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Abstract

Tunneling conductance spectroscopy in normal metal-superconductor junctions is an im-
portant tool for probing Andreev bound states in mesoscopic superconducting devices,
such as Majorana nanowires. In an ideal superconducting device, the subgap conduc-
tance obeys specific symmetry relations, due to particle-hole symmetry and unitarity of
the scattering matrix. However, experimental data often exhibits deviations from these
symmetries or even their explicit breakdown. In this work, we identify a mechanism
that leads to conductance asymmetries without quasiparticle poisoning. In particular,
we investigate the effects of finite bias and include the voltage dependence in the tunnel
barrier transparency, finding significant conductance asymmetries for realistic device pa-
rameters. It is important to identify the physical origin of conductance asymmetries: in
contrast to other possible mechanisms such as quasiparticle poisoning, finite-bias effects
are not detrimental to the performance of a topological qubit. To that end we identify
features that can be used to experimentally determine whether finite-bias effects are the
source of conductance asymmetries.
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1 Introduction

Hybrid nanostructures combining spin-orbit coupled semiconducting nanowires and conven-
tional superconductivity are a promising candidate to host Majorana bound states (MBS) [1–
16]. Much of the ongoing experimental work on these devices relies on two-terminal tunnel
spectroscopy in which the nanowires are coupled to a normal reservoir through an electrostatic
tunnel barrier. In the tunneling limit the conductance through the normal-superconductor
(NS) junction is proportional to the local density of states at the edge of the nanowire. This
allows to measure local signatures of MBS such as a resonant zero-bias conductance peak [17–
27]. Additionally, a three-terminal setup allows to probe nonlocal conductances, which can
provide information about the bulk topology and the BCS charge of bound states [28–30].

A common theoretical framework for calculating the conductance in NS junctions is the
scattering matrix (S) method under the linear response approximation [31]. In the pres-
ence of particle-hole symmetry and unitarity of the S matrix, the linear response conductance
G obeys several symmetry relations at voltages below the superconducting gap ∆. In two-
terminal setups, for example, the conductance is symmetric about the zero bias voltage point,
i.e., G(V ) = G(−V ) for |V | < ∆/e [32, 33]. In three-terminal setups, it has recently been
shown that the anti-symmetric components of the local and nonlocal conductance matrices
are equal [30]. However, in experiments these symmetry relations are only observed approx-
imately [34–39]. So far, possible mechanisms for the observed deviations that have been
discussed in the literature always rely on coupling to a reservoir of quasiparticles, for example
through dissipa tion due to a residual density of states in the parent superconductor or addi-
tional low-energy states [33,40], or inelastic relaxation processes connecting subgap states to
the above-gap continuum [41].

In this work we go beyond the linear response regime and study how finite-bias effects
break conductance symmetry relations, without the need for quasiparticle poisoning. In par-
ticular, we consider the dependence of the tunnel barrier profile and transparency on the
applied bias voltage in the normal lead [32, 42, 43]. In two-terminal setups, we find that a
voltage-dependent tunnel barrier introduces asymmetry in both the width and height of sub-
gap conductance peaks. Moreover, we study the conductance asymmetry as a function of
system parameters, and show that it is enhanced by mirror asymmetric barrier shapes. We
also identify general features that can be used to experimentally determine whether finite-
bias effects are the main source of conductance asymmetry. Finally, we turn our attention
to three-terminal setups and observe that finite-bias effects break conductance symmetries in
accordance with recent experimental work [39].

2 Finite-bias conductance in a mesoscopic superconducting sys-
tem

The formalism for computing the nonlinear conductance in a mesoscopic superconducting
device has been derived in [32]. We give a concise summary here to point out the important
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Figure 1: (a) Schematic band diagram of an NS tunnel junction at zero bias voltage.
(b) Calculating conductance through the junction in the linear response limit. The
voltage dependence of the scattering region is neglected and therefore the scattering
matrix depends solely on the energy of incoming modes. (c) Finite-bias conductance
includes changes in the electrostatic profile of the junction due to the applied voltage,
e.g. a positive shift of the chemical potential near the normal lead, along with a linear
voltage drop across the tunnel barrier. As a result the scattering matrix depends on
both the energy of the incoming modes and the applied bias voltage.

aspects for our study.
Consider a scattering region attached to a normal lead and a superconducting lead shown

schematically in Fig. 1(a). Using the Landauer-Buttiker formalism [31,44]we write the current
in the normal lead as a sum of three contributions

I (e) = −
e
h

∫

dE f (E + eVbias)[N(E, Vbias)− Ree(E, Vbias)] , (1)

I (h) =
e
h

∫

dE f (E − eVbias)Reh(E, Vbias)

=
e
h

∫

dE[1− f (E + eVbias)]Rhe(E, Vbias) , (2)

I (sc) =
e
h

∫

dE f (E)Tes(E, Vbias) , (3)

where e = |e| and we have set the chemical potential of the superconductor to zero. I (e) (I (h))
is the current carried by electrons (holes), I (sc) the current originating from quasiparticles in
the superconducting lead, and

f (E) =
1

1+ exp
�

E−µ
kB T

� , (4)

is the Fermi-Dirac distribution. N is the number of electron modes in the normal lead, Ree
the total electron reflection amplitude, Reh the total Andreev reflection amplitude and Tes
the transmission amplitude from the superconductor above-gap modes. In contrast with the
conductance obtained in the linear response approximation, the finite-bias conductance takes
into account changes in the profile of the tunnel barrier due to the applied bias voltage Vbias
(Fig. 1(c)). Therefore Ree, Reh and Tes depend not only on the energy of incoming particles E,
but also on Vbias. Unitarity of the scattering matrix implies that

N(E, Vbias) = Ree(E, Vbias) + Reh(E, Vbias) + Tes(E, Vbias) . (5)

3
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Hence

I (sc) =
e
h

∫

dE f (E)[N(E, Vbias)− Ree(E, Vbias)− Reh(E, Vbias)]

=
e
h

∫

dE f (E)[N(E, Vbias)− Ree(E, Vbias)]−
e
h

∫

dE[1− f (E)]Rhe(E, Vbias)

=
e
h

∫

dE f (E)[N(E, Vbias)− Ree(E, Vbias) + Rhe(E, Vbias)]

−
e
h

∫

dE Rhe(E, Vbias) . (6)

The total current is then given by

I =
e
h

∫

dE[ f (E)− f (E + eVbias)][N(E, Vbias)− Ree(E, Vbias) + Rhe(E, Vbias)] . (7)

In the zero-temperature limit the conductance reduces to [32]

G =
dI

dVbias
=

e2

h
(N(−eVbias, Vbias)− Ree(−eVbias, Vbias) + Rhe(−eVbias, Vbias))

−
e
h

∫ −eVbias

0

dE
�

∂ Rhe(E, Vbias)
∂ V

−
∂ Ree(E, Vbias)

∂ V

�

. (8)

Equation (8) is the most general form of finite-bias conductance. It does not assume any
specific electrostatic profile of the junction and is also valid for multi-terminal setups. When
the dependence of the NS junction on the applied bias voltage is ignored (Fig. 1(b)), that is
Ri j(E, Vbias)→ Ri j(E, 0), Eq. (8) reduces to the well-known expression for NS conductance in
the linear response limit

Glin(Vbias) =
2e2

h
(N − Ree(−eVbias) + Rhe(−eVbias)) , (9)

which satisfies the symmetry relation G(Vbias) = G(−Vbias) at voltages below the superconduct-
ing gap [32,33].

3 Finite-bias local conductance into a single Andreev bound state

To obtain a qualitative understanding of the influence of finite-bias effects, we first consider a
toy model of an NS junction where the nanowire hosts a single Andreev bound state:

H = E0

�

1 0
0 −1

�

. (10)

Below the superconducting gap, Eq. (8) reduces to

G
2G0

= Rhe(−eVbias, Vbias)−
1
e

∫ −eVbias

0

dE
∂ Rhe(E, Vbias)

∂ V
, (11)

where G0 =
e2

h is the conductance quantum. Rhe(E, V ) can be obtained by taking the trace
over the appropriate block of the scattering matrix, which we compute through the Mahaux-
Weidenmüller formula

S = 1− 2πW †(E −H +πWW †)−1W , (12)

4
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Figure 2: Two-terminal NS conductance into a single Andreev bound state with a
scattering region sensitive to the applied bias voltage. In the linear response ap-
proximation the voltage dependence of the scattering region is neglected, resulting
in particle-hole symmetric conductance profiles (orange dashed lines). When a volt-
age dependence is included in the electron/hole tunneling amplitude te/h (red/green
solid lines), the corresponding conductance profiles (blue solid lines) show different
heights and widths at positive and negative bias voltage.

where

W =

�

ute(E, V ) v∗ th(E, V )∗

vte(E, V ) −u∗ th(E, V )∗

�

, (13)

parameterizes the coupling of the bound states to the lead modes. For notational convenience
we drop the E and V dependencies of te/h below, but their presence should be kept in mind.

We start by computing the first term in Eq. (11). The Andreev reflection amplitude is given
by

16π2E2
0 |uvte th|2·

�

(E2 − E2
0)

2 +π2[2EE0(|u|2 − |v|2)(|te|4 − |th|4)

−4E2
0 |uv|2(|te|2 − |th|2)2 + (E2 + E2

0)(|te|4 + |th|4)]
	−1

,
(14)

where we assume the junction is in the tunneling limit so that te/h � E0 and we can safely
discard terms of order higher than O(t4

e/h). In the vicinity of E = E0 we obtain the approximate
expression

Rhe(−eVbias, Vbias)≈
4π2|te thuv|2

(−eVbias − E0)
2 +π2 (|teu|2 + |thv|2)2

. (15)

Hence, the first term in Eq. (11) gives a Lorentzian conductance profile with a resonance at
|V |= E0/e. The height and full-width half maximums of the resonances are given by

Gmax

2G0
=

4|te thuv|2

(|teu|2 + |thv|2)2
, (16)

FWHM=
2π
e

�

|teu|2 + |thv|2
�

. (17)

The expressions for V = −E0/e can be readily obtained through the transformation u ↔ v.
In the linear response regime we have te/h(E, Vbias) = te/h(E, 0). Particle-hole symmetry gives
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the constraint te(E, 0) = th(−E, 0) and thus the subgap conductance is also particle-hole sym-
metric. However, when finite-bias effects are included, te/h(±E0,±E0/e) are not constrained
to be equal, resulting in particle-hole asymmetric conductance.

The contribution of the second term in Eq. (11) is (see App. A for the full calculation)

−
2e
h

∫ −eVbias

0

dE
∂ Rhe

∂ V
=



Aarctan
�

2(E − E0)
FWHM

�

+ B
E − E0

�FWHM
2

�2
+ (E − E0)2





−eVbias

0

, (18)

where

A= −
Gmax · FWHM

2G0|te th|
∂ |te th|
∂ V

�

�

�

�E=E0
V=−E0/e

+
π2Gmax

2G0e2 · FWHM

∂
�

|ute|2 + |vth|2
�2

∂ V

�

�

�

�E=E0
V=−E0/e

(19)

B =
π2Gmax

2G0e2 · FWHM

∂
�

|ute|2 + |vth|2
�2

∂ V

�

�

�

�E=E0
V=−E0/e

. (20)

Both terms in Eq. (18) vary on the scale of FWHM and therefore do not change the width of the
Lorentzian peaks in Eq. (15). However, they change the height of Eq. (16) by≈ −πA/2−B/E0.

To compute the conductance of the toy model, we choose u = v = 1/
p

2 and expand the
tunnel rates about E = Vbias = 0 up to second order:

te/h(−eVbias, Vbias)≈ te,h(0,0) + ae/hVbias + be/hV 2
bias . (21)

The remaining parameters can be found in the accompanying code for the manuscript [45]. We
show the resulting finite-bias conductance profile along with the corresponding linear response
conductance in Fig. 2. In accordance with the analytical results in Eqs. (16) and (17), the
finite-bias conductance peaks exhibit height and width asymmetry. Moreover, we observe that
the finite-bias conductance has a region with negative values, which is due to the presence of
the integral term. In contrast, the linear response conductance must always be positive.

4 Tight binding simulations

4.1 Finite-bias local conductance in a normal/superconductor geometry

To investigate finite-bias effects at a more realistic level, we consider a one-dimensional
semiconductor-superconductor nanowire coupled to a normal lead. The Bogoliubov-de Gennes
Hamiltonian for the NS junction can be written as

H =

�

p2
x

2meff
+αpxσy −µ(x) + V (x , Vbias)

�

τz + VZσx +∆(x)τx , (22)

where σi and τi are Pauli matrices acting in spin and Nambu space, px = −iħhd/d x , meff the
effective mass, µ the chemical potential, V the onsite electrostatic potential, α the strength of
Rashba spin-orbit interaction, VZ the Zeeman spin splitting, and ∆ the superconducting gap.
In particular, the chemical potential is a piecewise constant function of x as

µ(x) =

¨

µlead, x < 0

µwire, x > 0 ,
(23)
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Figure 3: NS junctions with a bias-dependent tunnel barrier and a quantum dot
potential. In the top figures we show a square barrier with at (a) zero bias voltage,
and (b) negative bias voltage. In the bottom figures we show a triangular barrier at
(c) zero bias voltage, and (d) at negative bias voltage (blue curve) and positive bias
voltage (orange curve). The shaded regions indicate the effective barrier seen by an
incoming electron at E = −eVbias. When the barrier is triangular shaped, the effective
barrier at positive voltage is smaller than at negative voltage, thus amplifying particle-
hole asymmetry in conductance.

and the superconducting gap ∆(x) is finite only inside the nanowire.
The onsite potential has two terms V (x , Vbias) = Vbarrier(x , Vbias) + Vdot(x) illustrated in

Fig. 3 (a)-(b). The first term corresponds to the electrostatic potential induced by the tunnel
gate, which we model as a square barrier at equilibrium. A detailed calculation of the transport
properties at finite bias requires a non-equilibrium approach [46]. However, in the tunneling
regime the system is well approximated by the following phenomelogical model. When a bias
is applied, the band bottom of the normal lead is shifted by eVbias and voltage drops linearly
across the barrier [42,47]:

Vbarrier(x) =











−eVbias, x < 0

eVbarrier − eVbias(1−
x
d ), 0≤ x < d

0, x > d.

(24)

Because the chemical potential of the lead also shifts by −eVbias when a voltage is applied,
this potential keeps the charge density in the system constant. The second term is a smooth
quantum dot potential [40]

Vdot(x) =

¨

Vdot cos
�

3(x−d)
2Ldot

�

, d < x < d + Ldot

0, elsewhere,
(25)

which induces a subgap Andreev bound state. In the following calculations and discussions
we focus on how finite-bias effects cause particle-hole asymmetry for the Andreev bound state-
induced resonance peaks at positive and negative bias voltages.

We apply the finite difference approximation to the continuum Hamiltonian (22) with a
lattice constant of 1 nm, and numerically study the resulting tight-binding Hamiltonian using
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Figure 4: Two-terminal conductance as a function of Zeeman field and bias voltage
in a proximitized nanowire with ∆ = 0.25 meV. The system in the top panels has a
square barrier and in bottom panels a triangular barrier. The linear response conduc-
tance ((a) and (d)) is particle-hole symmetric below the induced gap (dashed lines).
In contrast, the finite-bias conductance ((b) and (e)) shows significant particle-hole
asymmetry below the gap which we plot explicitly in (c) and (f).

the Kwant software package [48]. Unless stated otherwise, the Hamiltonian parameters are
meff = 0.02me, ∆ = 0.25 meV, α = 50 meV nm, Vdot = 2.2 meV, µwire = 0.3 meV, µlead = 0.55
meV and the geometry parameters are d = 80 nm, Ldot = 180 nm. The source code and data
used to produce the figures in this work are available in [45].

In Fig. 4(a) and (b) we show the linear response and finite-bias conductances as a function
of bias voltage and Zeeman field strength. The Andreev bound state induces a resonance peak
below the superconducting gap (white dashed line). Additionally, we plot the conductance
asymmetry in Fig. 4(c). The conductance peaks display significant asymmetry in both their
width and height. Furthermore, the magnitude of the asymmetry decreases as the peaks get
closer to zero energy. This is a general feature of bias-induced asymmetry: states at higher en-
ergy have more asymmetry due to the larger effect on the electrostatic environments from the
applied bias voltage. As a result, we expect that finite-bias effects will become more prominent
as experiments begin to probe materials with higher superconducting gaps [49]. To illustrate
this we consider a second nanowire with ∆ = µwire = 1 meV, µlead = 3 meV, Vdot = 2.2 meV
and Ldot = 50 nm. Now the energy of the Andreev bound state is about four times larger
than the previous case. The corresponding two-terminal conductance in Fig. 5(a)-(c) shows
significantly more asymmetry than in the system of Fig. 4.

Besides the energy of the Andreev bound states, the transparency of the tunnel barrier
also influences the conductance asymmetry. In Fig. 6 we plot the peak height asymmetries
as a function of the barrier width and height of a square barrier for a system with ∆ = 0.25
meV and VZ = 0. As the barrier height and width are increased, the relative importance of the
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Figure 5: Two-terminal conductance as a function of Zeeman field and bias voltage in
a proximitized nanowire with ∆= 1 meV. The system in the top panels has a square
barrier (Vbarrier = 0.8 meV), and in bottom panels a triangular barrier (Vbarrier = 1.6
meV). (a) and (d) show the linear response conductance, (b) and (e) the finite-bias
conductance and (c) and (d) the asymmetry in finite-bias conductance.

1.0 1.5 2.0 2.5 3.0
Vbarrier (meV)

20

25

30

35

40

45

50

55

60

d
(n

m
)

G(V0)−G(−V0)
G(V0)

0.04

0.06

0.08

Figure 6: Normalized height asymmetry of conductance peaks in proximitized
nanowire with ∆ = 0.25 meV and VZ = 0 for varying barrier width d and height
Vbarrier. The asymmetry vanishes as either the system is tuned deeper into the tun-
neling regime.

finite-bias modifications to the Hamiltonian decreases. Therefore the asymmetry decreases
monotonically with both parameters, that is as the system is tuned deeper into the tunnel-
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Figure 7: (a) Normalized finite-bias and linear-response conductances of systems
with a square barrier and triangular barrier at VZ = 0 and (a) ∆ = 0.25 meV and
(b) ∆= 1 meV (blue lines). Adding finite-bias effects breaks particle-hole symmetry
of the linear response conductance (green dashed lines). A triangular tunnel barrier
amplifies the width asymmetry of the peaks (though their height does not change sig-
nificantly) because the effective barrier at positive voltages is smaller than at negative
voltages.

ing regime. This behaviour is independent of the details of the barrier and thus is useful in
determining finite-bias effects are the source of conductance asymmetry.

While the conductance asymmetry displays the general trends outlined above, its precise
magnitude depends on the microscopic details of the scattering region, in particular in the
barrier transmission probabilities at ±Vbias. Within the WKB approximation the normal-state
transmission probability is given by

T (E, Vbias)∝ exp

�

−
2
h

∫

barrier

Æ

2m(E − V (x , Vbias)

�

. (26)

The conductance through the barrier is therefore exponentially sensitive to the area of the
barrier. In the case of a square barrier, these WKB areas are identical for ±Vbias due to the
mirror symmetry of the barrier shape. However, if mirror symmetry in the barrier is broken,
the effective WKB areas at negative and positive voltages become different, which further
enhances the conductance asymmetry. As an example, we consider a system with a triangular
barrier of height Vbarrier = 1.3 meV, as illustrated in Fig. 3 (c)-(d)). In Fig. 4(c) we show the
resulting conductance and see that it has larger particle-hole asymmetry than a system with a
square barrier. This is more easily seen in Fig. 7(a)-(b) where we plot one-dimensional cuts
of the conductance at VZ = 0.

4.2 Finite-bias nonlocal conductance in a three-terminal geometry

In three-terminal devices with two normal leads coupled to a grounded superconductor the
conductance is given by

G =

�

GLL GLR
GRL GRR

�

=

 

∂ IL
∂ VL

∂ IL
∂ VR

∂ IR
∂ VL

∂ IR
∂ VR

!

. (27)

Because electrons can tunnel across the normal leads, the reflection matrix is not unitary below
the gap. Hence the local conductance GLL is generally not particle-hole symmetric even in the
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Figure 8: Schematic three-terminal superconducting device with bias dependent tun-
nel barriers and quantum dots.
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Figure 9: Anti-symmetric components of the (a) local conductance and (b) nonlocal
conductance as a function of chemical potential and bias voltage. In panel (c) we
show a one-dimensional cut of this data at fixed chemical potential (black dashed
lines).

linear response limit.
However, a recent theoretical work showed that the anti-symmetric components of local

an nonlocal conductances are related by [30]

Gasym
LL = −Gasym

LR , (28)

where

Gasym
αβ

= Gαβ(Vbias)− Gαβ(−Vbias) . (29)

Follow-up experimental data observed excellent agreement with this symmetry relation at
low-bias voltages, but only qualitative agreement at high bias voltages [39]. Additionally Gasym

LL
and Gasym

LR exhibited different behaviours near crossings of subgap states: while the crossings
are avoided in Gasym

LL , they are unavoided in Gasym
LR .

To investigate whether finite-bias effects can explain these discrepancies, we consider a
finite-length semiconductor-superconductor nanowire with length Lsc = 300 nm. On the right
side of the device, we add another dot potential with Lleft

dot = Lright
dot = 350 nm, and attach

a second normal lead, as shown schematically in Fig. 8. When a bias is applied on the left
(right) side, we drop the voltage across the left (right) barrier as specified in Eq.(24). Both
the left and right potential wells host subgap Andreev bound states whose energies oscillate
with chemical potential and display avoided crossings. However, due to the oscillatory nature
of the wavefunction there are points in the parameter space in which the energy splitting of
the states vanishes, similar to Majorana oscillations [50]. To avoid this and obtain spectra that
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mimic those in [39]we break mirror symmetry and set V left
dot = 2·V right

dot = 1 meV. The remaining
Hamiltonian parameters are the same as in Sec. 4.

In Fig. 9(a)-(b) we show the asymmetric components of the local and nonlocal conduc-
tances as a function of chemical potential and voltage, and in Fig. 9(c) we show a line cut
at a fixed value of chemical potential. In accordance with the experimental results of [39],
we observe Gasym

LL and Gasym
LR (orange and blue solid lines in Fig. 7(b)) show similar profiles

qualitatively in general, but at the quantitative level, the deviation between them increases
with the applied bias voltage, because the finite-bias effect is stronger at larger bias voltage as
discussed in the previous sections. In contrast, the conductance components calculated under
the linear response approximation are always equal to each other over the whole range of bias
voltage (dashed line in Fig. 9(c)). However, our model does not capture the qualitative differ-
ences between Gasym

LL and Gasym
LR near avoided crossings. While this does not rule out finite-bias

effects as the source of these discrepancies, it is also possible that they are caused by another
physical mechanism.

5 Summary and discussion

In summary, we have shown that finite-bias effects in NS and NSN junctions can lead to signif-
icant deviations from linear response symmetries of the conductance matrix. In two-terminal
NS junctions, the particle-hole symmetry between the conductance profiles at positive and
negative voltages is broken, while for three-terminal NSN junctions, the equality between the
asymmetric components of the local and nonlocal conductances no longer holds.

Although the exact values of the symmetry breaking depends on the details of the junction
(e.g., the shape of the tunnel barrier and the magnitude of the superconducting gap), we find
the asymmetry obeys two general qualitative trends. First, it decreases as the system is tuned
deeper into the tunneling regime. Second, it grows with the applied bias voltage. As a result,
finite-bias effects are more important in hybrid nanowires with a larger SC gap.

An important aspect about conductance asymmetries due to finite-bias effects is that they
are not indicative of quasi-particle poisoning, unlike previously discussed mechanisms such
as dissipation. Very recently, coupling of tunneling electrons to a phonon bath has also been
predicted to give conductance asymmetries without quasiparticle poisoning [51]. Though orig-
inating from different physics, both mechanisms thus are not detrimental to Majorana qubits.
Therefore, determining the source of conductance asymmetries is a helpful tool to predict
qubit performance. The aforementioned trends allow to experimentally probe whether con-
ductance asymmetries stem from finite-bias effects. As an example, if particle-hole symmetry
of the conductance profiles in a two-terminal device is broken even when the bias voltage
goes to zero [34,36,38], it is very likely that there are other mechanisms causing the symme-
try breaking.

Finally, our treatment of the bias voltage dependence of the tunnel region is phenomeno-
logical. Future work could include computing finite-bias conductances with more realistic elec-
trostatic potentials obtained by solving the self-consistent Schrödinger-Poisson equations [43,
52–54]. However, we expect that this will not change our qualitative findings.

Acknowledgements

We are grateful to Anton Akhmerov for suggesting using the Mahaux-Weidenmüller formula
to obtain analytical expressions for the conductance asymmetry, and thank J. Sau, D. Pikulin
and T. Karzig for useful discussions.

12

https://scipost.org
https://scipost.org/SciPostPhys.10.2.037


SciPost Phys. 10, 037 (2021)

Author contributions M.W. formulated the project goal and oversaw the project with C.X.L.
A.M. carried out the numerics with input from T.R. and P.R., and the analytical calculations
with input from C.X.L. A.M. wrote the manuscript with input from the other authors.

Funding information This work was supported by the Netherlands Organization for Scien-
tific Research (NWO/OCW), as part of the Frontiers of Nanoscience program, an NWO VIDI
grant 016.Vidi.189.180, an ERC Starting Grant STATOPINS 638760, and a subsidy for top con-
sortia for knowledge and innovation (TKl toeslag) by the Dutch ministry of economic affairs
and Microsoft research.

A Calculating the integral term of the conductance of a single An-
dreev bound state
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Figure 10: Blue line: integral term of the conductance for the system shown in
Fig. 10(a) at VZ = 0. Orange dots: fit to integral term expression obtained from
two-level toy model.

To compute the integral term we start from the approximate form of Eq. (15). The deriva-
tive of Rhe with respect to V is

∂ Rhe(E, V )
∂ V

= Rhe(E, V )

(

2
|te th|

∂ |te th|
∂ V

−
π2 ∂

∂ V

�

|ute|2 + |vth|2
�2

(E − E0)2 +π2 (|ute|2 + |vth|2)
2

)

. (30)

Because the integrand is sharply peaked at E0 and we are interested in corrections near
eVbias = E0 we approximate all derivatives of the tunneling rates as constant and evaluated at
E, eVbias = E0. The contribution of the first term is then

−
2

e|te th|
∂ |te th|
∂ V

�

�

�

�E=E0
V=−E0/e

∫ −eVbias

0

dE
4π2|uvte th|2

(E − E0)2 +π2 (|ute|2 + |vth|2)
2 =

= −
Gmax · FWHM

2G0|te th|
∂ |te th|
∂ V

�

�

�

�E=E0
V=−E0/e

�

arctan
�

2(E − E0)
e · FWHM

��−eVbias

0
, (31)
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where we used the standard Lorentzian integral
∫

d x a
(x−x0)2+b2 =

a
b arctan

� x−x0
b

�

. The second
term gives

=
π2

e
∂

∂ V

�

|ute|2 + |vth|2
�2
�

�

�

�E=E0
V=−E0/e

∫ −eVbias

0

dE
4π2|uvte th|2

�

(E − E0)2 +π2 (|ute|2 + |vth|2)
2�2
=

=
2π|uvte th|2

e (|ute|2 + |vth|2)
3

∂
�

|ute|2 + |vth|2
�2

∂ V

�

�

�

�E=E0
V=−E0/e

×

�

π
�

|ute|2 + |vth|2
�

(E − E0)

(π (|ute|2 + |vth|2))
2 + (E − E0)2

+ arctan
�

2(E − E0)
e · FWHM

�

�−eVbias

0

=

=
π2Gmax

2G0e2 · FWHM

∂
�

|ute|2 + |vth|2
�2

∂ V

�

�

�

�E=E0
V=−E0/e

×





e·FWHM
2 (E − E0)

� e·FWHM
2

�2
+ (E − E0)2

+ arctan
�

2(E − E0)
e · FWHM

�





−eVbias

0

. (32)

Where we made use of the standard integral
∫

d x a
((x−x0)2+b2)2 =

a
2b3

¦

b(x−x0)
b2+(x−x0)2

+ arctan
� x−x0

b

�

©

. To test how well this expression works,
we compute the integral term of the system shown in Fig. 4(a) at VZ = 0 meV and fit it to

Gint =











�

Aarctan
�

2(E−E0)
FWHM

�

+ B E−E0

( FWHM
2 )

2
+(E−E0)2

�−eVbias

0
, Vbias < 0

�

C arctan
�

2(E+E0)
FWHM

�

+ D E+E0

( FWHM
2 )

2
+(E+E0)2

�−eVbias

0
, Vbias > 0

, (33)

where A, B, C , D are free parameters and E0 are FHWM are measured from the conductance
profile. The resulting fit is shown in Fig. 10.
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