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Chapter 1

Introduction

1.1 Background

In many countries, railway systems play a critical role in carrying passengers and
cargo. Even though rail is more energy efficient than most other transport modes,
the enhancement of energy efficiency is an important issue for railways to reduce their
contributions to climate change further as well as to save and enhance the competition
advantages involved.

One promising means of improving energy efficiency is to optimize train operations
by using energy-efficient driving strategies. Even with a small amount of energy saved
by each train operation, the total energy costs saved by the whole railway network
are huge. Research on finding the optimal energy-efficient driving strategies has been
done since 1960s. The main focus has been to use optimal control theory to find the
optimal trajectory (speed-distance curves and time-distance curves along the train’s
journey), which assure a safe, on-time, comfortable and energy-saving train operation
(Howlett and Pudney, 1995; Albrecht et al., 2016a,b; Scheepmaker et al., 2017). The
process of finding the optimal trajectory is called train trajectory optimization (TTO).
The optimized trajectory is the foundation for the Automatic Train Operation (ATO)
systems to control train movements, as well as the train Driver Advisory Systems
(DASs) to provide driving advice, such as advised speeds and control regimes, which
helps train drivers to drive the train in a safe and efficient manner.

The ideal train movement is to follow its pre-designed timetable. It is unavoidable that
unexpected events may cause the train to deviate from its timetable. In that case, the
delayed train should get back to its schedule as soon as possible to avoid train conflicts
and delay propagation. However, it is more energy-efficient if the delay is reduced
gradually during the remaining journey (Albrecht et al., 2011). How to balance the
urgency of delay recovery and energy-efficient driving is an important issue for the
real-time delay recovery problem.

1
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Meanwhile, energy-efficient driving relies on the time supplements provided by the
timetables. The time supplement refers to the extra running time from one stop to
another compared to the minimal technical running time (Hansen and Pachl, 2014;
Goverde et al., 2016). That extra running time provides the possibility for energy-
efficient train operations, such as coasting or cruising at a low speed. How to design
a good timetable by providing more time supplements without influencing the railway
capacity is essential for energy-efficient train operations.

This dissertation investigates the approaches of energy-efficient railway operations.
More specifically, the research is explored from three aspects to improve energy
efficiency of train operations: train trajectory optimization, energy-efficient delay
recovery and energy-efficient timetabling problem.

In the remainder of this chapter, Section 1.2 presents the remaining challenges of the
train trajectory optimization, energy-efficient delay recovery and timetabling problem.
Section 1.3 presents the questions to be solved in this dissertation. Section 1.4
summarizes the main contributions of this dissertation. Finally, Section 1.5 provides
an outline of this dissertation, as well as brief introductions of every chapter in the
remainder of this dissertation.

1.2 Challenges for energy-efficient railway operations

In this section, we describe the main challenges in energy-efficient railway operations
that will be addressed in this dissertation.

1.2.1 Train trajectory optimization problem

The purpose of the train trajectory optimization is to find a trajectory that reduces
the use of energy caused by train movements while maintaining schedule (Howlett
and Pudney, 1995). The traditional TTO research focuses on optimizing an individual
train movement from one stop to another. Pontryagin’s Maximum Principle (PMP)
has been widely used to analyze the optimal control strategy to achieve an energy-
efficient train movement. According to the application of PMP, the optimal control
regimes consist of maximum power, cruise, coasting and maximum braking. The
optimal control strategy is a sequence of these optimal regimes (Milroy, 1980; Cheng
and Howlett, 1992; Howlett and Pudney, 1995; Howlett, 2016). Given this knowledge
of the optimal driving regimes, most train control algorithms then aim at finding
the optimal switching points between the regimes. Another different approach to
the TTO problem is by discretizing the continuous-time optimal control model to a
static nonlinear programming model, after which nonlinear programming solvers are
adopted to directly solve the problem (Wang et al., 2013, 2014; Ye and Liu, 2016,
2017; Haahr et al., 2017). Only recently this direct approach has been considered
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for solving the TTO problem and has shown some advantages over the PMP-based
methods (Wang et al., 2014; Ye and Liu, 2016, 2017; Haahr et al., 2017). The research
on the TTO problem already got some achievements, however there are still some
bottlenecks.

First, current TTO models are not able to fully characterize train operation constraints
and objectives. The general TTO problem focuses on a single train moving between
two stops within a given running time. TTO models use minimizing energy costs as the
objective, and take into account the train movement constraints, speed limit constraints,
vehicle characteristic constraints (maximum power, force, etc.) and arrival/departure
time constraints. However, there are more factors that need to be taken into account
by TTO models. First, the train trajectory should respect more time/speed constraints
than just the arrival/departure time constraints at two stops, to satisfy the timetables.
The additional constraints could be the arrival/departure/passing-through time or speed
targets at intermediate stations and conflict points. Second, the train trajectory is
restricted by some time and speed constraints at certain signalling locations. For
instance, certain headway times between adjacent trains are required at some signals
for the safety issue, yellow signals mandatorily demand the train to reduce its speed.
Last but not least, if a train got delayed, the primary goal of the train operation is to
reduce delays instead of energy consumption. The optimization objective changes to
minimizing train delays in that circumstance.

The second drawback of current TTO methods is that the TTO requires a fast
computation time since it is an important part of the DASs for real-time trajectory
computation. However, the current existing PMP-based methods may consume long
computation times since they have difficulties in finding the optimal switch points with
complex speed limits and gradients (Albrecht et al., 2016a,b). The TTO requires more
efficient solution methods for varying conditions.

In short, accurate modelling and efficient solution methods of the TTO problem are the
bottleneck of the performance of the DASs. Therefore, research on TTO is important
in improving train operations.

1.2.2 Energy-efficient delay recovery problem

Unexpected events might occur and impact train operations and result in train delays.
How to efficiently control train movements while getting the train back to schedule is
a difficult question even for experienced drivers. It is necessary to provide an optimal
trajectory to help drivers, and that this trajectory provides the solution of energy-
efficient delay recovery.

The first challenge of finding that energy-efficient delay recovery trajectory is to take
into account the influences of signal systems. In the case that train operations are
interrupted by unexpected events, it is all too common that a train approaches a station
or junction at a time when its required platform or route is blocked by another train.
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The consequence of this is that the signalling system sends a yellow or a red signal,
which makes the train to brake to a low speed or stop on the approach to the station
or junction. The train is allowed to accelerate again when the conflicting train has
moved away. This brake/re-accelerate running is not energy efficient. If an approach
can be devised to predict signal states ahead, and provide the optimal trajectory with
consideration of signal states to train drivers, this realizes benefits of reducing energy
consumption, avoiding conflicts and reducing the brake/re-accelerate behavior.

Furthermore, if the trains are able to cooperate to avoid conflicts and yellow (red)
signals initiatively, this will also help reducing the brake/re-accelerate behavior.
Optimizing multi-train trajectory together is a solution to achieve this target of the
multi-train cooperation. Current train trajectory optimization methods focus on an
individual train movement (Scheepmaker et al., 2017), while the TTO method for
multiple trains is lacking. To distinguish the two concepts, the TTO method for a
single train is called Single-Train Trajectory Optimization (STTO), while the TTO
method for multiple trains called Multi-Train Trajectory Optimization (MTTO). There
are two challenges to develop a MTTO method. Firstly, different trains using different
routes and tracks, different speed limits, and different rolling stock compositions
increase the difficulty of computing multi-train trajectory together. Secondly, the
multi-train trajectory must take into account the interactions between trains and avoid
train conflicts. It is challenging to operationalise the two concepts and develop a new
MTTO method to improve train behaviors under delay situations.

1.2.3 Energy-efficient timetabling problem

Although energy efficiency is an important concern to railway infrastructure managers
and railway undertakings, only little literature focuses on energy-efficient timetabling
(Scheepmaker et al., 2017; Yang et al., 2016a,b; Zhou et al., 2017). Current timetable
design approaches care more about journey time efficiency, feasibility, and robustness,
while energy consumption is a secondary objective, which can therefore be considered
as a fine-tuning step after the time allowances have been set based on feasibility and
robustness (Goverde et al., 2016).

The performance of train operations depends highly on the quality of the timetable.
A too tight timetable has no benefits for delay recovery, since it is not easy for a
delayed train to catch up and get back to its planned timetable. A tight timetable is
also not convenient for energy-efficiency because there is no room for energy-efficient
train operation, i.e. there is no time for coasting. Instead, a certain amount of time
supplement provides the possibility for coasting operations and absorbing small delays
by running at faster speeds.

Both optimizing train trajectory and timetables can improve the railway energy
efficiency. Past studies typically consider these two problems separately (Hansen and
Pachl, 2014; Scheepmaker et al., 2017). However, the train trajectory and timetable are
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closely related and both of them have a direct influence on energy-efficiency, so this
separate optimization method is suboptimal. Integrating train trajectory optimization
and timetable design improves the accuracy of the model and contributes to global
optimality. Among the limited references about an integrated model to jointly optimize
the timetable and speed profiles, researchers take into account the speed profile
calculation in the timetable design (Kraay et al., 1991; Li and Lo, 2014a,b). The
train trajectory optimization model is approximated and merged into a mixed integer
programming model for timetable design, which however produces inaccurate speed
profiles as well as a computational hard programming model. On the contrary, the train
trajectory optimization models produce accurate speed profiles, which can be extended
to solving the energy-efficient timetable design problem.

1.3 Research objectives and questions

The main objectives of this dissertation are to develop modelling and solution methods
for the train trajectory optimization problem to improve model accuracy and shorten
computation time, to apply the methods in a train driver advisory system development,
and to develop a multi-train trajectory optimization method to solve the delay recovery
and the energy-efficient timetabling problem.

To achieve the research objectives, the following research questions will be answered
1. How to formulate an accurate model for the train trajectory optimization problem?
2. Which solution approach can be used to solve the train trajectory optimization in
short time?
3. What are feasible modelling and solution methods for the multi-train trajectory
optimization problem?
4. How can we ensure a single train get back to its schedule with less energy
consumption, as well as efficiently respond to signal systems, when the train is
delayed?
5. How can we avoid yellow and red signals and the brake/re-accelerate behavior
with a multi-train cooperation method, when the train operations are interrupted by
unexpected events?
6. How can we improve the timetable’s energy efficiency with the train trajectory
optimization method?
7. How can we implement the proposed train trajectory optimization method into a
driver advisory system?

1.4 Thesis contributions

This section summarizes the main contributions of this dissertation. A distinction
is made between contributions that are of a scientific nature (either theoretical or
methodological) and contributions that are of a societal nature.
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1.4.1 Scientific contributions

The main scientific contributions of this thesis are as follows:

1. A modelling method (the multiple-phase optimal control problem formulation)
for the TTO problem

The TTO problem is formulated as a multiple-phase optimal control problem
(Chapter 2), that enables an accurate and flexible formulation of varying speed
limits and gradients, time (speed) constraints at timetable points and signal
locations, and multi-objectives of energy-efficient driving and delay recovery.

2. A multi-train trajectory optimization approach

A multi-train trajectory optimization approach is proposed (Chapter 3, 4 and
5), which optimizes multi-train trajectories simultaneously with consideration
of every single train’s operational constraints and conflict-avoiding constraints.

3. A single-train delay recovery method with consideration of signalling con-
straints

A single-train delay recovery method is proposed (Chapter 2). The delay
recovery method is on the basis of the TTO method with reducing delay as the
optimization objective, meanwhile considering the influences from signalling
systems. A signal response policy is proposed to ensure that the train makes
correct and quick responses to different signalling aspects. A green wave policy
is developed to avoid inefficient stop/start behaviors in case that a full prediction
is available about the signal aspect timings in rear of the train ahead.

4. An energy-efficient delay recovery method using the MTTO approach

A multi-train delay recovery method is proposed based on the MTTO approach
(Chapter 3 and Chapter 4). The method reduces delay propagation and energy
consumptions, as well as avoids inefficient stop/start behaviors, with the idea of
multi-train cooperation.

5. An energy-efficient timetabling method using the TTO approach

A novel timetabling method based on the TTO that optimises timetables by
shifting arrival and departure times so that the time supplements are optimally
allocated for energy efficient operation (Chapter 5).

6. Development of a train driver advisory system that provides continuous energy-
efficient and on-time driving advice

A prototype DAS named ETO (Energy-efficient Train Operation) is developed
with the application of the proposed TTO method, which provides energy-
efficient and on-time advice and responds to deviations from the advised time-
distance path (Chapter 6).
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1.4.2 Societal contributions

The main contributions to society of this thesis are as follows:

1. This research focuses on improving the energy efficiency of railway operations.
Energy-efficient TTO methods are developed, which have practical relevance.
They provide the railway undertakings a way to reducing energy costs of railway
operations, both on the timetable plan level and on the train operation level. They
can also be useful in advising safe, comfortable, and punctual train operations.

2. For industry (including railway managers, operators, etc.), the energy-efficient
TTO methods can be used as part of the timetable design and the DAS
development. The TTO methods can support timetable designers to improve
a timetable’s energy efficiency. TTO methods can also be adopted into the DASs
to advise train drivers an energy-efficient driving behavior while maintaining the
train schedule. Our work shows the flexibility of the TTO methods in practical
applications and the generality of the ETO framework, which are desired features
for DAS developers.

3. From a driver’s or passenger’s perspective, our work shows that the TTO
methods and the DASs can help train drivers in train control under multiple
criteria and constraints. It also is beneficial for the passengers by providing
more punctual and cheaper services. The DASs can be developed to enhance
safety, comfort, punctuality and energy efficiency.

1.5 Outline of the dissertation

This dissertation consists of seven chapters. A road map of the dissertation is presented
in Figure 1.1, which clarifies the connections between the chapters. Chapter 2
investigates the STTO problem. Chapter 3, 4 and 5 can be grouped into a coherent
content focusing on the MTTO problems. Chapter 6 presents a practical application
of the proposed TTO method in the DAS development. Chapter 7 concludes the
dissertation with the main contributions and directions for future research.

The main contents are in Chapters 2-7:

Chapter 2 presents the modelling and solution methods of STTO by the multiple-
phase optimal control problem formulation and the pseudospectral method. This
chapter studies the STTO problem which considers the general constraints (varying
infrastructure characteristics and timetable constraints) and the influences from signal
aspects and automatic train protection (ATP). The signal response policy and the green
wave policy are developed in this chapter to dynamically respond to signals and to
avoid yellow signals.



8 TRAIL Thesis series

Chapter 1
Introduction

Chapter 2
STTO with signalling and 

operational constraints

Chapter 3
Delay recovery of multi-trains on 

double track lines

Chapter 4
Delay recovery of multi-trains on 

single track lines

Chapter 5
Energy-efficient timetable 

adjustment using TTO approach

Chapter 6
Driver advisory system development

Chapter 7
Conclusions

Multi-Train Trajectory 

Optimization

Single-Train Trajectory 

Optimization

Practical Implementation

Figure 1.1: Flowchart of this dissertation structure.
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The contents of Chapter 2 have been published as P. Wang and R. M. P. Goverde,
“Multiple-phase train trajectory optimization with signalling and operational constraints,”
Transportation Research Part C: Emerging Technologies, 69, 255–275, 2016.

Chapter 3 presents the delay recovery problem of two successive trains in the same
direction. The MTTO method is adopted to solve this problem, which takes into
account not only each train’s operational constraints, but also the constraints on
keeping safe distances between the two trains. The green wave policy is adopted to
ensure that the trains run safely under all green signals to avoid frequent stop/start
behavior and thus improving train operation efficiency.

The contents of Chapter 3 have been published as P. Wang and R. M. P. Goverde, “Two-
train trajectory optimization with a green-wave policy,” Transportation Research Record:
Journal of the Transportation Research Board, 2546, 112–120, 2016.

Chapter 4 proposes the delay recovery problem of opposite trains on single-track
lines. We restrict our attention to delay cases, aiming to find a feasible schedule as well
as energy-efficient speed profiles for multiple trains simultaneously. A MTTO model
for opposite trains is proposed, which takes into account meet-and-pass constraints to
avoid head-on conflicts. Three driving strategies of speed-up, energy-efficient and on-
time driving, are proposed and combined in the optimization objective selection for
different delay scenarios.

The contents of Chapter 4 have been published as P. Wang and R. M. P. Goverde, “Multi-
train trajectory optimization for energy efficiency and delay recovery on single-track railway
lines,” Transportation Research Part B: Methodological, 2017, 105: 340-361..

Chapter 5 implements the TTO methods in an energy-efficient timetable design,
which is to improve the timetable’s energy efficiency by adjusting running time
allocation and optimizing trains’ arrival and departure times of timetables. The
timetables’ fixed arrival and departure time targets are replaced with flexible arrival and
departure time windows. The TTO methods compute the optimal arrival and departure
times within those time windows. The optimized arrival and departure times are good
for saving multi-trains’ energy costs.

Chapter 6 introduces the driver advisory system ETO. The ETO system contains
5 core modules: data processor, train state monitor, trajectory calculator, trajectory
processor, and advice generator. Chapter 6 provides an introduction to the framework
of the ETO system as well as detailed descriptions of the five core modules. It also
presents how to implement the proposed TTO method into the ETO system and the
behavior in test scenarios with real-time instances of the Netherlands railways.

Finally, Chapter 7 presents the conclusions of the dissertation. This chapter
summarizes the main research findings and discusses their implications. In addition, it
proposes directions for future research.
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Chapter 2

Multiple-phase train trajectory
optimization with signalling and
operational constraints

Apart from minor updates, this chapter has been published as:
P. Wang and R. M. P. Goverde, “Multiple-phase train trajectory optimization with
signalling and operational constraints,” Transportation Research Part C: Emerging
Technologies, 69, 255–275, 2016.

2.1 Introduction

Improving transport capacity and saving energy consumption are the most urgent
challenges faced by modern railway transportation all around the world. Optimizing
train operation is one promising method, which does not need extra infrastructure,
but improves rail traffic efficiency by optimizing train speed and control trajectories.
One core function of train operation optimization is train trajectory calculation, which
uses optimal control theory to calculate the optimal speed profiles and control regimes,
aiming at safe, on-time and energy saving train operation. These profiles are used to
generate driving advice to support train drivers in train control.

Research on train trajectory calculation started in the 1960s. The solution methods of
the train trajectory optimization problem can be divided into two categories: indirect
methods and direct methods. The indirect approach solves the problem indirectly
by converting the optimal control problem to a boundary-value problem. The direct
method finds the optimal solution by transcribing a continuous optimization problem to
a nonlinear programming problem (NLP). Researchers who focus on indirect methods
are interested largely in solving differential equations, while researchers who focus

13
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on direct methods are interested more in optimization techniques (Betts, 1998; Rao,
2009). Pontryagin’s Maximum Principle is a typical indirect method. The optimal
train control strategy following from application of Pontryagin’s Maximum Principle
to a long journey on flat track with sufficient running time supplement consists of
the sequence Maximum Power–Cruising–Coasting–Maximum Braking (Cheng and
Howlett, 1992; Howlett and Pudney, 2012; Milroy, 1980). For a train operating on a
track with varying speed limits and gradients the optimal control strategy is a sequence
of these optimal regimes where the succession of regimes and their switching points
also depends on the speed limits and gradients (Howlett, 1996; Khmelnitsky, 2000;
Liu and Golovitcher, 2003; Pudney and Howlett, 1994). Finding the optimal switching
points is a difficult problem except for simple cases such as a single speed limit
and flat track (Albrecht et al., 2016a,b). Direct approaches transform the optimal
control problem into a mathematical programming problem. Wang et al. (2013), Wang
et al. (2015) and Wang and Goverde (2016) reformulate the problem as a multiple-
phase optimal control model, and solve it with Pseudospectral methods (Gong et al.,
2008; Rao, 2003; Ross and Fahroo, 2004; Ross and Karpenko, 2012). Pseudospectral
methods transcribe the continuous-time optimal control problem into a nonlinear
programming problem, after which nonlinear programming solvers are adopted to
directly solve the problem.

The classic single-train control problem focuses on one independent train from one
station to the next under a scheduled traffic plan. Dynamic influences such as delays
and signalling systems, are considered only recently. Delays or other disturbances
cause deviations from the traffic plan, in which case the train may meet yellow or
red signals, which require speed reductions and unscheduled stops. A rescheduling
process is required to produce a new timetable when the deviation is big enough. As
a result, the train trajectories also need to be adjusted accordingly. Albrecht et al.
(2010) considered the influence of signalling and automatic train protection on the train
trajectory optimization. This research is based on the optimal control regimes obtained
from Pontryagin’s Maximum Principle, and focuses on finding the optimal switching
points to handle the influence of the signalling system. Albrecht et al. (2011) discuss
energy-efficient delay recovery strategies for trains in opposite directions. They find
a set of interaction times that allows each affected train to recover from delays as
well as to save energy consumption, but energy-efficient train trajectory calculation is
not discussed. Albrecht et al. (2015) study the safe separation problem for two trains
travelling in the same direction. To satisfy the safe separation for two following trains.
An optimal set of specified intermediate clearance times for each section is calculated,
which also aims at minimizing total energy consumption. Wang et al. (2014) consider
the train trajectory planning problem under fixed and moving block signalling systems.
They transform the optimal control problem into a mixed-integer linear programming
problem. The nonlinear train dynamic movement model is simplified into a linear
model, which speeds up the computation process but degrades the solutions’ accuracy.

This paper gives several contributions to the literature. First, a rescheduling process
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may change the train’s traffic plan, which requires adjustment of the train speed to track
the new timetable. Second, a safe separation between trains running on the same line
should be guaranteed. Third, an accurate calculation taking into account operational
and signalling constraints is necessary since the train trajectory is designed to help train
drivers in practical operation. Based on these three points, this paper formulates the
real-time traffic plan for each train as a train path envelope (TPE), which was proposed
first by Albrecht et al. (2013), see also ON-TIME (2014). Similar to the quadratic
time geography theory (Ma et al., 2016; Zhou et al., 2015), train path envelopes set
bounds to feasible trajectory ranges, including time and/or speed ranges at specific
points. These time and/or speed ranges are available in real operations along a train
run, within which the train can move without running late with respect to the timetable
and hindering other trains’ operations. If the timetable is changed by a rescheduling
process, a new train path envelope must be generated and sent to the train trajectory
calculation module. Based on this, new speed and control profiles are calculated.

Train separation is guaranteed by a signalling system. Generally speaking, if the train
operation deviates from a conflict-free timetable, it might meet yellow or red signals.
The influence from the signalling system cannot be ignored when calculating train
trajectories, and in particular the information available about the future signal aspects
affects the train trajectory calculation. Two different scenarios are proposed about
the amount of signal information available to the trajectory optimization. In the first
scenario, we assume that only information is available about the next signal aspect. An
optimization strategy called signal response policy is developed to ensure that the train
makes correct and quick responses to different signalling aspects. In the other scenario,
we assume that a full prediction is available about the signal aspect timings in rear of
the train ahead. A green wave policy (Corman et al., 2009) is then used to avoid yellow
signals and thus separate successive trains. The focus of this paper is on successive
trains in the same direction over the same line. The signalling system discussed is the
Dutch signalling system, which is a variant of a three-aspect two-block system with
additional speed indications together with a continuous ATP system. The method is
however generic and any signalling system can be taken into account. Moreover, the
work assumes an advanced traffic management environment such as the ON-TIME
real-time railway traffic management framework (Quaglietta et al., 2016). Within
such a framework, real-time communication is possible for real-time train trajectory
optimization.

For accurate calculations, a nonlinear model is used for the train movement formulation
with accurate varying speed limits and gradients. The train trajectory optimization
problem is built as a multiple-phase optimal control model, and solved with a
Pseudospectral method. The multiple-phase optimal control model and Pseudospectral
method have been used before for modelling the train trajectory optimization problem
in our previous works (Wang and Goverde, 2016; Wang et al., 2015). This paper
extends it to real-time train trajectory optimization with consideration of signalling
and operational constraints.
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The paper is organized as follows: Section 2.2 introduces the basic train dynamic
movement model and the train path envelope and shows how to formulate the problem
into a multiple-phase optimal control problem and solve it with a Pseudospectral
method. In Section 2.3, the train trajectory calculation with consideration of delays
is developed with respect to two optimization policies incorporating the impact of
the signalling system and the online information available. Section 2.4 illustrates the
approach in a case study, and finally Section 2.5 ends the paper with conclusions.

2.2 Train trajectory optimization modeling and solving
method

2.2.1 Basic train trajectory optimization model

The movement of a railway vehicle is determined by a set of physical constraints such
as the timetable, speed limits, and other vehicle-related factors. The general equation
of train motion can be written as follows (Hansen and Pachl, 2014; Wang et al., 2015):

dv(s)
ds

=
θ1 f (s)−θ2b(s)−Rtrain(v)−Rline(s)

ρ ·m · v(s)
, (2.1)

dt(s)
ds

=
1

v(s)
, (2.2)

where s the traversed path [m], v(s) is the train velocity [m/s], ρ the rotating mass
factor, m the train mass [t], f (s) the traction force [kN], b(s) the braking force [kN],
Rtrain(v) the train resistance force [kN], Rline(s) the line resistance force [kN], t(s) the
traversed time [s], and θ1,θ2 ∈ {0,1} two binary parameters with θ1 ·θ2 = 0. Distance
is chosen as the independent variable because gradients and speed limits occur as
functions of distance rather than of time.

The train resistance Rtrain(v) comprises rolling, bearing, dynamic and wind resistances
(Hansen and Pachl, 2014), and can be described as

Rtrain(v) = 0.001 ·ρ ·m ·g · (α+β · v+ γ · v2), (2.3)

where g is the acceleration of gravity, and α, β and γ are constant coefficients. The
line resistance Rline(s) is a function of position and consists of two components: grade
resistance Rgrade(s) and curve resistance Rcurve(s),

Rline(s) = Rgrade(s)+Rcurve(s). (2.4)

Train traction and braking power are limited by the adhesion between the wheels and
the rails as well as the maximum power possible to be produced by the engine, so that

0≤ f (s) ≤ Fmax, (2.5)

0≤ b(s) ≤ Bmax, (2.6)

0≤ f (s) · v(s) ≤ Pmax, (2.7)
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where Fmax, Bmax and Pmax are the upper bounds on traction force, braking force and
traction power.

The train speed cannot exceed the speed limits, i.e.,

0≤ v(s)≤Vmax(s), (2.8)

where Vmax(s) is the train speed limit at position s, including static and temporary
speed restrictions.

The riding comfort is usually measured by train acceleration, which should satisfy

Amin ≤
dv(s)
dt(s)

≤ Amax, (2.9)

where Amin and Amax are the lower and upper bound of acceptable riding comfort,
respectively.

For a train running between two stops, the timetable restricts the departure and arrival
time, which can be formulated as

v(s0) = 0, t(s0) = T0, v(s f ) = 0, t(s f ) = Tf , (2.10)

where s0 and s f are the positions of the departure and arrival stations, respectively, and
T0 and Tf are the scheduled departure and arrival time assigned by the timetable.

Generally, the train trajectory optimization problem is to find a series of control laws
for the train traction and braking forces that minimizes train energy consumption, i.e.,

J =
∫ s f

s0

f (s) ds. (2.11)

The problem can be formulated as a generic optimal control problem with the train
speed and time as the state variables and the traction and braking force as the
control variables. Define the state vector x = [x1,x2]

′ = [v, t]′ and the control vector
u = [u1,u2]

′ = [ f ,b]′. Then (2.1)–(2.11) can be written as the generic optimal control
problem:

Minimize J =
∫ s f

s0
`(x(s),u(s),s) ds (Cost function)

subject to ẋ(s) = f (x(s),u(s),s) (Dynamic constraints)

gmin ≤ g(x(s),u(s),s)≤ gmax (Path constraints)

e(x0,x f ,s0,s f ) = E (Boundary constraints)

(2.12)

where x0 = x(s0) and x f = x(s f ). The cost function is minimizing the energy
consumption (2.11), the dynamic constraints consist of (2.1)–(2.2), the path constraints
represent (2.5)–(2.9), and the boundary constraints are (2.10).
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2.2.2 Train path envelope

Model (2.12) only considers the departure and arrival time constraints in (2.10), while
more time constraints exist such as passing-through times at junctions or non-served
stations. A train path envelope is used to describe those time and speed allowances.
A train path envelope is a series of targets for each train at specific positions such
as station platform stops or signals, based on estimated earliest and latest passing
times and speed limits. The targets are defined by triples of position, time and speed
information. Two kinds of targets are distinguished:

1. Target points (p, t,v): indicating that a train must reach target position p at the
specified time t and speed v,

2. Target windows (p, [tmin, tmax], [vmin,vmax]): indicating that a train must reach
target position p within a time window [tmin, tmax] and speed window [vmin,vmax].

The target windows may also be specified for a fixed time or speed, in which case the
lower and upper bound of the window are equal. With this notation, the train path
envelope for a given train i can be written as a series of target points and windows

T PEi =
{
(pi, j, [ti, j,min, ti, j,max], [vi, j,min,vi, j,max])

}m
j=1

where m is the number of target positions along train’s route, pi, j refers to the j-th
target points for train i, j ∈ {1,2, . . . ,m}, and pi, j < pi, j+1. ti, j,min, ti, j,max, vi, j,min and
vi, j,max are respectively the minimum and maximum time and speed limits for train i at
pi, j.

The target positions can be stations, junctions, signal positions, and route release
points. The target speed for stop points is defined as v = 0. For other target positions
speed information is optional. Only some crucial positions need speed restrictions
to assure the speed limits or operational constraints such as minimum speeds before
slopes or tunnels. The upper bounds of the time targets in the train path envelope
need to be bigger than the minimal technical running time under consideration of the
speed limits, maximum traction and braking power, and lower than some maximal
running time. In addition, the train path envelopes of the various trains must be
mutually exclusive so that the trains have no conflicts as long as they stay within
their envelopes. This means that sufficient headway times are required between the
envelopes of adjacent trains.

In the following we will discuss the time restrictions at stations and junctions. Since a
wide range of situations may occur, we only present four typical examples (Fig. 2.1). In
these examples, we assume for simplicity local minimum headway times independent
of the train orders, although in practice the minimum headway times depend on the
location and order of the train sequence.

Stops: The real-time traffic plan for each train indicates fixed arrival and departure
times at their stops (Albrecht and Dasigi, 2014). Even slight delays might be perceived
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directly by customers. Therefore, the arrival and departure times are modelled as target
points. In Fig. 2.1 (a), the target points of train T1 at station p1 can be formulated as
(p1, Ap1

T1
, 0) and (p1, Dp1

T1
, 0), where Ap1

T1
and Dp1

T1
are respectively the scheduled arrival

and departure time of train T1 at stop position p1, and the target speeds are 0.

Passing through stations: Each passing event has its own passing time which is
assigned by the timetable. A small time deviation without impacting other trains and
passengers is acceptable. Fig. 2.1 (b) shows an example of three trains T2, T3 and
T4 around a station at position p2. Train T2 has a scheduled stop at the station while
train T3 and T4 are non-stop. The passing times at the station for trains T3 and T4

are modelled as target time windows. The time window is computed in such a way
that no two different trains have overlapping windows and a minimum headway time
is maintained between two successive trains. Taking train T3 in Fig. 2.1 (b) as an
example, the time window is calculated as [Dp2

T2
+Hpassing,(P

p2
T3

+Pp2
T4
−Hpassing)/2],

where Dp2
T2

is the departure time of train T2 at p2, Pp2
T3

and Pp2
T4

are the scheduled passing
through times of train T3 and T4 at p2, and Hpassing is the minimum headway time.

Overtaking: Overtaking is similar with passing through a station for a non-stop train.
The passing time can be modelled as a time window respecting the given flexibility in
the timetable. Consider the situation in Fig. 2.1 (c), where train T6 overtakes train T5 at
a station at position p3. The overtaking time of train T6 should be kept within a range,
otherwise the overtaken train T5 has to wait and is delayed. The minimum headway
times for overtaking must be respected by train T6 resulting in the target time window
[Ap3

T5
+Hovertaking,D

p3
T5
−Hovertaking], where Ap3

T5
and Dp3

T5
are the scheduled arrival and

departure time of train T5 at p3, and Hovertaking is the minimum overtaking headway
time.

Passing through junctions: Junctions are locations where different lines cross or
merge, but none of the trains has a planned stop. Train operations at junctions
may result in knock-on delays, so that a passing time window for each train is
adopted to avoid interactions. Consider the situation shown in Fig. 2.1 (d). The
time window of the passing time of train T7 at junction p4 can be calculated as
[(Pp4

T7
+Pp4

T9
+H junction)/2,(Pp4

T7
+Pp4

T8
−H junction)/2], where Pp4

T7
, Pp4

T8
and Pp4

T9
are the

passing through times of train T7, T8 and T9 indicated by the timetable, and H junction is
the minimum headway.

Above four cases show how to transform the timetable into detailed formulation of
time and speed constraints in train path envelope. It can be adopted easily for the
computations related to train speed trajectory optimization and control. An application
example is shown in Section 2.4. Note all the time windows above should intersect
with the minimum and maximum running time constraints. Time constraints at stations
and junctions might be changed in case of delays. Besides, more time constraints might
be present at signal positions, which is discussed in Section 2.3.
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2.2.3 Multiple-phase optimal control model

It is difficult to use model (2.12) in Section 2.2.1 for solving the trajectory optimization
problem, since the speed limits and gradients change along the railway track. Besides,
not only the arrival and departure time constraints considered in (2.12) should be
respected by train operation, but also more time and/or speed limits from train path
envelope should be considered. So we re-formulate the problem in a multiple-phase
optimal control model. The advantages of this model is accurate illustration of
changing speed limits, gradients and time/speed constraints from train path envelope.

In a multiple-phase optimal control model, the trajectory consists of a collection of
phases (Rao (2003)). A phase is any segment of the complete trajectory, where any
particular phase of an optimal control problem has its own cost function, dynamic
model, path constraints, and boundary conditions. The complete trajectory is then
obtained by properly linking adjacent phases via linkage conditions. The total cost
function is the sum of the cost functions within each phase. The optimal trajectory
is then found by minimizing the total cost functional subject to the constraints within
each phase and the linkage constraints connecting adjacent phases.

Since the speed limits and gradients change along the rail track, the complete train
trajectory can be divided into several segments by the critical points of speed limits and
gradients, so that each phase has a unique speed limit and line resistance. Consider a
train trajectory that consists of R distinct phases, let the independent variable in phase
r ∈ {1, . . . ,R} lie in the interval s ∈ [s(r)0 ,s(r)f ] and denote the state and control in phase

r as x(r) = [x(r)1 ,x(r)2 ]′ = [v(r), t(r)]′ and u(r) = [u(r)1 ,u(r)2 ]′ = [ f (r),b(r)]′. The dynamic
constraints in phase r ∈ {1, . . . ,R} are given as

ẋ(r)(s) = f (r)(x(r)(s),u(r)(s),s), (r ∈ {1, . . . ,R}). (2.13)

where

f (r)(x(r)(s),u(r)(s),s) =


θ1u(r)1 −θ2u(r)2 −R(r)

train(x
(r)
1 )−R(r)

line(s)

ρ ·m · x(r)1
1

x(r)1

 , (2.14)

and the value of R(r)
line(s) changes from phase to phase depending on the value of the

gradient and curve in phase r. The path constraints in phase r ∈ {1, . . . ,R} are given as

g(r)min ≤ g(r)(x(r)(s),u(r)(s),s)≤ g(r)max, (r ∈ {1, . . . ,R}). (2.15)

where

g(r)min =


0
0
0
0

Amin

 , g(r)(x(r)(s),u(r)(s),s) =


u(r)1

u(r)2

u(r)1 · x
(r)
1

x(r)1

ẋ(r)1 /ẋ(r)2

 , g(r)max =


Fmax

Bmax

Pmax

V (r)
max

Amax

 .
(2.16)
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Here, g(r) includes the constraints of train traction, braking force, engine power, speed
limit and riding comfort. Note that V (r)

max is the maximum speed allowance from s(r)0 to

s(r)f , which is a constant value in phase r, but might have different values in different
phases.

The trajectory is also partitioned into more phases by the target positions of the
train path envelope. For each target position of the train path envelope a time and
speed allowance is needed to restrain train operations, which can be formulated as the
boundary constraints. For example, assume target position sp of the train path envelope
is the linkage point of phase r and r+1 (r ∈ {1, . . . ,R−1}). If there is a target point
constraint at sp, we have

x(sp) =

[
Vsp

Tsp

]
, (2.17)

where Vsp are Tsp are the target speed and time at sp, and if the constraint is a flexible
target window we have [

Vsp,min

Tsp,min

]
≤ x(sp)≤

[
Vsp,max

Tsp,max

]
, (2.18)

where Vsp,min, Vsp,max, Tsp,min and Tsp,max are the minimum and maximum speed
and time at sp, repectively. Since sp is the boundary between two adjacent phases,
constraints (2.17)–(2.18) work as the terminal boundary constraints for phase r as well
as the initial boundary constraints for phase r+1. In general, the boundary constraints
(if any) in phase r ∈ {1, . . . ,R} are given as

e(r)min ≤ e(r)(x(r)0 ,s(r)0 ,x(r)f ,s(r)f )≤ e(r)max, (r ∈ {1, . . . ,R}). (2.19)

where the lower and upper bound in e(r)min and e(r)max are equal if the constraint is a target
point.

The whole train trajectory is divided into multiple segments with critical points of
speed limits or gradients and curves, and target positions of the train path envelope.
For each two consecutive phases k and k+1, k ∈ {1, . . . ,R−1}, a set of conditions is
used to connect the trajectories in phase k and k+ 1. In particular, the state variables
must be continuous at the boundary between phase k and phase k+ 1. Therefore, the
following linkage conditions must be satisfied for all k ∈ {1, . . . ,R−1}:

s(k)f − s(k+1)
0 = 0, x(s(k)f )− x(s(k+1)

0 ) = 0. (2.20)

An exception occurs if the linkage point of phase k and k+1 is the stop point, in which
case x2(s

(k)
f ) and x2(s

(k+1)
0 ) represent the arrival and departure time, and thus

x2(s
(k+1)
0 )− x2(s

(k)
f ) = D

s(k)f
, (2.21)

where D
s(k)f

is the dwell time of the train at s(k)f (or s(k+1)
0 ). The general linkage

conditions can be formulated as

l(x(k)f ,s(k)f ,x(k+1)
0 ,s(k+1)

0 ) = L, (k ∈ {1, . . . ,R−1}). (2.22)
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The cost function J(r) in phase r ∈ {1, . . . ,R} can be the energy consumption given as

J(r) =
∫ s(r)f

s(r)0

`(r)(x(r)(s),u(r)(s),s) ds, (2.23)

with `(r)(x(r)(s),u(r)(s),s) = u(r)1 (s), although later we also include delay. The
objective of the multiple-phase train trajectory optimization problem is to minimize
the cost function over all phases

J =
R

∑
r=1

J(r), (2.24)

subject to the dynamic constraints (2.13), path constraints (2.15), boundary constraints
(2.19), and the linkage conditions (2.22).

2.2.4 Pseudospectral method

The multiple-phase optimal control model in Section 2.2.3 is solved by a Pseudospec-
tral method. Pseudospectral method transcribes the continuous-time optimal control
problem into a nonlinear programming problem. The state and control functions
are approximated using a set of orthogonal polynomials (Chebyshev or Lagrange
polynomials), where specified collocation points are used for collocation of the
dynamics and a quadrature approximation of the integrated Lagrange cost term. The
Pseudospectral method has a simple structure and converges exponentially. The most
well-developed Pseudospectral methods are the Gauss Pseudospectral Method (GPM)
(Benson, 2005; Huntington, 2007), the Radau Pseudospectral Method (RPM) (Garg,
2011), and the Lobatto Pseudospectral Method (LPM) (Elnagar et al., 1995).

For the Radau Pseudospectral Method, the multiple-phase train trajectory optimization
model described into the previous section is transcribed to a NLP as follows. The first
step is to map the physical domain s ∈ [s(r)0 ,s(r)f ] to a computational domain σ(r) ∈
[−1,1] by means of the affine transformation

σ
(r) =

2s

s(r)f − s(r)0

−
s(r)f + s(r)0

s(r)f − s(r)0

. (2.25)

Next, let N(r) be the number of Legendre-Gauss-Radau (LGR) points σ
(r)
j in phase

r ∈ {1, . . . ,R}, with σ
(r)
j ∈ [−1,1), j ∈ {1, . . . ,N(r)}, and σ

(r)
1 = −1 and σ

(r)
N(r) < 1.

Let σ
(r)
N(r)+1

= 1, which is a non-collocation point. Then the state and control of phase
r ∈ {1, . . . ,R} are approximated by a basis of Lagrange interpolating polynomials

x(r)(σ(r))≈ X (r)(σ(r)) =
N(r)+1

∑
j=1

X (r)
j L(r)

j (σ(r)), (2.26)

u(r)(σ(r))≈U (r)(σ(r)) =
N(r)

∑
j=1

U (r)
j L̃(r)

j (σ(r)), (2.27)
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where X (r)
j = X (r)(σ

(r)
j ), U (r)

j = U (r)(σ
(r)
j ), and the Lagrange polynomials L(r)

j (σ(r))

( j ∈ {1, . . . ,N(r)+1}) and L̃(r)
j (σ(r)) ( j ∈ {1, . . . ,N(r)}) are defined as

L(r)
j (σ(r)) =

N(r)+1

∏
i=1,i 6= j

σ(r)−σ
(r)
i

σ
(r)
j −σ

(r)
i

and L̃(r)
j (σ(r)) =

N(r)

∏
i=1,i6= j

σ(r)−σ
(r)
i

σ
(r)
j −σ

(r)
i

. (2.28)

Note that L(r)
j (σ

(r)
j ) = 1 and L(r)

j (σ
(r)
i ) = 0 for i 6= j, and likewise for L̃(r)

j (σ(r)), so that

X (r)
j = x(r)(σ(r)

j ) is exact at the LGR points and the additional point σ
(r)
N(r)+1

used in the

state approximation, and likewise U (r)
j = u(r)(σ(r)

j ) is exact at the LGR points.

Next, the derivative of the state (2.13) and cost function (2.23) are approximated.
Let ω(r) and D(r) be the weights and differentiation matrix in phase r ∈ {1, . . . ,R}
corresponding to the choice of N(r). The collocated dynamics at the N(r) LGR
collocation points are expressed as

N(r)+1

∑
j=1

D(r)
i j X (r)

j −
s(r)f − s(r)0

2
f (r)(X (r)

i ,U (r)
i ,σ

(r)
i ;s(r)0 ,s(r)f ) = 0, (2.29)

D(r)
i j = L̇ j(σ

(r)
i ), (i ∈ {1, . . . ,N(r)}). (2.30)

The cost function in phase r is

J(r) =
s(r)f − s(r)0

2

N(r)

∑
i=1

ω
(r)
i `(r)(X (r)

i ,U (r)
i ,σ

(r)
i ;s(r)0 ,s(r)f ). (2.31)

Likewise, with approximations of the path constraints (2.15), boundary constraints
(2.19), and linkage conditions (2.22) (Rao (2003), Garg (2011)), the multiple-phase
optimal control problem can be rewritten as

Minimize J =
R

∑
r=1

J(r)

subject to
N(r)+1

∑
j=1

D(r)
i j X (r)

j −
s(r)f − s(r)0

2
f (r)(X (r)

i ,U (r)
i ,σ

(r)
i ;s(r)0 ,s(r)f ) = 0

g(r)min ≤ g(r)(X (r)
i ,U (r)

i ,σ
(r)
i ;s(r)0 ,s(r)f )≤ g(r)max

e(r)min ≤ e(r)(X (r)
1 ,s(r)0 ,X (r)

N(r)+1
,s(r)f )≤ e(r)max

l(X (k)
N(k)+1

,s(k)f ,X (k+1)
1 ,s(k+1)

0 ) = L,

(2.32)

where the constraints range in r ∈ {1, . . . ,R}, i ∈ {1, . . . ,N(r)}, and k ∈ {1, . . . ,R−1}.

In this way, the continuous optimal problem is transformed into a nonlinear pro-
gramming problem. The resulting nonlinear programming problem can be solved
by nonlinear optimization algorithms (Gill et al., 2002). There are several well-
developed packages that implement the Pseudospectral method, in which GPOPS is
a Matlab-based open source tool that uses the Radau Pseudospectral Method to solve
the multiple-phase optimal control problem (Darby et al., 2011; Rao et al., 2010).
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2.3 Train trajectory optimization in case of delays

Section 2.2 describes the basic modeling and solving methods for the train trajectory
optimization problem following planned timetables. This section discusses the train
trajectory optimization in case of disturbances.

2.3.1 Problem description

In the presence of disturbances a rescheduling process may produce a new conflict-
free timetable by changing the reference times and speeds for particular points or track
sections, train routes, or even train sequences. The train path envelope then must also
be updated accordingly with the adjusted times and route characteristics. The central
issue of the train trajectory calculation is to respect and follow the new train path
envelope. The detailed process of train trajectory calculation in case of disturbances is
as follows: The train path envelope for each train is first determined based on the new
timetable with the method from Section 2.2.2. New time and speed constraints of the
train path envelope as well as train parameters, track gradients, curves, speed limits
and energy saving requirements are considered by the new trajectory calculation. The
method of calculating the new trajectory is the same as the one in Section 2.2.3 and
2.2.4.

If rescheduling is not necessary, the delayed trains may have to speed up to get back
to the timetable. Furthermore, it is also important to reduce the impact of delays
on other trains. The train path envelope for each train is first checked on whether
minimum running times are satisfied or not. When delayed trains do not have enough
time to reach the next target position, a free time supplement is added. The arrival
and departure time constraints at stops change into flexible target windows instead of
mandatory target points because there is no guarantee that the delayed train can arrive
at (depart from) stops on time. However the train is not expected to arrive (depart)
earlier than its scheduled time. So the flexible time window of the arrival (departure)
event can be [ta, ta + ts] ([td, td + ts]), where ta and td are the scheduled arrival and
departure time, and ts is an extra time supplement. The lower bounds make sure that
the trains do not arrive (depart) early, while the upper bounds make sure that the trains
have enough running time. Dwell times can be reduced to make up delay, but the
minimum dwell time at a stop should be respected. This minimum dwell constraint is
included into the multiple phase optimal control model, that is

x2(s
(k+1)
0 )− x2(s

(k)
f )≥ D

s(k)f ,min
, (2.33)

where phase k and k+1 are two two sequential phases where the connecting point is a
stop point. D

s(k)f ,min
is the minimum dwell time there. (2.21) is adopted for non-delayed

trains, and (2.33) for delayed trains.
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The optimization objective of delayed trains is no longer just energy-efficient driving.
Another important issue is to minimize delays to stimulate that the train paths will get
back to the scheduled ones as soon as possible. So the cost function for each phase is
now given as

J(r) = w1 · x2(s
(r)
f )+

∫ s(r)f

s(r)0

u(r)1 (s(r)) ds, (2.34)

where x2(s
(r)
f ) is the time to be optimized at position s(r)f and w1 is a nonnegative weight

factor. The first item is to reduce the arrival time at the terminal point of each phase.
In turn, it is to minimize the arrival time at stations. On the other hand, a time window
constraint [ta, ta+ ts] is used to make sure that the train cannot arrival at stations earlier
than the scheduled arrival time. So the objective function makes the arrival time get
close to the scheduled one, that in turn reduces train delays. In all, the first item aims at
reducing delays by minimizing the running times in each phase, while the second term
aims at saving energy consumption. The weight w1 reflects the trade-off between these
two objectives. Different values of w1 result in different optimization solutions. The
effect of w1 is discussed by Wang and Goverde (2016). In this paper, we use w1 = 103.

Delay changes headway between successive trains and train path conflicts might occur
if the scheduled buffer time between train paths is not big enough. In practice this
means that a train will meet yellow or even red signals, and has to decelerate to a
restricted speed and possibly wait in rear of a stop signal. Signalling influences are
complicated and should be taken into account the train trajectory calculation.

2.3.2 Signalling influences

The response to signals depends on the specific signalling system and characteristics
of the ATP system, and can be quite different. In this paper, we consider the
Dutch signalling system NS’54 with the Dutch ATP system ATB (Automatische Trein
Beı̈nvloeding). NS’54 operates by wayside light signals that give speed commands
to drivers such that trains can always brake before a signal at danger (Goverde et al.,
2013). Normally, NS’54 is a three-aspect two-block system with clear (Green, G),
approach (Yellow, Y) and stop (Red, R) aspects. In case of a green signal aspect, the
train is unaffected by the signalling system and can proceed with its normal operational
speed. A yellow signal orders to reduce speed to a restricted speed of 40 km/h and
prepare to stop before a red signal. A red signal is a stop order, which implies that the
train should stop before the signal. Near stations also short blocks are applied which
have a length shorter than the maximum braking distance from the line speed by which
trains can follow at a shorter headway. In that case, NS’54 indicates already one (or
more) signals before that the train has to slow down to an indicated speed that must
be reached before the next signal, so that the train will enter the short block with a
lower speed associated to the short block length. This progressive speed signalling is
given by a Yellow signal plus a white numeral indicating the permitted speed at the
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next signal. For instance, ‘Yellow 8’ (Y8) indicates that the train has to reduce speed
to 80 km/h before the next signal.

Moreover, Dutch trains are equipped with the ATB system, which supervises braking
after an approach aspect as well as certain ceiling speeds and intervenes with an
emergency brake to standstill if the driver does not obey the braking or supervised
speed limits forced upon the train. So after a speed reduction order the driver has to
apply the brakes until the permitted speed is reached. In the case of a yellow signal
the driver has to reduce speed to a restricted speed of 40 km/h and then drive on-sight
for the remainder of the block. If a driver does not brake sufficiently after a speed
reduction order then ATB warns the driver and if the driver still does not react ATB
will intervene with an emergency brake to standstill. The train is able to re-accelerate
after an improved signal aspect ahead, otherwise it has to stop in rear of the signal and
wait until a new proceed aspect (green or yellow) is given.

Signalling influences cannot be ignored during train trajectory calculation. An
important part is that information about the current and future signalling state is
required. The train trajectory calculation strategies in case of two different scenario
assumptions about available information are discussed below. The first scenario
assumes that the driver only gets information from the signal aspect at the beginning
of a block. This scenario simulates the limited information that train drivers can
receive based on current commutation systems. A signal response policy then
is developed considering train trajectory optimization assuming only this limited
signalling information. Another assumption is that the states of the upcoming signals
along the running track can be predicted. This assumption is based on advanced train
control and commutation systems. The future states of signals are predicted by the
movements of previous trains. A green wave policy is developed for this case. The
following two sections give detailed illustrations of signal response policy and green
wave policy.

2.3.3 Signal response policy

The signal response policy first calculates an optimal speed trajectory from the current
location to the next stop before the train leaves the station. Because of limited
information about the signal aspects, the optimal trajectory is calculated with the
method in Section 2.2 if the train is not delayed or the method in Section 2.3.1 if the
train is delayed. The trajectory is followed until meeting a yellow or red signal aspect.
A yellow or red signal means that the train should decelerate or stop, so the train can
not just follow the old trajectory calculated. A new train trajectory is re-calculated
for the remaining journey, which should make proper responses to signal aspects. The
train follows the new trajectory until meeting another yellow or red signal aspect, or
the first green signal aspect after yellow or red. Then a proper trajectory is calculated
again. Hence, the signal response policy keeps detecting the signal state when the train
reaches the sight distance of a signal. Once a yellow or red signal aspect, or the first
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Figure 2.2: Illustration of the signal response policy with the calculated optimal
controls at each step (black dotted lines) and the actual used control (red solid line).

green signal aspect after yellow or red is detected, a new trajectory is required. Fig.
2.2 shows an example of re-calculating a train trajectory after meeting a yellow signal:

At sight distance before the signal, information about the signal aspect ahead is
available. Then a measurement of the train speed and time is taken. Denote by si

the sight distance before the signal, and x(si) the state of the train speed and time at si.
Based on the measurement, an optimal trajectory from si to si,end is calculated, where si

and si,end are respectively the start and end points of the new trajectory. si,end depends
on which kind of signal aspect is detected at si. Denote u∗i (si,si,end) as the optimal
control trajectory calculated at si. Suppose that u∗i is available after time t(si)+∆ti,
where ∆ti is a computational delay and t(si) is the travelled time at si. Then the new
trajectory u∗i is applied after t(si)+∆ti. When the train gets close to the next signal
si+1, the signal aspect ahead is available, and a new trajectory might be calculated if
the signal at si+1 is yellow or red, or the first green signal aspect after yellow or red. To
simplify the problem, a reasonable assumption is made that the calculation time of the
new trajectory is small enough so that the system can get a new trajectory before the
train passes the signal, i.e., within the sight and reaction time before the signal which
is usually about 12 s.

The calculation of the optimal controller depends on the signal aspect. As an example
of the section between si and si+1. If the signal aspect is Yellow, then the train has
to reduce speed to an approach speed (vapproach = 40 km/h in the Dutch railways).
Braking has to start immediately after passing the yellow signal because of the ATB
system. In view of this, the new trajectory after the yellow signal is calculated as
follows. The first step is to calculate the decelerating curve with maximum braking
force until the restricted speed vapproach is reached (Fig. 2.3 (a)). If speed v(si) at
si is lower than vapproach, skip this step (Fig. 2.3 (b)). The yellow signal means that
the next signal is red; therefore a stop curve is calculated after the decelerating curve.
The stop curve starts with the end point of the decelerating curve si,y (Fig. 2.3 (a)) or si

(Fig. 2.3 (b)) and ends at the next signal si+1,signal (we assume si+1 is the sight distance
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Figure 2.3: Illustrative speed-distance diagrams to optimization strategies in face of a
yellow signal aspect.

before signal si+1,signal). The terminal speed at si+1,signal is zero. A new trajectory is
calculated with the multiple-phase optimal control model and pseudospectral method
solver. vapproach is taken as the speed limit for all phases and (2.34) is chosen as the
objective function since braking after yellow signals wastes time. In summary, the
controller u∗i (si,si,end) consists of a deceleration stage (if any) and a stop stage, and
si,end = si+1,signal .

In case of a Yellow 8 aspect, the train must reduce speed to vapproach = 80 km/h (and
similar for other speed indications). If speed v(si) at si is higher than 80 km/h then
first a decelerating curve to the indicated speed must be computed with the maximum
braking force as shown in Fig. 2.3 (c). If v(si) is lower than 80 km/h then this step
can be skipped. The second step is to calculate the optimal curve over the remaining
sections, from the end point of the decelerating curve (or the train’s current position
if there is none) to the next signal si+1,signal . This curve assumes that the maximum
operation speed over the remaining section may not exceed 80 km/h, that is, the speed
limit of each phase and point should be lower or equal to 80 km/h. With this new speed
limit the optimal train trajectory is calculated using the Pseudospectral method.

When the signal aspect at si is Red, the stop curve calculated after the yellow signal
aspect at si−1 is followed until standstill. The train keeps waiting in rear of the signal
until the signal aspect improves.

If the signal at si is Green, the train can proceed if the planned train trajectory covers
train operation in the section between si and si+1. The green signal may also appear
after yellow or red signals. In that case, a new trajectory is calculated. si,end is set as
the closest next stop point. A multiple phase train trajectory model is generated with
the method in Section 2.2.3 and solved with the Pseudospectral method with (2.34) as
the objective function for each phase to minimize delay and energy consumption.

2.3.4 Green wave policy

The signal response policy above has a proper response to the different signal aspects.
But this also means that the train has to decelerate to a lower speed when meeting
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yellow signal aspects and sometimes needs to re-accelerate when the signal aspect
improves, energy-efficiency and riding comfort are not guaranteed. In practice, we like
to avoid frequent deceleration and re-acceleration, and have the train operate in a more
smooth way in order to improve passenger comfort and save energy consumption. The
green wave policy is a train operation strategy which avoids yellow signals and has the
train operate under green signals for energy-efficient operation. The green wave policy
makes the trains only encounter green signals and ultimately the railway network
achieves smoother operations and as additional benefits, reduced energy consumption
and reduced risk of signals passed at danger (Caimi et al., 2012; Corman et al., 2009).

It is based on the assumption that the states of the upcoming signals along the running
track can be predicted. Signalling states include the changes of signal aspects and
corresponding changing times. Take one signal ps along the train journey as an
example, and denote the predicted time that the signal aspect changes to green as
Tps,min. A green wave means that the train will only pass through the signal with a
green aspect. So Tps,min is the earliest possible time for the train to pass through signal
ps. That is

t(ps)≥ Tps,min, (2.35)

where t(ps) is the time for the train to pass through signal ps.

Every signal along the train journey has such a time constraint in the green wave policy.
Those constraints are included in the train path envelope. In other words, the train path
envelope not only consists of the time and speed constraints at timetable points but also
the time constraints at signals.

For the train trajectory calculation with green wave policy, the train journey is
partitioned into multiple phases by critical points of speed limits or gradients and
curves and target positions of the TPE, including signal positions. The target windows
(2.35) are the boundary conditions at the phases that start or end at a signal. (2.34)
is adopted as the cost function for each phase since the train is delayed. The optimal
model is then solved using a Pseudospectral method.

2.4 Case studies

This section demonstrates the approach with some case studies. The optimization
model and solution algorithm are implemented in Matlab based on GPOPS 4.1 (Rao
et al., 2010). The calculations were carried out on a laptop equipped with a 3.2 GHz
Pentium R processor. The Dutch corridor between Utrecht and ’s Hertogenbosch is
adopted for the case studies, which is a 50 km long double-track line with some
multiple-track parts with traffic in both directions having their own tracks (Fig.
2.4). Eight stations are located along this corridor: Utrecht (Ut), Utrecht Lunetten
(Utl), Houten (Htn), Houten Castellum (Htnc), Culemborg (Cl), Geldermalsen (Gdm),
Zaltbommel (Zbm) and ’s Hertogenbosch (Ht). The infrastructure characteristics
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Figure 2.4: The infrastructure between Utrecht and ’s Hertogenbosch.

Table 2.1: Characteristics of Sprinter and Intercity train.

Characteristic
Value

Sprinter Intercity

Train mass [t] 220 391
Rotating mass factor 1.06 1.06
Train length [m] 138 162
Maximum traction power [kW] 1918 2157
Maximum traction force [kN] 170 214
Maximum braking rate [m/s2] -0.8 -0.66

consist of an accurate description of all track sections, points, speed signs, gradients,
and signals over the entire track layout from Utrecht until ’s Hertogenbosch.

We consider two different passenger train types running on the corridor in the direction
from Utrecht to ’s Hertogenbosch: a local train (Sprinter) and an Intercity. The
characteristics of the Sprinter and Intercity are shown in Table 2.1, including train
mass, rotating mass factor, train length, maximum traction force and power, and
maximum braking rate. Since the braking rate is the only accessible data characterizing
the braking behavior, we set the braking force equal to the braking rate times train
mass. The assumed traction force and train resistance curves of both trains are shown
in Fig. 2.5.

Fig. 2.6 shows the timetable for the direction from Utrecht to ’s Hertogenbosch
within a basic hour. This timetable is based on the practical timetable in use in 2015.
Sprinter train stops at every station while the Intercity only stops in Utrecht and ’s
Hertogenbosch. Each 15 minutes a pair of a Sprinter and an Intercity departs from
Utrecht, while the Sprinter is overtaken by the Intercity at Gdm. The scheduled dwell
times of the Sprinter at all stations is assumed 1 minute except for the dwell time
in Gdm which is 6 minutes. The minimum dwell time for the Sprinter train in Gdm
remains 6 minutes while the minimum dwell times in the other stations are all assumed
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Figure 2.5: Traction force (solid line) and train resistance (dashed line) of Sprinter and
Intercity.
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Figure 2.6: Timetable for the corridor from Utrecht to ’s Hertogenbosch within a basic
hour pattern.

0.5 minutes. Table 2.2 shows the arrival and departure times of a pair of Sprinter and
Intercity (red lines in Fig. 2.6) within the basic hour pattern.

2.4.1 Case A: trajectory optimization for scheduled conditions

The first case study is about train trajectory optimization for scheduled conditions. We
discuss the train trajectory optimization based on a conflict-free traffic plan without
consideration of delays or disturbances. Assume that the Sprinter and Intercity trains
follow the timetable of Table 2.2, the focus of Case A is to calculate the optimal speed
profiles for one Sprinter and one Intercity train using the method from Section 2.2. The
steps of building up train path envelope and multiple phase optimal control model are
introduced in detail.
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Table 2.2: Basic arrival and departure times (mm:ss) of the Sprinter and Intercity from
Ut to Ht (repeating each 15 min).

Station
Sprinter Intercity

Arrival time Departure time Arrival time Departure time

Ut - -:- - 00:00 - -:- - 12:00
Utl 04:00 05:00 - -:- - - -:- -
Htn 08:00 09:00 - -:- - - -:- -
Htnc 11:00 12:00 - -:- - - -:- -
Cl 17:00 18:00 - -:- - - -:- -
Gdm 23:00 29:00 - -:- - - -:- -
Zbm 34:00 35:00 - -:- - - -:- -
Ht 44:00 45:00 40:00 - -:- -

The first step of the optimal trajectory calculation is to transform the timetable into a
train path envelope. Table 2.2 shows the Sprinter has 8 stops. Its train path envelope
uses a series of target points indicating the departure and arrival times and speed at
stop points. T PEsprinter = {(244, 0, 0), (4574, 240, 0), (4574, 300, 0), (8193, 480,
0), (8193, 540, 0), (9934, 660, 0), (9934, 720, 0), (18366, 1020, 0), (18366, 1080,
0), (26554, 1380, 0), (26554, 1740, 0), (34737, 2040, 0), (34737, 2100, 0), (48707,
2640, 0),(48707, 2700, 0)}. Each target point constraint is a triple which consists of
the stop position [m], the scheduled departure or arrival time [s], and the speed target
[m/s]. Speed target equals 0 everywhere because the Sprinter stops at each station.
For the Intercity, there is one departure event at Ut, one overtaking event at Gdm and
one arrival event at Ht. So the train path envelope includes two target points and one
flexible target window. Assuming the minimum overtaking headway time at Gdm
is 2 minutes, the time window of the Intercity to pass through Gdm is calculated as
[1500,1620] s based on the method presented in Section 2.2.2. T PEintercity = {(244,
720, 0), (26554, [1500, 1620], [0, 140]), (48707, 2400, 0)}.

The second step is to build the multiple-phase train trajectory optimal control model.
Both train trajectories are partitioned into multiple phases by the critical points of
speed limits or gradients, the signals, and the target positions of the train path envelope.
For example, Fig. 2.7 shows the partitioning of the Sprinter’s journey from Utrecht to
Houten into 22 phases. The lower black solid lines are the gradients, the red upper solid
lines are the speed limits. The low speed limits before a speed increase are extended
by the train length (cyan speed lines) which models that the train will only accelerate
after its rear has safely passed low speed limit. The dotted lines with circles indicate
the stop positions: Utrecht, Utrecht Lunetten and Houten, which are the target points
of the train path envelope. The dotted lines with crosses are the signal positions, and
the other dotted lines are the critical points of speed limits or gradients. Each segment
between two dotted lines is a phase in the multiple-phase optimal control model, with
a unique speed limit and gradient. The entire corridor from Ut to Ht is partitioned into
125 phases for the Sprinter, while the Intercity route is partitioned into 90 phases.



34 TRAIL Thesis series

1000 2000 3000 4000 5000 6000 7000 8000
−3
−2
−1
0
1
0

50

100

150

Distance [m]

G
ra

di
en

t[%
o] 

S
pe

ed
 [k

m
/h

]

Figure 2.7: Illustration of route partitioning into multiple phases.

The optimized results of state and control trajectories for the Sprinter and Intercity
trains are shown in Fig. 2.8 and 2.9, respectively. In each figure, the upper plot
shows the optimized speed profiles (solid black lines) and the static speed limits (red
horizontal lines). The lower plot shows the optimized forces, where the solid lines
refer to the traction force and the dotted lines are the braking force curves. The speed
profiles show that both train speeds stay below the speed limits and the trains stop at the
planned stop target positions, which means that safety and accurate stops are ensured.
The control regimes include using maximum traction during the outbound processes,
maximum braking force for the inbound processes, cruising at maximum speeds,
and coasting before braking to save energy, which matches the theoretical Maximum
Power-Cruising-Coast-Maximum Brake optimal control regimes. Moreover, the speed
profiles show that the trains are able to regulate their speed at the varying speed limits
via decelerating before low speed limits and accelerating before high speed limits,
where the trains only accelerate after the entire train passed the low speed limits.
From the traction and braking force curves, we can see that the maximum traction
force is used during the outbound processes. The traction force reduces gradually
once the maximum power has been reached. In the cruising regimes the traction force
constantly adjusts to maintain the optimal cruising speed, while it becomes zero during
the coasting regimes so that no energy consumption is produced. The maximum value
of the traction and braking force is kept within a range since the optimization algorithm
also takes riding comfort as a constraint.

Table 2.3 shows the results of the train trajectory optimization for the scheduled
conflict-free case. The 1st column indicates the train type, the 2nd column is the
running section in the corridor. The 3rd column shows the computed running times
within that section, which are equal to the scheduled ones implying that the train
trajectories ensure punctuality as well. The 4th column gives the energy consumption.
The 5th column is the number of phases in the multiple-phase optimal control models
and the 6th column gives the computation times. These last two columns indicate that
the computation time grows with the number of phases in this case. For the total 50
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Figure 2.8: Optimal speed trajectories (top) and traction and braking force curves
(bottom) of the Sprinter train.
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Figure 2.9: Optimal speed trajectories (top) and traction and braking force curves
(bottom) of the Intercity train.
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Table 2.3: The results of the train trajectory optimization for the scheduled conflict-free
case.

Train Section
Running
time [s]

Energy
consumption [J]

Number
of phases

Computation
time [s]

Sprinter

Ut – Utl 240 7.0923×107 13 3.80
Utl – Htn 180 8.5819×107 9 2.20
Htn – Htnc 120 3.7637×107 4 1.01
Htnc – Cl 300 2.3219×108 18 6.29
Cl – Gdm 300 1.6357×108 22 7.75
Gdm – Zbm 300 2.2234×108 21 6.75
Zbm – Ht 540 2.9830×108 38 17.25

Intercity Ut –Ht 1680 1.2023×109 90 46.60

km train trajectory, the computation time is limited within 1 minute.

2.4.2 Case B: trajectory optimization with signalling constraints

Section 2.3 shows the method of train trajectory calculation under disruptions and
small disturbances. A rescheduling process might produce a new timetable in case
of small disruptions. The new generated timetable is conflict-free, which means
signalling system would not influence train operation if the train is controlled according
to the train path envelope based on the new timetable. So a new train trajectory can be
calculated with the method in Section 2.2 without using a signal response policy or a
green wave policy. However in the presence of small delays, trains need to recover
from delays and get back to the original timetable by regulating their own speed.
Signalling influences are obvious since the headway between successive trains might
become small because of delays. Hence the focus of this case study is small delay
situations and the interactions between trains and signals. We assume that the Sprinter
with scheduled departure from Ut at :00 is delayed at this station. Both the signal
response policy and green wave policy are used to calculate the train trajectories for the
delayed Sprinter. The trajectories between every two stops are calculated separately.

For the signal response policy, a trajectory is calculated each time before the Sprinter
departs from a station. If the Sprinter has a delay, objective (2.34) is chosen to
minimize the energy consumption as well as the delay. Meanwhile, the arrival time
constraint is changed into a time window, where the lower bound is the scheduled
arrival time and the upper bound is the scheduled arrival time plus an extra time
supplement. The objective (2.34) makes the Sprinter reach the next station as soon
as possible, while the new arrival time constraint provides enough running time and
ensures that the train cannot arrive earlier than the scheduled time. With the two cost
terms, the new trajectory is able to recover the delay and have the train path return
to the scheduled one. The minimum dwell times are used when the Sprinter train is
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delayed. When the Sprinter has recovered from the delay, objective (2.23) is chosen to
concentrate on energy saving only.

During the train run, the signal response policy checks every signal aspect at the sight
distance before the signal. If the Sprinter meets a yellow signal aspect, the trajectory
is recalculated with the method from Section 2.3.3. The new trajectory may include a
decelerating curve in face of a yellow signal, a stop curve to stop the train before a red
signal, and a re-acceleration curve when the next signal aspect improves.

The green wave policy calculates the train trajectory every time before the Sprinter
departs from a station. The states of the upcoming signal aspects along the track are
predicted with the train trajectory of the train running in front of the delayed Sprinter.
With the predicted signalling information, additional time constraints at the signal
positions are added to make the Sprinter run under all green signals. The optimal
trajectories are computed using the Pseudospectral method with (2.34) as the cost
function for each phase.

Delayed Sprinter may cause a train path conflict to the Intercity that overtakes the
Sprinter at Gdm, which means that the Intercity might meet yellow signals during
the section between Ut to Gdm. New Intercity’s trajectory is re-calculated by the
signal response policy and the green wave policy. For the signal response policy, a
trajectory between Ut to Ht is calculated at once before the Intercity departs from Ut
with (2.23) as the objective because there is no delay of the Intercity at Ut. During the
train run, the signal response policy checks each signal aspect at sight distance before
the signals. Proper responses are made in face of different signal aspects with the
signal response policy. For the green wave policy, the signal states over the track from
Ut to Gdm are predicted with the trajectory of the delayed Sprinter. The corresponding
time constraints at signals are added to ensure safe separations between the two trains.
After station Gdm the Intercity train becomes the leading train of the delayed Sprinter.
The time constraints of the signals for the Intercity in the section between Gdm and
Ht depend on a previous Sprinter train in front of the Intercity instead of the delayed
one. Moreover, the Sprinter’s delay may be propagated to the Intercity at Gdm, which
means that the overtaking time of the Intercity at Gdm is changed, since the overtaking
time window for the green wave policy depends on the arrival and departure times of
the delayed Sprinter. Furthermore, the arrival time constraint at Ht becomes a flexible
target window constraint, using the scheduled arrival time as the lower bound and the
scheduled arrival time plus an extra time supplement as the upper bound. The arrival
time window is to ensure a sufficient running time to reach Ht. With the new time
constraints for signals, overtaking, and arrival events, the green wave policy calculates
the Intercity’s optimal trajectory between Ut and Gdm with objective function (2.34)
aiming at minimizing delays and energy consumption.

Fig. 2.10-2.12 show the train trajectories of the Sprinter and Intercity trains in case of
three different initial delays of the Sprinter at Ut: 210 s, 270 s and 330 s. The red lines
are the static speed limits and the black lines are the optimized speed profiles. The
trajectories are calculated with both the signal response policy (Fig. 2.10(a), 2.11(a)
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(a) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the signal
response policy.
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(b) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the green wave
policy.

Figure 2.10: Optimal speed trajectories of the Sprinter and Intercity in case of 210 s
departure delay of the Sprinter from Utrecht.

and 2.12(a)) and the green wave policy (Fig. 2.10(b), 2.11(b) and 2.12(b)). Table 2.4
gives the resulting energy consumptions from Ut to Ht and the delays at Ht for the two
trains, the three different initial delays, and the two policies.

In the case of 210 s delay of the Sprinter from Ut (Fig. 2.10), the Sprinter applies less
coasting but cruises more at the maximum speed in the early several sections. The
delay decreases gradually by the increased average speed and reduced dwell times.
Compared with the energy consumption for the Sprinter travelling from Ut to Ht in
Case A, which in total is 1.1108 ×109 J, more energy consumption is required to
recover from the delay. The delay at station Ht is zero, which means that the Sprinter
has entirely recovered from the delay and is back on schedule. The Intercity’s speed
profile using the signal response policy is the same as the one shown in Fig. 2.9.
The Intercity does not meet yellow signals in this case, so the speed profile remains
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(a) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the signal
response policy.

Ut Utl HtnHtnc Cl 20 Gdm 30 Zbm 40 Ht
0

50

100

150

Distance [km]

S
pe

ed
 [k

m
/h

]

Ut Utl HtnHtnc Cl 20 Gdm 30 Zbm 40 Ht
0

50

100

150

Distance [km]

S
pe

ed
 [k

m
/h

]

(b) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the green wave
policy.

Figure 2.11: Optimal speed trajectories of the Sprinter and Intercity in case of 270 s
departure delay of the Sprinter from Utrecht.

Table 2.4: Optimization results for various Sprinter delays from Utrecht (SR: signal
response policy, GW: green wave policy).

Initial Delay
at Ut [s]

Energy Consumption [J] Delays at Ht [s]
SR GW SR GW

Sprinter
210 1.2045×109 1.2041×109 0 0
270 1.2052×109 1.2052×109 50.81 50.81
330 1.2052×109 1.2052×109 110.92 110.92

Intercity
210 1.2023×109 1.4951×109 0 0
270 1.5938×109 1.4428×109 25.93 0
330 1.6329×109 1.3732×109 85.53 46.88
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(a) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the signal
response policy.
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(b) Optimal speed trajectories of the Sprinter (top) and Intercity (bottom) using the green wave
policy.

Figure 2.12: Optimal speed trajectories of the Sprinter and Intercity in case of 330 s
departure delay of the Sprinter from Utrecht.
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the same as the one planned before departing from Ut. However, the speed trajectory
obtained with the green wave policy is different. The train uses less coasting and thus
consumes more energy compared to the result of the signal response policy. This is
because the objective function of the green wave policy is (2.34), which trades off
minimizing energy consumptions as well as delays, while the objective function of the
signal response policy in the first stage is (2.23), which aims at minimizing the energy
consumption without consideration of delays. Moreover, the green wave policy adds
more time constraints at signal positions, which also changes the speed profile.

In the case of 270 s initial delay of the Sprinter from Ut (Fig. 2.11), more power is used
by the Sprinter to improve its average speed and reduce running time, but still some
delay remains at Ht station. The objective (2.34) is used both in the signal response
policy and green wave policy. As a result of the trade-off between minimizing energy
consumption and delay still coasting regimes are included in the Sprinter’s speed
profile. The Intercity gets affected by the signalling system because the headway with
the Sprinter becomes small in the section between Ut and Gdm due to the Sprinter’s
delay. Fig. 2.11(a) shows that the Intercity train meets a Yellow 8 signal aspect (blue
dashed lines) in the signal response policy, so that the train has to decelerate to the
approach speed (80 km/h) and proceed with a speed lower than that 80 km/h until the
next signal aspect improves. After this braking, the train re-accelerates to make up for
the delay caused by the unscheduled braking but still has some delay at Ht. Instead,
the green wave policy makes the train coast to a lower speed before the critical signals,
as shown in Fig. 2.11(b). Hence, the green wave policy avoids the yellow signals, and
in doing so avoids a delay in Ht and consumes less energy consumption, see Table 2.4.

Fig. 2.12 shows the speed trajectories in the case that the Sprinter has 330 s delay
from Ut. The optimized speed trajectories and energy consumption for the Sprinter
are the same as the results for 270 s initial delay. The speed profiles show that the
Sprinter applies full power for almost the whole corridor from Ut to Ht, with some
minor coasting regimes. The delay is again not fully recovered at Ht, and is about 60
s more than in the case of 270 s delay. With the signal response policy, the intercity
meets a yellow signal followed by a green signal afterwards (blue dashed lines in Fig.
2.12(a)). So the train decelerates to 40 km/h and then accelerates again. Moreover,
the overtaking time is affected by the Sprinter’s delay at Gdm. The results show that
the Intercity uses coasting to consume time before passing through Gdm station for a
smooth overtaking. The speed profile with the green wave policy is different. It shows
that the train uses coasting to avoid a yellow signal and for smooth overtaking as well.
This saves energy consumption, but results in a small delay in Ht, but less than with
the signal response policy.

The Sprinter’s trajectories with respect to the signal response policy and the green
wave policy are more or less the same. This is because the Sprinter is not affected
by yellow or red signals. During the runs between Ut and Gdm, sufficient separation
between the Sprinter and the previous Intercity makes sure that there is no path conflict
between the two trains. After Gdm, the Sprinter train runs after the next Intercity, but
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Figure 2.13: The scheduled (gray) and optimized (red) train paths of the Sprinters and
Intercities from Ut-Ht during an hour, including three initially delayed Sprinters by
210 s (left), 270 s (middle) and 330 s (right). The upper and lower plots correspond to
the signal response and green wave policy, respectively.

the 2 min overtaking headway is sufficient for the Sprinter to again meet no yellow
and red signals after Gdm. Besides, the signal response policy and green wave policy
use the same objective function in case of delays. So the optimization results with the
two policies are very similar. The results show that although the delay is absorbed
gradually, it is not entirely recovered and the bigger the initial delay, the more stations
get a delay. Furthermore, the delay can also be propagated to other trains. Fig. 2.11
and 2.12 show that the Intercity is delayed because of unplanned braking caused by
yellow signals and late overtaking. The energy consumption in case of delays is larger
than the one in case of the scheduled conditions.

The trajectories of the next and previous Sprinters and Intercities have also been
calculated. Fig. 2.13 shows the time-distance paths for an hour horizon, where the gray
lines are the scheduled time-distance paths and the red lines are the optimization results
obtained using the signal response policy (top) and the green wave policy (bottom).
From left to right, the subfigures show the results in case of 210 s, 270 s, and 330 s
departure delay of the Sprinter from Ut. The other train runs are not affected by the
delays except for the IC train overtaking the delayed Sprinter at Gdm. The distance-
time paths show that they track their scheduled paths well. So sufficient buffer time is
available to prevent further delay propagation for these initial delays up to 330 s. The
delay of the Sprinter reduces gradually in each policy and delay scenario. Only small
delays can be found for the IC train that overtakes the delayed Sprinter.
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2.5 Conclusions

This paper presented a model for the train trajectory optimization problem. We
formulated the real-time traffic plan as a train path envelope. The train path envelope
provides a convenient formulation of time and speed allowances at timetable points and
signals, witch can be used easily in the train trajectory calculation and updated with
changes of the timetable. Train trajectories based on the up-to-date train path envelope
ensure that the train can track the new timetable after the rescheduling process. The
train trajectory optimization problem was formulated as a multiple-phase optimal
control model, which provides an accurate train movement model with varying speed
limits and gradients along the route as well as time and/or speed constraints from the
train path envelope. A Pseudospectral method was adopted for problem solving, while
case studies show that the algorithm was able to find solutions within short times.

In addition, the train trajectory calculation in case of delays was discussed. In the
presence of disturbances, a rescheduling process may adjust the timetable. As a
consequence, the train path envelope needs to be updated and the train trajectory is
re-calculated based on the new train path envelope. Alternatively, trains may need
to recover from delays and get back to the timetable by regulating their own speed.
The trains may meet yellow or red signals since the headway between successive
trains might become small because of the delays. Two optimization strategies were
developed –the signal response policy and the green wave policy–which take different
responses to the signalling into account. The signal response policy is based on a
limited information scenario corresponding to only the signal aspect of the next signal.
The idea is to ensure that the train makes correct and quick responses to different
signalling aspects. On the other hand, the green wave policy is based on a full
information scenario corresponding to an accurate prediction of the leading train’s
dynamic behavior. Predictions of yellow or red signals can be used in target windows
to avoid early arrivals to signals and thus have a train running according to a green
wave. Results show the benefit of the predictive information of the leading train on
energy consumption and train delay.

This work has been designed for real-time train trajectory calculation to support
a driver advisory system. So smooth control profiles are the next target of our
optimization. The work is also useful for timetable optimization (Zhou et al., 2017)
or traffic flow and delay propagation analysis (Su et al., 2013) in railway networks.
Future work will be devoted to improve the computation times to seconds. Train
trajectory optimization is an important module in developing driver advisory system,
which requires fast computation times. Currently this work is based on an existing
pseudospectral tool. More work is needed to further improve the solution time for
real-time applications.
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control approach for discrete-time rescheduling in complex central railway station
areas. Computers & Operations Research 39 (11), 2578–2593.

45



46 TRAIL Thesis series

Cheng, J., Howlett, P., 1992. Application of critical velocities to the minimisation of
fuel consumption in the control of trains. Automatica 28 (1), 165–169.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2009. Evaluation of green wave
policy in real-time railway traffic management. Transportation Research Part C:
Emerging Technologies 17 (6), 607–616.

Darby, C. L., Hager, W. W., Rao, A. V., 2011. An hp-adaptive pseudospectral method
for solving optimal control problems. Optimal Control Applications and Methods
32 (4), 476–502.

Elnagar, G., Kazemi, M., Razzaghi, M., et al., 1995. The pseudospectral legendre
method for discretizing optimal control problems. IEEE Transactions on Automatic
Control 40 (10), 1793–1796.

Garg, D., 2011. Advances in global pseudospectral methods for optimal control. Ph.D.
thesis, University of Florida, Gainesville, USA.

Gill, P. E., Murray, W., Saunders, M. A., 2002. SNOPT: an SQP algorithm for large-
scale constrained optimization. SIAM Journal on Optimization 12 (4), 979–1006.

Gong, Q., Ross, I. M., Kang, W., Fahroo, F., 2008. Connections between the covector
mapping theorem and convergence of pseudospectral methods for optimal control.
Computational Optimization and Applications 41 (3), 307–335.

Goverde, R. M. P., Corman, F., D’Ariano, A., 2013. Railway line capacity consumption
of different railway signalling systems under scheduled and disturbed conditions.
Journal of Rail Transport Planning & Management 3 (3), 78–94.

Hansen, I. A., Pachl, J., 2014. Railway timetabling and operations. Eurailpress.

Howlett, P., 1996. Optimal strategies for the control of a train. Automatica 32 (4),
519–532.

Howlett, P., Pudney, P., 2012. Energy-efficient train control. Springer.

Huntington, G. T., 2007. Advancement and analysis of a gauss pseudospectral
transcription for optimal control problems. Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, USA.

Khmelnitsky, E., 2000. On an optimal control problem of train operation. IEEE
Transactions on Automatic Control 45 (7), 1257–1266.

Liu, R., Golovitcher, I. M., 2003. Energy-efficient operation of rail vehicles.
Transportation Research Part A: Policy and Practice 37 (10), 917–932.

Ma, J., Li, X., Zhou, F., Park, B. B., 2016. Parsimonious shooting heuristic for
trajectory control of connected automated traffic part II: computational issues and
optimization. Transportation Research Part B: Methodological.



Chapter 2 47

Milroy, I. P., 1980. Aspects of automatic train control. Ph.D. thesis, Loughborough
University, Leicestershire, UK.

ON-TIME, 2014. Best practice, recommendations and standardisation. Deliverable
ONT-WP01-DEL-003.

Pudney, P., Howlett, P., 1994. Optimal driving strategies for a train journey with
speed limits. The Journal of the Australian Mathematical Society. Series B. Applied
Mathematics 36 (01), 38–49.

Quaglietta, E., Pellegrini, P., Goverde, R. M. P., Albrecht, T., Jaekel, B., Marlière, G.,
Rodriguez, J., Dollevoet, T., Ambrogio, B., Carcasole, D., et al., 2016. The ON-
TIME real-time railway traffic management framework: a proof-of-concept using
a scalable standardised data communication architecture. Transportation Research
Part C: Emerging Technologies 63, 23–50.

Rao, A. V., 2003. Extension of a pseudospectral legendre method to non-sequential
multiple-phase optimal control problems. In: AIAA Guidance, Navigation, and
Control Conference and Exhibit. Austin, USA, pp. 11–14.

Rao, A. V., 2009. A survey of numerical methods for optimal control. Advances in the
Astronautical Sciences 135 (1), 497–528.

Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I.,
Huntington, G. T., 2010. Algorithm 902: GPOPS, a matlab software for solving
multiple-phase optimal control problems using the gauss pseudospectral method.
ACM Transactions on Mathematical Software 37 (2), 22.

Ross, I. M., Fahroo, F., 2004. Pseudospectral knotting methods for solving nonsmooth
optimal control problems. Journal of Guidance, Control, and Dynamics 27 (3), 397–
405.

Ross, I. M., Karpenko, M., 2012. A review of pseudospectral optimal control: from
theory to flight. Annual Reviews in Control 36 (2), 182–197.

Su, S., Li, X., Tang, T., Gao, Z., 2013. A subway train timetable optimization approach
based on energy-efficient operation strategy. IEEE Transactions on Intelligent
Transportation Systems 14 (2), 883–893.

Wang, P., Goverde, R. M. P., 2016. Two-train trajectory optimization with a green-
wave policy. Transportation Research Record: Journal of the Transportation
Research Board (2546), 112–120.

Wang, P., Goverde, R. M. P., Ma, L., 2015. A multiple-phase train trajectory
optimization method under real-time rail traffic management. In: 2015 IEEE 18th
International Conference on Intelligent Transportation Systems (ITSC). Las Palmas,
Spain, pp. 771–776.



48 TRAIL Thesis series

Wang, Y., De Schutter, B., van den Boom, T. J., Ning, B., 2013. Optimal
trajectory planning for trains–a pseudospectral method and a mixed integer linear
programming approach. Transportation Research Part C: Emerging Technologies
29, 97–114.

Wang, Y., De Schutter, B., van den Boom, T. J., Ning, B., 2014. Optimal trajectory
planning for trains under fixed and moving signaling systems using mixed integer
linear programming. Control Engineering Practice 22, 44–56.

Zhou, F., Li, X., Ma, J., 2015. Parsimonious shooting heuristic for trajectory control
of connected automated traffic part I: Theoretical analysis with generalized time
geography. arXiv:1511.04810.

Zhou, L., Tong, L. C., Chen, J., Tang, J., Zhou, X., 2017. Joint optimization of high-
speed train timetables and speed profiles: A unified modeling approach using space-
time-speed grid networks. Transportation Research Part B: Methodological 97, 157–
181.



Chapter 3

Two-train trajectory optimization with
a green wave policy

Apart from minor updates, this chapter has been published as:
P. Wang and R. M. P. Goverde, “Two-train trajectory optimization with a green-
wave policy,” Transportation Research Record: Journal of the Transportation
Research Board, 2546, 112–120, 2016.

3.1 Introduction

Optimization of train speed trajectory is an essential research topic of train operation
optimization and control, which uses optimal control theory to calculate a speed
trajectory over the running section to generally ensure punctual, safe, and energy-
efficient train behavior. The research on train trajectory optimization problem began
in the 1960s, where mostly Pontryagin’s Maximum Principle is applied to solve the
optimal control problem with energy saving as the objective (Howlett, 1996; Howlett
and Pudney, 2012). Pontryagin’s Maximum Principle proved that the optimal control
consists of four regimes, i.e., maximum traction, cruising, coasting, and maximum
(service) braking. The optimal speed profile of the train is a sequence of these
optimal regimes where the succession of regimes and their switching points depend
on constraints such as speed limits and gradients. Finding these optimal switching
points is a difficult problem except for simple cases such as a single speed limit and flat
track. Most works assume that there is a static timetable and focus on the single-train
trajectory from its current location to the next stop. In practice, the train operations
environment is complicated. For instance, a train does not always follow the scheduled
timetable. Unexpected events could cause train delays while the delayed trains may
interact on other trains’ operations. Albrecht et al. (2011) studied the energy-efficient
recovery of delays with consideration of the interactions between trains. They aim at
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finding the interaction times that allow each affected train to finish on time but they
ignore the impact from the signalling systems. For trains operating on the same line,
the following trains are not directly interacting with the leading trains, but instead
the signalling system displays specific aspects informing trains to slow down. So
the influence from signalling systems should be taken into account while studying
multiple-train operations.

This paper studies the train trajectory optimization of two successive trains on the same
line. The multiple-phase optimal control model is used for modelling the two-train
trajectory optimization problem. This model has already been used for the single-train
trajectory optimization problem (Wang et al., 2015a,b). This paper extends this work to
a two-train trajectory optimization method which is able to calculate the multiple train
trajectories simultaneously. In case of delays, a delay recovery strategy is developed
with minimizing the delays as one of the objectives. A green-wave (GW) policy is
used to make sure that all trains proceed safely under all green signals.

The paper is organized as follows. First the basic optimal control model for a single
train is formulated, followed by a description of the GW policy and the two-train
trajectory optimization model. Then an optimization strategy for recovery from delays
is presented, followed by a case study of an 18-km corridor to verify the effectiveness
of our implemented method. The paper ends with conclusions.

3.2 The single-train optimal control problem

In this section, we introduce the basic optimal control model of the dynamic movement
of a single train. Distance is adopted as the independent variable, and speed and time as
the state variables. The model of a train moving along a railway line can be formulated
as (Wang et al., 2015a)

dv
ds

=
θ1 f −θ2b−Rtrain(v)−Rline(s)

ρ ·m · v
(3.1)

dt
ds

=
1
v
, (3.2)

where

v = train velocity (m/s),
s = traversed path (m),
m = train mass (t),
ρ = rotating mass factor,
f = traction force (kN),
b = braking force (kN),
Rtrain(v) = train resistance force (kN),
Rline(s) = line resistance force (kN),
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t = traversed time (s), and
θ1,θ2 ∈ {0,1}= two binary parameters with θ1 ·θ2 = 0.

The train resistance Rtrain(v) consists of rolling, bearing, dynamic and wind resis-
tances. The line resistance Rline(s) is a function of position and consists of two
components: grade and curve resistance. They can be described as

Rtrain(v) = 0.001 ·m ·g · (α+β · v+ γ · v2) (3.3)

Rline(s) = Rgrade(s)+Rcurve(s), (3.4)

where

g = acceleration of gravity,
α, β, γ = constant coefficients,
Rgrade(s) = grade resistance, and
Rcurve(s) = curve resistance.

Train traction and braking power are limited by the adhesion between the wheels and
the rails as well as the maximum power from the engine, so that

0≤ f ≤ Fmax (3.5)

0≤ b≤ Bmax (3.6)

0≤ f · v≤ Pmax, (3.7)

where

Fmax = upper bound on the traction force,
Bmax = upper bound on the braking force, and
Pmax = upper bound on the traction power.

The train speed cannot exceed the speed limitation, as defined in Equation (3.8)

0≤ v≤Vmax(s), (3.8)

where Vmax(s) is the train speed limit, including static and temporary speed restrictions.
The riding comfort is usually measured by train acceleration, which should satisfy

Amin ≤ a≤ Amax, (3.9)

where

Amin = lower bound of acceptable riding comfort,
a = acceleration (calculated as dv/dt), and
Amax = upper bound of acceptable riding comfort.
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Each train has its own traffic plan, indicated by the timetable, which restrains train
arrival, departure and passing times at timetable points (stations, junctions, etc.). These
times can be modeled as a series of time and speed constraints at specific positions,
called the Train Path Envelope (TPE) (ON-TIME, 2014). The TPE contains two kinds
of constraints:

• Mandatory target points, which indicate that a train must reach a target position
exactly at a specified time and speed given by a triple (p, t,v), where p is the
global coordinate of the target position, and t and v are respectively the specified
time and speed.

• Flexible target windows, which indicate that a train must reach a target position
within a specific time and speed window given by (p, [tmin, tmax], [vmin,vmax]),
where p is the global coordinate of the target position, and [tmin, tmax] and
[vmin,vmax] are respectively the specified time and speed window.

TPE models have been considered before by Wang et al. (2015a); Albrecht et al.
(2013). The timetable points along a train’s route are modeled as the target positions of
the TPE, with their scheduled event time and speed set as their target times and speeds.
The scheduled event times at stops can be regarded as mandatory target points. The
passing times for a train to pass a specific station or junction are usually not limited to
an exact time or speed. So passing events can be modelled as flexible target windows.

The general problem for train trajectory optimization aims at minimizing the energy
consumption as well as ensure the riding comfort, which can be formulated as

minimize
∫ s f

s0

(ω1 f +ω2a) ds, (3.10)

where

s0 = initial and terminal position,
s f = terminal position, and
ω1,ω2 = weight factors.

The first term in Equation (3.10) models the energy consumption from the traction
force and the second term models the riding comfort. The weights ω1,ω2 can be used
to balance between the two objectives.

3.3 Green wave policy

The signalling system ensures the safety of railway traffic by guaranteeing that the
block section between two signals can host only one train. The Dutch signalling system
NS’54 uses a three-aspect two-block system with a clear (Green, G), approach (Yellow,
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Y) and stop (Red, R) aspect (Figure 3.1(a)). In case of a green signalling aspect, the
train is unaffected by the signalling system and can proceed with its normal operational
speed. A yellow signal orders a reduction in speed to a restricted speed of 40 km/h and
prepare to stop before a red signal. In addition, some short blocks are applied which
have a length shorter than the maximum braking distance from the line speed. The
NS’54 indicates progressive speed reductions before short blocks. The train has to
slow down to an indicated speed so that the train will enter the short block with a
lower speed associated to the short block length. This speed signalling is given by a
yellow signal plus a white numeral indicating the permitted speed at the next signal.
For instance in Figure 3.1(b), ’Yellow 8’ (Y8) indicates that the train has to reduce
speed to 80 km/h before the next signal, S6.

T1T2

T3T4

(b)

(a)

S1 (G) S2 (Y) S3 (R)

S4 (G) S5 (Y8) S6 (Y) S7 (R)

Figure 3.1: Examples of Dutch signaling system.

On a heavily loaded railway network, a train-required platform or route might be
blocked by another train. As a consequence, the train has to reduce speed or stop
for a while, and then re-accelerate again after the conflicting train has departed. This
situation results in an inefficient operation. The GW policy is a method to avoid these
inefficient decelerations and reaccelerations (Corman et al., 2009). This policy makes
the trains operate only on green signal aspects, with the objective that the railway
system achieves smooth, safe, punctual and energy efficient operations. To ensure
the GW policy is followed, a suitable distance is required between two successive
trains. For instance, in Figure 3.1(a), two empty blocks ahead are required to ensure
the following train, T2, operates under all green signals, while, for train T4, three empty
blocks ahead are required. A feasible control rule for the GW policy is to keep a desired
time headway between two successive trains, called the time headway rule. Let Hs be
the time headway of two successive trains passing through a signal s. Then, it must
hold that

Hs ≥ RT,s,s′+H0, (3.11)

where
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RT,s,s′ = running time of the previous train T from signal s to s′, with blocks between
signals s to s′ being the required empty blocks to ensure that the GW policy is followed;

H0 = the sum of the time for clearing and setting up signals s and s′, a certain time for
the driver to view the signal s, the overlap with full length of the train at signal s′, and
the release time to “unlock” the block in rear of signal s′; and

RT,s,s′ + H0 = the so-called blocking time of train T of the block before signal s′

(Hansen and Pachl, 2014).

3.4 Optimization model for two-train trajectory

A multiple-phase optimal control model is one in which the trajectory consists of a
collection of phases. Each phase has its own cost function, dynamic model, path
constraints and boundary conditions. The complete trajectory is obtained by properly
linking adjacent phases via linkage conditions. The total cost function is the sum of
the cost functions within each phase. The optimal trajectory is found by minimizing
the total cost function subject to the constraints within each phase and the linkage
constraints connecting adjacent phases. In the current model, the trajectory is separated
into multiple phases because of changing gradients and speed limits and specific time
or speed constraints at the TPE points. The linkage points can be: (a) target positions
of the TPE, (b) critical points of speed limits or gradients and curves, and (c) signal
positions.

Consider two successive trains, T1 and T2 (T1 being the leading train and T2 the fol-
lowing one), moving along a railway line. For each phase, let the independent variable
in phase r ∈ {1, . . . ,R} lie in the interval s ∈ [s(r)0 ,s(r)f ]. Let x(r) = [v(r)1 ,v(r)2 , t(r)1 , t(r)2 ]

and u(r) = [ f (r)1 , f (r)2 ,b(r)1 ,b(r)2 ] be, respectively, the state and control vectors in phase
r, where v(r)1 , t(r)1 , f (r)1 ,b(r)1 and v(r)2 , t(r)2 , f (r)2 ,b(r)2 are the speed, run time, traction force
and braking force of train T1 and T2. The dynamic equations in phase r ∈ {1, . . . ,R}
are

dx(r)1
ds

=
θ1u(r)1 −θ2u(r)3 −R(r)

train,1(x
(r)
1 )−R(r)

line,1(s)

ρ ·m1 · x
(r)
1

(3.12)

dx(r)2
ds

=
θ1u(r)2 −θ2u(r)4 −R(r)

train,2(x
(r)
2 )−R(r)

line,2(s)

ρ ·m2 · x
(r)
2

(3.13)

dx(r)3
ds

=
1

x(r)1

(3.14)

dx(r)4
ds

=
1

x(r)2

, (3.15)

where
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R(r)
train,1(x

(r)
1 ) = train resistances of train T1 in s ∈ [s(r)0 ,s(r)f ],

R(r)
line,1(s) = line resistances of train T1 in s ∈ [s(r)0 ,s(r)f ],

m1 = mass of train T1,
R(r)

train,2(x
(r)
2 ) = train resistances of train T2 in s ∈ [s(r)0 ,s(r)f ],

R(r)
line,2(s) = line resistances of train T2 in s ∈ [s(r)0 ,s(r)f ], and

m2 = mass of train T2.

The trains behavior in phase r ∈ {1, . . . ,R} should also satisfy the path constraints in
Equations (3.5) through (3.9). Additional details can be found in Wang et al. (2015b).

The boundary of each phase could be the target positions of the TPE, the critical points
of speed limits or gradients and curves, or signal positions. The critical points of speed
limits or gradients and curves have no specific boundary constraints; however, each
phase has its own specific values of speed limit, gradient and curve. For each target
point of the TPE, a time and speed allowance is needed to restrain train operations, and
this allowance can be formulated as the boundary constraints. Take train T1 and target
points pt as an example, where pt is the boundary between two adjacent phases rt and
rt +1, rt ∈ {1, . . . ,R−1}. If a mandatory target point constraint exists at pt , then

x1(pt) = vT1,pt , x3(pt) = tT1,pt , (3.16)

where vT1,pt is the target speed of train T1 at pt , and tT1,pt is the target time of train T1

at pt .

If a flexible target window constraint exists at pt , then

vT1,pt ,min ≤ x1(pt)≤ vT1,pt ,max, tT1,pt ,min ≤ x3(pt)≤ tT1,pt ,max, (3.17)

where vT1,pt ,min, vT1,pt ,max, tT1,pt ,min and tT1,pt ,max are the minimum and maximum speed
and time for train T1 at pt .

Because pt is the boundary between two adjacent phases, Constraints (3.16) and (3.17)
work as the terminal boundary constraints for phase rt as well as the initial boundary
constraints for phase rt + 1. Likewise, Constraints (3.16) and (3.17) also hold for the
TPE target points of train T2 with different values.

Additional boundary constraints at signal positions are needed to ensure that both train
operate under all green signals (i.e., keep sufficient time headway). For example,
at signal ps, with ps the boundary between two adjacent phases rs and rs + 1, rs ∈
{1, . . . ,R−1}, we have

x4(ps)− x3(ps)≥ RT1,ps,p′s +H0, (3.18)

where RT1,ps,p′s is the estimated running time of train T1 from signal ps to p′s, which
are the signals before and after the empty blocks to ensure the GW policy. Constraint
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(3.18) works as the terminal boundary constraint for phase rs as well as the initial
boundary constraint for phase rs +1.

For each two sequential phases r and r+ 1, a set of conditions is used to connect the
trajectories in phase r and r+1. In most cases, the state variables must be continuous
at the boundary between phase r and phase r + 1. Therefore, the following linkage
conditions must be satisfied for r ∈ {1, . . . ,R−1}:

s(r)f − s(r+1)
0 = 0 (3.19)

x(s(r)f )− x(s(r+1)
0 ) = 0. (3.20)

One exception occurs if the linkage point of phase r and r+ 1 is the stop point for a
train. Take train T1 as an example, if s(r)f (or s(r+1)

0 ) is a stop point of train T1, then

x3(s
(r)
f ) and x3(s

(r+1)
0 ) represent, respectively, the arrival and departure time of train T1

and, in normal cases
x3(s

(r+1)
0 )− x3(s

(r)
f ) = D

T1,s
(r)
f
. (3.21)

where D
T1,s

(r)
f

is the dwell time of train T1 at s(r)f (or s(r+1)
0 ).

In normal conditions, the objective is more smooth, punctual and energy-efficient
train operation. With punctuality we mean that the train arrives at and departs from
the stops at the times indicated by the timetable, which can be achieved by setting
mandatory target arrival and departure times and speeds to the arrival and departure
events. Smoothness and energy-efficient operation can be formulated in the objective
function. The cost functional J(r) in phase r ∈ {1, . . . ,R} is

J(r) =
∫ s(r)f

s(r)0

[
ω1

(
u(r)1 +u(r)2

)
+ω2

(
a(r)1 +a(r)2

)]
ds, (3.22)

where a1 and a2 are, respectively, the acceleration of train T1 and T2.

In case of delays, the objective is to recover from the delays as well as save energy
consumption and operate in a smooth way. In this case the objective function J(r) in
phase r ∈ {1, . . . ,R} becomes

J(r) = ω3

(
x3(s

(r)
f )+ x4(s

(r)
f )
)
+

∫ s(r)f

s(r)0

[
ω1

(
u(r)1 +u(r)2

)
+ω2

(
a(r)1 +a(r)2

)]
ds,

(3.23)
where ω3 is a weight factor for the delay.

In case of delays, the constraints at the stops become flexible target windows instead
of mandatory target points because there is no guarantee that the delayed train can
arrive at (or depart from) stops on time. However the train is not expected to arrive (or
depart) earlier than its scheduled time. So the flexible time window of the arrival (or
departure) event can be [ta,∞] ([td,∞]), where ta and td are the scheduled arrival and
departure time.
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The minimum dwell time at a stop should be respected. Take train T1 for example, for
two sequential phases r and r+ 1 where the connecting point is a stop point for train
T1. Then a constraint is adopted for the dwell time:

D
T1,s

(r)
f ,min

≤ x3(s
(r+1)
0 )− x3(s

(r)
f )≤ D

T1,s
(r)
f ,max

, (3.24)

where D
T1,s

(r)
f ,min

and D
T1,s

(r)
f ,max

are the minimum and maximum dwell time of T1 at

s(r)f .

The objective of the R-phase problem of train trajectory optimization is to minimize
the cost function over all phases:

J =
R

∑
r=1

J(r), (3.25)

subject to Dynamic constraints, Path constraints, Boundary constraints, and Linkage
condition.

Pseudospectral methods can be applied for solving multiple-phase optimal control
problems (Rao, 2003). There exist several commercial and free packages that
implement the pseudospectral method. We adopt GPOPS (Rao et al., 2010) as the
solver in this paper.

3.5 Case studies

The authors considered a case of two successive trains of the same type (T1 being
the leading train, T2 the following train) operating on a railway line 18 km long that
is based on the line from Houten to Geldermalsen in the Netherlands. The static
parameters of the train type used in the case studies are listed in Table 3.1. The
traction force and train resistance curves are shown in Figure 3.2. Because the braking
deceleration is the only accessible data for the braking characteristic, the braking force
equals braking deceleration times train mass. The trains depart from station S1, where
the line from S1 to S4 includes 4 stations (S1, S2, S3 and S4), 15 signals, 6 short blocks
and 8 long blocks (Figure 3.3). The trains serve each station with a scheduled dwell
time of 1 min. The minimum dwell times are 0.5 min. The departure headway time at
station S1 is 4 min, while the running times of both trains are the same. The running
times between S1 and S2, S2 and S3, and S3 and S4 are 2, 5 and 5 min, respectively.
The proposed method was tested in four cases. In the first, the two trains operate
according to the timetable, while in the other three different input delays are added to
train T1 at departure station S1 to test the delay recovery ability. The calculation has
been carried out with GPOPS 4.1 on a laptop equipped with a 3.2 GHz Pentium R
processor.
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Table 3.1: Basic parameters Of the train

Property Value
Train mass: m [t] 220
Mass factor: ρ 1.06
Maximum traction power: Pf ,max [kW] 1918
Maximum traction force: Fmax [kN] 170
Maximum braking deceleration: Amin [m/s2] -0.8
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Figure 3.2: Traction force (solid line) and train resistance (dashed line) of the train.

S4S3S2S1

Figure 3.3: The infrastructure structure.

Figure 3.4 shows the trajectories of both trains for the four different cases. Figure 3.4
(a) and (b) shows, respectively, the optimized speed distance profiles for train T1 and
T2, where the red line indicates the speed limits. In Figure 3.4(c), the red dashed lines
are the (linearized) scheduled timetable of both trains, while the solid lines are the real
time-distance paths for train T1 and T2. For the first case, Equation (3.22) is chosen as
the objective function with ω1 = 1 and ω2 = 100. These weights give more priority to
energy consumption than to riding comfort (note the difference in scale of force and
acceleration). The speeds are clearly below the maximum speed limits, and the arrival
and departure times at each stop are equal to the scheduled ones. Moreover, both
trains use coasting regimes between almost every two stations to make full use of the
given running times and ensure a smooth operation. Because the departure headway
time is large enough, the following train T2 is not affected by the first train and the
speed-distance curves of both trains are the same.

In the delayed cases, three delays (1, 2 and 3 min) are added to train T1 at station
S1. Equation (3.23) is chosen as the objective function with ω1 = 1, ω2 = 100 and
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Figure 3.4: The optimized trajectories of train T1 and T2 in case of 0 min (I), 1 min (II),
2 min (III), and 3 min (IV) initial delay of train T1; (a) The optimized speed-distance of
train T1, (b) The optimized speed-distance of train T2, and (c) The time-distance paths
of train T1 and T2.

ω3 = 1000, and makes a tradeoff between the objectives of energy saving, riding
comfort and delay recovery. Figure 3.4 shows that the delayed train tends to use less
coasting and more power to overcome delays and that the following train is influenced
because the headway between the two train becomes small in case of delays. Table 3.2
shows the corresponding total running time, total dwell time, energy consumption and
computation times. The four rows correspond to initial delays of 0, 1, 2, and 3 min.
The third column shows the total running time between station S1 and S4, and the
fourth column gives the cumulative dwell time at station S2 and S3. The fifth column
shows the delays of both trains at station S1 compared with the scheduled departure
time. The delay of train T1 is the input while the delay of train T2 is caused by the delay
of train T1. The sixth column reports the delays of both trains at station S4. The last
two columns are the energy consumption and the computation times.

Comparison of the input and output delays of train T1 shows that the delayed train
T1 tends to use less coasting and reduced dwell times to recover from delays. The
following train, T2, is influenced by the delayed previous train because a certain
headway is required between the two successive trains to ensure safety and the GW
policy constraints (Equation (3.18)). The delay is reduced gradually by reducing the
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dwell and running times. Comparison of the energy consumption of the four different
cases in Table 3.2 shows that more energy consumption is required when the trains
tend to recover from delays. This is because the trains use less coasting for energy
saving in case of delays. The computation times of the four cases are shown in Table
3.2, and they range between 1 to 2 min.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

200

400

600

800

1000

1200
T

im
e 

[s
]

Distance [m]

Figure 3.5: Blocking time diagram of train T1 (blue) and T2 (black).

In some cases (Figure 3.4 IV.(b)), train T2 needs to decelerate for a while before some
signals to make sure that those signals show green aspects when the train passes.
Otherwise, train T2 will meet yellow signal aspects and should brake and proceed at a
restricted speed of 40 or 80 km/h. Figure 3.5 shows the blocking time diagram of both
trains in case of a 3-min delay of train T1 at station S1. The blocking times of both
trains don’t overlap each other, which proves that the two trains have no conflicts, and
the following train T2 proceeds under all-green signals.

Instead of optimizing both train trajectories simultaneously, an alternative approach
can be pursued in which, first, the leading train is optimized and, then, the following
train using the GW policy. The result can then be compared with the global
optimization. The authors use the single-train trajectory optimization method with
consideration of signalling constraints proposed by Wang et al. (2015b). First the
leading train was optimized with objective function (3.23) using ω1 = 1, ω2 = 100 and
ω3 = 1000, and then the following train was optimized with the signalling constraints
from the leading train. The case of the two trains running from S1 to S4 with train
T1 having 3 min departure delay at station S1 was then considered. The result is
shown in Figure 3.6. The speed profiles look smoother compared to the results of
case IV in Figure 3.4. The delays of the trains at station S4 are now 80 s and 70.3 s,
and the energy consumption of both trains is 1.594× 109 J. The delay of the leading
train is now slightly smaller, but the delay of the following train and the total energy
consumption are larger. The distance between the two trains using the joint trajectory
optimization method is smaller than the one obtained from the successive optimization.
With smaller distance headway, the delay time of the following train is smaller than the
result calculated by the successive optimization. The computation times for the joint
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and successive optimization are similar. More tests are required to see how the models
scale up to multiple trains and different corridors.
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Figure 3.6: The optimized trajectories of train T1 and T2 in case of 3 min initial delay
of train T1 by optimizing the train trajectories one by one; (a) The optimized speed-
distance of train T1, (b) The optimized speed-distance of train T2, and (c) The time-
distance paths of train T1 and T2.

Different values of ω1, ω2 and ω3 results in different optimal solutions. Figure 3.7
shows the results of the total delay at station S4 and the energy consumption with
ω1 = 1, ω2 = 100 and different values for ω3. The initial delay of train T1 is 3 min.
With increasing weight ω3, delay is reduced while energy consumption increases. The
delay reduction stabilizes for weights ω3 ≥ 1000, with a fixed positive delay, which
indicates that the time supplements are not sufficient to recover the 3-min initial delay
entirely.
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Figure 3.7: Delay and energy consumption for different ω3.

3.6 Conclusions

This paper presented a model for the computation of optimal train trajectories of two
successive trains on the same line. We described a detailed model for the single-
train optimal control problem and extended it to a two-train optimal control problem
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adopting a multiple-phase optimal control problem to formulate the dynamic behaviors
of the two successive trains. The green wave policy was adopted to ensure that the
trains proceed under all green signals. A method in case of delays was also developed
by extending the objective functions and constraints. The objective was to ensure
a smooth, safe, punctual and energy-efficient train operation. The multiple-phase
optimal control problem was solved using the Gauss Pseudospectral Method. A case
study of two successive trains running on a line with various initial delays showed the
benefit of the green wave policy and the ability of delay recovery. Future work will be
devoted to improve the computation times to seconds and consider more interactions
(overtaking, meeting, etc.) and more trains simultaneously.
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Chapter 4

Multi-trains trajectory optimization
for energy efficiency and delay
recovery on single-track railway lines

Apart from minor updates, this chapter has been published as:
P. Wang and R. M. P. Goverde, “Multi-trains trajectory optimization for energy
efficiency and delay recovery on single-track railway lines,” Transportation
Research Part B: Methodological, 2017, 105: 340-361.

4.1 Introduction

Delays affect the performance of railway networks and the quality of service provided
to passengers and shippers. When delays occur, drivers are responsible for getting the
delayed trains back to the original or rescheduled timetable. The process of getting
delayed trains back to schedule is called delay recovery. It is more energy-efficient to
recover the delay gradually over several legs of the journey than to recover quickly
(Albrecht et al., 2015). However, the delayed train will often interact with other
trains, causing a further delay propagation through the system and thereby impacting
the energy-efficiency of many trains. In particular, on single-track lines, trains have
limited possibility of meeting and overtaking. Trains cannot enter the single-track
lines that are occupied by opposite trains, and trains in the same directions must
follow each other’s path sequentially, until an overtaking or passing track is reached
at stations or sometimes at loops. Those limitations increase the possibility of delay
propagation. Therefore, even the experienced drivers find it hard to achieve an efficient
train operation once the train is delayed or affected by delayed trains on the single-track
lines.

67
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To improve the performances of train drivers, train driver advisory systems (DASs) are
proposed, which provide train drivers with information and driving advice and help
them to drive the train in an efficient manner. A DAS needs an optimal train trajectory
(speed-distance curve and time-distance curve along the train’s journey), based on
which driving advice is computed accordingly. The train trajectory optimization
(TTO) problem is to find the optimal trajectory by optimal control theory. Generally,
the optimization aims at minimising the energy consumption and maintaining the
timetable, with consideration of the constraints of train characteristics, track gradients,
curves and speed limits. In the last few decades, TTO has drawn a lot of attention in the
literature. Wang et al. (2011), Albrecht et al. (2016a), and Scheepmaker et al. (2017)
provide comprehensive surveys from different views. Wang et al. (2011) reviewed the
numerical approaches for solving the train trajectory optimization problem. Albrecht
et al. (2016a) focused on the state-of-the-art of using Pontryagin’s Maximum Principle
(PMP) to find the key principles of optimal train control. Scheepmaker et al.
(2017) provided surveys on the energy-efficient train control and energy-efficient train
timetable problems. The solution methods of the TTO problem can be divided into
two categories: indirect methods and direct methods (Wang et al., 2011). PMP
is a typical indirect method, which has been successfully used in train trajectory
optimization (Albrecht et al., 2016a). With the application of PMP, the TTO problem
is converted to a problem of finding the optimal sequence of optimal control regimes
(maximum power, cruising, coasting, and maximum braking) and the switching points
between the regimes for a range of different circumstances and train types. Finding the
optimal sequence and switching points is a difficult problem except for simple cases
such as a single speed limit and flat track (Albrecht et al., 2016b). Direct methods
were developed more recently and expanded quickly because of their advantages over
indirect methods (Scheepmaker et al., 2017). Direct methods transcribe a optimal
control problem to a nonlinear programming problem (NLP), which is then solved
by existing NLP solvers. For instance, pseudospectral methods have been successful
applied by Wang et al. (2013); Wang and Goverde (2016a) and Ye and Liu (2016) in
solving the TTO problem.

Under delay circumstances, the interactions from neighbouring trains cannot be
ignored, which have drawn attention recently. Some researches reflect the interactions
as dynamic speed limits on train movements imposed by signaling systems. Albrecht
(2009) considered the driving strategies to move a train through conflict areas. The
target was to slow down the train before critical conflicts (red signals) and then pass
critical infrastructure elements with shortest possible delay, in this way, reducing
energy costs and avoiding unscheduled stops. Three driving strategies – reactive
driving, optimal anticipating driving, and safe anticipating driving – were proposed
to achieve this target. Yun et al. (2011) provided solutions to identify the optimal
approaching speed for the optimal anticipating driving strategy. The optimal speed
enables the train to leave the conflict area as soon as possible. A heuristic method
was then developed to attain the optimal speed trajectory. Wang and Goverde
(2016a) focused on the single-train trajectory optimization problem with consideration
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of dynamic speed limits imposed by the signalling system. Two different driving
strategies, a signal response policy and green wave policy, were developed to respond
to signals and to avoid yellow signals. The signal response policy refers to actively
adjusting the train speed according to the signal aspects. A green wave policy means
anticipating to slow down the train in front of a conflicting area to make the train
face only green signal aspects. A different green wave policy was first proposed in
(Corman et al., 2009), in which the green wave policy allows trains to wait only at
their scheduled stops. Wang and Goverde (2016a) extended the green wave policy by
allowing regulating speeds and running times for more efficient driving. The case
studies in (Wang and Goverde, 2016a) show that a green wave policy saves more
energy consumption than the signal response policy.

Other researchers optimize multi-train trajectories together with consideration of the
interactions between neighbouring trains. Albrecht et al. (2011) provided a numerical
algorithm to find interaction times that allows each affected train to finish on time
wherever possible and minimises total energy consumption for the whole set of trains.
The interaction times can be transmitted to DASs on each of the trains (trajectory
optimization modules), which will set strategies to meet these times. Further work
is required to extend to situations where interaction locations and sequences may
change. Yang et al. (2012) provided a mathematical model for multiple trains on
a railway network. The model aims at minimizing total energy consumption and
running times of all trains, while satisfying the constraints to ensure the feasibility
of multi-train operations, which include headway constraints, vehicle speed limit
constraints, passenger riding comfort constraints, and dwell time constraints. The
control strategies of every involved train are the decision variables of the multi-train
model. A genetic algorithm (GA) integrated with simulation was designed to find
the optimal control strategies. Zhao et al. (2015) studied the trajectory optimization
problem of multi-trains, considering the trade-off between reduction in train energy
usage against increases in delay. The research focused on following trains with a
fixed block signaling system in a delayed situation. A multi-train simulator and
three searching methods, namely, enhanced brute force, ant colony optimization, and
a genetic algorithm, were adopted to find the optimal trajectories. A case study of
four following trains showed that the algorithm is able to reduce energy consumption
and interactions between trains. However, the three searching methods cost long
computation times to find optimal solutions, which needs future improvement for real-
time application. Yin et al. (2016, 2017) addressed the train schedule and reschedule
problem with dynamic passenger demands, with consideration of multiple trains’
energy-efficient speed profiles. Wang and Goverde (2016c) studied the delay recovery
problem of the two successive trains in the same direction. Wang and Goverde (2016c)
studied the delay recovery problem of the two successive trains in the same direction.
A two-train trajectory optimization method was developed to compute two trains’
trajectories simultaneously, which takes into account not only each train’s operational
constraints, but also the constraints on keeping safe distances between the two trains.
The green wave policy was adopted to ensure that the trains run safely under all
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green signals to avoid frequent stop/start behavior and thus improving train operation
efficiency.

Summing up past research on trajectory optimization under delay circumstances, most
of the previous studies focus on trains in the same direction. Certain headways between
trains are necessary to avoid conflicts, while the energy efficiency relies on how do the
trains pass through conflict areas (yellow and red signals). Nevertheless, the trajectory
optimization for a train on single-track lines is more complex, because the train has
additional restrictions of meeting and overtaking. Opposite trains cannot occupy a
single-track section at the same time. In practice, the dispatching process is first used
to determine optimal orders and meet-pass plans, after which drivers adjust the train
speed to follow the new plan. Cacchiani et al. (2014) provided a review of recovery
models and algorithms for real-time rescheduling. As for the single-track railway
scheduling problem, one of the first researches started in the 1970’s, with the work by
Szpigel (1973). Szpigel (1973) developed a linear programming model to determine
the best meeting and overtaking positions and used a branch and bound method to
resolve the conflicts. Minimising the sum of the travel times was the objective and only
small problems were tested. Jovanović and Harker (1991) introduced the Schedule
Analysis System (SCAN), which deals with scheduling problems on single and double
track segments. It is based on a compound method of optimization and simulation.
Higgins et al. (1996) gave a mathematical programming model to schedule trains over
a single line track. The objective function is to minimize a combination of delays and
energy consumption. The priority of each train in a conflict depends on an estimate of
the remaining crossing and overtaking delay, as well as the current delay. This priority
is used in a branch and bound procedure to allow an optimal solution to reasonable
size train scheduling problems to be determined efficiently. Meng and Zhou (2011)
provided a dispatching model for a major service disruption on single-track lines. The
model incorporates different probabilistic scenarios in the rolling horizon decision
process. A multi-layer branching solution procedure was developed to generate and
select meet-pass plans under different stochastic scenarios. Umiliacchi et al. (2016)
introduced a simulation-based method that minimizes the effects of a single delay on
the journeys of two trains and on the trains’ energy consumption while satisfying time
constraints on a single-track railway line.

It can be seen that the aim of rescheduling on single-track lines is to determine where
trains will meet and pass to minimize train delays or deviations from the planned
schedule while satisfying a set of operational constraints. The train movement process
(train trajectory) is rarely taken into account during the dispatching process, which
results in two major shortcomings: first, the way of driving a train may influence the
decision to be made during the dispatching process. Second, the delays of a train after
an initial delay are different for different driving strategies. A bad delay estimation
may result in a bad prediction of future conflicts. D’Ariano et al. (2007); Mazzarello
and Ottaviani (2007); Luthi (2009) and Caimi et al. (2011) proposed approaches for
anticipating driving in the dispatching process, and showed that those approaches
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contribute to further decreasing delays and increasing energy efficiency.

Recognizing that limited attention has been devoted to the anticipating driving in the
dispatching process especially on single-track lines, this research restricts attention to
opposite trains on a single-track line which meet at multiple-track stations, and aims to
find a feasible meet plan and energy-efficient speed profiles for opposite trains under
delayed conditions. It is assumed that trains in the same direction do not overtake, and
the delays are relatively small so that the cancelation of trains in the timetable is not
necessary, but the meet locations and the train sequences may change. The work is
developed on the train trajectory optimization level. It firstly aims at finding feasible
time windows at stations, which delayed trains are able to go through. The time
windows and corresponding speed windows are formulated as timetable constraint sets
(TCSs). Then a multi-train trajectory optimization (MTTO) method is developed to
find trains’ trajectories within the TCSs. The MTTO model takes into account not only
every single train’s constraints of dynamic movement equations, vehicle parameters,
and varying speed limits and gradients, but also constraints to avoid conflicts between
following trains and opposite trains. The MTTO method can calculate speed profiles
for multiple trains simultaneously, and choose proper meeting locations for opposite
trains for the benefit of reducing delays and energy costs.

The MTTO is formulated as a multiple-phase optimal control problem (Rao et al.,
2003). The multiple-phase optimal control problem formulation has been used first in
Wang et al. (2015); Wang and Goverde (2016a) for single-train trajectory optimization,
in Wang and Goverde (2016c) for two following trains in the same direction, and
then in Wang and Goverde (2016b) for two opposite trains on single-track lines. The
multiple-phase optimal control problem has the advantage of accurately incorporating
varying gradients, curves and speed limits, timetable constraints, and railway network
topology. This work is an extension of Wang and Goverde (2016b), which dealt
with two punctual opposite trains. This paper discusses the case of train trajectory
optimization after a delay occurs. Compared with Wang and Goverde (2016b), the
present paper has two improvements: (1) we relax the assumption that the train
sequencing within single-track segments is fixed which works for on-time trains, but
not for delayed conditions. So the formulation in this paper allows changing the train
orders at the open tracks. (2), we relax the assumption of equal lengths of parallel
station tracks and thus consider different lengths of station tracks, which provides a
more accurate model for multiple-track stations and for train trajectory calculation.
The multiple-phase optimal control problem is solved efficiently by a pseudospectral
method (Rao et al., 2010), which transforms the problem into a nonlinear programming
model that is solved by a nonlinear programming solver.

The MTTO model has two objectives: minimizing delays and saving energy consump-
tion. The priorities of the two objectives are different under different circumstances.
In order to select proper optimization objectives, three different driving strategies
– the delay-recovery strategy, energy-saving strategy and on-time strategy – are
proposed. A driving strategy selection algorithm is developed in order to find the best
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driving strategy for each running section (The running section refers to a train route
between two stops.). The proposed method is demonstrated by application to case
studies of opposite-trains running on a Dutch partially single-track railway corridor
with different initial delay scenarios. For simplicity, we mainly address a two-train
trajectory optimization problem for two opposite trains on a single-track corridor and
subsequently show a case of multi-trains. The results show that our method is able to
produce optimal timetables and speed profiles of opposite trains simultaneously. The
meeting locations and times are chosen during the optimization process automatically
where energy-efficient and conflict-free driving as well as delay recovery requirements
are considered.

The remainder of the paper is organized as follows: Section 4.2 provides a description
of optimization objectives and operational constraints of train movements. Section
4.3 introduces the timetable constraint set formulation in case of delays. Section 4.4
formulates the multi-train trajectory optimization as a multiple-phase optimal control
problem, and presents three driving strategies and a corresponding driving strategy
selection algorithm. Section 4.5 illustrates the proposed approach in case studies.
Finally Section 4.6 ends the paper with conclusions.

4.2 Problem description

A single-track railway line consists of a single-track line with intermediate multiple-
track stations where trains can meet and overtake, see Fig. 4.1. Consider a single-
track corridor between kilometer point K0 and K f (K0 < K f ). The stations in the
direction from K0 to K f are named with successive numbers 1,2, . . . ,Z. Denote by
Z = {1,2, ...,Z} the set of stations where Z is the number of stations between K0 and
K f . Denote by I the set of trains operating on this corridor, Id the set of trains in
the downstream direction from station 1 to Z and Iu the set of trains in the upstream
direction from station Z to 1, and Zi the stations on train i ∈ I’s journey.

z+1z……

0K fK

1 Z2 ……

downstream upstream

Figure 4.1: Opposite trains on a single-track railway line between K0 and K f .

For a train i ∈ I, it is requested by the timetable to arrive at and depart from stations on
specific times. Moreover, the passing-through times at non-stop stations should stay
within specific time windows to avoid influences on other trains. For a mathematical
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description, classify a train’s event at a station into three types: arrival, departure and
pass-through. Denote by e an event e ∈ {a,d, p}, where a refers to arrival, d refers
to departure, and p refers to pass-through. For train i ∈ I, the timetable constraint set
(TCS) is written as

TCSi =
{(

ki,z,e, [tmin
i,z,e, t

max
i,z,e ], [v

min
i,z,e,v

max
i,z,e ]

)}
z∈Zi

, (4.1)

where ki,z,e is the location for train i at station z of event e, and tmin
i,z,e, tmax

i,z,e , vmin
i,z,e and vmax

i,z,e
are respectively the lower and upper bounds of time and speed for e at ki,z,e. Define
KTCSi as the set of timetable points of train i. If ki,z,e is a stop station, the speed window
[vmin

i,z,e,v
max
i,z,e ] = [0,0], and ki,z,a = ki,z,d .

Let distance be the independent variable because gradients and speed limits occur as
functions of distance rather than of time. For train i ∈ I, the generic equations of train
motion can be written as follows:

dvi(si)

dsi
=

θ1 fi(si)−θ2bi(si)−Rtrain,i(vi)−Rline,i(si)

ρi ·mi · vi(si)
,

dti(si)

dsi
=

1
vi(si)

,
(4.2)

subject to 

0≤ fi(si)≤ Fmax
i ,

0≤ bi(si)≤ Bmax
i ,

0≤ fi(si) · vi(si)≤ Pmax
i ,

0≤ vi(si)≤V max
i (si),

Amin
i ≤ dvi(si)

dti(si)
,≤ Amax

i ,

(4.3)

{
vmin

i,z,e ≤ vi(ki,z,e)≤ vmax
i,z,e ,

tmin
i,z,e ≤ ti(ki,z,e)≤ tmax

i,z,e , ∀ z ∈ Zi, ki,z,e ∈KTCSi,
(4.4)

Dmin
i,z ≤ ti(ki,z,d)− ti(ki,z,a)≤ Dmax

i,z , ∀ z ∈ Zi, ki,z,a,ki,z,d ∈KTCSi. (4.5)

Equations (4.2) present the dynamic equations of train i, where si is the traversed
distance [m], vi(·) is the train velocity [m/s], ρi is the rotating mass factor, mi is
the train mass [t], fi(·) is the traction force [kN], bi(·) is the braking force [kN],
Rtrain,i(vi) = αi +βi · vi + γi · v2

i is the train resistance force [kN] with coefficients αi,
βi and γi, Rline,i(si) is the line resistance force [kN], which is a function of position
and consists of grade resistance and curve resistance, ti(·) is the traversed time [s],
and θ1,θ2 ∈ {0,1} are two binary parameters with θ1 · θ2 = 0. Inequalities (4.3) are
the path constraints of train i’s vehicle performance characteristics, speed limits and
riding-comfort. Fmax

i , Bmax
i and Pmax

i are the maximum traction force, maximum
braking force and maximum traction power of train i. V max

i (si) is the speed limit at
position si, including static and temporary speed restrictions. Amin

i and Amax
i are the
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lower and upper bound of acceptable accelerations. Inequalities (4.4) are the TCS
constraints which represent time and speed constraints of every timetable point in
KTCSi . Inequality (4.5) is the dwell time constraint of train i at every stop station,
where Dmin

i,z and Dmax
i,z are respectively the minimum and maximum dwell times.

In case a delay occurs, the train driver must get the delayed train back to the pre-defined
timetable. The train trajectory optimization problem is to find a series of control laws
for the train traction and braking forces and an optimal speed profile, which reduce
delays as well as minimize the energy consumption, to guide drivers in train control.
The train trajectory optimization problem for a single train i∈ I can be formulated with
a cost function

min Ji = ωi · ti(K f
i )+

∫ K f
i

K0
i

fi(si) dsi, (4.6)

subject to dynamic constraints (4.2), path constraints (4.3), TCS constraints (4.4),
and dwell time constraints (4.5). The cost function (4.6) and constraints (4.2)-(4.5)
constitute a single-train trajectory optimization (STTO) model for a train i. In Equation
(4.6), K0

i and K f
i are respectively the start and end positions of train i’s journey between

K0 and K f , ti(K
f

i ) is the travelled time at K f
i , and ωi is a weight factor. The first item in

Equation (4.6) aims at reducing total running time, which in turn reduces delays with
the scheduled arrival time as the lower bound of the time window at K f

i (see Section
4.4). The second term aims at saving energy consumption. The weight ωi reflects the
trade-off between the two objectives of delay recovery and energy efficiency. If ωi = 0
then Ji is used for energy-efficient driving.

In case train i runs on schedule, the TCS time constraints at stop stations are the
scheduled arrival and departure time targets, while the time windows at non-stop
stations equal the scheduled passing-through time windows. The STTO model focuses
on reducing energy consumptions with ωi = 0. However, the delay circumstances are
different. First, the TCS cannot be set according to the schedule times, because the
train movement has deviated from its time plan and the scheduled TCS may be not
feasible. The method of computing the TCS for delay cases is presented in Section
4.3. Second, the first priority of a delayed train is to recover from delays instead of to
reduce energy consumption. Energy-efficient driving is possible in case the train has
got back to the schedule, or in case the train is waiting for another train. Last but not
least, a delayed train may impact other trains, causing conflicts and delay propagation.
It is necessary to avoid conflicts and reduce delay propagation. In order to avoid
conflicts, three more constraints should be noticed: (1) a time interval between every
two adjacent trains in the same direction is required for safe train separation (Fig. 4.2
1©), (2) for opposite trains, there are two important types of headway requirements:

(i) “depart-arrive” headway, the headway between the departure of a train and the
arrival of an opposing train from the same line (Fig. 4.2 2©); and (ii) “arrive-depart”
headway, the headway between the arrival of a train and the departure of an opposing
train towards the same line (Fig. 4.2 3©), and (3) opposite trains cannot travel on a
single-track section between two adjacent stations at the same time, otherwise a head-
on conflict occurs (Fig 4.2. 4©).
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Figure 4.2: Necessary headways between trains.

Define the train sets Io = {(i, j)| i and j are from opposite directions, i, j ∈ I} and
Is = {(i, j)| i and j are in the same direction, i, j ∈ I}. Denote by Signali, j the set of
signals on both train i and j’s journeys for i, j ∈ Is, StationSignali, j the set of signals at
station boundaries on both train i and j’s journeys for i, j ∈ Io, [l0, l f ] a piece of single
track (l0 and l f are the start and end locations), which opposite trains are allowed to
use, and SingleTracki, j the set of single-tracks on both train i and j’s journeys for
i, j ∈ Io. The three constraints are formulated as:

(
ti(q)− t j(q)

)2 ≥ h2
s , ∀(i, j) ∈ Is,q ∈ Signali, j,(

ti(q)− t j(q)
)2 ≥ h2

o, ∀(i, j) ∈ Io,q ∈ StationSignali, j,(
ti(l0)− t j(l0)

)
(ti(l f )− t j(l f ))≥ σ, ∀(i, j) ∈ Io, [l0, l f ] ∈ SingleTracki, j.

(4.7)

In the above, ti(q) and t j(q) refer to the time of train i and j passing through signal q.
ti(l0), ti(l f ), t j(l0) and t j(l f ) refer to the time of train i and j passing through l0 and l f .
hs is the minimal headway time between two successive trains in the same direction. ho

is the minimum “arrive-depart” or “depart-arrive” headway time. σ is a positive value
close to 0 representing a safe margin for train separation. The first inequality represents
the safe following headway constraint for trains in the same direction. The second
inequality is for safe “arrive-depart” or “depart-arrive” headway constraints. The point
where the headway time applies is usually the station but we put the headway times
at signals, which are at station boundaries, to simplify the formulation. The left hand
sides of the two inequalities are squared to include the influence of train sequences.
The third inequality in (4.7) is used to avoid any crossover of two trains’ time-distance
paths on single-track segments.

Constraints (4.7) should been taken into account to avoid conflicts between trains,
especially in case a delay occurs. However, the constraints cannot be easily included
in the STTO model presented above (minimize (4.6) subject to (4.2)-(4.5)) since the
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STTO method only focuses on one train movement. Therefore, we propose a multi-
train trajectory optimization (MTTO) model by optimizing multi-trains’ trajectories
simultaneously. The MTTO model is introduced in Section 4.4.

4.3 TCS computation

This section presents the method of computing TCSs for delayed or delay-affected
trains. In case a delay occurs, the delayed or delay-affected trains might not be able
to arrive at or depart from stations on time. In other words, there are no feasible
trajectories within the scheduled TCSs. Therefore, specific TCSs for delayed or delay-
affected trains are required.

The TCS indicates the time and speed window constraints at every timetable point
along a train’s route. For each timetable point, speed information is optional. Only
some crucial positions need speed restrictions to assure the speed limits or operational
constraints such as minimum speeds before slopes or tunnels. A typical example of
a speed restriction is for stop points where the speed window is [0,0], meaning that
the train should stop. Time window constraints are mandatory. The time windows for
delayed or delay-affected trains in this paper are designed based on three principles:
drivability, feasibility, and energy efficiency. Drivability means that the time windows
are reachable with minimal technical running (dwell) times and maximal advisable
running (dwell) times. Feasibility means that the time windows allow conflict-free
train movements. For trains in the same direction, adjacent trains’ time windows
should provide enough headway. For trains in opposite directions, the time windows
should allow opposite trains to meet at stations. Energy efficiency means the time
windows contain enough time supplements for energy-efficient driving. The time
window computation follows three steps: Step 1: calculate a drivable time envelope for
every train separately; Step 2: adjust time windows for feasibility; and Step 3: adjust
time windows to improve energy efficiency.

The first step is to calculate a drivable time envelope for every train separately. The
time windows at each station are computed one by one in the train’s travelling direction
with

tmin
i,y,a = tmin

i,z,d +Rmin
i,z , tmax

i,y,a = tmax
i,z,d +Rmax

i,z , (4.8)

tmin
i,y,d = max

{
tmin
i,y,a +Dmin

i,y ,Si,y,d

}
, tmax

i,y,d = max
{

tmax
i,y,a +Dmax

i,y ,Si,y,d
}
, (4.9)

where i ∈ I, z ∈ Zi, y is the next station after z on train i’s route. For i ∈ Id, z 6= Z,
y = z+ 1. For i ∈ Iu, z 6= 1, y = z− 1. Rmin

i,z and Rmax
i,z are the minimal and maximal

running times of train i from station z to y, and Dmin
i,y and Dmax

i,y are the minimal and
maximal dwell times of train i at station y. Si,y,e is the scheduled time for event e of
train i at station y, e ∈ {a,d, p}. For simplification, we consider the passing through
event as a special case of a stop, where the dwell time equals 0, tmin

i,y,p = tmin
i,y,a = tmin

i,y,d , and
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Figure 4.3: TCS time window examples.

tmax
i,y,p = tmax

i,y,a = tmax
i,y,d . Equations (4.9) avoid departures earlier than scheduled otherwise

the passengers would miss the train. An example of a single train’s TCS is shown in
Fig. 4.3 (a). The drivable time region is between the two dashed lines, where the train
has the chance to get back to schedule (because the minimal running times are smaller
than the scheduled running times) and also has enough supplements in case that the
train gets delays (because maximal running times are bigger than the scheduled ones).

The second step is the TCS adjustment for feasibility. The time windows calculated
in Step 1 can not guarantee feasible solutions. Take Fig. 4.3 (b) for instance, the
overlap part of drivable regions of the two trains is the potential meeting region of
the two opposite trains. The overlap region must include at least one multiple-track
station, otherwise the two trains can only meet at single-track segments, which leads
to a head-on conflict, as the dashed area in Fig. 4.3 (b). In Fig. 4.3 (c), the previous
train is delayed so that the headway between the two trains is not sufficient, even if the
preceding train goes with minimal running (dwell) times and the following train takes
maximal running (dwell) times.

Step 2 is executed to adjust the time windows computed by Step 1 to avoid such
potential conflicting meeting and following. First, Step 2 detects whether the headway
between adjacent following trains are enough or not. For train i, j ∈ Is, i is a preceding
train, and j is a following train. If tmax

j,z,e− tmin
i,z,e < Hmin

i, j,z, then

tmin
j,z,a = tmin

i,z,a +Hmin
i, j,z, tmax

j,z,a = max{tmin
j,z,a +W, tmax

j,z,a}, (4.10)

tmin
j,z,d = max{tmin

i,z,d +Hmin
i, j,z,S j,z,d}, tmax

j,z,d = max{tmin
j,z,d +W, tmax

j,z,d}, (4.11)

where z ∈ Zi ∩Z j, Hmin
i, j,z refers to the minimal headway time from i to j at station z,

and W makes sure tmax
j,z,a > tmin

j,z,a, W > 0.
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Second, Step 2 detects potential conflicting meetings by checking the overlap regions
of opposite trains. If there are potential meeting conflicts, then we enlarge the upper
bounds of time windows of conflicting trains by

tmax
j,z,e = α · tmax

j,z,e, z ∈ Zi∩Z j, e ∈ {a,d, p}, (4.12)

where j is a conflict train, α > 1. α should be large enough to eliminate conflicting
meetings. The results of Step 2 processing the time windows in Fig. 4.3 (b) and (c)
are presented in Fig. 4.3 (d) and (e) respectively. In Fig. 4.3 (d), the potential meeting
area of the two opposite trains includes at least one multiple-track station. In Fig. 4.3
(e), the lower bounds and upper bounds of the following train are extended so that it is
possible to keep safe headway between the two trains.

The third step is to adjust the time windows for energy-efficiency. The time windows
calculated in Step 1 and 2 allow early arrivals which is not beneficial for saving energy
consumption. But a train may be suggested to arrive earlier than its scheduled time at
potential meeting stations, so that an opposite delayed train can enter the single-track
section just released by the early arriving train as soon as possible. In other cases it
is unnecessary to arrive earlier than scheduled. Instead it is better to make full use of
running times and coast more for energy saving purpose. Therefore Step 3 is executed
to adjust lower bounds of arrival time windows to avoid unnecessary early arrivals with

tmin
i,z,a = max

{
tmin
i,z,a,Si,z,a

}
, tmax

i,z,a = max
{

tmax
i,z,a ,Si,z,a

}
, ∀ i ∈ I, z ∈ Zi, z /∈Mi,

(4.13)
where Mi is the set of potential meeting stations of train i ∈ I.

4.4 Multi-train trajectory optimization

The main idea behind the multi-train trajectory optimization is to minimize the
total delay and energy consumption of multiple trains, with consideration of each
train’s operational constraints (dynamic movement constraints, vehicle characteristic
constraints, speed limits, riding comfort, TCS constraints and dwell time constraints)
and the constraints to avoid conflict between trains. The MTTO is formulated as
a multiple-phase optimal control problem (Rao et al., 2003), and constructed by
the following steps: multiple-phase division, independent variable unification, track
length normalization, and multiple-phase optimal control problem formulation. In the
following, each step is introduced in detail.

4.4.1 Multiple-phase division

The multiple-phase division step partitions the single-track corridor into multiple
segments, in order to characterize the varying speed limits and time (and speed)
constraints at timetable points and signals. The division points are one of three types:
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1. Critical points of speed limits and gradients. The values of speed limits and
gradients change along the track. It is assumed that the speed limits and
gradients are piecewise constant functions. The points of changing speed limits
or gradients are adopted to partition the whole corridor, so that each interval has
a unique speed limit and gradient value.

2. Timetable points that have time or speed limitations indicated by the timetable.

3. Signal positions in both directions. The signaling system consists of a series
of railway signals that divide a railway line into a series of blocks, which are
important elements in managing train movements. Each block can only be
occupied by one train at a time.

Fig.4.4 gives an illustration, where the single-track corridor is divided into 16
segments. The segment between any two adjacent division-points is a phase of the
multiple-phase optimal control problem. Within each phase, the gradient and speed
limit are constant, and the boundary points might be timetable points or signals, where
time and/or speed restrictions apply on the train operations.

z 130

60
z+1

1

2

130

Height

1 2 3 4 5 6 7 8 9 10 13

11 12

14 15 16

130 : speed limit, 130 km/h

60 : speed limit, 60 km/h

: Timetable point of the train in up direction

: Timetable point of the train in down direction

Figure 4.4: Example of partitioning in phases.

4.4.2 Independent variable unification

The STTO model presented in Section 4.2 takes train i’s traversed distance as the
independent variable because gradients and speed limits occur as functions of distance
rather than of time (Equation (4.2)). The proposed MTTO model also uses trains’
traversed distances as the independent variables in order to characterize every single
train’s dynamic movement constraints. However different trains’ traversed distances
are not the same since they are in different directions or follow different routes.
However, the MTTO model needs a unified independent variable to formulate multi-
train movements together. This paper let distance s be the independent variable of the
MTTO model, which increases in the downstream direction. Let

dsi = ds,ds j =−ds, ∀i ∈ Id, j ∈ Iu.
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ds j =−ds because train j is in the upstream direction, s j decreases in the downstream
direction.

4.4.3 Track length normalization

A train route is composed of a sequence of station sections and line sections. Here
“station section” refers to a sequence of connected blocks within a single station
starting and ending at so-called station boundaries, and “line section” refers to a
sequence of connected blocks within a single-track or double-track line, as the
examples shown in Fig. 4.5. In practice, trains are assigned different routes, and
the lengths of different station sections within a station might be different. The length
differences make the multi-train trajectory optimization problem more complicated.

station section of red route line section of red route

station section of blue route line section of blue route

: main route

: train route example

Figure 4.5: Examples of station sections, line sections and a main route.

A normalization parameter vector λi (i ∈ I) is adopted to normalize section lengths.
The normalization follows 3 steps. First, define station boundaries to divide the single-
track corridor into two types, station regions and line regions. Generally, the station
regions are the areas with parallel phases. For instance, station z+1 in Fig. 4.4 contains
phases 11–12 and 13–14. The line regions in this paper are single-track sections. For
a train i ∈ I, denote by Stationsecz

i the station section that train i uses at station z ∈ Zi,
and by Linesecz,z+1

i the line section on train i ∈ I’s route between station z and z+ 1
(z,z+1 ∈ Zi).

Second, define a main route in the downstream direction. The main route covers the
whole corridor, and the kilometer points of the main route are continuous and increase
in the downstream direction. Denote by Stationsecz

main the station section on the main
route at station z ∈ Z, and by Linesecz,z+1

main refers to the line section within the main
route between station z and z+1 (z,z+1 ∈ Z).

Last but not least, a normalization parameter vector λi = [λStationsecz
i
, λLinesecz,z+1

i
,

λStationsecz+1
i

, λLinesecz+1,z+2
i

, . . .]T (i ∈ I) is used to scale train routes with respect to the
reference ‘main route’. The value of the normalization parameter at different station
sections and line sections are different. For a station section in train i ∈ I’s route at
station z ∈ Zi,

λStationsecz
i
=

LStationsecz
i

LStationsecz
main

, ∀ i ∈ I,z ∈ Zi, (4.14)
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where LStationsecz
i

and LStationsecz
main

are respectively the lengths of Stationsecz
i and

Stationsecz
main.

For a line section on train i ∈ I’s route between adjacent stations z and z+1 (z,z+1 ∈
Zi),

λLinesecz,z+1
i

=
LLinesecz,z+1

i

LLinesecz,z+1
main

, ∀ i ∈ I,z,z+1 ∈ Zi, (4.15)

where LLinesecz,z+1
i

and LLinesecz,z+1
main

are respectively the lengths of Linesecz,z+1
i and

Linesecz,z+1
main .

λi is used in the formulation of cost function and dynamic constraints of the MTTO
model to scale the section lengths. The section lengths will be re-scaled again in the
final solution for each train, so that the computed trajectories respect the actual route
lengths.

4.4.4 Multiple-phase optimal control problem formulation

A multiple-phase optimal control problem is one where the trajectory consists of
a collection of phases (Rao et al., 2003). In general, any particular phase has a
cost function, a dynamic model, path constraints, boundary conditions, and event
constraints. But it is not mandatory. The complete trajectory is obtained by properly
linking adjacent phases via linkage conditions. Similarly, the total cost functional is
the sum of the cost functionals within each phase. The optimal trajectory is then found
by minimizing the total cost functional subject to the constraints within each phase
and the linkage constraints connecting adjacent phases. In the following, we describe
the details of the multiple-phase optimal control problem formulation of the MTTO
model.

Notations:

r: a phase r ∈ R,R = {1, . . . ,R}, R is the total number of phases;
s(r)0 , s(r)f : the initial and terminal location of phase r, s(r)0 < s(r)f ;

A: the set of adjacent phases, A =
{
(m,n)|s(m)

f = s(n)0 ,m,n ∈ R
}

;

I(r): the set of trains passing through phase r, I(r) ⊆ I, train i ∈ I(r) if
phase r is within train i’s route;

x(r)i (s): the state vector of train i∈ I(r) in phase r, x(r)i (s) = [v(r)i (s), t(r)i (s)]T ,
containing train i’s speed and time;

u(r)i (s): the control vector of train i ∈ I(r) in phase r, u(r)i (s) =

[ f (r)i (s), b(r)i (s)]T , containing train i’s traction and braking forces;
V max,(r)

i (s): the speed limit of train i in phase r;
R(r)

line,i(s): the line resistance caused by the constant gradient within phase r;
ξi: direction indicators, ξi = 0 if i ∈ Id, otherwise ξi = 1;
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λ
(r)
i : the normalization parameter, λ

(r)
i equals the value of λi in phase r;

Dmin
i,s(m)

f

,Dmax
i,s(m)

f

: the lower and upper bound of the dwell time of train i at s(m)
f , s(m)

f is
a stop point, m ∈ R.

The multiple-phase optimal control problem formulation of the MTTO model is:

Minimize J =
R

∑
r=1

J(r),

(4.16)

J(r)= ∑
i∈I(r)

J(r)i , J(r)i =


ω
(r)
i · t

(r)
i (s(r)f )+λ

(r)
i

∫ s(r)f

s(r)0

f (r)i (s) ds, if i ∈ Id,

ω
(r)
i · t

(r)
i (s(r)0 )+λ

(r)
i

∫ s(r)f

s(r)0

f (r)i (s) ds, if i ∈ Iu,

(4.17)
subject to the dynamic constraints:

dv(r)i (s)
ds

= (−1)ξiλ
(r)
i

θ1 f (r)i (s)−θ2b(r)i (s)−Rtrain,i(v
(r)
i )−R(r)

line,i(s)

ρi ·mi · v
(r)
i (s)

,

dt(r)i (s)
ds

= (−1)ξiλ
(r)
i

1

v(r)i (s)
,

∀r∈R, i∈ I(r),

(4.18)
the path constraints:

0≤ f (r)i (s)≤ Fmax
i ,

0≤ b(r)i (s)≤ Bmax
i ,

0≤ f (r)i (s) · v(r)i (s)≤ Pmax
i ,

0≤ v(r)i (s)≤V max,(r)
i (s),

Amin
i ≤

dv(r)i (s)

dt(r)i (s)
≤ Amax

i ,

∀ r∈R, i∈ I(r),

(4.19)
the phase boundary conditions (if any): vmin

i,z,e ≤ v(r)i (ki,z,e)≤ vmax
i,z,e ,

tmin
i,z,e ≤ t(r)i (ki,z,e)≤ tmax

i,z,e ,
∀ r∈R, i∈ I(r),ki,z,e ∈KTCSi∩{s

(r)
0 ,s(r)f },

(4.20)
the event constraints (if any):

(
t(r)i (q)− t(r)j (q)

)2
≥ h2

s ,

∀ r ∈ R,(i, j) ∈ Is : i, j ∈ I(r),q ∈ Signali, j ∩{s
(r)
0 ,s(r)f },(

t(r)i (q)− t(r)j (q)
)2
≥ h2

o,

∀ r ∈ R,(i, j) ∈ Io : i, j ∈ I(r),q ∈ StationSignali, j ∩{s
(r)
0 ,s(r)f },(

t(r)i (s(r)0 )− t(r)j (s(r)0 )
)(

t(r)i (s(r)f )− t(r)j (s(r)f )
)
≥ σ,

∀ r ∈ R,(i, j) ∈ Io : i, j ∈ I(r), [s(r)0 ,s(r)f ] ∈ SingleTracki, j,

(4.21)



Chapter 4 83

and the linkage conditions of all adjacent phases: v(m)
i (s(m)

f )− v(n)i (s(n)0 ) = 0,

Dmin
i,s(m)

f

≤ t(n)i (s(n)0 )− t(m)
i (s(m)

f )≤ Dmax
i,s(m)

f

,
∀(m,n) ∈ A, i ∈ I(m)∩ I(n). (4.22)

The MTTO model aims at minimizing the sum of the cost functions over all phases.
Each phase r ∈ R has its own cost function and constraints for the train(s) belonging
to I(r), if I(r) is not empty. More specifically, the cost functions (4.17) represent the
optimization targets of minimizing the total delay and energy consumption of train(s)
going through phase r. Every single train’s cost function J(r)i is developed based on
Equation (4.6). For train i ∈ Iu, which goes from s(r)f to s(r)0 , t(r)i (s(r)f ) refers to the

departure time of train i from s(r)f , and t(r)i (s(r)0 ) refers to the arrival time at s(r)0 , so J(r)i

uses t(r)i (s(r)0 ) in the first term.

The dynamic constraints (4.18) are stated with s as the independent variable, represent-
ing the dynamic differential equations. (−1)ξi is adopted to eliminate the influence of
travelling directions. λ

(r)
i is adopted for the normalization of section lengths. The

path constraints (4.19) represent the operational constraints of vehicle characteristics,
speed limits and riding comfort. The boundary conditions (4.20) represent the time and
speed restrictions at timetable points if phase r’s initial or terminal point is a timetable
point. The event constraints (4.21) are developed based on (4.7) to avoid conflicts and
separate trains. Constraints (4.21) are required if I(r) includes more than one train.

In addition, the linkage conditions (4.22) are to make sure that the train’s speed-
distance and time-distance trajectories are continuous. If the linkage point of two
successive phases is a stop point of a train i, t(m)

i (s(m)
f ) and t(n)i (s(n)0 ) represent the arrival

or departure times of train i at s(m)
f , and Dmin

i,s(m)
f

,Dmax
i,s(m)

f

are the minimum or maximum

dwell times of train i at s(m)
f . Otherwise, Dmin

i,s(m)
f

= Dmax
i,s(m)

f

= 0.

The multiple-phase optimal control problem can be solved with a pseudospectral
method. In general, pseudospectral methods transcribe the continuous-time optimal
control problem into a discrete nonlinear programming problem, after which nonlinear
programming solvers are adopted to directly solve the problem.

4.4.5 Driving strategies and weight factors

A weight factor ω
(r)
i is used in cost functions (4.17) to balance delay recovery and

energy saving. The weight factor ω
(r)
i should be determined firstly before adopting the

pseudospectral methods to solve the MTTO model. Different weight factors contribute
to different optimization results. The effect of weight factor values is discussed in
(Wang and Goverde, 2016c). In this paper, ω

(r)
i = 104 is used for delay recovery,
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which gives more priority to delay recovery than to energy saving (note the difference
in scale of time and energy), while weight factor ω

(r)
i = 102 is adopted for energy

saving, which gives more priority to energy saving than to delay recovery.

The priorities of delay recovery and energy saving of different trains at different
running sections are different. In case of delays, three driving strategies can be
considered:

1. Delay-recovery strategy: This strategy is used to make up delays and drive the
train as fast as possible. Weight factor ω

(r)
i = 104 if train i uses the delay-

recovery strategy in the running section where phase r belongs to.

2. Energy-saving strategy: This strategy is adopted for energy-efficient driving that
makes full use of given running times. Weight factor ω

(r)
i = 102 if train i uses

the energy-saving strategy strategy in the running section where phase r belongs
to.

3. On-time strategy: This strategy makes the train return to the schedule. Weight
factor ω

(r)
i = 102 if train i uses the on-time strategy in the running section where

phase r belongs to. In addition, the TCS arrival time window at the next stop
is reset as a time point constraint, such as [scheduled arrival time, scheduled
arrival time]. The energy-saving strategy uses a time window constraint for
arrival at the next stop while the on-time strategy uses a time point constraint
which commands the train to arrive at the scheduled time. In general, the energy-
saving strategy is used if the train has increased travel time due to waiting for a
meeting another delayed train, while an on-time strategy is adopted if the train
is able to reach the next stop on time.

A driving strategy selection algorithm is designed to select proper driving strategies for
each train and each running section. By selecting the driving strategies, weight factors
of the MTTO model are set.

The first step is to estimate potential meeting stations. As mentioned in Section 4.3, the
stations within the overlap parts of TCS time regions of opposite trains are potential
meeting stations. Different meet plans produce different delay propagations. The first
step of the driving strategy selection algorithm is to find a meeting plan, that produces
minimal total estimated delays. Train delays are estimated by assuming the trains
follow the FCFS (first-come, first-served) principle, the delayed trains run at maximum
power, and other trains follow their schedules if their operations are not affected by
delays. For detailed delay estimation methods, we recommend the works by Goverde
(2007, 2010). The best meeting station for train i is represented by mi. Two parameters
ηi,mi and βi,z are adopted for later driving strategy setting. ηi,mi represents the estimated
meeting time at mi. βi,z refers to the secondary delay caused by the meeting event at
mi. For stations before mi, βi,z = 0 because train i is not affected by the meeting event
yet. For stations after mi, βi,z = max{tmin

i,mi,a, t
min
j,mi,a}− tmin

i,mi,a, which equals the secondary
delay at station mi.
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Algorithm Driving Strategy Selection

Estimate meeting stations
For all trains i ∈ I and stations z ∈ Zi

for all k ∈Mi

assume k is a station where i meets an opposite train j;
estimate the total delays with k as the meeting station;

end
find the meeting station mi ∈Mi, that produces minimal total estimated

delays;
let ηi,mi = max{tmin

i,mi,a, t
min
j,mi,a};

if z is a station before mi,
βi,z = 0;

else
βi,z = ηi,mi− tmin

i,mi,a;
end

End For

Set driving strategies
For all train i ∈ I and station z ∈ Zi

if tmin
i,z,a +βi,z > Si,z,a,

train i uses the delay-recovery strategy in the running section before
station z;

else
train i uses the on-time strategy in the running section before station

z;
end if
if z = mi,

if tmin
i,z,a < ηi,mi ,

train i uses the energy-saving strategy in the running section
before station z;

else if tmin
i,z,a = ηi,mi and tmin

i,z,a < Si,z,a,
train i uses the delay-recovery strategy in the running section

before station z;
end

end
end if

End For
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The second step is to set the driving strategies. It contains two loops. The first loop
is to preset driving strategies for every train and every running section. It is done by
comparing the lower bounds of the TCS time windows plus the estimated secondary
delays with the scheduled times. tmin

i,z,a +βi,z > Si,z,a means that the train cannot return
back to schedule at station z even with the minimal running time. Therefore, a delay-
recovery strategy is adopted to reduce delays. If tmin

i,z,a + βi,z ≤ Si,z,a, the train has
sufficient running time to reach the next stop, thus an on-time strategy is used in the
running section before station z. The second loop is designed to adjust the driving
strategies for the running sections just before the estimated meeting station mi. If
tmin
i,z,a < ηi,mi , train i arrives first and shall wait for another train. Hence, train i has

extra time margin for energy-efficient driving. So an energy-saving strategy is selected
before the meeting station. If tmin

i,z,a =max{tmin
i,mi,a, t

min
j,mi,a} and tmin

i,z,a < Si,z,a, train i may get
an early arrival at mi to let the opposite delayed train leave the station earlier. Therefore
a delay recovery strategy is selected.

Two examples of the driving strategy selection algorithm are presented in Fig. 4.6. The
yellow lines represent the sum of lower bounds of TCS time windows and estimated
secondary delay caused by meeting events. By comparing yellow lines and scheduled
paths, different driving strategies are selected for different running sections.
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Figure 4.6: Demonstration for the driving strategy selection algorithm.

4.5 Case studies

A single-track corridor between Schagen (Sgn) and Den Helder (Hdr) in the north
of the Netherlands is adopted for the case study, see Fig. 4.7. The infrastructure
data is provided by the infrastructure manager ProRail. There are 4 stations along
this corridor: Schagen (Sgn), Anna Paulowna (Ana), Den Helder Zuid (Hdrz), and
Den Helder (Hdr). The infrastructure characteristics consist of a description of all
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track sections, points, speed signs, gradients and signals over the entire track layout.
Two trains operate on this corridor each half hour, one in each direction. The static
parameters of the train used in this case study are listed in Table 4.1. The traction force
and train resistance curves are shown in Fig. 4.8. Since the braking rate is the only
accessible data characterizing the braking behavior, we let the braking force be equal
to the braking rate times train mass.
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Figure 4.7: The partial single-track corridor used in the case study.
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Figure 4.8: Traction force and line resistance of Intercity train.

Table 4.1: Basic parameters of Intercity train.

Property Value
Train mass [t] 391
Rotating mass factor [-] 1.06
Maximum traction power [kW] 2157
Maximum traction force [kN] 214
Maximum braking deceleration [m/s2] -0.66

Table 4.2 shows the arrival and departure times of a pair of trains from opposite
directions within the basic half-hour pattern. T1 represents the train from Hdr to Sgn
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and T2 represents the opposite train. The second and third columns show the arrival
and departure times. This timetable is based on the timetable in use in 2016. The two
trains are scheduled to meet at Ana station, and the dwell time there is 1 minute. The
scheduled dwell times at other stations are 0.5 minute. The last column of Table 4.2
shows the planned tracks at the stations. T1 and T2 use different tracks at station Hdr,
Hdrz, Ana and Sgn, so that the four stations can be adopted as meeting stations.

4.5.1 Two-train trajectory optimization

The corridor between Sgn and Hdr uses a periodic timetable. Two opposite trains
operate on this corridor each half hour. We first tested our proposed method with
two trains within a basic half-hour pattern in 4 cases within total 9 different initial
delays as shown in Table 4.3. The scheduled Case assumes the two trains operate
according to the given timetable. Case A and B discuss the situation that one train
follows the schedule whereas another train has initial delays, Case C considers the
situation that both trains have initial delays. Initial delays were added to train T1 and
T2 at their departure station Hdr and Sgn, respectively. The TCSs for both trains were
calculated first. Each TCS consists of time and speed limits at every station. The speed
limits at the stop points are 0. The time windows were calculated with the method
from Section 4.3. It is assumed a minimal dwell time of 0.5 minute and maximal
dwell time of 5 minutes. The multi-train trajectory optimization method in Section
4.4 was used to find the optimal energy-efficient delay recovery trajectories within
the TCSs. The parameters in (4.21) were set as hs = 120 s, σ = 5 s and ho = 15 s.
The value of hs is set according to the network statement 2017 by ProRail (2017).
Default headway norms are used that should be sufficient for the final timetable to be
conflict-free and contain some buffer. The value of ho ensures enough time interval
for signal clearing and route setting. σ is a positive value to avoid any crossover of
opposite trains’ path. A pseudospectral method is applied for solving the multiple-
phase optimal control problem. There exist several commercial and free packages
that implement the pseudospectral method. We adopted GPOPS (Rao et al., 2010)
with the Radau Pseudospectral Method as the solver. The experiments were carried
out with GPOPS 4.1 on a laptop equipped with a 3.2 GHz Pentium R processor. As
for the parameter settings of GPOPS, we used ‘complex’ as the string to indicate the
differentiation method, a tolerance of 1e-3, an iteration of 2, and didn’t use autoscaling.
The explanation of the parameters can be found in (Rao et al., 2011).

Table 4.3: Initial delays of two opposite trains T1 and T2.

Scheduled Case A Case B Case C
Case a b c a b c a b c

Delay of T1 at Hdr [min] 0 0 0 0 5 10 15 3 6 12
Delay of T2 at Sgn [min] 0 5 10 15 0 0 0 12 9 3
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Fig. 4.9 shows the speed profiles and time-distance paths of the two on-time trains.
Fig. 4.10-4.12 present the results of the 9 different initial delays. Each figure has three
subplots considering three combinations of initial delays. Within each subplot, the top-
left plot is the optimized speed profile of train T1 from left to right, the lower-left plot is
the optimized speed profile of train T2 from right to left. The solid black lines represent
the optimized speed profiles and the red horizontal lines refer to the static speed limits.
The driving strategies for each running sections are identified with ‘DR’, ‘ES’ and
‘OT’ in the figures. ‘DR’, ‘ES’ and ‘OT’ are respectively the abbreviations of delay-
recovery strategy, energy-saving strategy and on-time strategy. The right plot shows
the optimized time-distance paths, where the solid black lines refer to the optimized
results, the dashed red lines are the planned linearized time-distance paths, and the
gray regions are the time regions of train T1 and T2 formed by their TCSs. The gray
vertical lines represent the first home signals outside stations at both sides, so that the
segments between two close gray vertical lines are stations with multiple tracks. Train
time-distance paths are only allowed to intersect within the station areas. Table 4.4
shows the optimized results of the Scheduled Case, Case A, B and C. The 2nd column
presents the output delays of train T1 at station Sgn. The 3rd column shows the energy
consumption to drive T1 from Hdr to Sgn. The 4th and 5th columns show the delays of
train T2 at station Hdr and the energy consumption to drive T2 from Sgn to Hdr. The
6th column is the sum of delays of T1 at Sgn and T2 at Hdr. The 7th column gives the
energy consumption of T1 and T2 in the single-track corridor between Hdr and Sgn.
The last column gives the computation times. Within the 2nd, 4th and 6th columns,
upward arrows and downward arrows mean that the output delays are increased (↑) or
decreased (↓) compared with the initial delays (the delays of train T1 at Hdr, and of
train T2 at Sgn).
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Figure 4.9: Scheduled Case: speed curves and time-distance paths of T1 and T2 (T1

from left to right, T2 from right to left).

Taking an overall look of Fig. 4.9-4.12, the train speeds stay below the speed limits
and trains stop at every planned stop point, which means the optimized results ensure
safe travelling speeds and accurate stops. The time-distance paths show that the two
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Figure 4.10: Case A: speed profiles and time-distance paths of T1 and T2 (DR: delay-
recovery strategy; ES: energy-saving strategy; and OT: on-time strategy.).
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Figure 4.11: Case B: speed profiles and time-distance paths of T1 and T2 (DR: delay-
recovery strategy; ES: energy-saving strategy; and OT: on-time strategy.).
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Figure 4.12: Case C: speed profiles and time-distance paths of T1 and T2 (DR: delay-
recovery strategy; ES: energy-saving strategy; and OT: on-time strategy.).
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trains cannot follow the scheduled paths under delay conditions. But the optimized
time-distance paths stay within the TCSs, and they only cross each other in station
areas, so no conflicts occur between them. In Fig. 4.9, T1 and T2 have no delays.
The on-time driving strategy is used during every running section. The optimal control
regimes between every two stops include using maximum traction during the outbound
processes, maximum braking force for the inbound processes, and in between possible
cruising and coasting before braking to save energy, which matches the theoretical
driving strategy following from application of the PMP.

Fig. 4.10 shows the results in the case that only T2 has delays (Case A). T2 uses
the delay recovery strategy over all the corridor between Hdr and Sgn. The optimized
control regimes consist of maximum traction during the outbound processes, maximum
braking force for the inbound processes, and cruising at maximum allowed speed. No
coasting is used so that the delayed train can move as fast as possible and get back
to schedule gradually. Train T1 has no delay at Hdr station, however gets influenced
by the delays of train T2. In Fig. 4.10 (a) that T2 is 5 min delayed at Sgn station, T1

and T2 meet at station Ana. The optimized meeting time is late than the scheduled
meeting time. Train T1 uses the energy-saving strategy and coasts more during the
running between Hdrz and Ana. T1 speeds up after Ana to make up the delay caused
by the delayed meeting event. Fig. 4.10 (b) and (c) show the cases that the optimized
meeting station is changed to Sgn when T2 has bigger delays. The new meeting station
is beneficial for minimizing delays, because train T2 would waste time waiting for T1

and cause a future delay of T2 if T1 and T2 meet at the scheduled meeting station. In
Fig. 4.10 (b), T1 adopts the delay recovery strategy and arrives at station Sgn a few
seconds before the scheduled arrival time, so that T2 is able to leave Sgn as soon as
possible after 10 min delay. Fig. 4.10 (c) shows the case that T2 is 15 min delayed and
T1 can follow its schedule and arrive at Sgn before the delayed T2.

Fig. 4.11 (a), (b) and (c) present the optimized results in case that T1 has different
initial delays at Hdr, while T2 departs on-time from Sgn. When T1 is 5 min delayed
(Fig. 4.11 (a)), the trains meet at station Ana, T1 uses the delay recovery strategy with
less coasting and more cruising at maximum speeds to reduce delays. T2 is delayed to
meet train T1 at station Ana, but the delay is recovered in the following journey. In Fig.
4.11 (b) and (c), the two trains meet at station Hdrz. Train T2 follows the scheduled
paths during the section between Sgn and Ana. Then it speeds up to arrive earlier (Fig.
4.11 (b)) or slows down to arrive later (Fig. 4.11 (c)) than the scheduled time at station
Hdrz, so that T1 can use the released section between Hdrz and Ana. In Fig. 4.11
(b), train T1 is even secondarily delayed because of waiting for entering the open track
between Hdrz and Ana. However, T2 is able to return back to the scheduled times at
station Hdr in all three cases (a), (b) and (c).

Fig. 4.12 shows the optimized results that both trains are delayed from their departure
stations (Case C). Both train’s trajectories in the three scenarios are different. But the
delayed trains tend to use control regimes of maximum traction, cruising at maximum
speeds and maximum braking to reduce delays. Only within the sections before the
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meeting stations, the train might coast more to anticipate for the meeting events. For
instance, T1 uses the delay-recovery strategy in the running sections between Hdr
and Ana in Fig. 4.12 (b), and between Hdr and Hdrz in Fig. 4.12 (c). Overall,
we see that our algorithm can calculate speed and time-distance trajectories for two
opposite trains. The trajectories avoid conflicts between the two trains by adjusting
running times, dwell times and meeting stations. The speed profiles illustrate the three
different driving strategies of the delay-recovery, energy-saving and on-time strategy,
for different delay scenarios.

Table 4.4 presented the numerical results of the 10 scenarios. In general, we see an
increase on the total energy consumption comparing the delay and no-delay situations.
However there are exceptions when the delays of a single train may increase due to
waiting for the meeting events. For instance, the delay of train T1 increases in Case B
(b) because of meeting T2 at Hdrz. The total delay is reduced comparing the output
delay and initial delay. The reason is the use of the delay-recovery strategy, which
makes the train run as fast as possible and costs a lot of energy consumption. But the
energy-saving and on-time strategies reduce the energy consumption. Take Case B (c)
as an example, T2 uses the energy saving strategy on the running section between Ana
and Hdrz and the on-time strategy on the other two running sections. Train T2 uses less
energy consumption comparing with the scheduled case. The average computation
time of the 10 scenarios is 73.92 s, while the minimal computation time is 40.1 s
and the maximum number is 95.44 s. The computations are carried out on a laptop
equipped with a 3.2 GHz Pentium R processor.

4.5.2 Discussion

Compared to the single-train trajectory optimization method, the multi-train trajectory
optimization method is able to avoid conflicts between trains. Take Case C (b) as an
example, where T1 and T2 both have initial delays at Hdr and Sgn. Fig. 4.13 presents
a comparison of the results computed by the STTO method and the MTTO method.
The optimized results by applying the STTO method aim at reducing delays. The two
trains travel at the maximum speeds in order to get back to schedule as quickly as
possible. However, the two trains meet at the single-track corridor between Ana and
Sgn, which is forbidden. The MTTO method is able to avoid conflicts and lets the trains
meet at a station region. Second, the proposed method allows a change of meeting
locations. The driving strategy selection algorithm first estimates potential meeting
locations, and accordingly selects best driving strategies for different running sections.
The optimal meeting location and time are found by the MTTO method together with
the optimal speed curves. The optimal meeting location and time enable a reduction
of delay propagation. Last but not last, the proposed algorithm balances the energy
saving and delay recovery requirements. Once a train is delayed, the first priority is
to reduce delays instead of reducing energy consumption. The energy consumption is
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only reduced in the cases that the train is on-time or the train has to wait for another
train.
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Figure 4.13: Case C (b): speed profiles and time-distance paths of T1 and T2 computed
by the MTTO method (black lines) and STTO method (blue lines).
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Figure 4.14: Case A (c): speed profiles and time-distance paths of T1, T2, T3 and T4

(DR: delay-recovery strategy; ES: energy-saving strategy; and OT: on-time strategy.).

Section 4.5.1 discussed the train trajectory optimization for two delayed opposite trains
on a single-track line. However, the delays may propagate to other trains in the next
half-hour pattern. For instance, in Case A (c) T2’s delay will be propagated to the
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next half-hour pattern. In that case, it is necessary to take into account all affected
trains. Fig. 4.14 shows the results of four trains within a hour pattern using the
multi-train optimization model. Train T2 is 15 min delayed at station Sgn (Case A(c)).
T3 is affected by T2 and gets delayed at Hdr but it speeds up during the remaining
journey and the delay is reduced gradually. Fig. 4.14 shows that the time-distance
paths of the four trains only meet within station areas, which shows that the multi-
train optimization method produces feasible trajectories. The computation time for the
four-train case is 131.76 s.

4.6 Conclusions

This paper proposed a novel method of multi-train trajectory optimization. Traditional
train speed profile optimization focuses on one single-train from one stop to another
stop, but the method proposed by us is able to compute trajectories for multiple trains
simultaneously. We developed a multi-train trajectory optimization method with a
multi-phase optimal control problem formulation for trains on single-track lines. The
model consists of the dynamic behavior and operational constraints for multiple trains,
as well as constraints to avoid conflicts between trains. A pseudospectral method was
adopted for solving the problem. By jointly optimizing trains’ energy consumption
and delay recovery, the method computes a feasible schedule with optimal meeting
locations and associated speed profiles simultaneously. Case studies of two opposite
trains running on a Dutch single-track corridor showed that our method is able to
produce speed and time-distance trajectories for the opposite trains. The trajectories
avoid conflicts between two trains by adjusted running times, dwell times and meeting
stations. The speed profiles consider energy-efficient driving as well as delay recovery
requirements using the three different driving strategies of delay-recovery, energy-
saving and on-time running for different delay scenarios. Finally, a case study of multi-
train trajectory optimization was presented that computes speed profiles and schedules
for four trains at the same time.

The proposed method can be used in practice to combine conflict detection and
resolution with energy-efficient driving. It provides feasible schedules as well as
energy-efficient speed profiles, which gives a new approach to rescheduling and
timetable design.
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Jovanović, D., Harker, P. T., 1991. Tactical scheduling of rail operations: the scan i
system. Transportation Science 25 (1), 46–64.

Luthi, M., 2009. Improving the efficiency of heavily used railway networks through
integrated real-time rescheduling. Ph.D. thesis, ETH Zurich.

Mazzarello, M., Ottaviani, E., 2007. A traffic management system for real-time traffic
optimisation in railways. Transportation Research Part B: Methodological 41 (2),
246–274.

Meng, L., Zhou, X., 2011. Robust single-track train dispatching model under a
dynamic and stochastic environment: a scenario-based rolling horizon solution
approach. Transportation Research Part B: Methodological 45 (7), 1080–1102.

ProRail, 2017. Network statement 2017. Https: //www.prorail.nl /sites /default /files.

Rao, A., Benson, D., Darby, C., Mahon, B., Francolin, C., Patterson, M., Sanders, I.,
Huntington, G., 2011. User.s manual for gpops version 4. x: A matlab software for
solving multiple-phase optimal control problems using hp–adaptive pseudospectral
methods. University of Florida, Gainesville, 1–32.

Rao, A. V., Benson, D. A., Darby, C., Patterson, M. A., Francolin, C., Sanders, I.,
Huntington, G. T., 2010. Algorithm 902: GPOPS, a matlab software for solving
multiple-phase optimal control problems using the gauss pseudospectral method.
ACM Transactions on Mathematical Software 37 (2), 22.

Rao, A. V., et al., 2003. Extension of a pseudospectral legendre method to non-
sequential multiple-phase optimal control problems. In: presented as paper AIAA.
Vol. 5634. pp. 11–14.

Scheepmaker, G. M., Goverde, R. M., Kroon, L. G., 2017. Review of energy-efficient
train control and timetabling. European Journal of Operational Research 257 (2),
355–376.

Szpigel, B., 1973. Optimal train scheduling on a single track railway. Operational
Research 34 (4), 343–352.

Umiliacchi, S., Nicholson, G., Zhao, N., Schmid, F., Roberts, C., 2016. Delay
management and energy consumption minimisation on a single-track railway. IET
Intelligent Transport Systems 10 (1), 50–57.



Chapter 4 101

Wang, P., Goverde, R. M. P., 2016a. Multiple-phase train trajectory optimization with
signalling and operational constraints. Transportation Research Part C: Emerging
Technologies 69, 255–275.

Wang, P., Goverde, R. M. P., 2016b. Train trajectory optimization of opposite trains
on single-track railway lines. In: 2016 IEEE International Conference on Intelligent
Rail Transportation (ICIRT). Birmingham, UK, pp. 23–31.

Wang, P., Goverde, R. M. P., 2016c. Two-train trajectory optimization with a green
wave policy. Transportation Research Record, 2546.

Wang, P., Goverde, R. M. P., Ma, L., 2015. A multiple-phase train trajectory
optimization method under real-time rail traffic management. In: 2015 IEEE 18th
International Conference on Intelligent Transportation Systems. IEEE, Las Palmas,
Spain, pp. 771–776.

Wang, Y., De Schutter, B., van den Boom, T. J., Ning, B., 2013. Optimal
trajectory planning for trains–a pseudospectral method and a mixed integer linear
programming approach. Transportation Research Part C: Emerging Technologies
29, 97–114.

Wang, Y., Ning, B., Cao, F., De Schutter, B., van den Boom, T. J., 2011. A survey
on optimal trajectory planning for train operations. In: 2011 IEEE International
Conference on Service Operations, Logistics, and Informatics (SOLI). pp. 589–594,
beijing, China.

Yang, L., Li, K., Gao, Z., Li, X., 2012. Optimizing trains movement on a railway
network. Omega 40 (5), 619–633.

Ye, H., Liu, R., 2016. A multiphase optimal control method for multi-train control and
scheduling on railway lines. Transportation Research Part B: Methodological 93,
377–393.

Yin, J., Tang, T., Yang, L., Gao, Z., Ran, B., 2016. Energy-efficient metro train
rescheduling with uncertain time-variant passenger demands: An approximate
dynamic programming approach. Transportation Research Part B: Methodological
91, 178–210.

Yin, J., Yang, L., Tang, T., Gao, Z., Ran, B., 2017. Dynamic passenger
demand oriented metro train scheduling with energy-efficiency and waiting time
minimization: Mixed-integer linear programming approaches. Transportation
Research Part B: Methodological 97, 182–213.

Yun, B., Tinkin, H., Baohua, M., 2011. Train control to reduce delays upon service
disturbances at railway junctions. Journal of Transportation Systems Engineering
and Information Technology 11 (5), 114–122.



102 TRAIL Thesis series

Zhao, N., Roberts, C., Hillmansen, S., Nicholson, G., 2015. A multiple train trajectory
optimization to minimize energy consumption and delay. IEEE Transactions on
Intelligent Transportation Systems 16 (5), 2363–2372.



Chapter 5

Multi-train trajectory optimization for
energy-efficient timetabling

5.1 Introduction

Improving energy efficiency is an important issue for railways to reduce their
contributions to climate change further as well as to save and enlarge competition
advantages involved, even though rail is already more energy efficient than most other
transport modes. One promising means of improving energy efficiency is to optimize
train operations by using energy-efficient driving strategies, which does not need extra
investment for more infrastructure. Even with a small amount of energy saved in
each train run, the total energy costs saved by the whole railway network are huge.
This leads to research on energy-efficient train trajectory optimization (ETTO) by
using optimal control theory to find the optimal trajectory (speed-distance profile) and
driving strategies of a train that minimize energy consumption caused by the train
movements (Howlett and Pudney, 1995).

The impact of train operation on energy savings depends on the running times given
in the timetable. A running time between two stations contains two parts, the
technically minimum running time and the running time supplement. The running
time supplement is the extra running time on top of the technically minimum running
time between two stations which is included in the timetable primarily to manage
disturbances in operations and to recover from small delays (Scheepmaker and
Goverde, 2015). However, if a train is punctual then these supplements can be used
for energy-efficient driving. Therefore, the train trajectory and timetable are closely
related and both of them have a direct influence on the energy-efficiency of train
operations. To obtain global optimality of the whole system, the relationship between
the train trajectory and timetable cannot be neglected.

The research on energy-efficient train trajectory optimization and energy-efficient
time-tabling has been studied for decades. There are comprehensive surveys on
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relevant areas, which include Wang et al. (2011), Albrecht et al. (2016), Scheepmaker
et al. (2017), and Yang et al. (2016). Wang et al. (2011) reviewed the numerical
approaches for solving the train trajectory optimization problem. Albrecht et al. (2016)
focused on the state-of-the-art of using the Pontryagin’s Maximum Principle (PMP) to
find the key principles of optimal train control. Scheepmaker et al. (2017) and Yang
et al. (2016) provided surveys on the energy-efficient train control and energy-efficient
train timetable problems, where Scheepmaker et al. (2017) focused on general railway
systems, and Yang et al. (2016) focused on urban rail. The literature review presented
below focuses on ETTO for multiple trains and energy-efficient timetable adjustment.

5.1.1 Review of multi-train trajectory optimization

Most of the existing studies on ETTO focus on optimizing single train movements.
Multi-train trajectory optimization (MTTO) has just drawn attention in recent years.
The purpose of MTTO is to optimize multiple train movements together with a shared
objective, and to find optimal control strategies for every involved train. Yang et al.
(2012) provided a mathematical model for multiple trains on a railway network. The
model aims at minimizing total energy consumption and running times of all trains,
while satisfying the constraints to ensure the feasibility of multi-train operations, which
include headway constraints, vehicle speed limit constraints, passenger riding comfort
constraints, and dwell time constraints. The control strategies of every involved
train are the decision variables of the multi-train model. A genetic algorithm (GA)
integrated with simulation was designed to find the optimal control strategies. Li
and Lo (2014a,b) proposed a multi-train model for metro lines. The model uses the
switching time and speeds of control regimes (acceleration, cruising, coasting, and
braking) as the decision variables, aims at minimizing the net energy consumption of
multiple trains, and takes into account constraints of the number of trains, cyclist times,
switching times, turnaround times, vehicle speed limits and dwell times. In Li and Lo
(2014a), a GA method was designed to find optimal switching time and speeds and
jointly optimize the timetables and speed profiles. In Li and Lo (2014b), the model
is transformed to a convex optimization problem by using a linear approximation
method, and solved using the Kuhn-Tucker conditions for dynamic train scheduling.
Su et al. (2014) formulated an integrated energy-efficient optimization model to realize
the optimal control of multi-trains. The model is for a railway corridor with one type of
cyclic train operation. The model aims at minimizing the energy consumption caused
by traction, and takes into account the cycle time, train dynamic movements, traction
and braking forces, and speed limits constraints. The headway between adjacent cyclic
operations is first determined according to the passenger demands. Then an iteration
algorithm is used to find the optimal cycle time and the optimal number of trains,
which minimize the timetable’s energy consumption. The optimal control strategy for
each train is computed by an independent optimal train-control algorithm. Zhou et al.
(2017) incorporated train speed control into the timetable design process. A space-
time-speed grid network for joint train routing, timetabling and trajectory optimization
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is constructed as a path finding problem, which is solved by a dynamic programming
algorithm.

As shown in the literature, researchers have proven that the MTTO has benefits in
solving timetabling or rescheduling problems because the MTTO approaches optimize
multi-train movements simultaneously, which achieves a global optimization of energy
and capacity usage while taking into account the operational interactions between
adjacent trains. However, although the majority of previous MTTO models take train
control strategies as the decision variables (Yang et al., 2012; Li and Lo, 2014a,b;
Su et al., 2014), they are computed separately by independent single-train trajectory
optimization methods. Besides, train movement processes are simplified, such as
assuming the same train routes, constant traction and braking forces, and the same type
of rolling stock. Further improvements can be achieved by optimizing train control
strategies simultaneously and considering more practical train movement processes.

5.1.2 Review of energy-efficient timetable adjustment

The quality of a railway timetable can be measured by several key performance
indicators (KPIs): journey time efficiency, timetable feasibility, robustness, and
energy efficiency (Goverde et al., 2016). Among those KPIs, energy efficiency is a
secondary objective, particularly in dense railway networks, and can, therefore, be
considered as a fine-tuning step after the time allowances have been set based on
feasibility and robustness. The scientific literature on railway timetabling mainly
considers macroscopic optimization models. The periodic event-scheduling problem
model introduced by Serafini and Ukovich (1989) has been widely applied in cyclic
timetabling (Peeters, 2003; Hansen and Pachl, 2014). Graph-based models (Yang et al.,
2009; Cacchiani et al., 2008) and mixed integer linear programming (MILP) models
(Cacchiani and Toth, 2012; Brännlund et al., 1998) were developed for generating non-
cyclic timetables. Those macroscopic optimization models focus on finding optimal
train orders, but are not concerned about how to the get accurate input parameters, such
as running times, to set up the macroscopic model, while energy-efficient timetabling
requires a microscopic level of details (Caimi et al., 2011).

Albrecht and Oettich (2002) proposed an approach of dynamic schedule synchro-
nization and energy saving in rapid rail transit systems. They used a simulation
model to compute the energy utilization for each discretized running time between two
consecutive stops of a train. Then they calculated the optimal timetable with dynamic
programming, in which train running times are dynamically modified, so that the
probability of passenger connections is increased and the overall energy consumption
of train operation remains low. Scheepmaker and Goverde (2015) developed an EZR
model (energy-efficient operation or in Dutch ‘EnergieZuinig Rijden’) to find the
energy-efficient trajectory of an individual train trip. The EZR model was adopted
to analyze energy efficiency of the practical train movements and the real-world
timetable. Their results show that using a more uniform allocation of the running
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time supplements leads to extra energy savings and an improvement on punctuality
compared to the method of tightening the timetable. Su et al. (2013) developed an
optimization model that determines both an energy-efficient driving strategy and an
optimal distribution of the running time supplements in the timetable. The authors
first explicitly calculated the energy efficient train control strategy per trip. Then the
model distributes the running time supplements among consecutive trips in order to
minimize the total energy consumption. Goverde et al. (2016) proposed a three-level
timetable design method, which constructs a stable robust conflict-free timetable with
optimal train orders first and then adjusts time supplements for energy-efficiency. The
time supplements are re-allocated on the principle of being beneficial for energy-saving
train operation, taking into account the stochastic dwell times.

The approaches in (Scheepmaker and Goverde, 2015; Goverde et al., 2016; Albrecht
and Oettich, 2002; Su et al., 2013) follow a similar process, by iteratively adjusting
running time allocations and computing energy-efficient trajectories for every individ-
ual running time allocation. They emphasize that a good allocation of running time
supplements is beneficial for timetable energy efficiency.

This paper contributes to a novel approach of energy-efficient timetabling that is
developed from a train trajectory optimization view. The method we propose is to
improve the energy efficiency of an existing timetable, which (1) focuses on a timetable
for a railway corridor, (2) calculates energy-efficient speed profiles for every train in the
timetable, taking into account the practical situation that trains use different routes and
platforms at stations, constraints of train dynamic movements, vehicle characteristics,
varying speed limits and gradients, and interactions between trains; and (3) is capable
of adjusting running time allocation and producing a new energy-efficient timetable.
The proposed approach integrates the train trajectory optimization and energy-efficient
timetabling, which does not need pre-calculations of the relationships between running
times and energy consumptions like the methods in (Scheepmaker and Goverde, 2015;
Goverde et al., 2016; Su et al., 2013). Compared to the integrated methods on the
timetable design level (Yang et al., 2012; Li and Lo, 2014a,b; Kraay et al., 1991), the
proposed approach provides a more microscopic description of train movements and
more accurate results of energy-efficient speed profiles.

The method is based on an existing timetable. It improves the timetable’s energy
efficiency by adjusting arrival and departure times. In detail, first the given timetable
is converted into flexible arrival and departure time window constraints, which are
described as a timetable constraint set (TCS). Then an ETTO method is developed
to find the optimal energy-efficient time-distance paths within those TCSs. The
ETTO method include two parts: one is a single-train trajectory optimization (STTO),
which focuses on optimizing an individual train movement within the relaxed arrival
and departure time windows, and the other is a multi-train trajectory optimization,
which computes multi-train trajectories simultaneously with a shared objective of
minimizing multi-train energy consumption and an additional target of eliminating
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conflicts between trains. The STTO and MTTO are re-formulated as a multiple-
phase optimal control problem (Rao, 2003), which has the advantage of accurately
incorporating varying gradients, curves and speed limits and different train routes. It is
then solved by a pseudospectral method (Rao et al., 2010). The multiple-phase optimal
control problem formulation and the pseudospectral method have been used in (Wang
and Goverde, 2016a) for single train trajectory optimization, in (Wang and Goverde,
2016c) for two following trains in the same direction, and in (Wang and Goverde,
2016b) to two opposite trains on single-track lines. This paper extends the methods
to optimize trajectories for multiple trains on a railway corridor composed of single
and/or double tracks, and implements the trajectory optimization method in energy-
efficient timetable adjustment. The proposed approach is demonstrated by application
to two case studies of opposite-trains running on a Dutch partially single-track railway
corridor and following-trains running on a Dutch double-track railway corridor. The
results show that our method is able to produce optimal energy-efficient speed profiles
and improve the energy efficiency of a timetable.

The remainder of the paper is organized as follows: Section 5.2 provides a description
of the energy-efficient timetabling problem and an introduction to the energy-efficient
timetabling strategy. Section 5.3 presents the train trajectory optimization method.
Section 5.4 presents the modelling and solution methods for the train trajectory
optimization problem. Section 5.5 illustrates the approach in case studies. Finally
Section 5.6 ends the paper with conclusions.

5.2 Energy-efficient timetabling problem

5.2.1 Problem description

Energy-efficient timetabling aims at finding a timetable for one or more trains on a
railway corridor or network that allows as much as possible energy-efficient driving
(Scheepmaker et al., 2017). The total running time of each train over the corridor
may be pre-specified or may still have to be determined. In both cases, the aim is to
determine the running time between each pair of consecutive stops for each train such
that the total energy consumption of the involved trains is minimal.

The energy-efficient timetabling method proposed in this paper is a fine-tuning step
by adjusting the arrival and departure times of an existing timetable to improve its
energy efficiency. The focus is a timetable for a railway corridor, see the example
shown in Fig. 5.1. The timetable lists the times when a service is scheduled to
arrive at and depart from specified locations. The railway corridor may consist of
single-track and/or double-track lines. Trains involved in this timetable are in the same
and/or different directions. The stations in the downstream direction are named with
successive numbers 1,2, . . . ,Z. Denote by Z = {1,2, ...,Z} the set of stations where Z
is the number of stations between K0 and K f . Denote by Iall the set of trains operating
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Figure 5.1: A timetable example for a railway corridor.

on this corridor, Id the set of trains in the downstream direction from station 1 to Z and
Iu the set of trains in the upstream direction from station Z to 1, and Zi the stations
on train i ∈ Iall’s journey. Define the train sets Io = {(i, j)| i and j are from opposite
directions, i, j ∈ Iall} and Is = {(i, j)| i and j are in the same direction, i, j ∈ Iall}.

5.2.2 Energy-efficient timetabling strategy

The proposed energy-efficient timetabling strategy includes two steps:

Step 1: Relax the timetable by converting the time targets to time window constraints;

Step 2: Find optimal arrival/departure/passing-through (A/D/P) times and optimal
energy-efficient speed profiles within those time windows.

The first step is to relax the given timetable. A timetable indicates strict time targets
of arrival, departure and pass-through events for all involved trains. To adjust the
allocation of running time supplements, the time targets of all the trains in intermediate
stations are converted into time window constraints. Every train’s first and last station
maintain their original arrival and departure times so that the timetables of adjacent
regions are not influenced. The lower bounds of the time windows represent the earliest
possible A/D/P times assuming the train leaves the first station on the scheduled time.
The upper bounds represent the latest possible A/D/P times in order to arrive at the
last station on time. The lower bounds are computed with technical minimum running
(dwell) times in the train’s travel direction, while the upper bounds are computed with
technical minimum running (dwell) times backwards. An example of time windows of
a single train is shown in Fig. 5.2.
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Figure 5.2: An example of time targets and time windows of a single train.

The time windows and corresponding speed windows are formulated with a timetable
constraint set (TCS), which is a sequence of time and speed constraints at timetable
points (stations). We classify a train’s event at a station into three types: arrival,
departure and pass-through. Denote by e an event, e ∈ {a,d, p} where a refers to
arrival, d refers to departure, and p refers to pass-through. For train i ∈ Iall, the TCS is
written as

TCSi =
{(

ki,z,e, [tmin
i,z,e, t

max
i,z,e ], [v

min
i,z,e,v

max
i,z,e ]

)}
z∈Zi

, (5.1)

where ki,z,e is the location for train i at station z of event e, and tmin
i,z,e, tmax

i,z,e , vmin
i,z,e and vmax

i,z,e
are respectively the lower and upper bounds of time and speed for e at ki,z,e. Define
KTCSi as the set of timetable points of train i. If ki,z,e is a stop station, the speed window
[vmin

i,z,e,v
max
i,z,e ] = [0,0], and ki,z,a = ki,z,d . If ki,z,e is a pass-through station, vmin

i,z,e and vmax
i,z,e

are respectively the lower and upper passing-through speeds.

Albrecht et al. (2013) proposed a train path envelope (TPE) to describe the time and
speed constraints at timetable points, signals, and conflict points. The TPE is allocated
to one train only and the TPEs do not overlap each other, so that as long as a train
stays in its TPE there will be no conflicts. In this paper we allow overlapping TCSs
while the conflicts are resolved with the multi-train trajectory optimization algorithm
(Section 5.3).

Step 2 is to find optimal energy-efficient A/D/P times and speed profiles within those
time windows. The reason of keeping A/D/P times within the time windows produced
by step 1 is to avoid changing train sequences. Consequently, the journey times and
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capacity usage are not influenced. A train trajectory optimization method (Section 5.3)
is developed to find optimal energy-efficient A/D/P times and speed profiles.

5.3 Train trajectory optimization method

A single-train trajectory optimization (STTO) is developed firstly to find every single
train’s optimal energy-efficient A/D/P times and speed profiles within the train’s
TCS. In order to re-allocate the running times, the STTO no longer focuses on the
train movements between two adjacent stops like the classical ETTO problem does
(Khmelnitsky, 2000; Howlett, 2000; Liu and Golovitcher, 2003), but it concerns the
whole corridor between the first and last station, which may contain a few intermediate
stops and passing-through stations. Note that the TCSs, as well as the trajectories
computed by the STTO, can not promise conflict-free train paths. Therefore it is
necessary to do conflict detection. The conflict detection is by checking the overlaps
in blocking diagrams (Goverde et al., 2016). If there are any overlaps in blocking
diagrams, a multi-train trajectory optimization (MTTO) is applied to jointly compute
the conflicting trains’ trajectories. The MTTO eliminates conflicts between trains.

In summary, the train trajectory optimization method follows the three steps to find
optimal A/D/P times and speed profiles:

Step 1: Compute the speed profiles and time-distance paths for every single train
separately with the STTO;

Step 2: Conflict detection. If there is no conflict between the time-distance paths
computed in Step 1, then take the time-distance paths from Step 1 as the output,
otherwise go to Step 3;

Step 3: Compute the speed profiles and time-distance paths for the conflicting trains
simultaneously with the MTTO, and output the computed time-distance paths.

The train trajectory optimization model is extended based on the the optimal control
model presented in (Wang and Goverde, 2016a). Denote by I the set of trains which
require speed profiles. If I only contains one train, the following model is the STTO
model. If I contains more than one train, it becomes a MTTO model.

The cost function is to minimize the total energy costs of the trains in I, that is

min J = ∑
i∈I

Ji, Ji =
∫ K f

i

K0
i

fi(si) dsi, (5.2)

subject to the operational constraints of every single train i ∈ I
dvi(si)

dsi
=

θ1 fi(si)−θ2bi(si)−Rtrain,i(vi)−Rline,i(si)

ρi ·mi · vi(si)
,

dti(si)

dsi
=

1
vi(si)

,
(5.3)
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

0≤ fi(si)≤ Fmax
i ,

0≤ bi(si)≤ Bmax
i ,

0≤ fi(si) · vi(si)≤ Pmax
i ,

0≤ vi(si)≤V max
i (si),

Amin
i ≤ dvi(si)

dti(si)
≤ Amax

i ,

(5.4)

{
vmin

i,z,e ≤ vi(ki,z,e)≤ vmax
i,z,e ,

tmin
i,z,e ≤ ti(ki,z,e)≤ tmax

i,z,e , ∀ z ∈ Zi, ki,z,e ∈KTCSi,
(5.5)

Dmin
i,z ≤ ti(ki,z,d)− ti(ki,z,a)≤ Dmax

i,z , ∀ z ∈ Zi, ki,z,a,ki,z,d ∈KTCSi. (5.6)

ti(ki,z,d)

6
−
⌊

ti(ki,z,d)

6

⌋
= 0, ∀ z ∈ Zi. (5.7)

The STTO model (I only includes one train) is to minimize the cost function (5.2),
subject to constraints (5.3)-(5.7). The cost function (5.2) reflects the objective of
minimizing energy consumption, where K0

i and K f
i are respectively the start and end

positions of train i’s journey, si is the traversed distance [m], and fi(si) is the traction
force [kN].

Equations (5.3) are the differential equations of train movements. Distance is adopted
as the independent variable because gradients and speed limits occur as functions of
distance rather than of time. In equations (5.3), vi(si) is the velocity of train i [m/s],
ρi is the rotating mass factor, mi is the mass of train i [t], bi(si) is the braking force
of train i [kN], Rtrain,i(vi) = αi +βi · vi + γi · v2

i is the train resistance force [kN] with
coefficients αi, βi and γi, Rline,i(si) is the line resistance force [kN], which is a function
of position and consists of grade resistance and curve resistance, ti(si) is the traversed
time of train i [s], and θ1,θ2 ∈ {0,1} are two binary parameters with θ1 ·θ2 = 0.

Equations (5.4) are the path constraints of train i’s vehicle performance parameters,
speed limit and riding-comfort. Fmax

i , Bmax
i and Pmax

i are the upper bound of traction
force, maximum braking force and maximum traction power of train i. The maximum
traction force equals min{Fmax

i ,Pmax
i /vi(si)}. V max

i (si) is the speed limit at position
si, including static and temporary speed restrictions. Amin

i and Amax
i are the lower and

upper bound of acceptable acceleration.

Equations (5.5) are the event constraints which represent that the A/D/P times and
speeds should respect the time and speed constraints of every timetable point in KTCSi .
Equation (5.6) represents the dwell time constraints. The dwell times are restricted by
the minimal and maximal dwell times, where the minimal dwell times should provide
sufficient time for boarding and alighting. In (5.6), Dmin

i,z and Dmax
i,z are the minimal

and maximal dwell times of train i at station z. Equation (5.7) defines the departure
times as integral multiples of 6 seconds (in some countries 30 seconds or 60 seconds)
for more precise information to drivers and dispatchers. In Equation (5.7), the unit of
ti(ki,z,d) is in seconds. b·c refers to rounding down to the nearest whole unit.
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Figure 5.3: Necessary headways between trains.

If I contains more than one train, Equations (5.2)-(5.7) become parts of a MTTO
model, which aims minimizing the cost function (5.2). The cost function (5.2) reflect
the target of minimizing the energy costs for all the involved trains. The MTTO model
optimizes the multi-train trajectory together, so that it is necessary to avoid conflicts
between trains, as well as satisfy the operational constraints for every individual train
(5.3)-(5.7). Three more types of constraints should be noticed:

1. a time interval between every two adjacent trains in the same direction is required
for safe train separation (Fig. 5.3 1©),

2. for opposite trains, there are two important types of headway requirements: (i)
“depart-arrive” headway, the headway between the departure of a train and the
arrival of an opposing train from the same line (Fig. 5.3 2©); and (ii) “arrive-
depart” headway, the headway between the arrival of a train and the departure of
an opposing train towards the same line (Fig. 5.3 3©), and

3. opposite trains cannot travel on a single-track section between two adjacent
stations at the same time, otherwise a head-on conflict occurs (Fig 5.3. 4©).

The three conflict-avoiding constraints can be formulated as
(
ti(q)− t j(q)

)2 ≥ h2
s , ∀(i, j) ∈ Is,q ∈ Signali, j,(

ti(q)− t j(q)
)2 ≥ h2

o, ∀(i, j) ∈ Io,q ∈ StationSignali, j,(
ti(l0)− t j(l0)

)
(ti(l f )− t j(l f ))≥ σ, ∀(i, j) ∈ Io, [l0, l f ] ∈ SingleTracki, j.

(5.8)

The first inequality represents the safe following headway constraint for trains in the
same directions. Denote by Signali, j the set of signals on both train i and j’s journeys
for i, j ∈ Is, ti(q) and t j(q) refer to the time of train i and j passing through signal



Chapter 5 113

q ∈ Signali, j, and hs is the minimal headway time between two successive trains in the
same directions. The left hand sides of the first two equations are squared to include
the influence of train sequences.

The second inequality is for safe “depart-arrive” or “arrive-depart” headway con-
straints. StationSignali, j is the set of signals at station boundaries on both train i
and j’s journeys for i, j ∈ Io. ho is the minimum “depart-arrive” or “arrive-depart”
headway time. Here “station signal” refers to a signal at station boundaries, either
the inbound side or the outbound side. The point where the headway time applies is
usually the station but we put the headway times at station signals. The reason is that
trains may use different platforms which correspond to different phases in the multiple
phase optimal control problem formulation, that is introduced later. We want to keep
the headway constraints at one location where both i and j are passing through to
simplify the formulation.

If the timetable is a periodic timetable, conflict-avoiding constraints shall take into
account that the trains run every Tperiod (cycle time in seconds) (Hansen and Pachl,
2014). So that the first two equations in (5.8) become{

h2
s ≤

(
ti(q)− t j(q)

)2 ≤ (Tperiod−hs)
2,∀(i, j) ∈ Is,q ∈ Signali, j

h2
o ≤

(
ti(q)− t j(q)

)2 ≤ (Tperiod−ho)
2,∀(i, j) ∈ Io,q ∈ StationSignali, j.

(5.9)

The third inequality in (5.8) is used to avoid any crossover of two trains’ time-
distance paths on single-track segments in order to avoid head-on conflicts between
two opposite trains. Define any section between l0 and l f , which opposite trains are
allowed to use, as a single-track. SingleTracki, j is the set of single-tracks on both train
i and j’s journeys for i, j ∈ Io. [l0, l f ] refers to a piece of single track (l0 and l f are the
start and end locations). ti(l0), ti(l f ), t j(l0) and t j(l f ) refer to the time of train i and
j passing through l0 and l f , and σ is a positive value close to 0 representing a safe
margin for train separation.

In summary, the MTTO model minimizes the cost function (5.2), subject to constraints
(5.3)-(5.8) (or (5.9)), where I includes more than one train.

5.4 Modelling and solution methods

This section presents the modelling and solution methods for the MTTO since the
STTO modelling and solution methods has already been published in (Wang and
Goverde, 2016a). The advantage of the MTTO presented in Section 5.3 is that it
enables optimizing the energy consumption of multi-trains together with constraints
to avoid conflicts between trains. However, it gives rise to three key questions.

First, Equations (5.3) are the differential equations of the train movements. Every
train’s traversed distance is taken as the independent variable of its own differential
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equations. However, the trains’ traversed distances are not always the same since they
are in different directions or follow different routes, as the example of red and blue
routes show in Fig. 5.4. It is necessary to unify the independent variable in order to
formulate train movements together.

station section of red route line section of red route

station section of blue route line section of blue route

Figure 5.4: Example of two trains following different routes.

Second, trains are assigned different routes. Let “station sections” be sequences
of connected blocks within a single station starting and ending at so-called station
boundaries, and “line sections” be sequences of connected blocks within a single-track
or double-track line (examples of station sections and line sections are shown in Fig.
5.4). Each train route is composed of a sequence of station sections and line sections,
guiding the train through each station and each line. An accurate route model is the
fundamental base of computing the train trajectories. However, trains are assigned
different routes, while the lengths of different station sections within a station might
be different, and the lengths of different line sections within a double-track line might
also be different. The length differences make the multi-train trajectory optimization
more complicated.

Last but not least, different trains have different speed limits and gradients since they
travel on different routes, and the speed limits and gradients change along train routes.
Besides, the MTTO model contains a lot of time and speed constraints at timetable
points (in Equations (5.5)-(5.7)) and signals (in Equations (5.8)-(5.9)). How to deal
with the varying speed limits and gradients and time and speed constraints at specific
points is a difficult question.

This section provides solutions to these three questions. The independent variable
is firstly unified, the section lengths are normalized, and the MTTO model is re-
formulated as a multiple-phase optimal control problem to capture the varying speed
limits and gradients and time and speed constraints.

5.4.1 Unification of the independent variable

Take distance s as the independent variable, which increases in the downstream
direction. Let

dsi = ds, ds j =−ds, ∀ i ∈ Id, j ∈ Iu.
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ds j =−ds because train j is in the upstream direction.

5.4.2 Normalization of section lengths

Our model takes into account the actual situation that trains use different routes and
different tracks at stations, whilst the route lengths might be different. A normalization
vector λi (i ∈ I) is adopted for every station section or line section of train i ∈ I
to normalize section lengths. With the introduction of λi, we scale all routes with
respect to a fixed reference ‘main route’, so that all routes have unified and continuous
kilometer points. λi is used in the formulation of cost function and dynamic constraints
to scale the section lengths. The section lengths will be re-scaled again in the final
solution for each train, so that the computed trajectories respect the actual route
lengths.

The normalization follows 3 steps:

Step 1: Define station boundaries to divide the railway corridor into station regions
and line regions.

Step 2: Define a main route in the downstream direction. The main route covers the
whole corridor, and the kilometer points of the main route are continuous.

Step 3: Get the information of the lengths of every station section and line section of
all the train routes and the main route, and compute λi for each section.

For a station section in train i ∈ I’s route at station z ∈ Zi,

λStationsecz
i
=

LStationsecz
i

LStationsecz
main

, ∀ i ∈ I,z ∈ Zi, (5.10)

where Stationsecz
i refers to the station section, which train i uses at station z,

Stationsecz
main refers to the station section on the main route at station j, LStationsecz

i

and LStationsecz
main

are respectively the lengths of Stationsecz
i and Stationsecz

main.

For a line section on train i ∈ I’s route between adjacent stations z and z+1 (z,z+1 ∈
Zi),

λLinesecz,z+1
i

=
LLinesecz,z+1

i

LLinesecz,z+1
main

, ∀ i ∈ I,z,z+1 ∈ Zi, (5.11)

where Linesecz,z+1
i refers to the line section on train i’s route between station z and

z+ 1, Linesecz,z+1
main refers to the line section within the main route between station z

and z+ 1, LLinesecz,z+1
i

and LLinesecz,z+1
main

are respectively the lengths of Linesecz,z+1
i and

Linesecz,z+1
main .
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5.4.3 Multiple-phase optimal control problem formulation

The multiple-phase optimal control problem divides the railway corridor into multiple
segments. Each segment is a phase, where any particular phase has its own cost
function (minimizing energy costs), dynamic model (train dynamic movement model),
path constraints (vehicle characteristics, speed limits, and riding comfort), boundary
conditions (time and speed constraints at timetable points), and event constraints (to
avoid conflicts). The complete trajectory is then obtained by properly linking adjacent
phases via linkage conditions (continuous speeds and times). The total cost function
is the sum of the cost functions within each phase. The optimal trajectory is then
found by minimizing the total cost functional subject to the constraints within each
phase and the linkage constraints connecting adjacent phases. The advantages of this
modelling method are multiple: it gives an accurate description of varying speed limits
and gradients and the time and speed restrictions at timetable points.

Assume that the infrastructure data combine track information such as speed, gradient,
the signalling system (location of signals) and operational information like routes and
timetable points. The first step is to divide the railway corridor into several segments.
The division-points are one of three types:

1. Critical points of speed limits and gradients. The points of changing speed limits
or gradients are used to partition the whole corridor, so that each interval has a
unique speed limit and gradient value.

2. Timetable points that have time or speed limitations indicated by every train’s
TCS.

3. Signal positions in both directions. The signaling system consists of a series of
railway signals that divide a railway line into a series of sections, or “blocks”,
which are important elements in managing train movements. For example, each
block can only be occupied by one train at a time.

Fig. 5.5 gives an example, where the corridor is divided into 16 segments. Each
segment between two adjacent division-points is a phase for the multiple-phase optimal
control problem. Within each phase, the gradient and speed limit are constant, but their
values may be different from the ones in other phases. The boundary points of a phase
also might be a timetable point or a signal, where time and/or speed restrictions apply
on the train operations.

Denote by r ∈ R = {1, . . . ,R} a phase, R is the number of phases of this railway
corridor, s(r)0 the initial location of phase r, and s(r)f the terminal location of phase

r, s(r)0 < s(r)f . Define A =
{
(m,n)|s(m)

f = s(n)0 ,m,n ∈ R
}

as the set of adjacent phases,

and I(r) as the set of trains passing through phase r, I(r) ⊆ I. Let v(r)i (s), t(r)i (s) be train
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Figure 5.5: Example of partitioning in phases.

i’s speed and time in phase r, f (r)i (s), b(r)i (s) be train i’s traction and braking forces
in phase r, V max,(r)

i (s) be the speed limit of train i in phase r, and R(r)
line,i(s) be the line

resistance caused by the constant gradient within phase r. ξi and λ
(r)
i are introduced

for later mathematical formulations. ξi = 0 if i ∈ Id, otherwise ξi = 1, and λ
(r)
i equals

the value of λi in phase r.

The MTTO model is re-formulated as a multiple-phase optimal control problem:

Minimize J =
R

∑
r=1

J(r),J(r) = ∑
i∈I(r)

J(r)i , (5.12)

J(r)i = λ
(r)
i

∫ s(r)f

s(r)0

f (r)i (s) ds,

subject to the dynamic constraints:
dv(r)i (s)

ds
= (−1)ξiλ

(r)
i

θ1 f (r)i (s)−θ2b(r)i (s)−Rtrain,i(v
(r)
i )−R(r)

line,i(s)

ρi ·mi · v
(r)
i (s)

,

dt(r)i (s)
ds

= (−1)ξiλ
(r)
i

1

v(r)i (s)
,

∀ r ∈ R, i ∈ I(r),

(5.13)
the path constraints:

0≤ f (r)i (s)≤ Fmax
i ,

0≤ b(r)i (s)≤ Bmax
i ,

0≤ f (r)i (s) · v(r)i (s)≤ Pmax
i ,

0≤ v(r)i (s)≤V max,(r)
i ,

Amin
i ≤

dv(r)i (s)

dt(r)i (s)
≤ Amax

i ,

∀ r ∈ R, i ∈ I(r), (5.14)
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the boundary conditions (if any):
vmin

i,z,e ≤ v(r)i (ki,z,e)≤ vmax
i,z,e ,

tmin
i,z,e ≤ t(r)i (ki,z,e)≤ tmax

i,z,e ,

t(r)i (ki,z,d)
6 −

⌊
t(r)i (ki,z,d)

6

⌋
= 0,

∀ r ∈ R, i ∈ I(r),ki,z,e ∈KTCSi ∩{s
(r)
0 ,s(r)f }, (5.15)

the event constraints (if any):

(
t(r)i (q)− t(r)j (q)

)2
≥ h2

s ,

∀ r ∈ R,(i, j) ∈ Is : i, j ∈ I(r),q ∈ Signali, j ∩{s
(r)
0 ,s(r)f },(

t(r)i (q)− t(r)j (q)
)2
≥ h2

o,

∀ r ∈ R,(i, j) ∈ Io : i, j ∈ I(r),q ∈ StationSignali, j ∩{s
(r)
0 ,s(r)f },(

t(r)i (s(r)0 )− t(r)j (s(r)0 )
)(

t(r)i (s(r)f )− t(r)j (s(r)f )
)
≥ σ,

∀ r ∈ R,(i, j) ∈ Io : i, j ∈ I(r), [s(r)0 ,s(r)f ] ∈ SingleTracki, j,

(5.16)

and the linkage conditions of all adjacent phases: v(m)
i (s(m)

f )− v(n)i (s(n)0 ) = 0,

Dmin
i,s(m)

f

≤ t(n)i (s(n)0 )− t(m)
i (s(m)

f )≤ Dmax
i,s(m)

f

,
∀(m,n) ∈ A, i ∈ I(m)∩ I(n). (5.17)

The cost function (5.12) aims at minimizing the cost functions over all phases, J(r) is
the sum of the cost function(s) of the train(s) going through phase r. A single train’s
cost function J(r)i aims at minimizing energy consumption within phase r. Each phase
r ∈ R adopts the dynamic constraints (5.13) to represent the dynamic movements of
train(s) going through segment [s(r)0 ,s(r)f ]. The dynamic constraints are stated with s
as the independent variable. (−1)ξi is adopted to eliminate the influence of travelling
directions. λ

(r)
i is adopted for the normalization of section lengths. Path constraints

(5.14) are used to represent the operational constraints of vehicle characteristics, speed
limits and riding comfort. Inequalities (5.15) work as the boundary conditions of phase
r if ki,z,e ∈ KTCSi is the initial or terminal point of that phase. Timetable points are
adopted as division-points, so phase r’s initial or terminal point might be a timetable
point, where time and speed restrictions on train operations apply. For a phase that
has more than one train going through, event constraints (5.16) are required to avoid
conflicts between trains. They are developed based on (5.8) or (5.9).

The linkage conditions (5.17) are to make sure that the train’s speed-distance and time-
distance trajectories are continuous. If the linkage point of two successive phases is a
stop point of a train i, t(m)

i (s(m)
f ) and t(n)i (s(n)0 ) represent the arrival and departure times

of train i at s(m)
f , and Dmin

i,s(m)
f

,Dmax
i,s(m)

f

are the lower bound and upper bound of dwell times

of train i at s(m)
f and s(n)0 . Otherwise, Dmin

i,s(m)
f

= Dmax
i,s(m)

f

= 0.
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5.4.4 Pseudospectral method

GPOPS (Rao et al., 2010) is adopted to solve the multiple-phase optimal control
problem. GPOPS is a MATLAB software program for solving multiple-phase optimal
control problems using the pseudospectral method. In general, pseudospectral methods
transcribe the continuous-time optimal control problem into a nonlinear programming
problem, after which a nonlinear programming solver is adopted to directly solve the
problem. GPOPS uses the Radau pseudospectral method (Garg, 2011), which takes
the Legendre-Gauss-Radau (LGR) points for collocation of the dynamic constraints,
and for quadrature approximation of the integrated Lagrange cost term. The Lagrange
polynomial approximation of the state, however, uses the LGR points plus the final
point. In addition, GPOPS offers a function that implements an hp-adaptive mesh
refinement algorithm that iteratively determines a mesh that accurately distributes the
collocation points. GPOPS transcribes the continuous-time multiple-phase optimal
control problem into a discrete NLP problem. The resulting NLP is then solved by
SNOPT (Gill et al., 2005). For detailed mathematical descriptions, we recommend
Wang and Goverde (2016a); Rao et al. (2010); Ye and Liu (2016).

5.5 Case studies

The proposed approach is applied in case studies on a Dutch single-track corridor and
a double-track corridor. The infrastructure data is provided by the Dutch infrastructure
manager Prorail. The infrastructure characteristics consist of a description of all track
sections, points, speed signs, gradients and signals over the entire track layout. The
single-track rail corridor is about 20 km long, between Den Helder (Hdr) and Schagen
(Sgn) in the north of the Netherlands, see Fig. 5.6 (a). There are 4 stations along
this corridor: Den Helder (Hdr), Den Helder Zuid (Hdrz), Anna Paulowna (Ana),
and Schagen (Sgn). The double-track corridor is between Utrecht-’s-Hertogenbosch,
which is one of the busies rail lines in the Netherlands. This railway corridor is about
50 km long, including two main tracks, divided into one long corridor for each traffic
direction, 8 passenger stations: Utrecht (Ut), Utrecht Lunetten (Utl), Houten (Htn),
Houten Castellum (Htnc), Culemborg (Cl), Geldermalsen (Gdm), Zaltbommel (Zbm)
and ’s-Hertogenbosch (Ht) (Fig. 5.6 (b)).

Fig. 5.7 shows the pre-defined timetables for the single-track and the double-track
corridor (one direction from Ht to Ut). The time-distance diagrams are based on the
timetables in use in 2016, which are periodic timetables with train services repeating
every half hour. The trains in black solid lines in Fig. 5.7 are chosen for the case
studies as the traffic within half hour timetables. On the double-track corridor, the
trains in different directions are independent from each other, so only the trains from
Ht to Ut are taken into account. By optimizing the six trains’ time paths, the timetables
for the whole day are optimized. To simplify the illustration, we name the trains as T1

(regional train from Hdr to Sgn), T2 (regional train from Sgn to Hdr), T3 (regional train
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Figure 5.6: The partial single-track and double-track corridors used in the case studies.

from Gdm to Ut), T4 (regional train from Ht to Ut), T5 (intercity train from Ht to Ut)
and T6 (intercity train from Ht to Ut), as shown in Fig. 5.7. The light blue rectangles
in Fig. 5.7 refer to multi-track lines, where the trains use different tracks. Trains use
the same tracks on the other regions. On the single-track corridor between Hdr and
Sgn, T1 and T2 operate in different directions and the two trains are scheduled to meet
at Ana station. The double track corridor has two intercity trains (T5 and T6) and two
regional trains (T3 and T4) running in the direction from Ht to Ut, and T5 overtakes T4

at Gdm station.
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Figure 5.7: Original timetables of single-track and double track corridors.

The static parameters of the regional and intercity trains are listed in Table 5.1. The
traction force and train resistance curves are shown in Fig. 5.8. Since the braking rates
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are the only accessible data characterizing the braking behavior, we let the braking
force be equal to the braking rate times train mass.

Table 5.1: Basic parameters of Regional and Intercity train.

Property
Value

Regional Intercity
Train mass [t] 220 391
Rotating mass factor [-] 1.06 1.06
Maximum traction power [kW] 1918 2157
Maximum traction force [kN] 170 214
Maximum braking deceleration [m/s2] -0.8 -0.66
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Figure 5.8: Traction force and line resistance of Regional and Intercity train.

The proposed methods were tested in two scenarios. The first is the scheduled scenario.
The STTO is adopted to compute the speed profiles of the six trains separately, which
assumes the trains operate according to the given timetables. Arrival and departure
target points constraints are used to model the trains’ punctuality. The second scenario
is the energy-efficient timetable adjustment case. The A/D/P time target constraints
are converted to time window constraints first, then the STTO is adopted to compute
the speed profiles and time paths of the six train separately. After that, the conflicts are
detected by checking the overlaps on blocking diagrams. If there are conflicts between
the train paths, the MTTO method is adopted to re-compute the speed profiles and
time-distance paths of the conflicting trains.

The TCS time windows of train T1, T2, T3 and T4 are presented in Fig. 5.9. The
TCSs T5 and T6 are composed by scheduled departure and arrival times. The running
times of T5 and T6 between Ht and Ut are the same as the ones provided by the original
timetable. The timetables we study are periodic timetables, so Equations (5.9) are used
by the MTTO model to ensure enough headways between trains. The parameters in
Equations (5.8) and (5.9) were set as Tperiod = 1800 s, hs = 120 s, ho = 15 s, and σ = 5
s. The value of hs is set according to the network statement 2017 by Prorail (ProRail,
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Figure 5.9: TCS time windows of train T1, T2, T3 and T4 (red rectangles refer to
departure time windows, the blue rectangles refer to arrival time windows).

2017). We use default headway norms that should be sufficient for the final timetable
to be conflict-free and contain some buffer. This can be checked by computing the
blocking time diagram for the final solution to prove that the timetable is conflict-free,
or if not to increase some headway times in the same manner as presented in Bešinović
et al. (2016). The value of ho ensures enough time interval for signal clearing and
setting. σ is a positive value to avoid any crossover of opposite trains’ path. The
dwell time windows at the meeting station, Ana, and the overtaking station, Gdm, are
respectively [1 min, 2 min], and [3 min, 6 min]. The minimal and maximal dwell times
at other stations are 0.5 min and 1 min.

The experiments were carried out with GPOPS 4.1 on a laptop equipped with a 3.2
GHz Pentium R processor. As for the parameter settings of GPOPS, we used ‘complex’
as the string to indicate the differentiation method, a tolerance of 1e-3, an iteration of
2, and didn’t use autoscaling. The explanation of the parameters can be found in (Rao
et al., 2011).

Fig. 5.10, 5.11, 5.12 and Table 5.2 present the optimized results for the two trains, T1

and T2, on the single-track corridor. Fig. 5.13, 5.14, 5.15 and Table 5.3 present the
optimized results for the four trains, T3, T4, T5 and T6, on the double-track corridor.

Timetable analysis: Table 5.2 and 5.3 present the arrival and departure times of the
original timetables and the optimized timetables. The optimized arrival and departure
times are slightly different from the ones indicated by the original timetables. The
departure times are integral multiples of 6 seconds because of the restriction of
Equation (5.7). The optimized dwell times of train T1 and T2 at Ana are 1 minute.
The optimized dwell times of T4 at Gdm are respectively 3 minutes by using STTO,
and 4 minutes by using MTTO. In addition to that, the optimized dwell times at the
other stations of all trains are 0.5 minutes. The results show that short dwell times are
beneficial for energy-efficiency. The MTTO provides 1 minute longer dwell time of
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Figure 5.12: Time supplements of the original timetable and optimized timetable for
trains on the single-track corridor.

tain T4 at Gdm to satisfy the constraint (5.8) and to eliminate conflicts between T4 and
T5, see Fig. 5.14.

Speed profile analysis: Fig. 5.10 shows the speed profiles of train T1 from left to
right, and train T2 from right to left. Fig. 5.13 shows the speed profiles of T3, T4,
T5 and T6. In Fig. 5.10 and 5.13, the red horizontal lines represent the static speed
limits, the black lines refer to the energy-efficient speed profiles based on the original
timetable, the green lines represent the optimized speed profiles within TCS windows
computed with the STTO model, and the blue lines represent the optimized speed
profiles computed with the MTTO model.

The optimal speed profiles, computed by both STTO and MTTO (as shown in Figs.
5.10 and 5.13), satisfy the energy-efficient train control theory by the application of
PMP (Howlett and Pudney, 1995): the control regimes between every two stops include
using maximum traction during the outbound processes, maximum braking force for
the inbound processes, cruising at maximum speeds, and coasting before braking
for energy saving. Train speeds do not exceed the static varying speed limits. The
trains are capable of accelerating after entering high speed regions and decelerating to
low speeds before getting in low speed areas. The trains stop at every planned stop
point, which includes not only the first and last stations of the corridor, but also the
intermediate stops, such as Hdrz, Ana (for train T1 and T2), Zbm, Gdm, Cl, Htnc, Htn,
and Utl (for train T3, T4, T5 and T6). It shows that both STTO and MTTO can handle
time and speed constraints at intermediate stations. The MTTO method is capable of
optimizing the trajectories of trains on different directions and different routes.

Blocking time diagram analysis: Fig. 5.11 and 5.14 present the blocking time
diagrams, which are computed according to the optimized results using STTO (left) or
MTTO (right). Both in Fig. 5.11 and 5.14, the light-blue rectangles represent station
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Figure 5.13: Speed profiles for trains on the double-track corridor.
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Figure 5.15: Time supplements of the original timetable and optimized timetable for
trains on the double-track corridor.

areas with multiple tracks. The blocking time diagrams are only allowed to intersect
within the station areas.

As the blocking time diagrams shown in Fig. 5.11 on the left, T1 and T2’s blocking
times intersect at the single-track line between Sgn and Ana, which is not feasible.
Therefore the MTTO method is adopted to compute new conflict-free time paths. The
right plot in Fig. 5.11 shows that the blocking time diagrams for T1 and T2 overlap at
station Ana, which has two parallel tracks. T1 uses track 1 while the opposing train
uses track 2, so the conflict is eliminated with the optimized results.

In Fig. 5.14, the left plot presents an overlap of the blocking times of train T4 and T5

on the section between Gdm and Cl. Both T4 and T5 leave Gdm at 00:22:00, thus there
is no sufficient headway between the moments that the trains start using the section
between Gdm and Cl. Therefore, the MTTO is adopted to re-compute the trajectories
for T4 and T5. The results are shown in the right plot of Fig. 5.14, where train T4 leaves
Gdm at 00:24:00, causing no conflicts with T5.

Time supplement and energy consumption analysis: Fig. 5.12 and 5.15 present the
time supplements of the original and optimized timetables for T1, T2, T3 and T4. The
time supplements of T5 and T6 are not discussed herein, because their running times
between Ht and Ut are the same as the ones provided by the original timetable.

It can be seen that the time supplements are re-allocated. The re-allocation of time
supplements has a direction influence on speed profiles and energy consumptions.
Trains coast more on the sections with more running time supplements. As reported
in Table 5.2 and 5.3, the energy consumption of trains T1-T4 are decreased by 4.34%,
24.34%, 17.27% and 13.4%. In addition, the optimized dwell time of train T4 at Gdm
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is 4 minutes, so that T4 got 1 minute more running time compared to the original
timetable. The extra running time is beneficial to energy saving. The STTO is able
to save more energy consumption than the MTTO model, however, computing the
trajectories separately may cause conflicts. The MTTO saves less energy consumption
but eliminates the conflicts.

Computation time analysis: The computation times are reported in Tables 5.2 and
5.3. The STTO is able to compute trajectories for each train within a short time (less
than 1 minute to compute a trajectory for a train running on a 50 km long corridor).
The MTTO causes longer computation times, compared to the STTO, since the MTTO
model contains more variables.

5.6 Conclusions

This paper proposed a novel energy-efficient timetabling strategy. This strategy is
achieved by adjusting the arrival and departure times of an existing timetable to
improve its energy efficiency using train trajectory optimization. The train trajectory
optimization method proposed by us integrates two types, a single-train trajectory
optimization, and a multi-train trajectory optimization. The STTO focuses on one
single-train’s trip, which is able to compute the energy-efficient trajectory for a trip
containing not only two stops but also intermediate stops or passing-through stations,
while the classical train trajectory optimization methods only solve the problem
with a train from one stop to another stop. If the STTOs generate conflicts then a
MTTO method is applied. The MTTO model optimizes multiple trains’ trajectories
simultaneously. It aims at minimizing all trains’ energy consumption, and concerns the
train dynamic behavior and operational constraints for every individual train, as well
as constraints to avoid conflicts between trains. The STTO and MTTO models are re-
formulated as a multiple-phase optimal control problem and solved by a pseudospectral
method. Both STTO and MTTO are adopted in finding the optimal speed profiles and
conflict-free time paths, which in turn changes the arrival and departure times of the
existing timetable, and improves the timetable’s energy efficiency. Case studies of
two half-hour timetables on a Dutch single-track corridor and a double-track corridor
suggested that our method is able to produce energy-efficient timetables.

Future research aims at integrating the train trajectory optimization in timetable
design. Along with the proposed MTTO model, the following extensions should
be addressed: (1) a scheduling model to find optimal train orders; and (2) dynamic
headway constraints to ensure a feasible timetable.
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Chapter 6

Real-time train trajectory
optimization in driver advisory system
development

6.1 Introduction

Railway systems have become more and more busy with the growth of traffic demand
in many countries. The increased density raises the difficulties of assuring efficient
train operations. Trains are operated by human drivers. Their primary goal is to ensure
train safety and maintain the schedule (arrival and departure times). Experienced
drivers are able to save energy consumption and ensure passenger comfort. But
different drivers have different driving skills. It is hard to achieve an efficient train
operation especially when the train is interrupted by unexpected events. To improve
the performance of train drivers, an in-cab system could be installed, which provides
train drivers with information and driving advice and helps them to drive the train in
an efficient manner. These systems are called Driver Advisory Systems (DASs).

There are several DASs on the market. Panou et al. (2013) provide a detailed review
of the methods and features of existing DASs. Some DASs just provide drivers
with timetable information and other generic advice on paper or on a screen. Those
DASs are generally onboard tools, independently from the traffic management system.
Typical examples are German and Swiss electronic timetables. They are the only
systems that are in widespread use today. More complex systems provide drivers
with dynamic advice on how to drive the train pursuant to a pre-defined timetable.
For instance, LEADER ON-BOARD (Knorr-bremse, 2009) is a driver advisory
system that helps train drivers operate their trains in a smooth and energy-efficient
manner. LEADER calculates optimal speed profiles and continuously displays speed
recommendations as well as information, such as milepost, gradients, and upcoming
stations, based on the train’s current position and pre-defined timetable. Energymiser
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(Albrecht et al., 2011) is also a driver advisory system that aims at maintaining the pre-
defined schedule while reducing energy consumption. Energymiser minimizes energy
consumption using a control strategy based on optimal control theory. The advice
includes driving regime changes, along with speed recommendations. GreenSpeed
(Curis, 2017) advises the train to travel in a low speed before the signal changing from
red to green so that the train glides right through successive green signals. Recently,
advanced systems have been proposed that aim at optimizing traffic flow for the railway
network as a whole. The systems consist of two parts, that a traffic management system
that dynamically re-plans the timetable to avoid conflicts, a connected driver advisory
system that provides advice in order to drive the trains in accordance with the new
plan. AF (Mehta et al., 2010) and CATO (Tschirner et al., 2013) are typical examples
of such C-DASs.

Future DASs shall provide not only static timetable information but also dynamic
driving advice, such as speed recommendations, driving regimes, and so on. The
information and advice shall be continuously adjusted in real time and ensure that
the drivers are supplied with the best possible advice for punctual arrival with minimal
energy consumption. Future DASs shall also include functions to connect with the
traffic management system. So the advice is in accordance with the real-time traffic
plan. The fundamental requirements for a DAS are:

1. To provide advisory information to the drivers in order to follow the schedule
(or minimize delays) and to improve energy efficiency and passenger comfort.

2. To respect speed restrictions for train’s safety.

3. To respect time restrictions, given by a pre-defined timetable or a real-time traffic
plan.

4. To monitor the movement of the train so that the advice is properly updated.

The most critical factor in railway traffic is safety. For a DAS this means, that it
must not conflict with information from the signals and the automatic train protection
system. Meanwhile, the DAS shall advise a train to run at safe speeds under speed
restrictions. The DAS shall also maintain the pre-defined or re-planned timetable. A
DAS always strives to keep the train on time, thereby maximizing punctuality and
optimizing traffic flow. Only if the train is within the planned time slots, the available
slack time is used for energy efficient driving. If the train deviates from its schedule,
the DAS should assist drivers to get the delayed train back to schedule as soon as
possible.

To achieve those targets, an advisory trajectory over the train route is required.
The trajectory includes information of advised driving regimes, speed and time over
distance. The trajectory is the foundation of providing driving advice that assists the
driver to pursue the pre-defined or re-planned timetable. The DAS should be able to
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obtain the train state (location, time, and speed) in real time to allow correct advice to
be defined and displayed. It is also important to monitor the differences between the
actual state and the advised location, time, and speed. When the train state does not
match the advised one, the advice is not followed well by train drivers. New advice
should be re-calculated according to the driver’s behavior and the actual environment
if the deviations exceed some threshold.

Some existing DASs have adopted optimal control theory to compute the advisory
trajectory. However, there are still some challenges faced by the trajectory computation
methods. The first challenge is that the trajectory computation is an optimization
problem with multiple objectives and multiple constraints. The optimization objectives
for an on-time and delayed train are different. The objective for the on-time train is to
save energy consumption while the delayed train needs to reduce delays. The trajectory
should respect a large number of constraints. For instance, the timetable constraints,
vehicle characteristic limits, and riding comfort restrictions. It is also anticipated to
apply certain time and speed restrictions at signals to avoid yellow and red signals as
much as possible and make the train travel under green signals in order to improve the
driving efficiency. Usually, it should be avoided that a train has to come to a standstill
and wait in front of certain switches to make space for other trains within dense yards
or junctions. Such time and speed restrictions at critical locations (signals, switches)
should be taken into account while computing the advisory trajectory.

Current trajectory computation methods that have been applied in DASs are mainly
based on the Pontryagin’s Maximum Principle (PMP) and the dynamic programming
method. The PMP is an indirect method, which has been widely adopted in the
trajectory optimization problem (Milroy, 1980; Cheng and Howlett, 1992; Howlett and
Pudney, 2012). The optimal train control strategy following from application of the
PMP to a long journey on a flat track with sufficient running time supplement consists
of a sequence Acceleration with maximal traction–Cruising–Coasting–Braking with
maximal effort (Cheng and Howlett, 1992; Howlett and Pudney, 2012; Milroy, 1980).
For a train operating on a track with varying speed limits and gradients, the optimal
control strategy is a sequence of these optimal regimes where the succession of regimes
and their switching points also depend on the speed limits and gradients (Howlett,
1996; Khmelnitsky, 2000; Liu and Golovitcher, 2003; Pudney and Howlett, 1994).
The trajectory optimization then is to find the optimal switching points and sequence
of driving regimes. The dynamic programming algorithm is a popular algorithm to
find the optimal sequence of driving regimes (Haahr et al., 2017). The dynamic
programming algorithm firstly constructs a speed profile graph which consists of a
lot of possible driving regimes at different locations, then a search algorithm is used
to find the optimal sequence of driving regimes among the speed profile graph. The
optimal sequence of regimes costs the least energy. The speed profile graph should be
comprehensive and fully consider all possibilities. Otherwise, it is not able to produce
solutions with high quality. Besides, finding the optimal sequence of driving regimes
is a difficult problem except for simple cases such as a single speed limit and flat track
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(Albrecht et al., 2016a,b). Especially, it is very challenging for such algorithms to take
into account the time and speed restrictions at critical locations (signals, switches).

In this paper, we implement a different trajectory optimization method into a new
DAS development. The DAS is named ETO (Energy-efficient Train Operation). The
trajectory optimization is formulated as a multiple-phase optimal control problem and
is solved by a pseudo-spectral method. The advantages of this modelling method
are multiple: it gives an accurate description of varying speed limits and gradients;
the pre-planned or re-planned timetables can be taken into account; the time and
speed constraints at intermediate stations, signals, and switches can be satisfied; and
minimizing energy consumption or minimizing delays as the optimization targets
provides benefits for energy-efficient and on-time driving. Our previous work (Wang
and Goverde, 2016) has implemented the trajectory optimization method to find the
optimal trajectory for a train running under all green signals. As regards the practical
implementation, a lot of practical issues should be taken care of: which section requires
an advisory trajectory (due to the CPU power limitation, it is not possible to compute
the trajectory over the whole journey at once), how to prepare data for the automatic
trajectory computation, and how to convert the trajectory to driving advice. Those
questions are answered in the following sections.

The key benefit of ETO is advice on how to achieve an efficient usage of energy as
well as maintain the pre-planned or re-planned schedule. In addition to the situation
that the train travels on-time, two more practical problems are taken into account by
ETO: how to get back to the schedule when the train has a delay, and how to deal with
the situation that the trains do not follow ETO’s advice. To solve the first problem, the
trajectory calculation method inside ETO adopts a pseudo-spectral method to find the
optimal train control strategy. It aims at an energy-efficient driving behavior when the
train has sufficient time supplements, and focuses on reducing delays when the train is
late. The second problem the trains do not follow the provided advice which leads to
deviations between the practical train running time-distance path and the advised time-
distance path. ETO is able to respond to the time deviations, and offers re-optimized
speed profiles and re-computed driving advice to eliminate the deviations.

The main contributions presented in this paper are:

1. Description of a prototype DAS, ETO, which provides energy-efficient and on-
time advice and responds to deviations from the advised time-distance path,

2. Description of ETO’s framework, data formats, functions and the underlying
mathematical models, and

3. Demonstration of the ETO system in a laboratory environment with real-world
instances.

The remainder of the paper is organized as follows: Section 6.2 provides a general
description of a driver advisory system, including the functionalities and system
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architecture alternatives. Section 6.3 introduces ETO’s framework and its sub-
modules. Section 6.4 presents the underlying mathematical models of trajectory
computation. Section 6.5 describes the functions of the advice generation module.
Section 6.6 presents the test environment and illustrates the approach in case studies.
Finally Section 6.7 ends the paper with conclusions.

6.2 General DAS description

A driver advisory system aims at providing advice and information to drivers to
optimize traffic flow and in some cases energy efficient driving. The operational
concept of a DAS generally considers three DAS variants, Standalone, Networked and
Connected:

1. A standalone DAS (S-DAS) provides train drivers with predefined timetable
information and driving advice. Usually, the standalone DAS is an onboard
application with predefined route geography and timetable data loaded into the
system, independent of a traffic management system. The advice is calculated
dynamically according to train delays and the predefined timetable.

2. A networked DAS (N-DAS) is a driver advisory system that is capable of
communicating with one or more railway undertaking control centers, thus
enabling provision of data to the train, including updates for schedule or routing
information, though these are generally not in near real time.

3. A connected DAS (C-DAS) provides train drivers with real-time schedule
information and driving advice. Usually, the connected DAS is linked to a traffic
management system that can calculate new train timings (real-time traffic plan)
to avoid conflicts and communicate them to the DAS. The DAS dynamically
updates advice in order to drive the trains in accordance with the real-time traffic
plan.

A connected DAS is a promising development by connecting a rail traffic management
system and every single train in order to optimize real-time traffic flow and energy
efficiency. The ON-TIME project proposed a cascading loop of real-time traffic
management and train control as given in Fig. 6.1 (ON-TIME, 2014; Quaglietta et al.,
2016). The outer control loop is a traffic management system (TMS), which collects
real-time traffic state from different sensors, computes the real-time traffic plan and
translates for each train into a train path envelope (TPE). The train path envelope is
basically defined over each signal and timetable release point of a train run. Inside this
envelope, the DAS control loop I computes an advisory trajectory and re-computes it if
the deviations exceed some threshold. The trajectory shall be described as sequences of
driving regimes as function of position and time with additional speed information. In
DAS control loop II, the driving advice is determined in order to follow the advisory
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trajectory or get back to the trajectory in case of deviations. In DAS control loop
III, a driver or ATO implements the advice and reacts to external disturbances like
weather impact or train faults, the ATP system supervises independently that any safety
restrictions are respected by the advice implementation.

Figure 6.1: Real-time traffic management and train control framework & driver
advisory system architecture (ON-TIME, 2014).

6.2.1 Functionality descriptions

The DAS control loops receive the train path envelope from the rail traffic management
module. Within the train path envelope, a trajectory shall be computed, which best
fulfills the objectives given in a predefined objective function. The train path envelope
is a series of targets for each train at specific positions such as station platform
stops, signals or switches, based on estimated earliest and latest passing times and
speed limits (Albrecht et al., 2013; ON-TIME, 2014; Wang and Goverde, 2016). The
targets are defined by triples of position, time and speed. Two kinds of targets are
distinguished:

1. Target points: indicating that a train must reach a target position at the specified
time and speed,

2. Target windows: indicating that a train must reach a target position within a time
window and speed window.

Target points are mostly implemented at stop locations, indicating specific arrival/departure
times and speeds. Target windows are adopted to indicate the earliest and latest time
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(speed) constraints at intermediate stations, signals and so on. It must be guaranteed,
that the train path envelope should be drivable and the advisory trajectory should
respect the train path envelope. For a mathematical description, classify a train’s event
at a station into three types: arrival, departure and pass-through. Denote by e an event
e ∈ {a,d, p}, where a refers to arrival, d refers to departure, and p refers to pass-
through. The train path envelope is written as a series of target points and windows

TPE =
{
(p j,e, [t j,e, t̄ j,e], [v j,e, v̄ j,e])

}m
j=1 , (6.1)

where p j,e is the location for a train at the j-th TPE point of event e, j ∈ {1,2, . . . ,m},
m is the number of TPE locations (stations, signals, switches) along train’s route. t j,e,
t̄ j,e, v j,e, and v̄ j,e are respectively the minimum and maximum time and speed limits at
p j,e. If t j,e = t̄ j,e and v j,e = v̄ j,e, then p j,e has a target point constraint. Otherwise, it is
a target window constraint.

In case the TMS wants to have the train operate under green signals, time window
constraints at signals are taken into account by the train path envelope. The lower
bounds of time windows are the earliest possible times for the train to pass through
signals when the signals are green (Wang and Goverde, 2016). In case of a conflicting
train path, a time constraint at a conflict point can be applied in the train path envelope
to restrict the train movement.

The trajectory is computed by the trajectory computation module, which best fulfills
the objectives given by predefined objective functions. The trajectory shall be
described as sequences of driving regimes as a function of position and time with
additional speed information. The trajectory has to respect technical limits and
tolerances set by infrastructure managers. For example, static and temporary line speed
limits, vehicle parameter restrictions, and train dynamic movement restrictions. The
trajectory has to maintain the timetable or the real-time traffic plan. Only if the train is
within the planned time slots, the train has the ability to save energy consumption by
using the extra running time.

As regards the advice presented to drivers, in most vehicles, the driver controls traction
and braking efforts. Some vehicles are equipped with systems for automatic cruise
control (Junaid and Wang, 2006; Dong et al., 2010). In that case, the driver can set the
speed which the automatic speed controller will try to follow. It can be summarized
that the advice given to drivers could include:

1. The advisory traction/braking efforts.

2. The advisory driving regimes. The following regimes are possible: (a)
acceleration with maximal traction; (b) acceleration with partial traction; (c)
coasting; (d) cruising at a constant speed; (e) braking with maximal effort; (f)
braking with partial effort; (g) stop; (h) departure; and (i) end-of-advice. The
regimes could be given together with the parameters of traction/braking efforts,
speed or time information.
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3. The speed recommendations, such as the advisory speed at the current position
or time, the target speed with the current driving regime.

4. The time-keeping information, which is related to the state of timetable adher-
ence. The information could include the up-to-date timetable, the estimated
delays, the distance/time to reach the next timetable point.

5. Decision-support information, which is used by drivers for making decisions.
The information could include the gradient profile, the recommended speed
profile, the deviation from the recommended trajectory, the energy usage and
so on. Generally, the choice on the kind of advice must be made under careful
consideration of human factors and safety requirements.

6.2.2 System architecture alternatives

The modules within the DAS loops could be allocated in the traffic control center
(TCC) or the train. The system architecture can be classified into three alternatives by
the distribution of intelligence (Fig. 6.1):

1. DAS-C (Central): The trajectory and advice are computed centrally. The advice
is sent to on-board components for display purpose.

2. DAS-I (Intermediate): The trajectory is computed centrally and transmitted to
the train. The advice is computed according to the advisory trajectory from
central components and displayed on-board.

3. DAS-O (On-board): Central components compute the train path envelope and
transmit it onboard. on-board components compute the advisory trajectory and
advice and display.

The three alternatives have different requirements in train state monitoring and
communications. Under the DAS-C alternative, no specific positioning sensors need
to be accessed on-board. The train state is determined by the track-side system for
traffic state monitoring and it is available to the TCC. Under the DAS-I and DAS-O
alternatives, the speed and position values are measured on-board. They should be
transmitted regularly to the TCC in order to improve traffic state monitoring. The
three alternatives respectively transmit the advice, trajectory, and train path envelope
from the TCC to the on-board units (OBUs). Under the DAS-C alternative, the driving
advice is computed centrally and transmitted to the OBUs. The driving advice should
be transmitted together with a position or time reference, at which the advice becomes
valid and the duration of the validity of the advice. Regular reliable communication
between the TCC and OBUs is required to provide the advice. Under the DAS-I
alternative, the trajectory is computed centrally and transmitted to the OBUs. The
permitted deviations for the trajectory (upper bound/lower bound) can be also included
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in order to give information to the train driver on how close the train is referring to the
TPE boundaries in order to avoid conflicts with surrounding trains. The permitted
deviations must never exceed the TPE boundaries. Under the DAS-O alternative, the
entire train path envelope is communicated to the OBUs. Trajectory and advice are
computed on-board. Only the changes to the real-time traffic plan require a completely
new train path envelope. Partial TPE updates might happen if the train is delayed or
affected by other trains.

6.3 ETO overview

This section provides an overview of the ETO (Energy-efficient Train Operation)
System. At the current stage, ETO is a prototype DAS that collects information about
the train state (location, time, and speed) in real time, and then computes and displays
driving advice for an efficient train movement. The main characteristics of ETO can
be summarized as:

1. It has two versions, Standalone and Connected.

2. It provides advice regarding current and approaching speed recommendations
and driving regimes, as well as estimated times of arrival at coming timing
points.

3. It advises drivers how to achieve, from a given current location and with a
specific destination arrival time, an energy-efficient or delay-recovery (if the
train has a delay) train operation.

4. It respects speed restrictions, and takes into account varying gradients and
curves.

5. It takes into account the train path envelope constraints, not only the arrival and
departure times, but also time restrictions at other timetable points, signals, and
conflict points (switches).

6. It automatically responds to deviations of the actual time-distance path from the
advised one, and re-computes and updates speed profiles and advice, ensuring
that the driver is supplied with the best possible advice for punctual arrival with
minimal energy consumption.

ETO may be used as a Standalone DAS and as a Connected DAS. The architectures
of the two versions are shown in Fig. 6.2. As a Standalone DAS, ETO computes a
train path enveloped based on a pre-defined timetable in store. The Connected ETO
shall be connected to a traffic management system. The train path envelope is received
from the traffic management system. The two versions have four common modules,



144 TRAIL Thesis series

Trajectory 

Computation

Advice 

Generation
State Monitor

Database

Train Path 

Envelope

Trajectory

Real-time

train state

Rolling stock,
Infrastructure data

Train Path 

Envelope 

Computation

Pre-defined

timetable

Train state

Trajectory 

Computation

Advice 

Generation
State Monitor

Database

Train Path 

Envelope

Trajectory

Real-time

train state

Rolling stock,
Infrastructure data

Train state

(a) Standalone ETO (b) Connected ETO

Advice Advice

Figure 6.2: The Frameworks of the Standalone ETO and the Connected ETO.

Database, State Monitor (SM), Trajectory Computation (TC), and Advice Generation
(AG).

The Database includes the rolling stock and infrastructure data, which are related to
trajectory computation (see Section 6.4). The Standalone ETO also has the pre-defined
timetable in stored, which is sent to the TPE Computation module to come up with a
train path envelope consisting of pre-planned time constraints.

The State Monitor is responsible for collecting real-time data relative to the train
movement (location, time, and speed). The data are collected continuously in a regular
time interval and recorded as a train state history file. At every sampling point, the data
is sent to the trajectory computation module and the advice generation module, so that
the advisory trajectory and driving advice are updated according to the real-time train
state.

The Trajectory Computation module computes the advisory train trajectory. The
trajectory consists of sequences of driving regimes, recommended speeds, times
and recommended traction/braking efforts as function of position. The trajectory is
computed by optimal control theory with the objectives of maintaining timetables (real-
time traffic plans) and improving energy efficiency (see Section 6.4).

The Advice Generation module computes driving advice in accordance with the
trajectory from the TC module. Currently, ETO just provides all possible advice,
including speed, driving regime recommendations, time-keeping information, and so
on (see Section 6.5).

6.4 Trajectory computation

The trajectory computation (TC) module computes the advisory trajectory and re-
computes it if the actual train movement deviates over some threshold. The trajectory
computation module consists of a cascade of sequenced steps shown in Fig. 6.3.
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The trajectory computation process begins with collecting input data from different
sources. The input data contains the rolling stock and infrastructure data from the
database, the real-time train state data from the State Monitor, and the train path
envelope from the TPE Computation module. Next, the TC-conditions are checked
to determine if a new trajectory should be computed. If a new trajectory is required,
the pre-processing step gets data prepared for the train trajectory computation. The
trajectory computation is formulated as a multiple-phase optimal control problem
(MOCP) and solved with a pseudospectral method (PM). The new computed trajectory
is sent to the post-processing step to be integrated with the existing trajectory and added
with new information for the later advice generation.

6.4.1 Check TC-conditions

The train path envelope from the TPE Computation module generally includes time
and speed restrictions over a couple of running sections (the sections between stations).
The aim of the TC module is to find the trajectory within the TPE optimizing certain
objectives. For the sake of the limitation of CPU power, the TC module does not
compute the trajectory for the whole TPE at once, but instead, it computes a trajectory
for a partial TPE at one time to the next target point. The partial TPE is dynamically
updated and constructed within the TC module (mainly by the pre-processing step) in
accordance with the train state and the train path envelope from the TPE computation
module. A new trajectory is computed if one of the TC-conditions hold. The TC-
conditions are:

1. The TC module receives an updated train path envelope from the TPE Compu-
tation module.
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2. The train is approaching a next running section.

3. The train is moving on a running section which does not have an advisory
trajectory computed yet.

4. The actual time-distance path deviates from the advised time-distance path over
some threshold (e.g. 10 s).

TC-condition 1 happens if the TMS produces a re-planned timetable so that the TPE
Computation module comes up with a new corresponding train path envelope. The
TC module should adjust the trajectory to follow the new timetable. TC-condition
2 prepares a trajectory for the coming running section in advance. TC-condition
3 happens in the case that the ETO is started up while the train has already left a
station. A trajectory for the running section, where the train is located, is required.
TC-condition 4 takes into account that the train movement does not exactly follow
ETO’s advice due to any reason. A new trajectory for the remaining section (from
the current train location to the next stop) is required if the deviation is over some
threshold to provide updated realistic advice. The new trajectory always starts from a
departure location (TC-condition 1, 2 and 3) or the current train location (TC-condition
4) and ends at the next arrival location. The arrival location is taken as the terminal of
the trajectory because the speed window at an arrival point is fixed as [0,0], the lower
bound of the arrival time window equals the planned arrival time (to avoid earlier
arrival), and the upper bound is equal to the planned arrival time if the train is on time,
or lager than the planned arrival time if the train is delayed, however the TC algorithm
always tries to minimize delays (see Section 6.4.3). The relatively strict constraints
would avoid any influence on the train running in remaining sections.

A data structure called TC-setup is adopted to decide if a new trajectory shall be
computed by the following steps after the TC-condition checking. The TC-setup
contains a mark, named as New Trajectory Flag (NTF), and the speed and time
restrictions at the start and terminal locations of the new trajectory. If NTF is true,
then the time and speed restrictions become valid and the following steps are executed
to compute a new trajectory. If NTF is false, then there is no requirement for a new
trajectory, the time and speed restrictions are invalid and the following steps would not
be executed. The time and speed restrictions at the start and terminal locations of the
new trajectory are formulated as

TCsetup = {(pk, [tk, t̄k], [vk, v̄k])}k∈{start,end} , (6.2)

where pstart and pend are respectively the start and terminal locations of the new
trajectory. [tk, t̄k] and [vk, v̄k] (k ∈ {start,end}) are the corresponding speed and time
constraints at pstart and pend .

The values of the time and speed windows in Equation (6.2) are different in different
cases. As for TC-condition 1 and 3, pstart and pend are respectively the departure
and arrival locations of the current running section. As for TC-condition 2, pstart and
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pend are respectively the departure and arrival locations of the approaching running
section. The time and speed windows equal the time and speed windows at pstart and
pend within the original train path envelope from the TPE Computation module. As
for TC-condition 4, pstart refers to the current train location, pend is the next arrival
location. vstart and v̄start equal the train current speed, tstart and t̄start are equal to the
current time, [vend, v̄end] and [tend, t̄end] equal the arrival time and speed constraints at
pend within the train path envelope from the TPE Computation module.

6.4.2 Pre-processing

The pre-processing step prepares data for trajectory calculation. The trajectory
calculation relies on the input data about the rolling stock (the traction/braking
characteristics of the train; the train mass and length; the train resistance parameters;
the riding comfort acceptance), infrastructure (the static and temporary speed limits;
the slopes, curves; the signals) and train path envelope. For the convenience of later
trajectory calculation, two type of data structures, the rolling stock data structure and
the train path structure, are constructed by the pre-processing step and sent to the next
step of constructing MOCP formulations.

In general, the rolling stock XML data expressed in RailML format could be used
(Nash et al., 2004). Currently, the rolling stock data is expressed in an XML format
as the example in Fig. 6.4 in order to match the test environment (Section. 6.6). The
rolling stock XML is specified with the name of the train composition and modeled
by considering all relevant characteristics of the vehicles such as the mass, the rotating
mass factor, the length, the maximum speed, the traction and braking characteristics,
and the train resistance parameters. The MOCP formulation is able to deal with
different types of traction and braking characteristics (see Section 6.4.3). Fig. 6.5
presents three examples of traction characteristics, which can be represented either by
the maximum traction power, the maximum traction force, and the maximum braking
rate.

<RollingStock>

<Name> VIRM 12 (12 bakken) </Name>

<Mass > 770 </Mass>

<RotatingMassFactor> 1.06 </RotatingMassFactor>

<Length> 188 </Length>

<MaxSpeed> 160 </MaxSpeed>

<TractionType> typeA </TractionType>

<BrakingType> typeA </BrakingType>

<CoastingA> -1,81999996584636E-6 </CoastingA>

<CoastingB> -9,91999986581504E-5 </CoastingB>

<CoastingC> -0,0201709996908903 </CoastingC>

<TractionParamater>

<MaxTractionForce> 214 </MaxTractionForce>

<MaxTractionPower>1918</MaxTractionPower>

</TractionParamater>

<BrakingParamater>

<MaxBrakingDeceleration> 0.66 </MaxBrakingDeceleration>

</BrakingParamater>

</RollingStock>

Figure 6.4: Snippet of the XML of the rolling stock data.
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Figure 6.5: Three types of traction characteristics.

The train path structure contains the information about speed limits, gradients, curves,
and time/speed constraints at pstart , pend and TPE points between pstart and pend . A
demonstration of constructing the train path structure is presented in Fig. 6.6.(a). The
TC-setup provides the time and speed windows at pstart and pend . It is adopted to find
the TPE piece between pstart and pend . The TPE piece shall include the time and speed
constraints at pstart and pend . Especially, if pstart does not belong to the original TPE
from the TPE computation module (TC-condition 4), the time and speed constraints
at pstart must be added into the TPE piece. The TPE piece must be driveable, i.e.
the train has the ability to run between two TPE targets within the technical minimal
running time, otherwise it is not possible to find a trajectory within the TPE piece.
The time windows of the TPE piece are adjusted by extending their upper bounds
if the TPE piece is not driveable. The extended upper bounds guarantee that the
train has sufficient running time. After determining the TPE piece, the infrastructure
information is combined with the TPE piece, which results in the train path structure.
The infrastructure information is a sequence of infrastructure points (speed/gradients
changing points, signals) with additional values about speed limits, gradients, and
signal states. Note that the speed limits take into account the train length by extending
the lower speed limits before a speed increase by the train length. So that the train will
only accelerate after its rear has safely passed the lower speed limit, see the example
in Fig. 6.6.(b).

A part of the train path XML is presented in Fig. 6.7. The train path structure
is formulated as a table which is arranged by an increasing sequence of locations
(unit: m) with information about the speed limit (unit: km/h), gradient (unit: ‰),
curve (unit: m), time window constraints (hh:mm:ss) and speed window constraints
(unit: km/h). Each location has a special type identified by the ‘TPEPoint’ or
‘InfraPoint’. The ‘TPEPoint’ means that the location is a TPE point. An additional
mark is included in ‘TPEPoint’ type which identifies the types of the TPE point (D:
departure, A: arrival, P: passing-through). If the location is a TPE point, there are
a time window and a speed window constraint which indicate the time and speed
restrictions for the train to go through that location. Type ‘InfraPoint’ means that
the location is a changing point of speed limit, gradient or curve. The numbers within
<SpeedLimit></SpeedLimit>, <Gradient></Gradient> and <Curve></Curve>
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Figure 6.6: Demonstrations of data and functions within the trajectory computation
module.

are the values form this InfraPoint point to the next InfraPoint point. The benefits of
this train path formulation are obvious: it saves data space usage by combining the
TPE and infrastructure information into one file and matches with the multiple-phase
optimal control problem formulation for train trajectory computation (see Section
6.4.3).

<TrainPath>

<TrainPathNode><Number> 1 </Number><Location> 0 </Location><Type> TPEPoint (D) </Type>

<Speedlimit> 40 </Speedlimit><Gradient> 0 </Gradient><Curve> 0 </Curve>

<TimeWindow> [08:02:00,08:02:00] </TimeWindow><SpeedWindow> [0,0] </SpeedWindow></TrainPathNode>

<TrainPathNode><Number> 2 </Number><Location> 36 </Location><Type> InfraPoint </Type>

<Speedlimit> 40 </Speedlimit><Gradient> 2 </Gradient><Curve> 0 </Curve>

<TimeWindow></TimeWindow><SpeedWindow></SpeedWindow></TrainPathNode>

<TrainPathNode><Number> 3 </Number><Location> 556 </Location><Type> InfraPoint </Type>

<Speedlimit> 60 </Speedlimit><Gradient> 2 </Gradient><Curve> 0 </Curve>

<TimeWindow></TimeWindow><SpeedWindow></SpeedWindow></TrainPathNode>

<TrainPathNode><Number> 4 </Number><Location> 986 </Location><Type> TPEPoint  (P) </Type>

<Speedlimit> 60 </Speedlimit><Gradient> 2 </Gradient><Curve> 0 </Curve>

<TimeWindow> [08:02:30,08:03:30] </TimeWindow><SpeedWindow> [30,60] </SpeedWindow></TrainPathNode>

</TrainPath>

Figure 6.7: Snippet of the XML of the train path.

6.4.3 MOCP formulation and PMs

MOCP formulation

The train trajectory optimization is formulated as a multiple-phase optimal control
problem. The MOCP formulation partitions the train route into multiple segments.
The division points are the points within the train path structure (constructed by the
pre-processing step). The segment between any two adjacent division-points is a phase
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of the multiple-phase optimal control problem. Fig. 6.6 (c) gives an illustration of the
multiple phases. Within each phase, the gradient and speed limit are constant, and the
boundary points might be TPE points or signals, where time and/or speed restrictions
apply to the train operations.

The multiple-phase optimal control problem is one where the trajectory consists of a
collection of phases. In general, any particular phase has a cost function, a dynamic
model, path constraints, boundary conditions, and event constraints. The complete
trajectory is obtained by properly linking adjacent phases via linkage conditions.
Similarly, the total cost functional is the sum of the cost functionals within each phase.
The optimal trajectory is then found by minimizing the total cost functional subject
to the constraints within each phase and the linkage constraints connecting adjacent
phases. The trajectory computation is formulated as a multiple-phase optimal control
problem:

Minimize J =
R

∑
r=1

J(r), (6.3)

subject to the dynamic constraints:
dv(r)(s)

ds
=

θ1 f (r)(s)−θ2b(r)(s)−Rtrain(v(r))−R(r)
line(s)

ρ ·m · v(r)(s)
,

dt(r)(s)
ds

=
1

v(r)(s)
,

∀ r ∈ {1, . . . ,R},

(6.4)
the path constraints:

0≤ f (r)(s)≤ Fmax,

0≤ b(r)(s)≤ Bmax,

0≤ f (r)(s) · v(r)(s)≤ Pmax,

0≤ v(r)(s)≤V max,(r),

Amin ≤ dv(r)(s)
dt(r)(s)

≤ Amax,

∀ r ∈ {1, . . . ,R},

(6.5)
the boundary conditions (if any):{

v j,e ≤ v(r)(p j,e)≤ v̄ j,e,

t j,e ≤ t(r)(p j,e)≤ t̄ j,e,
∀ r ∈ {1, . . . ,R}, p j,e ∈ KTPE piece∩{s

(r)
0 ,s(r)f }, (6.6)

and the linkage conditions of all adjacent phases:{
v(r1)(s(r1)

f )− v(r2)(s(r2)
0 ) = 0,

t(r1)(s(r1)
f )− t(r2)(s(r2)

0 ) = 0,
∀(r1,r2) ∈ A. (6.7)

The cost function (6.3) aims at minimizing the cost functions over all phases. R is
the number of phases, r ∈ {1, . . . ,R} is a phase, J(r) is the cost function of phase r
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(see more details in Section 6.4.3), and J is the overall cost function of the trajectory
optimization problem. For a phase r ∈ {1, . . . ,R}, s(r)0 denotes the initial location of

phase r, and s(r)f denotes the terminal location of phase r, s(r)0 < s(r)f .

The dynamic constraints (6.4) are adopted by each phase r ∈ {1, . . . ,R} to represent the
dynamic movements within [s(r)0 ,s(r)f ]. In Equations (6.4), s is the traversed distance

[m], s ∈ [s(r)0 ,s(r)f ]; v(r)(·) is the train velocity in phase r [m/s]; ρ is the rotating mass
factor; m is the train mass [t]; f (r)(·) is the traction force in phase r [kN]; b(r)(·) is the
braking force in phase r [kN]; Rtrain(v(r)) = α+β · v(r)+ γ · v(r)2 is the train resistance
force [kN] with coefficients α, β and γ; R(r)

line(·) is the line resistance force caused by
the constant gradient within phase r [kN]; t(r)(·) is the traversed time in phase r [s];
and θ1,θ2 ∈ {0,1} are two binary parameters with θ1 ·θ2 = 0.

The path constraints (6.5) are used to represent the operational constraints of vehicle
characteristics, speed limits, and riding comfort. Fmax, Bmax and Pmax are the
maximum traction force, maximum braking force and maximum traction power.
V max,(r) is the speed limit of phase r, including static and temporary speed restrictions.
Amin and Amax are the lower and upper bound of acceptable acceleration. The first two
equations in the path constraints (6.5) are the formulation of the traction characteristic
of Type-A in Fig. 6.5. As regards other types, they can also be represented with similar
equations.

In (6.6), KT PE piece is the set of TPE points within the TPE piece constructed by the pre-
processing step in Section 6.4.2. Inequalities (6.6) work as the boundary conditions of
phase r if p j,e is a TPE point within the TPE piece as well as the initial or terminal
point of phase r. The TPE points are adopted as division-points, so phase r’s initial
or terminal point might be a TPE point, where time and speed restrictions on train
operations apply.

The linkage conditions (6.7) are to make sure that the train’s speed-distance and time-
distance trajectories are continuous, where A=

{
(r1,r2)|s

(r1)
f = s(r2)

0 ,r1,r2 ∈ {1, . . . ,R}
}

,
which refers to the set of adjacent phases.

The trajectory optimization minimizes cost function (6.3) subject to (6.4-6.7). The
pseudospectral method (Rao, 2003; Garg, 2011) transcribes the optimal control
problem into an nonlinear programming (NLP) problem, and then solves it with an
NLP solver.

Objective functions

The trajectory calculation has two different optimization targets, minimizing delay
and minimizing energy consumption, for different circumstances. Minimizing delay is
used if the train is delayed and cannot reach the target on time or does not have enough
running time. The objective then is to run as fast as possible so that the train is able to
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reach pend with the least delay. The cost function for a phase r ∈ {1, . . . ,R} is

J(r) =
∫ s(r)f

s(r)0

1
v(r)(s)

ds. (6.8)

The time window at the arrival location pend has tend ≤ t̄end , so that the train is not
allowed to arrive earlier than the scheduled time tend (tend equals the planned arrival
time), but is provided with sufficient time to arrive at pend (t̄end is bigger than the
estimated earliest arrival time).

Minimizing energy consumption is chosen if the train has some time supplements. The
cost function then is

J(r) =
∫ s(r)f

s(r)0

f (r)(s) ds. (6.9)

The time window at pend has tend = t̄end for computing an energy-efficient trajectory
so that the train arrives just at the planned arrival time.

Pseudospectral method

A Radau pseudospectral method (Garg, 2011) is chosen to solve the train trajectory
optimization problem. In general, pseudospectral methods transcribe the continuous-
time optimal control problem into a nonlinear programming problem, after which a
nonlinear programming solver is adopted to directly solve the problem. The Radau
pseudospectral method takes the Legendre-Gauss-Radau (LGR) points for collocation
of the dynamic constraints, and for quadrature approximation of the integrated
Lagrange cost term. The Lagrange polynomial approximation of the state, however,
uses the LGR points plus the final point. It transcribes the continuous-time multiple-
phase optimal control problem into a discrete NLP problem. The resulting NLP is then
solved by SNOPT. For detailed mathematical descriptions, we recommend Rao et al.
(2010); Wang and Goverde (2016); Ye and Liu (2016).

6.4.4 Post-processing

After an optimal trajectory is found, a post-processing step is applied, to generate
advice at every sampling point (every 1 second) and integrate the new computed
trajectory within the existing trajectory.

The solution computed by the pseudospectral method includes sequences of speed,
time and distance at LGR points. The linear interpolation method is applied to
compute the speed, time and distance at sampling points (Fig. 6.8). Meanwhile,
additional information is added to every sampling point for later advice generation.
The information at every sampling point contains
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III:  driving regime: braking with maximal effort;            target speed: 60 km/h

IV:  driving regime: coasting;              target speed: 40 km/h
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Figure 6.9: An example of the advisory target speeds.

1. The time;

2. The distance;

3. The optimal speed;

4. The traction/braking effort;

5. The driving regime, which include: (a) acceleration with maximal traction; (b)
acceleration with partial traction; (c) coasting; (d) cruising at a constant speed;
(e) braking with maximal effort; (f) braking with partial effort; (g) stop; (h)
departure; and (i) end-of-advice;

6. The target speed; the target speed is the speed that the train wants to achieve
at the end of the current driving regime. An example of target speeds is shown
in Fig. 6.9. If the current advisory driving regime is acceleration, coasting, or
braking, the target speed is the speed at the location of the next driving regime
switch point.

7. The distance to the approaching driving regime;

8. The time to the approaching driving regime; and

9. The distance to the approaching TPE point.
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The new computed trajectory between pstart and pend is integrated within the existing
trajectory, as the example shown in Fig.6.6 (e). The new trajectory replaces the existing
trajectory if this section between pstart and pend already got one. Otherwise, the new
trajectory is combined with the existing trajectory.

6.5 Advice generation

The advice generation module computes the advice based on the real-time train state
and the advisory trajectory. The real-time train state data provides real-time location,
time, and speed. The advisory trajectory provides advice at every sampling point. The
real-time train state enables the advice updated properly at every sampling point.

Currently, ETO provides three types of advisory information: current advisory
information, approaching advisory information, and state analysis information. The
purpose of providing current advisory information is that the driver knows what ETO
is proposing at the current location of the train. Approaching advisory information
allows the driver to prepare for any future change in advisory information. The state
analysis information is helpful for the analysis of the energy consumption and delay
status.

The current advisory information mainly contains the current advisory driving regime,
the current target speed, the current optimal speed, and the current advisory trac-
tion/braking effort. The approaching advisory information can be classified into two
types, the approaching driving regimes, and the approaching TPE points. The time
and distance until the coming driving regime and TPE point are all delivered for
better guidance to the drivers. More specifically, the approaching advisory information
mainly contains the approaching driving regime, the distance to the approaching
advisory driving regime, the time to the approaching advisory driving regime, the
approaching timetable point, the approaching timetable point event, the distance to
the approaching TPE point, and the expected delay at the approaching TPE point. The
current state analysis information includes the current time deviation, the current speed
deviation, the current energy used, and the current expected energy used. The current
time deviation refers to the deviation from the advised time at the current location. The
current speed deviation refers to the deviation of the current speed from the advised
optimal speed at the current location. The current energy used is the energy that the
train has used from the starting time of the ETO system. The current expected energy
used is the energy that would be used if the train exactly follows the advisory trajectory
from this current position.

The advice information and the speed profiles are presented on ETO’s display and
updated dynamically at every sampling point to support drivers making decisions.
Future development includes the choice of proper information to be displayed and
the visualization.
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Figure 6.10: Test Environment for the ETO system (right) and Advisory information
and speed profiles on ETO’s display (left).

6.6 Test scenarios

6.6.1 Software technical aspects and test environment

The ETO prototype is developed in the Visual Studio platform using C++. Fig. 6.10
presents an example of ETO’s display. The current display of ETO is just for the
laboratory tests, which does not consider the human factors and user-friendliness yet,
but presents all real-time advisory information and speed profiles. The trajectory
calculation module requires a few seconds of computation times to find an optimal
trajectory. During the computation process for a new trajectory, ETO assumes the
existing trajectories to provide advice until a new trajectory is ready.

The ETO system has been tested in a laboratory environment. The test framework
is shown in Fig. 6.10, where ETO runs on a laptop and is connected to the NEO
simulation system using the Data Distribution Service (DDS) middleware (Pardo-
Castellote, 2003). The rolling stock, infrastructure, and timetable data are stored
in a database, assuming that ETO works alone without a connection to a traffic
management system. The real-time information about train locaitons, times, and
speeds are from the NEO system. NEO is being developed for the Dutch railway
infrastructure manager ProRail and the Dutch Railways NS. NEO provides the function
of simulating train movements and signalling system, and delivers simulated train
locations, times and speeds to the ETO system in real time via OpenDDS. OpenDDS
(Computing, 2009) is an open source C++ implementation of the DDS. It is an Object
Management Group (OMG) machine-to-machine standard that aims to enable scalable,
real-time, dependable, high-performance and interpretable data exchanges using a
publish-subscribe pattern.
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6.6.2 Test cases

This section demonstrates the approach with two different cases: case A provides a
demonstration of energy-efficient driving while case B offers an example of delay-
recovery driving. Case A assumes that a freight train travels on a short running
section (4570 m) between two stops. The given running time contains enough time
supplements so that coasting regimes are expected for energy saving. Case B assumes
that an intercity train runs on the long corridor (around 50 km) from ’s Hertogenbosch
(Ht) to Utrecht (Ut). The given running time is smaller than the technical minimal
running time, so the train is late compared to the planned arrival time at Ut station.

ETO and NEO are adopted for the two cases with ETO providing the advice
information and NEO providing the simulated train locations, times and speeds in
every 1 second. The test scenarios assume that NEO does not follow ETO’s advice, but
simulates the train behavior on its own way. The purpose is to test how ETO responses
to the situation that the advice is not followed. Besides, ETO does not have access to
the information about signal states at the current stage, but NEO does. Therefore the
simulated train movements are influenced by the signalling system. ETO was carried
out on a laptop equipped with a 3.2 GHz Pentium R processor. The time deviation
threshold is 10 seconds, which means ETO re-computes the trajectory if the simulated
train running time deviates more than 10 seconds from the advised time-distance path,
either 10 seconds early or 10 seconds late.

The advisory speed profiles and simulated speed trajectories for the two cases are
shown in Figs. 6.11 and 6.12 respectively. In each figure, the upper plot shows the
advised speed profile (solid blue line), the simulated speed profile (dashed black lines)
by NEO, and the speed limits (red horizontal lines). The top plots also contain several
green crosses, which refer to the locations where new trajectories for the remaining
sections were computed. The reasons for re-computation, the computation times (CPU
time) and estimated delays at the last stations based on the new computed trajectories,
are reported in a rectangular block. The bottom plots show all the advised speed
profiles computed by the ETO system. They are represented in different colors, each
color represents one individual speed profile. The solid parts are used for the advice
generation, while the dashed lines are not used, but are replaced with new speed
profiles. All the solid lines on the bottom plots comprise the advised speed profile
on the top plots.

The advised speed profile in Fig. 6.11, ETO suggests the freight train to accelerate
during the outbound process, and then cruise at the maximum allowed speed 40 km/h.
The train speed must stay below 40 km/h until the train’s tail passes the region with
speed limit 40 km/h. After that, the freight train is suggested to accelerate, cruise at
60 km/h, and then coast for a while before braking. Because the given running time is
longer than the technical minimal running time. Coasting is encouraged to save energy
consumption. The simulated speed profile is provided by the NEO system, its speeds
are higher than the advise speeds in the middle of this running section. Therefore
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Figure 6.11: The advised speed profiles and practical speed profiles of a freight train
between A and B.
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the train goes earlier than the advised time-distance path. At location 3761.1 m, the
simulated time is 10 s earlier than the advised one, so that a new trajectory from 3761.1
m to the arrival point is re-computed. The new trajectory suggests the train to use
less braking force since the train is ahead of the schedule and coasting would lead to
an early arrival. The computation times for the two trajectories (from the departure
point to the arrival point and from the location of 3761.1 m to the arrival point) are
respectively 9 s and 2 s.

In Fig. 6.12, the intercity train is advised to use the full acceleration and braking
and travel at the maximum speed because the given running time is shorter than the
technical minimal running time. The train will be late at the arrival station. Thus the
delay-recovery strategy is adopted. In the beginning, the simulated speed curve did not
take into account the safety of the train tail, which accelerates immediately after the
train head passed through the low speed limits. Therefore the simulated running time
gets 10 s ahead of the advisory profile at 2607.3 m, and a new trajectory from 2607.3 m
to Ut station is re-computed by ETO. In the middle, the simulated speed profile meets
a yellow 8 signal, and the train brakes to 80 km/h. ETO finds that the train travels at
a lower speed than the advised speed (130 km/h). It re-computes the trajectory and
advises the train to accelerate and come back to 130 km/h again because the train is
already late. At 43438.4 m, the simulated speed profile brakes earlier than advised,
which would cause a further delay at the Ut station. ETO recomputes a new trajectory
from 43438.4 m to Ut, and advises the train to accelerate a little bit before braking to
reduce the delay. The computation times for each trajectory are shown in Fig. 6.12.
For the 50 km corridor, the longest computation time is 22 s and the shortest is 1 s.
The values of the expected delays are updated with every new trajectory.

Throughout all the advised speed profiles, the train speeds stay below the speed limits.
The advisory speed profiles advise the driver to regulate train speed at the varying
speed limits via decelerating before low speed limits and accelerating before high
speed limits, where the trains only accelerate after the entire train passed the low speed
limits. The trains stop at the planned stop target positions, which means that safety
and accurate stops are guaranteed if the driver follows the advisory speed profiles. The
advised speed profiles give the priority to the delay recovery, and try to get the trains
back to schedule as soon as possible. Energy efficient driving is suggested if the train
has sufficient running times. The test scenarios show that the ETO system can provide
advisory trajectories within short computation times. It is also able to respond to the
time deviations between the actual and advisory time-distance paths.

6.7 Conclusions

A prototype new train driver advisory system ETO (energy-efficient train operation)
has been presented in this paper. We have provided answers of how to design a DAS
system, how to advise the drivers to efficiently control the train with minimal energy
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consumption and get the train back to its timetable in case of delays, and how to
dynamically update the trajectory and the advice if the actual train movement does
not follow the advisory information.

The article presents an overview of the ETO system. ETO consists of two versions:
Standalone ETO and Connected ETO. The functions and the underlying mathematical
models of the trajectory computation and advice generation modules are described in
details. The test scenarios are presented to show the performances of Standalone ETO.

In the future, we will focus on further development of the ETO system: an interface
considering human factors and user-friendliness, future tests with consideration of the
signalling system and interaction between multiple trains, and a connection to a rail
traffic management system.
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Chapter 7

Conclusions and recommendations

This thesis is motivated by the challenges in improving energy-efficiency of train
operations outlined in Chapter 1. The main objectives are to develop the modelling and
solution methods for the train trajectory optimization problem to improve the model
accuracy and the computation time, to apply the methods in a train driver advisory
system development, and to develop a multi-train trajectory optimization method to
solve the delay recovery and the energy-efficient timetabling problem. Several research
questions are stated under the research objectives, which are answered throughout
Chapters 2-6. This chapter summarises the answers. First, the main conclusions
are synthesised from the perspectives in Section 7.1. Section 7.2 recommends future
research directions and practical recommendations.

7.1 Main findings and conclusions

The modelling and solution methods for train trajectory optimization

The train trajectory optimization problem was formulated as a multiple-phase optimal
control problem, which answers the question of how to formulate an accurate model
for the train trajectory optimization problem. The train path envelope (TPE) was
adopted to characterize the timetable restrictions on train movements. The restrictions
include the time and speed constraints (targets or windows) at stops, passing-through
stations, and other timetable relevant locations. The multiple-phase optimal control
problem divides the whole train trajectory into multiple segments. The division-points
include critical points of speed limits or gradients and curves, timetable points, conflict
points, and signal locations. Each divided segment is a phase, where any particular
phase of an optimal control problem has its own cost function (minimizing energy costs
or delays), dynamic model (train dynamic movement model), path constraints (vehicle
characteristics, speed limits, and riding comfort), and boundary conditions (time and
speed constraints at timetable points, conflict points, and signal locations). The
complete trajectory is then obtained by properly linking adjacent phases via linkage

165



166 TRAIL Thesis series

conditions. The total cost function is the sum of the cost functions within each phase.
The optimal trajectory is then found by minimizing the total cost functional subject
to the constraints within each phase and the linkage constraints connecting adjacent
phases. The advantages of this modelling method are multiple: it gives an accurate
description of varying speed limits and gradients, and the time and speed restrictions
at timetable points, conflict points and signal location; and it allows flexibility in
minimizing energy consumption and delays.

A Pseudospectral method was used to transcribe the multiple-phase optimal control
problem to a nonlinear programming problem (NLP), and then solve it within by NLP
solvers. That is the answer to the question of which solution approach can be used
to solve the train trajectory optimization in short time. The Pseudospectral method
transcribes the continuous-time optimal control problem into an NLP problem. The
resulting NLP problem can be solved by nonlinear optimization algorithms. There are
several well-developed packages that implement the Pseudospectral method, in which
GPOPS was adopted in this research, that is, a Matlab-based open source tool that
uses the Radau Pseudospectral Method to solve the multiple-phase optimal control
problem. Experiments showed that the Pseudospectral method is able to compute the
optimal driving strategy within a short time, even for the train running on a corridor
with complex speed limits and gradients.

Multi-train trajectory optimization method

A multi-train trajectory optimization (MTTO) method was proposed to answer the
question of what are feasible modelling and solution methods for the multi-train
trajectory optimization problem. The MTTO model aims at minimizing all involved
trains’ energy costs or delays, with the consideration of every single train’s operational
constraints (dynamic movement model, vehicle characteristics, speed limits, TPE
constraints, etc.), as well as the requirements of avoiding conflicts between trains. The
MTTO model is then reformulated as a multiple-phase optimal control problem and
solved with the Pseudospectral method.

The key features of the MTTO method are: the MTTO method optimizes multi-train
trajectories simultaneously for energy-efficient or less delayed train movements; it is
flexible since the trains can be in the same and opposite directions, use different rolling
stock compositions, speed limits, timetable constraints, routes and station platforms;
and the MTTO method ensures safe interactions between trains since it includes
constraints to keep safe headways between adjacent trains and to avoid conflicts.
Compared to the single-train trajectory optimization (STTO) methods, the MTTO
method has the advantage of characterising the interaction between trains and allowing
multi-train cooperations. This method was adopted in the research of energy-efficient
delay recovery and energy-efficient timetabling.
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Energy-efficient delay recovery methods

A single-train delay recovery strategy was proposed with consideration of signalling
constraints, which answers the question of how can we ensure a single train gets
back to its schedule with less energy consumption, as well as efficiently respond to
signal systems, when the train is delayed. The single-train delay recovery strategy
was developed on basis of the proposed STTO method, with the TPE representing
the timetable constraints, the STTO formulated as a multiple-phase optimal control
problem, and the Pseudospectral method solving the problem. If the train is later
than the schedule times, the strategy aims at reducing delays and getting the train
back to its schedule as soon as possible. If the train runs on-time, the objective is to
reduce energy costs. The influence from signal systems on train operations is taken into
account. A signal response policy and a green wave policy are proposed for different
circumstances of available signal information. The signal response policy ensures that
the train makes correct and quick responses to different signalling aspects in case that
only limited available information about one signal in rear of the train ahead. The
green wave policy avoids yellow signals in case that a full prediction is available
about the signal aspect timings in rear of the train ahead. Experimental results showed
that, compared to the signal response policy, having access to predictive information
of the leading train and the green wave policy are more beneficial for saving energy
consumption and reducing train delays.

A multi-train delay recovery method was proposed based on the multi-train trajectory
optimization approach. It provides an answer to the question of how can we avoid
yellow and red signals and the stop/start behavior with a multi-train cooperation
method, when the train operations are interrupted by unexpected events. The multi-
train delay recovery method can reduce delays and energy consumption by multi-train
cooperation. The primary goal of the multi-train delay recovery method is to reduce
delays and delay propagation. Energy saving relays on making use of waiting times
(waiting times are caused by avoiding conflicts with delayed trains). For the trains
running in same directions, the green wave policy was used to reduce the chance of
meeting yellow signals and thus avoid inefficient stop/start behavior. For the trains
in opposite directions, a strategy of selecting best driving strategy for each running
section and best meeting stations of opposite trains was proposed, which is beneficial
for delay recovery and energy-efficient driving.

In general, the energy-efficient delay recovery methods are capable of reducing delay
propagation, saving energy consumption, and avoiding inefficient stop/start behaviors.

Energy-efficient timetabling

This thesis proposed a novel method of energy-efficient timetable adjustment on the
train trajectory optimization level, to answer the question of how can we improve the
timetable’s energy efficiency with the trajectory optimization method. The energy-
efficient timetabling is achieved by using the trajectory optimization method to adjust
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the arrival and departure times of an existing timetable with the purpose of improving
the timetable’s energy efficiency. The given timetable is converted into flexible arrival
and departure time window constraints first, then the STTO method is adopted to
compute the energy-efficient speed profiles and time paths of the trains involved in
the timetable separately. After that, detect conflicts. If there are conflicts between the
time paths, the MTTO method is adopted to re-compute the speed profiles and time
paths, while eliminating the conflicts.

Experiments showed that the method jointly optimizes train trajectories and the
timetable. The arrival and departure times of an existing timetable are shifted by the
trajectory optimization methods, so that the time supplements are optimally allocated
for energy efficient operation.

Driver advisory system development

A prototype of a new train driver advisory system ETO (energy-efficient train
operation) has been presented in this thesis with the application of the proposed
trajectory optimization method. This gives an answer to the question of how can we
implement the proposed train trajectory optimization method into a driver advisory
system. ETO’s framework is presented in this thesis, as well as the functions and the
underlying mathematical models of the sub-modules within the framework.

ETO advises drivers how to achieve, from a given current location and with a specific
destination arrival time, an energy-efficient or delay-recovery (if the train has delays)
train operation. ETO takes into account the train path envelope constraints, not only the
arrival and departure times, but also time restitutions at other timing points and conflict
points. ETO respects speed restrictions, and takes into account varying gradients and
curves. ETO automatically responses to the deviations of the actual time-distance
path from the advised one, and re-computes and updates speed profiles and advice,
ensuring that the driver is supplied with the best possible advice for punctual arrival
with minimal energy consumption. The test scenarios showed that ETO has advantages
on real-time performance, and accurate computations.

7.2 Future research directions and practical recom-
mendations

In this section, we recommend several directions for future research and practical
recommendations.

The first suggestion for future research is to explore more on the topic of energy-
efficient train operations. Improving energy consumption through optimizing train
operations is a good option, since it does not need investment on extra infrastructure.
Research on energy-efficient train operations can be carried out from two aspects,
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off-line planning and real-time traffic management. The off-line planning includes
line planning, timetable design, and rolling stock scheduling. Improving energy
efficiency can play a significant roll during the off-line planning processes, however,
which have not drawn enough attention yet. Meanwhile, real-time traffic management
directly influences the energy consumption of train operations. Investing in novel
traffic management and train control methods in order to save energy consumption
is essential.

The second suggestion for future research is to explore more efficient solution methods
for the train trajectory optimization method. The train trajectory optimization requires
short computation time since it is an important part of the driver advisory systems
(DASs) for real-time trajectory computation. The proposed algorithms provide
an accurate modelling method for the train trajectory optimization problem. The
Pseudospectal method is capable of solving the problem within a short time, for
instances, which produces an optimal trajectory within 30 seconds for a train run on
a 50 km long corridor. Future research on shortening the computation time without
reducing the accuracy of solutions is still an important issue. This thesis provided a
direction of using direct methods in solving the train trajectory optimization problem,
which improves the computation speed and can be further improved for more efficient
solution methods.

A third future research direction is to take into account the human factors issue when
designing a driver advisory system since human drivers still play an important role. In
this thesis, ETO’s advice and user interface have not taken into account human factors.
It is necessary to perform future research on considering and testing human factors in
relation to the proposed ETO system and understand how do human drivers react to
the advice information and how to design a user-friendly interface.

A fourth future research direction is to investigate how to implement the DASs in
a mainline railway system. ATO (Automatic Train Operation) systems have been
used in real-world metro lines. However, train operations on mainlines are more
complicated compared to the operations on metro lines. The mainlines contain more
rolling stock types, more complex network layouts, and more complex service plans,
which arises the difficulties of developing a practicable DAS. We provided a flexible
modelling method for trajectory optimization, which can handle varying speed limits
and gradients, flexible timetable constraints, route changes, signal constraints and so
on. Further investigation in the trajectory optimization methods with consideration of
more practical factors is necessary for future DAS implementation.

Last but not least, connecting the DASs to a rail traffic management system (TMS) is
highly recommended. In this thesis, the ETO system is tested with a static timetable.
ETO can be easily connected to a TMS. It is interesting to test the effectiveness of
the proposed ETO system in more practical situations. For instances, how does ETO
respond to an updated timetable or new route? How does ETO provide real-time traffic
information to drivers? Answering these questions entails development of analysis,
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modelling and simulation tools to improve and test the feasibility and performance
related to the driver advisory system.



Summary

Even though rail is more energy efficient than most other transport modes, the
enhancement of energy efficiency is an important issue for railways to reduce their
contributions to climate change further as well as to save costs and enlarge competition
advantages involved. This thesis is motivated by the challenges in improving energy-
efficiency of train operations. The main objectives are to develop the modelling and
solution methods for the train trajectory optimization problem to improve the model
accuracy and the computation time, to apply the methods in a train driver advisory
system development, and to develop a multi-train trajectory optimization method to
solve the delay recovery and the energy-efficient timetabling problem.

First, the train trajectory optimization was formulated as a multiple-phase optimal
control problem and solved by a pseudospectral method. The multiple-phase optimal
control problem divides the whole train trajectory into multiple phases. The optimal
trajectory is then found by minimizing the total cost functional of all phases subject
to the constraints within each phase and the linkage constraints connecting adjacent
phases. The multiple-phase optimal control problem gives an accurate description
of varying speed limits and gradients, and the time and speed restrictions at timetable
points, conflict points and signal location; and it allows flexibility in minimizing energy
consumption and delays. A pseudospectral method was used to transcribe the multiple-
phase optimal control problem to a nonlinear programming (NLP) problem, and then
solve it within by NLP solvers. Experiments showed that the pseudospectral method
is able to compute the optimal driving strategy within a short time, even for a train
running on a corridor with complex speed limits and gradients.

Secondly, a multi-train trajectory optimization method was proposed. The multi-
train trajectory optimization method optimizes multi-train trajectories simultaneously
for energy-efficient or less delayed train movements. The multiple trains can be
in the same and opposite directions, and use different rolling stock compositions,
speed limits, timetable constraints, routes and station platforms. Safe interactions
between trains are guaranteed by the multi-train trajectory optimization method, since
constraints to keep safe headways between adjacent trains and to avoid conflicts are
taken into account. This method was adopted in the research of energy-efficient delay
recovery and energy-efficient timetabling.

Third, we investigated the energy-efficient delay recovery methods both from the
perspectives of single-train and multi-train movements. For a single delayed train,
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the single-train delay recovery strategy aims at reducing delays and getting the train
back to schedule as soon as possible. The influence from signal systems on train
operations is taken into account. A signal response policy and a green wave policy
are proposed for different circumstances of available signal information. The signal
response policy ensures that the train makes correct and quick responses to different
signalling aspects in case of only limited available information about one signal in rear
of the train. The green wave policy avoids yellow signals in case that a full prediction
is available about the signal aspect timings in rear of the train ahead. Experimental
results showed that, compared to the signal response policy, having access to predictive
information of the leading train and the green wave policy are more beneficial for
saving energy consumption and reducing train delays. Besides, a multi-train delay
recovery method was proposed, which reduces delays and energy consumption by
multi-train cooperation. The primary goal of the multi-train delay recovery method
is to reduce delays and delay propagation. Energy saving relies on making use of extra
running times caused by avoiding conflicts with delayed trains. For the trains running
in the same direction, the green wave policy was used to reduce the chance of meeting
yellow signals and thus avoid inefficient stop/start behavior. For the trains running
in opposite directions, a strategy of selecting best driving strategy for each running
section and best meeting stations of opposite trains was proposed, which is beneficial
for delay recovery and energy-efficient driving.

Fourth, we proposed a novel method of energy-efficient timetable adjustment on the
train trajectory optimization level. The energy-efficient timetabling is achieved by
using the trajectory optimization method to adjust the arrival and departure times of an
existing timetable with the purpose of improving the timetable’s energy efficiency. The
given timetable is converted into flexible arrival and departure time window constraints
first, then the trajectory optimization method is adopted to compute the energy-efficient
speed profiles and time paths of the trains involved in the timetable. Experiments
showed that the method jointly optimizes train trajectories and the timetable. The
arrival and departure times of an existing timetable are shifted by the trajectory
optimization methods, so that the time supplements are optimally allocated for energy
efficient operation.

Fifth, a prototype of a new train driver advisory system, ETO (energy-efficient train
operation), has been presented in this thesis with the application of the proposed
trajectory optimization method. ETO advises drivers how to achieve an energy-
efficient or delay-recovery train operation. ETO takes into account not only the arrival
and departure times, but also time restitutions at other timing points and conflict points.
ETO respects speed restrictions, and takes into account varying gradients and curves.
ETO automatically responses to the deviations of the actual time-distance path from
the advised one, and re-computes and updates speed profiles and advice, ensuring that
the driver is supplied with the best possible advice for punctual arrival with minimal
energy consumption. The test scenarios showed that ETO has advantages for real-time
performance, and have accurate computations.
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In summary, this thesis demonstrated that train trajectory optimization methods can be
successfully applied to improving energy efficiency of railway systems.
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Samenvatting

Alhoewel railvervoer energiezuiniger is dan de meeste andere vervoermodaliteiten,
is een verdere energiebesparing belangrijk voor de spoorwegen om hun aandeel in
de klimaatverandering verder te verminderen en bovendien de kosten te verlagen en
daarmee de concurrentiepotitie te verbeteren. Dit proefschrift is gemotiveerd door de
uitdagingen van energiezuinig rijden van treinen. Dit proefschrift richt zich op het
bepalen van de optimale trajectorie van een trein, d.w.z. het snelheidsprofiel van een
trein met het daarbij behorende tijdwegpad. De hoofddoelen zijn de ontwikkeling van
modellen en oplossingsmethoden voor het treintrajectorie optimaliseringsprobleem
met betere modelnauwkeurigheid en rekentijden, het toepassen van die methoden
in de ontwikkeling van een rijadviessysteem, en de ontwikkeling van een multi-
treintrajectorie optimaliseringsmethode voor het optimaal inhalen van vertragingen en
het berekenen van energiezuinige dienstregelingen.

Allereerst is de treintrajectorieoptimalisatie geformuleerd als een multi-fase optimaal
besturingsprobleem en opgelost met een pseudospectrale methode. Het multi-fase
optimale besturingsprobleem verdeelt de hele treintrajectorie in meerdere fases. De
optimale trajectorie wordt dan gevonden door minimalisering van de totale kosten
over alle fases onder de beperkingen in iedere fase en de extra beperkingen die de
opeenvolgende fases aan elkaar koppelen. Het multi-fase optimale besturingsprobleem
geeft een nauwkeurige beschrijving van de wisselende snelheidsgrenzen en hellingen
alsmede de tijd- en snelheidsrestricties op dienstregelingspunten, conflictpunten en
seinposities, en het geeft flexibiliteit in het minimaliseren van energiegebruik en
vertragingen. Een pseudospectale methode is gebruikt om het multi-fase optimale
besturingsprobleem te transformeren naar een niet-lineair programmeringsprobleem
(NLP pobleem) en dat op te lossen met een NLP-oplossingsmethode. Experimenten
hebben laten zien dat de pseudospectrale methode de optimale rijstrategie in korte
tijd kan berekenen, zelfs voor een trein die rijdt op een corridor met complexe
snelheidsgrenzen en hellingen.

Ten tweede is een multi-treintrajectorie optimaliseringsprobleem voorgesteld. Het
multi-treintrajectorie optimaliseringsprobleem optimaliseert meerdere treintrajectoriën
tegelijkertijd voor energiezuinig rijden of minder vertraagde treinbewegingen. De
treinen kunnen zowel in dezelfde als in de tegengestelde richting rijden, en gebruik
maken van verschillende materieelsamenstellingen, snelheidsgrenzen, dienstregelings-
beperkingen, rijwegen en perronsporen. Veilige interacties tussen treinen worden
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gewaarborgd in het multi-treintrajectorie optimaliseringsprobleem doordat beperkin-
gen voor veilige volgafstanden en voorkomen van conflicten tussen achtereenvolgende
en kruisende treinen zijn meegenomen. Deze methode is gebruikt in de onderzoeken
naar energiezuinig vertragingsherstel en energiezuinige dienstregelingen.

Als derde hebben we methoden onderzocht voor energiezuinig vertragingsherstel
vanuit het perspectief van zowel enkele treinen als multi-trein bewegingen. Voor een
enkele vertraagde trein beoogt de enkele-trein vertragingsherstelstrategie de vertraging
te reduceren en de trein zo snel mogelijk weer naar het plan terug te brengen. De
invloed van seinsystemen op de treinafwikkeling is meegenomen. Een seinresponsie
tactiek en een groene-golf tactiek zijn voorgesteld voor verschillende omstandigheden
van beschikbare seininformatie. De seinresponsie tactiek garandeert dat de trein juist
en snel reageert op verschillende seinbeelden in het geval dat slechts informatie over
één sein verderop beshikbaar is. De groene golf tactiek vermijdt gele seinen in het
geval dat een volledige voorspelling beschikbaar is over de seinbeeldtijdstappen achter
de voorliggende trein. Experimentele resultaten laten zien dat toegang hebben tot
voorspellende informatie over de voorliggende trein in combinatie met de groene
golf tactiek beter is voor energiebesparing en vertragingen dan de seinresponsie
tactiek. Daarnaast is een multi-trein vertragingsherstelmethode voorgesteld, die
vertragingen en energiegebruik reduceert door samenwerking tussen de treinen. Het
primaire doel van de multi-trein vertragingsherstelmethode is om vertragingen en
vertragingsvoortplanting te verminderen. Energiebesparing kan worden behaald door
gebruik te maken van extra rijtijd door anticipatie op het voorkomen van conflicten met
vertraagde treinen. Voor treinen in dezelfde richting is de groene golf tactiek gebruikt
om de kans op een geel sein te verminderen en daarmee inefficiënt stop-start gedrag
te voorkomen. Voor tegengestelde treinen is een selectieprocedure voorgesteld dat
de beste rijstrategie voor ieder baanvak bepaalt alsmede de beste ontmoetingsstations
waar tegemoetkomende treinen elkaar kunnen passeren. Dit is voordelig voor zowel
vertragingsherstel als energiezuinig rijden.

Als vierde hebben we een nieuwe methode voorgesteld voor energiezuinige dien-
stregelingsaanpassingen op het niveau van treintrajectorieoptimalisering. De en-
ergiezuinige dienstregeling wordt bereikt door de treintrajectorieoptimaliseringmeth-
ode te gebruiken om de aankomst- en vertrektijden van een bestaande dienstregeling
aan te passen met als doel om het energiegebruik van de dienstregeling te verbeteren.
De gegeven dienstregeling wordt eerst geconverteerd naar flexibele tijdvensters voor
de aankomst- en vertrektijden, waarna de trajectorieoptimaliseringmethode wordt
toegepast om energiezuinige snelheidsprofielen en tijdwegpaden te berekenen van de
treinen in de dienstregeling. Experimenten laten zien dat de methode de treintra-
jectoriën en dienstregeling gezamenlijk optimaliseert. De aankomst en vertrektijden
van een bestaande dienstregeling worden verschoven door de treintrajectorieoptimalis-
eringmethode zodat de rijtijdspelingen optimaal worden verdeeld voor energiezuinig
rijden.
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Als vijfde is in dit proefschrift een prototype machinistadviessysteem, ETO (En-
ergiezuinige Trein Operatie), gepresenteerd waarin de voorgestelde treintrajectorieop-
timalisering wordt toegepast. ETO adviseert machinisten over een energiebesparende
of vertragingsherstellende treinafhandeling. ETO houdt rekening met alle tijdvenster-
beperkingen, niet alleen de aankomst- en vertrektijden, maar ook tijdrestricties op an-
dere dienstregelingspunten en conflictpunten. ETO respecteert snelheidsbeperkingen
en wisselende hellingen en boogstralen. ETO reageert automatisch op afwijkingen van
de geadviseerde tijdwegpaden, en herberekent en vernieuwt de snelheidsprofielen en
adviezen, zodat de machinist continu het best mogelijke advies krijgt voor punctueel
en energiezuinig rijden. De testscenarios lieten zien dat ETO voordelig is voor de
real-time prestaties en de berekeningen nauwkeurig zijn.

Samenvattend demonstreert dit proefschrift dat treintrajectorieoptimaliseringmethoden
succesvol kunnen worden toegepast voor energiebesparing van railsystemen.
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