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Ouverture: Approximating the roots of an analytical function
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Say we wish to approximate the roots of an analytical function on a finite
domain; i.e. the solution (x) to f(x) = 0 for x ∈ (x0, x0 + L0). A brute force
method for doing this is to first discretize the x-axis with N grid points spaced
∆ = L0/N apart, such that the n-th cell center corresponds to xn = x0+∆(n+ 1

2 ).
Next, for each grid point we check if the function changes sign within the i-th
cell: f(xi − ∆/2)f(xi + ∆/2) ≤ 0. If this is the case, the cells ‘contains’ a root
and xi is an approximation of that root with accuracy ±∆/2. When pushing the
fidelity of the approximations using this method (i.e. lowering ∆), it is tempting
to increase N . Intuitively, the required computer effort (E) grows linearly with
N or, E ∝ ∆−1. This scaling exponent reflects the one-dimensional character
of the embedding space (x).

Alternatively, one may push the resolution by adaptively increasing the res-
olution of only the cells that contain roots. A cell can be split into two cells
with half the grid size and the process can be repeated for more accurate esti-
mations. When the function has R roots, only 2R new cells need to be studied
in order to double the resolution. Interestingly, the required computer effort for
the evaluation of the numerical methods does not scale with the fidelity of the
approximation anymore, i.e. E ∝ ∆0. This asymptotic scaling exponent reflects
the point character of the roots (i.e. zero dimensional).

The favorable scaling exponent with ∆ and the fact that the effort required
for evaluation of the numerical method automatically reflects the complexity of
the problem (e.g. the number of roots) are desirable features that characterize
adaptive numerical methods.

For a test of the implementation of this method applied to the non-trivial
roots of first Bessel function of the first kind: J1(x) = 0 for x ∈ 〈0, 20], see:
www.basilisk.fr/sandbox/Antoonvh/root-finding.c
The results are shown in the top figure. Here the function (J1(x)) was only eval-
uated 368 times in order to obtain an estimate as accurate as with the ’brute
force’ equidistant resolution of N = 524288.

For further info on numerical root finding in practice, see: reference.
wolfram.com/language/tutorial/EquationsInOneVariable.html

7

www.basilisk.fr/sandbox/Antoonvh/root-finding.c
reference.wolfram.com/language/tutorial/EquationsInOneVariable.html
reference.wolfram.com/language/tutorial/EquationsInOneVariable.html


8



Summary

Weather and climate influence life in many ways; varying climatic conditions can be
associated with varying human cultures and on a day-to-day basis, the weather in-
fluences our plans and mood. As such, a proper prediction of the weather is of great
importance. Ultimately, the weather is fueled by solar irradiation, which changes
sharply over the course of the day. The relative position of the sun is directly influ-
encing the meteorological properties in the atmosphere closest to the surface. The
atmospheric state in the lowest few kilometers, known as the troposphere, is therefore
characterized by a daily cycle: during daytime, the sun heats the air and at night,
the atmosphere typically cools down and the wind settles a bit.

In spite of its omnipresence and importance, this diurnal cycle in weather patterns
is still not fully understood by the meteorological community. Consequently, it is also
hard to describe and predict the weather properly. The challenges emerge from the
fact that the weather is continuously evolving, and is therefore never ‘in balance’,
which would simplify analysis of the processes. With the goal to better understand
the 24-hour weather cycle, this book addresses the following topics:

1. We present a proof-of-concept for the adaptive mesh refinement method applied
to atmospheric boundary-layer simulations. Such a method may form an at-
tractive alternative to static grids for studies on atmospheric flows that have
a high degree of scale separation in space and/or time. Examples include the
diurnal cycle and a convective boundary layer capped by a strong inversion. For
such cases, large-eddy simulations using regular grids often have to rely on a
subgrid-scale closure for the most challenging regions in the spatial and/or tem-
poral domain. In Chapt. 2 we analyze a flow configuration that describes the
growth and subsequent decay of a convective boundary layer using direct nu-
merical simulation (DNS). We validate the obtained results and benchmark the
performance of the adaptive solver against two runs using fixed regular grids.
It appears that the adaptive-mesh algorithm is able to coarsen and refine the
grid dynamically whilst maintaining an accurate solution. In particular, during
the initial growth of the convective boundary layer a high resolution is required
compared to the subsequent stage of decaying turbulence. More specifically, the
number of grid cells varies by two orders of magnitude (!) over the course of
the simulation. For this specific (DNS) case, the adaptive solver was not yet
more efficient than the more traditional solver that is dedicated to these types of
flows. However, the overall analysis shows that the method has a clear potential
for numerical investigations of the most challenging atmospheric cases.
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2. It is well known that the representation of certain atmospheric conditions in
climate and weather models can still suffer from the limited grid resolution that
is facilitated by modern-day computer systems. Herein we study a simple one-
dimensional analogy to those models by using a Single-Column Model descrip-
tion of the atmosphere. The model employs an adaptive Cartesian mesh that
applies a high-resolution mesh only when and where it is required. The so-called
adaptive-grid model is described and we report on our findings obtained for tests
to evaluate the representation of the atmospheric boundary layer, based on the
first two GABLS intercomparison cases. The analysis shows that the adaptive-
grid algorithm is indeed able to dynamically coarsen and refine the numerical
grid whilst maintaining an accurate solution. This is an interesting result as in
reality, transitional dynamics (e.g. due to the diurnal cycle or due to changing
synoptic conditions) are the rule rather than the exception.

3. We present a conceptual model for the diurnal cycle of the dry atmospheric
boundary layer (ABL). It may serve as a framework for future numerical stud-
ies on the transitional dynamics that characterize the ABL over land. The
conceptual model enables to define expressions for relevant physical scales as
a function of the most prominent forcing parameters and the low degree of
complexity facilitates a dimensionless description. This is useful to help gen-
eralize boundary-layer dynamics that occur on a diurnal timescale. Further,
the model’s application for numerical studies is illustrated herein with two ex-
amples: A single-column-model study which assesses the effect of wind forcing
on the main characteristics of the diurnal cycle, and a large-eddy-simulation
study on the daily evolution of turbulence under weak-wind-forcing conditions.
The results from these studies sketch the general evolution of the present set
of diurnal-cycle systems in more detail. We discuss how the setups are able to
reproduce well-known dynamical features of the ABL and also highlight limi-
tations, where the simple conceptual system is unable to capture realistic ABL
behavior. We conclude that the present conceptual model has an interesting
balance between model-system complexity and physical realism, such that it is
useful for future, idealized, studies on the diurnal cycle of the ABL.

Further, this book presents an entr’acte between each chapter. These sections
serve as fun scientific and illustrative excursions on adaptive grid refinement.
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Samenvatting

Weer en klimaat beïnvloeden het leven op talloze manieren; verschillende klimaat-
zones hebben een sterk verband met de verschillende menselijke leefculturen en van
dag-op-dag beïnvloedt het weer in grote mate onze plannen en ook onze gemoedstoes-
tand. Een goede weersvoorspelling is daarom van groot belang. De energievoorziening
van ’het weer’ is afkomstig van de zonnestraling die de aarde bereikt. De zonnestand
(zonnehoek) heeft direct invloed op de meteorologische eigenschappen van de atmos-
feer nabij het aardoppervlak. De toestand van de atmosfeer is de onderste kilometers,
ook wel de troposfeer genoemd, word gekenmerkt door een typische ’dagelijkse gang’.
Het warmt op overdag en ’s nacht koelt de lucht af en waait het wat minder.

Hoewel de dagelijkse gang van groot belang is voor de meteorologie, is er nog altijd
onduidelijkheid over de exacte dynamica die ermee gemoeid is. Mede hierdoor blijft
het accuraat voorspellen van het weer een uitdaging voor meteorologen. De moeili-
jkheid zit hem in het feit dat het weer zelfs op een dagelijkse tijdschaal voortdurend
verandert. Hierdoor is het nooit sprake van balans, hetgeen een vereenvoudigde anal-
yse verhindert. Met het doel om de 24-uur cyclus van het weer beter te doorgronden,
presenteert dit boek de volgende onderwerpen:

1. We presenteren een ’principe bewijs’ voor de adaptieve rekenrooster verfijnings-
methode, toegepast op simulaties van de atmosferische grenslaag. Een dergelijke
methodiek kan een interessant alternatief zijn voor de gangbare statische reken-
roosters voor het bestuderen van problemen die gekenmerkt worden door een
hoge mate van schaal separatie in de ruimte en/of de tijd. Voorbeeld hiervan is
de opbouw (en neergang) van de zogenaamde convectieve grenslaag, waarbij zich
een sterke temperatuursinversie aan de top bevindt. Voor dergelijke scenario’s,
waarbij brute-force berekeningen haast uitgesloten zijn, moeten "Grote-Wervel-
Simulaties" noodzakelijkerwijs volledig vertrouwen op parameterizaties van de
kleinschalige processen in de meest uitdagende regionen van het ruimtelijke en
tijds domein. Voor een adaptief rooster geldt dat in veel mindere mate.

We analyseren een configuratie die de groei en het daaropvolgende verval van
een convectieve grenslaag beschrijft, gebruik makend van directe numerieke sim-
ulatie (DNS). We valideren de resultaten van het adaptive model en confron-
teren de efficiëntie tegen resultaten verkregen met een regulier rekenrooster, dat
zowel gelijkmatig als statisch is. Het blijkt dat het adaptieve algoritme in staat
is om het rekenrooster dynamisch te verfijnen en vergroven, terwijl een accurate
oplossing gehandhaafd blijft. Gedurende de initiële groei van de grenslaag is een
relatief hoge resolutie vereist ten opzichte van de fase waarin de convective tur-
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bulentie uitsterft. Over de totale simulatie varieert het aantal roosterelementen
wel met een factor honderd! Desalniettemin, bleek, voor dit specifieke (DNS)
scenario de adaptieve methode nog niet efficiënter dan de traditionele methode
die is toegespitst of dit type problemen. Echter, de complete analyse laat zien
dat de adaptieve methode duidelijk potentie heeft voor toekomstig numeriek
onderzoek naar de meest uitdagende atmosferische systemen.

2. Het is wel bekend dat de representatie van bepaalde atmosferische condities in
weer en klimaat modellen te lijden heeft onder de beperkingen (en eindigheid)
in rekenresolutie, waarmee we met moderne supercomputers te maken hebben.
We bestuderen een simpele, één dimensionale analogie voor dergelijke modellen,
door gebruik te maken van een één-kolomsbeschrijving van de atmosfeer. Het
model past een adaptief rekenrooster toe dat enkel een hoge resolutie toepast
waar en wanneer dit nodig is. We presenteren de details van het model en
rapporteren onze bevindingen voor twee vergelijkingsstudies. Deze studies eval-
ueren de representatie van de atmospherische grenslaag met het scenario volgens
de zogenaamde GABLS configuraties. Dit zijn twee benchmark cases die goed
beschreven zijn in de literatuur. De analyse toont aan dat de adaptieve methode
inderdaad in staat is om het rekenrooster dynamisch te vergroven en verfijnen,
en zorgt ervoor dat de oplossing over het hele tuid-ruimte domain accuraat
berekend wordt. Dit is een interessant resultaat omdat in de werkelijkheid,
transitie-dynamica (zoals bijv. de dagelijkse gang of veranderende synoptische
condities) meer de regel zijn in plaats van een uitzondering in de natuur.

3. In Hoofdstuk 4 presenteren we een conceptueel model voor de dagelijkse gang
van de atmosferische grenslaag. Het model kan dienst doen als een raamwerk
voor toekomstige studies naar de transitie dynamica. Het conceptuele model
faciliteert het definiëren van relevante lengte en temperatuur schalen als een
functie van de meest belangrijke forceringsmechanismen. Verder maakt de een-
voud van het model het mogelijk om het systeem te non-dimensionaliseren,
waarmee de resultaten gegeneraliseerd worden. Het gebruik van het model als
raamwerk voor numerieke studies word geïllustreerd met twee voorbeelden: een
studie naar het effect van de wind forcering op de dagelijkse dynamica, gebruik-
makende van een éénkoloms model en een grote-wervel-simulatie studie naar de
evolutie van de turbulente structuren. We bespreken hoe het simpele systeem in
staat is om de werkelijkheid te vatten. Daarnaast worden ook tekortkomingen
onder de loep genomen. De conclusie is dat het conceptuele model een inter-
essante balans weet te vinden tussen fysisch realisme en complexiteit, zodanig
dat het dienst kan doen in toekomstige studies naar de dagelijkse gang van de
atmosferische grenslaag.

Tenslotte bevat dit boek tussen ieder hoofdstuk een entr’acte. Deze dienen als
leuke, illustratieve excursies met adaptieve gridverfijning als rode draad tussen de
onderwerpen.
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Perhaps some day in the dim future it will be possible to advance the computations
faster than the weather advances.

L.F. Richardson (1922)
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1 | Introduction

1.1 Numerical weather prediction

Accurate prediction of the weather is of great societal and economic importance, but
meteorologist face a challenging task due to the complexity and chaotic nature of
geophysical flows. In the year 1922, Lewy Fry Richardson was the first attempting to
make a weather prediction based on the equations that describe the evolution of the
atmospheric state (Richardson, 1922). He solved a system of discretized equations
for air motion and thermodynamics, but found out the model predictions were inac-
curate and, in some aspects, even nonphysical. Richardson’s results and experiences
indicated the challenges that the approach faced. Almost a century later, numerical
weather prediction lies at the center of meteorological forecasts and the so-called ‘skill
score’ of these models has been continuously increasing (Bauer et al., 2015). The ac-
tual improvement of our weather forecast results from progress made in various sub
fields in research as well as from the complex interplay between those fields. Here
we mention a few important developments, that contributed to the overall success of
current day weather forecast.

1. Our level of understanding regarding the atmospheric structure and the relevant
processes has increased.

2. The availability of Meteorological data has improved. For example, data from
global-coverage satellites facilitate accurate model assimilation/nudging.

3. The computational resources have greatly increased, allowing to solve more
complex physical processes with greater accuracy.

4. Advances in numerical methods and computer science allow us to use the avail-
able computational resources more effectively.

Each of these four topics represents a field of research in itself and in this book we aim
to add to subcategories of both the first and the fourth point. More specifically, we
investigate the dynamical behavior of the atmospheric boundary layer within a diurnal
cycle and study a possible avenue for more efficient modeling via the employment of
adaptive grids.

15



1.2 The research in this book

Chapters 2, 3 and 4 form the body of this book and are based on peer-reviewed
articles. Furthermore, they appear in chronological order. As such, the chapters may
not necessarily connect in the most optimal manner. To alleviate this issue, this
introduction chapter aims to provide an overview and discusses how the chapters are
linked to each other, even tough they may be read in ‘stand alone’ mode, each with
separate introduction and conclusion sections.

The common denominator between the chapters in this book is the usage of adap-
tive grids for the numerical modeling of the diurnal cycle of the atmospheric boundary
layer. This sentence warrants the introduction of some concepts: The atmospheric
boundary layer is the lowest part of the atmosphere, and is directly influenced by the
processes that take place at the surface. Here the atmosphere exchanges heat, mo-
mentum and moisture with the underlying soil, and these quantities are mixed in the
boundary layer, primarily through turbulent air motion. The surface also heats due to
the incoming solar radiation, which typically drives thermal convection in the atmo-
sphere. During the nighttime, it may cool due to the emission of long-wave radiation.
A thorough understanding of the governing processes for its accurate representation
in weather models is desirable for its omnipresence in local weather patterns. How-
ever, the interplay between even the most dominant processes of the diurnal cycle
are not well understood (Lothon et al., 2014; Baas et al., 2017). A possible avenue
to study such complex systems is with the use of turbulence-resolving models. With
respect to a full weather model, such a research model reduces the level of complexity,
and enables to study an idealized system. The obtained data is complementary to
those from field experiments as turbulence-resolving models provide improved control
over the forcings, yield detailed four-dimensional data (space and time), and facilitate
simplifications to the system’s forcing. Finally, the word ‘adaptive’ refers to a detail
of the numerical method and it is discussed with more depth in Sect 1.3.

The scope of the first two chapters is similar. Both investigate the potential of
adaptive grids for the representation of highly dynamic atmospheric boundary layers
in models. In Chapter 2, we motivate our wish to study the diurnal cycle with a
three-dimensional turbulence resolving model in depth and argue that, compared to
a static grid, an adaptive-grid approach is likely to be advantageous for this purpose.
The focus is on the ability of an adaptive solver to accurately resolve the growth and
decay of atmospheric convection-driven turbulence. Chapter 3 experiments with the
idea that the same adaptive-grid philosophy may also be applied to weather models.
This Chapter therefore employs a one-dimensional column model and focuses on the
representation of the atmospheric boundary layer. It serves as a toy model for a future
adaptive weather model. Chapter 4 introduces an idealized model scenario that could
be used for studies on the diurnal cycle. The case aims to balance physical realism
and model-system complexity. It hence may form a possible framework for detailed
studies on the diurnal cycle. This chapter also includes results obtained with both
turbulence-resolving methods and a single-column model. Chapter 5 presents a short
note on the emergence of sharp temperature fronts. The conclusion of these chapters
are summarized in Chapter 6. Further, between of each chapter, an short excursion is
taken. These serve as ‘mere’ scientific fun, but also illustrate the broad applicability
of the adaptive grid approach.
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1.3 On adaptive-grid methods

Since the first usage of digital systems for scientific computing, researchers have
pushed the available computational hardware to their limits. An elegant idea to
increase the capabilities of existing computer systems and numerical methods is to
optimize the computational mesh used for computations. This can be achieved by
using a high resolution only for the regions where it is most required, and use coarser
elements where the solution is more smooth in space. As such, a grid may be pre-
tuned for a specific problem based on existing knowledge, or, the grid can be refined
and coarsened adaptively as the solution evolves over timed based on an automatic
algorithm. For the latter case, we speak of an adaptive grid approach, and the ac-
companying concepts will be further discussed in this book.

Pioneering studies on the problem-specific grid optimization by e.g. Brandt (1977);
Babuška and Rheinboldt (1979); Harten and Hyman (1983) inspired Marsha Berger to
present her seminal works on adaptive numerical methods (Berger and Oliger, 1984;
Berger and Colella, 1989). Here the local resolution varies adaptively, based on the
evolution of the solution itself. The adaptive method has transformed into the modus
operandi for various fields of research, e.g. in astrophysics and multi-phase flows and
presently, ca. one-in-five articles in the journal of computational physics are published
with the key words ‘adaptive mesh’. Due to the multi-scale character of atmospheric
flows, weather models were soon recognized as a prime candidate for the adaptive grid
method. Notable early works include those of Skamarock et al. (1989); Dietachmayer
and Droegemeier (1992); Skamarock and Klemp (1993) and the present state-of-the art
of adaptive weather modeling may be represented by Bacon et al. (2000); Jablonowski
et al. (2009) and Aechtner et al. (2015). However, the adoption of adaptive models
has not percolated into true operational weather forecasting, but this might change
in the upcoming future, when the method has matured in its full extend. In the next
paragraph we will discuss why immediate practical implementation of adaptive grids
in weather forecast models is not as trivial as it seems. As a comprehensive review on
adaptive methods is beyond the scope of the introduction, we refer to Behrens (2007)
for further background on this topic.

The conceptual advantages of adaptive methods are obvious; it focuses the avail-
able resources and require less a priori knowledge on resolution requirements. How-
ever, despite the vast amount of literature, a prominent question as ‘do adaptive
methods actually function properly?’ remains surprisingly hard to answer for the
general case. The issue is rooted in the fact that an adaptive method naturally car-
ries overhead compared to the more simple static methods. In practice it appears that
the scenarios with a high degree of localization in space and time are able to benefit
from the adaptive approach. However, there is much freedom when implementing an
adaptive code and it is hard to gauge the overhead when assessing the feasibility of a
novel formulation. According to the author of this thesis, the adaptive-grid commu-
nity has failed to present a critical review of the wealth of approaches it has come up
with and present a distinction between the good from the inefficient concepts. Such a
discussion is essential before adaptivity can be adopted by a broader community. As
computational performance depends on many factors and deserves a dedicated study
in itself, the current work focusses on physics in relation to adaptivity. In particular
the potential of AMR for diurnal ABL simulations and analysis will be shown. As
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turbulent length scales highly vary over the course of the day, this type of diurnal
ABL simulations are notorious and known to be very challenging for regular fixed-
grid computational methods. Therefore, the diurnal cycle of the ABL seems to be an
interesting ’showcase’ for adaptivity as a tool to study the underlying physics in more
depth.

1.4 This book contains links to online locations

For work to be considered inside the realm of scientific research it is essential to
provide a clear description of the used methods. This is especially true for studies
relying on digitally generated data. For this book to remain legible and concise, the
English language is used to inform the reader and this forms a challenge, since the
methods are written in a computer programming language. Fortunately, the advent of
the internet has provided academic researchers with a medium to conveniently share
unambiguous descriptions of the used methods. To ensure that the results herein are
reproducible and the methods unambiguous, the used computer code is documented
and presented in clear formatting online. As such, the interested reader in encouraged
to follow the links to the relevant online locations that are presented alongside the
textual description in each chapter.
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Entr’acte 1: The Mandelbrot set

The natural beauty of the Detivoss water fall in Iceland (top left) may be
rooted in the wide variety of length scales that can be observed. As a toy model
for such fractals, Benoit B. Mandelbrot studied a sequence of complex numbers
(cn) first considered by Piérre Fatou, starting from c0,

cn+1 = c2n + c0.

It can be shown that this sequence diverges in absolute sense when ‖cn‖ > 2.
The Mandelbrot set is defined as the set of numbers c0 for which the sequence
does not diverge when n → ∞. A spectacular non-self-similar fractal pattern
arises (top right) when we associate a color code to the number of iterations N it
takes such that ‖cN‖ > 2 for each pixel position (x, y), starting from c0 = x+iy,
with i the imaginary unit (i =

√
−1). The black area corresponds to the pixel-

centered locations that did not diverge for N = 1000, and gives a good indication
of the set. The color coding associates the logarithm of N + 1 with one of 128
different colors in the palette, from dark blue (N = 0) to red/purple (N = 1000).

To study the small-scale patterns in more detail, it is tempting to generate a
high-resolution image. However, it seems reckless to search through the sequence
for each individual pixel when the corresponding color code could be readily
computed form a coarser grid via interpolation. As such, for each group of
2 × 2 points, we compute Ncoarse based on the group’s averaged location and
check how well the interpolation from the local coarser resolution approximates
the original color-code values. When this difference is larger than a single-color
code, there appears to be non-trivial spatial features and a point can be split up
into 2 × 2 points at double the resolution. Starting from a coarse 2 × 2 points
grid, this process is repeated until a desired maximum resolution, keeping the
coarse grid values when it is sufficient. Once the computations stop, an image
at the maximum resolution is generated, using bilinear interpolation for the ‘up
sampling’ of the coarse grid points. The resulting quadtree-grid points for the
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512 × 512 pixel image is shown below (left). If we wish to further increase the
resolution, a certain, non-obvious, fraction of the domain will be refined. As
such, we count the number of points used for images at increasing resolutions,
and the results are plotted in the figure below (right). It appears that the
required points scale favorably compared to the number of pixels. Meaning that
the relative gain of using the adaptive grid increases as the scale separation
increases.

This facilitated to generate an image with 131, 0722 pixels. It may be ex-
plored on the ‘easyzoom’ website. The exact implementations rely on the Basilisk
quadtree toolbox, are documented and made freely available.

Explore the 16 Gigapixel-Mandelbrot-set rendering:
https://easyzoom.com/image/109963
The used Computer code in Basilisk’s C progamming language:
http://www.basilisk.fr/sandbox/Antoonvh/mandelbrot3.c

-2 -1 0

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

42 322 2562 20482 163842

Pixels

42

322

2562

20482

P
o
in
ts

Data

∝ x
0.7

21

https://easyzoom.com/image/109963
http://www.basilisk.fr/sandbox/Antoonvh/mandelbrot3.c


Even the smallest computational errors overwhelm numerical trajectories in typi-
cal simulations [...] Consequently, accuracy is expected only in a statistical sense.

V.A. Van Liebergen (2015)
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2 | Towards Adaptive Grids for
Atmospheric Boundary-Layer
Simulations

Abstract

We present a proof-of-concept for the adaptive mesh refinement method applied to
atmospheric boundary-layer simulations. Such a method may form an attractive al-
ternative to static grids for studies on atmospheric flows that have a high degree
of scale separation in space and/or time. Examples include the diurnal cycle and a
convective boundary layer capped by a strong inversion. For such cases, large-eddy
simulations using regular grids often have to rely on a subgrid-scale closure for the
most challenging regions in the spatial and/or temporal domain. Here we analyze
a flow configuration that describes the growth and subsequent decay of a convective
boundary layer using direct numerical simulation (DNS). We validate the obtained
results and benchmark the performance of the adaptive solver against two runs using
fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen
and refine the grid dynamically whilst maintaining an accurate solution. In particular,
during the initial growth of the convective boundary layer a high resolution is required
compared to the subsequent stage of decaying turbulence. More specifically, the num-
ber of grid cells varies by two orders of magnitude over the course of the simulation.
For this specific (DNS) case, the adaptive solver was not yet more efficient than the
more traditional solver that is dedicated to these types of flows. However, the overall
analysis shows that the method has a clear potential for numerical investigations of
the most challenging atmospheric cases.

The second chapter is based on the article:
J.Antoon van Hooft, Stéphane Popinet, Chiel C. van Heerwaarden,
Steven J.A. van der Linden, Stephan R. de Roode & Bas J.H. van de Wiel
Towards adaptive grids for atmospheric boundary-layer simulations.
Boundary-layer meteorology, 167(3), 421-443 (2018).
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2.1 Introduction

The aim of the present work is to introduce adaptive mesh refinement (AMR) as an
efficient tool for numerical investigations of the atmospheric boundary layer (ABL)
using turbulence resolving methods. This refers typically to models that rely on direct
numerical simulation (DNS) or large-eddy simulation (LES) techniques. In general,
AMR solvers aim to distribute the available computational resources efficiently over
a domain by dynamically refining and coarsening the computational grid in space
and time. AMR techniques have successfully been employed in studies concerning
flows with a high degree of scale separation throughout the spatial and/or temporal
domain. Such studies concern a wide range of topics, e.g. cosmological hydrodynam-
ics (Teyssier 2002), electro hydrodynamics (López-Herrera et al. 2011), multiphase
flows (Fuster et al. 2009), flows in complex geometries (Popinet 2003) and turbulence
simulations (Schneider and Vasilyev 2010). However, to our knowledge, the potential
of this technique has not yet been explored for ABL research, and here we aim to
do so through an investigation of the consecutive growth and decay of a convective
boundary-layer (CBL) system. The flow configuration is modelled after Van Heer-
waarden and Mellado (2016) who performed an in-depth study of this case using a
regular grid configuration. As such, the AMR method is tested and benchmarked.

Several methods that meet a varying resolution requirement throughout the spa-
tial domain have already been successfully applied in studies on ABL turbulence. For
example, stretching and squeezing of grids (see e.g. Heus et al. 2011, Van Heerwaar-
den and Mellado 2016, De Roode et al. 2016), nested grids (see e.g. Sullivan et al.
1996, 1998, Moeng et al. 2007, Mirocha et al. 2013, Muñoz-Esparza et al. 2014)
and the usage of unstructured anisotropic grids. However, the mesh is always kept
fixed during the simulation, whereas dynamical changes in the ABL call for variation
of resolution in time. Furthermore, the aforementioned methods of refinement need
to be predefined. Consequently, detailed a priori knowledge is needed on the vary-
ing resolution requirement throughout the spatial domain. Apart from tailored and
well-known cases, this knowledge is usually not available beforehand; therefore, we
identify three favourable characteristics of an AMR approach for ABL studies. First,
the resolution can vary throughout the spatial domain. Second, the grid can vary
in time such that temporal variation in the local resolution requirement can be met.
Third, the grid is generated adaptively based on the evolution of the numerical solu-
tion itself, relaxing the requirement of detailed a priori knowledge on the resolution
requirement.

To illustrate our philosophy, we briefly discuss a textbook example of the evolution
of the ABL during a diurnal cycle (after Stull 1988). Figure 2.1 depicts a typical
evolution of the ABL during a diurnal cycle. Around sunrise the solar irradiation of
the Earth’s surface causes a thermal instability that results in the rapid growth of a
CBL. The typical size of the largest thermal plumes scales with the boundary-layer
height and hence there is a temporal dependency on the resolution requirement to
resolve these turbulent structures. The growth of the boundary layer slows down
when the rising thermals reach the inversion layer, which effectively caps turbulent
structures at the top of the CBL. The dynamics within an inversion layer are of
pivotal importance for the evolution of the CBL (Garcia and Mellado 2014). Apart
from the effective ‘lid’ on the boundary layer, entrainment processes occur here and
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Figure 2.1: Sketch of a prototypical diurnal cycle evolution. Adapted from Stull
(1988).

the formation of stratocumulus clouds is promoted by the large jump in temperature
with height. Due to the presence of strong stable stratification, turbulent length
scales are suppressed (De Lozar and Mellado 2015), and in order to resolve the most
prominent turbulent structures here, a much higher resolution is necessary compared
to the bulk of the CBL (Sullivan and Patton 2011, De Lozar and Mellado 2015).
Applying such high resolution everywhere in the domain is not feasible given the
current status of computational resources, and might not be feasible in coming years
(Bou-Zeid 2015). For this reason, many LES studies have to rely on their subgrid-scale
(SGS) parametrizations within the region of the inversion layer, partially negating the
purpose of a turbulence resolving study. Furthermore, the exact height and strength
of the inversion layer are not always known a priori (except in cases that have been
studied before). Fixed nested grids (Sullivan et al. 1998) are thus not always flexible
enough to capture the dynamics properly. On the other hand, practically speaking,
it should be noted that LES results between various studies often tend to converge,
signifying that SGS models have appreciable skill in describing certain characteristics
of the inversion layer (see e.g Nieuwstadt et al. 1993, Siebesma et al. 2003).

At the approach of sunset, thermal plumes gradually decay into so-called residual
turbulence, and due to the radiative cooling of the Earth’s surface, stable stratification
sets in and turbulence is now driven by wind shear only. The stable boundary layer
(SBL) is typically much shallower than the CBL and, furthermore, the length scales
of the turbulent structures that account for the mixing of heat and momentum within
this layer are only a fraction of the size of those associated with daytime convective
turbulence (Basu et al. 2008). Additionally, Ansorge and Mellado (2016) argue that
the resolution requirement for their simulations of the intermittently turbulent SBL
is dictated by localized dissipative flow structures that only encompass a fraction of
the computational domain.

Rather than capturing the cyclic behaviour of the atmosphere as depicted in Fig.
2.1, the contrast between daytime and night-time turbulence has resulted in many
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numerical studies focusing only on either convective or stable conditions. The studies
that do simulate a diurnal cycle typically struggle to resolve turbulence during the
night (Kumar et al. 2006, Basu et al. 2008, Abkar et al. 2015). Furthermore, the
transition period itself (i.e. around sunset) would benefit from high fidelity numerical
studies (Lothon et al. 2014). In summary: the example shows that the intrinsic
dynamic character of the ABL calls for flexible techniques such as an AMR appoach
in addition to existing techniques that have successfully been applied to studies on
idealized, steady cases.

Apart from our long-term prospects, we focus here on a case corresponding to the
red and grey sections in Fig. 2.1. This choice is motivated by the fact that as a first
step, we would like to present a proof-of-concept of the AMR approach before we
redirect our attention towards more challenging cases. Therefore, we present results
obtained with DNS, for which all turbulent structures are resolved explicitly down
to the small-scale Kolmogorov length (i.e. the viscous length scale) according to
the Navier-Stokes equations, without any closure for turbulence. Compared to, for
example, LES, the results obtained with DNS should be independent of the numerical
formulations or choice of any SGS model, whereas with LES this is a topic of discussion
(Bretherton et al. 1999, Siebesma et al. 2003, Fedorovich et al. 2004, Beare et al.2006,
De Roode et al. 2017). However, as shown in Sect. 2.4, the concept of the AMR
approach can be easily extended to LES. Since this technique is a popular choice for
studies on the ABL, we also briefly discuss results obtained with the AMR technique
using a LES formulation.

We realize that we cannot address all questions regarding the AMR technique in
relation to ABL simulations. For example, here we focus on a single case whereas we
will argue that the performance of an AMR solver varies depending on the particular
case specifications (see Appendix 1). Furthermore, we choose a numerical solver
called Basilisk (http://basilisk.fr) for the adaptive-grid runs and do not assess
alternatives.

The paper is organized as follows; in Sect. 2.1 the details of the adaptive-grid solver
are described, focusing on the AMR algorithm, and in addition, Sect. 2.2 provides
an example analysis of how the algorithm assesses a turbulent signal and adapts the
grid accordingly. In Sect. 2.3 the case and the numerical set-up of the different
runs are specified. Section 3 presents the obtained results including a performance
assessment, while in Sect. 4 we provide an outlook on future plans. We finish with a
conclusion combined with a discussion in Sect. 5. Additionally, using a simple flow
set-up, Appendix 1 illustrates an important advantage the AMR technique has over
a fixed equidistant-grid approach.

2.2 Methods

2.2.1 Basilisk and the Grid Adaptation Algorithm

The AMR runs are performed with the partial-differential-equation solver called
Basilisk, a code that contains a second-order accurate finite-volume solver for the
Navier-Stokes equations. For a detailed description of the numerical formulations
see Popinet (2003,2009), Lagrée et al. (2011), and references therein. In order to
facilitate local adaptive refinement and coarsening whilst maintaining a Cartesian

26

http://basilisk.fr
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Figure 2.2: Example of a tree-grid structure. The top row presents the spatial struc-
ture of the grid cells with varying levels of refinement (a) and the locations of two
types of ghost points whose field values are defined by the downsampling (red dots)
and upsampling (blue dots) operations (b, see text). The plot on the bottom row
presents a corresponding tree representation of the various grid cells and ghost points
at different levels (c).

grid-structure, a so-called tree-based grid is used. To illustrate this mesh structure,
Fig. 2.2 shows the two-dimensional (2D) variant of a tree-based grid (i.e. a quadtree),
whose structure introduces a hierarchy between cells at integer levels of refinement.
The resolution between the levels of refinement differs by a factor of two and the
Basilisk solver allows neighbouring cells to vary up to one level. The formulations of
numerical methods (e.g. evaluating spatial derivatives) on equidistant Cartesian grids
are relatively straightforward compared to their uneven grid counterparts. Therefore,
ghost points are defined, enabling simple Cartesian stencil operations for the cells in
the vicinity of a resolution boundary. These points act as virtual cells and are located
such that all cells have neighbours that are defined at the same level of refinement,
see Fig. 2.2b. The field values on these ghost cells are defined with interpolation
techniques using the original field values.

The tree grid facilitates an efficient and convenient structure to perform a mul-
tiresolution analysis of a discretized field. During the simulation, such an analysis
is used to determine which grid cells require refinement and where in the domain
cells can be coarsened. This procedure is discussed next. Consider a 1D signal (f)
discretized with an even number (n) of elements fn, where individual entries of fn
are indexed with i such that f in represents the i-th entry of fn. First, we define a
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Figure 2.3: A one-dimensional, visual representation of how the adaptation algorithm
assesses the discretization of a curved field f(x): a) A coarser level estimate of the
discretized solution is obtained using the downsampling operation. b) Using these
coarse level values, the original discretized solution can be estimated using the up-
sampling operation. c) The difference between the estimated and original values is
interpreted as an error estimator (χ) and can be compared against fixed thresholds
(e.g. ζ). d) and e) If the refinement criterion is exceeded, new cells at one level higher
are initialized locally by applying a linear interpolation technique using the initial
cell values. Alternatively, if the estimated error is smaller than the coarsening crite-
rion for multiple cells, these cells can be merged if that does not violate the general
grid-structure requirements (see text and Fig. 2.2).

downsampling operation (D) that approximates fn on a coarser level grid with n/2
elements,

fn/2 = D(fn). (2.1)

Second, we define an upsampling operator (U) that samples fn/2 to a signal that is
defined with the same element entries as the original signal fn,

gn = U(fn/2), (2.2)

noting that in general fn 6= gn, and the absolute difference χ, defined as,

χin = ‖f in − gin‖, (2.3)
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can be interpreted as an estimation of the discretization error. The downsampling
operation in the Basilisk solver is defined as local volume averaging of the signal
to obtain a value for a corresponding coarser-level grid cell (see Fig. 2.3 a.). This
formulation is exact since in a finite-volume formulation, the grid cell values represent
volume-averaged quantities. To be in line with the second-order accuracy of the solver,
the upsampling operation is chosen to be second-order accurate as well, and entails
performing a linear interpolation between the grid points of the coarse level solution
(see Fig. 2.3b). Once these two operations have been applied to the discretized signal,
it is possible to evaluate χin for each of the grid cells. Given an error threshold ζ, the
following assessment with regards to a grid-cell’s resolution can be made,

the i-th grid cell is


too coarse. χin > ζ,

too fine. χin <
2ζ
3 ,

just fine. Otherwise.
(2.4)

The threshold on the estimated error for refinement ζ is called the refinement criterion,
with ζ having the same physical units as f . Note that the described method is formally
linked to wavelet thresholding that has already been employed for fluid dynamical
simulations (Schneider and Vasilyev 2010). The grid can be refined and coarsened
according to Eq. 2.4 and field values for the new refined and coarsened cells can be
defined using an identical formulation as is used for the U andD operator, respectively.
However, the Basilisk solver allows the formulations for upsampling and downsampling
during the grid-resolution assessment and the actual refinement and coarsening of cells
to differ.

In general, the tree grid that results from applying the adaptation algorithm re-
sults in the presence of the aforementioned resolution boundaries and accompanying
ghost cells within the domain (see Fig. 2.2). To define the field values of ghost
points, the Basilisk solver uses the downsampling and upsampling operations. The
implementation is visually represented for a 1D scenario in Fig. 2.4. First, down-
sampling is used to define the field values of ghost points on the high-resolution side
of a resolution boundary. Second, an upsampling method is used to define the field
values of the ghost points on the coarse side of the resolution boundary. By using
this method, the estimation error in the ghost cells’ field values scales with ζ.

The formulations used for downsampling and upsampling as exemplified in Figs.
2.3 and 2.4 can be easily extended to two and three dimensions, for so-called quadtree
and octree grids, respectively. In order to demonstrate the algorithm and the effect
of different ζ values on the representation of a turbulent field, the next section shows
the results of the algorithm applied to a slice of a 3D turbulent field.

The Basilisk solver can run in parallel on many processors by applying a domain
decomposition using the Message Passing Interface (MPI). As the grid structure may
change during a simulation run, an important issue is load-balancing; the decompo-
sition of the domain between processors must then be modified as the grid is locally
refined or coarsened. This is achieved in the Basilisk solver using the natural de-
composition of a Z-ordering space-filling curve applied to the quad/octree structure
(Griebel and Zumbusch 2001).
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Figure 2.4: Example of the treatment of a resolution boundary in a one-dimensional
scenario. First, the high level region near the resolution boundary is downsampled to
obtain values for the coarse-level ghost points in red (a). Second, linear interpolation
of the coarse level solution is used to define the field values of high level ghost points
in blue (b).

2.2.2 An Example of the Adaptation Algorithm

This section aims to exemplify how the adaption algorithm assesses a discretized
signal and adapts the grid according to a refinement criterion ζ. For this purpose, we
apply the algorithm to a subset of the data from the simulation of forced isotropic
turbulence in Li et al. (2008). The simulation is run using a fixed equidistant grid
with 10243 nodes; in terms of the Kolmogorov length scale (η), the grid spacing (∆i)
is ∆i = 2.2η. For the analysis we assume the data to be resolved well enough, and
the results are kindly made available via the Johns Hopkins turbulence databases
(http://turbulence.pha.jhu.edu/). We analyze a 2D slice of the data (i.e. 10242

cells) and for simplicity, we only consider the velocity component perpendicular to the
sliced plane (u⊥). The data are presented in Fig. 2.5a; using the algorithm described
in Sect. 2.2.1, we can evaluate the χ field corresponding to the original u⊥ field. A
section of the resulting field, indicated by the black box in Fig. 2.5a, is shown in Fig.
2.5b, where we can clearly see that the estimated discretization error is not distributed
uniformly by the equidistant-grid approach that was used in the simulation. Rather,
it appears that there are anisotropic structures present, visualized by relatively high
χ values (in yellow). These structures appear to correspond to vortex filaments that
characterize the dissipative structures of high-Reynolds-number turbulence (Frisch,
1995). This result motivates the application of the grid refinement algorithm to the
data sample shown. Note that we cannot ‘add’ new information by refinement and
at this point we do not make any claims regarding what χ values are reasonable for a
turbulence-resolving simulation (this will depend on the numerical formulations and is
the topic of a future study). As such, we only allow the algorithm to coarsen the field
with a maximum error threshold ζ (as defined in Eq. 2.4). The number of grid cells
resulting from the application of the adaptation algorithm for a range of ζ values is
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shown in Fig. 2.5c; as expected, the number of grid cells decreases with an increasing
ζ value. Note that the plot also shows that even for the high ζ values, the grid still
contains cells at the maximum resolution.

The main concept of employing the described grid-adaption algorithm is visualized
in Fig.2.5d. Here histograms of the number of grid cells within 512 equally-spaced χ
bins are presented for the original data and the data obtained from applying the grid
adaptation technique with three different refinement criteria. It appears that for the
original dataset, the histogram is monotonically decreasing with increasing χ. This
shows that many grid cells exist where the numerical solution is relatively smooth
compared to cells in the tail of the histogram. Hence, if the grid is chosen such that
the discretization errors in the latter region do not affect the relevant statistics of the
flow evolution, then the grid must be over-refined elsewhere. The histograms of the
adapted grids show that the algorithm is able to lower the number of grid cells with
low χ values, such that fewer grid cells are employed. Note that the grid coarsening
does not introduce new grid cells with χ > 2ζ/3, as this part of the histogram remains
unaltered.

When grid cells with a small but finite χ value are coarsened, some of the data
are lost and in general cannot be exactly reconstructed by interpolation techniques
(see Sect. 2.2.4). In order to assess how the data from the adapted grids compare
with the original data, Fig. 2.5e presents the corresponding power spectra. It appears
that none of the adapted grid data are able to exactly reproduce the original power
spectrum; more specifically, with increasing ζ values, the wavenumbers (k) that show
a significant deviation in E(k) from the original appear to decrease. We would like
to point out that in order to evaluate the spectrum we have linearly interpolated the
data from the non-uniform grids to an equidistant grid with 1024× 1024 data points.
The choice of the interpolation technique is arbitrary and will pollute the diagnosed
spectrum in a non-trivial manner. As such, we directly compare all 10242 u⊥(x, y)
samples in Fig. 2.5f, where we see that the deviation of the data from the 1 : 1 line
is a function of ζ.

The example presented in Fig. 2.5 is meant to demonstrate the used adaptation
algorithm. The following sections are dedicated to assessing its application to time-
dependent numerical simulations of a turbulent field for an atmospheric case.

2.2.3 Physical Case Set-up

As indicated in the Introduction, we ran a DNS case from the referenced literature
to validate, benchmark and exemplify the adaptive-grid approach. The cases from
virtually all atmospheric-turbulence-resolving studies prescribe the periodicity of the
solution in the horizontal directions. Unfortunately, at the time of writing, the Basilisk
solver cannot yet handle an adaptive grid in combination with periodic boundaries.
To circumvent this limitation, we limit ourselves to a case where there is no mean
horizontal forcing such that we can apply a no-penetration boundary condition for
the normal-velocity component at the lateral boundaries. This is supplemented with
a Neumann-boundary condition for the tangential velocity components, pressure and
buoyancy fields. We realize that this choice might affect the solution and therefore
its impact is assessed by re-running the case using a fixed and regular grid with both
sets of lateral boundary conditions (not shown). It appears that for the chosen set-
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Figure 2.5: Example of the adaption algorithm applied to a (2D) slice of a 3D turbu-
lent field. a) Shows the data slice of the velocity component in the plane-perpendicular
direction (u⊥, obtained from Li et al. (2008). b) Presents the χ field, evaluated using
the method described in Sect. 2.2.4. Only the centre part of the slice, indicated by
the black box in (a), is shown to reveal the small scale details in this simulation. c)
shows the grid cell number dependence on the chosen refinement criterion (ζ), note
the logarithmic vertical axis. A histogram of the χ field with 512 bins for the original
data, and the data corresponding to three ζ values are presented in d). Using the
same colour coding as in d), power spectra and a direct comparison of the u⊥(y, z)
field are shown in e) and f), respectively.
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Figure 2.6: Sketch of the system and its parameters. The red line illustrates a typical
buoyancy profile within the CBL during the initial development. Adapted from Van
Heerwaarden and Mellado (2016).

up of the case, the simulation results are insensitive to the choice of the horizontal
boundary conditions. Note that in future work, we will update the adaptive solver
such that periodic boundary conditions can be combined with the AMR technique.

We study a case introduced by Van Heerwaarden and Mellado (2016) that was
designed to investigate the growth and decay of a CBL. In Fig. 2.6 a schematic
overview of the physical system is presented, and in their physical model a linearly
stratified fluid at rest with kinematic viscosity (ν) and thermal diffusivity (κ) is heated
from below by a surface with a constant temperature. For generality, buoyancy (b)
is used as the thermodynamic variable. The buoyancy is related to the potential
temperature (θ) according to;

b =
g

θref
(θ − θref), (2.5)

where θref is a reference potential temperature and g the acceleration due to gravity.
The initial linear stratification is expressed as b(z) = N2z, where N2 is the Brunt-
Väisälä frequency associated with the initial stratification and z is the height above
the surface. We assign a surface buoyancy b0 larger than zero. Van Heerwaarden and
Mellado (2016) identified relevant length, time, velocity fluctuation and buoyancy flux
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scales, L, T, U and B, respectively, according to;

L =
b0
N2

, (2.6a)

T =
b
2/3
0

N2κ1/3
, (2.6b)

U =
b
7/9
0 κ1/9

N2/3
, (2.6c)

B = b
4/3
0 κ1/3, (2.6d)

and are used to analyze the results in a non-dimensional framework. Two dimension-
less groups can be identified that describe the system for any given set of {ν, κ,N2, b0},

Pr =
ν

κ
, (2.7a)

Re =

(
b
4/3
0

ν2/3N2

)4/3

, (2.7b)

where Pr is the Prandtl number and Re is the Reynolds number. Note that for
Pr = 1, the definition of the Reynolds number is consistent with Re = UL/ν.

2.2.4 Numerical Set-up and Formulation
For the evolution of the three velocity components (ui), modified pressure (p) and
buoyancy (b), the Navier-Stokes equations for an incompressible fluid are solved under
the Boussinesq approximation, according to,

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂x2

i

+ bδi3, (2.8)

∂b

∂t
+
∂ujb

∂xj
= κ

∂2b

∂x2
j

, (2.9)

∂uj
∂xj

= 0, (2.10)

and with respect to no-slip and a fixed buoyancy (b0) condition at the bottom bound-
ary. At the top boundary, no-penetration with a free-slip condition is used and for
the buoyancy, a fixed vertical gradient (N2) is prescribed. Furthermore, a damping
layer in the top 25% of the domain is active that damps buoyancy and velocity fluc-
tuations to prevent the artificial reflection of gravity waves at the top boundary. The
adaptive-grid runs are initialized with a grid at the minimum resolution that is locally
refined to the maximum resolution near the bottom boundary (i.e. z < L/10) before
a random perturbation is added to the velocity components and buoyancy field in
each grid cell.

Each integration timestep, grid adaptation is based on the estimated error (see
Sect. 2.2.1) of the three velocity components, and the buoyancy field. For each
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field a refinement criterion (ζ) is specified (ζui , ζb), where we non-dimensionalize the
refinement criteria according to ξb = ζbb

−1
0 and ξui = ζuiU

−1. In order to validate the
results and assess the performance of the adaptive solver, we iteratively decrease the
refinement criterion between runs whilst we limit the minimum grid-box size. This
maximum resolution is inspired by Van Heerwaarden and Mellado (2016), and to limit
the degrees of freedom, we choose; ξu1

= ξu2
= ξu3

= 2.7 × ξb. We realize that this
choice (based on trial and error) is rather arbitrary, as currently a solid framework of
how the refinement criteria should be chosen is still lacking. The results are validated
by a comparison with runs using a regular and fixed grid at the maximum resolution,
performed with the Basilisk and MicroHH flow solvers: MicroHH is the numerical
code used by Van Heerwaarden and Mellado (2016) to obtain their results. This code
represents a state-of-the-art flow solver that is dedicated to studying atmospheric
systems (Van Heerwaarden and Mellado 2016, Shapiro et al. 2016); for a detailed
description of the MicroHH code see Van Heerwaarden et al. (2017). In addition,
the fixed grid results of the Basilisk and MicroHH flow solvers are compared to each
other.

We choose Pr = 1 and Re = 3000 with a domain size of 3L×3L×3L and simulate
the evolution of the system until the physical time t = 45T . In order to limit the
computational costs, the evolution of the Basilisk-based run with a fixed regular grid
is only computed until t = 10T . To illustrate the physical size of such a numerical
experiment in reality; for a domain size of 0.5 m × 0.5 m × 0.5 m and θref = 21 oC,
the corresponding parameters are: L = 0.16 m, θbottom = 36 oC and T = 153 s. This
could be interpreted as a modest laboratory experiment.

The simulations are performed with Surfsara’s supercomputer Cartesius located
in Amsterdam, The Netherlands (SURFsara 2017). An overview of the different runs,
including the number of cores used, integration timesteps and total run time is listed
in Table 2.1. Additional information on the case set-up for both models can be found
at:
Basilisk:
basilisk.fr/sandbox/Antoonvh/freeconv.c
MicroHH:
github.com/microhh/microhh/tree/master/cases/vanheerwaarden2016

2.3 Results

2.3.1 Grid Structure

First, we study the evolution of the solution and grid structure qualitatively. Vertical
slices of the magnitude of the gradient of the buoyancy field (‖∇b‖) and the used
grid at t = {2, 10, 20}T for run BA-0.0025 are presented in Fig. 2.7. At t = 2T a
complex grid structure is generated by the AMR algorithm, and within the ABL, the
grid is refined at locations where vigorous turbulent structures are present. Above
the ABL (i.e. z/L > 1), turbulence is absent and the grid is coarse. Both effects are
appealing from a physical perspective as the computations are focused on the regions
where the activity is present. As the physical time progresses, the boundary layer
becomes more neutrally stratified and the turbulence intensity decreases. And again,
in response, the adaptive-grid algorithm has coarsened the grid at t = 10T . This
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Table 2.1: Overview of the different simulation run details. In the top section a
reference name, the used solver, grid type, the (maximal) numerical grid resolution,
lateral boundary conditions and refinement criterion (ξb, if applicable) are listed for
each run. In the bottom section the used number of cores, the total amount of
integration steps taken at t/T = {10, 45} and the total wall clock time of each run
are presented.
Run name Code Grid n2

x × nz
(Maximal)

Lateral BCs ξb

MicroHH MicroHH Stretched 5122 × 387 Periodic -
BA-5123 Basilisk Equi 5123 Slip & No-pen. -
BA-0.0025 Basilisk AMR 5123 Slip & No-pen. 0.0025
BA-0.005 Basilisk AMR 5123 Slip & No-pen. 0.005
BA-0.01 Basilisk AMR 5123 Slip & No-pen. 0.01

Run name Number
of
cores

Integration
steps
at t/T =
{10, 45}

total wall clock
time
(D:HH:MM)

MicroHH 64 {13920, 35670} 0:12:22
BA-5123 64 {14073, (35670)} (estimated) 2:16:12 (t/T = 10)
BA-0.0025 96 {14095, 30144} 2:10:30
BA-0.005 96 {14061, 28704} 1:18:19
BA-0.01 96 {14167, 25544} 1:02:16
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Figure 2.7: Vertical slices of the ‖∇b‖ field (left column) and the corresponding
numerical grid (right column) in the lowest half of the domain. The top, middle
and bottom rows represent snapshots taken at t/T = {2, 10, 20}, respectively. These
snapshots are taken from the adaptive-grid run BA-0.0025.
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remarkable effect is even more pronounced at t = 20T , where the coarsened regions
have grown in size, indicating that the number of grid cells is decreasing over time.
Physically speaking, this is facilitated by the fact that the size of the smallest eddies
increases as turbulence decays.

2.3.2 Validation

Next we compare the results obtained with the AMR and fixed-uniform-grid runs.
Following Van Heerwaarden and Mellado (2016), we compare the domain integrated
quantities: a boundary-layer height zi that is based on the buoyancy profile, kinetic
energy Ie, buoyancy flux Ib and dissipation Iε according to,

zi =
2

N2

∫ ∞
(〈b〉 −N2z)dz, (2.11)

Iα =

∫ ∞
〈α〉dz, (2.12)

where α is a dummy variable for {e, b, ε} and 〈α〉 denotes the horizontally-averaged
value of the quantity α. Figure 2.8a shows the evolution of the boundary-layer height,
where good agreement between all simulations is found. The boundary-layer height is
an integral measure for the amount of buoyancy (i.e. analogous to heat) in the system,
though due to the case set-up, this integral quantity is not a very sensitive measure to
assess the accuracy of the resolved turbulent motions. Therefore, we focus on higher-
order statistics. In general, the evolution of the total kinetic energy shows similar
behaviour between all runs (see Fig. 2.8). Nevertheless small discrepancies on the
order of 5% are present, particularly between the runs with the adaptive grid and the
fixed uniform grids, and as expected, this discrepancy decreases when the refinement
criterion is more strict. In order to analyze the evolution of kinetic energy in further
detail, Fig. 2.8c presents the evolution of the domain-integrated buoyancy flux, which
represents the energy-production rate for this system. The buoyancy flux agrees well
for all different runs and the observed differences between the runs are a result of
turbulent fluctuations within the chaotic system rather than systematic discrepancies.
This indicates that the overall structure and characteristics of the energy-producing
motions are resolved accurately for all runs, and for free convection, these motions
are associated with the large thermal plumes. In order to assess the representation of
the small-scale structures in these simulations, Fig. 2.8d presents the evolution of the
resolved energy-dissipation rate. Compared to the fixed-grid runs, the AMR-based
runs slightly underestimate the resolved absolute dissipation, an aspect that is present
throughout the simulation. Again, the discrepancy appears to be controlled by the
refinement criterion, for which using stricter (i.e. smaller) criteria, the results seem
to converge towards the values found with the fixed-grid runs. The fact that the runs
diagnosed with a lower dissipation rate are also associated with lower kinetic energy
indicates that a small part of the dissipation has a numerical/non-physical origin.

Figure 2.9 shows the vertical profiles of the kinetic energy at t/T = {2, 4, 25}, and
shows discrepancies at t/T = 2 between all runs. The highly chaotic flow structure
at this early stage of the simulation could explain some of the differences. However,
consistent with Fig. 2.8b, the adaptive-grid runs show a systematically lower kinetic
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Figure 2.8: Time series of the domain integrated quantities, a) boundary-layer height
(zi), b) kinetic energy (Ie), c) buoyancy flux (IB) and d) dissipation rate (Iε) according
to Eq. 2.11. The results are obtained with both Basilisk and MicroHH using fixed
grids and Basilisk using the adaptive mesh refinement algorithm. Note that plots c)
and d) use a logarithmic scale.

energy content over the entire domain. At t/T = 4, the profiles of the fixed-grid runs
agree well, and furthermore, the energy found in the adaptive-grid run BA-0.0025
also compares well. It can be seen from the time series in Fig. 2.8b that for t/T < 5,
the evolution of kinetic energy shows large fluctuations. Therefore, we also compare
the energy profiles at t/T = 25, where we see again that the fixed-grid run still
contains more energy than the adaptive-grid runs. Again, the adaptive run with the
smallest refinement criterion is closest to the fixed-grid profile compared to the other
adaptive-grid runs.

Although it appears that the adaptive-grid algorithm is able to refine the grid at
locations of the turbulent structures, discrepancies in the simulations results remain
present. This can be explained by the fact that the process of refining and coarsening
the mesh relies on a linear interpolation strategy for defining values on new grid
cells. This interpolation introduces additional errors compared to a simulation that
employs a static grid, and these errors are similar to the truncation errors of fixed
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Figure 2.9: Vertical profiles of the horizontally-averaged kinetic energy (〈e〉) at t/T =
{2, 4, 25} in left, middle and right plot, respectively. The results are obtained with
both Basilisk and MicroHH using fixed grids and Basilisk using the adaptive mesh
refinement algorithm. Note that in panel c) the horizontal axis is rescaled and that
regular-grid computations with Basilisk are not available (see text, Sect. 2.2.4).

grid advection schemes and thus lead to similar additional numerical dissipation of
energy. More accurate interpolation techniques could be tested to limit the error due
to interpolation. Therefore, this relevant aspect will be studied in more detail in the
future.

2.3.3 Performance

As discussed in the introduction, for highly dynamic flow configurations such as a
diurnal cycle, model performance may benefit from the AMR approach. Although
the present case of decaying convection is less dynamic than a full diurnal cycle, it
is tempting to compare the simulation performance of the AMR-based run to its
counterparts using a fixed and regular grid. Thereupon, several performance charac-
teristics are presented in Fig. 2.10. Figure 2.10a shows, for the AMR-based runs, the
evolution of the number of grid cells, that appear to be controlled by the refinement
criterion, in which a smaller value causes the algorithm to use a more refined grid. As
illustrated in the snapshots of Fig. 2.7, the number of grid cells varies significantly
over the course of the simulation. Supposedly, the computational resources are dis-
tributed more efficiently over time. Furthermore, even in the run with the most strict
refinement criterion, the number of grid cells does not exceed 21% of the maximum-
resolution value. Figure 2.10b shows how the computational speed (i.e. defined here
as wall clock time per integration timestep) is correlated with the number of grid
cells. It appears that there are several regimes in how the performance is affected by
the number of grid cells. For a large number of grid cells (i.e. > 106) the amount
of integration timesteps per second increases with a decreasing number of grid cells,
indicating that the solver does indeed speed up when the grid is coarsened. Note that
the simulations apply many grid cells in the early stage of the runs (i.e. at the right-
hand side of Fig. 2.10b and uses fewer cells as time progresses (towards the left-hand
side of Fig. 2.10b). However, as denoted by the x0.6-scaling line, in this regime the
simulation speed is not linearly dependent on the amount of grid cells. Furthermore,
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Figure 2.10: Overview of the performance characteristics of the adaptive and fixed-
grid simulation runs. a) Time series of the number of grid points for the adaptive runs
normalized by the maximum-resolution value (i.e. 5123). b) Scatter plot of the wall
clock time per integration step versus the used number of grid cells in the adaptive-grid
runs. c) The total amount of System Billing Units (SBU, i.e. number of cores×hours)
spending on each simulation run. Note that the value for BA-5123 is estimated as if
it were run until t/T = 45. d) The total RAM memory used in each simulation run
in gigabytes (GB).
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for lower number of grid points (i.e. < 106) the simulation speed appears to slow down
when the simulation runs with fewer grid cells, i.e. there is a performance penalty for
coarser grids! Possible causes for these performance characteristics are listed below:

1. For this case, the grid structure of the coarsened grids at later stages in the
simulation contains a relatively larger fraction of resolution boundaries (see
Fig. 2.7). These boundaries are associated with additional overhead as they
require special attention by the solver (see Sect. 2.2.1).

2. The number of used processors (linked to domain decomposition for paralleliza-
tion) is fixed throughout the simulations. Therefore, the relative overhead of
MPI-domain communication routines compared to actual calculations increases
as the number of grid cells decreases.

3. For coarse grids, the physical timestep taken per integration timestep increases
(Courant-Friedrichs-Lewy criterion). Since diagnostic analysis of the solution is
performed with a regular interval in the physical time, i.e. ∆t = T for profiles
and slices and ∆t = T/20 for the domain-integrated quantities. The frequency
of calls to diagnostic routines increases (i.e. say, calls per 100 integration steps)
on average resulting in an increased effort per integration step.

In Fig. 2.10c the amount of system billing units (i.e. the used #cores × hours)
spending for the different runs is presented. Before an interpretation of the results
is made, it is important to realize that the performance of a simulation run is a
function of many aspects that ranges from the details of the hardware configuration
to the exact case set-up. Therefore, the results presented here are intended as an
illustration rather than as absolute values. Nevertheless, it is clear that the MicroHH
run is notably cheaper compared to the runs performed with the Basilisk solver.
This can be explained by the different numerical schemes that are employed. Most
notably, for obtaining the pressure field, the Basilisk code uses a multigrid strategy
for solving the corresponding Poisson equation whereas the isotropic-fixed grid in
MicroHH facilitates the usage of a spectral Poisson solver. Although the spectral
method requires more MPI communication for parallelization when using a large
number of processors, it is known to be more efficient (Fornberg 1998). If we compare
the adaptive and non-adaptive simulation runs performed with the Basilisk solver, we
do see a considerable decrease in costs for the adaptive method runs.

In Fig. 2.10d the memory used for the different simulation runs is presented.
Compared to the fixed-grid runs, the adaptive-grid runs require less memory. This is
due to the fact that the maximum number of grid cells is considerably lower than the
number of grid cells in the fixed-grid runs (see Fig. 2.10a). From this perspective,
the adaptive-grid approach can also be attractive for applications where the available
memory is limited. However, even though the run with MicroHH employs many more
grid cells, the required memory is comparable to that of run BA-0.0025, meaning that
per grid cell, the MicroHH code is more efficient in terms of memory.
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2.4 Outlook: Towards Adaptive Mesh Refinement in
Atmospheric LES

We have based our test and performance benchmark on an idealized flow configura-
tion of a CBL using DNS, providing a ground truth for our intercomparison. In the
future, we plan to study more practically-oriented cases by using an LES formula-
tion. For many atmospheric cases, LES is preferred over DNS, because it provides
an efficient tool for studying high-Reynolds-number flows. Therefore, the next step
is to test the AMR approach in combination with an LES formulation. In this sec-
tion, we briefly discuss some preliminary results on this topic. Because this is part
of ongoing research, we do not perform a quantitative discussion of the test runs,
the results and performance characteristics. The presented results aim to exemplify
the AMR method for a different case and show the flexibility of the AMR approach.
The example is based on the LES intercomparison study case by Bretherton et al.
(1999), in which a boundary layer is filled with a smoke cloud that cools from the
top due to longwave emission. The boundary layer is initially capped by a strong
temperature inversion (i.e. 7 K over 50 m) at z ≈ 700 m and rises over the course of
the simulation due to entrainment. The inversion layer is identified as a region where
turbulent length scales are suppressed and turbulent motions are anisotropic due to
the stable stratification. As such, this region requires a high resolution to capture the
predominant turbulent structures accurately. In constrast, the convective turbulence
in the boundary layer itself can be captured on a relatively coarse grid (Sullivan and
Patton 2011). Accordingly, we decide not to base the grid adaptation upon the esti-
mated discretization error in the representation of the velocity-component fields, but
only on the estimated error in the smoke-cloud fraction and temperature fields. With
such an approach the AMR algorithm does not refine the mesh in order to resolve the
small turbulent structures in the near-neutral boundary layer, but allows the LES to
employ the SGS model effectively in this region. In this run, the numerical grid varies
by three levels of refinement, i.e. between 25 m and 3.125 m. Figure 2.11 presents
snapshots of the temperature and numerical grid taken at t = 3 h after initialization.
It is clear from Fig. 2.11a that an inversion layer is present, while Fig. 2.11b shows
that the numerical grid has a high resolution in the region of the inversion layer and
remains coarse in the boundary layer itself. Furthermore, we see the subsiding shells
in the boundary layer that are qualitatively similar to those observed in the laboratory
experiment performed by Jonker and Jiménez (2014).

For this case, the AMR algorithm dynamically adapts to the flow by redirecting
the grid refinement to those regions of the spatial domain where it is required. Hence
in this case, adaptation is predominantly spatially focussed, whereas in the DNS case
the refinement was most prominent in the temporal domain (see Fig. 2.10a). As
such, both examples in this study are complementary and both effects (spatial and
temporal adaptive grid refinement) are expected to play an important role in future
simulations of full diurnal cycles (cf. Fig. 2.1).

Finally, we note the following; the present cases where restricted to spatially homo-
geneous set-ups, where ‘scale separation’ naturally occurs through the internal vari-
ability of turbulence, originating from the non-linearity of the governing equations.
In reality, heterogeneity in the surface boundary conditions also becomes important

43



x

z

[ ] [m]

Figure 2.11: Snapshots of a) the vertical slices of the virtual potential temperature
field and b) the numerical grid at t = 3 h. The case is based on the work of Bretherton
et al. (1999).

and provides an additional cause of scale separation that may call for adaptive grid
refinement. For example, refinement may be preferred at sharp transitions between
different types of land use, such as land–sea interfaces.

2.5 Discussion and Conclusions

We have introduced and tested an adaptive mesh refinement (AMR) method for
studies of the atmospheric boundary layer (ABL). This work is motivated by a desire
to numerically study highly dynamic cases. Such cases are characterized by a high
degree of scale separation throughout the spatial and temporal domain. This work
should be viewed as the first step in our AMR-based research that assesses the usage of
an AMR method for studies of the ABL. We have based our adaptive-grid simulations
on the flow solver implemented in the Basilisk code.

The method is tested using DNS based on a case introduced by Van Heerwaarden
and Mellado (2016), describing the growth and subsequent decay of a CBL. The AMR
algorithm was able to identify the time-varying turbulent regions in the domain and
refined/coarsened the grid accordingly. The AMR-based simulations can reproduce
the simulation results of their fixed grid counterparts with minor discrepancies. Fur-
thermore, the AMR algorithm can be tuned to apply more grid cells such that these
discrepancies are suppressed. For all AMR runs, the number of grid cells varies signif-
icantly over time, resulting in more efficient simulations compared to using a regular
fixed grid with identical numerical formulations. This provides a proof of principle
for the AMR method regarding ABL systems.

For this case, a numerical solver dedicated to ABL systems (MicroHH) outper-
formed all other runs in terms of computational efficiency, indicating that there is
an overhead associated with the usage of the adaptive solver. In general, the exact
impact of this overhead depends on the details of the studied case. The most challeng-
ing ABL systems typically owe their complexity to the dynamical interplay between
various processes at different length and time scales. Hence, the AMR technique is
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likely to be more favourable as complexity increases. More specifically, as discussed
in Popinet (2011), the cost of an adaptive simulation, relative to a constant resolution
simulation (G) is expected to scale as

G =
Ca∆−D

Cc∆−3
=
Ca
Cc

∆3−D, (2.13)

where Ca and Cc are constants related to the absolute speed of the computation
for the adaptive- and constant-resolution simulations, respectively ; ∆ is the ratio
of the minimum to the maximum scale of the physical system (i.e. a measure of
scale separation) and D is the effective (or fractal) dimension of the physical process
(which is necessarily ≤ 3). In the present study, ∆ is relatively large (i.e of order
10−2) and the computational gain using the adaptive method is correspondingly small,
whereas for challenging cases ∆ can be several orders of magnitude smaller, with a
correspondingly larger potential gain in efficiency of the adaptive method relative to
constant-resolution methods. This important aspect of the overall scaling behavior
is illustrated in the second entr’acte for a canonical flow set-up. The results shown
herein thus motivate our continued research using the AMR technique.
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Entr’acte 2: The Collision of a Dipolar Vortex and a Wall

An airplane may target a dipolar vortex structure (dipole) at the underlying
surface (top left). P. Orlandi (1990) was the fist to study the fate of the dipole
numerically and he found that the original vortices rebound from the surface as
they entrain secondary circulation originating from the viscous boundary layer
(vorticity snapshots, top right). For an excellent overview of the research since
Orlandi’s seminal work, we refer to Clercx and Van Heijst (2017). Here we con-
sider a dipole-wall collision and use the vortex-soliton model of S.A. Chaplygin
and H. Lamb (Meleshko and Van Heijst, 1994), which is characterized by a size
radius R and a propagation velocity U . The boundary layer at the no-slip wall
owes its existence to the fluid’s viscosity (ν) and with these three parameters
we can formulate a dimensionless group that characterizes the system,

Re =
UR

ν
,

known as the Reynolds number. Inspired by Kramer et al. (2007), we focus on
the vorticity dynamics as a function of the Reynolds number. At the wall, the
flow adjusts from the interior, dipole-induced flow, to the no-slip boundary in
the so-called viscous boundary layer. Its depth is inversely proportional to the
Reynolds number. We simulate the dynamics of the collision in a 15R×15R do-
main and present a zoom-in on the vortex structures that emerge in the unstable
boundary layer. Furthermore, the adaptive grid is drawn at the corresponding
moment in time (bottom snapshots). It can be seen that as the Reynolds num-
ber increases, the fraction of the domain that requires the maximum resolution
decreases. As such, we log the total wall-clock time of our simulation and plot it
as a function of the Reynolds number. We do this for both the adaptive solver
(see Chapter 2) and an equidistant-grid solver (see below). For the equidistant
solver, the cost scale with Re3. This can be understood from the fact that the
grid-size scales inversely proportional to Re, resulting in the total numbers of
grid cells to scale with Re2, for this two-dimensional simulation. Furthermore,
the number of timesteps scales with Re1 due to the Courant-Freidrichs-Lewy
stability criterion. As such the total effort (cells × iterations) scales with Re
to the (2 + 1 =) 3rd power. Noting that this analysis holds for any equidistant
approach. As such, we may already anticipate the performance characteristics of
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a solver that is, say, 20 times more efficient than the equidistant-grid approach
we have employed (i.e. Basilisk in fixed-grid mode). For the adaptive-grid simu-
lations, the numerical details inherit some properties of the physical system and
the resulting scaling behavior is favorable (Re1.6) compared to the equidistant
solver. Therefore, even though the theorized equidistant-grid solver outperforms
the adaptive solver for smaller values of Re (< O(1000)), the adaptive method
becomes the more effective option as the scale separation increases.

An detailed description of the used methods is presented online:
www.basilisk.fr/sandbox/Antoonvh/lamb-dipole.c

500 1000 2000 4000 8000

Re

101

102

103

104

W
a
ll
-c
lo
ck

ti
m
e
[s
]

Adaptive

∝ Re
1.6

Equidistant

∝ Re
3.0

Fast equidistant

47

www.basilisk.fr/sandbox/Antoonvh/lamb-dipole.c


If performance was not a central issue, one could use simple and robust methods
with excellent theoretical properties, such as first-order Godunov schemes and
direct linear solvers, and this article (together with thousands of others) would
not make any sense.

S. Popinet (2015)
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3 | Adaptive Cartesian Meshes
for Atmospheric Single-Column
Models

abstract

It is well known that the representation of certain atmospheric conditions in climate
and weather models can still suffer from the limited grid resolution that is facilitated
by modern-day computer systems. Herein we study a simple one-dimensional analogy
to those models by using a Single-Column Model description of the atmosphere. The
model employs an adaptive Cartesian mesh that applies a high-resolution mesh only
when and where it is required. The so-called adaptive-grid model is described and
we report on our findings obtained for tests to evaluate the representation of the
atmospheric boundary layer, based on the first two GABLS intercomparison cases.
The analysis shows that the adaptive-grid algorithm is indeed able to dynamically
coarsen and refine the numerical grid whilst maintaining an accurate solution. This
is an interesting result as in reality, transitional dynamics (e.g. due to the diurnal
cycle or due to changing synoptic conditions) are the rule rather than the exception.

The third chapter is based on the article:
J.Antoon van Hooft, Stéphane Popinet, & Bas.J.H. van de Wiel
Adaptive Cartesian Meshes for Atmospheric Single-Column Models;
a study using Basilisk 18-02-16.
Geoscientific model development, 11, 4727-4738 (2018).
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3.1 introduction

Single-Column Models (SCMs) are often used as the building blocks for Global (or
General) Circulation Models (GCMs). As such, many of the lessons learned from
SCM development can be inherited by GCMs and hence the evaluations of SCMs
receive considerable attention by the geoscientific model development community (see
e.g. Neggers et al., 2012; Bosveld et al., 2014; Baas et al., 2017). In this work,
we present a SCM that employs an adaptive Cartesian mesh that can drastically
reduce the computational costs of such models, especially when pushing the model’s
resolution. The philosophy is inspired by recently obtained results on the evolution
of atmospheric turbulence in a daytime boundary layer using three-dimensional (3D)
adaptive grids. As promising results were obtained for turbulence-resolving techniques
such as Direct Numerical Simulations and Large-eddy Simulation (LES), herein we
explore whether similar advancements can be made with more practically oriented
techniques for the numerical modelling of the atmosphere. As such, the present
model uses Reynolds-averaged Navier-Stokes (RANS) techniques to parameterize the
vertical mixing processes due to turbulence (Reynolds, 1895), as is typical in weather
and climate models.

The discussion of limited grid resolution is present in many studies of SCMs and
GCMs. A prominent example is the nocturnal cumulus-cloud case (Wyant et al.,
2007): whereas a high resolution mesh is required for capturing the processes at the
cloud interface, a coarser resolution may be used for the time when the sun has risen
and the cloud has been dissolved. More generally speaking, virtually all of the atmo-
spheric dynamics that require a relatively high-resolution grid for their representation
in numerical models are localized in both space and in time. The issue is made more
difficult to tackle by the fact that their spatio-temporal localization is typically not
known a priori (e.g. the height and strength of a future inversion layer). Therefore,
the pre-tuned and static-type grids that most operational GCMs use (virtually all)
are not flexible enough to capture all dynamical regimes accurately or efficiently. This
also puts a large strain on the used closures for the sub-grid scale processes. In order
to mitigate this challenge, GCMs that employ a so-called adaptive grid have been
explored in the literature. Here the grid resolution adaptively varies in both space
and time, focussing the computational resources to where and when they are most
necessary. Most notably, the innovative works of Jablonowski (2004), Jablonowski
et al. (2009) and St-Cyr et al. (2008) report on the usage of both Cartesian and non-
conforming three-dimensional adaptive grids and clearly demonstrate the potential of
grid adaptivity for GCMs. Inspired by their works, we follow a 1D SCM approach
and aim to add to their findings, using different grid-adaptative formulations and
solver strategies. Since SCMs do not resolve large-scale atmospheric circulations, the
analysis herein focusses on the representation of the Atmospheric Boundary Layer
(ABL).

Over the years, the computational resources that are available to run computer
models have increased considerably (Schaller, 1997). This has facilitated GCMs to
increase their models’ spatial resolution, enabling to resolve the most demanding
processes with increased grid resolutions. However, it is important to realize that the
(spatial and temporal) fraction of the domain that benefits most from an increasing
maximum resolution necessarily decreases as separation of the modelled spatial scales
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increases (Popinet, 2011b). This is because the physical processes that warrant a
higher-resolution mesh are virtually never space filling. E.g. the formation phase of
tropical cyclones is localized in both space and time and is characterized by internal
dynamics that evolve during the formation process. By definition, with an increasing
scale separation, only an adaptive-grid approach is able to reflect the effective (or
so-called fractal) dimension of the physical system in the scaling of the computational
costs (Popinet, 2011b; Van Hooft et al., 2018c). This is an aspect where the present
adaptive-grid approach differs from for example, a dynamic-grid approach (Dunbar
et al., 2008), that employs a fixed number of grid cells that needs to be predefined
by the user. This work employs a similar method for grid adaptation as presented
in the work of Van Hooft et al. (2018c) on 3D-turbulence-resolving simulations of
the ABL. As such, this work is also based on the adaptive-grid toolbox and built-in
solvers provided by the ‘Basilisk’ code (http://basilisk.fr).

We test our model with the well established cases defined for the first two GABLS
intercomparison projects for SCMs. As part of the Global Energy and Water cy-
cle EXchanges (GEWEX) modelling and prediction panel, the GEWEX ABL Study
(GABLS) was initiated in 2001 to improve understanding of the atmospheric bound-
ary layer processes and their representation in models. Based on observations during
field campaigns, a variety of model cases has been designed and studied using both
LES and SCMs with a large set of models using traditional static-grid structures.
An overview of the results and their interpretation for the first three intercompari-
son cases are presented in the work of Holtslag et al. (2013). Here we will test the
present adaptive-grid SCM based on the first two intercomparison cases, referred to
as GABLS1 and GABLS2. These cases were designed to study the model representa-
tion of the stable boundary layer and the diurnal cycle, respectively. Their scenarios
prescribe idealized atmospheric conditions and lack the complete set of physical pro-
cesses and interactions encountered in reality. At this stage within our research, the
authors consider this aspect to be an advantage, as the present SCM model does not
have a complete set of parameterizations for all processes that are typically found in
the operational models (see e.g. Slingo, 1987; Grell et al., 2005)).

This paper is organized as follows, the present SCM is discussed in more detail in
Sect. 3.2. Based on the results from a simplified flow problem, Sect. 5.3 starts with
an analysis of the used numerical methods and the grid adaptation strategy. Model
results for ABL-focussed cases that are based on the first two GABLS intercomparison
scenarios are also presented in Sect. 5.3. Finally, a discussion and conclusions are
presented in Sect. 3.4.

3.2 Model Overview

As we focus on the merits of grid adaptivity in this study on SCMs and not on
the state-of-the-art closures for the vertical transport phenomena, we have opted
to employ simple and well-known descriptions for the turbulent transport processes.
More specifically, the present model uses a stability-dependent, first-order, local, K-
diffusivity closure as presented in the work of Louis et al. (1982) and Holtslag and
Boville (1993). For the surface-flux parameterizations we again follow the formulations
in the work of Holtslag and Boville (1993). However, to improve the representation
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of mixing under stable conditions, an alteration is made to the formulation of the so-
called stability-correction function under stably-stratified conditions. Based on the
work of England and McNider (1995), we use a so-called short-tail mixing function.
The used closures for the turbulent transport are summarized next. The upward sur-
face fluxes (F ) of the horizontal velocity components (u, v), the potential temperature
(θ) and specific humidity q are evaluated as:

Fu = −CMU1u1, (3.1a)

Fv = −CMU1v1, (3.1b)

Fθ = −CHU1 (θ1 − θ0) , (3.1c)

Fq = −CHU1 (q1 − q0) , (3.1d)

Where U is the wind-speed magnitude and indices 0 and 1 refer the to values at the
surface and the first model level, respectively. The surface transport coefficients are,

CM = CNfs,M (Rib), (3.2a)

CH = CNfs,H(Rib), (3.2b)

with Rib the surface bulk Richardson number, that is defined as,

Rib =
g

θv,ref

z1 (θv,1 − θv,0)

U2
1

, (3.3)

where g is the acceleration due to gravity, θv is the virtual potential temperature and
θv,ref is a reference temperature whose value is taken as a scenario-specific constant.
Equation 3.3 assumes that θv is related to the buoyancy (b) (Boussinesq, 1897) via g
and θv,ref according to b = g/θv,ref (θv − θv,ref ) . The virtual potential temperature
is related to the potential temperature (θ) and specific humidity (q) according to,

θv = θ

(
1−

(
1− Rv

Rd

)
q

)
, (3.4)

with Rv/Rd = 1.61 the ratio of the gas constants for water vapour and dry air
(Emauel, 1994; Heus et al., 2010). The so-called neutral exchange coefficient (CN ) is
calculated using,

CN =
k2

ln ((z1 + z0,M )/z0,M )
2 , (3.5)

with k = 0.4 the Von Karman constant, z1 the height of lowest model level and z0,M is
the roughness length for momentum. For the cases studied in this work, the roughness
length for heat is assumed to be identical to z0,M . The stability correction functions
for the surface transport of momentum and heat (fs,M , fs,H) are,

fs,M (Rib) =


0, Rib ≥ 0.2,(
1− Rib

0.2

)2
, 0 ≤ Rib < 0.2,

1− 10Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,

(3.6a)
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fs,H(Rib) =

{
fs,M (Rib), Rib ≥ 0,

1− 15Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,
(3.6b)

which conclude the description of the surface fluxes. The vertical flux (w′a′) of a
dummy variable a due to turbulence within the boundary layer is based on a local
diffusion scheme and is expressed as,

w′a′ = −K∂a

∂z
, (3.7)

where K is the so-called eddy diffusivity,

K = l2Sf(Ri). (3.8)

l represents an effective mixing length,

l = min (kz, lbl) , (3.9)

with lbl is the Blackadar length scale, we use, lbl = 70m (Holtslag and Boville, 1993).
S is the local wind-shear magnitude,

S =

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

(3.10)

and f(Ri) is the stability correction function for the vertical flux,

f(Ri) =


0, Ri ≥ 0.2,(
1− Ri

0.2

)2
, 0 ≤ Ri < 0.2,√

1− 18Ri, Ri < 0,

(3.11)

i.e. based on the gradient Richardson number,

Ri =
g

θv,ref

∂θv/∂z

S2
. (3.12)

The authors of this work realize that there have been considerable advancements
on the representation of mixing under unstable conditions in the past decades, e.g non-
local mixing (Holtslag and Boville, 1993) and turbulent-kinetic-energy-based closures
(see e.g., Mellor and Yamada, 1982; Lenderink and Holtslag, 2004). Therefore, we
would like to note that such schemes are compatible with the adaptive-grid approach
and they could be readily employed to improve the physical descriptions in the present
model. From an implementations’ perspective, those schemes would not require any
grid-adaptation specific considerations when using the Basilisk code.

For time integration; we recognize a reaction-diffusion-type equation describing
the evolution of the horizontal wind components and scalar fields such as the virtual
potential temperature and specific humidity (q). For a variable field s(z, t), we write,

∂s

∂t
=

∂

∂z
(K

∂

∂z
s) + r. (3.13)
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Where r is a source term and K is the diffusion coefficient c.f. Eq. 3.8. Using a
mixed implicit-explicit first-order-accurate time discretization for the diffusive term
and an explicit time integration for the source term (r), with time step ∆t separating
the solution sn and sn+1, this can be written,

sn+1 − sn
∆t

=
∂

∂z
(Kn ∂

∂z
sn+1) + rn. (3.14)

Rearranging the terms we write,

∂

∂z
(Kn ∂

∂z
sn+1)− sn+1

∆t
= − s

n

∆t
− rn, (3.15)

to obtain a Poisson-Helmholtz equation for sn+1, using the eddy diffusivity calculated
from the solution sn (Kn). Eq. 3.15 is solved using a multigrid strategy, employing
a finite-volume-type second-order-accurate spatial discretization (Popinet, 2017b,a).
The source term r in Eq. 3.13 is defined using different formulations for the various
scalar fields in our model. For θ and q, the source term r concerns the tendency in the
lowest grid level due to the surface fluxes (F , see Eqs. 3.1, rFs

) and the effect of large
scale synoptic divergence (rw) according to the vertical velocity w (i.e. prescribed for
the GABLS2 case). We write for a dummy variable s,

rw,s = −w∂s
∂z

(3.16)

For the horizontal velocity components (u, v) the corresponding source terms (i.e. rFs

and rw) are also taken into account and supplemented with the additional source term
r∇hP,f , that concerns the horizontal pressure-gradient-forcing vector (i.e. − 1

ρ∇hP ,
for air with a density ρ) and the Coriolis-force term according to the local Coriolis
parameter f . For the horizontal velocity vector u = {u, v, 0} we write,

r∇hP,f =
−∇hP

ρ
− f

(
k̂ × u

)
, (3.17)

where ‘×’ represents the cross product operator and k̂ = {0, 0, 1} the unit vector in
the vertical direction. In this work we adopt the commonly used strategy to introduce
a velocity vector that known as the geostrophic wind (Ugeo), according to,

Ugeo =
k̂

ρf
×∇hP. (3.18)

The most prominent feature of the SCM presented in this work is that it adaptively
coarsens and refines the grid resolution based on the evolution of the solution itself. As
mentioned in the introduction, the associated grid-adaptation algorithm is the same
as described in Van Hooft et al. (2018c). Here we only briefly discuss the general
concept.

Apart from the imperfect representation of the physical aspects of a system in
numerical models, additional errors naturally arise due to the spatial and temporal
discretization. In general, a finer resolution corresponds to a more accurate solution
and a simulation result is considered to be ‘converged’ when the numerically obtained
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solution and the statistics of interest do not crucially depend on the chosen resolution.
The aim of the grid-adaptation algorithm is to dynamically coarsen and refine the
mesh so that the errors due to the spatial discretization remain within limited bounds
and to be uniformly distributed in both space and time. For our adaptive approach
this requires, (1) an algorithm that evaluates a local estimate of the discretization
error in the representation of selected solution fields (χa for a field ‘a’) and (2), a
corresponding error threshold (ζa) that determines if a grid cell’s resolution is either
too coarse (i.e. χa > ζa), too fine (i.e. χa < 2ζa/3), or just fine. Grid adaptation
can then be carried out accordingly and the solution values of new grid cells can
be found using interpolation techniques. A cell is refined when the estimated error
for at least one selected solution field exceeds it’s refinement criterion and a cell is
coarsened when it is considered to be ‘too fine’ for all selected solution fields. The
‘error estimator’ (χ) is based on a so-called multi-resolution analysis that is formally
linked to wavelet thresholding. The algorithm aims to estimate the magnitude of
higher-order contributions in the spatial variability of the solution that are not cap-
tured by the solver’s numerical schemes. Consistent with the second-order spatial
accuracy of the solver’s numerical schemes (Popinet, 2017a), the algorithm employs a
second-order accurate wavelet-based error estimate. In practice, grid refinement will
typically occur at the locations where the solution is highly ‘curved’, whereas those
areas where the solution fields vary more ‘linearly’ in space are prone to coarsening.
The error threshold, or so-called refinement criterion ζ, is defined by the user. Noting
that similar to the pre-tuning of the fixed-in-time grids as is common in most SCMs,
the balance between accuracy and the required computational effort remains at the
discretion of the model’s user.

For the cases in this work that focus on the ABL (i.e. in Sect 3.3.2 and 3.3.3), the
dynamics are governed by the wind (~U = (u, v)) and the virtual potential temperature
(θv), hence we base the refinement and coarsening of the grid on a second-order-
accurate estimated error associated with the representation of these discretized fields.
Based on trial and error, we set the corresponding refinement thresholds,

ζu,v = 0.25 m/s, (3.19)
ζθv = 0.5 K, (3.20)

for both of the horizontal wind components and virtual potential temperature, respec-
tively. These values are the result of a choice by the authors that aims to strike an
arbitrary balance between the accuracy of the solution and the computational effort
required to run the model. Note that a similar (arbitrary) balance needs also to be
found when static grids are employed. For a simple flow set-up, Sect. 3.3.1 presents
an example convergence study to show the effects of using different refinement criteria
on the accuracy of the obtained solutions.

Grid adaptation is carried out each time step. The tree-based anisotropic-grid
structure in Basilisk facilitates a convenient basis for the multi-resolution analysis
and the subsequent refinement and coarsening of cells at integer levels of refinement.
This entails that the spatial resolution can vary by factors of two (Popinet, 2011b).
For the adaptive-grid runs presented in this paper, the time spent in the actual grid
assessment and adaptation routines is less than than 5% of the total wall-clock time
(see table 4.1).
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Apart from the Ekman-spiral case in Sect. 3.3.1, the physical time step in the
ABL-focussed cases is adaptively varied between 2 sec. and 15 sec. based on the
convergence properties of the aforementioned iterative solver. Noting that these values
are rather small compared to existing GCMs that often employ higher-order-accurate
time-integration schemes. Additionally, the correlation of spatial and temporal scales
warrants a smaller time step, since the present model employs a higher maximum
vertical resolution compared to that of an operational GCM. The solver’s second-
order spatial accuracy is validated and the performance is accessed for a simple flow
set-up in Sect. 3.3.1. For the exact details of the model set-ups for the cases presented
in this paper, the reader is referred to the case-definition files (in legible formatting).
Links are provided to their online locations in table 4.1.

Table 3.1: The exact formulation of the methods are described at the online locations
of the definition files for the different cases presented in this manuscript. The wall-
clock times are evaluated using a single core (processor model: Intel i7-6700 HQ).
Section Case Grid URL: via Basilisk time steps time [s]

3.3.1 Ekman flow Adaptive ekman.c 1000 ≈ 19
" " Equidistant ekmanfg.c 1000 ≈ 18
3.3.2 GABLS1 Adaptive GABLS1.c 16204 ≈ 1.4
" " Equidistant GABLS1fg.c 16324 ≈ 0.9
3.3.3 GABLS2 Adaptive GABLS2.c 24262 ≈ 9
" " Equidistant GABLS2fg.c 33993 ≈ 22

3.3 Results

3.3.1 The Laminar Ekman spiral and grid adaptation

Before we focus our attention on cases that concern the ABL, this section discusses
the philosophy of the used grid adaptation strategy based on the analysis of a one-
dimensional (1D) laminar Ekman-flow set-up. This simple and clean set-up enables
to quantify numerical errors explicitly and test the solver’s numerical schemes. The
aim of this section is to show that the grid-adaptation strategy and the accompanying
refinement criteria provide a consistent and powerful framework for adaptive mesh-
element-size selection. Results are presented for both an equidistant-grid and the
adaptive-grid approach. The case describes a neutrally-stratified fluid with a constant
diffusivity for momentum (K) given by the kinematic viscosity ν and density ρ in a
rotating frame of reference with respect to the Coriolis parameter f . A flow is forced
by a horizontal pressure gradient (−∇hP ) according to Eq. 3.18 using Ugeo =
{Ugeo, 0}, over a no-slip bottom boundary (located at zbottom = 0). Assuming that
the velocity components converge towards the geostrophic wind vector for z →∞ and
vanish at the bottom boundary, there exists an analytical, 1D, steady solution for the
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horizontal wind component profiles (uE(z), vE(z)), that is known as the Ekman spiral;

uE = Ugeo
(
1− e−γzcos(γz)

)
, (3.21)

vE = Ugeoe
−γzsin(γz), (3.22)

with γ the so-called inverse Ekman depth, γ =
√
f/ (2ν). We choose numerical values

for Ugeo, γ and f of unity in our set-up and present the results in a dimensionless
framework. The solution is initialized according to the exact solution and we set
boundary conditions based on Eqs. 3.21 and 3.22. Equation 3.13 is solved numerically
for both u and v components, on a domain with height ztop = 100γ−1. The simulation
is run until tend = 10f−1, using a fixed time step ∆t = 0.01f−1. The time step is
chosen sufficiently small such that the numerical errors are dominated by the spatial
discretization rather than by the time-integration scheme. During the simulation
run, discretization errors alter the numerical solution from it’s exact, and analytically
steady, initialization. For all runs, the diagnosed statistics regarding the numerical
solutions that are presented in this section have become steady at t = tend.

The spatial-convergence properties for the equidistant-grid solver are studied by
iteratively decreasing the used (equidistant) mesh-element sizes (∆) by factors of two
and we monitor the increasing fidelity of the solution at t = tend between the runs.
Therefore, based on the analytical solution, a local error (εu,v) of the numerically
obtained solution (un, vn) within each grid cell is diagnosed and is defined here as:

εa = ‖an − 〈aE〉 ‖, (3.23)

where a is a dummy variable for u and v, 〈aE〉 is the grid-cell-averaged value of
the analytical solution (aE) and an the value of the numerical solution within the
cell. Noting that an also represents the grid-cell-averaged value in our finite-volume
approach. Figure 3.1a shows the results for all runs and compares the used grid
resolution (∆) with the error εu,v. It appears that the observed range of ε-values is
large and typically spans 10 orders of magnitude, with a lower bound defined by the
‘machine precision’ (i.e. ≈ 10−15 for double-precision floating-point numbers). This
wide range can be explained by the fact that the Ekman spiral is characterized by
exponentially decreasing variation with height (see Eqs. 3.21, 3.22) and hence the
equidistant grid may be considered overly refined at large z. This illustrates that,
for a given solver formulation, the error in the solution is not directly dictated by
the mesh-element size, but also depends on the local shape of the numerical solution
itself. This poses a challenge for the pre-tuning of meshes applied to GCMs, where
a balance need to be found between accuracy and computational speed performance.
The solution of a future model run is not known beforehand and hence the tuning
of the grid typically relies heavily on experience, empiricism and a-priori knowledge.
This motivates to apply the method of error estimation in the representation of a
discretized solution field as described in Popinet (2011b) and Van Hooft et al. (2018c).
For both velocity components, this estimated error (χu,v) is evaluated at the end of
each simulation run for each grid cell and is plotted against the corresponding actual
error (εu,v) in Fig. 3.1b. It seems that for this virtually steady case, there is a clear
correlation between the diagnosed (instantaneous) χ-values and the ε-values that have
accumulated over the simulation run time. Even though the correlation is not perfect,
it provides a convenient and consistent framework for a grid adaptation algorithm. As
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Figure 3.1: The locally evaluated error in the numerical solutions for u and v at
t = tend, based on the analytical solution (εu,v, see Eq. 3.23) for 10 runs using
different equidistant mesh-element sizes. The left-hand side plot (a) Shows that the
diagnosed errors for each run plotted against the used mesh-element size (∆) times the
inverse Ekman depth (γ, see text). The right-hand side plot (b) shows, with the same
colour coding as in the left-hand side plot (a), the correlation between the wavelet-
based estimated error (χ) and the corresponding diagnosed error in the numerically
obtained solution (ε). The inset (using the same axis scales) shows the results for a
single run, and reveal a spread of several orders of magnitude in both ε and χ values.
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Figure 3.2: The locally evaluated error in the numerical solutions for u and v at
t = tend, based on the analytical solution (εu,v, see Eq. 3.23) for 20 runs using
the adaptive-grid approach with different refinement criteria (see colour bar). The
left-hand side plot (a) Shows that the diagnosed errors for each run plotted against
the used mesh-element size (∆). The inset (using the same axis scales) shows the
results for a single run. The right-hand side plot (b) shows the correlation between
the wavelet-based estimated error (χ) and the corresponding diagnosed error in the
numerically obtained solution (ε)). The inset (using the same axis scales) shows the
results for a single run, and reveals a relatively small spread in both ε and χ values
compared to the equidistant-grid results presented in figure 3.1b.
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such, a second convergence test for this case is performed using a variable-resolution
grid within the domain. The mesh is based on the aforementioned adaptive-grid
approach. For these runs, we iteratively decrease the so-called refinement criterion
(ζu,v) by factors of two between the runs and monitor the increasing fidelity of the
numerically obtained solution for all runs. The refinement criterion presets a threshold
value (ζ) for the estimated error χ that defines when a cell should be refined (χ > ζ)
or alternatively, when it may be coarsened (χ < 2ζ/3). Figure 3.2a presents the
results and compares the used local grid resolution against εu,v for the various (colour-
coded) runs. It appears that for all separate runs, the algorithm employed a variable
resolution mesh and that this has resulted in a smaller range of the local error in the
solution (ε), as compared to the equidistant-grid cases. The local error in the solution
is also compared against the wavelet-based estimated error in the representation of
the solution fields in Fig. 3.2b. Compared to the results from the equidistant-grid
approach as presented in Fig. 3.1b), the spread of the χ and ε values is relatively small
for the separate runs when the adaptive-grid approach is used. The most prominent
reason for the finite spread is that the error (ε) was diagnosed after 1000 time steps.
This facilitated errors in the solution that arise in the solution at a specific location
(with a large χ-value) to ‘diffuse’ over time towards regions where the solution remains
to be characterized by a small χ-value (not shown). Also, since u and v are coupled
(due to the background rotation), local errors that arise in the solution for u ‘pollute’
the v-component solution, and vice versa. Furthermore, a spread is expected because
the tree-grid structure only allows the resolution to vary by factors of two (Popinet,
2011b).

Finally, the global convergence characteristics and the speed performance of the
two approaches are studied. The global error (η) in the numerically obtained solution
is evaluated as,

η =

∫ ztop

zbottom

(εu + εv) dz, (3.24)

In order to facilitate a comparison between the methods, we diagnose the number
of used grid cells (N) for the adaptive-grid run. Figure 3.3a shows that for both
approaches the error scales inversely proportional to the used number of grid cells to
the second power (i.e. second-order spatial accuracy in 1D). The adaptive grid results
are more accurate than the results from the fixed-grid approach when employing the
same number of grid cells. Figure 3.3b shows that for both approaches the required
effort (i.e. measured here in wall-clock time) scales linearly with the number of grid
cells, except for the runs that require less than one-tenth of a second to perform. The
plots reveals that per grid cell there is computational overhead for the adaptive-grid
approach. These results show that the used numerical solver is well behaved.

The following sections are devoted to testing the adaptive-grid approach in a more
applied SCM scenario, where the turbulent transport closures are applied (see Sect.
3.2) and the set-up is unsteady. Here, the quality of the adaptive-grid solution has
to be assessed by comparing against reference results from other SCMs, large-eddy
simulations and the present model running in equidistant-grid mode.
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Figure 3.3: The scaling characteristics for the laminar-Ekman-spiral case. (a) Presents
the error convergence for the equidistant-grid and adaptive-grid approach. The errors
(η) follow the slope of the blue dashed line that indicates the second-order accuracy
of the methods. The wall-clock time for the different runs is presented in (b), showing
that for both of the aforementioned approaches, the required effort scales linearly with
the number of grid cells.

3.3.2 GABLS1

The first GABLS intercomparison case focusses on the representation of a stable
boundary layer. It’s scenario was inspired by the LES study of an ABL over the
Arctic sea by Kosović and Curry (2000). The results from the participating SCMs
are summarized and discussed in Cuxart et al. (2006), for the LES intercompari-
son study, the reader is referred to the work of Beare (2006). The case prescribes
the initial profiles for wind and temperature, a constant forcing for momentum cor-
responding to a geostrophic wind vector, Ugeo = {8, 0}m/s and Coriolis parameter
f =1.39×10−4s−1. Furthermore, a fixed surface-cooling rate of 0.25 K/hour is applied
and θv,ref = 263.5K. The model is run with a maximum resolution of 6.25 meter and
a domain height of 400 meters. The maximum resolution corresponds to 6 levels of
tree-grid refinement, where each possible coarser level corresponds to a factor of two
increase in grid size.

Due to the idealizations in the case set-up with respect to the reality of the field
observations, the model results were not compared against the experimental data
(Cuxart et al., 2006). However, for the SCMs, a reference was found in the high-
fidelity LES results that tended to agree well between the various models. The LES
results therefore serve as a benchmark for the results obtained with the present model.
This facilitates a straightforward testing of the formulations and implementations of
the used physical closures, before we continue our analysis towards the full diurnal
cycle. Inspired by the analysis of Cuxart et al. (2006) and their figure 3, we compare
our SCM results with the 6.25 meter-resolution LES ensemble results. We focus on
the profiles for the wind components and potential temperature averaged over the
ninth hour of the simulation in Fig. 3.4. We observe that the present SCM is in
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good agreement with the LES results and is able to capture the vertical structure
of the ABL, including the low-level jet. The differences are only minor compared to
the variations in the results presented in the aforementioned GABLS1 SCM reference
paper.
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Figure 3.4: Time averaged profiles over the ninth hour of the run according to the
GABLS1 intercomparison scenario. For (a) the horizontal wind components and (b)
the potential temperature. Results are obtained with the present adaptive-grid SCM
(coloured lines), the LES models ensemble (i.e mean ± σ) from Beare (2006) (grey-
shaded areas) and the present SCM, employing an equidistant and static grid with
a 6.25 meter resolution (dashed lines). For z > 250m, the profiles have remained as
they were initialized.
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Figure 3.5: Evolution of (a) the vertical spatial-resolution distribution and (b) the
total number of grid cells, for the GABLS1 intercomparison case.

Note that in general, results are of course sensitive to the closure chosen to pa-
rameterize the turbulent transport, in our case given by Eqs.3.6 and 3.11. In order to
separate between the numerical effects of using grid adaptivity and the chosen physi-
cal closures, we define an additional reference case in which we run an equidistant-grid
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SCM. This model run employs a fixed 6.25 meter resolution (i.e with 64 cells), but
otherwise identical closures and numerical formulations. I.e. we have switched-off the
grid adaptivity and maintain the maximum resolution throughout the domain. We
can observe that results between both SCMs are in good agreement but that minor
deviations are present. These discrepancies are on the order of magnitude of the re-
finement criteria and can be reduced by choosing more stringent values, that would
result in using more grid cells. The evolution of the adaptive-grid structure is shown
in Fig. 3.5 a. We see that a relatively high resolution is employed near the surface,
i.e. in the logarithmic layer. Remarkably, without any a priori knowledge, the grid
is refined at a height of 150 m < z < 200 m as the so-called low-level jet develops,
whereas the grid has remained coarse above the boundary layer where the grid reso-
lution was reduced to be as coarse as 100 meters. From Fig.3.5 b we learn that the
number of grid cells varied between 11 and 24 over the course of the simulation run.

3.3.3 GABLS2

The second GABLS model intercomparison case was designed to study the model
representation of the ABL over the course of two consecutive diurnal cycles. The
case is set-up after the observations that were collected on the 23rd and 24th of
October, 1999 during the CASES-99 field experiment in Leon, Kansas, USA (Poulos
et al., 2002). The case prescribes idealized forcings for two consecutive days that
were characterized by a strong diurnal cycle pattern. During these days, the ABL
was relatively dry, there were few clouds and θv,ref = 283.15K. The details of the
case are described in the work of Svensson et al. (2011) that was dedicated to the
evaluation of the SCM results for the GABLS2 intercomparison. Compared to the
original case prescriptions, we choose a slightly higher domain size of ztop = 4096
meters (compared to 4000 m), so that a maximum resolution of 8 meters corresponds
to 9 levels of refinement.

In this section we place our model output in the context of the results presented
in the work of Svensson et al. (2011), that, apart from the SCM results, also includes
the results from the LES by Kumar et al. (2010). To obtain their data we have used
the so-called ‘data digitizer’ of Rohatgi (2018). Inspired by the analysis of Svensson
et al. (2011) and their figures 10 and 11, we compare our results for the wind-speed
magnitude (U = ‖~u‖) and virtual potential temperature profiles at 14:00 local time
on the 23rd of October in Fig. 3.6 a and b, respectively. Here we see that the
results obtained with the present SCM fall within the range of the results as were
found with the selected models that participated in the original intercomparison.
These models also employed a first-order-style turbulence closure and have a lowest
model-level height of less than 5 meters. The present modelled virtual potential
temperature (θv) shows a slight negative vertical gradient in the well mixed layer.
This is a feature related to the usage of the local K-diffusion description for the
turbulent transport (see Sect. 3.2 and the work of Holtslag and Boville (1993)).
Figure 3.6 c presents a timeseries of the 10-meter wind speed (U10m) during the 23-rd
of October. Again the present model results compare well with the others. Next, in
order to validate the grid-adaptivity independently from the used closures, we present
the hourly evolution of the wind speed on the 24-th of October against the results
obtained with adaptivity switched off, using 512 equally-spaced grid points in Fig.
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Figure 3.6: Comparison of the results obtained with the adaptive-grid SCM and the
participating models in the work of (Svensson et al., 2011) for the vertical profiles of
(a) the virtual potential temperature and (b) the wind-speed magnitude, for 14:00
local time on the 23rd of October. Lower panel: (c) the evolution of the 10-meter
wind speed (U10m) on the 23rd of October. For the used model abbreviations in the
legend, see Svensson et al. (2011). The different shades of grey in plot c) indicate
observations from different measurement devices, see Svensson et al. (2011) for the
details.

3.7. A nearly identical evolution of the wind speed profiles is observed and even the
small-scale features in the inversion layer (i.e. z ≈ 800 m) are present in the adaptive-
grid-model calculations. The corresponding evolution of the adaptive-grid structure
is presented in Fig. 3.8, where the colours in the resolution plot appear to sketch a
‘Stullian’ image, showing a prototypical diurnal evolution of the ABL (see figure 1.7 in
the book of Stull, 1988). Apparently, the grid-adaptation algorithm has identified (!)
the ‘surface layer’ within the convective boundary layer, the stable boundary layer,
the entrainment zone and the inversion layer as the dynamic regions that require a
high-resolution mesh. Conversely, the well-mixed layer within the CBL, the residual
layer and the free-troposphere are evaluated on a coarser mesh. The total number of
grid cells varied between 24 and 44.
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Figure 3.7: Vertical profiles of the wind-speed magnitude U obtained with the
adaptive-grid (in colour) and the fixed equidistant-grid (dashed) SCMs. The twelve
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from 1:00 AM local time. Noting that the profiles are shifted in order to distinguish
between the different times (with vanishing wind at the surface). The profiles of U
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Figure 3.8: Evolution of (a) the vertical spatial resolution and (b) the total number
of grid cells, for the GABLS2 intercomparison case. Two full diurnal cycles, corre-
sponding to the 23rd and 24th day of October, 1999 (ranging from the labels 1:00:00
to 3:00:00 on the x-axis).
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3.4 Discussion & Conclusions

In this work we have presented a one-dimensional (1D) single-column model (SCM)
that employs a mesh whose resolution is varied adaptively based on the evolution
of the numerically obtained solution. This is an attractive feature because it is a
prerequisite to enable the computational effort required for the evaluation of numerical
solution to scale with the complexity of the studied physical system. The adaptation
algorithm based on limiting discretization errors appears to function very well for
a wide variety of geophysical applications: e.g. 3D atmospheric turbulence-resolving
models (Van Hooft et al., 2018c), tsunami and ocean-wave modelling (Popinet, 2011b;
Beetham et al., 2016; Marivela-Colmenarejo, 2017), hydrology (Kirstetter et al., 2016),
two-phase micro physics (Howland et al., 2016), flow of granular media (Zhou et al.,
2017) and shock-wave formation (Eggers et al., 2017). For these studies on highly
dynamical systems, the adaptive-grid approach is chosen because it offers a more
computationally efficient approach as compared to the usage of static grids.

The present work does not include an in-depth assessment and discussion on the
performance of the presented methods in relation to the computational speed. Even
though this is an important motivation for the application of the adaptive-grid strat-
egy to GCMs, the authors argue that a SCM is not suitable for speed-performance
testing: the speed of single-column calculations is virtually never a critical issue. Only
in 3D mode, when SCMs are ‘stitched together’ to enable the resolving of global cir-
culations, the model’s computational efficiency becomes an issue. Furthermore, the
performance of a SCM that employs a few tens of cells is not a good indicator for the
performance of a GCM that can employ billions of grid cells. For the latter, parallel
computation overhead and the so-called memory bottle neck are important aspects.
In contrast, for the SCM case, the complete instruction set and solution data can
typically be loaded onto the cache memory of a single CPU’s core. Nevertheless, for
the readers’ reference, the required run times for the different SCM set-ups presented
herein are listed in table 4.1, and figure 3.3b also presents quantitative results on this
topic and shows that the adaptive-grid solver is well behaved.

Following the turbulence resolving study of Van Hooft et al. (2018c), the results
presented herein are a proof-of-concept for future 3D modelling, using RANS tech-
niques. The authors of this work realize that the present SCM is a far cry from a
complete global model and that more research and development is required before the
method can be compared on a global-circulation scale. As shown by e.g. Jablonowski
(2004), a 3D adaptive grid also allows a variable grid resolution in the horizontal
directions. This further enables the computational resources to focus on the most
challenging atmospheric processes where there is a temporal and spatial variation in
the horizontal-resolution requirement of the grid. Examples include the contrasting
dynamics between relatively calm centres of high-pressure circulations and those char-
acterizing stormy low-pressure cells. Also, in the case of a sea breeze event (Arrillaga
et al., 2016), it would be beneficial to temporarily increase the horizontal resolution
near the land–sea interface. As such, we encourage the usage of this technique for
those meteorologically challenging scenarios.
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Entr’acte 3: Two Vortex Rings in a Head-on Collision

In 1992, T.T. Lim and T.B. Nickels published their spectacular findings from a
water-tank lab experiment studying the head-on collisions of two ring vortices
(top snapshots of dye). The experiment starts by triggering two opposing, axi-
ally symmetric, short-lived jets of dyed water into a large tank. Such a jet may
transform into a ring vortex; a flow structure that entrains the injected dye as
it propagates solitary though the fluid. Lim and Nickels (1992) captured the
formation of a dye membrane as the vortex rings’ major radius quickly increases
during the collision. Next, via a shear instability, the two vortex rings pinch and
connect with each other to form between 15 and 20 smaller vortex rings. These
experimental results have inspired numerical modelers to study these dynamics
as well. E.g. Kudela and Kosior (2014) employed ‘many graphics cards’ [sic], but
were unable to reproduce the experimental results proper. More recently, McK-
eown et al. (2018) successfully simulated the recombination process of the rings,
but artificially imposed a five-fold azimuth symmetry to reduce the computa-
tional costs. Naturally, we have also setup the case with Basilisk’s adaptive flow
solver, using a maximum resolution that corresponds to a 20483-cell equidistant
grid. The resulting snapshots of the grid structure and the vortex structures are
presented against a purple background. The white surfaces are based on the λ2

vortex-detection criterion of Jeong and Hussain (1995). Furthermore, a simu-
lation is performed with passive tracers added to each jet (bottom left). This
facilitates a visual comparison against the results from the modernly equipped
dye-experiment documentary of Destin Sandlin (2018) (bottom right), presented
online via his Youtube channel; ‘Smarter Every Day’. The computations never
used more than 4.5×106 cells, less than 0.05% of the maximum number (20483).
This enabled to perform the numerical experiment using a desktop workstation.
You may view the methods online;
www.basilisk.fr/sandbox/Antoonvh/two_rings.c .
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Emergence is complexity arising from simplicity, and emergence is everwhere!

Kurzgesagt (2017)

68



4 | An Idealized Description for
the Diurnal Cycle of the At-
mospheric Boundary Layer

abstract

We present a conceptual model for the diurnal cycle of the dry atmospheric bound-
ary layer (ABL). It may serve as a framework for future numerical studies on the
transitional dynamics that characterize the ABL over land. The conceptual model
enables to define expressions for relevant physical scales as a function of the most
prominent forcing parameters and the low degree of complexity facilitates a dimen-
sionless description. This is useful to help generalize boundary-layer dynamics that
occur on a diurnal timescale. Further, the model’s application for numerical studies
is illustrated herein with two examples: A single-column-model study which assesses
the effect of wind forcing on the main characteristics of the diurnal cycle, and a large-
eddy-simulation study on the daily evolution of turbulence under weak-wind-forcing
conditions. The results from these studies sketch the general evolution of the present
set of diurnal-cycle systems in more detail. We discuss how the setups are able to
reproduce well-known dynamical features of the ABL and also highlight limitations,
where the simple conceptual system is unable to describe realistic ABL behavior. We
conclude that the present conceptual model has an interesting balance between model-
system complexity and physical realism, such that it is useful for future, idealized,
studies on the diurnal cycle of the ABL.

The fourth chapter is based on the article:
J. Antoon van Hooft, Maurice van Tiggelen, Peter Baas,
Cedrick Ansorge & Bas J.H. van de Wiel
An Idealized description for the Diurnal Cycle of the Dry Atmospheric Boundary
Layer.
Journal of the Atmospheric Sciences, DOI:10.1175/JAS-D-19-0023.1, (2019).
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4.1 Introduction

Apart from the Antarctic summer and winter time, the Atmospheric Boundary Layer
(ABL) over land is characterized by a diurnal cycle. As such, a thorough under-
standing of the boundary-layer dynamics on a 24-hour timescale is highly desirable.
A classic result on the diurnal evolution of the ABL structure is presented in the
well-known book of Stull (1988). The seminal depiction of the ABL’s diurnal evolu-
tion is powerful for didactic purposes and provides a context for in-depth research on
the various ABL archetypes. For example, the daytime Convective Boundary Layer
(CBL) and the nighttime Stable Boundary Layer (SBL) are often studied separately,
due to their dynamical differences. As such, conceptual and quantitative models for
the ABL typically assume (quasi) stationary dynamics. This approach has proven
successful and has yielded detailed knowledge on the complex dynamics that are en-
countered in the ABL. Further, studies focusing on the early-morning transition (e.g.
Angevine et al., 2001; Beare, 2008) and late-afternoon transition (e.g. Grimsdell and
Angevine, 2002; Van Heerwaarden and Mellado, 2016) aim to bridge the gap in our
understanding that lays between convective and stable boundary layer conditions.
However, proper understanding of the interactions between even the most prominent
processes that govern the dynamical evolution of the ABL during a diurnal cycle,
including the transitional dynamics, remains elusive (Lothon et al., 2014; LeMone
et al., 2018). For this purpose, we build upon the idealized diurnal cycle as presented
in Stull (1988) and introduce a simplified description of the governing processes. The
additional value is that the concept yields quantitative expressions for relevant physi-
cal scales and a dimensionless framework that may be useful for future investigations.
Following the conceptual development, we emphasize numerical modeling as a tool to
study the dynamical behavior of the simplified framework in more detail. We conduct
exemplifying numerical studies that illustrate the potential for more in-depth research
via this route.

When the aim is to accurately describe local weather patterns, all relevant physical
processes need to be taken into account. Alternatively, in order to gain understanding
of the dynamics, idealized model cases have been studied in virtually countless works
regarding the ABL. The decrease in the model-system complexity allows to better
distinguish the interactions between the processes that remain represented in the
model. However, interpretation of the results requires special attention when placing
them in the context of reality and usually comes with disclaimers regarding the validity
of the assumptions that were made. As such, both conceptual and numerical models
have to strike a balance between physical realism and model-system complexity and
they typically need to be tailored for a specific research purpose. Herein we introduce
such a simplified model, aiming to capture the key dynamical aspects of a diurnal
cycle of the dry ABL. We introduce the set of parameters that govern the dynamics,
and formulate expressions for relevant characteristic physical scales such as boundary-
layer height, wind speed and temperature. Furthermore, the low degree of complexity
enables to describe the system with few dimensionless parameters.

Apart from the a priori analysis, it is tempting to study the dynamics of the
present conceptual model for the diurnal cycle in more detail. Herein we aim to do
so using numerical methods, where the computer model of the ABL is setup follow-
ing the present conceptual/simplified descriptions of the relevant forcing mechanisms.

70



More specifically, we conduct a Single-Column-Model (SCM) study on the effect of
the pressure-gradient forcing and study the evolution of the atmospheric turbulent
structures using a turbulence-resolving Large-Eddy Simulation (LES). These prelim-
inary numerical model studies illustrate how the present concepts can form a useful
framework for future model studies on the diurnal cycle. The results exemplify how
relevant and well-known features of the ABL are dynamically retrieved by the model
setup. Further, we also highlight some of the limitations of the present concepts with
respect to their ability to describe reality.

From the numerical-modeling perspective, we argue that there exist a bifurcation
regarding the description of the surface boundary in model scenarios. On one hand,
there are studies at the idealized side of the spectrum, that artificially prescribe the
boundary conditions of the ABL regarding the thermodynamic variable at the un-
derlying surface via the evolution of the surface sensible heat flux or the evolution of
the surface temperature. These studies typically employ turbulence resolving meth-
ods such as LES or direct numerical simulation (DNS) (e.g. Sullivan et al., 2016;
Haghshenas and Mellado, 2019) techniques. Of course, in reality, both surface flux
and temperature are internal variables, that will actively respond on atmospheric
dynamics itself. Rather than prescribing the surface conditions beforehand, there are
other numerical studies that assess the surface temperature and the heat flux as pa-
rameters that are integrally part of the soil-atmosphere continuum. This requires the
evaluation of the various terms in the surface energy budget (SEB) equation, which
in turn increases the model’s complexity by either resolving more physical processes
or introducing more extensive closures for their parametrization. The advantage be-
ing that the ABL can then develop according to the external forcings of the system.
Such models typically rely on Reynolds-Averaged-Navier-Stokes (RANS) modelling
(Reynolds, 1895), either in a full three-dimensional (3D) numerical model (e.g. Greve
et al., 2013) or using a single-column model (SCM, e.g. Baas et al., 2018). The more
realistic setups, that aim to include all the relevant processes for weather prediction,
have also become the realm of LES (e.g. Bertoldi et al., 2007; Liu and Shao, 2013;
Heinze et al., 2017; Maronga and Bosveld, 2017). In this work we introduce a sim-
ple SEB that takes the mid-way between both approaches. The setup is simple and
does not require the model to resolve or parameterize much physical processes other
than turbulent transport. This is advantageous as it means that the setup can be
readily run with existing numerical-solver codes and has limited degrees of freedom.
On the other hand, it does not require a prescribed formulation of the heat flux or
temperature at the surface, which is interesting from a physical point of view.

This paper delineates between the description of the conceptual model, including
the a priori analysis, and the two numerical studies. The description of the system and
the accompanying idealizations are described in Sect. 4.2.1. This scenario is a priori
analyzed, resulting in a conceptual model, the identification of relevant scales and the
dimensionless groups that describe the system in Sect.4.2.2. Next, numerical-method-
specific details and choices for the two aforementioned approaches are discussed in
Sect. 4.3. The numerically obtained results are then presented and discussed in Sect.
4.4. Finally, the conclusions of the work herein are presented in Sect. 4.5. This is
supplemented with the Appendix that details on the performed numerical simulations,
and lists links to online locations that present an precise description of the methods
that were used.
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4.2 A Simplified model for the diurnal cycle and its
non-dimensional representation

In this section, we discuss the idealized description of the physical forcings and the
initial conditions that govern the present conceptual model for the diurnal cycle. Next,
the scenario is a priori analyzed and casted into a dimensionless form. Thereafter,
the choices that are specific to the numerical methodologies are presented for a single-
column (RANS) model and the LES study. Furthermore, some considerations for a
DNS are presented. Although, this work does not present any results obtained from
DNS, those considerations are relevant as they illustrate how the chosen numerical
method can introduce method-specific dimensionless groups that govern the dynamics.

4.2.1 Forcing and initial conditions

The forcing of air mass in the ABL is governed by large-scale (O (1000 km)) horizontal
circulations and their dynamics. Herein, we only aim to model the ABL over a com-
paratively small horizontal extent and hence we need to parameterize and idealize the
mean wind forcing. Following countless numbers of works, the most prominent wind-
forcing mechanism is described as a constant horizontal pressure gradient (−∇hP ).
Furthermore, we include the effect of background rotation with respect to the Coriolis
parameter f . With a reference air density ρ and for non-vanishing f , we may conve-
niently write the pressure-gradient forcing as a velocity vector, Ugeo, that is known
as the geostrophic wind,

−→
U geo =

k̂

ρf
×∇hP, (4.1)

where k̂ is the unit vector in the direction of the zenith. The velocity components in
the two lateral ({x, y}) and vertical (z) direction are labeled {u, v, w}, respectively,
and are initialized in geostrophic balance:

{u, v, w} = {Ugeo, 0, 0}, (4.2)

where Ugeo = ‖−→U geo‖, meaning that the coordinate system is chosen such that the
pressure gradient points in the negative y-direction for positive values of f . The
persistence of a constant-with-height and constant-in-time pressure gradient and a
geostrophic balance in the free atmosphere is part of the model idealization and does
not represent the general case of momentum forcing in the ABL. Furthermore, we
state explicitly that the velocities at the surface vanish due to the small, yet finite
molecular viscosity of the air in the atmosphere. However, the implementation of
the surface boundary is argued to be a method-specific feature and the associated
treatment is discussed for the different numerical approaches separately in Sect. 4.3.

The forcing of the thermodynamic variable in the ABL is considered to occur at
the underlying surface and is described via the sensible heat flux (H). In reality, the
partitioning of the available energy among the various terms of the SEB remains a
topic of discussion, and is a major challenge for modeling. Therefore, in view of the
desired simplicity of our description, we adopt a simplified version of the SEB were
we only consider the net radiation (Qn), the soil heat flux (Fsoil) and the sensible
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heat flux,
Qn = Fsoil +H. (4.3)

Where Qn is defined positive towards the surface, and Fsoil and H are defined positive
when directed away from the surface, into the soil and atmosphere, respectively. For
generality, we use buoyancy (b) as our thermodynamic variable, and it is related to
the potential temperature (θ) according to;

b =
g

θref
(θ − θref) , (4.4)

where g is the acceleration due to gravity and θref a constant reference potential
temperature such that θ−1

ref is a sufficient approximation of the thermal expansion
coefficient of the (dry) air in the atmosphere. We re-express the SEB Eq. 4.3 for the
corresponding buoyancy fluxes: We write Q∗, G and B as the buoyancy-flux equiva-
lents to replace the heat fluxes Qn, Fsoil and H, respectively;

Q∗ = G+B. (4.5)

These buoyancy-flux terms differ by a factor of θrefρCpg
−1 from their heat-flux coun-

terparts, where ρCp is the heat capacity of air at constant pressure, with (constant)
density (ρ). In this work, we prescribe the diurnal evolution of Q∗(t) and calculate
G at the surface based on a simple closure so that B can be evaluated as a residual.
For the soil buoyancy flux (G), we adopt a ‘lumped-parameter view’ (Van de Wiel
et al., 2017). The concept is that there exists a negative feedback of heat based on
the surface temperature Ts. The main assumption is that this term can be described
using an effective feedback-temperature scale Td and coupling strength λ such that
the feedback heat flux F can be expressed according to,

F = λ (Ts − Td) . (4.6)

Here λ represents the effective combined coupling strength of the surface temperature
with Td due to conductive and radiative processes in the soil and atmosphere, respec-
tively, and hence the name ‘lumped parameter’. In this work we only use the concept
to model the soil heat flux (Fsoil = F ) such that λ and Td are model parameters
that only concern the soil. This corresponds to a zero-layer model of the soil. The
temperature scale Td can be interpreted as the temperature within the soil at the
depth (d) where the diurnal temperature variations are damped out, and λ represents
the effective soil and vegetation conductivity. Following Eq. 4.6, G is expressed as,

G = Λ(bsurf − bd), (4.7)

where Λ is the coupling parameter for buoyancy corresponding to λ, bsurf and bd are
the buoyancy-equivalent-to-temperature of Ts and Td , respectively, see Eq. 4.4.

In practice, heat storage effects (i.e. history), the different properties of the soil
layers, the vegetation properties, the phase changes of water, the water-table depth
and the actual temperature variations within the soil are important aspects that
determine the response of the soil heat flux as a function of Ts over time. In order
to stress our simplification, Fig. 4.1 shows the diagnosed λ from data obtained at
Cabauw, The Netherlands (Van Ulden and Wieringa, 1996). λ is calculated for each
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Figure 4.1: Population-density plot of estimated λ values based on observations taken
at the CESAR site, in Cabauw, The Netherlands. The plot reveals that λ is highly
variable and shows characteristic behavior with respect to the time of day. c) shows
the histogram of all shown λ values.

10 min. period based on Eq. 4.6, where we have used the soil temperature at a
depth of 30 cm below the surface, the surface (skin) temperature and the heat flux
at 5 cm below the surface as Td, Ts and Fsoil, respectively. The data show that
the concept of a constant-in-time lumped parameter value is not consistent with the
observations. Not only does there appear to be a wide spread in the diagnosed λ
values, there appears to be a distinctive diurnal pattern (which may be influenced
by phase-lag/history effects). The authors stress that our simple evaluation of G is
not an alternative to a more elaborated description of the soil physics in models (e.g.
Chen et al., 1997; Van Tiggelen, 2018). We argue that it is a specific shade-of-gray in
the balance between model system complexity and physical realism, and the results
presented in Sect. 4.4 show that it yields model results with some degree of realism
and also highlight some prominent limitations.

The temporal variation in the net radiative flux at the surface (Qn), which is
herein considered to be horizontally homogeneous, is the main driver of the diurnal
cycle. Qn is often expressed in models as the sum of its long and short-wave, down
and up-welling components. These four terms can be modeled individually using
parameterized descriptions for radiation. However, in this work we model a dry,
cloud-free day and do not consider radiative divergence within the atmosphere. Due
to the smooth and well known characteristics of the evolution of the solar zenith
angle, and the limited temperature range within a day, we assume that Qn has some
generic features that may be exploited to arrive at a simple prescription for its time
(t) evolution. Therefore, we plot the diurnal evolution of the net radiation for a
clear-sky day at Cabauw, the Netherlands, as was observed on 17th of August 2016,
in Fig. 4.2. The well-known diurnal pattern is characterized by positive values that
reach a maximum during daytime, and during the nighttime, Qn is more constant in
time with negative values. Based on this prototypical evolution we choose to prescribe
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Figure 4.2: Prototypical evolution of the net radiation (Qn) on a clear-sky day (a)
and the prescription of Q∗ according to Eq. 4.8 (b).

Q∗ = Q∗(t), according to the following functional form;

Q∗ = max

[
B0 sin

(
2πt

T

)
, B1

]
, (4.8)

where B0. and B1 are buoyancy-flux scales for the daytime and nighttime, respectively
(with B0 > 0 > B1 ), max [a, b] is an operator that selects the maximum value between
the dummy variables a and b, and T is the timescale associated with the periodicity of
the diurnal cycle (i.e. T = 24h on earth). This formulation implies that the daytime
section of the cycle (i.e. Q∗ > 0) is exactly equal to the nighttime part of the day (i.e.
Q∗ < 0). This is typically only accurate for a specific time of the year depending on,
among other variables, the location’s latitude. For the initialization of the buoyancy
field, we consider a stably stratified atmosphere associated with the Brunt-Väisälä
frequency N (cf. Garcia and Mellado, 2014; Van Heerwaarden and Mellado, 2016;
Mellado et al., 2017),

bt=0(z) = bsurf,t=0 +N2z, (4.9)

where z is the height above the surface. Note that the set of buoyancy scales
{bd, bsurf,t=0} as used in Eqs. 4.7 and 4.9 are important system parameters. However,
in order to limit the degrees of freedom of the setups, we only consider the case where,

bd = bsurf,t=0 = 0, (4.10)

i.e. equal to the buoyancy associated to the reference potential temperature (θref), see
Eq. 4.4. Furthermore, the finite molecular viscosity (ν) and scalar diffusivity (κ) of
the air govern the diffusive processes at the smallest length scales of the atmosphere.
However, the treatment of their exact values is considered to be a method specific
consideration and it is therefore discussed in Sect. 4.3.
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4.2.2 Physical scales and dimensionless groups
In our a priori analysis of the system, we distinguish between relevant scales for the
daytime (0 < t < T/2) CBL and the nighttime (T/2 < t < T ) SBL. We assume that
B0 > 0 > B1 and ‖B0‖ � ‖B1‖ , as is hinted in Fig. 4.2. In the limit of a vanishing
buoyancy flux (B → 0), Q∗ = G. This enables to define two buoyancy scales, bc,Λ
and bs,Λ, corresponding to the extreme values for the surface buoyancy for the CBL
and SBL period, respectively,

bc,Λ =
B0

Λ
, (4.11a)

bs,Λ =
B1

Λ
. (4.11b)

Noting that in general, the assumption of vanishing sensible heat flux is only accurate
for the very stable boundary-layer regime (Howell and Sun, 1999). The assumption is
particularly unsuitable for the clear-sky convection-driven ABL at mid day (i.e when
Q∗ = B0). Therefore, we will motivate a more relevant alternative for the daytime
buoyancy scale: It is well known that the convective boundary layer is characterized
by a well-mixed region with a characteristic buoyancy scale. When we consider the
convective limit, with no coupling to the underlying soil (Λ→ 0), then this buoyancy
scale can be evaluated using the total available buoyancy provided by Q∗ to uniformly
‘heat’ the ABL’s initial buoyancy profile. If we assume a well-mixed layer in the ABL,
and the persistence of the initial stratification aloft, then a CBL with height (Lc )
can be associated with a convective buoyancy scale (bc,Q∗),

bc,Q∗ = N2Lc. (4.12)

The total time-integrated buoyancy flux during a single day is limited and therefore
an upper bound for the values of Lc and bc,Q∗ exist. We equate the red-shaded areas
in Figs. 4.2 and 4.3 (encroachment principle);∫ T/2

0

Q∗dt =

∫ T/2

0

B0sin

(
2πt

T

)
dt =

=
B0T

π
=
bc,Q∗Lc

2
.

(4.13)

Combining the equations results in an expression for the CBL height scale Lc and
the corresponding buoyancy scale bc,Q∗ ,

Lc =

√
2B0T

πN2
, (4.14a)

bc,Q∗ =

√
2B0TN2

π
. (4.14b)

For the SBL, the typical boundary-layer height is a result from the internal dynamics:
For example, a very SBL (VSBL) is typically more shallow compared to a weakly SBL
(WSBL). Hence, we cannot a priori formulate a relevant expression for the SBL height.
However, if we follow a few assumptions, we can find a reference length scale for the
depth of the SBL (Ls ).
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Figure 4.3: Schematic overview of the evolution of the buoyancy profile. The initial-
ized profile (a) and the profiles according to the conceptual model of Sect. 4.2.2 at
t = {T/2, T}, b) and c), respectively.

• The SBL starts to cool from the surface under a well-mixed layer with a buoy-
ancy that is of the order O ( bc,Q∗)

• The surface buoyancy of the SBL will decrease over the course of the night to
be of the order O (bs,Λ).

• Within the SBL (z < Ls), there is a constant stratification strength N2
SBL such

that b(z) ≈ bs,Λ +N2
SBLz with,

N2
SBL =

bdiurnal
Ls

, (4.15)

with bdiurnal a diurnal-buoyancy-range scale based on the first two assumption
in this list,

bdiurnal = bc,Q∗ − bs,Λ. (4.16)

Following the same reasoning as with Eq. 4.13, we assume the blue-shaded areas of
Figs. 4.2 and 4.3 to be equal,

Lsbdiurnal
2

=

∫ t=T

t=T/2

Q∗dt ≈ B1T

2
, (4.17)

and therefore we write,

Ls =
B1T

bc,Q∗ − bs,Λ
. (4.18)

Apart from the geostrophic velocity scale (Ugeo), a relevant velocity-fluctuation
scale due to convection can be expressed according to Deardorff (1970),

Uc = (B0Lc)
1/3
. (4.19)

Similarly we express a reference velocity scale for the SBL (cf. Van de Wiel et al.,
2012; Van Hooijdonk et al., 2015),

Us = (‖B1‖Ls)
1/3
. (4.20)
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The present system is governed by the set of seven parameters {B0, B1, T,N, f,Λ, Ugeo}.
With two base units (i.e. for length and time), we can identify sets of five indepen-
dent dimensionless groups that govern the system dynamics (Buckingham, 1915). An
example of such a set is,

Π1 =
B0

B1
, (4.21a)

Π2 = TN, (4.21b)
Π3 = Tf, (4.21c)

Π4 =

√
B0T

Λ
, (4.21d)

Π5 =
Ugeo

Uc
. (4.21e)

Here we have chosen to nondimensionalize B1, N, f and Λ with the daytime forcing
parameters B0 and T , and Ugeo with the Deardorff velocity scale (Uc). They are
formulated such that the values of these groups are typically larger than unity (see
Sect. 4.3) . The reference potential temperature θref , the acceleration due to gravity
g and properties of the air (ρ and Cp) are not additional variables that determine
the system dynamics. This is due to the fact that the heat fluxes are expressed in
terms of buoyancy fluxes, the case setup and corresponding assumptions. Note that
the set of groups in Eqs. 4.21 is based on an arbitrary choice out of infinitely many
(equivalent) possibilities and any set of five orthogonal groups can be re-expressed in
terms of those presented in Eqs. 4.21 (Vaschy, 1892; Buckingham, 1915).

4.3 Numerical case studies

This section presents the setups for two example studies on the diurnal cycle using
both a SCM and an LES approach. Additionally, relevant dimensionless groups for a
DNS study are discussed.

4.3.1 An example single-column-model study
For this exemplifying study, we are inspired by the work of Van der Linden et al.
(2017), who developed a multi-year climatology of the nocturnal boundary layer at
Cabauw, from the perspective of large-scale pressure-gradient forcing. As discussed
in depth, our model setup does not aim to capture the conditions to accurately model
the ABL at Cabauw. Yet, it is interesting to see what well-known features of the
diurnal cycle are realistically reproduced with by the model. As such, we run a suite
of model cases where we keep the values for Π1,Π2,Π3 and Π4 fixed (see Eqs. 4.21),
and vary the parameter that controls the pressure-gradient forcing, Π5.

Associated with the pressure-gradient forcing is the geostrophic wind (Ugeo), see
Eq. 4.1. It is well known that with increasing Ugeo, the wind shear also increases,
which affects the mixing within the ABL. The shear owes its existence to the combi-
nation of a mean wind and the fact that velocities vanish at the surface. Since our
single-column model does not resolve the turbulent flow near the surface, we rely on
a closure that parameterizes the effect of a rough surface as a drag force on the flow.
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This warrants the introduction of a so-called roughness length for momentum (z0,m)
to our setup. We therefore add a sixth dimensionless group that governs the model
system,

Π6 =
Lc
z0,m

. (4.22)

Furthermore, to compute the buoyancy flux (B), the soil-flux (G) needs to be eval-
uated using the surface buoyancy(bsurf ). In our model bsurf is found by assuming
a logarithmic variation of the buoyancy with height on the sub-grid scale within the
lowest two grid cells. A profile may be fitted and the buoyancy can be evaluated at
the surface (See the appendix for details). This introduces a roughness length for
scalars (z0,h), and a corresponding dimensionless group,

Π7 =
z0,h

z0,m
. (4.23)

It is commonly accepted that Π7 ≤ 1, and there is considerable debate in the literature
what it value should be. For simplicity, we choose a value of Π7 = 1 in this work.
Noting that z0,h is related to bsurf and that this buoyancy value should be interpreted
as an effective surface buoyancy with respect to Eq. 4.7. We choose values for the six
groups of Eqs. 4.21 and 4.22 according to the physical parameters listed in table 4.1,

bc,Λ = 2 ms−2, (4.24a)

bs,Λ = −0.33 ms−2, (4.24b)

bc,Q∗ = 0.64 ms−2, (4.24c)

bdiurnal = 0.97 ms−2, (4.24d)
Lc = 1030 m, (4.24e)
Ls = 170 m, (4.24f)

Ugeo = [2.3 ... 10.6] ms−1, (4.24g)

Uc = 2.3 ms−1, (4.24h)

Us = 1.5 ms−1, (4.24i)

and the following values for the dimensionless groups as presented in Eqs. 4.21 and
4.22;

Π1 = −6, (4.25a)
Π2 = 2160, (4.25b)
Π3 = 10, (4.25c)
Π4 = 5366, (4.25d)
Π5 = [1 ... 5] , (4.25e)
Π6 = 5150. (4.25f)

A SCM solves an evolution equation for the relevant atmospheric vertical profiles
according to parameterized descriptions for turbulent transport (Betts, 1986). We
use the single-column model that is described in Van Hooft et al. (2018a), based on
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Table 4.1: An overview of the parameter values for the physical system that are used
in the single-column model study and give rise to the values of the dimensionless
groups in Eqs. 4.25

Symbol Value Based on
B0 1.2× 10−2 m2s−3 max (Qn) ≈ 360 Wm−2

B1 −0.2× 10−2 m2s−3 max (Qn) ≈ −60 Wm−2

T 24 h The duration of a day
N 0.025 s−1 0.0175 Km−1 with θref = 280 K
f 1.15× 10−4 s−1 Mid-Latitude / Cabauw
Λ 6× 10−3 ms−1 λ = 7 Wm−2K−1, Fig. 4.1
Ugeo [2− 15] ms−1 Van der Linden et al. (2017)
z0,m 20 cm Regional Roughness Cabauw

the Basilisk toolbox that is available via www.basilisk.fr (Popinet, 2011b). The de-
scriptions for the turbulent transport are based on simple first-order, local, stability
dependent K-diffusion closures (Louis et al., 1982; Troen and Mahrt, 1986; Holtslag
and Boville, 1993). The mesh-element sizes are varied adaptively, based on the evo-
lution of the numerical solution. For clarity of presentation, this section does not
address the details of our model. Therefore, a more elaborated description is pre-
sented in the aforementioned work of Van Hooft et al. (2018a) and the appendix. The
implementation are documented and freely available. Links to their corresponding
online locations are given in the appendix.

4.3.2 An example large-eddy simulation study

The results of the SCM study are supplemented with a 3D turbulence-resolving study
that concerns a similar setup as the SCM study, but using a small value for the
wind-forcing parameter, Π5 = 0.5. This value is chosen small in order to limit the
effects of shear on the ABL dynamics, yet large enough to ensure that the closures
for the surface transport (i.e. a logarithmic ‘law-of-the-wall’) remains valid (Sullivan
and Patton, 2011; Ansorge, 2018). The values of the other dimensionless groups are
taken from the SCM study (see Eqs. 4.25). With an LES approach, one aims to
resolve the most dominant (turbulent) flow structures in the atmosphere explicitly,
assuming that (1) these govern the overall turbulent dynamics of the ABL, (2) these
large turbulent structures decay into smaller structures via a predominantly downward
cascade, and (3) these smaller-scale structures are universal and can be parameterized
with sufficient accuracy. Such an approach may be preferred over RANS modelling as
it yields 3D solution data that explicitly includes the internal variability of the ABL
system and reduces the reliance on closures for turbulent transport. However, not
the full range of turbulent motions are resolved and this requires an associated model
for the sub-grid scale (SGS) turbulent transport. In this work, we parameterize the
effects of the SGS turbulent motions to be locally diffusive with an effective eddy
viscosity that is calculated based on the formulation of Vreman (2004). Furthermore,
at the approach of the surface, the size of the dominant turbulent eddies decreases to
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such small (viscous and roughness) scales, that the effect of the underlying surface also
needs to be parameterized similar to the SCM approach. The LES domain is a cube of
size L3

0 , with L0 = 3Lc and the lateral boundaries prescribe periodicity of the solution
in the horizontal directions. The resulting convective boundary layer depth will grow
to be ≈ 0.8L (see Sect 4.4). The aspect ratio of the horizontal periodicity and the
vertical length scale (approx. 3.75 : 1) is in the ‘dangerzone’, as there is the risk of
large plumes interacting with themselves across the periodic boundaries (Schmidt and
Schumann, 1989; Van Heerwaarden and Mellado, 2016). For this preliminary study,
we do not study the effects of the chosen horizontal domain size on the dynamics
(as in: de Roode et al., 2004). The mesh-element sizes are varied adaptively based
on the evolution of the solution for the buoyancy and the three velocity-component
fields (Popinet, 2011b; Van Hooft et al., 2018d). The mesh resolution is an important
parameter when assessing the fidelity of an LES result (Sullivan and Patton, 2011;
Van Stratum and Stevens, 2015). As such, the details for the LES setup, including
the resulting mesh-size distribution, are presented in the appendix.

4.3.3 Towards a direct numerical simulation study

For the 3D LES study we have adopted a parameterized description for the drag at
the surface and the mixing by SGS turbulence. It is well known that the assumptions
for a LES are not generally valid and that SGS models may fail to describe the
turbulent mixing with sufficient accuracy for all atmospheric conditions (Mellado
et al., 2018; Ansorge, 2018). Alternatively, one may aim to solve the set of equations
for fluid motion directly, without adopting a closure for the turbulent transport (Moin
and Mahesh, 1998). This entails that the flow needs to be resolved down to the
length scales of the turbulent cascade where gradients are sufficiently large such that
the molecular diffusion becomes an effective dissipation mechanism for the second
order moments of momentum and buoyancy. This warrants the introduction of the
fluidâĂŹs viscosity (ν) and thermal diffusivity (κ), which introduces a dimensionless
group that is known as the molecular Prandtl number.

Pr =
ν

κ
. (4.26)

From the seminal work of Kolmogorov (1941), we learned that the smallest relevant
flow-structure scales for the inertial subrange of turbulence are dictated by the dis-
sipation rate of turbulent kinetic energy (ε) and the fluid’s molecular viscosity (ν).
It is known as the Kolomogorov, viscous or dissipation length scale (η) and may be
written based on dimensional analysis (Buckingham, 1915),

η =
ν

3/4

ε1/4
. (4.27)

In order to assess the feasibility of performing a DNS of the present diurnal cycle setup,
in the limiting case where there is a total absence of wind forcing (i.e Ugeo = 0), we
follow the works of Garcia and Mellado (2014); Van Heerwaarden and Mellado (2016),
and approximate the maximum value of ε as a fraction of order one of B0. We can
then define a dimensionless group as the four-thirds power of the scale separation,
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that is known as the Reynolds number (Re),

Re =

(
Lc
η

)4/3

=
B0

ν

(
2T

πN2

)2/3

=
UcLc
ν

. (4.28)

Typical atmospheric conditions are characterized by Uc = O
(
1 ms−1

)
, Lc = O (1 km)

and furthermore, ν ≈ 1.5×10−5 m2s−1 meaning that Re = O
(
108
)
and the minimum

resolution (∆min = O (η)) would then need to be (∆min = O
(
10−6Lc

)
) on the order

of millimetres. This is not feasible for 3D turbulence resolving studies and may
remain elusive for a considerable period in the future (Bou-Zeid, 2015). Therefore, in
virtually all studies that employ DNS for ABL flows, an offer is made with respect
to the Reynolds number, assuming that for sufficiently large values of Re, certain
relevant (scaled) statistics become insensitive to its exact value, a concept known
as ‘Reynolds-number similarity’. Similar to the LES approach, it is assumed that
the full depth of the inertial subrange of isotropic turbulence does not need to be
resolved to obtain accuracy for the lower-order solution statistics. However, with
the available resources for this preliminary study, we cannot perform a DNS with a
reasonable value for Re of the full diurnal cycle and hence, this work does not present
any results obtained with the DNS technique. Further, heat fluxes in such a simplified
representation of the ABL do not scale inviscidly (cf. Van Heerwaarden and Mellado,
2016; Van Hooijdonk et al., 2018), i.e. they have to be normalized with account for
changes in Re. This requires a thorough analysis of the viscid scaling behavior of
Π1 −Π5.

4.4 Results and Discussion

4.4.1 Single-column model results
Since the SCM approach employs semi-empirical descriptions of the turbulent trans-
port, the obtained evolution of the vertical profiles are subject to the particular choices
regarding the used closures. As such, the results presented in this section are only in-
tended to provide a qualitative overview of the modeled dynamics. Figure 4.4 presents
the results from the simulation run with Π5 = 3.5 and provides a prototypical example
of the evolution of the vertical profiles with a time interval ∆t = T/12 (correspond-
ing to a two-hourly interval). We observe that the for this case, the depth of the
well-mixed layer grows during the daytime to the order of Lc with a characteristic
buoyancy that is a fraction of order one of bc,Q∗ . During the night, a SBL forms that
has a depth of the order of Ls (c.f. Eq. 4.18). As the SBL is shear driven, the shapes
of the nighttime profiles are more sensitively responding to the value of Π5 compared
to their daytime counterparts (not shown).

Figure 4.5 shows the partitioning of the available buoyancy (Q∗) between the
buoyancy flux (B) and the soil flux (G) for two runs with different pressure-gradient
forcing (i.e. Π5 = {2, 5}). It can be observed that for the daytime results, there are
hardly any differences, as thermodynamics are dominated by convection. At the end
of the day time (t ≈ T/2) , the buoyancy flux changes from positive to negative values
before Q∗ does so (cf. Van der Linden et al., 2017). At night however (i.e. B < 0),
the weak wind speeds cause the buoyancy flux to be close to zero and the radiative
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Figure 4.4: The solution profiles obtained for the single-column model run with Π5 =
3.5. The plots display the profiles of the daytime the buoyancy (b) and the horizontal
wind magnitude (U) in panel a and b, respectively. Panels c) and d) display the same
quantities for the nighttime. Notice the different scaling of the axis for daytime and
nighttime data. For reference; all panels show the corresponding profile at t = T/2
(red line).

buoyancy/energy loss is compensated by the soil flux (G), corresponding to a VSBL.
Alternatively, for the strong-wind case (i.e Π5 = 5), the soil flux remains small in
the SBL and the radiative loss of energy is mostly compensated by the buoyancy
flux (B), corresponding to a WSBL (compare e.g. observational data presented in
Van de Wiel et al., 2003). Remarkably, the simple setup appears sufficient to retrieve
the dynamical difference between the VSBL and the WSBL due to variations in the
pressure-gradient forcing. Inspired by this result, we explore the transition between
the VSBL and WSBL as a function of Π5 and plot the difference of buoyancy at
the surface and at z = Lc/20 (∆b). This inversion is averaged over the 19th hour
of simulation (i.e. in the middle of the night) and the results are plotted in Fig.
4.6 a. It appears that for the low pressure-gradient forcing the inversion is of the
order one of the anticipated diurnal buoyancy range (bdiurnal). In literature that
concern observational analysis, the large scale pressure-gradient forcing is commonly
not available and the inversion strength is often plotted against a wind speed within
the boundary layer. As such, we average the wind speed at z = Lc/20 ≡ 50 m over the
same period and the results are plotted in Fig. 4.6 b. Here we see that the transition
between the WSBL and VSBL appears much sharper. This is due to the non-linear
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Figure 4.5: The diagnosed buoyancy flux (B), the soil heat flux (G) and the prescribed
net radiation (Q∗) obtained from two runs, each with different Π5 value (Π5 = {2, 5}).
The differences due to the wind forcing are most notable in the stable boundary layer
regime (i.e. t > T/2). After the occurrence of a buoyancy flux minimum, the sensible
heat flux vanishes for the case with the weaker wind forcing, wheasreas it remains
finite for the case with the stronger forcing case.

response of the wind speeds within the SBL to Ugeo. For a more in-depth analysis of
this aspect see; Baas et al. (2019).

Finally, In order to point out a limitation of the model scenario with respect to
its ability to describe reality, we focus on the evolution of the buoyancy near the
surface (b(z, t) = b(Lc/50, t)) in Fig. 4.7 for the run with a value of Π5 = 4. For a
comparison, we plot the evolution of the absolute temperature at z = 20m for five
consecutive days at the CEASAR observational site in Cabauw, The Netherlands.
Data is plotted for the 19th to the 23rd of August 2018. These days are associated
with a heat wave and a drought in the Netherlands. These data therefore provide a
reference for diurnal cycles with a limited influence of the moist dynamics. Neglecting
the actual diurnal temperature range, we see that the overall shape of the observations
is captured to some degree in the model. However, during the transition from the
CBL to the SBL, the cooling rate predicted by the model is (comparatively) too large.
This may be due to the fact that the used closures fail to represent the mixing of
decaying turbulence and/or the fact that the soil heat flux description in our model
is particularly unsuitable for this period of the day (cf. Fig. 4.1). To assess this
discrepancy we have run the model with a full (i.e. layered) soil model such that
heat-storage effects are explicitly taken into account. An alternative model where
we have used the so-called ‘enhanced mixing’ formulation under stable conditions is
also run (Holtslag and Boville, 1993). The cooling rate at t ≈ T/2 is smaller than
with the present Λ-based description of the soil flux (G), c.f. Eq. 4.7. This is due
to significant effects of soil-heat storage: the temperature of the upper soil is higher
than that of e.g. the deep soil (Td) in Eq. 4.6, see Fig. 4.7 c. Therefore, heat
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Figure 4.6: The buoyancy inversion (∆b) between the surface and at z = Lc/20 aver-
aged over the 19th hour of simulation obtained from runs with different pressure-
gradient forcings (i.e. Π5 ). ∆b Is plotted against the pressure forcing param-
eter Π5 (a) and against the 19th-hour average of the horizontal wind speed at
z = Lc/20;UzLc/20 (b). The dimensionless numbers on the lower and left-hand side x
and y axis are converted to their meteorological equivalents using the values of table
4.1 and are displayed on the corresponding upper and right-hand-side axis (in grey).

is released into the atmosphere. It can also be observed that the model using the
enhanced mixing formulation does indeed predict a slower cooling rate. However,
even with this mixing, the rapid cooling during the transition remains, which stresses
the importance of an accurate representation of ground heat storage. As such, the
present ‘lumped parameter’ model may be a poor representative of reality during the
transition period itself (cf. Fig. 4.1).

4.4.2 Large-eddy simulation results

In this section we give an overview of the evolution of the resolved turbulent struc-
tures in the ABL during the diurnal cycle with the present framework, containing
coupled surface boundary conditions. Due to our low value for Π5, turbulence is weak
during the night and the main actors in the SEB are Q∗ and G (see Fig. 4.5). Corre-
spondingly, there are no appreciable turbulence levels in the simulated SBL and the
authors argue that in the absence of large eddies, the assumptions that underlie the
LES approach may not hold for this period. Therefore, we focus our analysis on the
growth and decay of the CBL and we only briefly consider the day-night transition.
The SBL itself is left for a more in-depth future study. As we have not prescribed
the evolution of buoyancy at the surface, the internal variability of the atmospheric
dynamics give rise to a heterogeneous surface buoyancy structure. We plot horizontal
slices of the surface buoyancy for the part of the day where the CBL is growing in
Fig. 4.8. It appears that initially, at t/T = 1/48, the surface buoyancy structures are
organized in elongated ‘streets’, whereas at later stages, the foot print of horizontally
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Figure 4.7: The evolution of the temperature at z = 20 m for five consecutive clear-
sky and relatively dry days with a pronounced diurnal pattern, at Cabauw, The
Netherlands (a) and the modeled buoyancy at z = Lc/50 ≡ 20 m obtained from
three different models (b, see text Sect. 4.3). It appears that at the onset of the
stable boundary layer (t ≈ T/ 2), only the model that includes heat-storage effects
(yellow line) is able to predict a realistic cooling rate. The corresponding soil-buoyancy
profiles (c) are displayed for various times during the day-to-night transition. These
profiles reveal that after the transition, the soil is releasing heat into the atmosphere.

isotropic convection cells are observed. This can be explained by the fact that in
the early-morning, convection is still weak compared to the shear in the boundary
layer. It is known that shear dominated convection tends to organize in elongated
surface ‘streaks’ (Adrian, 2007) or convective ‘rolls’ (Coleman et al., 1994; de Roode
et al., 2004; Conzemius and Fedorovich, 2006; Gibbs and Fedorovich, 2014). As the
buoyancy flux and the boundary-layer height increase, this balance shifts to a convec-
tion dominated regime. Furthermore, with an increase of the CBL depth over time,
the size of the convection cells also grows and this is reflected by the structures in
the surface buoyancy. Apart from the largest-cell structures, smaller filaments can
be observed. Within the CBL, thermal plumes rise and this process may be visual-
ized by plotting 3D renderings of a isosurface of the buoyancy colored with the local
vertical velocity. Figure 4.9 presents such rendering at two stages for the growth of
the CBL. The isosurface of the buoyancy is chosen such that it is representative of
cores of the thermal plumes and a layer with an identical buoyancy value is found
aloft in the inversion layer. It can be observed that at t/T = 1/24 there exist many
convective plumes within the domain that cause a wave pattern in the overlaying
inversion layer. At a later stage (i.e. t/T = 6/24) the thermal plumes have grown in
size. The snapshot in Fig. 4.8 b) also depicts the process of entrainment (arrow) as
we see the isosurface of the buoyancy in the inversion layer being entrained downward
to be within the CBL. Finally, 1700 consecutive snapshots of the turbulent struc-
tures in the solution field are combined into a movie. It is made available via Vimeo:
https://vimeo.com/292329175.

An important characteristic of convective boundary layers is that it may display
self-similar behaviour over a range of CBL heights (Lc) and convective velocity scales
Uc (Jonker et al., 2013). For the well-mixed-layer height growing into a linear strati-
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Figure 4.8: Slices of the buoyancy field at the surface during the initial growth of the
CBL at times t/T = {1/48, 3/48, 7/48, 11/48}, in panel a) b) c) and d), respectively. The
panel title denotes the average (〈b〉) and the standard deviation (σb) of the slice. The
color axis range from 〈bs〉 − σb (blue) via 〈bs〉(green) to 〈bs〉+ σb (yellow).
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Figure 4.9: Isosurface renderings of the buoyancy field for (a) t/T = 1/24 and (b)
t/T = 6/24, with biso/bc,Q∗ = {0.125, 0.64}, respectively. The values for the iso surfaces
are (subjectively) chosen such that they depict the upward convective motions and
the surfaces are colored with the local vertical velocity from red (upward) via green
(w = 0) to blue (downward). The black arrow in panel (b) annotates the process of
boundary-layer entrainment.
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Figure 4.10: The time evolution of the CBL height (Lc) and the instantaneous con-
vective velocity scale (Uc ) according to Eqs. 4.29 and 4.30 (a), the vertical (z) profiles
of the velocity variance 〈w2〉, plotted for different times and normalized with the ex-
ternal scales Lc and Uc, respectively, (b). The dashed black line indicates a fit (by
eye) of a functional relation for the self-similar profile based on (Troen and Mahrt,
1986). The growth and the subsequent decay of the resolved turbulent motions are
quantified by the total height-integrated vertical velocity variance (ew) (c).

fication (Lc), we follow the definition of Van Heerwaarden and Mellado (2016),

L2
c =

2

N2

∫ ztop

z0,h

(
〈b〉 −N2z

)
dz. (4.29)

Based on this length scale, we define the instantaneous Deardorff convective velocity
scale,

Uc = (BLc)
1/3
. (4.30)

The temporal evolution of these scales is plotted in Fig. 4.10 a) and are used to rescale
the vertical profiles of the vertical velocity variance (〈w2〉) in Fig 4.10 b). Here we
see that for the largest part of the daytime a self-similar profile is diagnosed that
is described with appreciable accuracy by the well known functional shape as listed
in Troen and Mahrt (1986). However, the profiles from the early morning and the
later afternoon show clear deviations form the self-similar profile. The shallow early
morning CBL may suffer from the limited grid resolution and may also be affected
by the relative importance of shear (Conzemius and Fedorovich, 2006). Furthermore,
during the late afternoon period, the heat flux vanishes and the convective turbulent
structures decay. Hence, it is not expected that the CBL remains self similar nor that
Deardorff scale (Uc) is relevant for that period. To obtain an estimate for the growth
and decay of the vertical motions, the height-integrated vertical velocity variance
(ew =

∫ ztop
z0,h
〈w2〉dz), averaged for a period ∆t = T/48 is presented in Fig. 4.10 c).

In the simulation, the decay of ew during the day-to-night transition appears to be
linear with time. This does not follow the conclusions from any of the more idealized
studies on the decay of convective turbulence (Nieuwstadt and Brost, 1986; Sorbjan,
1997; Van Heerwaarden and Mellado, 2016), where several negative scaling exponents
with time are proposed to describe the decay of convection. This aspect is not further
discussed herein.
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Finally, we briefly discuss the surface structure for the buoyancy and surface heat
flux of the present setup. We note that there is quite some freedom on how to
implement the surface boundary conditions when using a SEB equation. In this
work, B is computed as a residual in the SEB, B = Q∗ − G, were G is evaluated
via the buoyancy at the surface (bsurf ). In turn, the surface buoyancy is computed
from fitting a log-linear profile to the local buoyancy field in the lowest two grid
points and evaluating the corresponding buoyancy at a height of z = z0,h (see the
appendix for details). Even though assuming a logarithmic profile seems to be a robust
choice, the main disadvantage of this approach is that the exact value of z0,h becomes
an important parameter to obtain bsurf . Alternatively, a method taken from the
TESSEL/HTESSEL land-surface model (Balsamo et al., 2009; Maronga and Gehrke-
Scharf, 2018) has successfully been employed in the LES study by Maronga and
Bosveld (2017). Here the surface temperature is computed as the temperature that
closes a (more extensive) SEB equation, where the individual terms are a function
of Tsurf . Remarkable, an inconsistency arises between the two methods: With the
present model formulation, the correlation between the instantaneous fluctuations in
the surface buoyancy field and the surface buoyancy flux (i.e. b′surf and B′ ) are
linked via Λ. This is because the regions with a warmer surface correspond to a heat
flux towards the soil (G), and vice versa. Hence,

B′ = −Λb′surf . (4.31)

Alternatively, the TESSEL/HTESSEL formulation computes the sensible heat flux
H according to a resistance law (i.e. bulk transfer model),

H = ρCp
1

r
(θsurf − θ1) , (4.32)

Where θsurf and θ1 are the potential temperature at the surface and the first model
level, respectively, and r is the aerodynamic resistance which is computed based on
a Monin-Obokhov-style closure. In practice, Eq. 4.32 causes a positive correlation
between the fluctuations in H and in θsurf , as warmer surfaces transport heat more
effectively towards the atmosphere (Van Tiggelen, 2018). Although this seems reason-
able, we argue that the formulation of Eq. 4.32 was designed for weather forecasting
models where the resolved spatial scales are much larger than individual convection
cells. Whereas the LES approach applies its closures for the variations within a convec-
tion cell, which are governed by different dynamics. Figure 4.11 shows an illustrative
representation for the convergence of warm air near the surface towards the base of a
convection cell. At the base, the surface temperature is at a local maximum and at
some height above the surface, this is where the heat flux is indeed large. However
it is not obvious how the fluctuations, albeit small, in temperature and sensible heat
flux at the surface relate to each other. With the advent of convection permitting
weather models (Prein et al., 2015) and the usage of LES for weather prediction (e.g.
Heinze et al., 2017), a proper description is needed. This may be based on the results
from a dedicated observational campaign and/or direct numerical simulations of the
near-surface heat transport that includes the heat exchange with the soil.
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Figure 4.11: A schematic overview of a rising thermal: The surface is heated by the
available energy (Q∗) and this causes a positive buoyancy flux (B), resulting in the
heating of the atmosphere. The resulting unstable stratification tends to organize a
flow where warm air convergences towards the the basis of a rising thermal plume.
These rising motions are directly related to the sensible heat flux (〈w′b′〉). At the
same time, the soil is heated (G).

4.5 Conclusions

In this work, we have presented a conceptual model for the diurnal cycle of the dry
atmospheric boundary layer (ABL). The corresponding forcing parameters can be de-
scribed with only five dimensionless groups and this provides a convenient framework
to study cause-and-effect relations for the effects of the various forcing mechanisms on
the ABL dynamics. Relevant scales for the boundary-layer height and atmospheric
buoyancy values are derived from the model. Furthermore, the model served as a
setup for numerical simulations. This aspect is illustrated for the atmospheric single-
column model and a large-eddy simulation techniques.

The results from the preliminary study that used a single-column model showed
that the difference between the weakly stable and very stable boundary layer are
dynamically retrieved for variations in the wind forcing. This is a key result of the
present work and shows that interesting physics can be present in a model that only
has a low degree of complexity and low number of input parameters. A large-eddy
simulation for a diurnal cycle with weak-wind forcing showed how, for this case, con-
vective structures grow and retain their statistically self-similar structure throughout
the day. Furthermore, the decay of residual turbulence in the late afternoon-to-
evening transition was quantified. The integrated vertical velocity variance appeared
to decay linearly with time.

Limitations of the present description were also identified. Due to the non-physical
nature of the lumped-parameter (Λ) to describe the response of the soil to varying
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surface temperatures, so-called history-effects are not modeled. These effects appear
to play an important role in the day-night transition. Furthermore, for the three-
dimensional simulations, the model predicts a heterogeneous surface buoyancy and
surface buoyancy flux. However, by design, deviations from the means of these two
quantities are perfectly anti correlated. This may not be accurate, but we argue it
remains unclear how to accurately model the soil response in an LES.

We conclude that the present conceptual model provides additional insight to
the classical (‘Stullian’) view of the diurnal cycle ((Stull, 1988)), as it enables to
define expressions for relevant physical scales that characterize the diurnal cycle. The
dimensionless description can be useful to generalize the dynamical behavior of the
ABL. Finally, we foresee that more in-depth numerical studies, based on the present
idealized forcings for the ABL, can help to better understand the interactions between
the most prominent processes that govern the diurnal cycle.

Appendix: Numerical model setups

In this section we discuss the details regarding the single-column model (SCM) and
Large-eddy simulation (LES) setups. The exact implementation of the described ap-
proaches are documented and made available online via:
http://www.basilisk.fr/sandbox/Antoonvh/READMEwww.basilisk.fr/sandbox/Antoonvh/
SCM: www.basilisk.fr/sandbox/Antoonvh/diurnalSCM.cdiurnalSCM.c
SCM+ soil: www.basilisk.fr/sandbox/Antoonvh/diurnalSCMsoil.cdiurnalSCMsoil.c
LES: www.basilisk.fr/sandbox/Antoonvh/diurnalLES.cdiurnalLES.c

The single-column model
The single-column model (SCM) solves an evolution equation for the vertical profiles
of the horizontal velocity components (u, v) and the buoyancy (b) according to a
parameterized description for turbulent mixing.

∂u

∂t
= fv +

∂

∂z

(
K
∂u

∂z

)
(4.33a)

∂v

∂t
= f (Ugeo − u) +

∂

∂z

(
K
∂v

∂z

)
(4.33b)

∂b

∂t
=

∂

∂z

(
K
∂b

∂z

)
, (4.33c)

where Ugeo is the geostrophic wind, f the Coriolis parameter (c.f. Eq. 4.1) and K
the eddy diffusivity. The latter is parameterized according to,

K = lV ∗, (4.34)

With l the Blackadar length scale and V ∗ a velocity scale due to shear and convection.
For l we write,

l = min [kz, 70 m] , (4.35)

with k = 0.4 the Von Kármán consant. For V ∗ we depart from the work of Van Hooft
et al. (2018a) as we do not only include the effects of shear, but also model mixing
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due to convective motions. We follow the work of (Troen and Mahrt, 1986),

V ∗ =

√
w2
c + (lSf(Ri))

2
, (4.36)

where wc is the local convective velocity scale that is parameterized using,

wc = 3Uc
z

Lc

(
1− z

Lc

)2

, (4.37)

where Lc and Uc are computed via Eqs. 4.29 and 4.30. The shear magnitude (S) is
evaluated as,

S2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

, (4.38)

and f(Ri) is the stability-dependent mixing function,

f(Ri) =

{
e−10Ri, forRi > 0√

1− 18Ri, forRi ≤ 0,
(4.39)

i.e. based on the gradient Richardson number (Ri),

Ri =
∂b/∂z

S2
. (4.40)

For the enhanced mixing experiment, we use the so-called âĂŸlong tailâĂŹ formula-
tion (Louis et al., 1982),

Enhanced : f(Ri > 0) =
1

1 + (10Ri (1 + 8Ri))
. (4.41)

The drag at the bottom surface is based on a near-neutral logarithmic law-of-the wall,
and we express the friction velocity (uτ ) as function of the bottom-grid-cell averaged
value of u (labeled u1).

uτ =
u1k

ln
(

∆
z0,m

) , (4.42)

which follows directly from integrating the law-of-the-wall over the lowest cell with
size ∆� z0,m. A logarithmic law of the wall is also applied for the buoyancy profile
in the lowest two grid cells. This results in an expression for bsurf ,

bsurf =
b2 − b1c

1− c , (4.43)

with b1 and b2 the cell averaged values of b in the lowest two cells. The value of c
results from an integration exercise,

c =
ln
(

4∆
z0,h

)
ln
(

∆
z0,h

) , (4.44)
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where we have assumed that the lowest two cells have a vertical size of ∆ and ∆� z0,h,
the roughness length for heat. The surface buoyancy flux B = Q∗(t)−G can then be
readily evaluated. The domain has a height of ztop = 3Lc and the mesh-element sizes
are adaptively varied down to a maximum resolution of ∆min = ztop/512 ≡ 6 m, based
on the estimated discretization error in the representation of the solution fields for
u, v, and b (Popinet, 2011b; Van Hooft et al., 2018a). The corresponding refinement-
criteria values are: ζu,v = Ugeo/20 and ζb = bdiurnal/50. These values resulted from a
convergence study and aim to strike an arbitrary balance between accuracy and the
number of grid cells (Van Hooft et al., 2018a).

The layered soil model

For the SCM run with a layered soil model (see Fig. 4.7), the flux (G = Gsoil) is
described via a conduction layer on top of a soil.

Gsoil = −A (bsurf − bsoil,top) , (4.45)

with A a conductivity. The buoyancy value at the soil top was found by linear
extrapolation of the top two cell-averaged buoyancy values (b−1 and b−2) in the fixed
and equidistant grid:

bsoil,top =
3

2
b−1 −

1

2
b−2. (4.46)

The layers have a buoyancy-equivalent-to-heat-capacity (ρcv)soil = 1000× (ρcp)air, a
diffusivity κsoil = 5× 10−5 m2s−1 and the conductivity A = 2× 10−3 ms−1.

The large-eddy simulation

The Large-eddy simulation (LES) solves the following equations for incompressible-
fluid motion via the (filtered) velocities (u = {u, v, w}), the modified pressure (p) and
the buoyancy (b),

∂u

∂t
+ u · ∇u = −∂p

∂x
+ fv +∇ · (K∇u) , (4.47a)

∂v

∂t
+ u · ∇v = −∂p

∂y
+ f (Ugeo − u) +∇ · (K∇v) , (4.47b)

∂w

∂t
+ u · ∇w = −∂p

∂z
+∇ · (K∇w) + b, (4.47c)

∇ · u = 0, (4.47d)
∂b

∂t
+ u · ∇b = ∇ · (K∇b) . (4.47e)

The eddy diffusivity (K) is evaluated according to the sub-grid scale model of Vreman
(2004) and at the bottom surface the law-of-the-wall sub-grid scale model is applied
to the horizontal momentum and buoyancy, identical to the SCM (c.f. Eqs. 4.42 and
4.43). Time integration is carried out via a classical fractional time-step algorithm,
for details see Castillo-Castellanos (2017); Popinet (2018). The spatial discretization
follows the finite-volume methodology, employing cubic-cells to mesh the cubic (3Lc×
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3Lc × 3Lc) domain using an octree grid structure. A damping layer in active in the
top half of the domain. The octree grid allows grid-cell sizes to vary by factors of
two (Popinet, 2011b). In order to resolve the largest eddies, those that dominate
the dynamics, the tree grid is locally refined and coarsened adaptive to the prevailing
situation. Each timestep, a multiresolution analysis is performed to estimate the local
deviation from a spatially linearly varying test function. This deviation is computed
for all velocity components (χu,v,w) and the buoyancy field (χb). Grid refinement is
carried out when the χ value exceeds the corresponding refinement criterion (χ > ζ),
with a maximum resolution corresponding to a 2563-cell equidistant grid. Cells may
be coarsened when χ < 2

3ζ, with the additional requirement that the coarse cell ‘fits’
the hierarchical grid structure (Van Hooft et al., 2018d). In order to properly take into
account the time-varying nature of the daytime convection, the refinement criteria are
dynamically evaluated as fractions of the Deardorff velocity and buoyancy fluctuation
scale (for B > 0),

ζu,v,w = max

[Uc
cu
, ζmin,u

]
, (4.48a)

ζb = max

[
(B2/Lc)

1/3

cb
, ζmin,b

]
. (4.48b)

Here cu and cb are dimensionless constants that may be tuned to balance accuracy (via
grid resolution) versus computational speed. We have chosen cu = 2 and cb = 1 and

furthermore, ζmin,u = Uc/10 and ζmin,b =
(B2

0/Lc)
1/3

5 . The authors of this work realize
that hinting at the accuracy of a simulation via ζ is unconventional compared to listing
a fixed mesh-element size (see Van Hooft et al., 2018a). Therefore, Fig. A1 displays
the horizontally-averaged effective resolution, presented via the corresponding number
of equidistant-grid cells. Furthermore, Fig. A2 presents a horizontal and vertical slice
of the grid at mid day (i.e. t/T = 6/24). It can be observed that the mesh elements
are dynamically focused on the surface layer, the entrainment and inversion layer
and towards the decay of convective turbulence. Furthermore, At the late stage of
the simulation, the internal waves in the free troposphere are the most dynamically
active process. The grid slices in Fig. A2 reveal that within the CBL, a high resolution
is employed to resolve the cores of the thermal plumes.
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captionA1: The evolution of the equidistant-grid equivalent number of cells as a
function of height (horizontally averaged).

Figure 4.12: A2: A vertical (a) and a horizontal slice (b) of the vertical velocity (color)
and the used adaptive-grid structure. These slices are taken over the full domain at
t/T = 6/24 and the horizontal slice is obtained at height z = Lc/3.
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Entr’acte 4: Error estimation for a Poisson solver

Poisson’s problem appears in many physical systems;

∇2f = s. (4.49)

Given s, one may numerically solve for f using Basilisk’s (www.basilisk.fr)
solver that applies a multigrid strategy to an iterative relaxation procedure (à
la Brandt; see Popinet, 2019: /src/poisson.h). For testing purposes we define a
two-dimensional not-too-trivial right-hand side;

s(x, y) = e−(x−2)2−( y
2 )

2

− e−( x+2.
2 )

2−(y−1)2 , (4.50)

that is know as the source term. The solution f(x, y) on a square domain (x, y ∈
{−10, 10}) is unique with the homogeneous Dirichlet boundary conditions at the
bottom and top boundaries (f = 0), and periodicity is prescribed in the left-right
direction. See top figure (a) for s and (b) for the structure of f .

The numerically obtained approximate solution for f (here named; F ) differs
from the analytical one (f) due to discretization errors that arise from the
discrete evaluation of the double derivatives. A total error norm LF is defined
as;

LF =
∑
‖εi‖∆2, (4.51)

where i is a cell-specific index and,

εi = Fi − fi, (4.52)

is the difference between the approximate cell-averaged solution and the exact
cell-averaged solution. We evaluate εi via fi taken from a superior resolution
computation. This is a more practical alternative to expressing fi (the cell
averaged value of f) analytically. LF is evaluated on various equidistant grids
with 16 to 512 cells in each direction (N) and the results are plotted below (left).

It appears that the solver is second-order accurate. From dimensional argu-
ments and based on the linearity of the system, we can then guess the form of
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the leading-order-error term:

ε ≈ ξf = (C1fxx + C2fyy + C3fxy) ∆2 +O(∆3). (4.53)

Since the Poisson equation is isotropic, we recognize,

ξf = (C1si + C3fxy,i) ∆2 +O(∆3). (4.54)

Next, a least-squares fitting procedure for C1 and C3 can be employed to find
the universal dimensionless constants for the particular solver: C1 ≈ −0.06, and
C3 ≈ 0. Such semi-empirical approach circumvents the need of a full analytical
elaboration of the numerical schemes. The fact that fxy does not appear as an
error source can be understood from the fact that the discrete equation for F
reads,

∇2F + c (fxxxx + fyyyy) ∆2 +O(∆3) = s, (4.55)

which is not polluted by the cross term (fxy). Hence we plot si against εi for
various levels in the bottom figure (right). Note that εi is scaled with ∆2 and
the on the x-axis, we add the the level-of-refinement used for the computation
to better delineate the results obtained from the various grids. The results show
that indeed value of the source term si is highly correlated with the obtained
error. This result could form the basis of a future, more rigorous (cf. Chapt.
2), problem-specific adaptation algorithm.

Apparently, the error-source estimate does not actually converge to a line on
higher-resolution grids as there remains some spread in the data-clouds’ ‘cigar
shape’. This is due to non-local errors that arise (Brandt, 1977), as locally-
generated errors propagate throughout the domain (see also /Antoonvh/non-
local-errors.c). Notice that this generic behavior is not retrieved when using
the popular Poisson test problem with the special property that the derivatives
of the solution are a fraction of the solution itself (e.g. this Gerris test case:
/tests/poisson.html).

For details, see: http://basilisk.fr/sandbox/Antoonvh/poisson_f.c
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There is always a well-known solution to every complex problem – neat, plausible,
and wrong.

Rephrased from H.L. Menken (1917)
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5 | A Note on Scalar-Gradient
Sharpening in the Stable At-
mospheric Boundary Layer

abstract

The scalar front generated by the horizontal self advection of a dipolar vortex through
a modest scalar gradient is investigated. This physical scenario is an idealization
of the emergence of strong temperature ramps in the stable atmospheric boundary
layer. The proposed mechanism is discussed and a two-dimensional analogy is studied
in depth using direct numerical simulation. More specifically, the scalar-gradient
sharpening is investigated as a function of the Reynolds number. It appears that the
process of gradient sharpening at large-eddy scales may be challenging for turbulence-
resolving methods applied to the stable-boundary-layer regime.

The fifth chapter is based on the article:
J.Antoon van Hooft
A Note on Scalar-Gradient Sharpening in the Stable Atmospheric Boundary Layer
Boundary-layer meteorology, 176, 149–156 (2020, accepted March 15th).
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Figure 5.1: The process of scalar-front generation by dipolar self advection at Re =
800 (see Sect. 5.2). a) A Lamb–Chaplygin dipolar vortex (vorticity field in colour,
with red, positive values and blue, negative) is initialized together with a passive
tracer field (black isolines). b) The vortex structure moves to the right through the
original scalar front, which is modest in magnitude. c) A much sharper scalar front
emerges at the vortex edge. The five isolines indicate 10%, 30%, 50%, 70%, and 90%
of the total horizontal scalar field inversion

5.1 Introduction

Coherent scalar-gradient sharping is typically not associated with turbulent flows. As
such, the emergence of sharp temperature fronts forms an intriguing aspect of the
stable atmospheric boundary layer (SBL). This note concerns the generation of such
fronts by dipolar-vortex structures as is illustrated in Fig. 5.1, with a visualization
of a two-dimensional (2D) direct numerical simulation (see Sect. 5.2 for details). A
dipolar vortex is initialized and advects itself towards a passive scalar front with a
moderate spatial gradient (black isolines). The flow structure propagates due to the
entrainment of the vortices by each other. As the system evolves, the isolines of the
scalar tracer field converge near the edge of the vorticity patches (see also, Eames and
Flór, 1998). Hereby the local gradients in the scalar field sharply increase and the
dissipation of the scalar-field variance is enhanced.

Scalar fronts in SBL flows have both been observed and modelled. A condi-
tionally-sampled analysis of large-eddy-simulation results by Sullivan et al. (2016)
indicates that sharp temperature fronts in the SBL coincide with the dynamics of
coherent vortex structures. A horizontal cross-section of such structures revealed
a dipolar structure, where two oppositely-signed patches of vorticity are located in
each other’s vicinity. In their study, such vortex columns are identified as the legs of
hairpin vortices commonly found in three-dimensional (3D) wall-bounded turbulent
flows (Hommema and Adrian, 2003; Adrian, 2007). Further, it is well known that
dipolar vortex structures can easily emerge in stratified flows, as demonstrated by the
laboratory experiments of Van Heijst and Flór (1989),Voropayev et al. (1991), and
Flór and Van Heijst (1994). Here, vertical motions are limited due to the stratifi-
cation that may suppress isotropic flow at large scales, which, for sufficiently strong
stratification, gives rise to quasi-2D flow. While the identification of coherent vor-
tex structures in the atmosphere from field observations is challenging, and typically
relies on indirect footprints of such structures (Cuxart et al., 2002; Barthlott et al.,
2007), indications of so-called ‘pancake vortex structures’ have been reported. Here,
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the characteristic motions of the air have a much larger horizontal extent compared
with the vertical flow scales (Galperin et al., 2007; Mahrt, 2009; Sun et al., 2015),
hinting at vertically-restricted dynamics.

Based on laboratory data, numerical results, and field observations, this study
concerns the aforementioned, heavily idealized scenario to describe the generation of
large-scale temperature fronts in SBL flows. The self-advective property of dipolar-
vortex structures makes them a prime suspect for the generation of scalar fronts.
In order to study this process in more depth, the problem is isolated from its me-
teorological context. It turns out that the scalar-field-gradient amplification in the
present surrogate scenario is only limited by the diffusivity of momentum and the
scalar quantity. A useful integral measure for the strength of a scalar front is the
integral of the squared absolute gradient, which is directly related to the dissipation
rate of the scalar-field variance. As such, this study concerns the amplification of the
scalar dissipation by dipolar self-advection as a function of the medium’s diffusivity.

Computer simulations need to idealize (or parametrize) the complexity of the at-
mosphere’s dynamics in order to reduce a physical problem to a numerical one. The
advantage is that this facilitates controlled studies on the interactions between the
relevant processes. Even though the present set-up focuses on a candidate building
block of the SBL structure, and has little direct resemblance to the full flow real-
ity, the author believes that the detailed analysis yields interesting results for the
atmospheric-boundary-layer community. I stress the need for future field observa-
tions of turbulence and temperature structures. With promising advancements in
observational technologies, such as distributed temperature sensing (Thomas et al.,
2012; Lapo et al., 2019) and thermal imaging (Grudzielanek and Cermak, 2015, 2018),
there is hope for revelations on this topic.

5.2 Numerical Set-up

In order to model the self advection of a 2D vortex structure, the steady dipolar-vortex
model for inviscid flow proposed by H Lamb and SA Chaplygin is employed (Meleshko
and Van Heijst, 1994), which describes a vortex structure with a circular radius of
size R that propagates without deformation through an otherwise irrotational fluid
at a flow speed U . The streamfunction ψ of the so-called Lamb–Chaplygin dipole,
moving in the positive x direction, in the co-moving frame of reference is given in
cylindrical coordinates (r, θ, see Fig. 5.2) by

ψ =

{−2UJ1(kr)
kJ0(kR) sin(θ), for r < R,

U
(
R2

r − r
)

sin(θ), for r ≥ R, (5.1)

where J0(x) and J1(x) are the zeroth and first Bessel function of the first kind for
a dummy variable x, respectively, and k is an inverse length scale with a value such
that kR = 3.83..., the first non-trivial zero of J1(x) (i.e. J1(3.83...) = 0).

As a model for a temperature field with an initially moderate horizontal front,
a passive tracer field s is used, which gradually changes from low to high values for
increasing x, according to

s = A tanh
(x
σ

)
, (5.2)
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Figure 5.2: The flow structure of the Lamb–Chaplygin dipolar vortex, showing the
streamlines (ψ = constant) evaluated in the co-moving frame of reference, with the
colours indicating the vorticity field (ω = ∇2ψ). The dashed line marks the separatrix,
a streamline that encloses the vortex structure. Arrow heads are drawn to indicate
the local flow direction and green circles annotate the locations of the stagnation
points (see text)

with A an amplitude-of-s scale, ‘tanh’ the hyperbolic tangent function, and σ is a
length scale of the initial scalar transition. Here, σ = 2R is chosen and the vortex
structure is initially placed at x = −5R, where s ≈ −A, such that it advects towards
the right-hand side (r.h.s.) of the initial scalar transition, where s ≈ A.

A generic feature of dipolar vortices is the so-called separatrix: a streamline in the
co-moving frame that encloses the vortex structure and, thereby, the dipole entrains
the fluid inside this region. Figure 5.2 depicts the circular separatrix (of radius R) of
the Lamb–Chaplygin dipole model and reveals the presence of two stagnation points;
two streamlines at ψ = 0 coincide. At these stagnation points, the scalar gradient
would increase to a singularity if it were not affected by the medium’s diffusivity. As
such, the flow is considered to be affected by the fluid’s viscosity ν, and the evolution of
the tracer field s is subject to the diffusivity κ. The following dimensionless parameters
can be constructed from the parameters R,U, ν and κ:

Re =
UR

ν
, (5.3)

known as the Reynolds number and,

Pr =
κ

ν
, (5.4)

known as the Prandtl number. The latter is set to unity (Pr = 1) and the evolution of
tracer-field properties is studied as a function of the Reynolds number Re. The range
of Re values is restricted to 50 ≤ Re ≤ 6400, which covers the limits from minimal
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gradient sharpening to the apparent asymptotic scaling for large Re values (see Sect.
5.3).

The set of equations for fluid motion (Navier–Stokes equations) together with the
advection–diffusion equation for the tracer field s, are solved in the frame of reference
that is co-moving with the initialized dipolar vortex (utrans = U). The evolution
of the system is solved until tend = 15RU−1 in a large square domain D with size
L2

0 = 25R× 25R. The vortex structure is initialized in the domain centre so that the
exact location of the domain’s boundaries has little influence on the results presented
herein. The bulk flow (i.e. utrans) is directed to the left direction inside a free-
slip channel with a no-flux condition for the field s at the walls. The left-hand-side
(l.h.s.) boundary facilitates outflow conditions by setting the normal derivative to
zero for the velocity components (ux, uy) and the tracer field s. Inflow occurs at the
r.h.s. boundary (x = xr) and applies Dirichlet conditions to ux(xr) = −utrans and
s(xr) = A tanh(xr+tutrans

σ ).
Numerically, the adaptive quadtree-grid solver for the Navier–Stokes equations

within the freely-available Basilisk code is employed (see www.basilisk.fr and Popinet,
2015)). The adaptive-grid approach is attractive as it consistently chooses a grid res-
olution based on the fidelity of the discrete representation of the relevant fields, lifting
this non-trivial burden from the model user. Further, it focuses the computational
resources towards the regions in space and time where they are most required. The
numerical schemes are identical to those used in earlier work on adaptive turbulence-
resolving simulations (Van Hooft et al., 2018c). The grid-element sizes are adaptively
refined and coarsened based on the representation of the second-order polynomial con-
tent in the scalar field. Refinement-criterion values for the scalar field (ζs = 0.02A)
and for the velocity-component fields (ζui

= 0.02U) resulted from a convergence study,
and aim to balance the accuracy of the results versus the required computational ef-
fort (see Van Hooft et al. 2018b for a detailed example). The maximum resolution
is not explicitly limited; the algorithm increased it to R∆−1

min = 655.36 for the run
where Re = 6400. This mesh-element size corresponds to that of a 16384× 16384-cell
equidistant grid.

The computer code is available at:
www.basilisk.fr/sandbox/Antoonvh/gradient-sharpening.c.

5.3 Results and Implications

Figure 5.1 depicts the global evolution of the flow for Re = 800. As the vortex
structure moves to the right, the isolines converge at the dipole’s separatrix where a
large absolute gradient in the tracer field is generated, and defined by

‖∇s‖ =

√(
∂s

∂x

)2

+

(
∂s

∂y

)2

. (5.5)

A global measure for the strength of the scalar front is the domain D integral of
‖∇s‖2

ε =

∫∫
D

‖∇s‖2dO. (5.6)
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Figure 5.3: (a) The evolution of the scalar-gradient-amplification measure A (see Eq.
5.8), and (b) the maximum value of A plotted against the Reynolds number Re on
logarithmic scales

In order to quantify the gradient amplification due to the dipole self-advection
with a measure that is insensitive to the exact domain size, we take two steps to
modify ε:
1) ε is ‘corrected’ with its initial value,

εDP = ε− εt=0. (5.7)

2) The amplification A is defined by scaling εDP with the initial ε-value per unit
length R in the y direction, giving

A =
εDP

RA
right∫
left

(
d

dx tanh
(
x
σ

))2
dx

≡ εDP
25

εt=0
, (5.8)

where the factor 25 is specific for the chosen length of the domain in the y direction
(L0R

−1 = 25). The time evolution of the amplification A(t) is plotted for various
Reynolds numbers in Fig. 5.3a. For each of the studied Reynolds numbers, there
exists a temporal maximum corresponding to the dipolar vortex being on the r.h.s.
of the transition at a time where the diffusivity of the scalar s has not yet started
to smooth the scalar gradient. As such, Fig. 5.3b plots the maximum value Amax

against Re, illustrating that for high Re values (say, Re > 800), Amax scales with Re
according to

Amax ∝ Re0.5, (5.9)

which follows the 2D Prandtl boundary-layer theory (Kundu et al., 2015, Chap. 10)
and is a consequence of the inviscid scaling of dissipation (Tennekes et al., 1972). For
the high Reynolds numbers, the flow field is not significantly affected by the viscosity,
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as the Lamb–Chaplygin model is a steady solution in the limit of inviscid flow. For
the lower Reynolds numbers (i.e. Re < 800), both the momentum and scalar fields
are affected by their respective diffusivities (ν and κ). Apparently, this results in
a stronger sensitivity to the value of Re compared with the high-Reynolds-number
regime.

We conclude from this idealized scenario that 2D dipolar-vortex columns form an
effective mechanism for the generation of scalar fronts.

Since temperature fronts are a relevant large-scale feature of the SBL, and indeed,
both observations (e.g., Balsley et al., 2003) and numerical simulations show that co-
herent vortex structures such as hairpins (Adrian, 2007) are the rule rather than the
exception in the SBL, the corresponding dynamics should be captured properly by nu-
merical models for the SBL. The results indicate that the severity of the temperature
front is sensitive to the value of the Reynolds number or the effective Reynolds num-
ber equivalent. For large-eddy simulation, a diffusive subgrid-scale closure is typically
invoked to model the flow at the unresolved scales, of which there are a large variety
of formulations, and as such, the modelling of flow problems as discussed herein is
likely to be sensitive to the details of the chosen closure.

The present example of the 2D surrogate system clearly shows that scalar fronts
(e.g., of temperature) may emerge that are much smaller in width than the eddy
size itself, and so this challenge was approached by studying a reduced-dimensional
problem with respect to the realistic SBL, and an adaptive grid was employed to focus
the computer resources. Figure 5.4 depicts the ‖∇s‖ field and the corresponding
adaptive-grid structure used for the computations at t = 10RU−1 for Re = 800.
For this dynamical system, a high resolution is required to capture the thin scalar
boundary layer at the vortex-structure edge.

Figure 5.4: A snapshot of the adaptive quadtree-grid structure and the ‖∇s‖ field at
t = 10RU−1 for the simulation with Re = 800. Blue and red colours indicate regions
with low and high values for the scalar gradient (‖∇s‖), respectively.
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Entr’acte 5: Flow past complex tree-like objects

The earth’s surface is not smooth. It is well known that its roughness im-
pacts on the exchange of momentum between the earth and atmosphere. For
winds over land, this exchange rate can effectively be characterized using the
so-called roughness-length concept. Such a length scale aims to represent the
effective drag over a sufficient statistically homogeneous surface (e.g. a forest,
grassland, urban, etc.). However, as numerical weather and research models are
alloted with ever-increasing resolutions, the effect of roughness transitions and
individual obstacles becomes important. The roughness-length model then fails
to accurately describe local momentum exchange. As such, a correct formulation
of the drag induced by individual roughness elements is desirable.

Trees are an abundant obstacle for the flow near the surface. Such foliage
exhibits a natural fractal-like branch structure, seemingly designed to maximize
the effectiveness of exchange processes. Those natural objects, even without
leaves (say in winter time), are notoriously difficult to characterize in both nu-
merical modeling and wind tunnel studies. Given the ‘fractal nature’ of tree-grid
structures, we were tempted to assess whether AMR methods would be effective
in resolving these complex flow problems. With the help of embedded bound-
aries (a Cut-cell method) it is possible to represent the flow past complex objects
on a grid with cubic cells. The top left figure shows a snapshot of the turbu-
lent structures (white λ2 isosurfaces) induced by the flow passing the tree. The
vorticity in the wake owes its existence to the detachment of a thin viscous
boundary layer at the surface of the branches. The top right figure shows a
zoom-in on a horizontal cross section, displaying the vertical vorticity field and
the accompanying adaptive-grid structure. The usage of the adaptive grid en-
ables to resolve the domain with a maximum resolution corresponding to 40963

equidistant cells using ‘only’ 240 cores of the Cartesius super computer facility
of Surf Sara.

It would be interesting to extend this research by studying a large variety
of tree-like structures. Perhaps, a law can then be formulated that links some
effective tree-complexity parameter with its momentum exchange efficiency. For
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this purpose, we have implemented a simple fractal tree model (as shown above),
whose parameters van be varied to construct different trees (see below). Further,
the space-colonization algorithm of Runions et al. (2007) has been implemented
to generate even more complex tree structures (bottom). Finally, it is possible to
use laser-scanning techniques and tree-reconstruction software to obtain a real
tree geometry (Du et al., 2019), that is compatible with the Basilisk software
(bottom).

Overview of the methods for this project:
http://www.basilisk.fr/sandbox/Antoonvh/tree/README

Three simple fractal tree examples. Color coded with the branch radius

A tree structure based on the space-colonization algorithm of Runions et al.
(2007) placed on a artificial surface (left) and a reconstruction of a tree in the
Mekel park on the Delft university campus using the software of Du et al.

(2019) (right). Color coding follows to the local curvature of the branch. Both
trees are represented as an embedded boundary on an octree grid. The

point-cloud data was kindly provided by Adriaan L. van Natijne.

109

http://www.basilisk.fr/sandbox/Antoonvh/tree/README


Not having conclusions is often overlooked as a conclusion.

Rephrased from I.G.S. van Hooijkdonk (2018) on decision making.
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6 | Conclusions and perspective

6.1 Summary of conclusions

In this work we have focused on modeling of the diurnal cycle of the atmospheric
boundary layer (ABL). In chapter 2 we motivated investigations on the potential
of adaptive numerical methods for turbulence-resolving simulations for research on
the diurnal cycle and in chapter 3 we extended this aspect to Reynolds-averaged-
Navier-Stokes-based simulations, as used in weather models. Further, in chapter 4 we
introduced a conceptual model to describe the most prominent processes that govern
the diurnal evolution of the ABL. Since each chapter comes with its own conclusion
section, we only briefly summarize here:

1. For cases with a high degree of scale separation in space and/or time, adap-
tive numerical methods form an interesting alternative to their static counter
parts for turbulence-resolving simulations of the ABL. We found that between
two state-of-the-art codes, there exists considerable overhead for the adaptive
method compared to static grids, such that the latter remains the more effective
option for the more homogeneous study cases. When increasing the resolution
in models, the adaptive method is the only approach where the scaling of the re-
quired computational effort inherits the fractal character of the modeled physics.
(Chapter 2). Furthermore, it should be realized that in the real atmosphere,
heterogeneity and unsteadiness are the rule, rather than the exception. Includ-
ing these effects more realistically in research models is likely to be favorable
for the adaptive approach.

2. A vertically adaptive grid is an effective method to accurately represent the
atmospheric boundary layer in weather models with a limited number of grid
cells. This particularly aids to numerical resolve part of the boundary layer
where turbulent length scales are small, such as in regions with temperature
inversions or near the surface. The present work (Chapter 3), only considered
a one-dimensional single-column model but the results motive to extend the
methods to a full three-dimensional weather model.

3. The last chapter focuses on a conceptual method to describe the main forcings of
the atmospheric boundary layer, such that a full diurnal cycle can be simulated
(rather than a preset daytime/nighttime case), while allowing for rudimentary
atmosphere surface coupling. The main forcing of a diurnal cycle can be sum-
marized with only five dimensionless parameters (Chapter 4). Even though
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the systems they describe are highly simplified, they appear to reproduce well
known and interesting dynamical aspects of the diurnal cycle. As such, the con-
cepts form an interesting framework for future studies on the diurnal cycle. In
particular for ‘academic cases’ with turbulence resolving models that typically
using simplified forcing conditions.

6.2 Perspectives

The author of this thesis cannot help but notice that the statements above are not very
‘concluding’. Rather, they motivate to continue research on the aforementioned topics.
Especially, the potential of adaptive grids for ABL research is huge and provides the
tools to numerically investigate new types of atmospheric problems. It is these types
of flows (with a high separation scales), that have not yet benefited from numerical
studies. On the other hand, the elephant-in-the-room question: "Do adaptive-grid
methods really work so well for ABL flows?", remains difficult to answer based on the
contents of this book alone.

Over the past years I have come to the realization that the contents of chapter 2 are
not sufficient to persuade the ABL-turbulence-resolving-model community to adopt
the adaptive-grid philosophy. That chapter aims to present a proof-of-concept. Prob-
ably the best proof would be to actually do original and interesting research using the
proposed methods. In fact, the answer on its true potential can only be given, when
its advantages and disadvantage are explored over the full spectrum, by scientists
from different backgrounds. From ‘hard-core’ numerical mathematicians, computer
and data scientists, technical engineers, physicists, meteorologists and weather fore-
casters. Indeed, it is not very different from the effort made historically in numerical
weather forecasts (see introduction). Only then a true overall assessment can be
made. As such, I am exited to have the possibility to extend upon the current work
in the coming two years by focusing on the development and application of adaptive
numerical methods to a larger variety of meteorological problems.

The planned developments consists of extending the Basilisk code to include more
solvers and functions that are of interest for the atmospheric boundary layer commu-
nity. Including:

1. Moist dynamics,

2. Idealized and realistic surface topographies,

3. Explicit Soil-heat transport,

4. Plant physics,

5. Extended sub-grid-scale-model options,

to mention some. To stimulate the practicality of the method, we hope to provide
an ‘off-the-shelf’ option for new researchers that wish to study problems with a high
degree of scale separation. Using these methods, topics of great importance and
interest can benefit from the adaptive-grid approach.
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Encore: The implementation cycle of scientific methods

1) Code up the methods
↪→ The code does not compile.

2) Some more coding to fix it
↪→ It compiles(!), but does not run.

3) Some more coding to fix it
↪→ It runs(!), but produces garbage output.

4) Some more coding to fix it
↪→ Output seems OK(!), but does not pass the selected quantitative tests.

5) Some more coding to fix it
↪→ It now passes the selected tests.

Your methods are ready to be used now!
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