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Abstract

In this report we examine the dual space of `∞. If p ∈ [1,∞) and q ∈ [1,∞] satisfy 1
p + 1

q = 1, then one can

identify the spaces `q and (`p)′ in a natural way via an isometric isomorphism. This identification does not

extend to the case p =∞ and q = 1. We prove that the obvious candidate for an isometric isomorphism from

`1 into (`∞)′ fails to be surjective, and moreover, that an isometric isomorphism (even a homeomorphism)

between these spaces does not exist at all.

We introduce a space that we can identify with (`∞)′ via an isometric isomorphism. This is the space

of bounded finitely additive measures on N, denoted by ba(N,P(N)). Having found this characterization of

(`∞)′, we examine what kinds of finitely additive measures on N exist. These include σ-additive measures

that are induced by `1, diffuse measures, shift-invariant and more general invariant measures, measures that

extend the asymptotic density, 0, 1-valued measures and stretchable, thinnable and elastic measures. Elastic

measures can be considered the nicest measures on N, from an intuitive point of view.

We also describe the functionals that correspond to particular types of measures and vice versa. Moreover,

we prove that the collection of ultrafilters on N can be identified with the collection of 0, 1-valued measures

on N, which, in turn, can be identified with the collection of multiplicative functionals on `∞.
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Preface

The final part of my bachelor Applied Mathematics at the TU Delft was writing a thesis about some

mathematical topic. For me it was not a difficult decision to choose a topic in analysis: all three years of the

bachelor I enjoyed the analysis courses most. Especially the course Real Analysis was one that I enjoyed a

lot. Already in the first semester of the third year I told my supervisor K.P. Hart about my interests and I

asked him if he knew a topic in analysis suitable for a bachelor project. He came up with this topic and it

sounded very interesting to me, so we agreed to do this project. This was probably the best topic I could

have chosen; I found it so interesting that writing this thesis almost did not even feel like an obligation.

This report is partially based on a paper written by Eric Karel van Douwen (1946-1987). Eric was a

Dutch mathematician specializing in general topology. He was a very influential figure in topology, known

by all topologists around the world. He obtained his master’s degree in mathematics at the TU Delft in 1972

and his PhD in mathematics at the Vrije Universiteit in Amsterdam in 1975. Unfortunately he died of a

heart attack in 1987. In his short academic career, he published over 70 research papers.

The amazing coincidence is that my dad and Eric were housemates in the time they both studied in Delft.

When I told my dad that I was doing a course in topology, he remembered that one of his housemates had

obtained a PhD in topology, but he did not know that Eric had become such an influential mathematician.

Even if I had not known of Eric before starting this project, I would probably have ended up using his paper,

as it is such an important paper in the subject of this thesis.

I would like to thank my supervisor K.P. Hart, whose advice and feedback have been invaluable over

the course of this project. I would also like to thank Joost de Groot for being part of my thesis committee.

Finally, I would like to thank my family, my friends and my cat for the support they gave me during the

writing of this thesis.
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Introduction

For p ∈ [1,∞) and q ∈ [1,∞] satisfying 1
p + 1

q = 1, one can identify the spaces `q and (`p)′ in the following

way. An element a ∈ `q induces a bounded linear functional fa ∈ (`p)′, where fa : `p → R is given by

fa(x) =

∞∑
n=1

anxn. (1)

Then the map a → fa is an isometric isomorphism from `q onto (`p)′. This is explained in more detail

in section 2.1. This identification does not extend to the case p = ∞ and q = 1: the map a → fa from

`1 into (`∞)′, with fa ∈ (`∞)′ defined in the obvious way (as in (1)), is a linear isometric embedding, but fails

to be surjective. This is explained in section 2.2. The question that arises then is whether `1 and (`∞)′ can

be identified in a different way. To answer this question, we show in section 2.3 that the spaces `1 and (`∞)′

are not even homeomorphic.

In chapter 3 we introduce a space that we can identify with (`∞)′. This is the space of bounded finitely

additive measures on N, written ba(N,P(N)). Finitely additive measures are similar to measures, but instead

of countable additivity we only require finite additivity.1 This is explained in section 3.1. A functional

ϕ ∈ (`∞)′ induces a finitely additive measure µϕ on N by setting µϕ(E) = ϕ(1E). Then the map ϕ→ µϕ is

an isometric isomorphism from (`∞)′ onto ba(N,P(N)). This is explained in section 3.2.

In chapter 4 we examine what kinds of finitely additive measures2 on N exist.

• In section 4.1 we describe the measures that are induced by `1, where `1 is viewed as a (proper) subset

of (`∞)′. Such measures are characterized by their values on singletons µ({n}). We prove that the

positive measures that arise from `1 form precisely the collection of σ-additive measures on N.

• In section 4.2 we prove the existence of shift-invariant measures on N. These are measures that satisfy

µ(E) = µ(E+1) for all E ⊆ N, where E+1 = {n+1 : n ∈ E}. We also describe how such measures are

related to functionals in (`∞)′. We show that some of these measures correspond to so-called Banach

limits, which are functionals in (`∞)′ with particularly nice properties.

• In section 4.3 we construct measures that are invariant under a given function. That is, if f : N → N
is any function, then one can construct a measure µ on N satisfying µ(f−1[E]) = µ(E) for all E ⊆ N.

• In section 4.4 we prove the existence of measures that extend the asymptotic density. The asymptotic

density of a subset A ⊆ N is an intuitive way to measure how ‘large’ this set. Not all sets admit such a

density. A measure µ is said to extend density if µ(A) is equal to the density of A whenever the latter

exists. Hence measures that extend density have intuitively desirable properties.

• In section 4.5 we introduce ultrafilters and show how an ultrafilter on N induces in a natural way a

measure on N that assumes only the values 0 and 1. We prove that some of these 0, 1-valued measures

were already given by `1, but not all. We introduce the notion of an ultrafilter limit and show that

ultrafilter limits are so-called multiplicative functionals. We show that the collection of ultrafilters

on N can be identified with the collection of 0, 1-valued measures on N, and the latter can in turn be

identified with the collection of multiplicative functionals.

• In section 4.6 we prove the existence of so-called stretchable, thinnable and elastic measures. These are

some of the nicest measures that one can think of, with intuitively desirable properties. Such measures

extend density and moreover respect several forms of scaling in a desirable way.

• In section 4.7 we prove the existence of unbounded finitely additive measures on N.

As a final note, let us mention that although this thesis describes a rather large collection of measures on N,

there is much more that can be said about these measures. The interested reader is referred to [5].

1We also allow finitely additive measures to assume negative values.
2In the description below, the term ‘measure’ means a finitely additive measure. A measure in the sense of countable

additivity is called a σ-additive measure here.
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1 Preliminaries

In this chapter we introduce some concepts from functional analysis that are needed in this report. Theorems

are stated without proof; these proofs can be found in appendix A. The material presented here is based

on [7].

Vector spaces are the central object of study in functional analysis. Often a vector space is endowed with

some additional structure, such as a norm. For a linear transformation between two normed vector spaces

we have the following characterization of continuity. The proof is easy so it is omitted.

Theorem 1.1 (Continuity of a linear transformation). Let X and Y be real3 normed vector spaces and

T : X → Y a linear transformation. The following are equivalent:

(1) T is continuous;

(2) T is uniformly continuous;

(3) T is continuous at 0;

(4) There exists k ∈ [0,∞) such that for all x ∈ X with ‖x‖X ≤ 1, we have ‖T (x)‖Y ≤ k;

(5) There exists k ∈ [0,∞) such that for all x ∈ X, we have ‖T (x)‖Y ≤ k‖x‖X .

In view of property (5), we introduce the following definition.

Definition 1.2 (Boundedness). Let X and Y be real normed vector spaces and let T : X → Y be a linear

transformation. We say that T is bounded if there exists k ∈ [0,∞) such that ‖T (x)‖Y ≤ k‖x‖X for

all x ∈ X.

From theorem 1.1, we see that a linear transformation is continuous if and only if it is bounded. We will

use the words ‘bounded’ and ‘continuous’ interchangeably.

Remark. Note that our definition of boundedness does not agree with the usual definition of boundedness

for a function T from X to R, namely that there exists M ∈ [0,∞) such that |T (x)| ≤M for all x ∈ X. This

potential ambiguity is not a really a problem, since apart from the zero map there is no linear transformation

that is bounded in the latter sense.

Sometimes one has two normed vector spaces with a bijection between them that preserves all relevant

properties. Such spaces can be considered the same. More precisely, we define the following.

Definition 1.3 (Isometry, isometric isomorphism). Let X and Y be real normed vector spaces. A linear

transformation T : X → Y is called an isometry if ‖T (x)‖Y = ‖x‖X for all x ∈ X. If T is moreover sur-

jective, we call it an isometric isomorphism. If there exists an isometric isomorphism between X and Y ,

then X and Y are called isometrically isomorphic.

Observe that an isometry is injective. An isometric isomorphism is continuous and bijective, and its

inverse is also an isometric isomorphism. Note that being isometrically isomorphic is an equivalence relation

(hence the last line in definition 1.3 makes sense). When X and Y are isometrically isomorphic we write

this as X ' Y .

From a functional analytic point of view, spaces that are isometrically isomorphic are essentially identical.

This is a useful notion, as a different way of looking at a space can sometimes give more insight into the

structure of this space. We will see examples of this in the next chapters.

1.1 The space `∞

Recall that `∞ is the space of all bounded real sequences with norm ‖x‖∞ = supn∈N |xn|. The following

describes a useful dense subset (subspace) of `∞.

3In this thesis we will only be concerned with vector spaces over R. Many results for real vector spaces hold equally well for
complex vector spaces. However, sometimes results do not extend as easily as it seems, and one needs to be more careful.
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Let us call a sequence (an)∞n=1 ∈ `∞ a simple sequence if its range is finite. Writing the range as

{an : n ∈ N} = {α1, α2, ..., αN} (for αj ∈ R all different) and Aj = a−1({αj}) ⊆ N, we see that we can write

a =

N∑
j=1

αj1Aj .

Conversely, every sequence of the previous form is a simple sequence. Note that the Aj may be chosen

disjoint, as is the case here.

Lemma 1.4 (Density of simple sequences). The set of simple sequences is a dense subspace of `∞.4 In

particular, if x ∈ `∞ satisfies xn ≥ 0 for all n, then for every ε > 0, there exists a simple sequence a such

that ‖x− a‖∞ < ε and moreover 0 ≤ an ≤ xn for all n.

Proof. See lemma A.1.

The next result will be used many times throughout this report. It gives easy conditions to check whether

two bounded linear transformations from `∞ to R are equal.

Proposition 1.5. Let ϕ,ψ : `∞ → R be bounded linear transformations. If ϕ(1E) = ψ(1E) for all E ⊆ N,

then ϕ = ψ.

Proof. See proposition A.2.

1.2 Dual spaces

Definition 1.6 (Linear functionals, dual space). Let X be a real normed vector space. Linear transformations

from X to R are called linear functionals. The space of continuous linear functionals from X to R is called

the dual space of X and is denoted X ′. Endowed with pointwise addition and (real) scalar multiplication,

this is a real vector space. The norm on X ′ is defined as

‖f‖X′ = sup{|f(x)| : x ∈ X, ‖x‖X ≤ 1}.

Dual spaces are an important concept in functional analysis as they contain a lot of information from

the original space. We will see this later in this report.

Remark. An important observation is that |f(x)| ≤ ‖f‖X′‖x‖X for all f ∈ X ′ and x ∈ X.

Theorem 1.7 (Duals are Banach spaces). Let X be a real normed vector space. Then X ′ is a Banach space.

Proof. See theorem A.3.

Consider a real vector space X. A situation that arises often is that we have a linear subspace W ⊆ X

and a linear map fW : W → R, and we want to have a linear extension fX : X → R of fW . In particular,

if X is normed then we would like to have that ‖fW ‖W ′ = ‖fX‖X′ , i.e. the norm of the functional does not

increase.

This is indeed possible, as we will see in theorem 1.9 and 1.10. First we introduce the following definition,

which is useful to describe the ‘size’ of a linear functional.

Definition 1.8 (Sublinear functional). Let X be a real vector space. A sublinear functional on X is a

map p : X → R that satisfies

(1) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X (subadditivity);

4One can even show that for x ∈ `∞, there exists a sequence (y(n))∞n=1 of simple sequences y(n) ∈ `∞ such that y(n) ↑ x
uniformly on N; that is, y

(n)
m ↑ xm (n→∞) for every m ∈ N and

∥∥y(n) − x
∥∥
∞ → 0. This can be proven in a similar manner

as here; then one uses a clever partition of the range in dyadic intervals. A proof can be found in [8, thm. 4.12].
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(2) p(cx) = cp(x) ∀x ∈ X,∀c ≥ 0 (positive homogeneity).

Remark. The following properties of a sublinear functional are easily checked: p(0) = 0, −p(−x) ≤ p(x) and

−p(y − x) ≤ p(x)− p(y) ≤ p(x− y).

The following is the main result of this section. It is one of the cornerstones of functional analysis.

Theorem 1.9 (Hahn-Banach theorem). Let X be a real vector space. Let p : X → R be a sublinear functional

on X. Suppose W ⊆ X is a linear subspace of X and fW : W → R is a linear functional on W satisfying

fW (w) ≤ p(w) ∀w ∈W.

Then fW has a linear extension fX : X → R satisfying

fX(x) ≤ p(x) ∀x ∈ X.

Proof. See lemma A.4 and theorem A.5.

The following5 is a direct consequence of theorem 1.9.

Theorem 1.10 (Hahn-Banach theorem). Let X be a real normed vector space, W ⊆ X a linear subspace.

Suppose fW ∈W ′. Then there exists an extension fX ∈ X ′ of fW such that ‖fX‖X′ = ‖fW ‖W ′ .

Proof. See theorem A.6.

1.3 Zorn’s lemma

Definition 1.11 (Partial/total order, partially/totally ordered set). Let M be a nonempty set. A binary

relation � on M is called a partial order on M if the following conditions are satisfied:

(1) x � x, for all x ∈M (reflexivity);

(2) x � y and y � x implies x = y, for all x ∈M (antisymmetry);

(3) x � y and y � z implies x � z, for all x, y, z ∈M (transitivity).

In that case, the pair (M,�) is called a partially ordered set. If � moreover satisfies

(4) x � y or y � x, for all x, y ∈M (any two elements are comparable),

then � is called a total order on M and (M,�) is called a totally ordered set.

If (M,�) is a partially (totally) ordered set and N ⊆M is a nonempty subset, the one can restrict the

order � to N (we still write this restriction �N as �), and then (N ,�) is a partially (totally) ordered set.

That is, N inherits the order of M.

Definition 1.12 (Maximal element). Let (M,�) be a partially ordered set. An element y ∈ M is called a

maximal element of (M,�) if y � x =⇒ y = x holds for all x ∈M.

It is very important to note that a maximal element y need not be a maximum in the sense that it does

not necessarily hold that x � y for all x ∈M. A maximal element need not always exist, and if it exists, it

may not be unique. However, if (M,�) is totally ordered, then there exists at most one maximal element.

Zorn’s lemma will give us sufficient conditions for the existence of a maximal element. To formulate this

theorem we first need to introduce the following definitions.

Definition 1.13 (Chain). Let (M,�) be a partially ordered set and let N ⊆M be a nonempty subset. Then

N is called a chain in (M,�) if N is totally ordered (under the inherited order).

Definition 1.14 (Upper bound). Let (M,�) be a partially ordered set and let N ⊆ M be nonempty. An

element y ∈M is called an upper bound for N in (M,�) if x � y holds for all x ∈ N .

5The name ‘Hahn-Banach theorem’ is used to describe a collection of closely related results.
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Note that for y to be an upper bound for N , in particular y needs to be comparable to every element x

of N . But y need not belong to N .

Theorem 1.15 (Zorn’s lemma). Let (M,�) be a nonempty partially ordered set with the property that every

nonempty chain has an upper bound in M.6 Then M contains at least one maximal element.

Zorn’s lemma is equivalent to the axiom of choice. A proof of this result can be found in [3, thm. 5.10.3].

6Note that it is not required that the upper bound belongs to the chain itself.
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2 The dual of `p, 1 ≤ p <∞
In this chapter we investigate the dual space of `p for 1 ≤ p < ∞. For such p, we can find very elegant

characterizations of these dual spaces. For p = ∞, the situation is more complicated, as we will see later.

This chapter uses material from [6] and [7].

2.1 `q ' (`p)′ for 1 ≤ p <∞
Let p ∈ (1,∞) and let q = p

p−1 ∈ (1,∞), so that 1
p + 1

q = 1. We establish an isometric isomorphism

T : `q → (`p)′. First we assign to each element a ∈ `q a suitable functional fa : `p → R. Consider a fixed

sequence a = (an)∞n=1 ∈ `q. For all x = (xn)∞n=1 ∈ `p, we have by Hölder’s inequality that

∞∑
n=1

|anxn| ≤ ‖x‖p‖a‖q <∞, (2)

thus
∑∞
n=1 anxn converges (absolutely). Therefore we may define for all a ∈ `q,

fa : `p → R fa(x) =

∞∑
n=1

anxn.

Note that fa ∈ (`p)′: linearity of fa is clear, and boundedness follows from equation (2). Thefore we can

define the linear transformation

T : `q → (`p)′ T (a) = fa.

We claim that T is an isometric isomorphism. First we show that T is an isometry. Let a ∈ `q, then we have

that ‖fa‖(`p)′ ≤ ‖a‖q: for x ∈ `p with ‖x‖p ≤ 1, we have

|fa(x)| =

∣∣∣∣∣
∞∑
n=1

anxn

∣∣∣∣∣ ≤
∞∑
n=1

|anxn| ≤ ‖a‖q‖x‖p ≤ ‖a‖q.

Thus it remains to show that

‖a‖q =

( ∞∑
n=1

|an|q
)1/q

≤ ‖fa‖(`p)′ .

Fix k ∈ N, it suffices to show that (
k∑

n=1

|an|q
)1/q

≤ ‖fa‖(`p)′ .

Define for all 1 ≤ n ≤ k,

γn =

{
|an|q
an

, an 6= 0,

0, an = 0,

so that γnan = |an|q for 1 ≤ n ≤ k. Define γ = (γ1, γ2, ..., γk, 0, 0, ...) ∈ `p. Writing e(n) for the vector in `p

with a one in n-th position and zero elsewhere, we have an = fa(e(n)) and due to linearity of fa we find

k∑
n=1

|an|q =

k∑
n=1

γnan =

k∑
n=1

γnfa(e(n)) = fa

(
k∑

n=1

γne
(n)

)
= fa(γ) = |fa(γ)| ≤ ‖fa‖(`p)′‖γ‖p. (3)

As p and q are Hölder conjugates we have that pq − p = q. It follows that for all 1 ≤ n ≤ k,

|γn|p = (|an|q−1)p = |an|pq−p = |an|q.

9



Therefore equation (3) becomes

k∑
n=1

|an|q ≤ ‖fa‖(`p)′‖γ‖p = ‖fa‖(`p)′

(
k∑

n=1

|an|q
)1/p

hence

(
k∑

n=1

|an|q
)1−1/p

=

(
k∑

n=1

|an|q
)1/q

≤ ‖fa‖(`p)′ .

Letting k → ∞, we find ‖a‖q ≤ ‖fa‖(`p)′ . Combined with the converse estimate, it follows that T is an

isometry.

Lastly we need to show that T is surjective. Let f ∈ (`p)′. Define an = f(e(n)) and a = (a1, a2, ...). We

claim that fa = f . We first check that a ∈ `q. Fix k ∈ N; it suffices to have that

k∑
n=1

|an|q ≤ ‖f‖q(`p)′ (4)

Let a′ = (a1, a2, ..., ak, 0, 0, ...) ∈ `q, so that

k∑
n=1

|an|q = ‖a′‖qq = ‖fa′‖q(`p)′ . (5)

Here we used that T is an isometry. Now observe that ‖fa′‖(`p)′ ≤ ‖f‖(`p)′ : let x ∈ `p with ‖x‖p ≤ 1,

consider x′ := (x1, x2, ..., xk, 0, 0, ...) ∈ `p; then ‖x′‖p ≤ 1 and

|fa′(x)| =

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣ = |f(x′)| ≤ ‖f‖(`p)′ ,

thus indeed ‖fa′‖(`p)′ ≤ ‖f‖(`p)′ . Combining this with (5), we see that (4) follows, hence a ∈ `q.
Finally we must check that f = fa. Let x ∈ `p. The crucial part in the proof of surjectivity (which does

not hold for p =∞) is that

x =

∞∑
n=1

xne
(n).

Then using continuity and linearity of f , we find

f(x) =

∞∑
n=1

f(xne
(n)) =

∞∑
n=1

anxn = fa(x).

Altogether, we conclude that T is an isometric isomorphism.

The dual of `1

With exactly the same procedure one can construct an isometric isomorphism T : `∞ → (`1)′ with T (a) = fa,

where T and fa are defined in the obvious way. Showing that T is an isometric isomorphism requires even

less effort than before as the norm on `∞ is very simple to work with.

2.2 The problem with `∞

In this section we show that the characterization of (`p)′ discussed before does not extend to the case p =∞.

For all a ∈ `1, let

fa : `∞ → R fa(x) =

∞∑
n=1

anxn

10



As before, fa is well defined (using in this case the simple estimate |anxn| ≤ |an| · ‖x‖∞) and satisfies

fa ∈ (`∞)′. Define T : `1 → (`∞)′ by T (a) = fa. In the same way as before, one checks that T is an

isometry.

Now let us investigate the surjectivity of T . Consider any functional f ∈ (`∞)′. Suppose a ∈ `1 is to satisfy

f = fa, then in particular for x = e(n) ∈ `∞, we must have f(e(n)) = fa(e(n)) = an. Thus define an = f(e(n))

and a = (a1, a2, ...). First we check that a ∈ `1. Let k ∈ N and consider a′ = (a1, a2, ..., ak, 0, 0, ...) ∈ `1;

then
∑k
n=1 |an| = ‖a′‖1 = ‖fa′‖(`∞)′ ≤ ‖f‖(`∞)′ . Letting k →∞, we find a ∈ `1.

The crucial part is now to show that f = fa. In the case where p <∞, we used that for all x ∈ `p,

x =

∞∑
n=1

xne
(n) (6)

to interchange the limit and the continuous function f . However, such an approach is not possible for `∞,

as we do not have (6) for general x ∈ `∞. Consider for instance x = (1, 1, 1, ...) ∈ `∞; then (6) does not even

converge.

Thus the previous method of proving surjectivity cannot be used here. In fact, T is not surjective. We

construct a functional f ∈ (`∞)′ that is not of the form fa. Consider the subspace c of `∞ consisting of

convergent sequences. Define

f̃ : c→ R f̃(x) = lim
n→∞

xn.

This is a bounded linear functional, hence the Hahn-Banach theorem (theorem 1.10) gives us an extension

f ∈ (`∞)′ of f̃ . We claim that f is not of the form fa. Suppose a ∈ `1 is such that f = fa. As
∑∞
n=1 |an| <∞,

there exists N ∈ N such that
∑∞
n=N |an| < 1. Let x = (0, 0, ..., 0, 1, 1, ...) ∈ c (the first one in N -th position).

Then we have f(x) = f̃(x) = 1, but

fa(x) =

∞∑
n=1

anxn =

∞∑
n=N

an ≤
∞∑
n=N

|an| < 1,

which is a contradiction. Hence T is not surjective.

Remark. The proof of surjectivity of the mapping T : `1 → (`∞)′ that we used earlier for finite p did not

work because we could not write (6) for general x ∈ `∞. Consider the subspace c0 of `∞ and note that (6)

holds for all x ∈ c0. Hence if we define T : `1 → (c0)′ in the obvious way then we do have surjectivity of the

map T . This proves that `1 and (c0)′ are isometrically isomorphic.

In fact, if we define T : `1 → c′ in the obvious way, then we can also show that this map is surjective.

Equation (6) may not hold, but this is resolved by writing x ∈ c as x = α1 + y where α = limn→∞ xn,

1 = (1, 1, ...) and y ∈ c0 is defined by yn = xn−α and then applying (6) to y. Thus `1 and c′ are isometrically

isomorphic.

We saw in this section that the obvious candidate T for an isometric isomorphism between `1 and (`∞)′

did not work. But this does not rule out the possibility that other choices for T could work. In the next

section we prove that this is not the case.

2.3 No homeomorphism between `1 and (`∞)′

In this section we prove that the spaces `1 and (`∞)′ are not isometrically isomorphic at all. In fact, we

prove the stronger claim that they are not even homeomorphic. For the proof we first need some auxiliary

results, which are interesting in themselves.

We start by proving that homeomorphisms preserve separability.
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Theorem 2.1. Let X and Y be real normed vector spaces, and suppose X and Y are homeomorphic. Then

X is separable if and only if Y is separable.

Proof. By symmetry it suffices to prove only one direction. Suppose X is separable and let A ⊆ X be a

countable dense subset. Let f : X → Y be a homeomorphism. The f [A] is the desired countable dense set

in Y . Countability is clear, and note that

Y = f [X] = f [A]
(∗)
⊆ f [A],

so that Y = f [A]. Note that (∗) follows from the fact that A ⊆ f−1[f [A]] as f−1[f [A]] is a closed set

containing A. This finishes the proof.

Next we need the following results about the separability of `1 and `∞.

Lemma 2.2. `1 is separable.

Proof. Let for all k ∈ N, Ak := {(x1, x2, ..., xk, 0, 0, ...) : xj ∈ Q, 1 ≤ j ≤ k} and define A :=
⋃∞
k=1Ak ⊆ `1.

Then A is countable, being a countable union of countable sets. We claim that A is dense in `1. Let z ∈ `1,

and let ε > 0. We need x ∈ A such that ‖z − x‖1 < ε. As
∑∞
n=1 |zn| < ∞, there exists N ∈ N such that∑∞

n=N+1 |zn| < ε/2. Define x′ := (z1, z2, ..., zN , 0, 0, ...) ∈ `1. Then ‖z − x′‖1 =
∑∞
n=N+1 |zn| < ε/2. For

every 1 ≤ n ≤ N , we may choose xn ∈ Q such that |xn − x′n| < ε
2N . Let x := (x1, x2, ..., xN , 0, 0, ...) ∈ A,

then we see

‖x− x′‖1 =

N∑
n=1

|xn − x′n| <
N∑
n=1

ε

2N
= ε/2.

Altogether, we find

‖z − x‖1 = ‖z − x′ + x′ − x‖1 ≤ ‖z − x
′‖1 + ‖x− x′‖1 < ε/2 + ε/2 = ε,

which concludes the proof.

Remark. With a small modification of the previous proof one shows that `p is separable for each 1 ≤ p <∞.

Lemma 2.3. `∞ is not separable.

Proof. Let A ⊆ `∞ be a countable subset. We show that A cannot be dense. Write A = {a(n) : n ∈ N}.
Define for all j ∈ N

xj =

{
a

(j)
j + 1, |a(j)

j | ≤ 1,

0, |a(j)
j | > 1,

and set x = (x1, x2, ...). Then x ∈ `∞, as |xj | ≤ 2 for every j ∈ N. Then for every n ∈ N, we have

|a(n)
n − xn| ≥ 1 hence

∥∥a(n) − x
∥∥
∞ ≥ 1. Hence A is not dense in `∞. As A was arbitrary, we conclude

that `∞ is not separable.

Our next aim is to show that separability of the dual space X ′ implies separability of the original space X.

For this the next theorem will be used.

Theorem 2.4. Let X be a real normed vector space and W ⊆ X a linear subspace. Suppose x ∈ X is such

that

δ := inf
w∈W

‖x− w‖X > 0.

Then there exists f ∈ X ′ such that ‖f‖X′ = 1 and f(w) = 0 for all w ∈W .
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Proof. Define Y = span{x}⊕W = {cx+w : c ∈ R, w ∈W} and let gY : Y → R be defined by gY (cx+w) = cδ.

Clearly gY is linear. We claim that gY ∈ Y ′. Let c ∈ R and w ∈W , then (w.l.o.g. c 6= 0)

|gY (cx+ w)| = |c|δ ≤ |c|
∥∥∥∥x− −wc

∥∥∥∥
X

= ‖cx+ w‖X .

From this we see that gY ∈ Y ′. Let g ∈ X ′ be a Hahn-Banach extension of gY (theorem 1.10). Note that

‖g‖X′ 6= 0 as g(x) = gY (x) = δ. Finally, define f = 1
‖g‖X′

g ∈ X ′. Then f has the desired properties.7

Theorem 2.5. Let X be a real normed vector space. If X’ is separable, then so is X.

Proof. We may without loss of generality assume X 6= {0}.8 Define BX′ = {f ∈ X ′ : ‖f‖X′ = 1}. As X ′ is

separable, so is BX′ .9 Thus we may choose a collection {f1, f2, ...} ⊆ BX′ that is dense in BX′ . Then for

every n ∈ N, we may choose xn ∈ X such that ‖xn‖X = 1 and |fn(xn)| ≥ 1
2 . Define W = spanQ{x1, x2, ...},

by which we mean the set of finite rational linear combinations of elements from {x1, x2, ...}. We claim that

W is the desired countable dense set in X. Countability is clear. We also have that W = X. Suppose

namely that W ( X, then there is some x∗ ∈ X \W . Then we have that infw∈W ‖x∗ − w‖X > 0 thus by

theorem 2.4 there exists f ∈ X ′ such that ‖f‖X′ = 1 and f(w) = 0 for all w ∈ W . Then we obtain for

all n ∈ N that
1

2
≤ |fn(xn)| = |fn(xn)− f(xn)| ≤ ‖fn − f‖X′‖xn‖X = ‖fn − f‖X′ .

But this contradicts density of {f1, f2, ...} in BX′ . Hence W = X. This finishes the proof.

Finally we have the main theorem of this section.

Theorem 2.6. `1 and (`∞)′ are not homeomorphic.

Proof. This follows immediately by combining the results from this section.

7In fact one can show that ‖gY ‖Y ′ = 1, so that (by the Hahn-Banach theorem) the function g can be chosen to satisfy
‖g‖X′ = 1. Then we have that f = g hence f(x) = δ. This has very useful implications. For instance, this improvement of
theorem 2.4 implies the following, with X a real normed vector space:

• For all x ∈ X, we have ‖x‖X = sup{|f(x)| : f ∈ X′, ‖f‖X′ ≤ 1};
• For all x, y ∈ X with x 6= y, there exists f ∈ X′ such that f(x) 6= f(y).

8We exclude this trivial case because then we would have BX′ = ∅.
9Here we use that for a separable metric space (M,d) and a subset A ⊆ M , we have that A is separable as well (under the

inherited metric). This is not as trivial as it might look. To see why this is true, let (xn)∞n=1 be a dense sequence in M and set

Θ = {(n,m) ∈ N× N : B1/m(xn) ∩A 6= ∅}.

For all (n,m) ∈ Θ, choose yn,m ∈ B1/m(xn) ∩A. Then {yn,m : (n,m) ∈ Θ} is a countable dense set in A.
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3 A description of (`∞)′

So far we have not found a way to characterize (`∞)′. In this chapter we introduce a space that we can

identify with (`∞)′. This is a space of measures, but in a more general sense. This chapter uses material

from [2].

3.1 Finitely additive measures

Definition 3.1 (Measure). A measure on a measurable space (S,A) is a function µ : A → [0,∞] that

satisfies µ(∅) = 0 and is σ-additive, i.e. for all pairwise disjoint sequences A1, A2, ... of sets in A, we have

that

µ

 ∞⋃
j=1

Aj

 =

∞∑
j=1

µ(Aj). (7)

Sometimes it is impossible to construct a measure with desired properties on a given measurable space,

due to the σ-additivity requirement. For instance, it is impossible to construct a probability measure on N
(that is, (N,P(N)) being the measurable space) that assigns to each singleton the same probability. One

suggestion is to relax σ-additivity to the weaker condition of finite additivity. In that case we speak of a

finitely additive measure.

Definition 3.2 (Finitely additive measure). Let (S,A) be a measurable space.

(1) A map µ : A → R is called a finitely additive measure on A if the following conditions are satisfied:

• µ(∅) = 0;10

• If A,B ∈ A are disjoint, then µ(A ∪B) = µ(A) + µ(B) (finite additivity).

(2) A finitely additive measure µ on A is called bounded if sup{|µ(F )| : F ∈ A} <∞; that is, if the range

of µ is a bounded subset of R.

(3) A finitely additive measure µ on A is called positive if µ(F ) ≥ 0 for all F ∈ A. Similarly, µ is called

negative if µ(F ) ≤ 0 for all F ∈ A.11

Remark. One should note that a measure (in the sense of definition 3.1) is a finitely additive measure if

and only if it does not assume value ∞. Moreover, a finitely additive measure need not be a measure (as in

definition 3.1), for two reasons:

• It may assume negative values.

• Even if it is positive, it may not be σ-additive. We will see examples of this in chapter 4.

To prevent confusion, a measure as in definition 3.1 will from now on explicitly be called a σ-additive

measure. A finitely additive measure will sometimes (sloppily) be referred to as a measure.

We continue with some basic properties of finitely additive measures.

Theorem 3.3. Let (S,A) be a measurable space and let µ : A → R be a finitely additive measure. Then the

following hold:

(1) If F1, F2, ..., Fn ∈ A are disjoint, then

µ

(
n⋃
i=1

Fi

)
=

n∑
i=1

µ(Fi).

(2) If E,F ∈ A satisfy E ⊆ F , then µ(F \ E) = µ(F )− µ(E).

(3) For all E,F ∈ A, we have µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F ).

(4) If µ is positive and E,F ∈ A satisfy E ⊆ F , then µ(E) ≤ µ(F ).

10Actually we already get this from the second requirement: µ(∅) = µ(∅) + µ(∅). This does not generally follow if µ is
allowed to take value ±∞.

11It is important to note that ‘negative’ is not the negation of ‘positive’, and vice versa.
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(5) If µ is positive, then µ is bounded.

(6) If µ is positive and F1, F2, ..., Fn ∈ A, then

µ

(
n⋃
i=1

Fi

)
≤

n∑
i=1

µ(Fi).

(7) If µ is positive and E1, E2, ... ∈ A are pairwise disjoint, then

∞∑
n=1

µ(En) ≤ µ

( ∞⋃
n=1

En

)
.

Proof. The proofs are not difficult so they are left to the reader. In (6), one can write an arbitrary union⋃n
i=1 Fi as a disjoint union

⋃n
i=1Ei where E1 = F1, E2 = F2 \ F2, E3 = F3 \ (F1 ∪ F2) et cetera.

In the context of this thesis we are mainly interested in bounded finitely additive measures.12 The space

of bounded finitely additive measures on the measurable space (S,A) will be denoted ba(S,A) (ba meaning

‘bounded additive’). For µ, ν ∈ ba(S,A) we define for F ∈ A, (µ + ν)(F ) = µ(F ) + ν(F ), and for scalars

a ∈ R we set (aµ)(F ) = aµ(F ). The space ba(S,A) is closed under addition and scalar multiplication, thus

it is a real vector space. For µ, ν ∈ ba(S,A), we say that µ ≤ ν if µ(F ) ≤ ν(F ) for all F ∈ A.

Definition 3.4 (Positive, negative and total variation). Let (S,A) be a measurable space and µ ∈ ba(S,A).

Define

(1) µ+ : A → R µ+(F ) = sup{µ(E) : E ⊆ F,E ∈ A}. Then µ+ is called the positive variation of µ.

(2) µ− : A → R µ−(F ) = − inf{µ(E) : E ⊆ F,E ∈ A}. Then µ− is called the negative variation of µ.

(3) |µ| : A → R |µ| = µ+ + µ−. Then |µ| is called the total variation of µ.

From boundedness of µ it follows that µ± indeed map into R, so they are well-defined.

Proposition 3.5. Let (S,A) be a measurable space, let µ ∈ ba(S,A). Then the following hold:

(1) µ+, µ−, |µ| ∈ ba(S,A) and they are positive.

(2) µ = µ+ − µ−.

(3) For any F ∈ A, we have

|µ|(F ) = sup{µ(E)− µ(F \ E) : E ⊆ F,E ∈ A}.

(4) For any F ∈ A, we have

|µ|(F ) = sup
{ n∑
i=1

|µ(Ei)| : (Ei)
n
i=1 disjoint in A,

n⋃
i=1

Ei ⊆ F
}
.

Proof. (1). Let A,B ∈ A be disjoint. We show that µ+(A) + µ+(B) = µ+(A ∪ B). Let E,F ∈ A be such

that E ⊆ A and F ⊆ B. Then E and F are disjoint and E ∪ F ⊆ A ∪B, hence

µ(E) + µ(F ) = µ(E ∪ F ) ≤ µ+(A ∪B).

Taking the supremum over all such E and F , we find µ+(A) + µ+(B) ≤ µ+(A ∪ B). For the converse

estimate, let G ∈ A be such that G ⊆ A ∪B. Then G ∩A and G ∩B are in A and

µ(G) = µ(G ∩A) + µ(G ∩B) ≤ µ+(A) + µ+(B).

12In section 4.7 we give necessary and sufficient conditions on a measurable space (S,A) for the existence of an unbounded
finitely additive measure on this space.
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Taking the supremum over all such G, the converse estimate µ+(A ∪ B) ≤ µ+(A) + µ+(B) follows, hence

this must be an equality. It is clear that µ+ is positive, and it is bounded as µ is bounded. Thus we have

µ+ ∈ ba(S,A). Now observe that µ− = (−µ)+ hence the claim for µ− follows immediately. Finally, we have

that |µ| = µ+ + µ− ∈ ba(S,A) and it is positive.

(2). Let F ∈ A. Observe that {µ(E) : E ⊆ F,E ∈ A} = {µ(F \G) : G ⊆ F,G ∈ A}. Thus we have

µ+(F ) = sup{µ(E) : E ⊆ F,E ∈ A} = sup{µ(F \G) : G ⊆ F,G ∈ A} = sup{µ(F )− µ(G) : G ⊆ F,G ∈ A}
= µ(F ) + sup{−µ(G) : G ⊆ F,G ∈ A} = µ(F )− inf{µ(G) : G ⊆ F,G ∈ A} = µ(F ) + µ−(F ).

From this the desired result follows.

(3). Let F ∈ A and define

ξ = sup{µ(E)− µ(F \ E) : E ⊆ F,E ∈ A}.

Note that this is equal to ξ = sup{µ(F \ E)− µ(E) : E ⊆ F,E ∈ A} as these sets are equal. We first show

that µ+(F ) + µ−(F ) ≤ ξ. Let A,B ∈ A be such that A ⊆ F and B ⊆ F . It suffices to show that

µ(A)− µ(B) ≤ ξ. (8)

Note that µ(A)− µ(B) = µ(A \B)− µ(B \A). Define13 C = F \ (A4B). Observation:

C ∪ (A \B) = F \ (B \A) and C ∪ (B \A) = F \ (A \B),

and these are disjoint unions. Now if µ(C) ≥ 0, we have

µ(A)− µ(B) = µ(A \B)− µ(B \A) ≤ µ(A \B) + µ(C)− µ(B \A) = µ((A \B) ∪ C)− µ(B \A)

= µ(F \ (B \A))− µ(B \A) ≤ ξ,

so that (8) holds. Similarly, if µ(C) < 0, we have

µ(A)− µ(B) = µ(A \B)− µ(B \A) ≤ µ(A \B)− µ(B \A)− µ(C) = µ(A \B)− µ((B \A) ∪ C)

= µ(A \B)− µ(F \ (A \B)) ≤ ξ,

which proves (8). The converse estimate ξ ≤ µ+(F ) + µ−(F ) is clear by the definition of µ±. This proves

the desired result.

(4). Let F ∈ A and write

γ = sup
{ n∑
i=1

|µ(Ei)| : (Ei)
n
i=1 disjoint in A,

n⋃
i=1

Ei ⊆ F
}
.

We first show that |µ|(F ) ≤ γ. Let E ∈ A be such that E ⊆ F . By property (3) in proposition 3.5, it suffices

to have that µ(E) − µ(F \ E) ≤ γ. Indeed, as E and F \ E are disjoint sets in A contained in F , we have

that

µ(E)− µ(F \ E) ≤ |µ(E)|+ |µ(F \ E)| ≤ γ.

For the converse estimate, let E1, E2, ..., En ∈ A be pairwise disjoint sets such that
⋃n
i=1Ei ⊆ F . Define

13A4B := (A \B) ∪ (B \A) is called the symmetric difference of A and B.
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En+1 = F \
⋃n
i=1Ei. Write I = {1 ≤ i ≤ n+ 1 : µ(Ei) ≥ 0} and J = {1 ≤ i ≤ n+ 1 : µ(Ei) < 0}. Then

n∑
i=1

|µ(Ei)| ≤
n+1∑
i=1

|µ(Ei)| =
∑
i∈I

µ(Ei)−
∑
i∈J

µ(Ei) = µ

(⋃
i∈I

Ei

)
− µ

(⋃
i∈J

Ei

)

= µ

(⋃
i∈I

Ei

)
− µ

(
F \

⋃
i∈I

Ei

)
≤ |µ|(F ),

using property (3) in the final step. Taking the supremum over all admissible collections (Ei)
n
i=1, we find

γ ≤ |µ|(F ). Combining this with the converse estimate, we derive property (4).

The decomposition of a bounded measure µ into two positive measures µ = µ+−µ− as in proposition 3.5

is called a Jordan decomposition.

We introduce the following norm on ba(S,A).

Definition 3.6. For µ ∈ ba(S,A), we define the total variation norm of µ by ‖µ‖ba = |µ|(S).

Proposition 3.7. The total variation norm ‖·‖ba is a norm on ba(S,A).

Proof. The defining properties of a norm are easily derived from (4) in proposition 3.5.

3.2 ba(N,P(N)) as the dual space of `∞

From now on the measurable space that we consider is (N,P(N)). In this section we construct an isometric

isomorphism from (`∞)′ onto ba(N,P(N)).

With every functional ϕ ∈ (`∞)′ we associate the following finitely additive measure µϕ ∈ ba(N,P(N)):

µϕ : P(N)→ R µϕ(E) = ϕ(1E).

From linearity of ϕ it follows that µϕ is indeed finitely additive. For boundedness of this measure, observe

that for all E ⊆ N, we have

|µϕ(E)| = |ϕ(1E)| ≤ ‖ϕ‖(`∞)′‖1E‖∞ ≤ ‖ϕ‖(`∞)′ .

Define the linear map R : (`∞)′ → ba(N,P(N)) by R(ϕ) = µϕ. We claim that R is an isometric isomorphism.

Proposition 3.8. R is an isometry.

Proof. Let ϕ ∈ (`∞)′. We first show that ‖ϕ‖(`∞)′ ≤ ‖µϕ‖ba. We may assume without loss of generality that

ϕ 6= 0. Let x ∈ `∞ be such that ‖x‖∞ ≤ 1 and let ε > 0. We show that |ϕ(x)| ≤ ‖µϕ‖ba + ε. Let a ∈ `∞ be

a simple sequence such that

‖x− a‖∞ <
ε

‖ϕ‖(`∞)′
,

and moreover |an| ≤ 1 for all n (lemma 1.4). Then we have that

|ϕ(x)| < |ϕ(a)|+ ε (9)

Now write a =
∑n
i=1 αi1Ai

with |αi| ≤ 1 and A1, A2, ..., An ⊆ N pairwise disjoint. Then

|ϕ(a)| =

∣∣∣∣∣ϕ
(

n∑
i=1

αi1Ai

)∣∣∣∣∣ ≤
n∑
i=1

|αi| · |ϕ(1Ai)| ≤
n∑
i=1

|µϕ(Ai)|
(∗)
≤ ‖µϕ‖ba,

using proposition 3.5 in (∗). Combined with (9), this proves that |ϕ(x)| < ‖µϕ‖ba + ε. Letting ε ↓ 0 and

taking the supremum over all admissible x, the desired inequality follows.
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Now for the converse estimate, let A1, A2, ..., An ⊆ N be pairwise disjoint. For 1 ≤ i ≤ n, take γi ∈ {−1, 1}
such that |µ(Ai)| = γiµ(Ai). Define x =

∑n
i=1 γi1Ai

, then we have that ‖x‖∞ ≤ 1. Then

n∑
i=1

|µ(Ai)| =
n∑
i=1

γiµ(Ai) =

n∑
i=1

γiϕ(1Ai
) = ϕ(x) ≤ |ϕ(x)| ≤ ‖ϕ‖(`∞)′ . (10)

Taking the supremum over all disjoint collections (Ai)
n
i=1 of subsets of N and using proposition 3.5, we derive

that ‖µϕ‖ba ≤ ‖ϕ‖(`∞)′ . Combined with the converse estimate, this proves that R is an isometry.

The proof of surjectivity of the map R involves integrating with respect to a finitely additive measure.

We briefly indicate how one can integrate a function x ∈ `∞ with respect to a finitely additive measure µ.

Integration with respect to a finitely additive measure

Let µ ∈ ba(N,P(N)) be a finitely additive measure. First suppose µ is positive.

• Step 1: Positive simple sequences. Let a =
∑n
i=1 αi1Ai be a positive simple sequence (αi ≥ 0) with

A1, A2, ..., An ⊆ N pairwise disjoint. Define∫
N
a dµ =

n∑
i=1

αiµ(Ai).

As in the construction of the Lebesgue integral, one can show that this is well-defined (i.e. does not

depend on the representation) and this integral is linear on positive simple sequences.

• Step 2: General positive sequences. Let x ∈ `∞ be a positive sequence. Define∫
N
x dµ = sup

{∫
N
a dµ : 0 ≤ a ≤ x, a simple

}
. (11)

Again, this integral is well-defined (i.e., coincides with step 1 whenever x is simple) and linear on

positive sequences. To prove this, one uses the fact that simple sequences are dense in `∞. Note

that (11) is finite as x is bounded.

• Step 3: General sequences. Let x ∈ `∞ and write x = x+− x−, where x±n := max{±xn, 0} ≥ 0. Define∫
N
x dµ =

∫
N
x+ dµ−

∫
N
x− dµ

Now suppose µ is a general finitely additive measure in ba(N,P(N)).

• Step 4: General finitely additive measure. Write µ = µ+ − µ−. Define for all x ∈ `∞,∫
N
x dµ =

∫
N
x dµ+ −

∫
N
x dµ−.

Proposition 3.9. R is surjective.

Proof. Let µ ∈ ba(N,P(N)). Define

ϕ : `∞ → R ϕ(x) =

∫
N
x dµ.
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From linearity of the integral it follows that ϕ is linear. For boundedness, note that for all x ∈ `∞, we have14

|ϕ(x)| =
∣∣∣∣∫

N
x dµ+ −

∫
N
x dµ−

∣∣∣∣ ≤ ∣∣∣∣∫
N
x dµ+

∣∣∣∣+

∣∣∣∣∫
N
x dµ−

∣∣∣∣ ≤ ∫
N
|x| dµ+ +

∫
N
|x| dµ−

≤
∫
N
‖x‖∞ dµ+ +

∫
N
‖x‖∞ dµ− = ‖x‖∞

(
µ+(N) + µ−(N)

)
= ‖x‖∞‖µ‖ba.

Thus indeed ϕ ∈ (`∞)′. Finally we have that µϕ = µ: for all E ⊆ N,

µϕ(E) = ϕ(1E) =

∫
N
1E dµ = µ(E).

This shows that R is surjective.

Combining propositions 3.8 and 3.9, we conclude that the map R : (`∞)′ → ba(N,P(N)) is an isometric

isomorphism. Hence we have found a way to characterize (`∞)′ as the space ba(N,P(N)). However, we are

not entirely satisfied with this answer. What does the space ba(N,P(N)) look like? What kinds of measures

on N do there exist? We investigate this in the next chapter.

14One can easily check the obvious properties of the integral
∫
· dµ± that are used here.
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4 Finitely additive measures on N
In this chapter we investigate the space ba(N,P(N)). We describe how one can construct (finitely additive)

measures on N with certain desirable properties. We also describe how certain measures are related to

certain types of functionals and vice versa. In the final section we discuss the existence of unbounded finitely

additive measures. This chapter uses material from [1], [2] and [5].

It is convenient to introduce the following notation and terminology. Let T : `1 → (`∞)′ be the linear

isometric embedding from `1 into (`∞)′ constructed before, i.e., T (a) = fa, where fa(x) =
∑∞
n=1 anxn.

Furthermore, let R : (`∞)′ → ba(N,P(N)) be the isometric isomorphism from (`∞)′ onto ba(N,P(N))

constructed before, i.e., R(ϕ) = µϕ, where µϕ(E) = ϕ(1E).

• For µ ∈ ba(N,P(N)) and ϕ ∈ (`∞)′, we say that µ is induced by ϕ, or that ϕ induces µ, if µ = µϕ.

• Similarly, for a ∈ `1 and ϕ ∈ (`∞)′, we say that ϕ is induced by a, or that a induces ϕ, if ϕ = fa.

• Finally, for a ∈ `1 and µ ∈ ba(N,P(N)), we say that a induces µ, or that µ is induced by a, if µ = µfa .

The notation µ will denote either a measure in ba(N,P(N)) or the function µ(·) that sends ϕ ∈ (`∞)′ to µϕ.

It will be clear from the context which of these meanings we use.

We say that a functional ϕ ∈ (`∞)′ preserves positivity if ϕ(x) ≥ 0 for all x ∈ `∞ with xn ≥ 0 for

all n. Similarly, a measure µ ∈ ba(N,P(N)) is said to preserve positivity if µ(E) ≥ 0 for all E ⊆ N. The

next theorem states that our identification of (`∞)′ with ba preserves positivity in both directions.

Theorem 4.1. Let ϕ ∈ (`∞)′. Then ϕ preserves positivity if and only if µϕ preserves positivity.

Proof. It is trivial that a positive functional induces a positive measure. Conversely, suppose µ := µϕ is a

positive measure. Let x ∈ `∞ with xn ≥ 0 for all n; we must show that ϕ(x) ≥ 0. We may assume without

loss of generality that ϕ 6= 0.

Let ε > 0. We show ϕ(x) > −ε. Let a ∈ `∞ be a positive simple sequence (lemma 1.4) such that

‖x− a‖∞ < ε
‖ϕ‖(`∞)′

. Then

ϕ(a)− ϕ(x) ≤ |ϕ(x)− ϕ(a)| = |ϕ(x− a)| ≤ ‖ϕ‖(`∞)′‖x− a‖∞ < ε,

so that ϕ(a)− ε < ϕ(x). Now write

a =

N∑
j=1

αj1Aj
,

where αj ≥ 0. Then

ϕ(a) =

N∑
j=1

αjϕ(1Aj
) =

N∑
j=1

αjµ(Aj) ≥ 0,

where we use that µ is a positive measure. Thus we see that −ε < ϕ(x). Letting ε ↓ 0, the result follows.

4.1 Measures induced by `1

We have identified `1 as a proper subspace of (`∞)′. The identification (`∞)′ ' ba(N,P(N)) allows us to

view `1 as a proper subspace of ba(N,P(N)), just by composing the maps T and R: an element a ∈ `1

induces a finitely additive measure µ := R(T (a)), i.e.,15

µ : P(N)→ R µ(E) =

∞∑
n=1

an1E(n) =
∑
n∈E

an.

15One has to be careful when writing expressions such as
∑

n∈E an. Such expressions may be defined as follows. For a
function f : N → R and a subset E ⊆ N, the expression

∑
n∈E f(n) may be defined as

∑
n∈E f(n) :=

∑∞
n=1 f(n)1E(n),

whenever the latter series either converges absolutely or contains only positive terms. If this series converges conditionally, then
by Riemann’s rearrangement theorem, the terms in this series can be rearranged so that the new series converges to any real
number or diverges to ±∞.
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As T [`1] ( (`∞)′, we also have (R ◦ T )[`1] ( ba(N,P(N)), hence the set of measures induced by `1 is not

all of ba(N,P(N)). Later sections in this chapter deal with measures that do not arise from `1. First we

describe some properties of the (set of) measures induced by `1.

Theorem 4.2. The set of measures induced by `1 is a closed subspace of ba(N,P(N)).

Proof. (R◦T )[`1] is a subspace of ba(N,P(N)), being the image of a linear space under a linear map. We show

closedness. Let (µn)∞n=1 ⊆ (R ◦ T )[`1] be a sequence, µ ∈ ba(N,P(N)) and suppose µn → µ in ba(N,P(N)).

We show µ ∈ (R ◦ T )[`1]. Now µn = R(ϕn) for ϕn ∈ T [`1], and as (µn)∞n=1 is Cauchy, so is (ϕn)∞n=1:

‖ϕn − ϕm‖(`∞)′ = ‖R(ϕn − ϕm)‖ba = ‖µn − µm‖ba.

As (`∞)′ is a Banach space (theorem 1.7), we have that ϕn → ϕ in (`∞)′ for some ϕ ∈ (`∞)′. Now

ϕn = T (a(n)) for a(n) ∈ `1, and in the same way we see that (a(n))∞n=1 is Cauchy, hence a(n) → a in `1 for

some a ∈ `1. Then by continuity,

ϕn = T (a(n))→ T (a)

hence ϕ = T (a). Then finally,

µn = R(ϕn)→ R(ϕ) = R(T (a)).

Hence µ = R(T (a)) ∈ (R ◦ T )[`1], as desired.

Proposition 4.3. Let a ∈ `1. Then an ≥ 0 for all n if and only if µfa preserves positivity.

Proof. It is clear that an ≥ 0 for all n implies that µ := µfa is positive. Conversely, if µ preserves positivity,

just note that 0 ≤ µ({n}) = an for all n.

Next we discuss σ-additivity of the measures induced by `1.16

Theorem 4.4. Let a ∈ `1 be a sequence such that an ≥ 0 for all n. Then the measure induced by a, i.e.,

µ : P(N)→ R given by

µ(E) =

∞∑
n=1

an1E(n)

is σ-additive. Conversely, any positive σ-additive measure µ ∈ ba(N,P(N)) is induced by some a ∈ `1.

Proof. Let E1, E2, ... ∈ P(N) be pairwise disjoint. Then using the monotone convergence theorem to inter-

change the limit and summation, we obtain

µ

( ∞⋃
m=1

Em

)
=

∞∑
n=1

an1⋃∞
m=1 Em

(n) =

∞∑
n=1

∞∑
m=1

an1Em(n)
(MCT)

=

∞∑
m=1

∞∑
n=1

an1Em(n) =

∞∑
m=1

µ(Em).

This shows that µ is σ-additive.

Conversely, suppose µ ∈ ba(N,P(N)) is a positive σ-additive measure on N. Define an = µ({n}) and set

a = (a1, a2, ...). Then a ∈ `1, as
∑∞
n=1 |an| =

∑∞
n=1 µ({n}) = µ(N) < ∞. Now let E ⊆ N. We show that

µ(E) =
∑∞
n=1 an1E(n). First suppose that E is an infinite set, then we may let m(·) : N→ E be a bijection.

Then

µ(E) =

∞∑
k=1

µ({mk}) =

∞∑
k=1

amk
=

∞∑
k=1

amk
1E(mk) =

∞∑
n=1

an1E(n),

as desired. A similar reasoning applies when E is finite. This finishes the proof.

16For positive finitely additive measures, σ-additivity is defined in the usual way. We do not define σ-additivity for measures
that can take negative values. One has to be careful with convergence statements when both positive and negative terms are
involved.
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Remark. We have seen that any absolutely convergent series
∑∞
n=1 an (that is, a ∈ `1) induces a measure

in a natural way. One can wonder whether this idea can be extended to conditionally convergent series.

This is not possible. Consider any conditionally convergent series
∑∞
n=1 an, then

∑∞
n=1 a

+
n = ∞ (where

a+
n = max{an, 0}). Then by choosing E = {n ∈ N : an ≥ 0}, we find

∞∑
n=1

an1E(n) =

∞∑
n=1

a+
n1E(n) =∞,

so this does not define a finitely additive measure.17

As said, the measures induced by `1 form a proper subspace of ba(N,P(N)). In the next sections we

describe some measures that do not arise from `1.

4.2 Shift-invariant measures

In this section we prove the existence of so-called shift-invariant measures on N. For subsets E ⊆ N, we

define E + 1 = {n+ 1 : n ∈ E}, i.e., E shifted by one to the right.

Definition 4.5 (Shift-invariance). We call a finitely additive measure µ on (N,P(N)) shift-invariant if

µ(E) = µ(E + 1) for all E ⊆ N.

Our construction of shift-invariant measures uses so-called Banach limits. Let S denote the shift operator

on `∞, defined by

S : `∞ → `∞ S((x1, x2, ...)) = (x2, x3, ...).

Theorem 4.6 (Banach limits). There exists a function Φ : `∞ → R that satisfies

(1) Φ(ax+ by) = aΦ(x) + bΦ(y) for all x, y ∈ `∞ and a, b ∈ R (linearity);

(2) Φ(x) ≥ 0 whenever x ∈ `∞ with xn ≥ 0 ∀n ∈ N (positivity);

(3) Φ(1) = 1, where 1 := (1, 1, ...) (Φ is normalized);

(4) Φ(S(x)) = Φ(x) for all x ∈ `∞ (shift-invariance).

Moreover, any function Φ : `∞ → R satisfying the above also satisfies

(5) |Φ(x)| ≤ ‖x‖∞ for all x ∈ `∞ (Φ ∈ (`∞)′ with ‖Φ‖(`∞)′ = 1);

(6) Φ(x) = limn→∞ xn whenever (xn)∞n=1 is convergent (Φ extends limits);

(7) lim infn→∞ xn ≤ Φ(x) ≤ lim supn→∞ xn for all (xn)∞n=1 ∈ `∞.

Proof. Define the linear subspace W = {S(x)−x : x ∈ `∞} of `∞. We would like to define a linear functional

on W that takes value 0 on W and use Hahn-Banach to extend this to a linear functional on `∞; this will

guarantee property (4) (and (1) trivially). But since we also want to satisfy property (3) it is useful to start

with a functional on a slightly bigger subspace than W , namely W ⊕ span{1}.
First note that W ∩ span{1} = {0}. This follows from the fact that 1 /∈W : if 1 = S(x)− x for x ∈ `∞,

then it must hold that xn = (n− 1) + x1, which is impossible. We may therefore define a linear functional

φ : W ⊕ span{1} → R by φ(w + c1) = c.

17One can even show that for a conditionally convergent series
∑∞

n=1 an, there exists E ⊆ N such that
∑∞

n=1 an1E(n)
does not even converge or diverge to ±∞. The construction of such a set uses similar techniques as the proof of Riemann’s
rearrangement theorem.
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It is now useful to show that |φ(y)| ≤ ‖y‖∞ for all y ∈ W ⊕ span{1}. Let w = S(x) − x ∈ W (x ∈ `∞)

and c ∈ R; then for every N ∈ N we have the inequalities

‖w + c1‖∞ = sup
n∈N
|xn+1 − xn + c| ≥ sup

n≤N
|xn+1 − xn + c| ≥ 1

N

N∑
n=1

|xn+1 − xn + c|

≥ 1

N

∣∣∣∣∣
N∑
n=1

(xn+1 − xn) +Nc

∣∣∣∣∣ =
1

N
|xN+1 − x1 +Nc| .

(12)

Now let N tend to ∞, then as (xn)∞n=1 is bounded, the last term in (12) tends to |c|. This proves that

‖w + c1‖∞ ≥ |c|, as desired.

As ‖·‖∞ is a sublinear functional on `∞, we can apply the Hahn-Banach theorem (theorem 1.9) to find a

linear extension Φ : `∞ → R of φ satisfying |Φ(x)| ≤ ‖x‖∞ for all x ∈ `∞. By construction, Φ has properties

(1), (3) and (4): for (4), just note that Φ(S(x))− Φ(x) = Φ(S(x)− x) = φ(S(x)− x) = 0. Now for (2), let

x ∈ `∞ with xn ≥ 0; write x = cy with c = ‖x‖∞ and yn ∈ [0, 1]. Then we obtain

1− Φ(y) = Φ(1− y) ≤ ‖1− y‖∞ ≤ 1,

as 1− yn ∈ [0, 1]. Therefore we find Φ(y) ≥ 0 and Φ(x) = cΦ(y) ≥ 0, proving (2).

Now suppose Φ : `∞ → R is any function satisfying (1), (2), (3) and (4) (not necessarily the one

constructed here). Let x ∈ `∞. We show that |Φ(x)| ≤ ‖x‖∞. The case x = 0 is trivial by linearity of Φ, so

we assume x 6= 0. First suppose ‖x‖∞ = 1. Let y := 1− x; then yn ≥ 0. Then we find

1 = Φ(1) = Φ(x+ y) = Φ(x) + Φ(y),

and therefore 1 − Φ(x) = Φ(y) ≥ 0, and we obtain Φ(x) ≤ 1. From this reasoning applied to −x we also

derive that Φ(−x) ≤ 1, so that |Φ(x)| ≤ 1. Finally, for general x 6= 0 we write x = cy where c = ‖x‖∞ and

‖y‖∞ = 1 and the result follows from the previous and homogeneity, proving (5).

Now we prove (7). Let x ∈ `∞. We first show Φ(x) ≤ lim supn→∞ xn. Let ξ > lim supn→∞ xn. Then we

can find n ∈ N such that supk≥n xk < ξ. Then for y := Sn(x), we find ym = xn+m < ξ for all m ∈ N thus

‖y‖∞ ≤ ξ. Then note that Φ(x) = Φ(Sn(x)) = Φ(y) ≤ ξ. Letting ξ ↓ lim supn→∞ xn, we obtain the desired

estimate. The estimate lim infn→∞ xn ≤ Φ(x) follows from the previous and the observation that

lim inf
n→∞

xn = − lim sup
n→∞

−xn.

Finally, (6) follows directly from (7).

A map Φ : `∞ → R that satisfies the first four properties (hence all) in theorem 4.6 is called a Banach

limit.18 When we know that a functional is a Banach limit, we will often denote it by Φ or Ψ instead

of ϕ or ψ to emphasize this.

Theorem 4.7 (Existence of shift-invariant measures). There exists a positive, shift-invariant finitely additive

measure µ on (N,P(N)) satisfying µ(N) = 1.

Proof. Let Φ : `∞ → R be a Banach limit and define µ = µΦ. Positivity of Φ (see (2) in theorem 4.6) implies

that µ is positive, from (3) we find that µ(N) = 1 and shift-invariance of Φ implies shift-invariance of µ.

18 Banach limits are not unique (corollary 4.14). However, for some (non-convergent) sequences the value of a Banach limit
is uniquely determined. Consider for instance the sequence x = (1, 0, 1, 0, ...). Then x+ S(x) = (1, 1, 1, ...) thus for any Banach
limit Φ, 1 = Φ(x + S(x)) = 2Φ(x) hence Φ(x) = 1

2
. In the same way, one shows that for any Banach limit Φ, it holds that

Φ(1aN+b) = 1
a

(for all a, b ∈ N). Sequences (xn)∞n=1 ∈ `∞ for which the value of a Banach limit is uniquely determined are
called almost convergent.
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We see that the measure constructed in theorem 4.7 is precisely the measure induced by the Banach

limit Φ under the identification (`∞)′ ' ba(N,P(N)). Thus we see that Banach limits induce positive, shift-

invariant measures on N satisfying µ(N) = 1. In theorem 4.17 we will see that the converse also holds, i.e.

that any such measure is induced by a Banach limit.

Remark. If µ is a (bounded or unbounded) shift-invariant finitely additive measure on N, then µ({n}) = 0

for all n ∈ N.19 To see this, note that µ(N) = µ(N + 1) + µ({1}) = µ(N) + µ({1}). Thus it follows that

µ({1}) = 0, and inductively we see that µ({n}) = 0 for all n. From this we also see that for every finite

subset E ⊆ N we must have µ(E) = 0. Moreover, it follows from this observation that a nontrivial positive,

shift-invariant measure cannot be σ-additive.

Theorem 4.8. The set of bounded, shift-invariant measures on N is a closed subspace of ba(N,P(N)).

Proof. It is clear that this set forms a subspace. Now let (µn)∞n=1 be a sequence of bounded, shift-invariant

measures on N and suppose µn → µ for µ ∈ ba(N,P(N)). We show that µ is shift-invariant. First note that

for every A ⊆ N, we have µ(A) = limn→∞ µn(A):

|µn(A)− µ(A)| = |(µn − µ)(A)| ≤ |µn − µ|(A) ≤ |µn − µ|(N) = ‖µn − µ‖ba → 0 (n→∞).

Thus for every E ⊆ N, we obtain

µ(E + 1) = lim
n→∞

µn(E + 1) = lim
n→∞

µn(E) = µ(E),

as desired.

Remark. The subspace of measures induced by `1 has trivial intersection with the subspace of bounded shift-

invariant measures. To see this, suppose µ is a bounded shift-invariant measure induced by (an)∞n=1 ∈ `1.

Then we have for all n ∈ N that

0 = µ({n}) =

∞∑
j=1

aj1{n}(j) = an,

hence (an)∞n=1 is zero and µ is the trivial measure.

In theorem 4.7 we have constructed a positive, shift-invariant finitely additive measure. By scaling, we

can also construct negative bounded, shift-invariant measures (i.e. taking values in (−∞, 0]). It is also

possible to construct shift-invariant measures that take on both (strictly) positive and negative values. We

will prove this in proposition 4.15.

Our first step towards the proof of proposition 4.15 is to show that Banach limits are not unique. To

prove this we use the so-called Cesàro20 operator, a bounded linear operator on `∞ with some very useful

properties. This operator will also be used in sections 4.4 and 4.5.

The Cesàro operator

Definition 4.9 (Cesàro operator). The Cesàro operator C is defined by

C : `∞ → `∞ C(x) =

(
1

n

n∑
k=1

xk

)∞
n=1

.

19A question that arises naturally from this observation is whether every positive (or negative) finitely additive measure that
vanishes on singletons is shift-invariant. In corollary 4.21 we show that counterexamples exist.

20Ernesto Cesàro (1859-1906) was an Italian mathematician who worked in differential geometry. He is mainly known for his
method of Cesàro summation, which is a method of assigning a ‘generalized limit’ to some series that may not be convergent
in the usual sense. Lemma 4.10 demonstrates how this can be done: instead of considering the convergence of the sequence of
partial sums, one considers the convergence of the sequence of averages of the partial sums. The method of Cesàro summation
has important applications in Fourier analysis, where it is used to describe convergence of Fourier series. Details can be found
in [1].
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One can immediately see that C is a bounded linear operator, is moreover positive (i.e. sends positive

sequences to positive sequences) and satisfies C(1) = 1. The Cesàro operator is the sequence of averages of

(xn)∞n=1. Therefore it is reasonable to expect that whenever (xn)∞n=1 is convergent, the sequence of averages

also converges and to the same limit. This is the case.

Lemma 4.10. Suppose limn→∞ xn = ξ. Then21

lim
N→∞

1

N

N∑
n=1

xn = ξ.

Proof. We may without loss of generality assume ξ = 0 (otherwise we replace xn by yn = xn− ξ). Let ε > 0.

Let N0 ∈ N be such that |xn| ≤ ε for all n ≥ N0. Then for all N ≥ N0, we obtain∣∣∣∣∣ 1

N

N∑
n=1

xn

∣∣∣∣∣ ≤ 1

N

N0−1∑
n=1

|xn|+
1

N

N∑
n=N0

|xn| ≤
1

N

N0−1∑
n=1

|xn|+
(N −N0)ε

N
≤ 1

N

N0−1∑
n=1

|xn|+ ε.

There exists N1 ∈ N such that for all N ≥ N1,

1

N

N0−1∑
n=1

|xn| ≤ ε.

Thus for all N ≥ max{N0, N1}, we obtain ∣∣∣∣∣ 1

N

N∑
n=1

xn

∣∣∣∣∣ ≤ 2ε,

as desired.

We say that a functional ϕ ∈ (`∞)′ extends limits, or extends the lim operator, if ϕ(x) = limn→∞ xn
whenever (xn)∞n=1 is convergent. If a functional ϕ extends limits and has norm 1, then one can build a

Banach limit by taking the composition with the Cesàro operator.

Proposition 4.11. Suppose ϕ ∈ (`∞)′ extends limits and satisfies22 ‖ϕ‖(`∞)′ = 1. Then ϕ ◦C is a Banach

limit.

Proof. We check the four defining properties of Banach limits mentioned in theorem 4.6. It is clear that

ϕ ◦ C is linear and we have (ϕ ◦ C)(1) = ϕ(1) = 1. It remains to show positivity and shift-invariance.

Observe that C sends positive sequences to positive sequences. Hence to show that ϕ ◦ C is positive, it

suffices to show that ϕ(x) ≥ 0 whenever x ∈ `∞ satisfies xn ≥ 0 for all n. Let x ∈ `∞ be such that xn ≥ 0

for all n. First assume that xn ∈ [0, 1] for all n. Then we have that

1− ϕ(x) = ϕ(1− x) ≤ |ϕ(1− x)| ≤ ‖1− x‖∞ ≤ 1, (13)

so that ϕ(x) ≥ 0. The result for general positive x follows from equation (13) and homogeneity. Thus we

derive that ϕ ◦ C is positive.

Finally we show shift-invariance. Let x ∈ `∞. Note that we have

1

n

n∑
k=1

xk −
1

n

n∑
k=1

xk+1 =
1

n

n∑
k=1

xk − xk+1 =
1

n
(x1 − xn+1)→ 0 (n→∞),

21The converse does not generally hold. For instance, consider the sequence xn =
∑n

k=1(−1)k.
22This condition ‖ϕ‖(`∞)′ = 1 is to ensure that ϕ preserves positivity.
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where we used that (xn)∞n=1 is bounded. This shows that C(x) − C(S(x)) is a convergent sequence with

limit 0, hence ϕ(C(x) − C(S(x))) = 0, which proves shift-invariance of ϕ ◦ C. We conclude that ϕ ◦ C is a

Banach limit.

The next lemma will be used in the construction of two different Banach limits.

Lemma 4.12. There exists a subset E ⊆ N such that C(1E) has a subsequence (C(1E)nk
)
∞
k=1 that satisfies

C(1E)nk
= 1

3 for all k ∈ N and another subsequence (C(1E)mk
)
∞
k=1 that satisfies C(1E)mk

= 2
3 for all k ∈ N.

Proof. Consider

x = (0, 0, 1
x3

,

3 times︷ ︸︸ ︷
1, 1, 1

x6

,

6 times︷ ︸︸ ︷
0, 0, 0, 0, 0, 0

x12

,

12 times︷ ︸︸ ︷
1, 1, ..., 1, 1

x24

,

24 times︷ ︸︸ ︷
0, 0, ..., 0, 0

x48

,

48 times︷ ︸︸ ︷
1, 1, ..., 1, 1

x96

, ...).

The idea is as follows. We start with the terms (0, 0, 1); the average of these is 1
3 . Next, we add 1’s until

the average of the terms defined so far is 2
3 . Then we add 0’s until the average of the terms defined so far

is 1
3 . It is clear that we can repeat this indefinitely: if the first 3 · 2n−1 terms are defined (n ∈ N) then we

add 3 · 2n−1 times a 0 or a 1 (depending on the 3 · 2n−1-th term). Now consider the sequence of averages

y := C(x), i.e.,

yn =
1

n

n∑
k=1

xk.

Let nk = 3 · 22(k−1) and mk = 3 · 22k−1 for all k ∈ N. By construction, we have that ynk
= 1

3 and ymk
= 2

3

for all k ∈ N. Now let E = {n ∈ N : xn = 1}, so that x = 1E . Then E is the desired set and (C(1E)nk
)
∞
k=1

and (C(1E)mk
)
∞
k=1 are the desired subsequences.

Proposition 4.13. There exist functionals ϕ, ϑ ∈ (`∞)′ that extend limits, satisfy ‖ϕ‖(`∞)′ = ‖ϑ‖(`∞)′ = 1

and satisfy (ϕ ◦ C)(1E) 6= (ϑ ◦ C)(1E) for some E ⊆ N.

Proof. Let E ⊆ N, (nk)∞k=1 and (mk)∞k=1 be as in lemma 4.12. Define the linear subspaces of `∞

c(n) = {x ∈ `∞ : lim
k→∞

xnk
exists} and c(m) = {x ∈ `∞ : lim

k→∞
xmk

exists}.

Note that c ⊆ c(n) ∩ c(m). Define
φ : c(n) → R φ(x) = lim

k→∞
xnk

,

θ : c(m) → R θ(x) = lim
k→∞

xmk
.

These are bounded linear functionals satisfying ‖φ‖(c(n))′ = ‖θ‖(c(m))′ = 1. The Hahn-Banach theorem gives

us extensions ϕ, ϑ ∈ (`∞)′ of φ and θ, respectively, satisfying ‖ϕ‖(`∞)′ = ‖ϑ‖(`∞)′ = 1. Note that ϕ and ϑ

extend limits. Moreover, we have that ϕ ◦ C and ϑ ◦ C are Banach limits, in view of proposition 4.11. For

the final assertion, note that

ϕ(C(1E)) = φ(C(1E)) = lim
k→∞

C(1E)nk
=

1

3
,

ϑ(C(1E)) = θ(C(1E)) = lim
k→∞

C(1E)mk
=

2

3
.

This finishes the proof.

The next result is immediate from (the proof of) proposition 4.13.

Corollary 4.14. Banach limits are not unique.

We can now prove the existence of a shift-invariant measure that assumes both (strictly) positive and

negative values.
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Proposition 4.15. For any γ ∈ R, there exists a bounded, shift-invariant measure µ on N and A ⊆ N such

that µ(A) < 0 and µ(N \A) > 0, and moreover µ(N) = γ.

Proof. Let Φ and Ψ be two different Banach limits. Then Φ and Ψ differ on an indicator function (see23 propo-

sition 1.5), say Φ(1A) > Ψ(1A). Then Φ(1N\A) = Φ(1N)−Φ(1A) = 1−Φ(1A) and also Ψ(1N\A) = 1−Ψ(1A).

Thus we see that Φ(1N\A) < Ψ(1N\A). Now let δ > 1 be such that δΦ(1N\A) < Ψ(1N\A). Define

µ : P(N) → R by µ(E) = δΦ(1E) − Ψ(1E). Then µ is a bounded, shift-invariant finitely additive mea-

sure with µ(N) = δ − 1 6= 0, and note that µ(A) > 0 and µ(N \ A) < 0. The result for γ 6= 0 follows by

appropriate scaling of µ, and the result for γ = 0 follows by a modification of this proof, namely choosing

δ = 1 instead.

We now consider again the dual space of `∞. We have seen in the proof of theorem 4.7 that a Banach

limit Φ induces a positive, finitely additive shift-invariant measure µ satisfying µ(N) = 1. In fact, any linear

combination of Banach limits induces a bounded shift-invariant measure. We can also go in the converse

direction: what are the properties of functionals that induce such measures? We start with the following

observation.

Theorem 4.16. Let ϕ ∈ (`∞)′. Then ϕ is shift-invariant if and only if µϕ is shift-invariant.

Proof. We have already seen that a shift-invariant functional ϕ induces a shift-invariant measure. Now

suppose µ := µϕ is shift-invariant. We show that ϕ is shift-invariant. We may without loss of generality

assume that ϕ 6= 0.

We introduce the following notation: for A ⊆ N with 1 /∈ A, we define A− 1 = {n− 1 : n ∈ A} ⊆ N.

Let x ∈ `∞; we must show that ϕ(x) = ϕ(S(x)). Note that we may assume that x1 = 0: consider

y = (0, x2, x3, ...), then S(x) = S(y) and assuming that ϕ(y) = ϕ(S(y)), we get

ϕ(x) = ϕ((x1, 0, 0, ...)) + ϕ(y) = x1ϕ(1{1}) + ϕ(S(y)) = x1µ({1}) + ϕ(S(x)) = ϕ(S(x)).

Let ε > 0; we show that |ϕ(x− S(x))| < ε. Let a ∈ `∞ be a simple sequence with ‖x− a‖∞ ≤
ε

2‖ϕ‖(`∞)′
.

As x1 = 0, we may assume a1 = 0 (if a1 is nonzero, we replace it by zero; this does not increase ‖x− a‖∞).

Then we have that

|ϕ(x− S(x))| = |ϕ(x− a+ a− S(x)− S(a) + S(a))| = |ϕ((x− a) + (S(a)− S(x)) + (a− S(a))|
≤ |ϕ(x− a)|+ |ϕ(S(a)− S(x))|+ |ϕ(a− S(a))|
≤ ‖ϕ‖(`∞)′‖x− a‖∞ + ‖ϕ‖(`∞)′‖S(a)− S(x)‖∞ + |ϕ(a− S(a))| < ε+ |ϕ(a− S(a))|.

(14)

Now write

a =

N∑
j=1

αj1Aj
,

where A1, A2, ..., AN ⊆ N are disjoint and α1, α2, ..., αN ∈ R are nonzero24, so that 1 /∈ Aj for all j. Then

we have that

a− S(a) =

N∑
j=1

αj(1Aj − 1Aj−1). (15)

By shift-invariance of µ, we have that for all j,

ϕ(1Aj−1) = µ(Aj − 1) = µ(Aj) = ϕ(1Aj
).

23Alternatively; this is immediately clear if we take the Banach limits constructed in proposition 4.13.
24We just omit αk1Ak

from the sum if αk happens to be zero. If this enforces that N = 0, then a is the zero sequence and
we certainly have a− S(a) = 0, so we implicitly avoid this triviality here.

27



Combined with equation (15), this gives

ϕ(a− S(a)) =

N∑
j=1

αjϕ(1Aj − 1Aj−1) = 0.

Combining this with equation (14), we find |ϕ(x− S(x))| < ε. Letting ε ↓ 0, we obtain ϕ(x) = ϕ(S(x)), as

desired.

Theorem 4.17. Let µ : P(N) → R be a positive (hence bounded), shift-invariant finitely additive measure

satisfying µ(N) = 1. Let ϕ ∈ (`∞)′ be the functional that induces µ, i.e. µ = µϕ. Then ϕ is a Banach limit.

Proof. We check the four defining properties in of Banach limits mentioned in theorem 4.6. We have that ϕ is

linear, it preserves positivity (theorem 4.1), we have ϕ(1) = ϕ(1N) = µ(N) = 1 and finally, shift-invariance

of ϕ follows from theorem 4.16. We conclude that ϕ is a Banach limit.

Remark. If µ is a positive shift-invariant finitely additive measure with µ(N) = 1, then µ(aN) = 1
a for

all a ∈ N. This follows from theorem 4.17 and the discussion in footnote 18.

If we have a bounded, shift-invariant measure, we can write it as the difference of two positive shift-

invariant measures.

Proposition 4.18. Let µ : P(N) → R be a bounded, shift-invariant finitely additive measure, and write

µ = µ+ − µ−. Then µ± are shift-invariant.

Proof. We first show that µ+ is shift-invariant. Let E ⊆ N and define ξ = sup{µ(F ) : F ⊆ E} and

γ = sup{µ(G) : G ⊆ E + 1}. We must show that ξ = γ. Let F ⊆ E. Then F + 1 ⊆ E + 1 thus

µ(F ) = µ(F + 1) ≤ γ, hence taking the supremum over F , we derive ξ ≤ γ. The converse estimate follows

similarly. Thus we have that γ = ξ hence µ+ is shift-invariant. To see that µ− is shift-invariant, just note

that

µ−(E + 1) = µ+(E + 1)− µ(E + 1) = µ+(E)− µ(E) = µ−(E),

which concludes the proof.

We can extend the result from theorem 4.17 in the following way. Consider a (nontrivial) positive shift-

invariant finitely additive measure µ on N, say α := µ(N) 6= 0. Then 1
αµ is a positive, shift-invariant finitely

additive measure satisfying 1
αµ(N) = 1, hence by theorem 4.17 we have that 1

αµ is induced by a Banach

limit Φ: 1
αµ = µΦ. By linearity of the identification (`∞)′ ' ba(N,P(N)), we have that µ = µαΦ.

Now suppose µ is any bounded shift-invariant measure. Writing µ = µ+ − µ−, we have that µ± are

induced by scaled Banach limits, say µ+ = µαΦ and µ− = µβΨ. Then µ = µαΦ−βΨ. Thus we conclude that

set of bounded, shift-invariant measures corresponds to the set of linear combinations of Banach limits.

Diffuse measures that are not shift-invariant

Now we address a question raised in footnote 19. We show that there exists a positive, finitely additive

measure that vanishes on singletons but is not shift-invariant. A (finitely additive) measure that vanishes on

singletons (hence on all finite sets) is called diffuse. We start by examining what properties the inducing

functional of a diffuse measure has.

Proposition 4.19. Let µ : P(N) → R be a bounded finitely additive diffuse measure. Let ϕ ∈ (`∞)′ be the

functional that induces, µ, i.e. µ = µϕ. Then for all x ∈ c, we have

ϕ(x) = ϕ(1) · lim
n→∞

xn.

In particular, if ϕ(1) = 1, then ϕ extends the lim operator.
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Proof. Step 1. Let x ∈ c00, the set of sequences with only finitely many nonzero terms. Then writing

x = (x1, x2, ..., xn, 0, 0, ...), we see that

ϕ(x) = ϕ

(
n∑
k=1

xk1{k}

)
=

n∑
k=1

xkϕ(1{k}) =

n∑
k=1

xkµ({k}) = 0.

Step 2. Let x ∈ c0. Let ε > 0 and letN ∈ N be such that supn≥N |xn| < ε. Set x∗ = (x1, x2, ..., xN , 0, 0, ...).

Then using step 1,

|ϕ(x)| = |ϕ((x− x∗) + x∗)| = |ϕ(x− x∗)| ≤ ‖ϕ‖(`∞)′‖x− x
∗‖∞ < ε‖ϕ‖(`∞)′ .

Letting ε ↓ 0, we see that ϕ(x) = limn→∞ xn = 0.

Step 3. Let x ∈ c. Define α = limn→∞ xn and let y = x − α1 = (x1 − α, x2 − α, ...) and note y ∈ c0.

Then using step 2, we obtain

ϕ(x) = ϕ(y + α1) = αϕ(1) = ϕ(1) · lim
n→∞

xn,

as desired.

The following converse to proposition 4.19 holds: if ϕ ∈ (`∞)′ extends the lim operator, then the induced

functional µϕ is diffuse.

Theorem 4.20. There exists a functional ϕ ∈ (`∞)′ preserves positivity, satisfies ϕ(1) = 1, extends limits

but is not shift-invariant.

Proof. We define a functional on a subspace of `∞ that extends limits but is not shift-invariant (on its do-

main); then any Hahn-Banach extension cannot be shift-invariant. Let c(∗) := {x ∈ `∞ : limn→∞ x2n exists};
a linear subspace of `∞ with c ( c(∗). Let

φ : c(∗) → R φ(x) = lim
n→∞

x2n.

Then φ is a bounded linear functional with ‖φ‖(c(∗))′ = 1. The Hahn-Banach theorem (theorem 1.10) gives

us an extension ϕ ∈ (`∞)′ of φ satisfying ‖ϕ‖(`∞)′ = ‖φ‖(c(∗))′ = 1. Then note that ϕ extends limits, and

that for all x ∈ `∞, we have |ϕ(x)| ≤ ‖x‖∞. We show that ϕ is positive. Let x ∈ `∞ with xn ≥ 0 for all n.

By scaling and homogeneity we may assume xn ∈ [0, 1] for all n. Then we have

1− ϕ(x) = ϕ(1− x) ≤ |ϕ(1− x)| ≤ ‖1− x‖∞ ≤ 1,

so that ϕ(x) ≥ 0. Finally note that ϕ is not shift-invariant: this follows by considering the sequence

((−1)n)∞n=1 ∈ c(∗).

Remark. Note that there exist infinitely many such functionals as in theorem 4.20: any convex combination

tϕ + (1 − t)Ψ (for t ∈ (0, 1]) satisfies the hypotheses, where ϕ is as in theorem 4.20 and Ψ is any Banach

limit.

The next result describes a diffuse measure that is not shift-invariant.

Corollary 4.21. There exists a positive, finitely additive diffuse measure µ ∈ ba that satisfies µ(N) = 1,

assumes some value in (0, 1) and is not shift-invariant.

Proof. Let ϕ be as in theorem 4.20. If the induced measure µϕ assumes some value in (0, 1) then µ := µϕ
has the desired properties and we are done.

So assume that µϕ assumes only values 0 and 1. Let Ψ be any Banach limit. Then note that the

functional ψ := 1
3ϕ + 2

3Ψ preserves positivity, extends limits, satisfies ψ(1) = 1 and is not shift-invariant.
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We claim that µ := µψ satisfies the hypotheses in the theorem. To see that µ assumes some value in (0, 1),

note that Ψ(12N) = 1
2 thus we have ψ(12N) = 1

3ϕ(12N) + 1
3 , hence ψ(12N) ∈ { 1

3 ,
2
3}. By construction, µ also

has the other properties. This finishes the proof.

In fact, we will see in section 4.5 an alternative method of constructing diffuse measures that are not

shift-invariant. There we construct measures that assume only the values 0 and 1 (and value 1 is assumed).

If we know all diffuse measures on N then we know the whole space ba(N,P(N)), in the following sense.

Theorem 4.22. Let µ be any bounded, finitely additive measure on N. Then there exists a unique measure

η induced by `1 and a unique diffuse measure ν such that µ = η + ν.

Proof. Define an = µ({n}) and a = (a1, a2, ...). Then a ∈ `1 as

∞∑
n=1

|an| ≤
∞∑
n=1

µ+({n}) + µ−({n}) ≤ µ+(N) + µ−(N) <∞.

Define η : P(N) → R by η(E) =
∑∞
n=1 an1E(n), the measure induced by a. Furthermore, set ν := µ − η.

Then µ = η + ν, and ν is diffuse. Finally, uniqueness is clear.

4.3 More general invariant measures

In the previous section we have constructed shift-invariant measures. We now consider a more general notion

of invariance.

Let f : N→ N be any function. A finitely additive measure µ is called f-invariant if µ(A) = µ(f−1[A])

for all A ⊆ N.

Theorem 4.23. Let f : N→ N be any function. Then there exists an f -invariant, positive finitely additive

measure µ on N satisfying µ(N) = 1.

Proof. Let us define for all n ∈ N and E ⊆ N the notation f−(n+1)[E] := f−1[f−n[E]]. Let Φ : `∞ → R be

a Banach limit and let ν be any positive finitely additive measure with ν(N) = 1. Define

µ : P(N)→ R µ(E) = Φ(ν(E), ν(f−1[E]), ν(f−2[E]), ...).

Then by observing that for disjoint E,F ⊆ N and n ∈ N, we have ν(f−n[E ∪ F ]) = ν(f−n[E] ∪ f−n[F ]) =

ν(f−n[E])+ν(f−n[F ]) and the fact that Φ is linear, we see that µ is finitely additive. Moreover, it is positive

and satisfies µ(N) = 1. Finally, f -invariance of µ follows from shift-invariance of Φ.

With a restriction on f we have the following similar result.25

Theorem 4.24. Let f : N → N be a bijection. Then there exists a positive finitely additive measure µ

satisfying µ(E) = µ(f [E]) for all E ⊆ N and µ(N) = 1.

Proof. Let Φ be any Banach limit and let ν be a positive finitely additive measure satisfying ν(N) = 1.

Define

µ : P(N)→ R µ(E) = Φ(ν(E), ν(f [E]), ν(f2[E]), ...).

Note that for disjoint sets E and F , we have that f [E ∪ F ] = f [E] ∪ f [F ] is a disjoint union (due to

injectivity). Combined with linearity of Φ, this proves that µ is finitely additive. Clearly µ is positive and

satisfies µ(N) = 1, and from shift-invariance of Φ we see that µ(E) = µ(f [E]) for E ⊆ N.

25In section 4.6 we will construct measures with much nicer properties than described here.
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4.4 Measures that extend density

Definition 4.25. For a subset E ⊆ N, we define

d(E) = lim
n→∞

|E ∩ {1, 2, ..., n}|
n

,

whenever this limit exists. We call d(E) the (asymptotic) density of E.

Asymptotic density is an intuitive way to measure how ‘large’ a subset of N is. Let E ⊆ N and consider

the probability that a randomly chosen number from {1, 2, ..., n} lies in E. This probability is equal to the

number of elements in E that are in {1, 2, ..., n}, divided by the number of elements in {1, 2, ..., n}. If this

probability tends to a limit for n tending to infinity, then this number is called the density of E and it can

be interpreted as a kind of probability that a randomly chosen natural number lies in E.

The next theorem describes some basic properties of density.

Theorem 4.26. Let E,F ⊆ N.

(1) If E is finite, then d(E) = 0.

(2) If d(E) exists, then d(N \ E) exists and d(N \ E) = 1− d(E).

(3) If E is finite, then d(N \ E) = 1. In particular, d(N) = 1.

(4) If E is finite and d(F ) exists, then d(E ∪ F ) exists and d(E ∪ F ) = d(F ).

(5) If E ⊆ F and d(F ) = 0, then d(E) = 0.

(6) If d(E), d(F ) and d(E ∪ F ) all exist, then

max{d(E), d(F )} ≤ d(E ∪ F ) ≤ min{d(E) + d(F ), 1}.

(7) If E = {an + b : n ∈ N} (for some a, b ∈ N), then d(E) = 1
a . In particular, the set of even numbers

has density 1
2 .

(8) If E = {2n : n ∈ N}, then d(E) = 0.

(9) If E = {n2 : n ∈ N}, then d(E) = 0.

(10) The set of prime numbers has density 0.

(11) There exists sets which do not admit a density.

Proof. We only prove (8), (9), (10) and (11); the other properties are trivial.

(8). Suppose E = {2n : n ∈ N}. Note that for all n ∈ N, we have

|E ∩ {1, 2, ..., n}| ≤ |{1, 2, ..., dlog2(n)e}|,

as an injection is given by 2m → m. Thus we have

|E ∩ {1, 2, ..., n}|
n

≤ dlog2(n)e
n

≤ log2(n) + 1

n
→ 0 (n→∞),

which shows that d(E) = 0.

(9). The proof is similar to the proof of (8), in this case by bounding |E ∩ {1, 2, ..., n}| ≤ d
√
ne.

(10). Let π(n) denote the number of prime numbers less than or equal to n. The claim now follows from

the prime number theorem, which states that

lim
n→∞

π(n)

( n
log(n) )

= 1.
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(11). The idea is illustrated in figure 1. For all n ≥ 0, define In = [2n, 2n+1), En = In ∩ N and set

A =

∞⋃
n=0

E2n.

Define α(m) = |A ∩ {1, 2, ...,m}| for all m ≥ 1. We show that (α(m)
m )∞m=1 has two convergent subsequences

with different limits, so that d(A) does not exist. Indeed, if we define mk := 22k−1, then one can readily

check that α(mk)
mk

→ 2
3 as k →∞. On the other hand, if we consider nk := 22k, then we see that α(nk)

nk
→ 1

3

for k →∞. Thus d(A) does not exist.26

Figure 1: Proof of (11) in theorem 4.26.

We will prove shortly the existence of a finitely additive measure µ on N that extends density. That

is, µ satisfies µ(E) = d(E) whenever d(E) exists. First we prove that this is a stronger condition than

shift-invariance.

Theorem 4.27. If µ : P(N)→ R extends density, then it is shift-invariant.

Proof. Let E ⊆ N. First suppose that E ⊆ A, where A is either 2N or 2N− 1. Then we have

µ((1 + E) ∪ (A \ E)) = µ(1 + E) + µ(A \ E) = µ(1 + E) + µ(A)− µ(E) = µ(1 + E)− µ(E) +
1

2
, (16)

where we used disjointness in the first step and µ(A) = d(A) = 1
2 in the last step. Also, we have for every n

that
|{1, 2, ..., n} ∩ (E ∪ (A \ E))| − 1

n

(∗)
≤ |{1, 2, ..., n} ∩ ((1 + E) ∪ (A \ E))|

n
(∗∗)
≤ |{1, 2, ..., n} ∩ (E ∪ (A \ E))|+ 1

n
.

We will shortly prove (∗) and (∗∗). Letting n→∞, the leftmost and rightmost term tend to d(A) = 1
2 hence

we conclude µ((1 + E) ∪ (A \ E)) = d((1 + E) ∪ (A \ E)) = 1
2 . Combining this with equation (16), we see

that µ(E) = µ(1 + E).

Now we show why (∗) holds. The idea is illustrated in figure 2. We may assume without loss of generality

that {1, 2, ..., n} ∩ E 6= ∅. Let ξ = max({1, 2, ..., n} ∩ E) and consider the map

f : {1, 2, ..., n} ∩ (E ∪ (A \ E))→ ({1, 2, ..., n} ∩ ((1 + E) ∪ (A \ E))) ∪ {ξ + 1},

f(m) =

{
m+ 1 if m ∈ E,
m if m ∈ A \ E.

26Observe the similarities between this proof and the proof of lemma 4.12.
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It is easily checked that f is injective, and therefore (∗) follows. The proof of (∗∗) is similar.

Now consider a general E ⊆ N and write E = E1 ∪ E2, where E1 = E ∩ (2N − 1) and E2 = E ∩ (2N).

Then by the previous we have

µ(E + 1) = µ((E1 + 1) ∪ (E2 + 1)) = µ(E1 + 1) + µ(E2 + 1) = µ(E1) + µ(E2) = µ(E),

as desired.

Figure 2: Proof of (∗) in theorem 4.27.

Theorem 4.28. There exists a positive finitely additive measure µ on N that extends density.

Proof. Define for all n ∈ N, µn : P(N)→ R by

µn(E) =
|E ∩ {1, 2, ..., n}|

n
.

Then each µn is a finitely additive measure and 0 ≤ µn(E) ≤ 1. Now let Φ : `∞ → R be a Banach limit.

Define µ : P(N)→ R by

µ(E) = Φ(µ1(E), µ2(E), µ3(E), ...).

Then µ is a finitely additive measure on N. Moreover, from the fact that Banach limits extend the usual

limit, it follows that µ extends density. Positivity of µ follows from positivity of Φ.

One might wonder whether a measure that extends density is necessarily positive. In corollary 4.30 we

show that this is not the case. The following proposition is the main ingredient for the proof.

Proposition 4.29. There exist two different positive finitely additive measures that extend density.

Proof. Let ϕ, ϑ ∈ (`∞)′ and E ⊆ N be as in proposition 4.13. Then ϕ ◦ C and ϑ ◦ C are Banach limits by

proposition 4.11. Define
µ : P(N)→ R µ(A) = (ϕ ◦ C)(1A),

ν : P(N)→ R ν(A) = (ϑ ◦ C)(1A).

These are finitely additive measures, and they are positive as ϕ ◦C and ϑ ◦C are Banach limits. To see that

µ extends density, let A ⊆ N be such that d(A) exists. Then

d(A) = lim
n→∞

|A ∩ {1, 2, ..., n}|
n

= lim
n→∞

1

n

n∑
k=1

1A(k) = lim
n→∞

C(1A)n.
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As ϕ extends limits, we have

µ(A) = ϕ(C(1A)) = lim
n→∞

C(1A)n = d(A).

Hence µ extends density. The same reasoning with µ replaced by ν and ϕ replaced by ϑ shows that ν extends

density. Finally, we have that µ 6= ν as µ(E) = (ϕ ◦ C)(1E) 6= (ϑ ◦ C)(1E) = ν(E).

Corollary 4.30. There exists a bounded finitely additive measure that extends density and assumes a negative

value.

Proof. Let µ and ν be two different positive measures that extend density, as in proposition 4.29. Let E ⊆ N
be such that µ(E) 6= ν(E). Let t ∈ R be such that tµ(E) + (1− t)ν(E) < 0. Then the measure tµ+ (1− t)ν
extends density and assumes a negative value.

Remark. In fact we see from the proof of corollary 4.30 that for any choice of γ ∈ R, we can construct a

measure that extends density and satisfies µ(E) = γ for some E ⊆ N. Indeed, just solve for t in the equation

tµ(E) + (1− t)ν(E) = γ in the proof of corollary 4.30.

The set of bounded, density-extending measures does not form a subspace of ba(N,P(N)). However, we

do have the following result.

Theorem 4.31. The set of bounded, density-extending measures is a closed convex27 subset of ba(N,P(N)).

Proof. Convexity is clear. Let (µn)∞n=1 be a sequence of bounded, density-extending measures and suppose

µn → µ for µ ∈ ba(N,P(N)). We show that µ extends density. Let E ⊆ N be such that d(E) exists. Then

we have that

|µn(E)− µ(E)| = |(µn − µ)(E)| ≤ |µn − µ|(E) ≤ |µn − µ|(N) = ‖µn − µ‖ba → 0 (n→∞),

hence limn→∞ µn(E) = µ(E). But we have µn(E) = d(E) for all n, hence µ(E) = d(E).

4.5 Ultrafilters and 0, 1-valued measures

In this section we construct finitely additive measures that assume only the values 0 and 1. To this end we

introduce the following definition.

Definition 4.32. A measure µ ∈ ba(N,P(N)) is called 0, 1-valued if µ(E) ∈ {0, 1} for all E ⊆ N and there

exists F ⊆ N such that µ(F ) = 1

Remark. Suppose µ is a 0, 1-valued measure.

(1) By monotonicity, we have µ(N) = 1.

(2) Then µ is not shift-invariant: if it were shift-invariant, then it would assume all values of the form 1
n

for n ∈ N.

(3) For all A ⊆ N, we have precisely one of µ(A) = 1 or µ(A \ N) = 1.

We will see that some 0, 1-values measures are induced by `1, but in this section we construct many more

that are not of a form we have seen earlier. For this we need some theory regarding filters and ultrafilters.

Filters and ultrafilters

Definition 4.33 (Filter). Let X be a nonempty28 set. A filter on X is a nonempty collection of subsets

F ⊆ P(X) satisfying

(1) ∅ /∈ F ;

27Recall that a subset A of a real vector space is called convex if (1− t)x+ ty ∈ A for all x, y ∈ A and t ∈ [0, 1].
28In this section we will always assume that X is nonempty.
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(2) If F,G ∈ F , then F ∩G ∈ F (closed under finite intersections);

(3) If F ∈ F and F ⊆ G, then G ∈ F (closed under supersets).

By induction, the second property implies that
⋂n
i=1 Fi ∈ F for any finite collection F1, F2, ..., Fn ∈ F .

Note that a filter must contain the full set X.

Intuitively, a filter can be thought of as a collection of subsets of X that are considered ‘almost everything’.

The following example explains this interpretation.

Example. Let (S,A, µ) be a measure space with µ not the zero measure. For a subset A ⊆ S, let us write

A ≈ S if and only if there exists ∆ ∈ A such that µ(∆C) = 0 and ∆ ⊆ A.29 Thus intuitively, A ≈ S if and

only if A differs from S only on a (subset of a) null set, i.e. A is ‘almost everything’. Then one can easily

check that the following intuitive properties hold:

• ∅ 6≈ S and S ≈ S (∅ is not almost everything and S is almost everything);

• If A ≈ S and B ≈ S then A ∩ B ≈ S (if A and B are almost everything, then A ∩ B is almost

everything);

• If A ≈ S and A ⊆ B, then B ≈ S (if A is almost everything and B is even larger, then B is almost

everything).

Then the collection F := {A ⊆ S : A ≈ S} is a filter, and it is precisely the collection of sets that are ‘almost

everything’.30

Example. The collection {X} is a filter, called the trivial filter. The power set P(X) is not a filter as it

contains the empty set, and the collection P(X) \ {∅} is not a filter if X contains at least two different

elements.

Example. Let (M,d) be a metric space and fix some x ∈M . A subset U ⊆M is called a neighborhood of x

if there exists ε > 0 such that Bε(x) ⊆ U . The set of all neighborhoods of x is denoted by U(x). Then U(x)

is a filter, called the neighborhood filter of x.31

Definition 4.34 (Principal filter). Consider a nonempty subset A ⊆ X. The collection

FA = {F ⊆ X : A ⊆ F}

is a filter, called the principal filter generated by A. A filter F is called principal if it is of the form FA
for some (nonempty) A ⊆ X, and non-principal otherwise.

In the special case where A = {x} is a singleton, the collection Fx := F{x} = {F ⊆ X : x ∈ F} is called

the principal filter generated by x.

A question that arises naturally in view of definition 4.34 is whether there exist any non-principal filters

on a set X. We will see that this is the case if and only X is an infinite set. First we give a simple criterion

to decide whether a filter is principal.

Proposition 4.35 (Criterion for principal filters). Let F be a filter. Then F is principal if and only if⋂
F∈F F ∈ F .

Proof. First suppose F is principal, so F = FA for some nonempty A ⊆ X. Then trivially we have that⋂
F∈F F = {A} ∈ F , as desired.

29Loosely speaking, A ≈ S means that µ(AC) = 0, but since A need not be measurable we introduce the set ∆. Note that
A ≈ S is precisely the statement ‘x ∈ A for µ-almost every x ∈ S’.

30There is an important caveat here. Let F be a filter on X and let us say E ⊆ X is ‘almost everything’ if E ∈ F and ‘almost
nothing’ if X \ E ∈ F . It does not hold in general that if E ⊆ X is not in F , then E is ‘almost nothing’ (indeed, think of the
filter that we associated with the measure space, for instance the subset [0, 1] ⊆ [0, 2] where we consider [0, 2] with the Lebesgue
measure). However, for some types of filters called ultrafilters we will see that this does hold.

31One can define a neighborhood filter in more generality for topological spaces. Consider a topological space (X, τ) and
a fixed x ∈ X. A subset U ⊆ X is called a neighborhood of x if there exists O ∈ τ such that x ∈ O ⊆ U . The set of all
neighborhoods of x is denoted U(x) and is called the neighborhood filter of x.
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Conversely, suppose A :=
⋂
F∈F F ∈ F . Then A is nonempty as F is a filter. We show that F = FA.

Indeed, if G ∈ F , then A ⊆ G hence G ∈ FA. And for G ∈ FA, we have A ⊆ G hence G ∈ F . Thus we see

that F = FA, hence F is principal.

From proposition 4.35 and the fact that filters are closed under finite intersections, we immediately derive

the following.

Corollary 4.36. If X is a finite set, then any filter on X is principal.

Thus we cannot construct non-principal filters over finite sets. But over infinite sets this is possible; the

following provides an example.

Definition 4.37. Let X be an infinite set. The collection

Fr := {F ⊆ X : X \ F is finite}

is called the Fréchet filter.

It is readily checked that Fr is indeed a filter. The Fréchet filter is a non-principal filter. To see this, we

use proposition 4.35. Define Fx = X \ {x} for all x ∈ X, then Fx ∈ Fr and
⋂
x∈X Fx = ∅. Now note that⋂

F∈Fr F ⊆
⋂
x∈X Fx, hence the former set must be empty and from proposition 4.35 we conclude that Fr is

non-principal.

If we have a collection of filters, then we can build a new filter in the following way.

Proposition 4.38 (Intersection and union of filters). Let I be a nonempty index set and let (F (α))α∈I be

a collection of filters on X.

(1) Then
⋂
α∈I F (α) is a filter.

(2) If additionally (F (α))α∈I is a chain, in the sense that for all α, β ∈ I we have either F (α) ⊆ F (β) or

F (β) ⊆ F (α), then the union
⋃
α∈I F (α) is a filter.

Proof. The proof of (1) is straightforward. For (2), denote F :=
⋃
α∈I F (α). It is clear that F is nonempty

and satisfies (1) and (3) in the definition of a filter. For (2), take F,G ∈ F and let α, β ∈ I be such that

F ∈ F (α) and G ∈ F (β). Then one of F (α) and F (β) is contained in the other one, say without loss of

generality F (α) ⊆ F (β). Then F,G ∈ F (β) hence F ∩G ∈ F (β) ⊆ F , as desired.

Remark. The requirement that (F (α))α∈I is a chain is essential. For instance, take x, y ∈ X with x 6= y,

then Fx ∪ Fy is not a filter as {x} ∩ {y} = ∅.

There is a natural way to construct filters with desired properties. Given a collection C of subsets of X,

one can wonder whether there exists a filter F containing C. The next definition introduces a necessary and

sufficient condition on C for this to hold.

Definition 4.39. A nonempty family of subsets C ⊆ P(X) is said to have the finite intersection property

if the intersection of any collection of finitely many sets from C is nonempty; that is,

for all E1, E2, ..., En ∈ C, we have that

n⋂
i=1

Ei 6= ∅.

Note that filters have the finite intersection property, and so does every (nonempty) subset of a filter.

Lemma 4.40 (Constructing filters). Let C ⊆ P(X) be a nonempty collection of sets with the finite intersec-

tion property. Then there exists a filter F on X that contains C.
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Proof. We want to construct a filter F that contains C. If this is to hold, then in particular we must have

for all E1, E2, ..., En ∈ C that
⋂n
i=1Ei ∈ F . But then F must also contain all supersets of the latter. This

leads us to define

F = {F ∈ P(X) : there exist E1, E2, ..., En ∈ C such that

n⋂
i=1

Ei ⊆ F}.

It is readily checked that F is filter, where we use the finite intersection property to derive that ∅ /∈ F . By

construction, F contains C.
We can actually show that the F constructed here is the minimal filter that contains C, i.e. if G is any

filter that contains C, then F ⊆ G. Let G be any filter that contains C. Let F ∈ F and let E1, E2, ..., En ∈ C
be such that

⋂n
i=1Ei ⊆ F . Then as G is a filter and contains, E1, E2, ..., En, we have that

⋂n
i=1Ei ∈ G hence

A ∈ G. This proves the desired minimality.

If C has the finite intersection property, then the (unique) minimal filter F that contains C is called

the filter generated by C and is usually denoted 〈C〉. Note that a ‘principal filter generated by A’ as in

definition 4.34 is just a special case of this, with C = {A}.

There is always a smallest filter, namely the trivial filter {X}. In general, there is not something like

a largest filter (in the sense that it contains every filter). However, we can define the following notion of

maximality for a filter.

Definition 4.41 (Ultrafilters). A filter U on X is called an ultrafilter if it is not properly contained in

another filter. That is, if F is any filter on X with U ⊆ F , then U = F .

We have already seen examples of ultrafilters: for fixed x ∈ X, the principal filter Fx is an ultrafilter.

To see this, suppose G is any filter on X satisfying Fx ⊆ G. Then we have Fx = G: let G ∈ G, then we must

have x ∈ G: if x /∈ G, then G∩ {x} = ∅, which is impossible as {x} ∈ G. Thus x ∈ G, hence G ∈ Fx and so

Fx = G.32

If A ⊆ X contains at least two different elements, then the principal filter FA generated by A is not an

ultrafilter. Indeed, suppose this is an ultrafilter and fix a ∈ A, then FA\{a} is a filter satisfying FA ⊆ FA\{a}
hence by maximality of FA, we have FA = FA\{a}. But then we have A \ {a} ∈ FA hence A ⊆ A \ {a},
which is impossible.

Proposition 4.42. The principal ultrafilters on X are precisely the principal filters generated by some x ∈ X.

A natural question is whether there exist non-principal ultrafilters. We will prove in corollary 4.44 that

this is the case. The idea is to extend a non-principal filter (such as the Fréchet filter33) to an ultrafilter.

For this we need the following theorem.

Theorem 4.43 (Ultrafilter lemma). Let F be a filter. Then there exists an ultrafilter U that contains F .

Proof. LetM denote the collection of all filters that contain F . ThenM is nonempty as F ∈M. Consider

the partial order ⊆ on M. We check the conditions in Zorn’s lemma. Let N ⊆ M be a nonempty chain.

Then an upper bound for N is given by
⋃
G∈N G. The fact that this lies inM follows from proposition 4.38.

Thus by Zorn’s lemma, (M,⊆) has a maximal element U . This is an ultrafilter that contains F .

32This example proves that while there exist ‘maximal’ filters in the sense of definition 4.41, a ‘maximum’ does not exist (i.e.
a filter that contains every other filter) if X contains at least two different elements. Indeed, if such a maximum exists then it
must be Fx, but for x, y ∈ X with x 6= y we have Fx ( Fy (and Fy ( Fx).

33The Fréchet filter (on an infinite set) is not an ultrafilter: one can write the infinite set X as a disjoint union X = E ∪ F
where E and F are both infinite (and thus so are their complements), so E and F do not belong to Fr hence Fr is not an
ultrafilter (see proposition 4.45). For the construction of such sets E and F one can use the axiom of choice, but we will not
make this precise here. In the case X = N one can take E = 2N− 1 and F = 2N for instance.
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Note that the ultrafilter lemma is trivial when we want to extend a filter F that satisfies
⋂
F∈F F 6= ∅.

(Filters for which this intersection is empty will later be called free.) Indeed, then we may choose any

point x in this intersection, and then Fx is an ultrafilter that contains F .

The ultrafilter lemma is very useful: it allows one to construct an ultrafilter containing certain desired

sets. We have seen that any collection of sets with the finite intersection property is contained in a filter,

and we now know that such a filter is in turn contained in an ultrafilter.

Corollary 4.44. Let X be an infinite set. Then there exists at least one non-principal ultrafilter on X.

Proof. Let F be a non-principal filter on X, for instance the Fréchet filter. Let U be an ultrafilter that

contains F . We claim that U is non-principal. Note that
⋂
F∈F F /∈ F , so

⋂
F∈F F /∈ U . Now if U were

principal, we would have
⋂
F∈U F ∈ U , but then we have

⋂
F∈U F ⊆

⋂
F∈F F hence

⋂
F∈F F ∈ U , which is

a contradiction. We conclude that U is non-principal.

We now give some characterizations of ultrafilters that will be used throughout this section.

Proposition 4.45 (Characterization of ultrafilters). Let F be a filter on X. The following are equivalent:

(1) F is an ultrafilter;

(2) For every A ⊆ X, either A ∈ F or X \A ∈ F ;

(3) For any finite collection E1, E2, ..., En ∈ P(X),
⋃n
i=1Ei ∈ F implies that Ei ∈ F for some i ∈ {1, ..., n}.

Proof. (1) =⇒ (2). Suppose F is an ultrafilter and let A ⊆ X. Suppose X \ A /∈ F ; we prove that A ∈ F .

We check that the collection F ∪ {A} has the finite intersection property: let E1, E2, ..., En ∈ F and write

E :=
⋂n
i=1Ei ∈ F . Then we have E ∩ A 6= ∅: if E ∩ A = ∅ then E ⊆ X \ A hence X \ A ∈ F , which is a

contradiction. Thus F ∪ {A} has the finite intersection property hence there exists a filter G that contains

F ∪ {A}. By maximality of F , we must have F = G hence A ∈ F , as desired.

(2) =⇒ (3). Suppose (2); by induction it suffices to consider the case n = 2 in (3). Let A,B ⊆ X be

such that A ∪ B ∈ F . Now if both A /∈ F and B /∈ F then we must have X \ A ∈ F and X \ B ∈ F hence

(X \A) ∩ (X \B) = X \ (A ∪B) ∈ F , which is impossible. The result follows.

(3) =⇒ (1). Assume (3) and suppose F is not maximal: there exists a filter G such that F ( G. Fix

some A ∈ G \ F , then as X = A ∪ (X \ A) ∈ F we must have X \ A ∈ F . But then X \ A ∈ G, hence

A ∩ (X \A) = ∅ ∈ G, which is a contradiction. The claim follows.

Intuitively, property (2) states that an ultrafilter decides for every A ⊆ N whether either A is ‘almost

everything’ (A ∈ F) or ‘almost nothing’ (in the sense that X \A ∈ F), and (3) states that if A∪B is ‘almost

everything’ then at least one of A and B must be ‘almost everything’.

We introduce one more notion to classify filters.

Definition 4.46. A filter F is called free if
⋂
F∈F F = ∅.

An example of a free filter is the Fréchet filter on an infinite set X: in the discussion following defini-

tion 4.37 we have seen that
⋂
F∈Fr F = ∅.

Note that a free filter is necessarily non-principal, in view of proposition 4.35. The converse does not

hold in general. Let (M,d) be a metric space and fix an accumulation point x ∈ M (for instance one can

take M = R and any x ∈ R). Consider the neighborhood filter U(x), then we have
⋂
F∈U(x) F = {x} /∈ U(x).

Thus U(x) is neither principal nor free.

We can characterize free filters with the following proposition.

Proposition 4.47. Let X be an infinite set.34 A filter F on X is free if and only if it contains the Fréchet

filter.

34Note that on a finite set X every filter is principal, so not free.
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Proof. Suppose Fr ⊆ F . Then as Fr is free, we have
⋂
F∈F F ⊆

⋂
F∈Fr F = ∅, thus F is free.

Conversely, suppose that F is free and let G ∈ Fr. We show that G ∈ F ; we may assume without loss

of generality that G ( X. For all x ∈ X \ G, choose Fx ∈ F such that x /∈ Fx. Then as X \ G is finite,

the intersection F :=
⋂
x∈X\G Fx lies in F and we have that F ⊆ G by construction. Hence G ∈ F , as

desired.

Corollary 4.48. Let X be an infinite set and let F be a free ultrafilter on X. Then F does not contain a

finite set.

Proof. If F contains a finite set E, then it also contains its complement X\E as the Fréchet filter is contained

in F . But then E ∩ (X \ E) = ∅ ∈ F , which is a contradiction.

For ultrafilters, ‘free’ and ‘non-principal’ are the same.

Theorem 4.49. An ultrafilter is either free or principal (and not both).

Proof. It is clear that at most one of these can hold. Let U be an ultrafilter on X. If X is finite then every

(ultra)filter is principal, so we may assume that X is infinite. Suppose that U is non-principal. We show

that U contains the Fréchet filter.

First consider fixed x ∈ X, then by proposition 4.45 we have that either {x} ∈ U or X \ {x} ∈ U . As U
is non-principal, the former cannot hold, so we have X \ {x} ∈ U .

Now take F ∈ Fr (w.l.o.g. F ( X); then X \F is finite and F = X \ (
⋃
x∈X\F {x}) =

⋂
x∈X\F (X \ {x})

is a finite intersection of sets in U hence lies in U . This proves that Fr ⊆ U . Now by proposition 4.47 it

follows that U is free.

Measures induced by ultrafilters

From now on we consider (ultra)filters on the set X = N. The set of ultrafilters on N is denoted βN.

Ultrafilters induce a 0, 1-valued measure on N in a natural way, by assigning measure 1 to a set if it is

‘almost everything’ (E ∈ U) and 0 if it is ‘almost nothing’ (X \ E ∈ U , or equivalently E /∈ U).

Let U ⊆ P(N) be an ultrafilter on N. Define µU : P(N)→ R by

µU (E) =

{
0 if E /∈ U ,
1 if E ∈ U .

We check that µU is a finitely additive measure. Let E,F ⊆ N be disjoint. If E ∪ F /∈ U then by properties

of filters we have E,F /∈ U and we have the desired additivity. Suppose E∪F ∈ U , then as U is an ultrafilter

we have either E ∈ U or F ∈ U , say without loss of generality E ∈ U . Then F /∈ U as E ∩F = ∅, and again

we have the desired additivity. We call µU the measure associated with (or induced by) the ultrafilter U .

Remark. This way of constructing measures only works for ultrafilters. Suppose F is an arbitrary filter

on N and suppose that the map µ : P(N)→ R defined by

µ(E) =

{
0 if E /∈ F ,
1 if E ∈ F .

defines a finitely additive, 0, 1-valued measure on N. We claim that F is an ultrafilter. Indeed let E ⊆ N,

then µ(E) + µ(N \ E) = µ(N) = 1 hence (precisely) one of µ(E) and µ(N \ E) equals 1. That is, (precisely)

one of E and N \ E lies in F , and by proposition 4.45 it follows that F is an ultrafilter.

Before we present any applications of our new idea of constructing measures, let us check that the map

U → µU is a bijection from the set of ultrafilters on N onto the set of 0, 1-valued measures. Trivially, it is

injective. Now consider any 0, 1-valued measure µ. Define U = {E ⊆ N : µ(E) = 1}. Then U is an ultrafilter:
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• U 6= ∅ as N ∈ U , and ∅ /∈ U ;

• From the fact that µ is 0, 1-valued one can easily check that µ(E ∩ F ) = µ(E)µ(F ) for all E,F ⊆ N,

so that U is closed under finite intersections;

• By monotonicity of µ, U is closed under supersets.

Finally, we have that µ = µU . Thus our identification U ↔ µU is a bijective correspondence.

One can construct 0, 1-valued measures on N that take value 1 on specifically chosen sets: take a collec-

tion C of subsets of N with the finite intersection property, let U be an ultrafilter that contains C; then the

associated measure µU takes value 1 on the elements of C. For instance, letting C = {aN : a ∈ N}, we get a

0, 1-valued measure µ that satisfies µ(aN) = 1 for all a ∈ N.

Let us now investigate whether the 0, 1-valued measures induced by ultrafilters are of a form we have

seen before. Let U be an ultrafilter on N. First suppose U is a principal ultrafilter, then there exists n ∈ N
such that U = Un, the (ultra)filter generated by n. Then the associated measure µ = µUn is given by

µ(E) =

{
0 if n /∈ E,
1 if n ∈ E.

This is precisely the Dirac measure δn centered at n. Conversely, any Dirac measure δn on N is induced

by a principal ultrafilter, namely U = Un = {E ⊆ N : n ∈ E}. Hence we have a bijective correspondence

Un ↔ µUn = δn between principal ultrafilters and Dirac measures. Also note that the collection of ‘Dirac

functionals’, i.e., functionals ϕn ∈ (`∞)′ of the form ϕn(x) = xn, corresponds bijectively to the collection of

Dirac measures via the identification ϕn ↔ µϕn = δn. Finally, the collection of standard (Schauder) basis

vectors e(n) = (0, 0, ..., 0, 1, 0, ...) ∈ `1 corresponds bijectively to the collection of ‘Dirac functionals’ via the

identification e(n) ↔ ϕe(n) = ϕn. Summarizing, we have a bijective correspondence

e(n) ↔ ϕe(n) = ϕn ↔ µϕn = δn = µUn ↔ Un.

Now suppose U is a non-principal (hence free) ultrafilter and let µ be the associated measure. Then µ

vanishes on finite sets as U does not contain finite sets, hence µ is not induced by `1. Note that µU is also not

shift-invariant as it assumes only the values 0 and 1. The relation between free ultrafilters and functionals

will be discussed later in this section.

The idea of a measure induced by an ultrafilter can be extended in the following sense. Let U (1),U (2), ... be

(not necessarily distinct) ultrafilters on N and let a ∈ `1. Define µ : P(N)→ R by

µ(E) =

∞∑
n=1

an1U(n)(E) =

∞∑
n=1

anµU(n)(E). (17)

Then µ is a finitely additive measure. If every U (n) is principal, say U (n) is generated by Nn ∈ N, then one

can check that µ is the measure induced by b = (b1, b2, ...) ∈ `1 defined by bm =
∑∞
n=1 an1{m}(Nn).

Conversely, every measure µ induced by some a ∈ `1 is of the form (17) just by taking U (n) to be the

principal ultrafilter generated by n.

Limits along an ultrafilter

Ultrafilters provide a way to describe convergence of a sequence. The idea is as follows. Suppose we have

a sequence (xn)∞n=1 in a compact metric space; for us this will be a compact subset of R. Most likely this

sequence does not have a limit limn→∞ xn: it can oscillate wildly or show other strange behaviour. However,

as the sequence lies in a compact set, we know that it has a convergent subsequence. In general it will have

many different convergent subsequences, whose limits we call subsequential limits. An ultrafilter can be used
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to choose in a consistent way precisely one of these subsequential limits and define this to be the (generalized)

‘limit’ of the sequence. For instance, consider the sequence (−1, 1,−1, 1, ...). If an ultrafilter U contains the

coefficients corresponding to the subsequential limit 1 (that is, 2N ∈ U), then the limit along this ultrafilter

will be 1; if it contains the coefficients corresponding to −1 then limit will be −1. This intuition will become

more clear in the proof of theorem 4.52.

We first define what it means for a sequence to converge along an ultrafilter.

Definition 4.50 (Limits along an ultrafilter). Let U be an ultrafilter on N and let (xn)∞n=1 be a sequence of

real numbers. We say that a real number α is a U-limit of (xn)∞n=1 if for every ε > 0, we have

{n ∈ N : |xn − α| < ε} ∈ U .

In that case, α is unique and we define U- limxn := α.

Intuitively, this describes that the set {n ∈ N : |xn − α| < ε} is ‘almost everything’: |xn − α| < ε for

µU -almost every n ∈ N.35

Limits along an ultrafilter offer a very useful way to extend the usual limit operator lim from the set of

convergent sequences to an operator U- lim defined on all of `∞, similar to a Banach limit. However, whereas

Banach limits were shift-invariant functionals, we will see that limits along an ultrafilter give a multiplicative

functional, a concept that will be introduced later.

Before we continue, we have to show that a so-called ultralimit is indeed unique whenever it exists.

Proposition 4.51. Let U be any ultrafilter on N and (xn)∞n=1 a sequence of real numbers. If a U-limit of

(xn)∞n=1 exists, then it is unique.

Proof. Suppose α, β ∈ R are both U-limits of (xn)∞n=1. Let ε > 0. Then the sets {n ∈ N : |xn − α| < ε/2}
and {n ∈ N : |xn − β| < ε/2} both belong to U , thus so does their intersection, which is then nonempty.

Take some n in this intersection, then it follows that |α − β| ≤ |α − xn| + |xn − β| < ε. Letting ε ↓ 0, we

obtain α = β, as desired.

In general, existence of an ultralimit is not guaranteed.

Example. Let U be a free ultrafilter on N and let (xn)∞n=1 be defined by xn = n. Then U- limxn does not

exists: for every α ∈ R, the set {n ∈ N : |xn − α| < 1} (or any other choice of ε > 0) is finite hence does not

belong to U .

The case that will be interesting to us is when we have a free ultrafilter and a bounded sequence.

Theorem 4.52 (U is free and (xn)∞n=1 is bounded). Let U be a free ultrafilter on N and suppose (xn)∞n=1 is

a bounded sequence in R. Then U- limxn exists. Moreover, it is a subsequential limit of (xn)∞n=1.

Proof. We need only show existence and the final assertion. We first prove the result for the special case

when (xn)∞n=1 has only finitely many subsequential limits, to explain the intuition described earlier in this

section. The idea is illustrated in figure 3.

35For a finitely additive measure, we define ‘µ-almost everywhere’ in the same way as this is done for σ-additive measures.
More concretely, suppose (S,A) is a measurable space and µ is a finitely additive measure on this space. Let P (x) be a statement
for every x ∈ S. We say that P (x) for µ-almost every x ∈ S if there exists ∆ ∈ A such that P (x) holds for all x ∈ ∆, and
moreover µ(∆C) = 0.
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Figure 3: Proof of part 1 of theorem 4.52. The red points represent the subsequential limits y(1), y(2), ..., y(N).

The points inside the red circles correspond to a set of coordinates {n ∈ N : |xn − y(m)| < ε}. The finite

collection of points outside the red circles corresponds to the set of coordinates Eε.

Part 1: Special case. Let D(x) denote the set of subsequential limits of (xn)∞n=1 and assume this set is

finite. As (xn)∞n=1 is bounded, D(x) is nonempty. We may write D(x) = {y(1), y(2), ..., y(N)} (for y(m) all

different). For every ε > 0, we have

N =

N⋃
m=1

{n ∈ N : |xn − y(m)| < ε} ∪ Eε,

where we define Eε = N \
⋃N
m=1{n ∈ N : |xn − y(m)| < ε}. Then Eε is a finite set (we will prove this), hence

Eε /∈ U .36 Thus by properties of ultrafilters, U contains one of the sets {n ∈ N : |xn−y(m)| < ε}. Intuitively,

this means that U contains the coefficients corresponding to a subsequence that converges to y(m). To see

that Eε is indeed finite, suppose to the contrary that it is infinite. Then one may construct a convergent

subsequence (xnk
)∞k=1 with coefficients nk ∈ Eε. This sequence converges to some y ∈ D(x), say y = y(m).

Then there exists k ∈ N such that |xnk
− y(m)| < ε. But then nk ∈ {n ∈ N : |xn − y(m)| < ε}, which

contradicts the definition of Eε.

Now define δ = min{|y(m) − y(k)| : 1 ≤ k,m ≤ N, k 6= m}37 and take m ∈ {1, ..., N} such that

{n ∈ N : |xn − y(m)| < δ/2} ∈ U . We claim that {n ∈ N : |xn − y(m)| < ε} ∈ U for all ε > 0, so

that y(m) is the desired U-limit. Indeed let ε > 0, without loss of generality ε < δ/2. Then there is

1 ≤ k ≤ N such that {n ∈ N : |xn − y(k)| < ε} ∈ U . Then we have k = m. Indeed, the intersection

{n ∈ N : |xn − y(m)| < δ/2, |xn − y(k)| < ε} lies in U hence is nonempty; take n in this intersection, then

|y(m) − y(k)| ≤ |xn − y(m)| + |xn − y(k)| < δ, hence m = k. Thus y(m) is the (unique) U-limit, and it is a

subsequential limit of (xn)∞n=1.

Part 2: General case. We first prove existence of a U-limit and then show that it must be a subsequential

limit. Note that the sequence lies in the compact set B := [−‖x‖∞, ‖x‖∞]. We claim that there exists

y ∈ B such that y is a U-limit of (xn)∞n=1. Suppose not, then for every y ∈ B there exists εy > 0 such

that {n ∈ N : |xn − y| < εy} /∈ U . Then the collection ((y − εy, y + εy) ∩ B)y∈B is an open cover of B. By

36Here we use that U is free.
37This is only well-defined if N ≥ 2. We may for instance define δ = 1 when N = 1, but one can check that what follows is

trivial when N = 1.
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compactness of B, this has a finite subcover, say

B =

N⋃
m=1

(ym − εym , ym + εym) ∩B.

Then we have that N = {n ∈ N : xn ∈ B}, i.e.,

N =

N⋃
m=1

{n ∈ N : |xn − ym| < εym}.

By properties of ultrafilters, one of these sets is contained in U . But this is a contradiction with the definition

of εym . We conclude that some y ∈ B is a U-limit of (xn)∞n=1. For every ε > 0, the set {n ∈ N : |xn− y| < ε}
lies in U thus it is an infinite set (U is free). Then one may construct a subsequence (xnk

)∞k=1 that converges

to y, which shows that y is a subsequential limit.

Remark. From the final part of the proof we can actually see the following. Let U be a free ultrafilter on N
and let (xn)∞n=1 be any sequence (not necessarily bounded) such that U- limxn exists. Then (xn)∞n=1 has at

least one convergent subsequence, and U- limxn is equal to a subsequential limit.

The ‘converse’ to this does not hold generally, in the following sense. Let U be a free ultrafilter on N
containing 2N38 and consider (xn)∞n=1 = (0, 2, 0, 4, 0, 6, ...). This has a convergent subsequence, but U- limxn
does not exist. Indeed, suppose it exists, then it must be equal to a subsequential limit, hence U- limxn = 0.

But for small ε > 0, the set {n ∈ N : |xn| < ε} = 2N− 1 is not in U , a contradiction.

We have seen that free ultrafilters allow us to attribute a ‘generalized’ limit to any bounded sequence by

consistenly choosing a subsequential limit. The ‘converse’ is also possible, in the following sense.

Proposition 4.53. Let (xn)∞n=1 be a sequence of real numbers and suppose there exists a convergent subse-

quence (xnk
)∞k=1 with limit α. Then there exists a free ultrafilter U on N such that

U- limxn = α.

Proof. Let A = {nk : k ∈ N} and note that this is an infinite set as n(·) is strictly increasing. The collection

Fr ∪ {A} (with Fr the Fréchet filter) has the finite intersection property. To see this, it suffices to show

that for all E ∈ Fr, we have E ∩ A 6= ∅. Now if E ∩ A = ∅, then A ⊆ N \ E and the latter is a finite set,

which is impossible.

Thus we may extend Fr ∪ {A} to an ultrafilter U . As Fr is free, so is U . We claim that U- limxn = α.

Let ε > 0 and takeN ∈ N such that |xnk
−α| < ε for all k ≥ N . Then {nk : k ≥ N} ⊆ {n ∈ N : |xn − α| < ε}.

The first set lies in U as it can be written as {nk : k ∈ N} ∩ {nN , nN + 1, nN + 1, ...}, the intersection of two

sets in U . Therefore {n ∈ N : |xn − α| < ε} ∈ U , as desired.

If a sequence is convergent, then any subsequence converges to the same limit, so by theorem 4.52 we

have the following result.

Corollary 4.54. Let U be a free ultrafilter on N and let (xn)∞n=1 be a convergent sequence. Then

U- limxn = lim
n→∞

xn.

Thus a free ultrafilter U induces a functional U- lim defined on `∞ that extends the usual limit.

In the proof of theorem 4.52 we used the fact that U is free to conclude that U- limxn is equal to some

subsequential limit of (xn)∞n=1. This suggests that this might fail for U-limits over principal ultrafilters.

Indeed, principal filters do not give us something useful, as the next proposition shows.

38One can easily construct such an ultrafilter by extending the collection Fr ∪{2N} (with the finite intersection property) to
an ultrafilter.
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Proposition 4.55 (U is principal). Let U be a principal ultrafilter on N. Take m ∈ N such that U = Um,

the principal filter generated by m. Then for any sequence (xn)∞n=1 of real numbers, U- limxn exists and

U- limxn = xm.

Proof. To see that xm is the (unique) U-limit of (xn)∞n=1, just note that for all ε > 0, we have that

xm ∈ {n ∈ N : |xn − xm| < ε} hence this set lies in U .

Before we discuss more properties of U- lim, let us mention that the measures µU associated with an

ultrafilter U (either free or principal) are really just limits along this ultrafilter. More precisely, we have

that µU (E) = U- lim1E(n). Indeed, first suppose that E ∈ U , then for all 0 < ε < 1, we have that

{n ∈ N : |1E(n) − 1| < ε} = E ∈ U , thus µU (E) = U- lim1E(n). If E /∈ U , then N \ E ∈ U and a similar

reasoning applies.

An ultrafilter (either free or principal) U gives rise to a map U- lim : `∞ → R. This function has some

special properties: it is a so-called multiplicative functional.

Multiplicative functionals

Definition 4.56 (Multiplicative functional). A function Φ : `∞ → R is called a multiplicative functional

if it satisfies

(1) Φ(ax+ by) = aΦ(x) + bΦ(y) for all x, y ∈ `∞ and a, b ∈ R (linearity);

(2) Φ(x) ≥ 0 whenever x ∈ `∞ with xn ≥ 0 ∀n ∈ N (positivity);

(3) Φ(1) = 1, where 1 := (1, 1, ...) (Φ is normalized);

(4) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ `∞, where xy = (xnyn)∞n=1 (Φ is multiplicative).

Remark. Any map Φ : `∞ → R with properties (1), (2) and (3) satisfies Φ ∈ (`∞)′ and ‖Φ‖(`∞)′ = 1. Indeed,

let x ∈ `∞, first consider the case ‖x‖∞ = 1. Let y := 1− x, so that yn ≥ 0. Then 1 = Φ(1) = Φ(x+ y) =

Φ(x) + Φ(y), so that 1 − Φ(x) = Φ(y) ≥ 0 hence Φ(x) ≤ 1. This reasoning applied to −x shows that

Φ(−x) ≤ 1, hence |Φ(x)| ≤ 1 = ‖x‖∞. For general nonzero x ∈ `∞, the claim |Φ(x)| ≤ ‖x‖∞ follows from

the previous by homogeneity, and the case x = 0 is trivial. Thus we see that Φ ∈ (`∞)′ and ‖Φ‖(`∞)′ ≤ 1;

combined with (3) this gives ‖Φ‖(`∞)′ = 1

We sometimes say that a functional ϕ ∈ (`∞)′ is multiplicative on a subset W ⊆ `∞ if ϕ(xy) = ϕ(x)ϕ(y)

holds for all x, y ∈ W . Note that a functional being multiplicative on `∞ does not necessarily mean that it

is a multiplicative functional.

When we know that a function is a multiplicative functional, we will often write it as Φ or Ψ instead

of ϕ or ψ to emphasize that it has these additional properties. This should not be confused with Banach

limits. A Banach limit cannot be multiplicative: this follows by considering the sequence (1, 0, 1, 0, ...).

The next lemma gives sufficient (and necessary) conditions for a functional to be multiplicative on `∞.

Lemma 4.57. Suppose ϕ ∈ (`∞)′ satisfies

ϕ(1E1F ) = ϕ(1E)ϕ(1F )

for all E,F ⊆ N. Then ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ `∞.

Proof. First we prove the claim for simple sequences. Indeed, if a =
∑n
i=1 αi1Ai and b =

∑m
j=1 βj1Bj are

simple sequences, then

ab =

n∑
i=1

m∑
j=1

αiβj1Ai1Bj .

Then using linearity of ϕ and the assumption, we obtain

ϕ(ab) =

n∑
i=1

m∑
j=1

αiβjϕ(1Ai1Bj ) =

n∑
i=1

m∑
j=1

αiβjϕ(1Ai)ϕ(1Bj ) = ϕ(a)ϕ(b).
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Now consider general x, y ∈ `∞. By splitting x = x+ − x− and y = y+ − y− (x±n = max{±xn, 0} ≥ 0,

similar for y) and using linearity of ϕ, we may assume without loss of generality that xn, yn ≥ 0 for all n.

Let ε > 0. Let a be a positive simple sequence such that ‖x− a‖∞ ≤ ε and ‖a‖∞ ≤ ‖x‖∞, and let b be a

positive simple sequence such that ‖y − b‖∞ ≤ ε and ‖b‖∞ ≤ ‖y‖∞. Then for all n, we have

|xnyn − anbn| = |xn(yn − bn) + bn(xn − an)| ≤ ε‖x‖∞ + ε‖y‖∞,

so that ‖xy − ab‖∞ ≤ ε(‖x‖∞ + ‖y‖∞). Then

|ϕ(xy)− ϕ(x)ϕ(y)| = |ϕ(xy)− ϕ(ab) + ϕ(ab)− ϕ(x)ϕ(y) + ϕ(a)ϕ(b)− ϕ(a)ϕ(b)|
= |(ϕ(xy)− ϕ(ab)) + (ϕ(a)ϕ(b)− ϕ(x)ϕ(y))|
≤ |ϕ(xy)− ϕ(ab)|+ |ϕ(a)ϕ(b)− ϕ(x)ϕ(y)|.

We can estimate the first term by

|ϕ(xy)− ϕ(ab)| = |ϕ(xy − ab)| ≤ ‖ϕ‖(`∞)′‖xy − ab‖∞ ≤ ε(‖x‖∞ + ‖y‖∞)‖ϕ‖(`∞)′ .

The second term can be estimated by

|ϕ(a)ϕ(b)− ϕ(x)ϕ(y)| = |ϕ(a)(ϕ(b)− ϕ(y)) + ϕ(y)(ϕ(a)− ϕ(x))| ≤ |ϕ(a)| · |ϕ(b− y)|+ |ϕ(y)| · |ϕ(a− x)|
≤ ‖ϕ‖(`∞)′‖a‖∞‖ϕ‖(`∞)′‖b− y‖∞ + ‖ϕ‖(`∞)′‖y‖∞‖ϕ‖(`∞)′‖x− a‖∞
≤ ‖ϕ‖2(`∞)′(‖x‖∞‖b− y‖∞ + ‖y‖∞‖a− x‖∞) ≤ ε‖ϕ‖2(`∞)′(‖x‖∞ + ‖y‖∞).

Altogether, we find

|ϕ(xy)− ϕ(x)ϕ(y)| ≤ ε(‖ϕ‖(`∞)′ + ‖ϕ‖2(`∞)′)(‖x‖∞ + ‖y‖∞).

Letting ε ↓ 0, the desired result follows.

The usual identification of (`∞)′ with ba(N,P(N)), i.e., the map ϕ→ µϕ, is an injection from the set of

multiplicative functionals into the set of 0, 1-valued measures. To see that this maps indeed into the set of

0, 1-valued measures, suppose ϕ ∈ (`∞)′ is a multiplicative functional, then for all E ⊆ N we have

µϕ(E) = ϕ(1E) = ϕ(1E1E) = ϕ(1E)ϕ(1E) = µϕ(E)2.

This can only hold if µϕ(E) ∈ {0, 1}. Finally, note that the value 1 is attained in µϕ(N) = 1. The next

proposition shows that the map ϕ → µϕ from the set of multiplicative functionals to the set of 0, 1-valued

measures is also surjective.

Proposition 4.58. Suppose µ ∈ ba(N,P(N)) is a 0, 1-valued measure. Then there exists a multiplicative

functional ϕ ∈ (`∞)′ that satisfies µϕ = µ. That is, the inducing functional of µ is a multiplicative functional.

Proof. Let ϕ ∈ (`∞)′ be the inducing functional of µ. We check the defining properties of multiplicative

functionals. Trivially ϕ is linear, and ϕ(1) = µ(N) = 1. It remains to show that ϕ is positive and multi-

plicative on `∞. Let x ∈ `∞ be a sequence with xn ≥ 0 for all n. Let a ∈ `∞ be a simple sequence such that

0 ≤ an ≤ xn for all n (lemma 1.4). Write a =
∑n
i=1 αi1Ai

with αi ≥ 0 and (Ai)
n
i=1 pairwise disjoint. Then

0
(∗)
≤

n∑
i=1

αiµ(Ai) =

∫
N
a dµ

(∗∗)
≤
∫
N
x dµ = ϕ(x).

In (∗) we used the fact that µ assumes only positive values and in (∗∗) we used the definition of the integral.

This proves that ϕ is positive.
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Now we show that ϕ is multiplicative on `∞. We use lemma 4.57. Let E,F ⊆ N. From the fact that µ is

0, 1-valued, one can easily check that µ(E ∩ F ) = µ(E)µ(F ). We have

ϕ(1E1F ) = ϕ(1E∩F ) = µ(E ∩ F ) = µ(E)µ(F ) = ϕ(1E)ϕ(1F ).

As E and F were arbitrary, lemma 4.57 shows that ϕ is multiplicative on `∞. We conclude that ϕ is a

multiplicative functional.

Combining proposition 4.58 and the discussion preceding it, we conclude that the map ϕ ↔ µϕ is a

bijective correspondence between multiplicative functionals and 0, 1-valued measures. Going in the reverse

direction, this states that the map µ ↔
∫
N · dµ is a bijective correspondence between 0, 1-valued measures

and multiplicative functionals.

Earlier we have seen that the bijective correspondence U ↔ µU between ultrafilters on N and 0, 1-

valued measures. By composing the maps U → µU and µ →
∫
N · dµ, we obtain a bijective correspondence

U ↔
∫
N · dµU between ultrafilters and multiplicative functionals. In fact, this is precisely the map U → U- lim.

To see this, let U be an ultrafilter on N. We first show that U- lim ∈ (`∞)′. By the remark after definition 4.56,

we need only show that it is linear, positive and normalized (as in definition 4.56). This is easy to see if U is

principal, so we may assume it is free.

• Linearity. Let (xn)∞n=1 and (yn)∞n=1 be sequences in `∞ and set x = U- limxn, y = U- lim yn. Fix ε > 0,

then we have

{n ∈ N : |xn − x| < ε/2} ∩ {n ∈ N : |yn − y| < ε/2} ⊆ {n ∈ N : |(xn + yn)− (x+ y)| < ε}.

The first intersection is contained in U , thus so is the right set. Thus U- lim preserves addition. Now

let α ∈ R be a scalar. For α = 0 we see that U- limαxn = αx, so suppose α 6= 0. Then for ε > 0, we

have

{n ∈ N : |αxn − αx| < ε} = {n ∈ N : |xn − x| <
ε

|α|
} ∈ U ,

which shows scalar homogeneity.

• Positivity. If (xn)∞n=1 has only positive terms, then every subsequential limit is positive, hence the

result follows.

• U- lim is normalized. The sequence (1, 1, 1, ...) is convergent with limit 1, and the result follows.

By the remark after definition 4.56, we conclude that U- lim ∈ (`∞)′. To show that U- lim =
∫
N · dµU , it

suffices to prove that they agree on all indicator functions. Indeed, let E ⊆ N, then we have that

U- lim1E(n) = µU (E) =

∫
N
1E dµU ,

as desired.

We can summarize these identifications in the following way:

U ↔ µU ↔
∫
N
· dµU = U- lim .

If ϕ ∈ (`∞)′ is a multiplicative functional, then the ultrafilter U that induces ϕ via the above identification

is U = {E ⊆ N : µϕ(E) = 1} = {E ⊆ N : ϕ(1E) = 1}.

From the previous discussion and proposition 4.58 we derive the following.

Theorem 4.59. Let U be an ultrafilter on N. Then U- lim : `∞ → R is a multiplicative functional.

Proof. Note that U- lim =
∫
N · dµU is the inducing functional of µU , and the latter is a 0, 1-valued measure.

The result now follows from proposition 4.58.
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The functional U- lim is not very interesting when U is principal, but when U is free it has very useful

properties. In this case we have a multiplicative functional U- lim that extends the usual limit. Using this

functional U- lim, we can build a Banach limit with some additional properties by taking the composition

with the Cesàro operator, introduced in definition 4.9.

Theorem 4.60. Let U be a free ultrafilter; for notational convenience write Φ := U- lim. Then Φ ◦ C is a

Banach limit. Moreover, Φ◦C is multiplicative on convergent sequences; that is, if x, y ∈ `∞ are convergent,

then (Φ ◦ C)(xy) = (Φ ◦ C)(x)(Φ ◦ C)(y).

Proof. As Φ is a multiplicative functional (theorem 4.59), we have that ‖Φ‖(`∞)′ = 1 (see discussion after

definition 4.56). Moreover, Φ extends limits (corollary 4.52). Hence by proposition 4.11, the functional

Φ ◦ C is a Banach limit. For the final assertion, note that whenever x, y ∈ `∞ are convergent, we have by

lemma 4.10 that

C(xy) = lim
n→∞

xnyn = lim
n→∞

xn · lim
n→∞

yn = C(x)C(y),

and as Φ is multiplicative the claim follows. This finishes the proof.

Remark. Note that the functional Φ◦C cannot be multiplicative on `∞, as it would then be a multiplicative

Banach limit, which does not exist.

As an application of theorem 4.60, one can construct a positive measure µ on N that extends density by

taking a free ultrafilter U and defining

µ(E) = U- lim
1

n

n∑
k=1

1E(k) = U- lim
|E ∩ {1, 2, ..., n}|

n
.

4.6 Stretchable, thinnable and elastic measures

In this section we examine in greater detail how ‘nice’ a measure on N can be, in the sense that it has intu-

itively desirable properties. We will restrict ourselves here to finitely additive measures that map into [0, 1].

The material presented in this section is based on [5].

Besides extending density, we would like measures to have some additional properties.

• Suppose we have a set K ⊆ N. Consider the set 3K; this is the set K ‘stretched out’ by a factor 3.

Intuitively, 3K is 3 times less dense than K. Therefore we would like to have µ(3K) = 1
3µ(K).

• Somewhat similar to ‘stretching out’; we can do something that can be described as ‘thinning out’.

Let K ⊆ N be a set and let F be the set obtained by taking every third element of K. For instance, if

K = {2, 3, 7, 9, 10, 12, 15, 17, 23, 27},

then F is given by F = {7, 12, 23}. As F is intuitively 3 times less dense than K, we would like to

have µ(F ) = 1
3µ(K).

We can consider ‘stretching out’ and ‘thinning out’ in a more general way. Suppose f : N → N is an

injection39 and suppose

α := lim
n→∞

n

f(n)

exists. Then loosely speaking,40 f(n) ≈ βn for large n, where we define β = 1
α .

• Now consider any subset K ⊆ N, then f [K] ≈ βK, i.e. f [K] is approximately the set K ‘stretched

out’ by a factor β. Hence we would like to have µ(f [K]) ≈ 1
βµ(K), i.e. µ(f [K]) ≈ αµ(K).

39We will later explain why we require that f be injective.
40We sacrifice some rigour in this reasoning, for the sake of intuition. For instance, to define β we assume that α 6= 0, the

notion ‘≈’ is not properly defined, and ‘taking every β-th element of K’ only makes sense if β ∈ N.
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• ‘Thinning out’ has an analogous interpretation. Suppose F is obtained from K by taking the f(n)-th

element of K, for all n ∈ N for which an f(n)-th element of K exists. Then intuitively F ≈ F ′,

where F is the set obtained from K by taking every β-th element. Thus we would like to have that

µ(F ) ≈ µ(F ′) = 1
βµ(K), i.e. µ(F ) ≈ αµ(K).

Observe that the first considerations are just a special case of the latter by taking f(n) = 3n.

Before giving a definition of ‘stretchability’ and ‘thinnability’, let us make precise the idea of ‘taking

the m-th element of a set’. Let K ⊆ N be a set. First suppose K is infinite. Define cK : N → K as the

unique strictly increasing surjection from N onto K, the counting function of K. If we then for instance

take f : N → N as f(n) = 3n, then (cK ◦ f)[N] contains precisely every third element of K. We use a

similar construction for K finite: in that case, let cK : {1, 2, ..., |K|} → K be the unique strictly increasing

surjection.

Definition 4.61. Let f : N→ N be any function and let K ⊆ N.

• Define f ◦K = f [K].

• Define K ◦ f as follows.

– If K is infinite, set K ◦ f = (cK ◦ f)[N].

– If K is finite, set K ◦ f = cK [f [N] ∩ {1, 2, ..., |K|}].

We use the notation f ◦K instead of (the shorter notation) f [K] to emphasize that f ◦K and K ◦ f are

similar concepts. Note that in fact f ◦K = (f ◦ cK)[N] or (f ◦ cK)[{1, 2, ..., |K|}] (depending on whether K

is finite or not).

The notions f ◦K and K ◦ f capture the idea of ‘stretching out’ and ‘thinning out’, respectively. If we

take for instance f(n) = 3n in definition 4.61, then f ◦K corresponds to 3K, and K ◦ f corresponds to the

set F that is obtained by taking every third element of K. Definition 4.61 allows more f than just ones that

are linear; the idea is that we will consider functions f that are ‘almost linear’.

Remark. Observe that f ◦N = N ◦ f for any f : this follows from the fact that cN = idN. It is also intuitively

clear if we take for example f(n) = 3n: stretching out N by a factor 3 is the same as taking every third

element.

Define L as the set of all injections f : N→ N for which the following limit exists:

λ(f) := lim
n→∞

n

f(n)
. (18)

Thus L is the set of injections that are ‘eventually linear’: loosely speaking, f(n) ≈ 1
λ(f)n for large n.41

Definition 4.62 (Stretchability, thinnability). Let µ : P(N)→ [0, 1] be a finitely additive measure.

(1) µ is called stretchable if µ(f ◦K) = λ(f)µ(K) for all f ∈ L and all K ⊆ N.

(2) µ is called thinnable if µ(K ◦ f) = λ(f)µ(K) for all f ∈ L and all K ⊆ N.

Remark. There exists a thinnable measure on N that is not stretchable (see [5, thm. 1.5]). It is not known

whether every stretchable measure is thinnable ([5, p. 227]).

We will show that N has a measure that is both stretchable and thinnable. Such a measure automatically

extends density; we will see this in corollary 4.64.

The next proposition is in accordance with our intuition. Statement (1) shows that if K is obtained by

stretching out N by a factor 1
λ(f) (that is to say, K := f [N] for some f ∈ L; recall f(n) ≈ 1

λ(f)n), then d(K)

exists and d(K) = λ(f) · d(N) = λ(f). Note this set K is the same as the set K ′ obtained by thinning out

N by a factor 1
λ(f) , by which we mean that K ′ := N ◦ f .

41As said, this is not very precise, and certainly does not make sense if λ(f) = 0. If λ(f) = 0, then the interpretation ‘almost
linear’ does not work very well, as for instance the function f(n) = n2 is by no means close to being linear.
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Proposition 4.63. Let f : N→ N be an injection. Define K = f ◦ N = N ◦ f .

(1) If f ∈ L, then d(K) = λ(f).

(2) If f is strictly increasing and d(K) exists, then f ∈ L and λ(f) = d(K).

Proof. We first prove (1). Figure 4 illustrates the intuition of the proof.

Figure 4: Proof of case 1 of theorem 4.63.

Define λ := λ(f) = limn→∞
n

f(n) .

Case 1: λ > 0. First assume that λ > 0. Let ε ∈ (0, λ). Due to injectivity of f , we have for all n ∈ N

|{K ∩ {1, 2, ..., n}| = |{k ∈ N : f(k) ≤ n}|.

Let N ∈ N be such that for all k ≥ N , we have | k
f(k) − λ| < ε. Thus for all k ≥ N , we have

k

λ+ ε
< f(k) <

k

λ− ε
.

Now let

n ≥ max
{
N,

N

λ+ ε
, max
1≤k≤N

f(k)
}

be arbitrary.42 We claim that

{1, 2, ..., b(λ− ε)nc}
(i)

⊆ {k ∈ N : f(k) ≤ n}
(ii)

⊆ {1, 2, ..., d(λ+ ε)ne}. (19)

42In fact n ≥ max{f(k) : 1 ≤ k ≤ N} already enforces n ≥ N due to injectivity. For the interpretation in the picture this is
added.
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(i) Let 1 ≤ k ≤ b(λ− ε)nc, so that k ≤ (λ− ε)n. If k ≤ N then f(k) ≤ n, as desired, and if k > N then

f(k) <
k

λ− ε
≤ (λ− ε)n

λ− ε
= n,

as desired.

(ii) Let k ∈ N with f(k) ≤ n. Suppose to the contrary that k > (λ+ ε)n, then k ≥ N thus

f(k) >
k

λ+ ε
>

(λ+ ε)n

λ+ ε
= n,

which is a contradiction. Hence k ≤ d(λ+ ε)ne, as desired.

From equation (19) we conclude that for all n large enough,

b(λ− ε)nc
n

≤ |{k ∈ N : f(k) ≤ n}|
n

≤ d(λ+ ε)ne
n

.

This implies that for all n large enough, we have∣∣∣∣ |{k ∈ N : f(k) ≤ n}|
n

− λ
∣∣∣∣ ≤ 2ε.

As ε > 0 was arbitrary, this proves that d(K) = λ.

Case 2: λ = 0. Now suppose λ = 0; this proof is similar to the previous. Let ε > 0 and let N ∈ N be

such that for all k ≥ N , we have | k
f(k) | < ε. Then we have that k

ε < f(k) for all k ≥ N . Now let n ≥ N
ε be

arbitrary. We claim that

{k ∈ N : f(k) ≤ n} ⊆ {1, 2, ..., dεne}. (20)

Indeed, let k ∈ N with f(k) ≤ n and suppose to the contrary that k > εn. Then k > N hence

f(k) >
k

ε
>
εn

ε
= n,

which is a contradiction. This proves (20). Then finally, from (20) we see that for all n large enough, we

have
|{k ∈ N : f(k) ≤ n}|

n
≤ dεne

n
≤ 2ε.

As ε > 0 was arbitrary, this shows that d(K) = 0, as desired.

Finally, we prove (2). This is very straightforward:

d(K) = lim
n→∞

|K ∩ {1, 2, ..., n}|
n

(i)
= lim

n→∞

|{k ∈ N : f(k) ≤ n}|
n

(ii)
= lim

n→∞

|{k ∈ N : f(k) ≤ f(n)}|
f(n)

(iii)
= lim

n→∞

|{1, 2, ..., n}|
f(n)

= λ.

In (i) we used an observation from case 1; in (ii) we pass to a subsequence and (iii) follows from the fact

that f is strictly increasing. This finishes the proof.

A stretchable or thinnable measure automatically extends density.

Corollary 4.64. Suppose µ : P(N)→ [0, 1] is stretchable or thinnable. Then µ extends density.

Proof. Let E ⊆ N be such that d(E) exists. First suppose that E is infinite and let cE : N→ N be the (strictly

increasing) counting function of E. Then by proposition 4.63, we have that cE ∈ L and λ(cE) = d(E). As

µ is stretchable or thinnable, we obtain

µ(E) = µ(cE ◦ N) = µ(N ◦ cE) = λ(cE)µ(N) = d(E),

50



as desired. Now suppose E is finite and take an infinite set A with d(A) = 0 such that E ∩ A = ∅. For

instance one can take A = {2n : n ≥ N} for N large enough. Then using the previous in (∗), we have

µ(E) = µ(E) + d(A)
(∗)
= µ(E) + µ(A) = µ(E ∪A)

(∗)
= d(E ∪A) = d(A) = 0 = d(E),

as desired. This finishes the proof.

Remark. We can now see why it is important that we consider only injections in the definition of stretchability

and thinnability. Suppose we require that the conditions in definition 4.62 hold for all functions f : N→ N
for which limn→∞

n
f(n) exists. We claim that a stretchable or thinnable measure (under this new definition)

does not exist. Consider f(2n − 1) = f(2n) = 2n for n ∈ N, then λ := limn→∞
n

f(n) = 1. Suppose µ is a

stretchable or thinnable measure in the new sense, then we have that

µ(f ◦ N) = µ(N ◦ f) = λµ(N) = 1.

We have f ◦ N = N ◦ f = 2N. As µ is also stretchable or thinnable in the sense of definition 4.62, µ must

extend density by corollary 4.64, so we must have µ(2N) = 1
2 , a contradiction.

We introduce one more type of measure that we consider ‘nice’. For functions f, g : N → N, define an

ordering by setting f ≤ g if and only if f(n) ≤ g(n) for all n ∈ N.

Definition 4.65. A finitely additive measure µ : P(N) → [0, 1] is called elastic if the following two condi-

tions are satisfied:

(1) µ(mK) = m−1µ(K) for all m ∈ N.

(2) For all f, g : N→ N, if f ≤ g then µ(f ◦ N) ≥ µ(g ◦ N).

Note that a stretchable measure obviously satisfies (1), just by taking f(n) = mn in the definition of

stretchability. Property (2) is desirable in the following sense. Intuitively, the set 3N is less dense than the

set 2N, so we would like to have µ(3N) ≤ µ(2N). (This is the case if µ extends density.) Note that this is

really just taking f(n) = 2n and g(n) = 3n in (2). Property (2) requires such a condition on µ in more

generality, namely for all functions f and g.

We have the following very useful result, which we will not prove here. A proof can be found in [5].

Theorem 4.66. An elastic measure is both stretchable and thinnable.

In theorem 4.68 we construct an elastic measure, thereby showing (in particular43) the existence of a

stretchable and thinnable measure. We use the following lemma, which describes how one can construct a

measure satisfying (2) in definition 4.65.

Lemma 4.67. Let Φ be a Banach limit. Suppose α : N× N → [0,∞) is a function satisfying the following

conditions:

(1)
∞∑
j=1

α(i, j) = 1 for all i ∈ N.

(2) α(i, j) ≥ α(i, j + 1) for all i, j ∈ N.

Define the finitely additive measure µ : P(N)→ [0, 1] by

µ(K) = Φ

∑
j∈K

α(1, j),
∑
j∈K

α(2, j),
∑
j∈K

α(3, j), ...

 .

Suppose f, g : N→ N are functions with f ≤ g. Then we have that µ(f ◦ N) ≥ µ(g ◦ N).

43It is not known whether there exists a nonelastic, stretchable and thinnable measure [5].
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Proof. Note that µ is well-defined (i.e. maps into [0, 1]) as Φ preserves positivity, and clearly it is a finitely

additive measure. To prove the claim, it suffices to show that for all i ∈ N, we have∑
j∈g[N]

α(i, j) ≤
∑
j∈f [N]

α(i, j).

Fix i ∈ N. Define f̃ , g̃ : N→ N ∪ {0} by

f̃(n) =

{
f(n) if f(n) /∈ {f(1), f(2), ..., f(n− 1)},
0 otherwise.

g̃(n) =

{
g(n) if g(n) /∈ {g(1), g(2), ..., g(n− 1)},
0 otherwise.

(21)

Moreover, define α(i, 0) = 0. We see that the sequence (f̃(n))∞n=1 contains every f(m) exactly once, and a

term α(i, f̃(n)) is zero whenever f(n) has already appeared in {f(1), f(2), ..., f(n− 1)}. Thus we have that

∑
j∈f [N]

α(i, j) =

∞∑
n=1

α(i, f̃(n)). (22)

The same claims and the same equality (22) hold with f and f̃ replaced by g and g̃, respectively. Thus the

result we have to show amounts to the following:

∞∑
n=1

α(i, g̃(n)) ≤
∞∑
n=1

α(i, f̃(n)).

This follows by comparing the terms. Let n ∈ N. If g̃(n) = 0, then α(i, g̃(n)) = 0 ≤ α(i, f̃(n)). Now suppose

g̃(n) 6= 0, then we have

f̃(n) ≤ f(n) ≤ g(n) = g̃(n).

By assumption (2), we have

α(i, f̃(n)) ≥ α(i, f̃(n) + 1) ≥ α(i, f̃(n) + 2) ≥ ... ≥ α(i, g̃(n)).

This finishes the proof.

Theorem 4.68. There exists an elastic measure on N.

Proof. Let ζ be the Riemann zeta function and define α : N× N→ [0,∞) by

α(i, j) =
j−(1+1/i)

ζ(1 + 1/i)
.

One can easily verify that α satisfies the conditions in lemma 4.67. Let µ be defined as in lemma 4.67. We

need only show that µ has the desired scaling property. Let m ∈ N and K ⊆ N. It is useful to observe first

that for all j ∈ N, we have (∗): limi→∞ α(i, j) = 0. This follows from the fact that

lim
i→∞

ζ(1 + 1/i) =

∞∑
n=1

1

n
=∞,

using the monotone convergence theorem.

To prove that µ(mK) = m−1µ(K), it suffices to show the following (as a Banach limit sends convergent
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sequences to their limit):

lim
i→∞

 ∑
j∈mK

α(i, j)− 1

m

∑
j∈K

α(i, j)

 = 0.

For all i ∈ N, we have that ∑
j∈mK

α(i, j) =
∑
j∈K

α(i,mj) = m−(1+1/i)
∑
j∈K

α(i, j).

Thus we have that

∑
j∈mK

α(i, j)− 1

m

∑
j∈K

α(i, j) =

(
1

m(1+1/i)
− 1

m

)∑
j∈K

α(i, j)

 .

The left factor tends to 0 as i→∞. This is also the case for the right factor; this follows from the dominated

convergence theorem and (∗). This finishes the proof.

A pathological measure

So far we have constructed some well-behaved measures. We can also do the opposite: find out what

pathological properties a measure can have. Here we mention an example.

Let us define the following.

• For K ⊆ N and r ∈ [1,∞), define r +K = {r + k : k ∈ K} and rK = {rk : k ∈ K}.
• For D ⊆ [1,∞), define bDc = {bdc : d ∈ D}.
• Let A ⊆ [1,∞) be a subset and µ a finitely additive measure. Then µ is called A-stretchable if

µ(bb+ aKc) = a−1µ(K) for each a ∈ A, b ∈ [0,∞) and K ⊆ N.

Note that a stretchable measure is A-stretchable for any A ⊆ [1,∞) as we can take f(n) = bb + anc
in the definition of stretchability. The converse need not be true, in the sense that not every not every

[1,∞)-stretchable measure is stretchable [5, thm.1.4].

Theorem 4.69 (A pathological measure). There exists a Q≥1-stretchable measure µ on N and a set K ⊆ N
such that µ(K) = 1 but µ(brKc) = 0 for each irrational number r ∈ [1,∞).

Proof. A construction of this measure can be found in [5, thm. 1.7].

4.7 Extension of finitely additive measures

In this section we prove that a finitely additive measure defined on a suitable domain R ⊆ P(S) can be

extended to a finitely additive measure on the whole power set P(S). This result can be used to prove the

existence of unbounded finitely additive measures. Since the results in this section hold very generally, we

do not restrict ourselves to N here.

In order to state the results we need to consider finitely additive measures defined on more general

domains than σ-algebras.

Definition 4.70 (Ring). Let S be a set. A collection of sets R ⊆ P(S) is called a ring if the following

conditions are satisfied:

(1) ∅ ∈ R;

(2) A,B ∈ R =⇒ B \A ∈ R;

(3) A ∪B ∈ R =⇒ A ∪B ∈ R.

Definition 4.71 (Finitely additive measure). Let S be a set and R ⊆ P(S) be a ring. A function µ : R → R
is called a finitely additive measure if µ(∅) = 0 and µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ∈ R.
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The following lemma will be useful for constructing extensions of measures.

Lemma 4.72. Let V be a real vector space and let W ⊆ V be a linear subspace. Suppose ϕ : W → R is a

linear map. Then ϕ has a linear extension Φ : V → R.

Proof. Let us denote the domain of a function f by Df . Let M be the collection of all linear functions

f : Df → R with the following properties:

• f is defined on a linear subspace W ⊆ Df ⊆ V ;

• f(w) = ϕ(w) for all w ∈W .

Observe that M 6= ∅ as ϕ ∈ M. Now define a partial order on M by setting f � g if and only if Df ⊆ Dg

and f(x) = g(x) for all x ∈ Df . We check the conditions in Zorn’s lemma. Let N ⊆ M be a nonempty

chain. We construct an upper bound fN ∈M for N . Define

A =
⋃
f∈N

Df .

Then A is a linear subspace of V : this follows from the fact that N is a chain. Define fN : A→ R as follows.

Let y ∈ A, then there exists f ∈ N such that y ∈ Df . Define fN (y) := f(y). From the fact that N is a chain

it follows that this is well-defined (i.e. does not depend on the choice of f). Finally we check that fN ∈M:

linearity of fN follows again from the fact that N is a chain, we have that W ⊆ A ⊆ V , and fN extends ϕ.

We conclude that fN ∈ M, and by construction it is an upper bound for N . Thus by Zorn’s lemma,

there exists a maximal element Ψ ∈ M. We claim that DΨ = V . Suppose not, and fix some x ∈ V \DΨ.

Define Ψ : span{x} ⊕ DΨ → R by Ψ(αx + y) = Φ(y). Then we have that Ψ ∈ M and Φ � Ψ, but we do

not have Φ = Ψ. This contradicts maximality of Φ. Hence we conclude that Φ : V → R is the desired linear

extension.

Theorem 4.73 (Extension of finitely additive measures). Let R ⊆ P(S) be a ring and let µ : R → R be a

finitely additive measure. Then there exists a finitely additive measure µ : P(S)→ R that extends µ.

Proof. Define

VR ={f : S → R : f =

m∑
i=1

ai1Ai
, ai ∈ R, Ai ∈ R},

VP(S) ={g : S → R : g =

n∑
j=1

bj1Bj
, bj ∈ R, Bj ∈ P(S)}.

These are real vector spaces and VR is a subspace of VP(S). From the properties of a ring it follows that

every f ∈ VR can be written as

f =

m∑
i=1

ai1Ai

for real scalars a1, ..., am and pairwise disjoint sets A1, A2, ..., Am ∈ R. Now define

ϕ : VR → R ϕ(f) = ϕ

(
m∑
i=1

ai1Ai

)
=

m∑
i=1

aiµ(Ai), (23)

where f has a representation with disjoint A1, A2, ..., Am ∈ R. Then ϕ is well-defined: if

f =

m∑
i=1

ai1Ai =

n∑
j=1

bj1Bj

with A1, A2, ..., Am ∈ R pairwise disjoint and B1, B2..., Bn ∈ R pairwise disjoint, then by using a common

refinement Cij = Ai ∩ Bj one checks that the value of (23) does not depend on the representation. In a

similar manner one checks that ϕ is linear.
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Therefore by lemma 4.72, there exists a linear extension Φ : VP(S) → R of ϕ. Now define

µ : P(S)→ R µ(A) = Φ(1A).

This map has the desired properties.

There are much more useful results regarding extensions of measures than proposition 4.73. For instance,

Carathéodory’s extension theorem states that a σ-additive premeasure defined on a ring R can be extended

to a σ-additive measure on σ(R) (and possibly a slightly bigger collection). But often a σ-additive extension

to the whole power set is not possible.

Proposition 4.74. Let S be a set. Then there exists a finitely additive measure µ : P(S)→ R such that for

every finite set A ⊆ S, we have µ(A) = |A|.

Proof. If S is finite then we can just define µ(A) = |A| and this has the desired properties. So we may

assume that S is infinite. Let R = {A ⊆ S : A or S \ A is finite}. It can easily be seen that R is a ring.

Now define

µ : R → R µ(A) =

{
|A| if A finite,

−|S \A| if S \A finite.

It is not hard to check that µ is a finitely additive measure on R. Now apply theorem 4.73 to find an

extension µ : P(S)→ R. This extension has the desired properties.

Proposition 4.75 (Unbounded finitely additive measures). Let S be an infinite set44 and let A be a σ-

algebra on S such that A contains a sequence of finite sets (An)∞n=1 for which supn∈N |An| =∞. Then there

exists an unbounded finitely additive measure µ : A → R.

Proof. By proposition 4.74, we may choose a finitely additive measure µ : P(S) → R satisfying µ(A) = |A|
for every finite set A ⊆ S. Then the restriction µ|A : A → R is a finitely additive measure on A with the

desired properties.

44Note that from the condition on the sequence (An)∞n=1 it already follows that S must be infinite. Also note that if S is
finite then any finitely additive measure on (S,A) is bounded.
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Appendix A Proofs of theorems from preliminaries

In this appendix we give the proofs of the results stated in chapter 1.

Lemma A.1 (Density of simple sequences). The set of simple sequences is a dense subspace of `∞. In

particular, if x ∈ `∞ satisfies xn ≥ 0 for all n, then for every ε > 0, there exists a simple sequence a such

that ‖x− a‖∞ < ε and moreover 0 ≤ an ≤ xn for all n.

Proof. Clearly this is a subspace; we show density. Let x ∈ `∞ and let ε > 0. First suppose xn ≥ 0 for

all n. Let N ∈ N be such that Nε > ‖x‖∞. Note that [0, Nε) =
⋃N
j=1[(j − 1)ε, jε). For all 1 ≤ j ≤ N , let

Aj = x−1([(j − 1)ε, jε)); then note that (Aj)
N
j=1 is pairwise disjoint. Define αj = (j − 1)ε for 1 ≤ j ≤ N .

Finally, let a ∈ `∞ be given by

a =

N∑
j=1

αj1Aj
.

Then a is a simple sequence. We check that ‖x− a‖∞ ≤ ε. Let n ∈ N, then

xn ∈ [0, ‖x‖∞] ⊆ [0, Nε) =

N⋃
j=1

[(j − 1)ε, jε).

Thus xn ∈ [(j − 1)ε, jε) for some (unique) 1 ≤ j ≤ N . Then n ∈ Aj and an = αj = (j − 1)ε. Thus we see

that |xn − an| = |xn − (j − 1)ε| ≤ ε. Taking the supremum over n, we find ‖x− a‖∞ ≤ ε. Moreover, we

have that 0 ≤ an ≤ xn for all n. This proves that positive sequences can be approximated from below by

positive simple sequences.

Now consider general x ∈ `∞ and write x = x+−x−, where x± ∈ `∞ are given by x±n = max{±xn, 0} ≥ 0.

Let a and b be (positive) simple sequences such that ‖x+ − a‖∞ < ε
2 and ‖x− − b‖∞ < ε

2 . Then a − b is a

simple sequence, and

‖x− (a− b)‖∞ =
∥∥(x+ − a) + (b− x−)

∥∥
∞ ≤

∥∥x+ − a
∥∥
∞ +

∥∥x− − b∥∥∞ < ε.

This finishes the proof.

Proposition A.2. Let ϕ,ψ : `∞ → R be bounded linear functionals. If ϕ(1E) = ψ(1E) for all E ⊆ N, then

ϕ = ψ.

Proof. First note that by linearity, ϕ and ψ agree on all simple sequences. The claim now follows by a general

result that two continuous functions that agree on a dense set must agree on the whole space. Indeed, let

x ∈ `∞ and choose a sequence of simple functions (a(n))∞n=1 such that a(n) → x in `∞, then by continuity

we find

ϕ(x) = lim
n→∞

ϕ(a(n)) = lim
n→∞

ψ(a(n)) = ψ(x),

which proves the claim.

Theorem A.3 (Duals are Banach spaces). Let X be a real normed vector space. Then X ′ is a Banach

space.

Proof. Let (fn)∞n=1 be a Cauchy sequence in X ′. We show that this sequence has a limit f ∈ X ′.
Step 1. We construct a potential limit f . For all x ∈ X, we have that (fn(x))∞n=1 is a Cauchy sequence

in R; indeed, note that |fn(x) − fm(x)| = |(fn − fm)(x)| ≤ ‖fn − fm‖X′‖x‖X → 0 as m,n → ∞. As R is

complete, this sequence converges and we may define f : X → R by f(x) = limn→∞ fn(x).

Step 2. We show that f ∈ X ′. For linearity, observe that

f(αx+ βy) = lim
n→∞

fn(αx+ βy) = lim
n→∞

αfn(x) + βfn(y) = αf(x) + βf(y).
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Next we show boundedness. As (fn)∞n=1 is Cauchy, it is bounded hence there exists M ∈ R such that for all

n ∈ N, we have ‖fn‖X′ ≤M . Then we obtain for all x ∈ X,

|f(x)| = | lim
n→∞

fn(x)| = lim
n→∞

|fn(x)| ≤M‖x‖X .

This proves boundedness, thus we have f ∈ X ′.
Step 3. We show that fn → f , i.e. ‖fn − f‖X′ → 0. Let ε > 0 and let N0 ∈ N be such that for all

n,m ≥ N0, we have ‖fn − fm‖X′ <
ε
2 . We claim that for all n ≥ N0, it holds that ‖f − fn‖X′ ≤ ε. Indeed

let n ≥ N0 and x ∈ X with ‖x‖X ≤ 1, then we see that for all m ∈ N,

|f(x)−fn(x)| ≤ |f(x)−fm(x)|+|fm(x)−fn(x)| ≤ |f(x)−fm(x)|+|(fm−fn)(x)| ≤ |f(x)−fm(x)|+‖fm − fn‖X′ .

There exists N1 ∈ N such that for all m ≥ N1, we have |f(x) − fm(x)| < ε
2 . Fix some m ≥ max{N0, N1},

then (n ≥ N0) we see that

|f(x)− fn(x)| ≤ ε

Taking the supremum over all x ∈ X with ‖x‖X ≤ 1, we arrive at ‖f − fn‖X′ ≤ ε. This shows that fn → f

in X ′, which finishes the proof.

In order to prove the Hahn-Banach theorem (theorem 1.9), we first prove the existence of a ‘one-

dimensional’ extension of fW to a slightly bigger domain. We use the following notation. If X is a vector

space and V,W ⊆ X are subspaces such that V ∩W = {0}, then every element x ∈ V +W can be written

uniquely as x = v + w for v ∈ V,w ∈W , and we define V ⊕W := V +W = {v + w : v ∈ V,w ∈W}.

Lemma A.4 (One-dimensional extension). Let X be a real vector space and let W ⊆ X be a proper subspace.

Let p : X → R be a sublinear functional and suppose fW : W → R is a linear functional on W that satisfies

fW (w) ≤ p(w) ∀w ∈W.

Suppose z∗ ∈ X \W and define

W ∗ = span{z∗} ⊕W = {cz∗ + w : c ∈ R, w ∈W}.

Then there exists a linear functional fW∗ : W ∗ → R that extends fW and moreover satisfies

fW∗(y) ≤ p(y) ∀y ∈W ∗.

Proof. First note that for all v, w ∈W , we have

fW (w) + fW (v) = fW (w + v) ≤ p(w + v) ≤ p(w − z∗) + p(z∗ + v),

and therefore we obtain

fW (w)− p(w − z∗) ≤ −fW (v) + p(z∗ + v). (24)

Now define

ξ := inf
v∈W

(−fW (v) + p(z∗ + v))

which is a real number because (24). Define fW∗ : W ∗ → R by fW∗(cz
∗ + w) = cξ + fW (w). Then clearly

fW∗ is linear and extends fW . Now let y = cz∗ + w ∈W ∗. We show fW∗(y) ≤ p(y). The case c = 0 follows

immediately from the assumptions. For c > 0, we have that for v := 1
cw,

cξ ≤ −cfW (v) + cp(z∗ + v) = −fW (cv) + p(cz∗ + cv) = −fW (w) + p(cz∗ + w),
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and the desired inequality follows. For c < 0, we find from (24) and the definition of ξ that

cξ ≤ cfW
(
w

|c|

)
− cp

(
w

|c|
− z∗

)
= −fW (w) + |c|p

(
w

|c|
− z∗

)
= −fW (w) + p(cz∗ + w),

which yields the desired inequality.

Lemma A.4 might give us a hint how to prove the Hahn-Banach theorem (1.9). The idea is roughly

as follows. If X is a separable real normed vector space, then we can find a dense sequence (zn)∞n=1 in X

(with some additional properties) and recursively define suitable extensions fn on span{z1, ..., zn} ⊕W in

‘one-dimensional steps’ using lemma A.4, and then by density we can use these fn to construct an extension

defined on X.

However, we do not have a norm at our disposal and even if that is the case, this method does not work

for nonseparable spaces. The solution is to use Zorn’s lemma.

Theorem A.5 (Hahn-Banach theorem). Let X be a real vector space. Let p : X → R be a sublinear

functional on X. Suppose W ⊆ X is a linear subspace of X and fW : W → R is a linear functional on W

satisfying

fW (w) ≤ p(w) ∀w ∈W.

Then fW has a linear extension fX : X → R on X such that

fX(x) ≤ p(x) ∀x ∈ X

Proof. Let us denote the domain of a function f by Df . Let M be the collection of all linear functionals

f : Df → R defined on a linear subspace Df of X satisfying W ⊆ Df ⊆ X with the following properties:

• f(w) = fW (w) for all w ∈W ;

• f(y) ≤ p(y) for all x ∈ Df .

We will apply Zorn’s lemma to show that M has a maximal element (under an appropriate partial order),

which will be the desired extension fX with domain X.

Observe that M 6= ∅ as fW ∈ M. Now define a partial order on M by setting f � g if and only if

Df ⊆ Dg and f(x) = g(x) for all x ∈ Df . We now check the conditions in Zorn’s lemma. Let N ⊆M be a

nonempty chain.

Step 1. Define

A =
⋃
f∈N

Df

This will be the domain of our upper bound for N . First we check that A is a linear subspace of X. It

is nonempty as N is nonempty. Let x, y ∈ A and α, β ∈ R, then there exist f, g ∈ N such that x ∈ Df ,

y ∈ Dg. As N is totally ordered, we have either f � g or g � f , say (without loss of generality) f � g. Then

Df ⊆ Dg, so that αx+ βy ∈ Dg ⊆ A.

Step 2. Define fN : A → R as follows. Let y ∈ A, then there exists f ∈ N such that y ∈ Df . Define

fN (y) := f(y). This does not depend on the choice of f : if f, g ∈ N satisfy y ∈ Df ∩ Dg, then as N is

totally ordered we have that f � g or g � f , so that f(y) = g(y).

Step 3. We now check that f ∈ M. Note that fN is linear: this follows from a similar reasoning as in

step 1. We have that fN (w) = fW (w) for all w ∈W : let w ∈W ⊆ A, choose f ∈ N such that w ∈ Df , then

we have fN (w) = f(w) = fW (w). A similar reasoning shows that fN (y) ≤ p(y) for all y ∈ A.

We conclude that fN ∈ M, and by construction it is an upper bound for N . Thus the conditions in

Zorn’s lemma are satisfied, hence there exists a maximal element F ∈M. We claim that DF = X. Suppose

namely that DF ( X, then by lemma A.4 there exists an extension of F , defined on a larger domain, which

also lies in M. But this contradicts the maximality of F . Thus DF = X. Finally, the function fX := F is

an extension of fW with the desired properties.
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The next version of the Hahn-Banach theorem addresses the extension of a bounded linear functional

defined on a subspace to a bounded linear functional defined on the whole space with the same norm.

Theorem A.6 (Hahn-Banach theorem). Let X be a real normed vector space, W ⊆ X a linear subspace.

Suppose fW ∈W ′. Then there exists an extension fX ∈ X ′ of fW such that ‖fX‖X′ = ‖fW ‖W ′ .

Proof. Define p : X → R by p(x) = ‖fW ‖W ′ · ‖x‖X Then p is a sublinear functional, and p(x) = p(−x). We

have that

fW (w) ≤ |fW (w)| ≤ ‖fW ‖W ′‖w‖X = p(w) ∀w ∈W.

By theorem A.5, fW has a linear extension fX : X → R such that fX(x) ≤ p(x) ∀x ∈ X. We also have that

−fX(x) = fX(−x) ≤ p(−x) = p(x), so that −p(x) ≤ fX(x) ≤ p(x) hence |fX(x)| ≤ p(x) = ‖fW ‖W ′ · ‖x‖X .

In particular, we see that fX ∈ X ′ and ‖fX‖X′ ≤ ‖fW ‖W ′ . We also have that ‖fW ‖W ′ ≤ ‖fX‖X′ . This

finishes the proof.
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