
 
 

Delft University of Technology

Dynamic rainfall monitoring using microwave links

Roy, Venkat; Gishkori, Shahzad; Leus, Geert

DOI
10.1186/s13634-016-0367-6
Publication date
2016
Document Version
Final published version
Published in
Eurasip Journal on Advances in Signal Processing (online)

Citation (APA)
Roy, V., Gishkori, S., & Leus, G. (2016). Dynamic rainfall monitoring using microwave links. Eurasip Journal
on Advances in Signal Processing (online), 2016, Article 77. https://doi.org/10.1186/s13634-016-0367-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1186/s13634-016-0367-6
https://doi.org/10.1186/s13634-016-0367-6


EURASIP Journal on Advances
in Signal Processing

Roy et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:77 
DOI 10.1186/s13634-016-0367-6

RESEARCH Open Access

Dynamic rainfall monitoring using
microwave links
Venkat Roy1*, Shahzad Gishkori2 and Geert Leus1

Abstract

In this work, we propose a sparsity-exploiting dynamic rainfall monitoring methodology using rain-induced attenuation
measurements frommicrowave links. To estimate rainfall field intensity dynamically from a limited number of non-linear
measurements, we exploit physical properties of the rainfall such as spatial sparsity and non-negativity along with the
dynamics of rainfall intensity. We develop a dynamic state estimation algorithm, where the aforementioned spatial
properties are utilized as prior information. To exploit spatial sparsity, we use a basis function to tailor the sparse
representation of the rainfall intensity. The basis is selected based on some criteria for sparse reconstruction such as
orthonormality andmutual coherence. The tuning parameter that controls the sparsity in the spatial rainfall distribution
is dynamically updated at every correction step. The developed methodology is applied to dynamically monitor the
rainfall field intensity in an area with a specified spatial resolution using less number of simulated non-linear
measurements than pixels. The proposed methodology can be generalized for any dynamic field reconstruction,
where the limited number of non-linear measurements are field intensities integrated over a linear path.

Keywords: Rainfall monitoring, Sparsity, Field estimation

1 Introduction
Spatial rainfall mapping from the measurements of rain-
induced attenuations collected from microwave links
(used by cellular telecommunication networks) is an
emerging technology which can serve as an alternative
to traditional approaches like rain gauges and weather
radar [1]. The practicability of the method is illustrated
in [2] by comparing its performance with rain gauges
and radar. The motivation behind this methodology is
to utilize existing systems such as cellular networks to
improve the quality of rainfall estimates using rain gauges
and radar, as well as to use it as an independent rainfall
measuring unit in areas, where traditional measuring
modalities are scarce. The attenuation measurements
from microwave links can also be used for monitoring
snowfall, fog, and humidity [3]. Seminal works in this
domain include tomographic rainfall mapping [4] and a
stochastic implementation of the microwave tomographic
inversion technique (MTIT) [5]. Recently, it has been
observed that signal processing algorithms like a modified
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weighted least squares method can be implemented to
spatially map the rainfall intensity on a regular grid, using
microwave link attenuation measurements [6]. Also, a
direct spatial reconstruction from non-linear measure-
ments using a variable grid size is exhibited in [7]. The
robustness of a practical application of such techniques
is illustrated in [8], where a country-wide (the Nether-
lands) rainfall mapping is shown to be possible using link
attenuation measurements using a data set of 12 days
(with a temporal resolution of 15 min). However, in order
to achieve some desired spatial resolution of the rainfall
field estimate (in terms of number of pixels), the num-
ber of microwave links, i.e., the number of attenuation
measurements, is always much smaller than the number
of pixels in a given service area. In this case, to dynam-
ically monitor the rainfall intensity, physical properties
of rainfall like spatial sparsity and non-negativity can be
exploited as extra information. In [9], a sparse recon-
struction of the rainfall field from a limited number of
non-linear measurements is presented. In [10], a sparsity
as well as a ridge-penalized, non-negativity constrained,
ordinary least squares method is used to estimate the
spatial rainfall map from linear path-averaged rainfall
intensities, albeit for a single snapshot. Furthermore,
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incorporating the non-linearity of the measurements as
well as a state-space model, a spatio-temporal rainfall
monitoring method using an extended Kalman filter
(EKF) is described in [11]. Recently, a linear Kalman filter
is used for the reconstruction of rainfall maps inspired
by object tracking algorithms [12]. However, none of
the above dynamic rainfall monitoring methods exploits
structural properties of the rainfall field like sparsity or
non-negativity.
Commingling the concepts of the aforementioned lit-

erature, estimating a spatio-temporally evolving rainfall
field can be viewed as a dynamic sparse field estimation
problem, where the spatial sparsity of the rainfall field
can be tailored by representing it as a sparse signal in
a suitable “sparsifying” basis [13]. Such a dynamic esti-
mation of sparse signals, also known as sparsity-aware
Kalman filtering, is a well-studied problem in the field
of signal processing with quite a number of applications
like target tracking and video coding. Next to the spa-
tial sparsity, also, the temporal sparsity can be exploited
in the state estimation [14]. Sparsity penalties lead to
a faster convergence than a clairvoyant Kalman filter,
as illustrated in [14]. Also, a non-negativity constrained
sparsity-aware Kalman filter is applied to the target track-
ing problem in [15]. In [16], the “dynamic filtering” is
implemented by introducing an iterative re-weighted �1-
norm penalty. In that work, a Bayesian hierarchical model
is used for the dynamically varying sparse coefficients of
the signal. Also, in [17], the convergence of the afore-
mentioned approach has been illustrated, formulating it
as a basis pursuit denoising (BPDN) problem. Another
notable approach of tracking a sparse signal in an under-
determined measurement scenario is viewing sparsity as
a pseudo-measurement and implementing a parallel state
and covariance update scheme for this extra measurement
[18]. In the Bayesian paradigm, a sparsity-aware state esti-
mation can be formulated as a constrained maximum a
posteriori estimator (MAP)[19].
In this work, we assume that the spatial rainfall inten-

sity can be represented as a sparse environmental signal.
We assume two scenarios for the spatio-temporal evolu-
tion of the rainfall field. In the first case, we assume that
the dynamics of the rainfall field are perfectly known. In
this case, we use a linear but non-stationary dynamical
model for the space-time evolution of the rainfall event,
which incorporates physical phenomena like advection,
diffusion, and convection [20, 21]. In the second case, we
assume that the information regarding the dynamics is not
perfectly known. In this case, we approximate the spatio-
temporal evolution by a simple Gaussian random walk
model.
We develop a complete structured framework to

dynamically monitor the rainfall intensity exploiting
a priori knowledge, i.e., the spatial sparsity and the

non-negativity of the rainfall field. The overall dynamic
rainfall monitoring setup is pictorially represented in
Fig. 1. The proposed setup accepts attenuation measure-
ments, in a given service area at any given snapshot from
the operating links, whose geometry and operating fre-
quencies are known. Accumulating these non-linear mea-
surements, the spatial rainfall intensity in the given service
area is computed in a centralized approach with a spec-
ified resolution. The developed dynamic sparsity-aware
rainfall monitoring algorithm has the following salient
features:

• The used measurement model is non-linear, under-
determined, and also time-varying. We perform a
dynamic linearization, followed by a state estimation
where sparsity and non-negativity is utilized, in order
to achieve a stable solution from the underdetermined
measurement setup.

• The selection of the tuning parameter controlling the
sparsity in the solution can be dynamically updated in
every correction step.

• The algorithm is also generalized to dynamically select
the representation basis that minimizes the mutual
coherence between the basis matrix and the mea-
surement matrix at a particular time instance, which
represents the geometry of the available link measure-
ments at that time instance.

The rest of the paper is organized as follows. In Section 2,
the measurement model, state model, and the spatial
covariance structure of the rainfall field are presented. In
Section 3, the dynamic rainfall monitoring algorithm is
discussed. Issues such as the selection of an appropriate
sparsifying basis and the selection of the tuning param-
eter controlling the sparsity is discussed in Section 4.
In Section 5, simulation results are presented. Here,
we mention that the true value of the rainfall, i.e., the
gauge adjusted radar images and the location of the
microwave links are known to us. But we do not have
real attenuation measurements from the microwave links.
We simulate the measurements using the ground truth,
available link locations using the non-linear measure-
ment model mentioned in Section 2 and add additive
white Gaussian noise (AWGN) of known variance.
Section 5 summarizes this paper and looks at future
directions.
Notations: Matrices are in upper case bold while col-

umn vectors are in lower case bold. The symbol [X]ij is
the (i, j)-th entry of the matrix X and [ x]i is the i-th entry
of the vector x. The identity matrix of size N × N is
denoted by IN . The transpose operator is denoted by (·)T ,
x̂ is the estimate of x, � defines an entity, and ‖x‖p =(∑N−1

i=0 |[ x]i |p
)1/p

is the �p norm of x. The symbols 0N
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Fig. 1 Dynamic rainfall monitoring using a sparsity exploiting framework

and 1N are the vectors of all zeros and ones of length
N, respectively. The set of N × N symmmetric positive
semidefinite and positive definite matrices are denoted by
S
N+ and S

N++, respectively.

2 Signal model
In this section, we first describe the non-linear measure-
ment model which can be used to dynamically estimate
the rainfall intensity with a prescribed spatial resolution
by the time-varying attenuation measurements. Next, we
describe the structure of the spatial covariance matrix of
the rainfall field. After that, we describe the dynamic state
model, based on the physics behind the movement of a
rainstorm both spatially and temporally.

2.1 Non-linear measurement model
The geometry of the microwave links deployed by any
telecommunication service provider in any area is fixed.
These links can be viewed as a fixed network of sen-
sors to monitor rainfall since the received signal level
(RSL) measurements related to these links depend on the
rainfall. Note that the signal attenuation on a microwave
link is not only due to rainfall but also depends on
other atmospheric effects like humidity, wet antenna
attenuation, and propagation loss [6]. For simplicity, we
assume that the attenuation caused by these other effects
(except precipitation) can be precomputed, e.g., during
“dry periods”, and subtracted from the recorded RSL mea-
surements. So, the effective measurements only include

the rain-induced attenuation. The conventional empiri-
cal relationship between the rain-induced specific atten-
uation and the path-averaged rainfall rate is given by
ys = arb, where ys is the specific attenuation of the link
(dB/km), and r is the path-averaged rainfall rate over the
link (mm/h) [22]. If L is the length (km) of the microwave
link, then the total rain-induced attenuation over the link
is y = arbL dB. The parameters a and b are related
to the drop size distribution (DSD) of rain, the polar-
ization and frequency of the transmitted electromagnetic
wave, the length of the link, the ambient temperature,
etc. It has been extensively studied and shown in several
works that variations of the aforementioned environmen-
tal and non-environmental parameters affect the estimate
of the path-averaged rainfall rate. A quantitative analy-
sis of DSD related errors in estimating the path-averaged
rainfall from direct rain-induced attenuation measure-
ments is illustrated in [23, 24]. It can be observed that
the attenuation for links operating in frequencies around
35 GHz can be treated as a linear measurement of the
path-averaged rainfall rate [23]. A detailed analysis of the
effects of the frequency, DSD, link length, and temporal
sampling in estimating the path-averaged rainfall rate has
been presented in [25, 26]. Also, in a wide coverage area,
the link (measurement) availability in different hours of
the daymay significantly vary. All of these aforementioned
studies advocate a dynamic tuning of the a and b coef-
ficients in order to better monitor the rainfall from link
attenuations.
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The non-linear attenuation measurements from the
microwave links in any given service area for a fixed time
can be used to estimate the spatial rainfall intensity over
the same area. Let us consider a uniform discretization of
the specified service area A (square) into N pixels where
we would like to estimate the rainfall intensity. Here, we
make the assumption that the rainfall intensity is constant
within any pixel. This assumption is flexible as any reso-
lution can be attained by tailoring the size of the square
pixels. Let us assume that there are M links in the given
service area. The length of the i-th link can be written
as Li = ∑N

j=1 lij, where lij is the length of the i-th link
passing through the j-th pixel, where i = 1, . . . ,M. If
the i-the link does not pass through the j-th pixel then
lij = 0; otherwise, it is computed by the link and the pixel
coordinates. The total attenuation over a link can be mod-
elled as the sum of the attenuations over the link segments
[6]. Using this, the attenuation over the i-th link at time
t can be expressed as yi,t ≈ ∑N

j=1 yij,t , where yij,t is the
attenuation over the linksegment of length lij. Using the
power-law relationship for the attenuations over the link
segments, the measurement model can be constructed in
the following way,

yi,t = ai,t
N∑
j=1

ubi,tj,t lij + ei,t , i = 1, . . . ,M, (1)

where yi,t is the attenuation measurement of the i-th link
and uj,t is the intensity of the rainfall field in the j-th pixel
at time t. The power-law coefficients of the i-th link at
time t are given by ai,t and bi,t . Themeasurementmodel in
(1) is a generalized time-varying non-linear tomographic
measurement model. In this work, we consider the fact
that all the M links are operated in the same frequency
and that the other environmental conditions (e.g., DSD,
temperature) are fixed for all t. Based on these assump-
tions, the aforementioned measurement model can be
simplified as

yi,t = a
N∑
j=1

ubj,tlij + ei,t , i = 1, . . . ,M. (2)

The measurement noise incurred at the i-th link mea-
surement at time t is given by ei,t . The measurements are
corrupted by errors which are mainly due to quantiza-
tion but also other sources of noise exist. A more detailed
description of the statistical nature of the measurement
noise can be found in [6]. For the sake of simplicity, let
us assume that ei,t is zero-mean spatio-temporally white
Gaussian noise with variance σ 2

e . Further, we assume that
ei,t is uncorrelated with uj,t .

Combining all the measurements from the M links at
time t, we can construct the following non-linear mea-
surement model at time t:

yt = �(ut) + et , (3)

where yt ∈ R
M stacks the measurements from theM links

at time t, whereas et ∈ R
M does the same for the noise.

The vector ut ∈ R
N gathers the rainfall intensities for all

of the N pixels at time t, i.e., it is the parameter to be esti-
mated dynamically. The non-linear mapping between the
rainfall intensities and the attenuation measurements is
given by � : RN → R

M and it is assumed to be perfectly
known. The elements of ut are given by [ut]j = uj,t =
ut(xj), where ut(x) represents the continuous rainfall field
at any arbitrary location x ∈ R

2 and xj =[ xj, yj]T is the
centroid of the j-th pixel of the service area. The mea-
surement noise components associated with the M link
measurements are characterized by et ∼ N (0,Rt), where
Rt = R = σ 2

e IM.

2.2 Spatial variability of ut
At any snapshot t, the spatial rainfall intensity ut(xj), for
j = 1, . . . ,N can be viewed as a wide-sense stationary
(WSS) random process. In spatial statistics, ut(xj) is WSS
(or second-order stationary) if it satisfies E[ut(xj)]= μt
(for all j = 1, . . . ,N in the service area) and if the spa-
tial covariance between any two points is dependent only
on the distance between them (i.e., isotropic) [27]. The
parameter μt is the mean/trend of the rainfall field. A
variogram model can be used to represent the spatial
variations. The variogram (i.e., 2ξ(h)) or semivariogram
(i.e., ξ(h)), as a function of h � ‖xi − xj‖2, can be
written as ξ(h) = 1

2E[ut(xi) − ut(xj)]2 for any two spa-
tial points, xi =[ xi, yi]T , xj =[ xj, yj]T , ∀i, j ∈ {1, . . . ,N}
[27]. Generally, several variogram models are used as it is
computationally hard to calculate the spatial dependency
for every lag distance h. Some statistical functions like
a Gaussian, exponential, or empirically fitted models like
spherical functions are often used as variogram models
[28]. From the analysis of [29], the spherical variogram
model is seen to be an appropriate model to describe the
spatial variability of rainfall. This is given as,

ξ(h) =
{
N0 + S0

[
3h
2d − h3

2d3

]
if 0 < h ≤ d,

N0 + S0 if h ≥ d.
(4)

The parameters that characterize a variogrammodel are
the sill N0 + S0 of the variogram (ξ(h) for h → ∞) with
S0 as the partial sill, the nugget N0 (non-zero value of ξ(h)
for h → 0), and the range d (value of h for which the
variogram reaches the sill). The advantage of the spheri-
cal variogram model is that the parameters S0, N0, and d
can be well estimated in hourly scales for a specific day of
the year [29]. Now, the spatial covariance function Cv(h)
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can be defined as Cv(h) = E[ (ut(xi) − μt)(ut(xj) − μt)].
Using the second-order stationarity of the random pro-
cess ut(xj), the semivariogram can be related to the spa-
tial covariance function Cv(h) by the relation ξ(h) =
(N0 + S0) − Cv(h) [27]. Now, the elements of the spa-
tial covariance matrix �u can be computed as [�u]ij =
Cv(‖xi − xj‖2), ∀i, j ∈ {1, . . . ,N}. The covariance matrix,
constructed in this way, is symmetric and positive definite.

2.3 State model
2.3.1 A Kernel-based statemodel
One standard approach of modelling the spatio-temporal
evolution of any environmental field is based on the
integro-difference equation (IDE) [28]. Following this
approach, the dynamics of the rainfall field for any spe-
cific temporal sampling interval δt can be modelled as the
following discrete time IDE

ut(x) =
∫
A
g(x, x′; θ)ut−1(x′)dx′ + qt(x). (5)

Here, g(x, x′; θ) is the space-time interaction function
parameterized by θ , which can be deterministic or ran-
dom and dependent on the temporal sampling interval δt .
The quantity qt(x) is the process noise which is generally
modelled as independent in time but correlated in space.
The space-time interaction function g(·) can be mod-

elled as a parameterized Gaussian dispersal kernel which
captures the underlying physical processes behind the
spatio-temporal evolution of rainfall, i.e., diffusion, advec-
tion, and convection [20, 21]. In this case, the space-
time interaction function is given as g(x, x′;wt ,D,α) =
α exp[−(x − x′ − wt)TD−1(x − x′ − wt)], i.e., a Gaus-
sian kernel. The translation parameter of the kernel, i.e.,
wt ∈ R

2 models the time-varying advective displacement,
i.e., the spatial drift of the rain storm, and the dilation
parameter of the kernel, i.e., D ∈ S

2++ models the diffu-
sion. Note that wt can also vary with space but we assume
that it is averaged over the entire area and fixed. The dif-
fusion coefficientD can be used to model isotropic as well
as anisotropic diffusion. The amount and the directions of
the spatial anisotropy can be introduced byD. The param-
eter D can also vary with time but this is not considered
here. The scalar scaling parameter α ∈ R++ is used to
control the stability (i.e., to avoid the explosive growth) of
the dynamic process.
Here, the entire service area is uniformly discritized into

N pixels. We assume a state transition matrixHt ∈ R
N×N

whose elements are modelled by the aforementioned sim-
ple 2D Gaussian kernel. After proper vectorization of the
field intensities and state noise for N pixels, we obtain

ut = Htut−1 + qt , (6)

where the elements of the state transition matrix Ht are
given by [Ht]ij = α exp[−(xi−xj−wt)TD−1(xi−xj−wt)],

and qt is the spatially colored yet temporally white
Gaussian state noise vector. The quantity wt is the advec-
tive displacement during the temporal sampling interval
δt , which can be represented more precisely as wt = vtδt ,
where vt is the advection velocity. Note that the afore-
mentioned model is non-stationary when the advection
vector wt changes with time, which happens in many
real scenarios [20]. If there is no advection, i.e., wt = 0
and D = I, the model is stationary and isotropic. We
assume that the dynamic model, i.e., the state transition
matrix Ht is perfectly known through the parameters wt ,
D, and α which are considered to be deterministic and
known. Without loss of generality, we follow the assump-
tions of [20] and [30] that the distribution of qt is given by
qt ∼ N (0N ,Qt). But this assumption is not true in
practical scenarios because the rainfall process cannot be
negative. In the simulation section, after generating ut
using the sate model of (6), we set the negative elements
of ut to 0. This is a modelling approximation.
One notable advantage of the model in [20] is the linear

relation of the rainfall intensities in one snapshot with the
ones in the previous snapshot.

2.3.2 Gaussian randomwalkmodel
In the last section, we assume that the parameters of
the state model are perfectly known. But in many prac-
tical scenarios for a large N, it can be computationally
intractable to estimate the N2 elements of the state tran-
sition matrix Ht using the available data. In this case,
without any prior knowledge regarding the parameteriza-
tion of Ht , one way to approximate the dynamics is by
assuming that the process follows aGaussian randomwalk
model [31]. In this case, we assume that Ht = H = I and
the process model is given by

ut = ut−1 + qt . (7)

The benefit of a Gaussian random walk model is that it
has very few model parameters rather than a parameter-
ized process model as mentioned in Section 2.3.1.
Note that the parameterized state model of (6) can be

viewed as a random walk model by incorporating negligi-
ble diffusion, i.e., D = εI, where ε � 1 and no advection,
i.e., wt = 0. In this case, we haveHt ≈ I assuming α = 1.

2.4 Structure of the state error covariance matrix
It is assumed that the state error, i.e., qt , is a spatially
colored but temporally white Gaussian process. Assum-
ing spatial isotropy and stationarity of the state error qt ,
the elements of the covariance matrix Qt = Q can be
represented using the Matern covariance function as

[Q]ij = σ 2
s
21−p

�(p)

[√
2p‖xi − xj‖2

γ

]p
Kp

(√
2p‖xi − xj‖2

γ

)
,

(8)
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where �(·) is the Gamma function, Kp(·) is the modified
Bessel function of the second kind, and γ is a positive
shaping parameter [28]. With p → ∞ and p = 1/2, (8)
becomes the squared exponential and the exponential

covariance functions, i.e., [Q]ij = σ 2
s exp

(
−‖xi−xj‖22

2γ 2

)
, and

[Q]ij = σ 2
s exp

(
−‖xi−xj‖2

γ

)
, respectively.

3 Dynamic rainfall mapping
We dynamically estimate the rainfall intensities at the N
pixels, i.e., ut at t = 1, . . . ,T snapshots from the attenua-
tion measurements yt at t = 1, . . . ,T . The measurement
and state models can be represented in the following
forms

yt = �(ut) + et (9)

ut = Htut−1 + qt . (10)

A standard practice to estimate the rainfall intensity ut
at every time t = 1, . . . ,T from the measurement and
state equations of (9) and (10) is the non-linear sem-
blance of the standard Kalman filter, i.e., the extended
EKF [32]. Note that we have non-linearity only in the
measurements.
As one of the criteria for the optimal behavior of the

Kalman fiter, we assume that the measurement and the
state noise statistics are completely known. The mea-
surement and the state noises are characterized by et ∼
N (0M,R), and qt ∼ N (0N ,Q), respectively. The dimen-
sion of the measurement noise covariance matrix depends
on the number of the available measurements at time t.
As the state model is a linear function of ut , the standard
Kalman fiter prediction steps are given by

ût|t−1 = Htût−1|t−1 (11)
Mt|t−1 = HtMt−1|t−1HT

t + Q, (12)

where the prediction of ut from the last t − 1 observa-
tions is given by ût|t−1 with the error covariance matrix
Mt|t−1 = E[ (ut − ût|t−1)(ut − ût|t−1)T ] [32]. The terms
ût−1|t−1 and Mt−1|t−1 are calculated in the previous time
step.
The prediction based on the state model is corrected by

the measurements. But here, we have a non-linear mea-
surement model. To linearize that model, let us introduce
the M × N Jacobian matrix computed at ut = ût|t−1 as
Jt = ∂�

∂uTt

∣∣∣
ut=ût|t−1

. The elements of the Jacobian matrix

are given by [ Jt]ij = ablij[ ût|t−1]b−1
j , with i = 1, . . . ,M,

and j = 1, . . . ,N . A first order Taylor series expansion
of the non-linear measurement function around ût|t−1
is then given as �(ut) ≈ �(ût|t−1) + Jt[ut − ût|t−1].

Substituting this in (9), we obtain the following linearized
measurement equation:

ỹt = Jtut + et , (13)

where ỹt = yt − �(ût|t−1) + Jtût|t−1. Note that here, we
have less observations than unknowns, i.e., the number of
links (M) is much smaller than the number of pixels (N),
i.e., the dimension of ut . Hence, in the correction step, to
utilize the measurements along with the state model, we
need to solve the underdetermined system (13) in order to
update ût|t−1 leading to ût|t . After the dynamic lineariza-
tion, the state estimates can be obtained using a standard
Kalman filter. In this case, both the expressions for the
state estimate ût|t and its state error covariance Mt|t can
be obtained in closed form [32].

3.1 Limitations of a standard EKF
The estimation of ut from onlyMmeasurements using an
ordinary EKF has the following uncertainties.

• First of all, the quality of the estimate strongly depends
on the degree of non-linearity and the accuracy of
the linearization [32]. Also, for a highly underdeter-
mined (M � N) and unpredictable measurement
matrix (many rows of Jt can be zero for any ût|t−1),
the solution can be highly inaccurate and dependent
mainly on the predictions using the state model and
the initialization.

• In the above case, if the available information regard-
ing the dynamics are incomplete or imperfectly
known, then the prediction using the state model
will be inaccurate. In this case, an ordinary EKF may
produce unrealistic estimates in the presence of high
measurement noise.

• Also, there is no guarantee that an ordinary EKF
will always produce non-negative estimate of ût|t . For
instance, let us assume that an element of the pre-
dicted value, i.e., [ ût|t−1]j (predicted using (11)) is less
than 0 at any t. In that case, if lij �= 0, we may have an
imaginary [ Jt]ij = ablij[ ût|t−1]b−1

j , if b − 1 is a frac-
tional quantity. As mentioned in [22], the standard
values for b mainly lie in the interval of 0 < b < 2.

In these circumstances, any further prior information
about ut (beyond the dynamics) is desirable to achieve a
stable and more accurate solution.

3.2 Available prior knowledge regarding rainfall field
Prior information about ut can be acquired from the
physical properties of rainfall such as sparsity and non-
negativity. In a given area, the rainfall intensity itself can
be assumed to be a sparsely distributed environmental
field over the entire service area [9, 33]. But sparsity can
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also be introduced by representing ut in an orthonormal
basis �t , which can in principle be time-varying. When
rainfall itself is sparse, we simply have �t = I. Denot-
ing ut = �tzt , sparsity is measured by the number of
non-zero entries in zt , i.e., ‖zt‖0.
As the rainfall intensity cannot be negative, another

prior knowledge about ut is the non-negativity of the
rainfall field. For N pixels, this is represented as ut ≥ 0N .
Comment: Here, we mention that the prior informa-

tion regarding sparsity and non-negativity along with the
measurements can be efficiently utilized to monitor the
rainfall over multiple snapshots. For this, we do not need
any information regarding the dynamics. This can be
implemented for both linear [10] as well as non-linear
[9] measurement models. However, one limitation of
this dynamics-agnostic method is that the rainfall events
should occur in areas where microwave links are present
for accurate estimation. Otherwise, the effect of the mea-
surement noise can be dominant. In this case, we need
other spatial/temporal information (e.g., covariance struc-
ture, dynamics) to interpolate the rainfall field over the
entire service area.
In the next section, we illustrate iterative approaches

to dynamically estimate the state of ut for t = 1, . . . ,T ,
exploiting both sparsity and non-negativity.

3.3 Estimation of ut
A simple Kalman estimation step without the sparsity and
the non-negativity constraint can be formulated as the fol-
lowing weighted least squares optimization problem [34]:

ût|t = argmin
ut

‖ût|t−1 − ut‖2M−1
t|t−1

+ ‖ỹt − Jtut‖2R−1 .

(14)

This estimation step is not aware of sparsity or non-
negativity. The sparsity information can be incorporated
in the optimization problem of (14), by adding an �1-
penalty that enforces sparsity. Note that here, we use the
�1 norm as a convex relaxation of the non-convex �0 norm.
Using the sparse representation of ut , i.e., zt , the optimiza-
tion problem of (14) can be formulated as a sparsity and
non-negativity constrained optimization problem. This
can be given as

ẑt = argmin
�tzt≥0N

‖ût|t−1 − �tzt‖2M−1
t|t−1

+ ‖ỹt − Jt�tzt‖2R−1

+λt‖zt‖1 (15)
ût|t = �t ẑt , (16)

where λt is the tuning parameter that controls sparsity.
The standard error covariance update of ût|t for the esti-
mation step (14) is given byMt|t = Mt|t−1−Mt|t−1JTt (Rt+
JtMt|t−1JTt )−1JtMt|t−1 = (M−1

t|t−1 + JTt R
−1
t Jt)−1 [32]. This

expression of Mt|t can be used to update the covariance
of the estimate of (15) but is an approximation as it is not
aware of the sparsity and the non-negativity constraint. If
we do not consider to propagate the second-order statis-
tics of the estimate, like in the traditional Kalman filter,
the state noise minimization term in (15) can also be reg-
ularized by Q instead of Mt|t−1. This can be viewed as
a weighted least squares problem to estimate ut using
the measurement (13) and the state Eq. (10) constrained
by sparsity and non-negativity. In this case, the simple
iterative state estimates are given by

ût|t−1 = Htût−1|t−1, (17)

ẑt = argmin
�tzt≥0N

‖ût|t−1 − �tzt‖2Q−1 + ‖ỹt − Jt�tzt‖2R−1

+λt‖zt‖1, (18)

ût|t = �t ẑt . (19)

Note that this is a suboptimal approach to dynamically
estimate the states ut avoiding the computation of Mt|t .
As mentioned in [14], different penalties (like �2 or �1)
can be applied to the state error minimization term in (18)
depending on the nature of the sparse state (ut) and/or the
state noise (qt).

3.4 Formulation of a constrained MAP estimator for ut
Using the representation of ut in the �t = � domain, the
measurement and state equation of (13) and (10) can be
written as

ỹt = Jt�zt + et (20)

zt = H̃tzt−1 + q̃t , (21)

where H̃t = �THt� , q̃t = �Tqt , and q̃t ∼ N (0,�TQ�),
where qt ∼ N (0,Q). From the above measurement
and state equations, we can derive the conditional prob-
ability density functions p(ỹt|zt) ∼ N (Jt�zt ,R) and
p(zt|zt−1) ∼ N (H̃tzt−1,�TQ�). Using Bayes’ rule,
the posterior pdf p(zt|ỹt) can be given as p(zt|ỹt) ∝
p(ỹt|zt)p(zt|zt−1). So, a MAP estimator for zt can be
formulated as,

argmax
zt

[ ln p(ỹt|zt) + ln p(zt|zt−1)] , (22)

where zt−1 is computed from the previous time step.
However, there is no guarantee that the estimator in (22)
will produce a sparse estimate of zt . On the other hand, the
representation of ut in the � domain is targeted to exploit
sparsity. So, the estimator of (22) can be formulated as
a constrained MAP estimator by adding the sparsity and
non-negativity constraint in the optimization problem
of (22). After substituting the pdfs, following the same
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approach as used in (15), the sparsity and non-negativity
constrained MAP estimator can be given as

ẑt = argmin
�zt≥0N

‖zt − H̃tzt−1‖2(�TQ�)
−1 + ‖ỹt − Jt�zt‖2R−1

t

+λ̃t‖zt‖1, (23)

where λ̃t controls the sparsity in the estimate ẑt . From the
solution of (23), the state estimate is given as ût|t = � ẑt .
It is seen that resorting to a Bayesian paradigm, the devel-
oped constrained MAP estimator of (23) has a structure
similar to the optimization problem of (18).

4 Selection of the basis (�t) and the tuning
parameter (λt)

4.1 Selection of the basis (�t)
If the spatial rainfall distribution is physically sparse, then
we simply solve the optimization problem of (18) for
�t = I. But in the absence of physical sparsity, which is
a more general case in many practical scenarios, we use
a basis �t . Revisiting the celebrated theory of compres-
sive sampling, we know that some of the properties of
both �t and Jt , (or �t = Jt�t) like mutual coherence and
restricted isometry property (RIP) are important in the
framework of sparse reconstruction [13]. Let us denote
the quantity μ(�t) as the mutual coherence of the matrix
�t , which is the maximum absolute inner product of
different columns of �t [35]. Without the state error min-
imization term and the non-negativity constraint in (18),
the problem is a simple BPDN problem. As derived in [36],
if a suitable sparse representation of zt is possible, which
is given by ‖zt‖0 < 1

2 (1 + 1
μ(�t)

), then a “stable” solution
with the standard BPDN algorithm can be obtained with
a bound on the estimation error. Along the same lines, the
cost function of (18) can be viewed as a BPDN problem
by augmenting the measurement and the state noise min-
imization terms into a single least squares term [17]. In
[17], the convergence guarantees of the aforementioned
BPDN problem are also derived based on some assump-
tions on the dynamics and the measurement matrix
(here Jt).
In our application, the design of the measurement

matrix Jt , in every snapshot, is dictated by the link loca-
tions and the predicted state estimates (ût|t−1). So, to
maximally exploit the sparsity information of the rainfall
field, we focus mainly on a suitable sparse representation
of the state ut . Standard orthonormal bases such as a dis-
crete cosine transform (DCT) basis C or wavelet basis W
are quite popular in sparse signal representation for com-
munications as well as image processing. Also, a Gaussian
basis function can be used to sparsely represent environ-
mental signals [37]. However, an orthonormal basis can
also be constructed using the spatial covariance matrix

of the rainfall field. An orthonormal basis can be con-
structed by the spatial covariance matrix �u described
in Section 2.2, by simply choosing �t = U, where
�u = U�UT is the eigenvalue decomposition of �u with
UTU = I and � a diagonal matrix. In this case, zt =
UTut is similar to applying a Karhunen-Loeve transform
(KLT), which is also advocated as a sparse representation
technique [38].
We choose a basis�t that has aminimummutual coher-

ence with the measurement matrix Jt . Mutual coherence
can be measured for the overall dictionary �t = Jt�t .
In this case, μ(�t) can be quantified as the maximum
magnitude off-diagonal element of Dt = �̆

T
t �̆t , where

�̆t is obtained by normalizing the columns of �t . In this
case, the mutual coherence can be defined as μ(Jt�t) =
μ(�t) = maxl,k; l �=k |[Dt]l,k | [39]. So, given a set U of
U sparsifying basis matrices, the minimal coherence basis
matrix at time t can be selected by solving the following
optimization problem,

�̂t = argmin
�t

μ(Jt�t) s.t.�t ∈ U . (24)

Note that to optimally select the basis, we need to solve
this optimization problem on every snapshot as thematrix
Jt is recomputed at every time step t. In our simulations,
we specifically use U = {C,U}.

4.2 Selection of the tuning parameter (λt)
The sparsity regulating parameter λt in the optimization
problem of (18) can be adapted dynamically. It can also be
kept fixed for multiple snapshots for monitoring a short
period of rainfall, within which the sparsity pattern can be
assumed to be fixed. An upper bound on λt is given by
λt = λmax

t , which gives the sparsest solution, i.e., ẑt = 0N
or ût = �t ẑt = 0N . Note that the cost function of (18) is
non-differentiable but convex for λt > 0. So, following the
methodologies of [15] and [40], we use a subdifferential
based approach to compute λmax

t . The subgradient of the
non-differentiable cost of (18) with respect to zt can be
written as

∇̃zt f (zt) = 2
(
−�T

t Q−1(ut|t−1 − �tzt) − �T
t JTt R

−1
t (yt − Jt�tzt)

)
+λt∇̃zt‖zt‖1, (25)

where ∇̃zt is the subgradient operator towards zt . Using
the first-order optimality condition, we have[
2

(
�T

t Q−1(ût|t−1 − �tzt) + �T
t JTt R

−1
t (yt − Jt�tzt)

)]
j

∈
⎧⎨
⎩

λt [ zt]j > 0,
−λt [ zt]j < 0,
[−λt λt] [ zt]j = 0,

where j = 1, . . . ,N . Now, we consider the case zt = 0.
Substituting this in the above equation, the optimal value



Roy et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:77 Page 9 of 17

of λmax
t can be selected as λmax

t = ‖2(�T
t Q−1ût|t−1 +

�T
t JTt R

−1
t yt)‖∞. So, a useful range for λt is given by

[ 0, λmax
t ).

Traditional approaches to select the tuning parameter
for an �1-penalized regression problem are cross-
validation and generalized cross-validation (GCV)
[41]. Recent methods suggest information theoretic
approaches like Mallow’s Cp type criterion [42], Akaike
information criterion (AIC) [43], and Bayesian infor-
mation criterion (BIC) [44] to find an optimal λt . In all
of these approaches, the optimal tuning parameter is
selected that minimizes a cost function which depends
upon the estimate of ut using a set of {λkt }Kk=1, where the
length of the search grid for λt is K. In this case, we need
to solve the optimization problem of (18) K times in every
iteration and select the optimal λkt that minimizes any of
these aforementioned model selection criteria. After that,
(18) needs to be solved again with the selected λkt , in order
to estimate ut . This seems to be computationally unre-
alistic for an online application of the dynamic rainfall
monitoring over a large service area (large N). To circum-
vent this problem, the K optimization problems can be
solved once and the selected λt can be used for multiple
snapshots for a short term monitoring application.
It is clear that increasing the value of λt , i.e., the term

‖zt‖1 becomes smaller and vice versa. So, if an approxima-
tion of zt , i.e., z

approx
t , is available, it can be related to the

tuning parameter by λt ∝ 1/‖zapproxt ‖1. Following this, a
coarse but relatively fast approach to dynamically tune λt
could be selecting λt = ν(‖�T

t ût|t−1‖1)−1, where ût|t−1
can be regarded as an approximation of ût|t and ν > 0
is a proportionality constant. In our simulations, we use
ν = 1.
For the sake of completeness, we summarize the steps

of the two proposed dynamic rainfall monitoring algo-
rithms. In algorithm 1, we follow the standard steps
of dynamic state estimation, but we do not update the
second-order statistics of the estimate. In algorithm 2, we
use the approximate approach, where we use the standard

Kalman covariance update (unaware of sparsity and non-
negativity).
The performance of both these algorithms strongly

depends upon the initialization û0|0. One should avoid
initializations like an all zero vector or an û0|0 that con-
sists of negative elements. If we consider the initialization
û0|0 = 0N , it will produce Jt = 0M×N , as û1|0 = Htû0|0 =
0N . It is mentioned in [22], that the standard values for
b mainly lie in the interval of 0 < b < 2. It should also
be noted that, for b < 1 (for frequencies in the range
1−3 GHz, or frequencies above 40 GHz [22, Table II]) the
Jacobian [ Jt]ij = ablij[ ût|t−1]b−1

j is undefined if [ ût|t−1]j =
0, if we have lij �= 0. This problem can be circumvented
by replacing the 0 rainfall scenario by a very small value
(close to zero) like in the order of 10−4 mm denoting a
no rainfall event and the non-negativity constraint can be
replaced by ut ≥ 10−41N in the optimization problems.
However, in our simulations, we use b > 1.

5 Simulation results
In this section, we present some simulation results to
test the developed methodologies to dynamically mon-
itor the rainfall in a given area. Here, we perform
numerical experiments for three scenarios. In the first
case, we assume that the dynamics/state model, i.e., Ht
is perfectly known through the parameters α, D, and
wt . In the second case, we consider that the dynam-
ics are not perfectly known and we assume that the
state model is a Gaussian random walk. In the third
case, we consider the scenario where we do not have
any information regarding the state model/dynamics.
The simulations for these three scenarios are presented
below.

5.1 Ground truth
We consider two sets of ground truth/true values of the
rainfall vector {ut}8t=1. In the first case, we assume that
the state model is perfectly known. In the next case, we
assume that the state model is not perfectly known.

Algorithm 1 : Dynamic rainfall monitoring (with no covariance update)
1: Initialize t = 0, û0|0
2: for t = 1, . . . ,T
3: given a, b, lij, (i = 1, . . . ,M; j = 1, . . . ,N), yt , Rt ,Ht ,Q
4: Predict ût|t−1 = Htût−1|t−1.
5: Compute Jt , ỹt
6: Select �t (using (24))
7: Select λt = (‖�T

t ût|t−1‖1)−1

8: Solve ẑt = argmin�tzt≥0[ ‖ût|t−1 − �tzt‖2Q−1 + ‖ỹt − Jt�tzt‖2R−1
t

+ λt‖zt‖1]
9: Compute ût|t = �t ẑt

10: end for
11: end
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Algorithm 2 : Dynamic rainfall monitoring (with standard Kalman covariance update)
1: Initialize t = 0, û0|0,M0|0
2: for t = 1, . . . ,T
3: given a, b, lij, (i = 1, . . . ,M; j = 1, . . . ,N), yt , Rt ,Ht ,Q
4: Predict ût|t−1 = Htût−1|t−1,Mt|t−1 = HtMt−1|t−1HT

t + Q
5: Compute Jt , ỹt
6: Select �t (using (24))
7: Select λt = (‖�T

t ût|t−1‖1)−1

8: Solve ẑt = argmin�tzt≥0[ ‖ût|t−1 − �tzt‖2M−1
t|t−1

+ ‖ỹt − Jt�tzt‖2R−1
t

+ λt‖zt‖1]
9: Compute ût|t = �t ẑt

10: Update Mt|t = (M−1
t|t−1 + JTt R

−1
t Jt)−1

11: end for
12: end

5.1.1 Ground truth with known dynamics
The ground truth is used from a practical rainfall event in
an area of 25 × 25 km2 in Amsterdam, the Netherlands1.
We take one spatial map of 15 min gauge adjusted radar
rainfall depth (mm) of the same area of the day June 11,
2011, which is shown as the first state, i.e., u1 in Fig. 2.
We assume that the state transition matrix, i.e., Ht and

the process noise covariance matrix, i.e., Qt = Q is per-
fectly known in this case. The parameters of the state
transition matrix Ht = H are given as wt = w =[ 1, 0]T ,
α = 0.33, and D = I2 (isotropic diffusion) for all t =
2, . . . ,T snapshots, where T = 8. We assume the tempo-
ral sampling interval, i.e., δt = 15 min. The parameter w
represents a constant advective displacement in 15 min.
The covariance matrix of the state noise, i.e., Q is

assumed to have an exponential structure given as [Q]ij =
σ 2
s exp

(
−‖xi−xj‖2

γ

)
, with σ 2

s = 10−3 and γ = 3.33. The

state noise vector qt at every snapshot is generated from
the distribution qt ∼ N (0N ,Q). After generating the
states of ut using the state model of (6), we set the nega-
tive elements of ut to 0. This is a modelling approximation
adopted to avoid the generation of the negative rainfall
values for very low rainfall intensities.
The total number of pixels is given as N = 25 × 25 =

625, each of size 1 km2. Using this, we generate the states
u2 . . .u8 using the state model mentioned in (6). Based
on these parameters, the space-time evolution of rainfall
over t = 1, . . . , 8 snapshots (each of 15 min, i.e., in total
120 min) is shown in Fig. 2. The unit of the rainfall field is
millimeter (mm).

5.1.2 Ground truth with approximate dynamics
In this section, we consider eight consecutive snapshots of
15-min radar rainfall depths of the same day and area as
mentioned in the previous section. The eight snapshots of

Fig. 2 Spatio-temporal evolution of the rainfall (mm) (known dynamics). The matrices Ht = H for t = 2, . . . , 8 are known and given in Section 5.1.1
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the true gauge adjusted radar rainfall depths are shown in
Fig. 3. Here, we assume that the state model is a Gaussian
random walk, i.e., Ht = I. The process noise covariance
matrixQ is assumed to be the same as before.

5.2 Measurements
In this work, we simulate the measurements using the
locations of the microwave links from a network of 151
microwave links. The total number of measurements for
all t = 1, . . . , 8 is M = 151. The locations of the
microwave links in the service area along with the (1 km2)
pixels, where we would like to estimate the rainfall inten-
sities, are shown in Fig. 4.
We would like to mention that most of the microwave

links in the Netherlands (specially in the urban areas) are
operated at 38 GHz. In that case, b ≈ 1, i.e., the mea-
surement model becomes linear. To check the estimation
performance of the developed algorithms in a non-linear
measurement framework, we intentionally choose b �= 1.
In this case, we assume the rain temperature to be 20◦,
which corresponds to [22, Table II]. We select the oper-
ating frequency to be 15 GHz, with a = 3.28 × 10−2

and b = 1.173. Using these, we simulate the measure-
ments at eight snapshots, i.e., {yt}8t=1, using the non-linear
measurement model of (2), where uj,t ’s are the true values
for j = 1, . . . , 625, and t = 1, . . . 8 as mentioned in the
previous section.
Here, we generate two different sets of measurements.

The first set of measurements is for the seven snapshots,
i.e., {yt}8t=2. These measurements are computed using the
ground truth where the dynamics, i.e., Ht = H for t =
2, . . . , 8 are perfectly known (Fig. 2). The second set of

Fig. 4 Locations of theMmicrowave links from where the
measurements are collected

measurements are computed using the exact radar rain-
fall maps (Fig. 3) for eight snapshots, i.e., {yt}8t=1 whose
dynamics are unknown.
The parameters Li and lij are known from the geom-

etry of the links as shown in Fig. 4. It is assumed that
the M measurements are collected in every 15-min inter-
val which are corrupted by additive white Gaussian noise
characterized by et ∼ N (0M, σ 2

e IM).

5.3 Dynamic rainfall monitoring
The noisy sets of measurements are used to estimate the
rainfall depths at N = 625 pixels over T = 8 snap-
shots. In this section, we perform simulations for three

Fig. 3 Spatio-temporal evolution of the rainfall (mm) (unknown dynamics)
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different scenarios which are perfectly known dynamics, a
Gaussian random walk dynamics, and no dynamics.

5.3.1 Perfectly known dynamics
The measurements {yt}8t=2 are computed using the true
values shown in Fig. 2, i.e., {ut}8t=2. Here, we use σ 2

e =
10−3. These measurements are used to estimate the states
{ût}8t=2. The parameters of the spherical variogram model
are computed for the particular day of the year, i.e., June
11, 2011 [29], to compute �u. The sill (S0) and the range
(d) parameters are computed using (11) of [29], whose
parameters are taken from [29, Table 5]. The 15-min time
interval is rescaled in hourly scales, i.e., 0.25 h.We assume
that the nugget is N0 = 0. The value of the range (d) is
17.4675 km, and the sill (S0) is 5.3328 mm2.
Based on the predictions and the available link loca-

tions, it is seen that the DCT matrix exhibits mini-
mal coherence with Jt , in every iteration. We initialize
û1|1 = μ̃1N , where μ̃ is computed by empirically aver-
aging the ground truth of the first state u1 over N pixels
for both algorithms. In a real application, an appropri-
ate initialization can be computed using the trend of the
rainfall field, which is generally available from the clima-
tological information of the area. For algorithm 2, we ini-
tialize M1|1 = IN . We use the software CVX [45] (parser
CVX, solver SeDuMi [46]) to solve the convex optimiza-
tion problems (i.e., (18) for algorithm 1 and (15) for
algorithm 2).
In Fig. 5, we show the reconstructed spatial rainfall map

for the states û2 and û8 using the algorithm 1. The same
estimates are shown in Fig. 6 using the algorithm 2.
We plot the pixel-wise comparisons of the estimates

with the true values for all the seven snapshots, i.e., a
total of 625 × 7 = 4375 pixels for the algorithms 1 and

2 in Fig. 9a and Fig. 9b respectively. The dark black lines
in Fig. 9a and Fig. 9b, represent the y = x line. It is
observed that algorithm 2, i.e., using the standard Kalman
covariance update exhibits better estimation performance
than algorithm 1, where the second order statistics are not
updated.

5.3.2 Gaussian randomwalk
In this section, the state model is considered to be a
Gaussian random walk, i.e., Ht = I for t = 1, . . . , 8. The
process noise statistics are considered to be the same as
before. Themeasurements for eight snapshots, i.e., {yt}8t=1
are generated using the true radar rainfall depths shown
in Fig. 3, using the measurement model of (2) with the
same a, b coefficients as the previous case. The measure-
ments are different from the previous known dynamics
case as the true values of {ut}8t=1, i.e., the true radar
rainfall depths (as shown in Fig. 3) are different. In this
case, the measurement noise variance is reduced to σ 2

e =
10−5. Due to better estimation performance (as seen in
Section 5.3.1), we select algorithm 2 to estimate the states
{ût}8t=1 using the measurements generated by the true
radar rainfall depths.
Now, as the predictions using the sate model are not

accurate in this case, we do not perform the tuning of λt
based on the predictions. However, the tuning of λt , in
this case can be performed using the standard methods
mentioned in Section 4.2. In the current setup, to exploit
the sparsity prior on every snapshot, we fix λt = λ = 2
for the sake of simplicity. The initializations are given by
û0|0 = μ̃1N andM0|0 = 1N .
In Fig. 7, we show the estimated spatial rainfall maps of

the states û1 and û8 assuming that the state model is a
Gaussian random walk.

Fig. 5 Estimate of the spatial rainfall (mm) map with perfectly known dynamics (Fig. 2). (a) û2, (b) û8; (algorithm 1)
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Fig. 6 Estimate of the spatial rainfall (mm) map with perfectly known dynamics (Fig. 2). (a) û2, (b) û8; (algorithm 2)

In Fig. 10a, we compare the estimation performance of
the estimates of the 625 pixels over eight snapshots, i.e., a
total of 625×8 = 5000 pixels with the true gauge adjusted
radar rainfall depths.

5.3.3 No dynamics
In the last case, we assume that we do not use any prior
information regarding the dynamics. On every snapshot,
we estimate ût using the measurements and exploiting
the prior information regarding the sparsity and the non-
negativity. In this case, for the sake of simplicity, we

assume that the measurement model is linear, i.e., the case
when the links are operated around 38 GHz. Here, we use
a, b = 1.
The linear measurement model is given by yt = �ut +

et , where yi,t = ∑N
j=1 uj,tlij + ei,t , where i = 1, . . . ,M.

On every snapshot, we solve the sparsity-aware non-
negativity constrained optimization problem given as

ẑt = argmin
�zt≥0N

‖yt − ��zt‖2R−1 + λ‖zt‖1 (26)

ût = �ẑt , (27)

Fig. 7 Estimate of the spatial rainfall (mm) map with unknown dynamics (Fig. 3). (a) û1, (b) û8; (algorithm 2 assuming Gaussian random walk
dynamics)
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Fig. 8 Estimate of the spatial rainfall (mm) map with unknown dynamics (Fig. 3). (a) û1, (b) û8; (only exploiting sparsity and non-negativity; linear
model)

However, this can be easily extended to a non-linear
measurement model by adopting an iterative linearization
with respect to a suitable initial guess. Like in the pre-
vious case, here, we also fix λ = 2 and the used basis
is DCT matrix on every t. However, an upper bound on
λ can be easily computed in this case by using the same
methodology discussed in Section 4.2.
In Fig. 8, we show the estimated states û1 and û8 by

solving the optimization problem of Eq. (26). The mea-
surement noise variance is set as σ 2

e = 10−5.
In Fig. 10b, we compare the estimation performance of

the estimates of total 625 × 8 = 5000 pixels with the true
gauge adjusted radar rainfall depths.

5.3.4 Analysis of the results
The following inferences can be drawn from the afore-
mentioned simulation studies.

• The estimation performances in the first two cases are
highly dependent on the accuracy of the state model,
availability of the measurements in any region, and the
initialization of the algorithm. In Fig. 6b, the estimate
of the state û8 is much better than the same esti-
mate in Fig. 7b, as the dynamics are perfectly known
in the first case. Also, the estimation performance is
improved with time as the state error is minimized
with temporal iterations (Fig. 6b).

Fig. 9 Pixel-wise comparison of the estimates. (a) Algorithm 1, (b) Algorithm 2 (known dynamics)
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Fig. 10 Pixel-wise comparison of the estimates. (a) Algorithm 2 (Gaussian random walk). (b) Exploiting only sparsity and non-negativity (no
dynamics); linear model

• As seen in Fig. 4, there are many regions without
any microwave links/measurements but where a rain-
fall field is present. In these regions, the estimates are
mainly dependent on the predictions. On the other
hand, if there is no rainfall over any link, the rain-
fall can be overestimated or underestimated in those
regions, due to the effects of the measurement noise.
This effect severely impairs the estimation perfor-
mance in the case when we do not have an accurate
prediction (or no prediction).

• There is always a trade-off between the estimation
performance and the “availability” of the measure-
ments and/or the “accuracy” of the predictions.

• The reasons behind the scatter plots being not very
symmetric are due to the biased estimates in the
measurement-void regions and the rainfall-void links.

• In the case of an imperfectly known or unknown
state model, the prior knowledge of sparsity and non-
negativity help to achieve a stable solution (Figs. 7, 8,
10a, b).

5.4 Performance metrics
To compare the estimation performances of the developed
methods, we use some performance metrics, which are
described in the following part of this section. The perfor-
mance of a rainfall monitoring method can be quantified
by root mean square error (rmse in mm), the mean bias
(mb in mm), and the correlation coefficient (ρ) [7]. We
quantify the overall estimation performances of all the
above scenarios for N pixels over T snapshots using the
aforementioned metrics. If the true value and the estimate

of the rainfall field at any t are given by ut and ût , respec-
tively, then the performance metrics can be defined in the
following ways

rmse =

√√√√√ 1
NT

T∑
t=1

N∑
j=1

([ ût]j −[ut]j )2, (28)

mb = 1
NT

T∑
t=1

N∑
j=1

([ ût]j −[ut]j ), (29)

ρ =

T∑
t=1

N∑
j=1

([ ût]j −μ̂)([ut]j −μ)

√
T∑
t=1

N∑
j=1

([ ût]j −μ̂)2

√
T∑
t=1

N∑
j=1

([ut]j −μ)2

,

(30)

where μ̂ = 1
NT

∑T
t=1

∑N
j=1[ ût]j and μ = 1

NT
∑T

t=1
∑N

j=1
[ut]j are the sample means of the estimated and the true
values of rainfall for N pixels over T snapshots.
The performance metrics are computed for the esti-

mates using algorithm 2 for the scenarios of perfectly
known dynamics and Gaussian random walk dynamics.
For both of these scenarios, we also estimate the rainfall
depths using a simple EKF without any sparsity and non-
negativity constraint. To avoid the negative estimates pro-
duced by the EKF, we set the negative estimates to 0.While
computing the performance metrics, we fix the process
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and the measurement noise variances to σ 2
s = 10−4

and σ 2
e = 10−3, respectively, in all the cases.

When the dynamics are perfectly known, then the per-
formance metrics are computed for the estimates of 625
pixels for seven snapshots and averaged over 20 different
measurement noise realizations. In Table 1, we present the
performancemetrics computed for algorithm 2 and a sim-
ple EKF (with the thresholding) for the perfectly known
dynamics case.
In Table 2, we present the aforementioned performance

metrics computed for the estimates of 625 pixels for eight
snapshots using algorithm 2 (with fixed λt = λ = 2) and
an EKF (with the thresholding), where the state model is
assumed to be a Gaussian random walk. Here, we also
average the performancemetrics for 20 different measure-
ment noise realizations. In all of these realizations, the
measurements are generated using the true radar rainfall
depths as shown in Fig. 3.

5.4.1 Analysis of the performancemetrics
• For a perfectly known state model, extra information

like sparsity and non-negativity does not play any sig-
nificant role in terms of estimation accuracy. This is
clear from Table 1 where it is shown that the perfor-
mance improvement over a simple EKF (with setting
the negative estimates to 0) is negligible.

• When the information regarding the state model is
unknown and approximated as a Gaussian random
walk model, then the performance of a simple EKF is
very poor. In this case, the sparsity and non-negativity
information along with the measurements improve
the estimation performance (Table 2).

• The last mentioned observation is quite useful in prac-
tical cases, where the availability of an accurate state
model is scarce.

The computation times for both algorithm 1 and algo-
rithm 2 including the basis selection part is less than a
minute for N = 625 pixels using the aforementioned off
the shelf solvers. The computation time is increased if N
is higher than 625. Algorithm 1 is computationally simpler
than algorithm 2 because there is no covariance update
state. But the price we pay is in terms of the estimation
performance. However, the speed of the developed algo-
rithms can be increased by using a projected subgradient
method [47].

Table 1 Performance comparison with EKF (with thresholding);
perfectly known dynamics (σ 2

s = 10−4, σ 2
e = 10−3)

Performancemetric Algorithm 2 EKF (with thresholding)

rmse (mm) 0.3167 0.3178

mb (mm) 0.0014 0.0023

ρ 0.8973 0.8963

Table 2 Performance comparison with EKF (with thresholding);
dynamics is assumed to be a Gaussian random
walk (σ 2

s = 10−4, σ 2
e = 10−3)

Performancemetric Algorithm 2 EKF (with thresholding)

rmse (mm) 0.4719 0.6542

mb (mm) 0.2123 0.4334

ρ 0.5572 0.3034

6 Conclusions
We have developed a generalized dynamic rainfall mon-
itoring algorithm from limited non-linear attenuation
measurements by utilizing the spatial sparsity and non-
negativity of the rainfall field. We have formulated the
dynamic rainfall monitoring algorithm as a constrained
convex optimization problem. The performance of the
developed algorithm is compared with the standard
approaches like an EKF for the scenarios, where we have
both perfect knowledge about the state model and an
approximate state model. Numerical experiments show
that the developed approach outperforms a simple EKF in
scenarios, where the state model is not perfectly known.
The proposed methodology can be equivalently imple-
mented for dynamic field tracking in tomographic appli-
cations like MRI and microwave tomography, where we
have path-integrated Gaussian measurements.
However, tackling more complicated dynamics of the

rain (possibly non-linear and highly time-varying), and
non-Gaussian measurement noise could be possible
future extensions of this work. In that case, both the state
and the measurement models are non-linear. This trig-
gers one to use an unscented Kalman filter (UKF), particle
filtering based algorithms, or other heuristic approaches.
Estimation of the underlying dynamics of rainfall from the
available ground truth and using it for real-time dynamic
monitoring is also a part of the future research. A real-
time selection of the most informative attenuation mea-
surements from the available links could be interesting in
order to reduce the processing time and computational
complexity.
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