AAAI2021

TABLE 6. Evaluation of full-body detection on CrowdHuman benchmark.

TABLE 7. Miss Rates (MR) comparison of several advanced methods in
CityPersons validation dataset.

Method Input Scale R HO Publication
Adapted FR-CNN [23] x1 154 55 CVPR2017
HPCNN [98] x1 12.5 - BMVC2018
RepLoss [21] x1 132 569 CVPR2018
FRCNN+ATT [66] x1 16.0 56.7 CVPR2018
TLL+MRF [102] x1 144 52 ECCV2018
OR-CNN [39] x1 128 557 ECCV2018
ALFNet [56] x1 120 519 ECCV2018
Adaptive-NMS [41] x1 11.9 552 CVPR2019
CSP [20] x1 11.0 493 CVPR2019
MGAN [68] x1 1.5 517 ICCV2019
R2NMS [74] x1 1.1 533 CVPR2020
W3Net [40] x1 93 187  CVPR2020
PRNet [62] x1 10.8 533 ECCV2020
CaSe [82] x1 10.5 405 ECCV2020
FC-Net [63] x1 135 443 ITS2020
PRF-Ped [105] x1 9.7 473 ICPR2020
MagnifierNet [104] x1 10.8 422 ICPR2020
BETA-RCNN [70] x1 10.6  47.1 NIPS2020
APD [76] x1 8.8  46.6 TMM2020
MAPD [77] x1 8.5 447 Nerocomputing
AP2M [107] x1 10.4  48.6 AAAI2021
NMS-Ped [79] x1 10.1 - ICMR2021
Adapted FR-CNN [23] x1.3 12.8 - CVPR2017
RepLoss [21] x1.3 116 553 CVPR2018
OR-CNN [39] x1.3 11.0 513 ECCV2018
PDOE+RPN [19] x1.3 112 442 ECCV2018
Adaptive-NMS [41] x1.3 10.8 542 CVPR2019
FRCNN+A+DT [87] x1.3 11.1 443 ICCV2019
MGAN [68] x1.3 10.5 394 ICCV2019
JointDet [61] x1.3 10.2 - AAAI2020
PedHunter [25] x1.3 83 435 AAAI2020
NOH-NMS [75] x1.3 108 53  ACM MM2020
EMD-RCNN [80] x1.3 10.7 - CVPR2020
CaSe [82] x1.3 9.1 436 ECCV2020
FC-Net [63] x1.3 11.6 4238 ITS2020
MSFMN [88] x1.3 10.1  38.5 ICPR2020
0.5Stage [130] x1.3 8.1 - WACV2020

TABLE 8. Comparison with the state-of-the-art methods on the
Caltech (upper) and CityPersons (lower) heavy occlusion subset in terms
of speed and miss rate. Results are obtained from original paper.

Methods Backbone MR AP Recall Publication
Shao et al. [24] ResNet-50 504 85 90.2 arXiv2018
RepLoss [21] VGG-16 457 856 884 CVPR2018
DA-RCNN [60] ResNet-50 51.8 - - arXiv2019
Adaptive NMS [41]  VGG-16 49.7 847 913 CVPR2019
MGAN [68] VGG-16 493 - - ICCV2019
JointDet [61] ResNet-50 46.5 - - AAAI2020
PedHunter [25] ResNet-50 39.5 - - AAAI2020
NOH-NMS [75] ResNet-50 439 89 929 ACM MM2020
PBM(R2NMS) [74] ResNet-50 434 89.3 933 CVPR2020
EMD-RCNN [80] ResNet-50 414 90.7 83.7 CVPR2020
CaSe [82] VGG-16 479 - - ECCV2020
PS-RCNN [71] ResNet-50 - 879 95.1 ICME2020
Feature-NMS [97] - 754 68.7 - ICPR2020
Beta R-CNN [70] ResNet-50 40.3 88.2 - NIPS2020
APD [76] ResNet-50 35.8 - - TMM2020
MAPD [77] ResNet-50 27.8 - - Nerocomputing
TterDet [84] ResNet-50 49.4 88.1 95.8 arXiv2020
PED [72] - 456 89.5 94 arXiv2021
LLA [78] ResNet-50 47.9 88 94 arXiv2021
V2F-Net [65] ResNet-50 42.3 91 84.2 arXiv2021

Methods Miss Rate (%)  Inference Time (s) GPU
FDNN+SS [93] 53.7 2.48 Titan X
DeepParts [17] 60.4 1.0 -
JL-Tops [86] 49.2 0.6 K5200
SA-FastRCNN [38] 64.3 0.59 Titan X
RPN+BF [53] 74.4 0.50 K40
FDNN [93] 55.1 0.3 Titan X
SDS RCNN [5] 58.6 0.26 Titan X
SSA-CNN [6] - 0.11 1080Ti
MS-CNN [18] 60.0 0.08 Titan X
GDFL [67] 43.2 0.05 1080Ti
ALF [56] - 0.05 1080Ti
HBAN [90] 48.1 0.73 Titan X
CSP [20] 49.3 0.33 1080Ti
CaSe [82] 50.3 0.33 Titan X
FC-Net [63] 41.1 0.29 V100
ALF [56] 51.9 0.27 1080Ti
PRNet [62] 42.0 0.22 1080Ti
APD [76] 49.8 0.12 1080Ti

ability in different scenarios is very important owing to their

applications in the real world.
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5) HIGH-QUALITY DATASETS
Most current state-of-the-art methods usefully supervised
models learned from labeled data with object bounding
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boxes, making the performance heavily dependent on the
datasets. Hence, the diversity of datasets is important.
We should know that data annotation by human is very dif-
ficult, so efficient data annotation will make a great contri-
bution to pedestrian detection or generic object detection.
In the past, we have been using datasets to evaluate our
proposed algorithm. It is worth studying whether we can use
a network to assist data annotation. In addition, as mentioned
in [22], the quality of data also has a significant impact on
the performance of the detector. The training data are usually
manually annotated to ensure the quality of the datasets, but
this is not completely accurate. Therefore, the detector should
have higher robustness for such wrong data.

B. RESEARCH TRENDS

It can be seen from the results on the popular benchmark that
state-of-the-art methods in this article have achieved good
performance. The performance is basically saturated in R
subset, but there is still a large gap under heavy occlusion.
Based on these open challenges, we propose some works to
close the gap with humans in the future.

1) WEAKLY SUPERVISED OR UNSUPERVISED

PEDESTRIAN DETECTION

As discussed above, most current methods are fully
supervised methods. More attention should be paid to
weakly supervised or unsupervised methods to eliminate the
problems associated with inefficient data annotation. Further-
more, it is valuable to study the performance of detectors on
partially annotated data.

2) PEDESTRIAN DETECTION IN DIFFERENT MODALITIES
Most detectors are based on 2D images. Other modalities
(such as depth [91], video [81], and point clouds) will be help-
ful for pedestrian detection. This conclusion is also proved
in W3Net [40], which achieves the best performance under
heavy occlusion. In addition, it is also worth exploring how
to combine the information of different modalities to obtain
better performance.

3) CROSS-DATASET EVALUATION

Existing state-of-the-art pedestrian detectors perform quite
well when trained and tested on the same dataset, gener-
alize poorly in cross-dataset evaluation. However, differ-
ent datasets have different scenarios, which may negatively
impact the model trained on the single dataset. Therefore,
more emphasis should be put on cross-dataset evaluation
to achieve better generalization performance in real-world
applications.

4) GENERIC PEDESTRIAN DETECTION

Most of the current works focus on addressing occlusion
or scale-variation problems separately, but these challenges
exist simultaneously in the real world. Therefore, methods
should be able to address multiple challenges simultaneously.
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VIi. CONCLUSION

In recent years, tremendous progress has been made towards
more accurate pedestrian detection. In this study, we attempt
to comprehensively understand the methods for occlusion
handling and multi-scale pedestrian detection. Therefore,
many dozens of methods are discussed in this paper and
we would now like to focus on the key factors which have
emerged in pedestrian detection.

Occlusion Handling Occlusion is a critical challenge for
pedestrian detection at present. As the intuitive clues of
occlusion handling, visible and head information are widely
used in many methods. Part-based methods make use of
this information to learn extra supervision, reweight feature
maps, guide the anchor selection or generate part proposals to
improve the quality of full-body prediction. Attention-based
methods leverage attention mechanisms to focus on visible
information and suppress the occluded parts or background.
In addition to using the visible part to make the feature
more robust to occlusion, some methods make the proposal
more discriminant to occlusion from the perspective of loss.
Besides, variants of NMS have been proposed to soften the
sensitivity of the NMS threshold in crowded scenarios.

Multi-scale Pedestrian Detection Multi-scale pedestrian
detection is still a very challenging problem because real-time
applications usually contain pedestrians of various scales.
The effective solution for multi-scale pedestrian detection is
to fuse multi-scale feature maps to get more information. The
key idea behind these methods is that shallow feature maps
contain accurate localization information, whereas deeper
ones tend to encode rich semantic information. Nevertheless,
some other methods leverage different data augmentation
strategies to reduce the impact of unbalanced data distribu-
tion, while anchor-free methods remove the anchor design to
reduce the influence of anchors on small-scale pedestrians.

Most works are working on developing a robust and real-
time solution. However, the detection performance as well as
the computational cost of available solutions is far behind
expectations. Different methods are categorized to under-
stand current research trends and to guide the design of new
frameworks in this study. In addition, the results for differ-
ent benchmarks also show the effectiveness of the different
methods. Therefore, we hope our survey can be helpful for
developing novel methods for pedestrian detection in the
future.
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