
Model Predictive Control-based
Motion Cueing for Aircraft Upset
Simulation
Master of Science Thesis

R.M.B. Bakker May 8, 2023



Model Predictive Control-based
Motion Cueing for Aircraft Upset

Simulation
Master of Science Thesis

by

R.M.B. Bakker

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday May 8, 2023 at 12:30 PM.

Student number: 4367138
Thesis committee: Prof. dr. ir. M. Mulder, TU Delft, AE, Control & Simulation

Dr. ir. D.M. Pool, TU Delft, AE, Control & Simulation
Ir. O. Stroosma, TU Delft, AE, Control & Simulation
Dr. B. Shyrokau, TU Delft, 3mE, Intelligent Vehicles

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Preface

This thesis report describes my research done over the past year. The thesis can be divided into two
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In this part, in Chapter 1, an introduction is included that presents in detail the research motivation,
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the experiment design, and the experimental findings. The appendices substantiate the work presented
in the scientific paper, which includes Python code used for the analysis, experiment instructions,
additional relevant experiment data, and extensive experiment results.
During the past year, I have had the unwavering support of many individuals who have made this
thesis possible. First of all, to my supervisors, Olaf and Daan, I am grateful for the time and effort
you devoted to giving excellent guidance, hearing me during meetings, providing me with very useful
feedback, responding quickly to emails, and giving excellent support in the experiment design and
preparations. Besides, I am thankful for the direction, feedback, and insights, Max, Rene, and Frank
gave me during our meetings and for their reflections on my work, which significantly contributed to
the quality of my work.
To my friends, I would like to extend my apologies for the time that I have been away and my ap-
preciation for your understanding. I can assure you that you will see me a lot more often this coming
year.
To Stephanie, I am eternally grateful for your love, support, and endless belief in me. Your encourage-
ment, patience, and understanding have been a constant source of motivation, inspiration, and most of
all heartwarming comfort throughout this thesis.
To conclude, I am filled with gratitude for my brother and parents, who always support me. My brother
for doing nice stuff together and travelling together. My parents, for letting me do the things I want
and letting me do these things how I want. I will remain thankful for this my entire life.
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w𝑓 Specific force weight vector
X Discretised internal state vector
x Discretised state vector
y Discretised reference inertial signal vector
u𝑖 Discretised control input at interval 𝑖
w𝑢 Control input weight
w𝑥 State weight
x𝑖 Discretised state at interval 𝑖
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𝑓 Specific force
𝐹𝐴 Aircraft reference frame equivalent to 𝐹𝑆

𝐹𝐶 Aircraft reference frame equivalent to 𝐹𝐷

𝐹𝐷 Platform reference frame
𝐹𝐼 Inertial reference frame
𝐹𝑃𝑎

Aircraft pilot reference frame equivalent to 𝐹𝑃𝑠

𝐹𝑃𝑠
Simulator pilot reference frame

𝐹𝑆 Simulator reference frame
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Evaluation of Optimization-based Motion Cueing
for Simulating Upset and Stall Maneuvers

Roemer M.B. Bakker∗

Delft University of Technology, Delft, Zuid-Holland, 2628 CD

Representing the aircraft with adequate motion cues during the simulation of upset and
stall maneuvers remains challenging. This paper discusses the potential of optimization-based
motion cueing algorithms for upset and stall simulation. An analysis is performed to compare
three offline model predictive control-based algorithms with varying prediction horizon lengths
and prediction strategies against a baseline classical washout algorithm. Three flight scenarios
flown with a Cessna Citation II Laboratory Aircraft are used: a symmetric stall, a large
roll maneuver, and a scenario with both nose-low and nose-high upsets including large bank
angles. Compared to a classical washout algorithm, the analysis shows up to 147.7 % increase
in objective motion cueing fidelity for two of the three optimization-based algorithms. Two
algorithms, an optimization-based and the baseline classical washout, were assessed on perceived
motion fidelity for the same scenarios by ten pilots in an experiment in the SIMONA Research
Simulator. All ten pilots experienced identical offline generated scenarios, meaning that no
control input was required during the experiment. Instead, the pilots were asked to continuously
rate the motion cueing quality with a rating knob, yielding the subjective motion incongruence
rating. In addition, a single motion fidelity rating, substantiated with comments, was given.
A significant increase in perceived motion fidelity was found for the large roll scenario. No
significant differences were found for the remaining two scenarios. The results imply, assuming
that sufficient reference motion prediction correctness can be achieved, that optimization-based
motion cueing algorithms have the potential to achieve significantly better motion cueing quality
compared to filter-based algorithms.

Nomenclature

𝑓 = specific force, m/s2

𝒇 = specific force vector, m/s2

𝑓𝑐 = continuous time function, -
ℎ = height, m
𝐾𝑐𝑤 = motion filter gain, -
𝑝 = roll rate, deg/s
𝑞 = pitch rate, deg/s
𝑞𝑖 = simulators’ 𝑖th actuator length, m
𝒒 = simulator actuator length vector, m
𝑟 = yaw rate, deg/s
𝑡 = time, s
𝑡𝑠 = sampling time, s
𝑇𝐻 = prediction horizon length, s
𝑇𝑆 = scenario length, s
𝒖 = simulator control input, m/s2 and deg/s
𝑉𝐼 𝐴𝑆 = indicated airspeed, m/s
𝑉𝑡 (𝑥) = terminal cost function, -
w = weight, -
w = weight vector, -
𝑾 = weight matrix, -

∗M.Sc. Student, Control & Simulation, Faculty of Aerospace Engineering.
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𝒙 = simulator state, m and deg and m/s and deg/s
𝒙𝑟 = simulator position substate, m and deg
𝒙𝑣 = simulator velocity substate, m/s and deg/s
𝒚 = simulator inertial signal, m/s2 and deg/s and deg/s2

𝒚̂ = reference inertial signal, m/s2 and deg/s and deg/s2

𝛼 = angle of attack, deg
𝛼𝐶𝑟 = Cronbach’s alpha, -
𝜶 = angular acceleration vector, rad/s2

𝜁ℎ𝑝 = second-order high-pass motion filter damping coefficient, -
𝜁𝑙 𝑝 = second-order low-pass motion filter damping coefficient, -
𝜃 = euler pitch angle, deg
𝜙 = euler roll angle, deg
𝜓 = euler yaw angle, deg
𝜔 = angular rate, rad/s or deg/s
𝝎 = angular rate vector, rad/s or deg/s
𝜔𝑏 = third-order high-pass motion filter break frequency, rad/s
𝜔ℎ𝑝 = second-order high-pass motion filter break frequency, rad/s
𝜔𝑙 𝑝 = second-order low-pass motion filter break frequency, rad/s

Abbreviations

CST = “Constant” model predictive control algorithm
CW = classical washout
CWO = baseline classical washout algorithm
DOF = degrees-of-freedom
FSTD = Flight Simulator Training Device
LOC-I = Loss of Control In-Flight
MCA = motion cueing algorithm
MFR = motion fidelity rating
MIR = motion incongruence rating
MPC = model predictive control
OCP = optimal control problem
OMSF = Offline Motion Simulation Framework
ORC = “Oracle” model predictive control algorithm
PCC = Pearson correlation coefficient
PFT = “Perfect” model predictive control algorithm
REF = Reference motion inertial signal
RMSE = root mean square error
SRS = SIMONA Research Simulator
UPRT = Upset Prevention and Recovery Training

I. Introduction
Accidents that are caused by Loss of Control In-Flight (LOC-I) remain one of the largest contributors to worldwide

commercial aviation fatalities according to the International Air Transport Association [1]. LOC-I accidents include
situations in which the flight crew was unable to maintain control of the aircraft, leading to an unrecoverable deviation
from the intended flight path. Recommendations made in 2009 by the Royal Aeronautical Society’s International
Committee for Aviation Training in Extended Envelopes intended to decrease the number of LOC-I accidents were
adopted by the International Civil Aviation Organization [2, 3] and resulted in an addition of Upset Prevention and
Recovery Training (UPRT) in the pilot training curriculum as stated by European Union Aviation Safety Agency [4].

UPRT is partially performed in Flight Simulator Training Devices (FSTDs), which typically include a hexapod
motion system driven by some form of a classical washout (CW) motion cueing algorithm (MCA) [5]. However,
the current options in FSTDs are limited and special care should be taken to prevent negative training due to the
simulator exceeding its fidelity envelope [6]. One of the difficulties of UPRT in FSTDs is representing the aircraft
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motion with realistic motion cues [7]. The challenges of upset and stall motion cueing arise mainly due to the much
larger amplitude and longer duration aircraft accelerations compared to normal flight, potentially leading to larger and
sustained specific forces and angular rates to be cued. The first challenge is to leave sufficient motion space for other
cues when sustained specific forces are cued [8]. The second challenge is the minimization of false specific force cues
when large-amplitude angular motion is cued [8, 9]. The third and final challenge is to minimize the false cues that
appear due to high-frequency washout of a CW MCA [9]. Research intended to improve motion cueing for upset and
stall simulation [7–13] did not lead to significant industry changes or moving away from the CW MCA.

An upcoming trend in the automotive simulator research industry is the use of MCAs based on Model Predictive
Control (MPC) [14–21]. This type of optimization-based MCA uses a reference motion to find the optimal simulator
control input for a certain horizon and set of constraints, i.e., an optimal control problem (OCP). To do this, every time
step, a reference motion prediction should be made by predicting the driver or pilot control input, or the specific forces
and angular motion directly. With this prediction, the OCP is solved by the algorithm, resulting in a control input
trajectory of equal length of the prediction horizon. In this way, the algorithm can anticipate future aircraft motion and
better utilize the available simulator motion space, which could lead to higher motion cueing fidelity. However, this type
of MCA is not yet applied to flight simulation or upset and stall simulation in particular.

The specific investigation addressed in this paper is about exploring the potential and usefulness of MPC-based
MCAs for use in upset and stall simulation, with as main objective to improve motion cueing fidelity. For this, an offline
MPC-based MCA is developed that is compared to a baseline CW MCA in a pre-experiment objective fidelity analysis.
Since the algorithm is deployed in an offline fashion, the total duration of the reference motion is known and best-case
motion cueing can be explored. Moreover, the algorithm does not need to adhere to real-time performance requirements,
which largely simplifies the implementation. Three versions of the MPC-based MCA are used in the analysis, either
assuming perfect knowledge or no knowledge of the reference motion. Methods to predict aircraft motion are, therefore,
not included in this paper. After the analysis, an experiment with ten pilots was conducted in TU Delft’s SIMONA
Research Simulator (SRS), assessing the perceived motion cueing fidelity. The pilots assessed two MCAs, a baseline
CW MCA and an MPC-based MCA with perfect reference motion knowledge, for three different flight test scenarios
previously performed on the TU Delft/NLR PH-LAB Cessna Citation II laboratory aircraft. The first scenario was a
symmetric stall including buffet and recovery. The second scenario was a large roll maneuver and the third scenario
included multiple nose-high and nose-low upsets, including large roll angles.

The structure of the paper is as follows. Section II presents the algorithm design and in Section III the baseline
CW and various MPC-based MCAs are introduced and analyzed. The experiment design is provided in Section IV,
followed by the results and discussion in Section V and Section VI, respectively. The paper’s conclusion is included in
Section VII.

II. The model predictive control-based motion cueing algorithm
The software implementation of the MPC-based MCA used in this study builds upon the Offline Motion Simulation

Framework (OMSF) [22, 23]. This Python-based library is designed to optimize simulator trajectories for a certain
reference motion, hence, an optimal control framework. Furthermore, the software tool allows for simulator design
parameters optimization, however, the latter is not relevant to this study. To efficiently solve the numerical optimization
problems, the OMSF uses the direct collocation parameterization method [24] to transform a continuous-time optimal
control problem (OCP) into discrete time. The OMSF depends on the CasADi symbolic numeric optimization software
framework [25] in combination with the Ipopt non-linear optimization software [26]. Moreover, the Ipopt-compatible
Harwell Subroutine Library high-speed solvers [27] were used in this study. Finally, the OMSF allows for integrating
human-perception models, such as vestibular models that try to mimic the otoliths and semi-circular canals [28].
However, this functionality is not used during this study, because it is not yet known for what such a model may be
helpful. Moreover, assumptions in these models will affect the MPC-based MCA, and not the baseline classical washout.

To use the OMSF as an offline MPC-based MCA framework for the SIMONA Research Simulator (SRS), three main
steps are required. First, the offline implementation of the MPC algorithm is explained in Subsection II.A. Secondly, the
geometry and workspace limitations of the system to be studied, the SRS, are defined in Subsection II.B. Thirdly, in
Subsection II.C, the system definition is used to formulate the OCP that is included in the MPC algorithm.

A. Offline model predictive control scheme
The offline MPC algorithm routine requires the discretization of the reference motion scenario, [0, 𝑇𝑆], where 𝑇𝑆

is the scenario duration in seconds, into 𝐾 intervals of the form [𝑡𝑘 , 𝑡𝑘+1]. Note that due to the offline nature of the
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MPC in this study, 𝑇𝑆 , and thus 𝐾 , are known. For every 𝑘th interval, an OCP is solved. This requires discretization of
the OCP with length 𝑇𝐻 , where 𝑇𝐻 is the so-called prediction horizon length, into 𝑁 intervals of the form [𝑡𝑖 , 𝑡𝑖+1].
Note that in this study, intervals [𝑡𝑘 , 𝑡𝑘+1] and [𝑡𝑖 , 𝑡𝑖+1] will have an equal length in time, meaning that the intervals are
perfectly aligned. After solving the OCP of the current time interval [𝑡𝑘 , 𝑡𝑘+1], the simulator control input and resulting
simulator state of the next time interval, 𝑥𝑡𝑘+1 , are stored. The simulator state at 𝑥𝑡𝑘+1 is subsequently set as the initial
condition for the OCP of the next time interval [𝑡𝑘+1, 𝑡𝑘+2]. A schematic representation of this offline MPC routine is
depicted in Figure 1. Note that when the prediction horizon length, 𝑇𝐻 , is set to equal the scenario length, 𝑇𝑆 , a single
MPC iteration is obtained, resulting in a single and overall OCP.
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Fig. 1 Schematic representation of the offline MPC algorithm.
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Fig. 2 Schematic hexapod system.

B. System definition
A schematic representation of the SRS’s hexapod motion system geometry and reference frames is shown in Figure 2.

The simulator state, control input, and output definitions used in the MPC-based MCA resemble the motion software of
the SRS [29]. In this way, the offline generated simulator state and control input are used to directly playback the motion
in the SRS during the experiment presented in Section IV. The simulator state captures the simulator position, attitude,
velocity, and attitude rate:

𝒙 = [𝒙𝑟 , 𝒙𝑣]⊤ ∈ R12 where 𝒙𝑟 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]⊤ and 𝒙𝑣 = [ ¤𝑥, ¤𝑦, ¤𝑧, ¤𝜙, ¤𝜃, ¤𝜓]⊤, (1)

and where all state variables are defined in the inertial frame with its origin in the Upper Gimbal Point (UGP) of the
SRS in the neutral position, 𝐹𝐼,𝑈𝐺𝑃 in Figure 2, meaning 2.39 m above the Lower Gimbal Point (LGP) of the SRS [29].
The simulator control input consists of linear accelerations and angular accelerations:

𝒖 = [ ¥𝑥, ¥𝑦, ¥𝑧, ¤𝑝, ¤𝑞, ¤𝑟]⊤, (2)

where the linear accelerations are defined in the same inertial frame as used for the simulator state, 𝐹𝐼,𝑈𝐺𝑃 , and the
angular accelerations are defined in a moving body frame with its origin attached to the UGP of the SRS, note 𝐹𝐵,𝑈𝐺𝑃
in Figure 1. The output inertial signal as a result of the simulator motion is defined as follows:

𝒚 = 𝑓 (𝒙, 𝒖) = [ 𝒇⊤,𝝎⊤,𝜶⊤]⊤ ∈ R9, (3)

where the specific forces, 𝒇 , the angular rates, 𝝎, and angular accelerations, 𝜶, are all defined in a moving body frame
with its origin attached to the Design Eye Reference Point (DERP) of the SRS, located 1.2075 m above and parallel to
the UGP and thus 𝐹𝐵,𝑈𝐺𝑃 [29].

As required for the optimal control formulation presented next in Subsection II.C, two more vectors are introduced.
First, the reference inertial signal, which captures the aircraft motion that is attempted to be replicated by the simulator:

𝒚̂ = [ 𝒇⊤, 𝝎̂⊤, 𝜶̂⊤]⊤ ∈ R9, (4)

which is defined in a moving body frame with its origin attached to the pilot station. Secondly, the simulator actuator
length vector:

𝒒 = [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6]⊤, (5)
defining the lengths of the six actuators, 𝑞1 to 𝑞6, of the SRS’s hexapod motion system as also shown in Figure 2.
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C. Optimal control formulation
The continuous time OCP used in the MPC-based MCA formulation is described by the following equations:

minimize
𝒙( ·) ,𝒖 ( ·)

∫ 𝑇𝐻

0
ℓ𝑐 (𝒙(𝑡), 𝒖(𝑡))𝑑𝑡 +𝑉𝑡 (𝒙(𝑇𝐻 )) (6a)

subject to 𝒙0 ≤ 𝒙(0) ≤ 𝒙0 (6b)
¤𝒙(𝑡) = 𝑓𝑐 (𝒙(𝑡), 𝒖(𝑡)), 𝑡 ∈ [0, 𝑇𝐻 ] (6c)
𝒒 ≤ 𝒒(𝑡) ≤ 𝒒, 𝑡 ∈ [0, 𝑇𝐻 ] (6d)

¤𝒒 ≤ ¤𝒒(𝑡) ≤ ¤𝒒, 𝑡 ∈ [0, 𝑇𝐻 ] (6e)

𝒙
𝑇𝑆

≤ 𝒙(𝑇𝑆) ≤ 𝒙𝑇𝑆 , (6f)

where Eq. (6a) is the objective function which includes the running cost or Lagrangian, ℓ𝑐, and the terminal state cost 𝑉𝑡 ,
and where Eq. (6c) contains the system dynamics, and where Eqs. (6b), (6d), (6e), and (6f) are the constraint set. The
system dynamics, seen in Eq. (6c), are captured in two first-order differential equations. The first differential equation
relates the substate 𝒙𝑟 with its time derivative, the substate 𝒙𝑣 . The second differential equation relates the substate 𝒙𝑣
with the simulator control input, 𝒖, by using the time derivative of the relation between body angular rates and Euler
rates. No inertial properties are included in the dynamics because sufficient SRS control input tracking is assumed.

1. Objective function
The objective function that is minimized to find the optimal control input, previously shown in Eq. (6a), consists of

two parts. The first part is the running cost, called the Lagrangian:

ℓ𝑐 (𝒙(𝑡), 𝒖(𝑡)) = | |𝒚(𝑡) − 𝒚̂(𝑡) | |2𝑾 𝑦
+ ||𝒙(𝑡) | |2𝑾 𝑥

+ ||𝒖(𝑡) | |2𝑾 𝑢
+ || ¤𝒖(𝑡) | |2𝑾 ¤𝑢

(7a)

where

𝑾𝑦 = 19×9 · [w◦2
𝑓 ,w

◦2
𝜔 ,w◦2

𝛼 ]⊤ (7b)

𝑾𝑥 = 112×12 · w𝑥 (7c)

𝑾𝑢 = 16×6 · w𝑢 (7d)

𝑾 ¤𝑢 = 16×6 · w ¤𝑢. (7e)

In Eq. (7a), the right-hand side depicts the four terms of the Lagrangian. From left to right, the first term is the inertial
signal incongruence cost and penalizes the difference between the reference inertial signal, 𝒚̂, and the simulator output
inertial signal, 𝒚. The inertial signal weight matrix, 𝑾𝒚 , depicted in Eq. (7b), allows for individual weight setting for
each inertial signal component. The remaining three terms are the simulator state cost, the control input cost, and the
change of control input cost, respectively. In Eqs. (7c), (7d), and (7e), the corresponding weight matrices are shown,
where all three matrices have each a single weight for all components of, respectively, the state, control input, and
control input derivative.

The second term in Eq. (6a), 𝑉𝑡 (𝒙(𝑇𝐻 )), is the terminal cost and penalizes the predicted simulator deviation from
its neutral position at 𝑇𝐻 . The terminal cost is described as:

𝑉𝑡 (𝒙(𝑇𝐻 )) = | |𝒙(𝑇𝐻 ) | |2𝑾 𝑥,𝑇𝐻
(8a)

where

𝑾𝑥,𝑇𝐻 = 112×12 · [w◦2
𝑥𝑟 ,𝑇𝐻

,w◦2
𝑥𝑣 ,𝑇𝐻

]⊤, (8b)

and where the terminal state weight matrix, 𝑾𝑥,𝑇𝐻 , consist of two weights, w𝑥𝑟 ,𝑇𝐻 and w𝑥𝑣 ,𝑇𝐻 , which allows for setting
different weights for the terminal simulator position and attitude, and for the terminal simulator velocity and attitude
rate. This term forces the simulator back to the neutral position at the end of the OCP, which increases stability when
the optimal control formulation is used in an MPC algorithm [24].
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2. Constraints
Four constraints, previously presented in Eq. (6), are included in the OCP formulation. The initial condition

constraint, defined in Eq. (6b), allows for setting the initial simulator state and has a key function in the MPC algorithm
explained next in Subsection II.A. The actuator length and velocity constraints, seen in Eqs. (6d) and (6e), respectively,
ensure that the simulator stays within its physical limits. Lastly, the final state constraint, defined in Eq. (6f), is specific
to the offline MPC algorithm and defines the final state of the simulator when the end of the motion scenario is reached.
This constraint ensures that the simulator will not end the scenario with high velocities, that possibly drive the simulator
onto its physical limits. The numeric values used for all constraints are presented in Table 1. Note that the simulator is
enforced to start in its neutral position and with zero velocity at the beginning of each scenario (see 𝒙𝑟 ,0 and 𝒙𝑣,0 in
Table 1). However, the final condition values only enforce the simulator to have zero velocity and leave the end position
to an arbitrary position within its available motion space (see 𝒙𝑟 ,𝑇𝑆 and 𝒙𝑣,𝑇𝑆 in Table 1). The actuator minimum and
maximum length constraints, note 𝒒 in Table 1, are set to 8 cm within the SRS’s physical actuator limits [30], which is
3 cm within the SRS’s actuator safety buffers [31], and 1 cm within the SRS’s motion limiter software limits [29]. The
maximum actuator velocity, see 𝒒 in Table 1, is set to 0.75 m/s. Above this actuator velocity, the SRS’s input tracking
performance deteriorates significantly.

Table 1 Constraints used in the MPC formulation.

Lower limit Upper limit
𝒙𝑟,0 [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤ [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤

𝒙𝑣,0 [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤/s [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤/s
𝒙𝑟,𝑇𝑆 [−0.981 m, −1.031 m, −0.636 m, −25.9𝜋

180 rad, −23.7𝜋
180 rad, −41.6𝜋

180 rad]⊤ [1.259 m, 1.031 m, 0.678 m, 25.9𝜋
180 rad, 24.3𝜋

180 rad, 41.6𝜋
180 rad]⊤

𝒙𝑣,𝑇𝑆 [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤/s [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]⊤/s
𝒒 [2.161, 2.161, 2.161, 2.161, 2.161, 2.161]⊤m [3.251, 3.251, 3.251, 3.251, 3.251, 3.251]⊤m
¤𝒒 [-0.75, -0.75, -0.75, -0.75, -0.75, -0.75]⊤m/s [0.75, 0.75, 0.75, 0.75, 0.75, 0.75]⊤m/s

III. Pre-experiment analysis
A pre-experiment analysis is performed to map out the differences between the inertial signals produced by the three

algorithms described in Subsection III.C. Moreover, to compare these algorithms with a baseline CW MCA (CWO)
described next in Subsection III.B and the reference motion inertial signal (REF). Moreover, the analysis serves as
a substantiation of the experiment’s independent measures and hypothesis, which are presented in Section IV. Two
measures are used in this section to analyze the objective fidelity of the inertial signals, the Root Mean Square Error
(RMSE) and the Pearson Correlation Coefficient (PCC), which are previously used for evaluating (non-linear) MCAs by
[18, 32–34]. A higher PCC (min -1, max 1) indicates higher correlation in shape between the REF inertial signal and
the inertial signal produced by the MCA, hence higher objective fidelity. For the RMSE, lower values indicate a lower
overall error between the REF and MCA and thus higher objective fidelity.

A. Motion scenarios

1. Symmetric Stall scenario
The first scenario is a simulation-based symmetric stall from [35, 36], which was flown by an autopilot and has only

motion in three degrees-of-freedom (DOF). For this study, the stall maneuver is slightly filtered using a third-order
low-pass filter and zero-phase digital filtering. The reasoning behind the filtering is that the original high-frequency
buffet components are for the motion system limiting motion, requiring the use of input motion scaling affecting the
motion in 𝑓𝑥 and 𝑓𝑧 . Moreover, the high-frequency buffet motion is usually well represented by a CW MCA, and the
low-frequency motion included in the stall is of more interest for this study. The course of the scenario is depicted in
Figure 3. The load factor in this 15 s scenario ranges between 0.4 g and 1.2 g and a maximum angle of attack of 16 deg
is reached. The idea behind this scenario is the assessment of pitch, surge, and heave motion of the different MCAs.
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Fig. 3 Aircraft motion for the Symmetric Stall scenario.

2. Large Roll scenario
The second scenario is a flight data-based scenario that includes a single roll upset. The upset itself consisted of a

negative 60 deg roll into a positive 50 deg roll, with load factors ranging from 0.7 g to 1.4 g. Before and after the upset,
wings-level flight was included to increase the duration of the scenario. The idea behind this scenario is the assessment
of roll, sway, and heave motion of the different MCAs. The total scenario duration is 44 s and is depicted in Figure 4.
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Fig. 4 Aircraft motion for the Large Roll scenario.

3. Upsets scenario
The third scenario consists of three upsets, a coordinated turn, and cruise flight. The first upset, is a 30 deg nose-up

including a 125 deg roll maneuver, resulting in load factors of 0.4 g to 2.2 g. After this first upset, a 50 s coordinated
turn is flown, followed by 100 s of cruise flight. To conclude the scenario, two nose-low upsets are included with,
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respectively, 10 deg and 20 deg nose-low attitudes and positive 60 deg and negative 100 deg roll. Load factors during
these upsets range from 0.7 g to 1.7 g. The idea behind this scenario is the assessment of the MCAs for complex
six-DOF motion including sustained load factors and large roll rates. The total scenario duration is 350 s and is depicted
in Figure 5.
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Fig. 5 Aircraft motion for the Upsets scenario.

B. Baseline classical washout algorithm
The CW MCA used in this study, referenced as CWO, is the standard SRS CW algorithm and is used in an offline

fashion. For each motion scenario, the CWO parameters, presented in Table 2, are optimized such that the SRS stays
just within its physical limits. For all scenarios, second-order low-pass filters were used for tilt coordination for 𝑓𝑥 and
𝑓𝑦 . The parameters used for the Symmetric Stall scenario are from [36] and include a second-order high-pass filter for
surge and pitch and a third-order high-pass filter for heave. The gains, 𝐾𝑐𝑤 , are slightly increased from 0.6 to 0.8.

The CWO parameters for the Large Roll and Upsets scenarios are based on the parameters from [10, 37] and were
adapted where required. This resulted in second-order high-pass filters for surge, sway, pitch, and yaw for both the
Large Roll and the Upsets scenario and for roll of the Large Roll scenario. Moreover, a third-order high-pass filter for
heave for the Large Roll and the Upsets scenarios, and a first-order high-pass filter for roll for the Upsets scenario. The
phase and gain values for each scenario are presented in Sinacori-Schroeder plots [38, 39], depicted in Figure 6. In
Figure 6, the surge and sway values are the result of combining the high- and low-pass filters into a total specific force
transfer function as defined in [10].

Table 2 CWO parameters for the three motion scenarios.

Scenario 1 - Symmetric Stall Scenario 2 - Large Roll Scenario 3 - Upsets

𝑥 𝑦 𝑧 𝑝 𝑞 𝑟 𝑥 𝑦 𝑧 𝑝 𝑞 𝑟 𝑥 𝑦 𝑧 𝑝 𝑞 𝑟

𝐾𝑐𝑤 , - 0.8 0.0 0.8 0.0 0.8 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.3 0.5 0.45 0.45 0.3
𝜔ℎ𝑝 , rad/s 1.2 0.0 2.0 0.0 1.0 0.0 2.0 2.0 4.0 1.0 1.0 0.7 2.0 2.0 4.0 0.0 1.0 0.7
𝜁ℎ𝑝 , - 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.7 1.0 0.7 0.7 0.7 0.7 0.7 1.0 0.0 0.7 0.7
𝜔𝑏 , rad/s 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.0 0.0
𝜔𝑙𝑝 , rad/s 2.4 0.0 2.0 2.5 2.0 2.5
𝜁𝑙𝑝 , - 0.7 0.0 0.7 0.7 0.7 0.7
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(c) The Upsets scenario.

Fig. 6 Sinacori-Schroeder plots for the CWO parameters of the three scenarios.

C. Model predictive control-based algorithms
Three offline MPC algorithm variants are used, namely, the “Oracle”, the “Perfect”, and the “Constant” algorithms.

The “Oracle” (ORC) has a prediction horizon length equal to the entire motion scenario. This results in a single MPC
iteration, where 𝑇𝐻 equals 𝑇𝑆 , hence a single OCP. This, in combination with the perfect knowledge of the reference
signal, will result in the best obtainable control trajectory for the motion scenario and the chosen set of parameters and
weights. Note that this algorithm is not feasible in real-time, since perfect knowledge of the reference signal for the
entire motion scenario is required.

The “Perfect” (PFT) assumes perfect knowledge of the reference signal for the entire prediction horizon. This will
result in the best obtainable control trajectory obtained through MPC for a certain horizon length. This prediction
strategy is not feasible in real-time, since it will never be possible to perfectly predict the future reference signal for the
entire prediction horizon.

The “Constant” (CST) assumes knowledge of the reference signal for the current time interval only. The remainder
of the horizon is then completed with a constant reference signal that is equal to the current time interval. This prediction
strategy is feasible in real-time since it will only require knowledge of the reference signal for the current time interval.

The parameters used for the three algorithms, for each scenario, are summarized in Table 3. Note that the inertial
signal weights, [w 𝑓 ,w𝜔 ,w𝛼], and the state and control input weights, w𝑥 and w𝑢, are equal for all algorithm variants
and are based on values from previous studies [18, 19, 23]. The control input derivative weight, w ¤𝒖 , is applied reservedly
and only where necessary. A terminal state weight is only applied to the simulator velocity and attitude rate and is solely
required for the PFT and CST. This is due to the terminal state being equal to the final state for the ORC algorithm, hence
a final state constraint is present. The sampling time, 𝑡𝑠 , was set to 0.01 s, equal to the SRS motion control sample rate,
for the ORC algorithm for all three scenarios, as this algorithm will be used in the experiment presented in Section IV.
For the Large Roll and the Upsets scenario, the sample time was increased for both the PFT and CST algorithms to 0.1 s,
equal to the reference motion sample rate of these two scenarios, to decrease the computation time. For the Symmetric
Stall scenario, the sampling time for the PFT and CST algorithms was decreased from 0.01 s, the original reference
motion sample time, to 0.05 s, to decrease the computation time, however, retain the high-frequency buffet components.

Table 3 Parameters of the different MPC algorithms for each scenario. Note that the · represents the unit of the
respective vector denoted in the weight’s subscript.

Scenario MCA 𝑡𝑠 , s 𝑇𝐻 , s w 𝑓 , s2/m w𝜔 , s/rad w𝛼, s2/rad w𝑥 , ·−2 w𝑢, ·−2 w ¤𝑢, ·−2 w𝑥𝑟,𝑇𝐻
, ·−1 w𝑥𝑣,𝑇𝐻

, ·−1

Sym. Stall
ORC 0.01 𝑇S [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0 [0,0,0,0,0,0] [0,0,0,0,0,0]
PFT 0.05 6 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [1,1,1,1,1,1]
CST 0.05 2 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [1,1,1,1,1,1]

Large Roll
ORC 0.01 𝑇S [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [0,0,0,0,0,0]
PFT 0.1 6 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [1,1,1,1,1,1]
CST 0.1 2 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.25 [0,0,0,0,0,0] [1,1,1,1,1,1]

Upsets
ORC 0.01 𝑇S [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [0,0,0,0,0,0]
PFT 0.1 6 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.005 [0,0,0,0,0,0] [1,1,1,1,1,1]
CST 0.1 2 [1,1,1] [10,10,10] [1,1,1] 0.01 0.01 0.25 [0,0,0,0,0,0] [1,1,1,1,1,1]
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D. Inertial signal results

1. Symmetric Stall inertial signal
The three-DOF inertial signal, [ 𝑓𝑥 , 𝑓𝑧 , 𝜔𝑦], as a result of the four different MCAs and the reference inertial signal

(REF) are shown in Figure 7. The corresponding RMSE (Figure 8a) and PCC (Figure 8b) values for all algorithms are
shown in Figure 8. First, the CWO undershoots the REF’s 𝑓𝑥 due to the applied CW filter gain of 0.8, which results in
a magnitude difference and an RMSE( 𝑓𝑥) of 0.26 m/s2. The shape is not affected by this and is well represented by
the second-order high-pass filter, leading to a PCC( 𝑓𝑥) of 0.88. In 𝑓𝑧 , the inability to cue sustained deviations from
-9.81 m/s2 with a hexapod motion system becomes evident. This results in an RMSE( 𝑓𝑧) of 1.41 m/s2. Apparently, the
third-order high-pass filter for 𝑓𝑧 also affects the high-frequency stall buffet shape correlation with the REF, leading to a
fair PCC( 𝑓𝑧) of 0.39. In 𝜔𝑦 , at 𝑡 ≈ 10.5 s, i.e., where the stall break occurs, the CWO initially goes the wrong way to
partly cue the 𝑓𝑥 by tilt-coordination, resulting in a large RMSE(𝜔𝑦) of 2.17 deg/s and PCC(𝜔𝑦) value of 0.57.

Next, the ORC and PFT, note that these algorithms are very similar in all three DOF. This is confirmed by the up to
two decimal figures identical RMSE( 𝑓𝑥) of 0.17 m/s2 and equal PCC( 𝑓𝑥) and PCC(𝜔𝑦) values of, respectively, 0.95
and 0.85. The largest, but still minor, differences between the ORC and PFT are seen in 𝑓𝑧 , for which the RMSE are,
respectively, 1.27 m/s2 and 1.33 m/s2. In 𝑓𝑥 , the ORC and PFT slightly overshoot the REF to increase the REF tracking
in 𝑓𝑧 . This results in RMSE( 𝑓𝑥) and PCC( 𝑓𝑥) values of, respectively, 0.17 m/s2 and 0.95 for both algorithms. Similar
to the CWO, in 𝑓𝑧 , an offset is present for the ORC and PFT due to identical reasons. Compared to 𝑓𝑥 , this results in
a large RMSE( 𝑓𝑧) of 1.27 m/s2 and 1.33 m/s2 for, respectively, the ORC and PFT. Contrary to the CWO, in 𝜔𝑦 , the
ORC and PFT show a response similar in shape to the REF, which is confirmed by the PCC(𝜔𝑦) value of 0.85 for both
algorithms. This is explained by the fact that the ORC and PFT solely cue the change in 𝑓𝑥 at 𝑡 ≈ 10.5 s by a linear
acceleration in combination with an increase in 𝑓𝑥 by tilt-coordination in the two seconds before the stall break.

Finally, the CST, this algorithm clearly performs worse in 𝑓𝑥 than the other algorithms, resulting in the highest
RMSE( 𝑓𝑥) of 0.43 m/s2 and lowest PCC( 𝑓𝑥) of 0.29. In 𝑓𝑧 , the shape resemblance of the CST with the REF is clearly
the worst of all algorithms. This results in a negative correlation and a PCC( 𝑓𝑧) of -0.08. This is explained by the
high-frequency buffet components that are not present at all. The CST interpreters each REF inertial signal component
as a sustained cue with a duration of the entire prediction horizon, i.e., 2 s for the CST. As these cues are hard to
represent with a hexapod motion system, except for sustained 𝑓𝑥 and 𝑓𝑦 cues that can be represented by tilt coordination,
the CST does not make the effort to cue 𝑓𝑧 . Moreover, in 𝑓𝑧 , likewise the CWO, ORC, and PFT, the offset from the REF
is present. This results in an RMSE( 𝑓𝑧) of 1.41 m/s2, which is in the same order of magnitude as the other algorithms.
In 𝜔𝑦 at 𝑡 ≈ 10.5 s, similar to the CWO, the CST initially goes the wrong way to cue 𝑓𝑥 by tilt-coordination, resulting in
an RMSE(𝜔𝑦) of 2.00 deg/s and a PCC(𝜔𝑦) of 0.38.
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Fig. 7 Reference inertial signal and the inertial signals of the four algorithms for the Symmetric Stall scenario.
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Fig. 8 Inertial signal RMSE and PCC for the Symmetric Stall scenario.

2. Large Roll inertial signal
Figure 9 shows the three most relevant DOF of the different algorithms’ inertial signals, [ 𝑓𝑦 , 𝑓𝑧 , 𝜔𝑥], for the Large

Roll scenario. In Figure 10, the Large Roll scenario’s inertial signal RMSE (Figure 10a) and PCC (Figure 10b) values
for all algorithms are shown. First, note the CWO algorithm, in 𝑓𝑦 , this algorithm induces large lateral false cues due to
the rolling motion in 𝜔𝑥 , resulting in an RMSE( 𝑓𝑦) of 1.00 m/s2 and a PCC( 𝑓𝑦) of 0.06. In 𝑓𝑧 , the CWO is not able to
replicate the amplitudes of the REF, resulting in an RMSE( 𝑓𝑧) of 1.33 m/s2. Moreover, the PCC( 𝑓𝑧) of -0.32 indicates
a negative correlation between the CWO and REF, which may be due to the third-order high-pass filter. In 𝜔𝑥 , the
second-order high-pass filter generates significant lead. This results in opposite-sign 𝜔𝑥 motion compared to the REF,
which is reflected by an RMSE(𝜔𝑥) of 12.73 deg/s and a PCC(𝜔𝑥) of 0.19.

Like the Symmetric Stall scenario, the ORC and PFT are very similar. In 𝑓𝑦 at 𝑡 ≈ [18 s, 23 s], just before the large
rolling motion, a false lateral cue is present that is induced by subtle rolling motion in 𝜔𝑥 . Note that this motion is
so-called “pre-positioning”, which is a key feature of MPC-based MCAs. Pre-positioning is explained as (opposite-sign)
motion that positions the simulator in a way that it is better able to cue upcoming (large-amplitude) motion. Next to that,
large lateral false cues are present to the rolling motion after the pre-positioning, resulting in an RMSE( 𝑓𝑦) of 0.71 m/s2

and 0.69 m/s2 and a PCC( 𝑓𝑦) of 0.28 and 0.30 for, respectively, the ORC and PFT. In 𝑓𝑧 , the ORC and PFT are not able
to follow the magnitude of the REF amplitudes, leading to an RMSE( 𝑓𝑧) of, respectively, 1.20 m/s2 and 1.19 m/s2.
However, compared to the CWO, the ORC’s and PFT’s 𝑓𝑧 shapes cohere significantly better, indicated by, respectively, a
PCC( 𝑓𝑧) of 0.46 and 0.43, versus the CWO’s PCC( 𝑓𝑧) of -0.32. In 𝜔𝑥 , excluding the pre-positioning mentioned earlier,
the ORC and PFT almost perfectly replicate the shape of the REF motion, just with smaller amplitudes. This is well
reflected by the high PCC(𝜔𝑥) values of 0.95 for the ORC and 0.94 for the PFT. The smaller amplitudes still result in a
substantial RMSE(𝜔𝑥) of 6.82 deg/s and 6.84 deg/s for, respectively, the ORC and PFT.
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Fig. 9 Reference inertial signal and the inertial signals of the four algorithms for the Large Roll scenario.
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Lastly, the CST does not show the pre-positioning motion in 𝑓𝑦 as present by the ORC and PFT algorithms. This is
explained by the fact that the CST algorithm simply does not “see” the future motion coming, as this is not present in
the constant prediction. The false lateral cues are again present, however, these have a smaller amplitude compared
to the ORC and PFT, resulting in a lower, thus better, RMSE( 𝑓𝑦) of 0.55 m/s2. Moreover, the lateral false cues lag
behind the ORC and PFT, which, apparently, results in a lower PCC( 𝑓𝑦) of 0.14. In 𝑓𝑧 , the CST shows the least motion
of all algorithms, likely for similar reasons explained previously for the Symmetric Stall scenario. This results in
RMSE( 𝑓𝑧) and PCC( 𝑓𝑧) values of, respectively, 1.28 m/s2 and -0.07, which are just between the CWO, and the ORC
and PFT. Hence, little motion is present, however, also little false cues. In 𝜔𝑥 , the CST is not able to reproduce the same
amplitude magnitudes as the ORC and PFT, resulting in a higher RMSE(𝜔𝑥) of 9.39 deg/s. In addition, a minor lag
is visible, which was also reflected by 𝑓𝑦 . This leads to a PCC(𝜔𝑥) of 0.91, which is lower than the ORC and PFT,
however, better than the CWO.
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Fig. 10 Inertial signal RMSE and PCC for the Large Roll scenario.

3. Upsets inertial signal
The Upsets scenario’s inertial signal, [ 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧 , 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧], for all four algorithms is shown in Figure 11. The

Upsets scenario’s inertial signal RMSEs are shown in Figure 12 and PCCs are shown in Figure 13. First, for the CWO
algorithm in 𝑓𝑥 , a large difference between the CWO and REF is present. This is caused by the CW filter gain and
results in an RMSE( 𝑓𝑥) of 0.57 m/s2, however, this does not affect the high PCC( 𝑓𝑥) of 0.98. In 𝑓𝑦 , similar to the
Large Roll scenario, large lateral false cues are present due to large rolling motion in 𝜔𝑥 , this results in an RMSE( 𝑓𝑦) of
0.65 m/s2 and a PCC( 𝑓𝑦) of 0.26. Again, similar to the previous scenarios, large amplitudes of the REF 𝑓𝑧 are not
well represented, which results in an RMSE( 𝑓𝑧) of 2.27 m/s2. The third-order high-pass filter also reduces the shape
correlation, as a result of which the PCC( 𝑓𝑧) is 0.06. The first-order high-pass filter in 𝜔𝑥 ensures limited phase-shift
and results in a PCC(𝜔𝑥) of 0.68. Compared to the REF, the amplitude magnitudes are reduced by the filter gain of 0.45,
which results in an RMSE(𝜔𝑥) of 5.47 deg/s. In 𝜔𝑦 and 𝜔𝑧 , the second-order high-pass filters result in phase distortions
and, thus, a PCC(𝜔𝑦) of 0.29 and a PCC(𝜔𝑧) of -0.08. Moreover, the filter gains, 0.45 and 0.3 for, respectively, 𝜔𝑦 and
𝜔𝑧 , affect the amplitudes and result in an RMSE(𝜔𝑦) of 1.47 deg/s and an RMSE(𝜔𝑧) of 1.52 deg/s. Lastly, note that
the yaw motion, 𝜔𝑧 , during the coordinated turn at 𝑡 ≈ [70 s, 120 s] is not present at all for the CWO.

Similar to the Symmetric Stall and the Large Roll scenarios, the ORC and PFT are again very comparable. However,
the 𝜔𝑧 motion shows for the first time significant differences between the ORC and PFT algorithms. This is reflected by
the RMSE(𝜔𝑧) of 0.85 deg/s and 1.22 deg/s and PCC(𝜔𝑧) of 0.84 and 0.65 for, respectively, the ORC and PFT. This is
most likely due to the very slow dynamics present in the coordinated turn at 𝑡 ≈ [70 s, 120 s] that is not well anticipated
by the PFT due to the limited prediction horizon length of 6 s. In 𝑓𝑥 at 𝑡 ≈ 50 s, large false cues are present for the ORC
and PFT algorithms due to the 𝜔𝑦 motion, which, compared to the CWO, reduces the PCC( 𝑓𝑥) to 0.88 and 0.87 for,
respectively, the ORC and PFT. Note that the RMSE( 𝑓𝑥) of 0.22 m/s2 for both algorithms is better than the CWO since
no filter gain is present. Looking at 𝜔𝑥 , the ORC and PFT algorithms first roll in the opposite direction just before all
three upsets (i.e., at 𝑡 ≈ 45 s, 𝑡 ≈ 240 s, and 𝑡 ≈ 310 s), hence, this is pre-positioning as also observed for the Large
Roll scenario. This results in false lateral 𝑓𝑦 cues, which is represented by RMSE( 𝑓𝑦) of 0.46 m/s2 and 0.45 m/s2 for,
respectively, the ORC and PFT, and a PCC( 𝑓𝑦) of 0.33 for both algorithms. In 𝑓𝑧 , the ORC and PFT show more and
better motion than the CWO, which is mainly confirmed by the PCC( 𝑓𝑧) of 0.45 and 0.33 for, respectively, the ORC and
PFT, compared to the CWO’s PCC( 𝑓𝑧) of 0.06. The ORC’s and PFT’s RMSE( 𝑓𝑧) values of, respectively, 2.22 m/s2 and
2.21 m/s2, reflect the magnitude deficiencies in replicating the REF’s 𝑓𝑧 motion.
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Finally, the CST algorithm, in 𝑓𝑥 , follows the REF nicely, resulting in the lowest RMSE( 𝑓𝑥) of all algorithms of
0.21 m/s2. The shape correlation, PCC( 𝑓𝑥), between the CST and REF of 0.89 is better than the ORC and PFT (0.88
and 0.87), however, worse than the CWO (0.98). In 𝑓𝑦 , the CST shows large lateral false cues due to motion in 𝜔𝑥 ,
which results in an RMSE( 𝑓𝑦) of 0.49 m/s2 and a PCC( 𝑓𝑦) of 0.32. Similar to all other algorithms, the CST is not
able to replicate the large amplitudes of the REF in 𝑓𝑧 , which results in an RMSE( 𝑓𝑧) of 2.26 m/s2. The CST has a
PCC( 𝑓𝑧) of 0.27 and performs in between the CWO (0.06) and the PFT (0.33) and ORC (0.45). In 𝜔𝑥 , the CST does
not show any pre-positioning motion and is more comparable to the CWO than the ORC and PFT. The RMSE(𝜔𝑥) of
5.46 deg/s and PCC(𝜔𝑥) of 0.77 confirm this. In 𝜔𝑦 , similar to all other algorithms, the CST can not replicate the
REF’s (sustained) amplitudes. This leads to an RMSE(𝜔𝑦) of 1.37 deg/s and PCC(𝜔𝑦) of 0.46. In 𝜔𝑧 , the CST is able
to replicate the amplitudes of the REF, except for the more sustained motion around 𝑡 ≈ 50 s and during the coordinated
turn at 𝑡 ≈ [70 s, 120 s]. This results in an RMSE(𝜔𝑧) of 1.21 deg/s and PCC(𝜔𝑧) of 0.60.
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E. Pre-experiment analysis main findings
Summarizing the pre-experiment analysis main findings, the ORC, as expected, results in the highest objective

fidelity for seventeen of the total 24 analyzed metrics used in the analysis of the three scenarios. Note that these 24
metrics consist of three RMSEs and PCCs for both the Symmetric Stall and Large Roll scenario, i.e., in total twelve, and
six RMSEs and PCCs for the Upsets scenario. To compare the algorithms, the percentage-wise differences between the
algorithms are calculated per metric and then averaged. Compared to the CWO, the ORC results in an average increase
in objective motion fidelity of 37.9 %, 181.7 %, 185.6 %, and 147.7 % for, respectively, the Symmetric Stall scenario,
the Large Roll scenario, the Upsets scenario, and all scenarios combined. Separating the ORC’s RMSEs and PCCs,
respectively, an on average 27.7 % and 267.8 % increase in fidelity is found for all scenarios compared to the CWO.

The PFT, compared to the ORC, resulted in 2.5 % on average better values for six metrics: the Symmetric Stall’s
RMSE(𝜔𝑦); the Large Roll’s RMSE( 𝑓𝑦), RMSE( 𝑓𝑧), and PCC( 𝑓𝑦); and the Upsets’ RMSE( 𝑓𝑦) and RMSE( 𝑓𝑧). For
the remaining metrics, the PFT resulted, compared to the ORC, in on average 8.7 % worse values. This suggests, at least
for these scenarios, that increasing the horizon length over 6 s will not lead to a significant increase in motion quality.

The CWO resulted in an Upsets scenario’s PCC( 𝑓𝑥) of 0.98, which is 11.4 % better than the ORC’s value of 0.88
and 12.6 % better than the PFT’s value of 0.87. For the remaining 23 analyzed metrics, the CWO has lower objective
fidelity than the ORC (on average 56.0 %) and PFT (on average 52.2 %). Moreover, the CWO has the lowest fidelity of
all algorithms for the Large Roll (six out of six metrics) and the Upsets scenarios (eleven out of twelve metrics).

The CST performs on average 38.2 % worse than the ORC and on average 34.3 % worse than the PFT, based on
all 24 analyzed metrics. Moreover, the CST has the lowest fidelity of all algorithms for the Symmetric Stall scenario
(four out of six metrics). Hence, the prediction quality has a large influence on the objective fidelity. For the Large
Roll scenario, the lowest fidelity for the CWO is caused by the second-order filter-lead that results in phase shift and,
compared to the REF, opposite-sign 𝜔𝑥 motion.

The only real-time feasible algorithm, the CST, which allows inter-active simulation, will not be desired for the
human-in-the-loop experiment due to the essential buffet motion characteristics that are completely missing in 𝑓𝑧 .
Moreover, the CST, contrary to the ORC and PFT, does not include any pre-positioning motion, which is possibly one of
the key benefits of optimization-based algorithms. Therefore, it is logical to use either the ORC or PFT algorithm in the
experiment. Since these algorithms are both not real-time feasible, this will not allow for inter-active simulation in the
experiment. For controlling the SRS, a sample time of 0.01 s is required. At this sample rate, it is more efficient to use
the ORC instead of the PFT based on computational time. Moreover, due to the high similarities between the ORC and
PFT found during the analysis, the outcome of the experiment can, most likely, be generalized between both algorithms.
In conclusion, the ORC algorithm is preferred for the SRS experiment.
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IV. Experiment

A. Apparatus
The experiment was conducted in the SRS, shown in Figure 14a, at the TU Delft [40]. The participants were not

required to give control inputs during the experiment, meaning that no aircraft model and control instruments were
required. The visual system was used to provide the outside visuals, driven by either flight or simulation data. The
coordinates of the flight data-based visuals were changed to ensure high-intensity visual cues above ground, moreover,
the visibility range was increased. Two displays were included, an engine display that represented the engine status
and a Primary Flight Display (PFD). This PFD, found in Figure 14c, was extended to additionally present the angle of
attack and load factor. Moreover, a flight freeze indicator (bottom left) and a rating bar (top) were added. The purpose
of the flight freeze indicator was to inform the participants whether the experiment run was in progress. This was
necessary because before and after every experiment run, the SRS was positioning itself while the outside visuals and
displays were frozen. The rating bar, positioned on the upper part of the PFD, was controllable by the participants with
a hand-held rotary knob, as shown in Figure 14b, and is further elaborated in Subsection IV.F.

The hydraulic motion system of the SRS was driven by offline generated control input data, linear accelerations in
inertial axes, and angular accelerations in simulator body axes. To prevent simulator drift due to numerical integration
errors, the offline-generated simulator state was used in a control feedback loop. To mask the moving sound of the
motion system, general aircraft noises were played on a headset with passive as well as active noise cancellation.

(a) The SIMONA Research Simulator
(SRS).

(b) Inside view of the SRS during the
experiment.

(c) PFD presented to the participants
during the experiment.

Fig. 14 Main apparatus of the experiment conducted in the SRS.

B. Participants
A total of ten active pilots (all male, mean age 50.4 years) participated. Five pilots had a Cessna Citation II type

rating and seven pilots were commercial airline pilots (either a B737, B777, B787, A320, or A330 type rating), of which
three with technical and/or flight testing experience. Seven pilots had in-aircraft experience with upsets and or stalls
in either a Cessna Citation II or a medium to large passenger aircraft. The mean flight experience in years was 28.1
and the mean flight hours were about 9,000 hours. The last flight was less than two months prior to the experiment
for all participants. For the first two participants, both without in-aircraft UPRT experience, only usable data for the
Symmetric Stall scenario were obtained due to technical difficulties and slight adjustments made to the Large Roll and
Upsets scenarios after the second participant.

C. Scenarios
Four different continuous-flight scenarios were used in the experiment, of which one scenario was used for training

the participants in giving ratings. The remaining three scenarios, the Symmetric Stall, Large Roll, and Upsets, which
were already analyzed in Section III, were used for the experiment measurement runs. The three measurement scenarios
were designed to have distinctive motion cueing challenges. The Large Roll and the Upsets scenario were directly based
on flight data (GPS, AHRS, ADC) obtained with the PH-LAB Cessna Citation II laboratory aircraft. The Symmetric
Stall scenario was obtained by a Cessna Citation II autopilot simulation and was used by earlier studies [35, 36]. For
every scenario, splines similar to a cosine-like windowing function with a duration of 11 s were applied to both the
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beginnings and endings. This ensured smooth transitions between measurement runs and slow pre- and post-scenario
simulator positioning. During these “flight freeze” phases of the scenarios, the visuals and displays were frozen and the
SRS motion system slowly positioned itself, while the flight freeze indicator was visible.

D. Independent variables
In addition to the different motion scenarios used during the experiment, the experiment tested one within-participant

variable, the MCA. Two different MCAs were compared in the experiment: (1) the baseline classical washout algorithm
(CWO) and (2) the model predictive control-based “Oracle” algorithm (ORC), which were, respectively, introduced in
Subsection III.B and Subsection III.C and compared and analyzed in the remainder of Section III.

E. Conditions
In total, six different measurement conditions are used in the experiment based on two MCAs, the CWO and ORC,

and three scenarios. In Figure 15, the used SRS’s actuator space, i.e., the space between the minimum and maximum
actuator length, for the three scenarios and the CWO and ORC algorithms are shown. Note that the CWO algorithm has
a single workspace-limiting motion for all three scenarios, namely, at 𝑡 = 𝑇𝑆 , 𝑡 = 29 s, and 𝑡 = 320 s for, respectively,
the Symmetric Stall, Large Roll, and Upsets scenarios. Contrary to the CWO algorithm, the ORC algorithm uses more
of the available workspace and reaches the actuator limits multiple times for each scenario.

0 2 4 6 8 10 12 14
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3.0

q,
m

CWO ORC limits

(a) The Symmetric Stall scenario.
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(b) The Large Roll scenario.
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(c) The Upsets scenario.

Fig. 15 Used simulator actuator space for the CWO and ORC conditions for all three scenarios. SRS’s actuator
limits as implemented in the software are depicted by the dashed line. The figure’s vertical axis range represents

the SRS’s physical actuator range.
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F. Dependent measures
Two measures were collected during the experiment to compare the perceived motion between the CWO and ORC

algorithms: (1) the continuous subjective motion incongruence rating (MIR) and (2) the motion fidelity rating (MFR).
The MIR was provided in real-time during the experiment runs by the experiment participants to indicate the

difference between the visuals, including PFD, and the perceived motion cues as produced by the motion system. This
rating method was introduced in [41] and later used in the experiments of [16, 19, 42, 43]. The MIR was provided by
the participants using the hand-held rotary rating knob and visually represented with a rating bar on the PFD, as earlier
depicted in Figure 14. The MIR rating ranged from 0 to 10 with 10 discrete integer steps. The color of the rating bar
changed to green-yellow-orange-red, with an increasing MIR.

The MFR was a single rating provided after each experiment run. The single rating was given with the help of the
MFR decision tree [44]. The focus was put on the numbering scale of the MFR, moreover, participants were instructed
to disregard the performance mentions in the decision tree, as they did not actively control the simulated aircraft. To
support and substantiate the MFR, comments from the participants were collected.

G. Hypothesis
Based on the analysis performed in Section III, a single hypothesis was formulated and tested for all three scenarios:

The ORC algorithm compared to the CWO algorithm will lead to higher perceived fidelity and results in a
lower continuous MIR and post hoc MFR.

The rationale behind the hypothesis was that the in Subsection III.E found an increase in objective motion fidelity, i.e.,
RMSE and PCC, for the ORC compared to the CWO, also results in an increase in perceived motion fidelity. The lowest
increase in objective motion fidelity, but still on average 37.9 % increase, was found for the Symmetric stall scenario.
For the Large Roll and Upsets scenarios, an increase was found of on average 181.7 % and 185.6 %, respectively.

H. Experiment procedures
Every participant was first exposed to a training scenario. This flight data-based training scenario was different from

all measurement scenarios and contained two upsets and a coordinated turn. The first upset was a 20 deg nose down
including a 60 deg bank maneuver, ending in a 15 deg nose-up and wings-level flight. Load factors of 0.5 g to 2.2 g
were included in this upset. After this first upset, a 50 s coordinated turn was flown. To conclude the scenario, a 20 deg
nose low including 90 deg roll upset was included with load factors ranging from 0.9 g to 1.5 g. The total scenario
duration was 200 s excluding the flight freeze phases. The idea behind this scenario for the use as a training scenario
was that motion in all six DOF was present, comprehending all motion (except buffet) that would be experienced in the
measurement scenarios.

Three scenario sequences were used and are presented in Table 4. At least two repetitions of the training scenario
were executed, for which both the CWO and ORC algorithms were used. If needed, more training repetitions were
done. A break was included about halfway through the experiment. For the measurement scenarios, three repetitions for
each condition were performed, resulting in six repetitions per scenario. The condition order, seen in Table 5, was
randomized and repeated per two participants and was unknown to the participants.

Table 4 Scenario sequences used in the experiment. Balanced for every three participants.

Sequence 1: Training Symmetric Stall Large Roll Break Upsets
Sequence 2: Training Large Roll Break Upsets Symmetric Stall
Sequence 3: Training Upsets Break Symmetric Stall Large Roll

The well-being of the participants during the experiment was tracked by the Misery Scale (MISC) [45], a well-known
subjective rating scale for motion sickness. Prior to the experiment, it was explained that the experiment was aborted if
a MISC of seven was reported, or two consecutive sixes. In addition, the participants were told that they were able to
abort the experiment anytime by themselves. None of the participants became sick: for all participants, a maximum
MISC of one and a median MISC of zero were reported.

17



Table 5 Motion cueing strategy sequences used in the experiment. Balanced for every two participants.

Sequence 1.1 CWO ORC CWO ORC ORC CWO
Sequence 1.2 ORC CWO ORC ORC CWO CWO
Sequence 1.3 CWO ORC ORC CWO CWO ORC
Sequence 2.1 ORC ORC CWO CWO ORC CWO
Sequence 2.2 ORC CWO CWO ORC CWO ORC
Sequence 2.3 CWO CWO ORC CWO ORC ORC

I. Data analysis
To verify the consistency of the continuous MIR data, the approach from the experiments found in [16, 19, 41–43, 46]

was used. This approach calculates the consistency with Cronbach’s alpha [47] for every participant, across repeated
measurements. If the Cronbach’s alpha was smaller than 0.7 the MIR was considered inconsistent [48]. For that specific
scenario and participant, the MIR data were then excluded from the analysis. In addition, it was checked whether the
participants were actively using the rating knob by visual inspection of the MIR, which was plotted in real-time during
the experiment runs. The continuous MIR was averaged per participant and between participants which resulted in a
mean continuous MIR. This mean continuous MIR was, thereafter, averaged over time resulting in a single mean MIR
for each condition. Paired Wilcoxon signed-rank tests were used to test for significance between conditions. For the
Upsets scenarios, this approach was repeated for subsets of the scenario, i.e., the individual upset maneuvers.

A similar approach was used to analyze the MFR data, starting with a consistency check by calculating Cronbach’s
alpha for each scenario. Due to the MFR being ordinal data, the median MFR of the three repetitions per participant was
used in the paired Wilcoxon signed-rank test. Moreover, this test was applied per repetition separately. The comments
used by the participants to substantiate the MFR were used to indicate preferences. This was done by introducing
keywords that comprised certain characteristics of the scenario. For the Symmetric Stall scenario, these keywords were
“Buffet”, “Pitch/surge”, and “Heave”; for the Large Roll scenario, “Onset roll” and “Sustained roll”; and for the Upsets
scenario, “Pitch”, “Heave”, “Onset roll”, and “Sustained roll”. For each keyword, the comments were used to indicate a
preference for either the CWO or ORC condition or no preference between the conditions.

V. Results

A. Continuous motion incongruence rating
Table 6 shows Cronbach’s alpha, 𝛼𝐶𝑟 , for every participant and all three scenarios, calculated from the three

continuous MIR repetitions of both the CWO and ORC. For the Symmetric Stall scenario, only four participants
reached 𝛼𝐶𝑟 > 0.7. For respectively the Large Roll scenario and the Upsets scenario, six and eight participants scored
𝛼𝐶𝑟 > 0.7. In line with the lowest number of participants with 𝛼𝐶𝑟 > 0.7, the Symmetric Stall scenario had the lowest
mean 𝛼𝐶𝑟 of 0.413, followed by the Large Roll scenario (0.579) and subsequently the Upsets scenario (0.850).

Table 6 Cronbach’s alpha for the MIR.

Cronbach’s alpha (𝛼𝐶𝑟 )

Participant Symmetric Stall Large Roll Upsets

P1 0.839 - -
P2 0.828 - -
P3 -0.472 -0.504 0.910
P4 0.793 0.893 0.934
P5 0.784 0.864 0.884
P6 -0.095 0.186 0.803
P7 -0.025 0.849 0.751
P8 0.351 0.710 0.799
P9 0.537 0.931 0.804
P10 0.592 0.700 0.912
Mean 0.413 0.579 0.850
Standard deviation 0.438 0.466 0.064
No. participants > 0.7 4 6 8
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The average continuous MIR and its standard deviation indicated with the solid lines and the shaded area, and the
overall mean MIR per scenario, represented by the horizontal dotted lines, are depicted in Figure 16 for all three scenarios.
Note that only the MIR results from participants with a 𝛼𝐶𝑟 > 0.7 are used in Figure 16. First, in Figure 16a, the average
continuous MIR and overall mean MIR for the Symmetric Stall scenario are shown. In line with the pre-experiment
analysis presented in Section III that showed better RMSE and PCC results for the ORC compared to the CWO except
for RMSE( 𝑓𝑧), the ORC’s overall mean MIR (𝜇𝑂𝑅𝐶 = 0.465) is 43 % better compared to the mean MIR of the CWO
(𝜇𝐶𝑊𝑂 = 0.812). Moreover, the over-time increasing MIR shows that the stall buffet at 𝑡 ≈ [0 s, 10.5 s] was rated
better than the stall break and recovery at the interval 𝑡 ≈ [10.5 s, 𝑇𝑆]. Next, Figure 16b shows the average continuous
MIR and overall mean MIR for the Large Roll scenario. Again, the MIR results are in line with the pre-experiment
analysis, meaning a 30 % better mean MIR for the ORC (𝜇𝑂𝑅𝐶 = 0.639) compared to the CWO (𝜇𝐶𝑊𝑂 = 0.913).
This difference mainly arises at the interval 𝑡 ≈ [25 s, 35 s], where the aircraft is performing the roll maneuver. The
parts before and after the roll maneuver do not show clear differences between the CWO and ORC. Finally, Figure 16c
shows the average continuous MIR and overall mean MIR for the Upsets scenario. No clear visible differences are seen
between the CWO and ORC, although again, the mean MIR of the ORC is slightly (4 %) better than the CWO’s mean
MIR. Thus, the large increase in objective fidelity found in Subsection III.E is not well reflected in the MIR.
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Fig. 16 Mean continuous MIR for the three scenarios. Shaded areas represent the standard deviation of the
mean continuous MIR.
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The Wilcoxon signed-rank test results for the mean MIRs, i.e., the resulting means of averaging the three repeated
measures per participant and averaging over time, of all three scenarios are summarized in Table 7. Only significant
results are found for the overall mean MIR for the Large Roll scenario (𝑁 = 6, 𝑍 = −1.992, 𝑝 = 0.046). Despite the
43 % better mean MIR of the ORC for the Symmetric Stall scenario, the small sample size (𝑁 = 4) may have led to
insignificant results. For the Upsets scenario (𝑁 = 8), also the individual upset maneuvers (nose-high, nose-low mild,
nose-low extreme), indicated in Figure 16c between the horizontal lines, were tested. However, no significant results
were found for either the full Upsets scenario or the individual upset maneuvers. These MIR results suggest that the
ORC algorithm, compared to the CWO, may lead to at least similar to significantly better-perceived motion quality.

Table 7 Paired Wilcoxon signed-rank test results for the MIR. Significant results indicated in grey.

Scenario Maneuver 𝑁 𝑍 𝑝-value

Symmetric Stall Full scenario 4 -1.826 0.068
Large Roll Full scenario 6 -1.992 0.046
Upsets Full scenario 8 -0.420 0.674
Upsets Nose-high upset 8 -0.980 0.327
Upsets Nose-low upset mild 8 -0.700 0.484
Upsets Nose-low upset extreme 8 -0.840 0.401

B. Motion Fidelity Rating
In Table 8, the 𝛼𝐶𝑟 for all three scenarios separately as well as combined is shown, calculated based on the three

repetitions of the MFR for all participants and both conditions (CWO and ORC). All three scenarios reached an
𝛼𝐶𝑟 > 0.7. The highest 𝛼𝐶𝑟 was obtained for the Large Roll scenario, followed by the Symmetric Stall scenario, and
lastly the Upsets scenario. As a result of this, all MFR data are used in the analysis presented next.

Table 8 Cronbach’s alpha for the MFR.

Scenario Cronbach’s alpha (𝛼𝐶𝑟 ) Lower 95 % confidence Upper 95 % confidence

Symmetric Stall 0.882 0.751 0.950
Large Roll 0.933 0.844 0.974
Upsets 0.816 0.574 0.930
All 0.892 0.829 0.935

Figure 17 shows the MFR distribution, i.e., three MFRs per condition per participant, for all three scenarios. In
Figure 17a, the MFR distribution for a total number of ten participants (𝑁 = 10) for the Symmetric Stall scenario
is shown, yielding a total of 30 MFRs. For both conditions, the distribution is spread around an MFR of three and
four with a minimum MFR of one (best rating) and a maximum rating of six. The ORC condition shows a clear peak
at an MFR of three with a median value of three while the CWO shows an equal peak at an MFR of three and four
with a median value of three and a half. Hence, little difference between the two conditions is present, with a slightly
better rating for ORC. In Figure 17b, the MFR distribution (𝑁 = 8, 24 MFRs) for the Large Roll scenario is presented.
The CWO’s MFR distribution ranges from three to eight with a median value of five. The ORC condition shows a
distribution between an MFR of one and six and a median of three and a half. Thus, a clear difference is seen between
the CWO and ORC conditions, where the ORC is rated better. The MFR distribution (𝑁 = 24, 24 MFRs) for the Upsets
scenario is shown in Figure 17c. The CWO distribution ranges between an MFR of three and seven with a median value
of five, where also a peak in the distribution is seen. The ORC has a median MFR of four, while the distribution ranges
from two to seven. No clear peak is seen for the ORC condition. Similar to the Symmetric Stall scenario, no clear
difference in rating is seen between the CWO and ORC, although, the ORC is rated slightly better.

The Wilcoxon signed-rank test results for the median MFR and the three repetitions separately of all three scenarios
are presented in Table 9. Only significant results are found for the Large Roll scenario’s median MFR (𝑁 = 8, 𝑍 =

−2.565, 𝑝 = 0.010), meaning the median of the three repeated measurements, the Large Roll scenario’s repetition one
MFR (𝑁 = 8, 𝑍 = −2.588, 𝑝 = 0.010), the Large Roll scenario’s repetition two MFR (𝑁 = 8, 𝑍 = −2.401, 𝑝 = 0.016),
and the Large Roll scenario’s repetition three MFR (𝑁 = 8, 𝑍 = −2.136, 𝑝 = 0.033). These results show, similar to the
MIR results, that the ORC algorithm leads to increased perceived motion quality, which is especially the case for the
Large Roll scenario.
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Fig. 17 MFR count for all three scenarios. Note that three MFR values are included per participant, due to the
three repeated measurements per condition.

Table 9 Paired Wilcoxon signed-rank test results for the MFR. Significant results indicated in grey.

Median Repetition 1 Repetition 2 Repetition 3

Scenario 𝑁 𝑍 𝑝-value 𝑍 𝑝-value 𝑍 𝑝-value 𝑍 𝑝-value

Symmetric Stall 10 -1.134 0.257 -0.749 0.454 -0.378 0.705 0.000 1.000
Large Roll 8 -2.565 0.010 -2.588 0.010 -2.401 0.016 -2.136 0.033
Upsets 8 -1.414 0.157 -0.378 0.705 -1.155 0.248 -0.707 0.480

C. Participant preferences from comments
Participants’ preferences were identified by analyzing the comments provided next to the MFR. As explained in

Subsection IV.I, per scenario, keywords were chosen that covered certain characteristics of the respective scenario.
Then, per participant and scenario, the comments were analyzed and checked whether the comment was applicable to
one of the chosen keywords and whether a preference for one of the conditions was clear, or not. If no clear, or doubtful,
preference was found, a reserved choice of no preference between conditions was noted. The results of this analysis are
shown in Figure 18.

The results for the Symmetric Stall scenario are depicted in Figure 18a. Half of the participants, i.e., five participants,
indicated a preference for the stall buffet of the ORC condition, for the other five participants, no preference was found.
The participants that indicated a preference for the ORC condition mainly praised the “higher intensity” and “heavier”
buffet compared to the CWO. The pitch and surge motion preferences were more divided, four participants indicated
no preference between conditions. Two participants preferred the CWO over the ORC, mainly because of the “more
accentuated push in the back” during the stall break. Four participants indicated that they disliked the “artificial”
and “excessive push in the back” of the CWO, and preferred the “more natural” motion of the ORC. The majority of
the participants, i.e., seven participants, indicated that they felt “no difference in heave” between conditions or “no
variation in g-loading at all”. Only three participants indicated feeling “more difference in g” or “more difference in
feeling heavier and lighter” during the stall break and recovery for the ORC condition. These results indicate that the
majority of participants had no preference between conditions. However, the ORC condition was still preferred over
the CWO condition for all scenario characteristics. This suggests that the ORC algorithm, in line with the findings of
Subsection V.A and V.B, results in at least similar to more-preferred motion.

The preferences for the Large Roll scenario are shown in Figure 18b. The initial rolling motion, i.e., the onset roll,
of the CWO condition was preferred over the ORC by two participants. They indicated that they felt the ORC “initially
and subtly rolling in the opposite direction” and indicated that this “revealed that the maneuver was coming”. Note
that this is due to pre-positioning, which was already identified in Subsection III.D. The other six participants did not
indicate a preference between conditions and also did not indicate that they felt this pre-positioning motion of the ORC
condition. For the sustained roll, all participants, except one that did not indicate any preference, indicated that they
preferred the ORC conditions over the CWO. They commented that they felt “less side force” for the ORC condition and
“too much side force” for the CWO condition. Moreover, comments were given that the side force of the CWO was “out
of sync” or “did not line up” with the attitude and rolling motion of the aircraft visible on the instruments and outside
visuals. Although two participants preferred the CWO’s onset motion, the ORC algorithm is preferred over the CWO
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for the sustained motion by seven participants. This suggests that in total the ORC was still preferred over the CWO,
indicating, similar to the Symmetric Stall scenario, better motion quality.

In Figure 18c, the results for the Upsets scenario are presented. Two participants indicated a preference in pitch for
the ORC condition, mainly because of “more definition and variation” in pitch. None of the participants had a pitch
preference for the CWO condition. Six participants had neither a pitch preference for the CWO nor ORC condition.
None of the participants indicated a preference between conditions for heave motion. Almost all participants commented
that they felt “little to no motion in heave” or “negligible differences in g-loading”. The onset roll motion of the CWO
was preferred over the ORC by six participants. All six indicated that they felt the ORC condition “initially rolling in
the wrong direction”, hence, similar to the Large Roll scenario, this is due to the pre-positioning discussed earlier in
Subsection III.D. Only two participants did not notice or comment on this pre-positioning of the ORC condition and
did not indicate a preference. None of the participants preferred the initial rolling motion of the ORC over the CWO.
The sustained roll of the ORC was preferred by four participants, they mostly indicated that they felt “less and more
realistic side force”. The remaining four participants did not indicate a sustained roll preference between conditions. In
total, the CWO and ORC algorithms were both preferred six times, however, it can be concluded that the participants
unambiguously preferred either the CWO or ORC for certain characteristics of the scenario. This suggests that both the
CWO and ORC algorithms have their own distinct features that contribute to their perceived motion quality.
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Fig. 18 Participants’ preferences for all three scenarios derived from commentary. The participants that had
no preference between conditions are represented by the grey bars.

VI. Discussion
The hypothesis presented in Section IV was that due to the on average 147.7 % higher objective motion fidelity of

the ORC compared to the CWO found in Section III, the perceived motion fidelity would increase, leading to lower,
thus better, MIR and MFR ratings. The results presented in Section V show indeed better ratings for the ORC: for the
Symmetric Stall scenario a 43 % better overall mean MIR and a median MFR of three versus a three and a half for the
CWO, for the Large Roll a 30 % better overall mean MIR and a median MFR of three and a half versus a five for the
CWO, and for the Upsets scenario a 4 % better overall mean MIR and a median MFR of four versus a five for the CWO.
However, the statistical analysis only confirmed a significant difference between the CWO and ORC for the mean overall
MIR and the MFR ratings of the Large Roll scenario. Hence, only a significant increase in the perceived fidelity of the
ORC with respect to the CWO was found for the Large Roll scenario, implying that the hypothesis can only be accepted
for this scenario.

As stated in Section I, the minimization of false specific force cues when large-amplitude angular motion is cued
and the minimization of high-frequency washout of a CW MCA were key challenges of upset and stall simulation [8, 9].
Moreover, these factors contribute to the perceived motion cueing fidelity [49]. Note that, compared to the CWO, the
ORC indeed decreases the maximum amplitude of the false lateral specific forces due to rolling motion for the Large
Roll scenario. However, the ORC also leads to new, but smaller, false cues due to pre-positioning. In total, the false
cues are less present for the ORC, which is reflected by the lower RMSE( 𝑓𝑦) of 1.20 m/s2 compared to the RMSE( 𝑓𝑦)
of 1.33 m/s2 of the CWO. However, a more significant improvement is seen in shape coherence: a PCC( 𝑓𝑦) of 0.46
compared to -0.32 of the CWO and a PCC(𝜔𝑥) of 0.95 versus 0.19 of the CWO. Moreover, only two participants noticed
the pre-positioning false cues of the ORC and, therefore, preferred the CWO for onset motion. Additionally, the ORC’s
sustained rolling motion was preferred over the CWO by seven participants. Summarizing, it seems evident that the
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phase distortion induced by the second-order filter of the CWO, which was not present for the ORC, contributed to the
significant differences in perceived motion fidelity for the Large Roll scenario.

A possible explanation for why no significant results were found for the Symmetric Stall scenario, although the ORC
received a 43 % better overall mean MIR, is the small sample size of 𝑁 = 4 that passed Cronbach’s alpha consistency
test. Contrary to the MIR, the MFR was consistent for this scenario and all ten participants were used in the paired
test. However, no significant results were found. This might be explained by the fact that both conditions were rated
relatively good, which is reflected by the median MFR of three and three and a half for, respectively, the ORC and CWO.
Secondly, another explanation is the fact that the lowest on average increase in objective motion fidelity of 37.9 % was
found for this scenario.

Compared to the Large Roll scenario, a larger sample size of 𝑁 = 8 was used for the overall mean MIR paired
comparison of the Upsets scenario. In this case, the only 4 % better overall mean MIR of the ORC compared to the
CWO must have led to insignificant results. The reason why the ORC resulted in only a 4 % better overall mean MIR
can be found in the participants’ preferences. Although, four participants indicated to prefer the sustained rolling motion
of the ORC, the onset rolling motion of the CWO was preferred by six participants. Hence, the pre-positioning of the
ORC was clearly noticeable and disliked by six out of eight participants.

The approach used to verify the MIR consistency with Cronbach’s alpha resulted in the best consistency found for
the Upsets scenario: all eight participants reached an 𝛼𝐶𝑟 > 0.7. For the Large Roll and Symmetric Stall scenarios,
respectively, six out of eight and four out of ten participants reached an 𝛼𝐶𝑟 > 0.7. This suggests that it is easier to
continuously rate a longer scenario consistently, compared to a short scenario. However, another factor that contributed
largely to the consistent MIR of the Upsets scenario is the type of motion included in the scenario. The Upsets scenario
contains long cruise flight sections, which ensured that the participants were rating these parts of the scenario very
consistently. Hence, for the Upsets scenario, the calculated Cronbach’s alpha values do not say a lot about the consistency
of the rating during the upset maneuvers since these have less duration compared to the cruise flight sections. In
conclusion, the Symmetric Stall scenario is too short to obtain a sufficient MIR. Moreover, Cronbach’s alpha is not
suitable for MIR consistency analysis if a scenario mostly consists of sections that contain motion that is not of interest
to the study, which in this case was cruise flight. Developing another way to verify the consistency of the MIR is,
therefore, desired.

Contrary to the MIR, Cronbach’s alpha for the MFR of the Upsets scenario was the lowest (𝛼𝐶𝑟 = 0.816) of all
scenarios. Since the MFR was provided after each run, the long duration of almost six minutes could be the reason for
this, as it is difficult, if not impossible, to remember the perceived motion quality for this period of time. The MFR
was most consistent for the Large Roll scenario (𝛼𝐶𝑟 = 0.933), most likely due to the relatively short duration and
clear differences between both algorithms. For the Symmetric Stall scenario, the MFRs were slightly less consistent
(𝛼𝐶𝑟 = 0.882), although the scenario duration was even shorter. This might be due to the more similar CWO and ORC
conditions. This suggests that an MFR is more suitable for scenarios with a limited duration in time, and thus not for the
Upsets scenario.

Reflecting back on the scenarios, it can be concluded that all three scenarios contributed to the findings of this paper.
The Symmetric Stall scenario was used for identifying possible improvement in heave, and although, three participants
indicated a (subtle) preference for the (sustained) heave motion of the ORC, no significant differences were found. This
suggests that optimization-based MCAs, when deployed on a motion system similar to the SRS’s system, will not
likely lead to improvements in (sustained) heave cues. Furthermore, this indicates that, in a future study, scenarios
similar to the Symmetric Stall could be excluded. The Large Roll scenario, where the ORC was compared to the CWO
with a second-order filter for roll, led to significant improvements. This indicates that the scenario was suitable for
identifying differences between MCAs. In a future study, it would be interesting to compare the ORC to a CWO with
a first-order filter for roll during a scenario similar to the Large Roll scenario. Contrary to the Large Roll scenario,
the Upsets scenario revealed that the (roll) pre-positioning of the ORC was noticeable, the fact that three upsets were
included in this scenario, hence, multiple pre-positioning in a short period of time, might have contributed to this. This
might suggest that it can be useful to include multiple maneuvers in a scenario. To conclude, the Upsets scenario can
be considered too difficult to cue, as it contained very extreme six-DOF motion. This makes it very hard to pinpoint
(subtle) differences between MCAs.

Coming back to the MCAs used in the experiment and the analysis prior to the experiment presented in Section III, it
seems right that the ORC was used in the experiment. Moreover, the outcome of the experiment can with great certainty
be generalized for the PFT algorithm, since the PFT only has an on average 5.9 % decrease in objective motion fidelity
compared to the ORC. The CST, with an on average 38.2 % worse objective motion fidelity than the ORC, would most
likely not result in any significant results. Therefore, it can be concluded that prediction correctness is a very important
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part of an MPC-based MCA. This suggests an important and interesting field of research into the short-term prediction
of future aircraft motion or pilot control behavior.

The need for sufficient prediction correctness also substantiates the choice of using an offline MPC-based MCA
for this study. Meeting the challenges of implementing such an algorithm in real-time, which allows for interactive
simulation, seems, for the motion scenarios used in this paper, only useful when the reference motion can be predicted
at a sufficient level. This suggests the usefulness of studies in which the required level of prediction correctness can be
identified and studies into how this motion can be predicted.

The choice of not using extensive optimized inertial signal weights in the MPC formulation, but instead “baseline”
weights from other literature seems to not have contributed to any complications during the experiment. Optimizing
these weights might be more interesting when no perfect prediction correctness is available. The control input derivative
weight, w ¤𝑢, was introduced for and effective for reducing the SRS’s actuator velocities. The reason for this was
that during the playback of the ORC condition, it was discovered that the SRS’s motion system’s set-point tracking
performance decreases with an increasing actuator velocity and becomes substantial when the actuator’s velocity limits
are reached. Moreover, due to the higher actuator velocities and the increased intensity of the actuator motion during the
ORC condition, a hydraulic oil flow too high for the SRS’s motion system was discovered for the first time since the
SRS went into operation. A drawback of increasing the w ¤𝑢 is, that it is at the expense of high-frequency motion that is
replicated by the simulator. Thus, other weights, or another way, to reduce the motion intensity and actuator velocity,
without compromising motion quality, should be investigated.

As mentioned in Section II, no sensory models were used in this study. However, a possible solution to reduce the
motion intensity, i.e., decreasing the amount of motion produced by the simulator, is to implement sensory models
that, e.g., filter out sub-threshold motion. The ORC, namely, produced a lot of motion that was not noticeable to the
participants, i.e., sub-threshold motion. An example of this is the low yaw rate motion during the coordinated turn of
the Upsets scenario. Sensory models might also be used for penalizing, or limiting, above-threshold pre-positioning
motion. As the participants indicated that the pre-positioning was noticeable, this is worth investigating.

VII. Conclusion
This paper investigated the potential of optimization-based motion cueing algorithms for simulating upset and

stall maneuvers. Three flight scenarios flown with TU Delft’s laboratory aircraft were analyzed: a stall, a large roll
maneuver, and a scenario with both nose-low and nose-high upsets. The pre-experiment analysis showed an up to
147.7 % average increase in objective motion fidelity for the optimization-based algorithms compared to the baseline
classical washout algorithm. The experiment with ten pilots performed in TU Delft’s SIMONA Research Simulator
yielded higher perceived motion fidelity for the optimization-based algorithm compared to the baseline classical washout
for all scenarios. However, only a significant increase in perceived motion fidelity was found for the Large Roll scenario.
The pilots mainly praised the decreased lateral false cues and phase shift. Moreover, the pilots did not notice significant
differences in (sustained) g-loading between the algorithms. These results indicate that optimization-based algorithms
have the potential to achieve significantly better motion quality compared to filter-based algorithms if reference motion
is predicted at a sufficient level.
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Appendix A

Python framework code

In this appendix, the configuration file, config.py, and an example main run file, mpcmsf_run.ipynb,
of the Model Predictive Control Motion Simulation Framework (MPCMSF), a self developed variant of
the Offline Motion Simulation Framework (OMSF) [12], are included. The MPCMSF was used in this
study to calculate all the simulator trajectories used in the analyses, as well as the trajectories used in
the SRS experiment.

A.1. config.py

'''
Created on September 14, 2022

@author: RoemerBakker
'''
import numpy as np
import mpcmsf.simulator

### MPCMSF DIRECTORY FROM RUN DIRECTORY ###
RUN_PATH = ''

### SAVE DIRECTORY ###
SAVE_PATH = '/Users/Roemer/'

### SAVE FOLDER NAME ###
save_name = "Symmetric_Stall_ORACLE"

### DATA DIRECTORY ###
DATA_DIR = '/Users/Roemer/Documents/GitHub/thesis/thesis_data/Exp_scenarios/

,!mpcmsf_input'

### FILE NAME ###
FILE_NAME = '/Symmetric_Stall_mpcmsf_input.npy'

### DATA PATH ###
DATA_PATH = DATA_DIR + FILE_NAME

### PLOTTING ###
USE_TEX = False

29
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### SIMULATOR ###
simulator = mpcmsf.simulator.SIMONA()

### WEIGHTS ###
INPUT_WEIGHT = 0.01
STATE_WEIGHT = 0.01
OUTPUT_WEIGHT = [1, 1, 1, 10, 10, 10, 1, 1, 1]
INPUT_DERIVATIVE_WEIGHT = [0.25,0.25,0.25,0.25,0.25,0.25]
TERMINAL_WEIGHT = [0,0,0,0,0,0,1,1,1,1,1,1]
weights: dict = {

"input" : INPUT_WEIGHT,
"input derivative" : INPUT_DERIVATIVE_WEIGHT,
"state" : STATE_WEIGHT,
"terminal state" : TERMINAL_WEIGHT,
"signal" : OUTPUT_WEIGHT

}

### TRANSFORMATION UGP TO DESIRED REFERENCE POINT ###
T_DERP = np.array(

[[1,0,0,0],
[0,1,0,0],
[0,0,1,-1.2075],
[0,0,0,1]]

)
T_HP = T_DERP

### OPTIMISER SETTINGS ###
jit = False
parallelization = 'serial'
solver = {'linear_solver' : 'ma57'} # better for small problems: MPC
# solver = {'linear_solver' : 'ma97'} # better for large problems: ORACLE
order_collocation = 1

### SCENARIO SETTINGS ###
SAMPLE_TIME = 0.1
initial_prepositioning = False
T_FADE_IN = 11
T_FADE_OUT = 11

### MPC SETTINGS ###
constant_horizon = False
MPC_SAMPLE_TIME = SAMPLE_TIME # these should be equal, only this works�

,!correctly!
MPC_HORIZON_LENGTH = 6
MAKE_SOLVER_SILENT = True

### CW SETTINGS ###
cw16_set = "cw16_set_Symmetric_Stall"
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A.2. mpcmsf_run.ipynb
1 Introduction

This is an example main run file to demonstrate the functionalities of the Model Predic-
tive Control Motion Simulation Framework (MPCMSF) and explain some of the working
principles. The MPCMSF builds upon the Offline Motion Simulation Framework (OMSF),
an optimal control framework for motion simulators (https://github.com/mkatliar/omsf),
with two main additional functions. The first one is the ability to run MAT-
LAB (or Simulink) models within this Python framework, for example, a Classi-
cal Washout algorithm. Secondly, the ability to use the optimal control frame-
work as an offline Model Predictive Control (MPC) algorithm. Note that the OMSF,
and thus the MPCMSF, is dependent on CasADi (https://web.casadi.org), casadi_extras
(https://github.com/mkatliar/casadi_extras), Ipopt (https://coin-or.github.io/Ipopt/), and
optionally the HSL solvers (https://www.hsl.rl.ac.uk/ipopt/).

1.1 Imports

First, we import some basic libraries as well as CasADi and casadi_extras. Then, we import the
required stuff from the MPCMSF and, finally, the configuration file.

[1]: import time
import numpy as np
import matplotlib.pyplot as plt
import casadi as cs
import casadi_extras as ct

from mpcmsf import input, output, plotting, transform, optimizer, scenario,�
,!cost_analysis, mpc, util

from mpcmsf.hexapod_motion_platform import HexapodPlatform
from mpcmsf.signals import INERTIAL_SIGNAL, REFERENCE_INERTIAL_SIGNAL
import config as cfg

1.2 Initialization

If a LATEX installation is present on you machine, you can set

USE_TEX = True

in config.py.

[2]: if cfg.USE_TEX == True:
plt.rcParams.update({"text.usetex": True})

1.2.1 Init simulator motion platform

[3]: simulator = cfg.simulator
platform = HexapodPlatform(simulator=simulator)

Hexapod motion platform is initialised for SIMONA.

1.2.2 Init cost function

Here we initialize the cost function. The running cost (Langrangian L) will be passed on to the
scenario. The terminal state weight matrix (W_N) and the control input derivative weight matrix
(W_udot) will be passed on to the optimize() method later on.
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[4]: delta_y = INERTIAL_SIGNAL.cat - REFERENCE_INERTIAL_SIGNAL.cat
W = cs.diag(cfg.weights["signal"])
L = cfg.weights["input"] * cs.sumsqr(platform.input.expr) \

+ cfg.weights["state"] * cs.sumsqr(platform.state.expr) \
+ cs.mtimes([cs.transpose(delta_y), cs.mtimes(W.T, W), delta_y])

W_N = cs.diag(cfg.weights["terminal state"])
W_udot = cs.diag(cfg.weights["input derivative"])

1.2.3 Init scenario

[5]: scenario = scenario.Scenario(platform=platform, lagrange_term=L)
scenario.headToPlatform = cfg.T_HP

1.2.4 Constraint initialization

Here we set the initial condition constraints, which can be either the neutral position, or an
arbitrary position. Moreover, the final condition constraints, which ensure that the simulator
has an arbitrary position with zero velocities at the end of the scenario.

[6]: terminal_constraints = ct.struct_MX([
ct.entry("initial", expr = scenario.initialState),
ct.entry("final", expr = scenario.finalState)
])

lb_terminal = terminal_constraints()
ub_terminal = terminal_constraints()

if cfg.initial_prepositioning == True:
lb_terminal["initial"] = simulator.initialPPStateMin
ub_terminal["initial"] = simulator.initialPPStateMax

else:
lb_terminal["initial"] = simulator.initialStateMin
ub_terminal["initial"] = simulator.initialStateMax

lb_terminal["final"] = simulator.finalStateMin
ub_terminal["final"] = simulator.finalStateMax

scenario.terminalConstraint = ct.Inequality(expr=terminal_constraints,�
,!lb=lb_terminal, ub=ub_terminal,�
,!nominal=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])

1.2.5 Init optimizer

[7]: optimizer = optimizer.Optimizer()
optimizer.optimizationOptions['ipopt'] = cfg.solver
optimizer.samplingTime = cfg.SAMPLE_TIME
optimizer.jit = cfg.jit
optimizer.parallelization = cfg.parallelization
optimizer.numCollocationPoints = cfg.order_collocation
optimizer.optimizationOptions['ipopt.print_level'] = 5

2
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1.2.6 Load data

[8]: data = input.load_npy_motion(cfg.DATA_PATH)
ref_sensory_signal = transform.recordedMotionToSensorySignal(data)

t_ref = ref_sensory_signal.time
y_ref = np.array(ref_sensory_signal.inertialSignal(t_ref))
dt_ref = t_ref[1] - t_ref[0]

result_ref = {'t': t_ref,
'y': y_ref
}

2 Classical Washout

This is the Classical Washout algorithm that is similar to the algorithm used in SRS. First, we
import the run_cw16 function, that automatically imports the matlab engine and all the required
Classical Washout parameters.

[9]: from mpcmsf.cw16_run import run_cw16

Starting matlab.engine and initialising matlab workspace...

2.1 Run Classical Washout Simulink model

[10]: cw_start_time = time.time()
cw_input_vector, cw_state_vector, cw_motion = run_cw16(cfg.DATA_PATH)
cw_sensory_signal = transform.recordedMotionToSensorySignal(cw_motion)
opt_time_cw = time.time() - cw_start_time
print("total cw run time: ", opt_time_cw)

Running CW16 simulink model...
total cw run time: 35.47042393684387

2.2 Gather results

We also need to interpolate the result to the reference motion sampling time to calculate the
RMSE and PCC values and to easily plot all the results in one figure.

[11]: t_cw = cw_sensory_signal.time
y_cw = np.array(cw_sensory_signal.inertialSignal(cw_sensory_signal.time))
y_cw_ref_dt = np.array(cw_sensory_signal.inertialSignal(ref_sensory_signal.

,!time))
cw_input_traj = cw_input_vector.T
cw_state_traj = cw_state_vector.T
cw_q_traj = transform.state_to_actuator_trajectory(simulator, cw_state_traj)
rmse_cw = cost_analysis.calculate_rmse(y_ref[:,int(cfg.T_FADE_IN/dt_ref):

,!-int(cfg.T_FADE_OUT/dt_ref)], y_cw_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):
,!-int(cfg.T_FADE_OUT/dt_ref)])

pcc_cw = cost_analysis.calculate_pcc(y_ref[:,int(cfg.T_FADE_IN/dt_ref):
,!-int(cfg.T_FADE_OUT/dt_ref)], y_cw_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):
,!-int(cfg.T_FADE_OUT/dt_ref)])

result_cw = {'t' : t_cw,

3
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'y' : y_cw,
'u' : cw_input_traj,
'x' : cw_state_traj,
'q' : cw_q_traj,
'rmse': rmse_cw,
'pcc': pcc_cw,
'opt_time': opt_time_cw}

3 Oracle

The Oracle is the single optimal control problem that optimizes the entire scenario in once.

3.1 Run optimizer

[12]: oracle_start_time = time.time()
result_oracle = optimizer.optimize(scenario, [ref_sensory_signal], W_N,�

,!W_udot)
opt_time_oracle = time.time() - oracle_start_time
print("total optimising time: ", opt_time_oracle)

This is OMSF trajectory optimizer. jit is OFF, parallelization is set to serial
Initializing NLP...
Initializing NLP solver. Please be patient, this may take several minutes...
Starting optimization.

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).

For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.12.3, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...: 130434
Number of nonzeros in inequality constraint Jacobian.: 160062
Number of nonzeros in Lagrangian Hessian...: 215631

Total number of variables...: 28911
variables with only lower bounds: 0

variables with lower and upper bounds: 13350
variables with only upper bounds: 0

Total number of equality constraints...: 24471
Total number of inequality constraints...: 8898

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 8898

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 3.6594059e+02 1.96e+01 5.65e-03 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

...
30 7.2770899e-01 3.61e-10 2.91e-10 -8.6 1.31e-04 - 1.00e+00 1.00e+00h 1

Number of Iterations...: 30

4
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(scaled) (unscaled)
Objective...: 7.2770898525444705e-01 7.2770898525444705e-01
Dual infeasibility...: 2.9099464958916325e-10 2.9099464958916325e-10
Constraint violation...: 3.6136152847565965e-10 3.6136152847565965e-10
Complementarity...: 3.7000137744367503e-09 3.7000137744367503e-09
Overall NLP error...: 3.7000137744367503e-09 3.7000137744367503e-09

Number of objective function evaluations = 31
Number of objective gradient evaluations = 31
Number of equality constraint evaluations = 31
Number of inequality constraint evaluations = 31
Number of equality constraint Jacobian evaluations = 31
Number of inequality constraint Jacobian evaluations = 31
Number of Lagrangian Hessian evaluations = 30
Total CPU secs in IPOPT (w/o function evaluations) = 5.479
Total CPU secs in NLP function evaluations = 8.597

EXIT: Optimal Solution Found.
OmsfNlpSolver : t_proc (avg) t_wall (avg) n_eval

nlp_f | 30.05ms (969.32us) 33.91ms ( 1.09ms) 31
nlp_g | 71.16ms ( 2.30ms) 76.06ms ( 2.45ms) 31

nlp_grad_f | 102.94ms ( 3.22ms) 123.94ms ( 3.87ms) 32
nlp_hess_l | 5.94 s (197.93ms) 6.22 s (207.20ms) 30
nlp_jac_g | 2.62 s ( 81.73ms) 2.81 s ( 87.86ms) 32

total | 14.73 s ( 14.73 s) 15.97 s ( 15.97 s) 1
total optimising time: 20.124104976654053

3.2 Gather results

We also need to interpolate the result to the reference motion sampling time to calculate the
RMSE and PCC values and to easily plot all the results in one figure.

[13]: [sim_trajectory] = result_oracle['trajectory']
t_sim = sim_trajectory.time
y_sim = np.array(sim_trajectory.inertialSignal(sim_trajectory.time))
y_orc_ref_dt = np.array(sim_trajectory.inertialSignal(ref_sensory_signal.

,!time)) # needed for calculating rmse and pcc
sim_input_traj = sim_trajectory.input(sim_trajectory.time)
sim_state_traj = sim_trajectory.platformState(sim_trajectory.time)
sim_q_traj = transform.state_to_actuator_trajectory(simulator, sim_trajectory.

,!platformState(sim_trajectory.time))
sim_total_cost = sim_trajectory.cost(sim_trajectory.time)
sim_input_cost, sim_state_cost, sim_inertial_signal_cost = cost_analysis.

,!recalculate_cost_function(ref_sensory_signal, sim_trajectory, cfg.weights)
rmse = cost_analysis.calculate_rmse(y_ref[:,int(cfg.T_FADE_IN/dt_ref):

,!-int(cfg.T_FADE_OUT/dt_ref)], y_orc_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):
,!-int(cfg.T_FADE_OUT/dt_ref)])

pcc = cost_analysis.calculate_pcc(y_ref[:,int(cfg.T_FADE_IN/dt_ref):-int(cfg.
,!T_FADE_OUT/dt_ref)], y_orc_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):-int(cfg.
,!T_FADE_OUT/dt_ref)])

result_oracle = {'t' : t_sim,
'y' : y_sim,

5
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'u' : sim_input_traj,
'x' : sim_state_traj,
'q' : sim_q_traj,
'c' : sim_total_cost,
'c_y': sim_inertial_signal_cost,
'c_u': sim_input_cost,
'c_x': sim_state_cost,
'rmse': rmse,
'pcc': pcc,
'opt_time': opt_time_oracle}

4 MPC

The MPC is the offline MPC algorithm. We change some of the optimizer settings, so that less
output is printed to the console.

[14]: optimizer.optimizationOptions['ipopt.print_level'] = 0
optimizer.optimizationOptions['print_time'] = 0

4.1 Run optimizer

[15]: mpc_start_time = time.time()
t_sim_mpc, y_sim_mpc, sim_input_traj_mpc, sim_state_traj_mpc, sim_q_traj_mpc,�

,!sim_total_cost_mpc = mpc.run_scenario_with_mpc(simulator, scenario,�
,!optimizer, data, W_N, W_udot)

opt_time_mpc = time.time() - mpc_start_time
print("total mpc optimising time: ", opt_time_mpc)

Starting MPC optimisation...
Input data sample time: 0.01 seconds
MPC sample time: 0.05 seconds
Total number MPC iterations: 740
Horizon lenght in seconds: 6
Horizon prediction strategy: PERFECT
MPC ITERATION: 1 / 740 HORIZON LENGTH: 6.0 s DURATION:
1.697 s
...
MPC ITERATION: 740 / 740 HORIZON LENGTH: 0.12 s DURATION:
0.119 s
total mpc optimising time: 1445.113517999649

4.2 Gather results

We also need to interpolate the result to the reference motion sampling time to calculate the
RMSE and PCC values and to easily plot all the results in one figure.

[16]: y_mpc_ref_dt = util.interpolate(t_ref, t_sim_mpc, y_sim_mpc)
rmse = cost_analysis.calculate_rmse(y_ref[:,int(cfg.T_FADE_IN/dt_ref):

,!-int(cfg.T_FADE_OUT/dt_ref)], y_mpc_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):
,!-int(cfg.T_FADE_OUT/dt_ref)])

pcc = cost_analysis.calculate_pcc(y_ref[:,int(cfg.T_FADE_IN/dt_ref):-int(cfg.
,!T_FADE_OUT/dt_ref)], y_mpc_ref_dt[:,int(cfg.T_FADE_IN/dt_ref):-int(cfg.
,!T_FADE_OUT/dt_ref)])

6
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result_mpc = {'t' : t_sim_mpc,
'y' : y_sim_mpc,
'u' : sim_input_traj_mpc,
'x' : sim_state_traj_mpc,
'q' : sim_q_traj_mpc,
'c' : sim_total_cost_mpc,
'rmse': rmse,
'pcc': pcc,
'opt_time': opt_time_mpc}

5 Plot and save

Next, the figures are created. Here we only plot a single figure which includes the inertial sig-
nal of the reference motion and the inertial signal produced by the three different algorithms.
However, there are also options to plot actuator length, actuator velocity, actuator acceleration,
simulator state, and simulator control input.

[17]: figure_names = []
figure_names.append(plotting.

,!plot_inertial_signal("ref_sim_cw_inertial_signal_mpc.pdf", ["Reference",�
,!"Classical Washout", "Oracle", "MPC"], t_ref, y_ref[:6,:], np.
,!stack((y_cw_ref_dt[:6,:], y_orc_ref_dt[:6,:], y_mpc_ref_dt[:6,:]), axis=2)))

5.1 Save all the results and plots

[18]: output.save_optimization_result(figure_names, ref_result=result_ref,�
,!oracle_result=result_oracle, mpc_result=result_mpc, cw_result=result_cw,�
,!extra_name_str=cfg.save_name)
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Appendix B

Experiment instructions

In this appendix, the experiment briefing and information sheet are presented that were used during
the experiment in the SRS for informing the participants. In Figure B.1, the sheet used to inform the
participants about the scenarios is shown. From the next page, the experiment briefing is presented.
Note that the briefing is in Dutch.

 

Figure B.1: Scenario definition sheet used during the experiment in the SIMONA Research Simulator (SRS).

38
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Experiment Omschrijving
Tijdens dit experiment zijn we geïnteresseerd in hoe jij de kwaliteit van de bewegingen van de simulator
ervaart.
Het experiment zal bestaan uit verschillende runs waarin elke keer een andere motion cueing strategie
wordt gebruikt. De runs zullen bestaan uit vooraf gesimuleerde upset en/of stall scenario’s. Welk
scenario de desbetreffende run bevat zal voor de run duidelijk gemaakt worden. Tijdens de runs is
het niet nodig om de simulator te besturen. Probeer je voor te stellen dat je met een collega piloot
meevliegt.
Tijdens het experiment zullen er visuals die normaal gesproken vanuit de cockpit te zien zijn afgespeeld
worden. Daarnaast zijn er een primary flight display (PFD) en een engine display zichtbaar. De
visuals en de PFD zullen de waarheidsgetrouwe vliegtuigbewegingen en status aangeven. Daarentegen
zal de motion die je voelt nooit helemaal overeenkomen met de werkelijkheid door de gelimiteerde
mogelijkheden van een hexapod simulator.
Hieronder is het beeld weergegeven wat jij zult zien tijdens het experiment vanuit de rechter stoel van
de simulator. Op de PFD zijn twee extra indicatoren te zien. De eerste indicator is de flight freeze
indicator, deze indicator is bedoeld om aan te geven of de experiment run begonnen is. Dit is nodig
omdat de simulator voor en na elke run zichzelf voelbaar zal positioneren wat niet meegenomen moet
worden in de beoordeling. De rode indicator zal verdwijnen wanneer de run begonnen is. De tweede
indicator is de motion rating bar, op de volgende pagina hier meer over.
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Taak tijdens de experiment runs

Tijdens de experiment runs word je gevraagd de mate van mismatch tussen de visuals en PFD en de
motion die ervaart aan te geven met behulp van een draaiknop, hieronder afgebeeld, die je in je hand
zult vasthouden.

Met deze draaiknop is het mogelijk om de motion rating bar op de PFD aan te sturen. Een goede rating
(simulator motion komt goed overeen met de visuals en PFD) wordt aangeven met een groene kleur.
Wanneer de draaiknop met de klok meegedraaid wordt zal de motion rating bar oplopen en veranderen
van kleur (groen-geel-oranje-rood). Hoe voller de bar gevuld is, hoe slechter jij vindt hoe de simulator
motion overeenkomt met de visuals en PFD. De beste rating is dus een lege bar, en de slechtste rating
een geheel gevulde bar. Hieronder is een goede motion rating, links, en een slechte motion rating, rechts,
weergegeven.

Aan het begin van iedere run zal de rating bar leeg zijn en dus een goede rating aangeven. Het is zeer
belangrijk dat gedurende de hele run, de rating continu en actief door jou zal worden gegeven.
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Taak na elke experiment run

Na elke run zal er gevraagd worden om aan te geven hoe goed jij de simulator motion vond voor de
gehele run. Dit wordt gedaan met behulp van de Motion Fidelity Rating (MFR), te zien in de figuur
hieronder:

Verder zal er aan de hand van de onderstaande tabel, de MIsery SCale (MiSC), gevraagd worden hoe
erg de wagenziekte is die je eventueel ervaart.

Symptoms MISC
No problems 0
Some discomfort, but no specific symptoms 1

Dizziness, cold/warm, headache,
stomach/throat awareness, sweating,
blurred vision, yawning, burping,
tiredness, salivation, ... but no nausea

Vague 2
Little 3
Rather 4
Severe 5

Little 6
Nausea Rather 7

Severe 8
Retching 9

Vomiting 10

Zowel de MFR figuur als de MISC tabel zullen in de simulator aanwezig zijn voor referentie.
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Tot slot

De verwachte duur van het experiment in de simulator is 90 minuten. Halverwege het experiment
is er een lange pauze waarin je uit de simulator kunt stappen. Tussen de runs in is er ook altijd
de mogelijkheid tot een pauze wanneer jij aangeeft daar behoefte aan te hebben. Na afloop van het
experiment zullen wij nog een debriefing doen, er is dan ook de mogelijkheid om wat meer details te
geven over ons onderzoek. Ik verwacht dat we 2 tot 2,5 uur na jouw aankomst weer klaar zullen zijn
met alles. Wanneer je vooraf, tijdens of na het experiment vragen hebt, beantwoord ik die graag!



Appendix C

Experiment matrix
Table C.1: Experiment scenario and condition order matrix. Scenario and condition order

are, respectively, displayed vertically and horizontally.

Participant Scenario Condition

P1

Training CWO ORC
Symmetric Stall CWO ORC CWO ORC ORC CWO
Large Roll ORC CWO ORC ORC CWO CWO
Break
Upsets CWO ORC ORC CWO CWO ORC

P2

Training CWO CWO ORC
Large Roll ORC ORC CWO CWO ORC CWO
Break
Upsets ORC CWO CWO ORC CWO ORC
Symmetric Stall CWO CWO ORC CWO ORC ORC

P3

Training CWO ORC
Upsets CWO ORC CWO ORC ORC CWO
Break
Symmetric Stall ORC CWO ORC ORC CWO CWO
Large Roll CWO ORC ORC CWO CWO ORC

P4

Training CWO ORC
Symmetric Stall ORC ORC CWO CWO ORC CWO
Large Roll ORC CWO CWO ORC CWO ORC
Break
Upsets CWO CWO ORC CWO ORC ORC

P5

Training CWO ORC
Large Roll CWO ORC CWO ORC ORC CWO
Break
Upsets ORC CWO ORC ORC CWO CWO
Symmetric Stall CWO ORC ORC CWO CWO ORC

P6

Training CWO ORC
Upsets ORC ORC CWO CWO ORC CWO
Break
Symmetric Stall ORC CWO CWO ORC CWO ORC
Large Roll CWO CWO ORC CWO ORC ORC

P7

Training CWO ORC
Symmetric Stall CWO ORC CWO ORC ORC CWO
Large Roll ORC CWO ORC ORC CWO CWO
Break
Upsets CWO ORC ORC CWO CWO ORC

P8

Training CWO ORC
Large Roll ORC ORC CWO CWO ORC CWO
Break
Upsets ORC CWO CWO ORC CWO ORC
Symmetric Stall CWO CWO ORC CWO ORC ORC

P9

Training CWO ORC
Upsets CWO ORC CWO ORC ORC CWO
Break
Symmetric Stall ORC CWO ORC ORC CWO CWO
Large Roll CWO ORC ORC CWO CWO ORC

P10

Training CWO ORC
Symmetric Stall ORC ORC CWO CWO ORC CWO
Large Roll ORC CWO CWO ORC CWO ORC
Break
Upsets CWO CWO ORC CWO ORC ORC
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Appendix D

Experiment scenarios full solutions

In this appendix, the full solutions of the CWO and ORC conditions for all the experiment scenarios are
presented. This includes the output inertial signal, the SRS control input, the SRS commanded state
and the differences between the SRS commanded state and actual state and the differences between the
SRS commanded actuator lengths and the actual actuator lengths.

D.1. The Training scenario
In Figure D.1, the output inertial signal for the Training scenario is presented and in Figure D.3 the
control input. The SRS state is shown in Figure D.2 and in, respectively, Figure D.4 and Figure D.5,
the commanded versus actual SRS state and actuator lengths.
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Figure D.1: Output inertial signal for the Training scenario used in the SRS experiment.
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Figure D.2: Simulator state for the Training scenario used in the SRS experiment.
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Figure D.3: Simulator control input for the Training scenario used in the SRS experiment.

0

20

|x
−
x̂
|(
m
m

)

0

20

|y
−
ŷ
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Figure D.5: Actual SRS state and calculated/commanded state difference for the Training scenario.

D.2. The Symmetric Stall scenario
In Figure D.6, the output inertial signal for the Symmetric Stall scenario is presented and in Figure D.8
the control input. The SRS state is shown in Figure D.7 and in, respectively, Figure D.9 and Figure D.10,
the commanded versus actual SRS state and actuator lengths.
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Figure D.6: Output inertial signal for the Symmetric Stall scenario used in the SRS experiment.
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Figure D.7: Simulator state for the Symmetric Stall scenario used in the SRS experiment.
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Figure D.8: Simulator control input for the Symmetric Stall scenario used in the SRS experiment.
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Figure D.10: Actual SRS state and calculated/commanded state difference for the Symmetric Stall scenario.

D.3. The Large Roll scenario
In Figure D.11, the output inertial signal for the Large Roll scenario is presented and in Figure D.13 the
control input. The SRS state is shown in Figure D.12 and in, respectively, Figure D.14 and Figure D.15,
the commanded versus actual SRS state and actuator lengths.
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Figure D.11: Output inertial signal for the Large Roll scenario used in the SRS experiment.



D.3. The Large Roll scenario 51

0 20 40 60
t (s)

−1.0

−0.5

0.0

0.5

1.0
x

(m
)

0 20 40 60
t (s)

−1.0

−0.5

0.0

0.5

1.0

y
(m

)

0 20 40 60
t (s)

−1.0

−0.5

0.0

0.5

1.0

z
(m

)

0 20 40 60
t (s)

−20

−15

−10

−5

0

5

10

15

φ
(◦

)

0 20 40 60
t (s)

−20

−15

−10

−5

0

5

10

15

θ
(◦

)

0 20 40 60
t (s)

−20

−15

−10

−5

0

5

10

15

ψ
(◦

)

0 20 40 60
t (s)

−1.0

−0.5

0.0

0.5

1.0

ẋ
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Figure D.12: Simulator state for the Large Roll scenario used in the SRS experiment.
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Figure D.13: Simulator control input for the Large Roll scenario used in the SRS experiment.
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Figure D.15: Actual SRS state and calculated/commanded state difference for the Large Roll scenario.

D.4. The Upsets scenario
In Figure D.16, the output inertial signal for the Upsets scenario is presented and in Figure D.18 the
control input. The SRS state is shown in Figure D.17 and in, respectively, Figure D.19 and Figure D.20,
the commanded versus actual SRS state and actuator lengths.
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Figure D.16: Output inertial signal for the Upsets scenario used in the SRS experiment.
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Figure D.17: Simulator state for the Upsets scenario used in the SRS experiment.
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Figure D.18: Simulator control input for the Upsets scenario used in the SRS experiment.
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Figure D.19: Actual SRS state and calculated/commanded state difference for the Upsets scenario.
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Figure D.20: Actual SRS state and calculated/commanded state difference for the Upsets scenario.



Appendix E

Experiment MFR results

In Table E.1, the MFR [6] results for all ten participants are shown. Note that the Large Roll and
Upsets scenario were slightly changed after the first two participants.

Table E.1: MFR scores obtained during the SRS experiment. Note that the * indicates MFR scores that were not used in the
statistical analysis, because these scores were obtained for slightly different versions of the respective scenarios.

Training Symmetric Stall Large Roll Upsets
Part. CWO ORC CWO ORC CWO ORC CWO ORC
P1 5 - 6 4 6 3 3 3 3 5* -* -* -* 5* -* 5* 5* 5* 4* 4* 3*
P2 3 2 2 5 4 4 3 4 3 2* 2* 2* 2* 2* 2* 5* 2* 2* 3* 5* 3*
P3 5 - 4 5 4 3 6 5 5 5 5 3 3 3 4 6 7 6 5 5 7
P4 4 - 2 3 3 4 3 3 3 6 5 5 4 2 2 5 5 5 4 7 4
P5 5 - 4 4 4 3 3 3 3 7 6 6 4 4 4 4 4 4 5 3 3
P6 5 - 6 5 5 5 6 5 5 4 4 4 3 4 1 5 5 5 6 6 6
P7 3 - 3 2 2 1 1 2 1 5 5 5 3 3 3 3 5 4 3 3 3
P8 7 - 6 4 3 4 3 3 4 7 7 6 5 4 5 4 5 5 5 4 4
P9 4 - 3 3 2 3 2 3 3 8 7 6 6 4 6 4 7 5 3 6 6
P10 4 - 3 2 3 2 4 3 2 3 3 3 2 2 1 3 3 3 2 2 2
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Appendix F

Experiment continuous Motion
Incongruence Rating results

In this appendix, the continuous Motion Incongruence Rating (MIR) [13] results obtained during the
SRS experiment are included. In section F.1, the average MIR results are shown and in section F.2
until section F.11, the MIR results per participant are shown.

F.1. Average continuous MIR
In Figure F.1-F.4, the average continuous MIR per participant and for all participants are shown for,
respectively, the Training, Symmetric Stall, Large Roll, and Upsets scenarios.
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Figure F.1: Average continuous MIR for the Training scenario. The top graph shows the average continuous MIR per
participant for the CWO condition, the middle graph shows the average continuous MIR per participant for the ORC condition,
and the bottom graph shows for both the CWO and ORC conditions the average continuous MIR averaged over all participants.
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Figure F.2: Average continuous MIR for the Symmetric Stall scenario. The top graph shows the average continuous MIR per
participant for the CWO condition, the middle graph shows the average continuous MIR per participant for the ORC condition,
and the bottom graph shows for both the CWO and ORC conditions the average continuous MIR averaged over all participants.
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Figure F.3: Average continuous MIR for the Large Roll scenario. The top graph shows the average continuous MIR per
participant for the CWO condition, the middle graph shows the average continuous MIR per participant for the ORC condition,
and the bottom graph shows for both the CWO and ORC conditions the average continuous MIR averaged over all participants.
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Figure F.4: Average continuous MIR for the Upsets scenario. The top graph shows the average continuous MIR per participant
for the CWO condition, the middle graph shows the average continuous MIR per participant for the ORC condition, and the
bottom graph shows for both the CWO and ORC conditions the average continuous MIR averaged over all participants.

F.2. Continuous MIR results for participant 1
In Figure F.5 and Figure F.6, the continuous MIR results for participant 1 are shown for, respectively,
the Training scenario and the Symmetric Stall scenario.
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Figure F.5: Continuous MIR for participant P1 for the Training scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.
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Figure F.6: Continuous MIR for participant P1 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.

F.3. Continuous MIR results for participant 2
In Figure F.7 and Figure F.8, the continuous MIR results for participant 2 are shown for, respectively,
the Training scenario and the Symmetric Stall scenario.
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Figure F.7: Continuous MIR for participant P2 for the Training scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.
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Figure F.8: Continuous MIR for participant P2 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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F.4. Continuous MIR results for participant 3
In Figure F.9-F.12, the continuous MIR results for participant 3 are shown.
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Figure F.9: Continuous MIR for participant P3 for the Training scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.
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Figure F.10: Continuous MIR for participant P3 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.11: Continuous MIR for participant P3 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.12: Continuous MIR for participant P3 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.

F.5. Continuous MIR results for participant 4
In Figure F.13-F.16, the continuous MIR results for participant 4 are shown.

0.0

0.5

1.0

M
I
R

(−
) P4 CWO R01

0.0

0.5

1.0

M
I
R

(−
) P4 ORC R01

0 25 50 75 100 125 150 175 200
t (s)

0.0

0.5

1.0

M
I
R

(−
) P4 CWO AVG

P4 ORC AVG

Figure F.13: Continuous MIR for participant P4 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.14: Continuous MIR for participant P4 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.15: Continuous MIR for participant P4 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.16: Continuous MIR for participant P4 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.

F.6. Continuous MIR results for participant 5
In Figure F.17-F.20, the continuous MIR results for participant 5 are shown.
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Figure F.17: Continuous MIR for participant P5 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.18: Continuous MIR for participant P5 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.19: Continuous MIR for participant P5 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.20: Continuous MIR for participant P5 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.
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F.7. Continuous MIR results for participant 6
In Figure F.21-F.24, the continuous MIR results for participant 6 are shown.
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Figure F.21: Continuous MIR for participant P6 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.22: Continuous MIR for participant P6 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.23: Continuous MIR for participant P6 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.24: Continuous MIR for participant P6 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.

F.8. Continuous MIR results for participant 7
In Figure F.25-F.28, the continuous MIR results for participant 7 are shown.
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Figure F.25: Continuous MIR for participant P7 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.26: Continuous MIR for participant P7 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.27: Continuous MIR for participant P7 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.28: Continuous MIR for participant P7 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.

F.9. Continuous MIR results for participant 8
In Figure F.29-F.32, the continuous MIR results for participant 8 are shown.
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Figure F.29: Continuous MIR for participant P8 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.30: Continuous MIR for participant P8 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.31: Continuous MIR for participant P8 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.32: Continuous MIR for participant P8 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.
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F.10. Continuous MIR results for participant 9
In Figure F.33-F.36, the continuous MIR results for participant 9 are shown.
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Figure F.33: Continuous MIR for participant P9 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.34: Continuous MIR for participant P9 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.35: Continuous MIR for participant P9 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.36: Continuous MIR for participant P9 for the Upsets scenario. The top graph shows the MIR for the CWO condition,
the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC conditions.

F.11. Continuous MIR results for participant 10
In Figure F.37-F.40, the continuous MIR results for participant 10 are shown.
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Figure F.37: Continuous MIR for participant P10 for the Training scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.38: Continuous MIR for participant P10 for the Symmetric Stall scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.39: Continuous MIR for participant P10 for the Large Roll scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.
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Figure F.40: Continuous MIR for participant P10 for the Upsets scenario. The top graph shows the MIR for the CWO
condition, the middle graph for the ORC condition, and the bottom graph the average MIR for both the CWO and ORC

conditions.



Appendix G

Experiment commentary and comment
analysis results

In this appendix, the comments provided by the participant during the experiment in the SRS are
presented. In Table G.1, the condition preferences derived from the comments are shown per participant.
In Table G.2-G.11, the comments are presented for all ten participants.

Table G.1: Participant’s condition preferences derived from comments provided during the SRS experiment runs. Grey cells
indicate no preference between conditions.

Scenario Keyword P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Symmetric Stall
Buffet ORC ORC ORC ORC ORC
Pitch/surge ORC ORC CWO ORC ORC CWO
Heave ORC ORC ORC

Large Roll Onset roll - - CWO CWO
Sustained roll - - ORC ORC ORC ORC ORC ORC ORC

Upsets
Pitch - - ORC ORC
Heave - -
Onset roll - - CWO CWO CWO CWO CWO CWO
Sustained roll - - ORC ORC ORC ORC

Table G.2: Condition preferences of participant 1 derived from comments provided during the SRS experiment runs.

Run Comments

Sy
m
m
et
ric

St
al
l

CW
O 3 Buffet realistich. Recovery meer sensatie nodig, mag heftiger.

5 Late CR. Minder heftig dan run 4.
8 Iets minder heftig dan run 7. 3.5 MFR rating.

O
RC

4 Duidelijker in recovery (vergeleken met run 3).
6 Heftiger in voorover.
7 Nan

La
rg
e
Ro

ll

CW
O 10 Roll goed, te weinig pitch.

-
-

O
RC

9 DNF: oil level baseframe to high.
11 DNF: oil level baseframe to high. Pitch duidelijk, MFR rating tussen 4/5.
-

U
ps
et
s CW

O 12 Roll goed, onset. Pitch bleef achter.
15 Hele goede rol, bijna geen pitch. Rating had nog roder gekunt.
16 Goede rol, pitch leek iets beter (dan run 15), maar op grote geheel niet aanwezig.

O
RC

13 Minder heftig op roll, daardoor betere pitch en balans. Beter beeld.
14 Mooi in balans, meest in de buurt van totaal plaatje. Op het laatst minder pitch.
17 Betere pitch onset. Roll redelijk, lag? Beste! Beste in balans, goede roll sensatie en pitch.
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Table G.3: Condition preferences of participant 2 derived from comments provided during the SRS experiment runs.

Run Comments
Sy
m
m
et
ric

St
al
l

CW
O 16 Voelde wat buffet, te weinig en duwtje in de rug.

17 Iets betere buffet, nog steeds gek duwtje.
19 Vorige leek beter (run 18), buffet minder duwtje in de rug merkbaarder.

O
RC

18 Nog steeds duwtje, beter dan vorige (run 17). Buffet verbetert.
20 Beetje zelfde als vorige (run 19). Lichte buffet en duwtje in de rug.
21 Iets meer buffet. Iets minder duwtje.

La
rg
e
Ro

ll

CW
O 6 Zijwaarts goed, +/- g minder.

7 Roll is goed. Weining g, daarom ook de rating.
9 Roll doet het goed. G’s voel je niet.

O
RC

4 Geen verschil in g’s. Zijwaartse beweging voel je goed.
5 Je voelde zelfs een beetje lichter, heel goed.
8 Roll gewoon realistisch.

U
ps
et
s

CW
O 11 Op g’s na gewoon goed. Pitch traag. Roll goed. Voel inzetje, of misschien was dat vorige run 10.

12 G aanzetjes, maar verder niet. Initiele inzet (roll) heel goed. Unloaden voel je niet.
14 Behalve de missende g krachten geen gekke dingen.

O
RC

10 Voelde pitch slecht, niet heel realistisch door missende g’s. Roll goed, pitch minder en traag. Wellicht voelbare
inzet.

13 Je voelt artificiele hobbeltjes. Je voelt hier duidelijk aanzetjes: oh nu naar links, eerst ff duwtje rechts.
Misschien let ik er nu meer op, ff duwtje recht links. Eerste deel van scenario MRF 6.

15 Rating op gekke bewegingen. Paar voelbare inzetjes: hij gaat komen. Recovery smooth, maar geen g’s. Eerste
deel MFR 4.

Table G.4: Condition preferences of participant 3 derived from comments provided during the SRS experiment runs.

Run Comments

Sy
m
m
et
ric

St
al
l

CW
O 10 Iets beter, meer pitch!

13 Pitch beter ten opzichte van heave.
14 Pitch en heave voel ik allebei.

O
RC

9 Voelde hem naar beneden vallen. Meer naar beneden meer heave dan pitch. Mis de pitch.
11 Pitch underrated
12 Tandje beter, te weinig pitch

La
rg
e
Ro

ll

CW
O 15 Onset te heftig. Side force groter dan in het echt, maar useful.

18 Duidelijk minder. Meer hangen dan draaien.
19 Goede mix van hangen en draaien.

O
RC

16 Voelen naar rechts en naar links. Dus mindere sideforce, misschien te weinig.
17 Vond hem zelfde als vorige. Mag iets meer sideforce in.
20 Iets meer roll cues. Allemaal de goede kant op. Minder sideforce, iets slapper.

U
ps
et
s CW

O

3 Roll beter dan pitch. Helemaal begin voel ik delay. Oppitchen voel je niet, omvallen realistisch. Mis yaw.
Voelt niet heftig in de sim.

5 Idee dat de pitch veel minder aanwezig was. Geen verschil in loadfactor. Iets minder dan de vorige (run 4),
mis pitch.

8 Teken van de roll goed. Niet counter intiutive. Te weinig Fx in cruise. Inzet bocht prima. Roll goed, optrekken
niet. Roll erg goed (MFR3/4). Pitch mis ik, voel niet eens pos of negatief.

O
RC

4 Omvallen oke, geeft heftigere sensatie. 0.7g kan ook beter. Roll beweging strakker en heftiger dan run 3.
6 Onset gedeelte beter. Sustained niet zo heel goed. Voel geen verschil in g’s en lichte g verschillen. Eerst MFR

4 daarna 5.
7 Iets rustiger dan vorige. Gevoel van achteroverhangen is aanwezig. Idee van rollen naar links, terwijl op beeld

ik de andere kant op rol. Laatste twee bochten, is vervelend dus daarom hoge MFR.
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Table G.5: Condition preferences of participant 4 derived from comments provided during the SRS experiment runs.

Run Comments
Sy
m
m
et
ric

St
al
l

CW
O 5 Hetzelfde, minder dan vorige 2. Buffet minder. Op het randje, zou 4 kunnen zijn.

6 Buffet hetzelfde: MFR 2. Mistte unloaden, attitude indicator lagged.
8 Buffet kan overtuigender. Heel vroeg neus laten zakken, voorover in stoel.

O
RC

3 Buffet vrij realistisch. Pitch up ook. Stall break mis je.Lichter worden ook. 0.4g voel je niet.
4 Goed, buffet beter, stevige pitch up. Neus zakken, weinig g verschil. Mist unloaden.
7 Geen lag. Buffet goed: MFR 1. Unloading mis je. Pitch en achterover beter.

La
rg
e
Ro

ll

CW
O

10 Erger dan de vorige. Sideforces to much. Pitch prima (te weinig g).
11 Zelfde verhaal. Minder dan vorige.
13 Stuk minder dan vorige. Uitrollen rechter bocht extreem slecht. Sideforce tegen roll richting in vervelend en

veel onrealistischer.

O
RC

9 Voelde overall goed. Sideforce wat veel, voelt overdreven. Mis g.
12 Stuk beter. Roll voelde veel realistischer, niet zo uit je stoel geslingerd.
14 Voelde weer heel goed. Iets meer side force dan de beste. Ontbreken van de pitch, en g’s.

U
ps
et
s

CW
O

15 G krachten zijn er niet. Overdreven sideforces zijn meer storend. Eerste roll mis je g, sideforce veel te sterk!
Ontbreken pitch. 3 pitch, 5 roll.

16 Ongeveer hetzelfde als vorige. Verticaal afwezig. Pitch 3 roll 5. Tweede deel zelfde. Mooi richting vd bocht,
upset.

18 Onset goede kant, sideforces daarvan veel te hoog. Lateraal 6. Pitch steady iets beter. Tweede deel weer
herhaling, inzet goed, daarna scheef in stoel. Ontbreken motion minder storend

O
RC

17 Opzich goed, even gevoel verkeerde teken. Op moment van inzet voel je beweging verkeerde kant. Pitch onset
mis je naast g. 3 eerste deel. Beide upset ook roll verkeerde kant, als een fietser. Geen g’s en pitch lijkt zelfs
verkeerde kant. Onset verkeerde kant.

19 Inzet roll voelde goed. Behoorlijk links en rechts. Richting 6. Te weinig g. Bijna 7 voor lateraal. Tweede deel
wel bocht verkeerde kant inzet.

20 Ook hier sideforce excessief: 6. Mis pitch cues en g. Ervaar het als hetzelfde. Eerst verkeerde kant op. Geen
prettige cues. Pitch weinig verschil en ook onset.

Table G.6: Condition preferences of participant 5 derived from comments provided during the SRS experiment runs.

Run Comments

Sy
m
m
et
ric

St
al
l

CW
O 15 Iets heftiger dan gewend, buffet. Longitudinaal voelde het wat minder aan.

18 Ietsje minder fijn, door de pitch, long versnelling.
19 Ietsje fijner. Buffet oke. Pitch down voelde natuurlijker.

O
RC

16 Longitudinaal versnelling beter. Buffet iets te heftig, vooral aan het einde.
17 Buffet en recovery gewoon en natuurlijk aanvoelen.
20 Buffet heftiger, pitch gewoon natuurlijk.

La
rg
e
Ro

ll CW
O 3 Hele heftige bewegingen, voel dingen die je niet in het vliegtuig voelt. Zijdelingse krachten bijv.

5 Weer hele zware zijdelingse krachten, minder heftig dan de eerste run. Twijfel 6 of 7.
8 Veel heftigere zijdelingse bewegingen.

O
RC

4 Weinig last van zijdelingse bewegingen. Dus minder motion voor gevoel maar ook minder storend. Voelde
inrollen maar niet zijdelingse krachten.

6 Veel beter: minder heftig en minder zijdelingse krachten.
7 Vergelijkbaar met net, relatief weinig verschil.

U
ps
et
s

CW
O

10 C1: Voelde wat natuurlijker aan. Voelt nog wel echt verschil. Long voelt oke, lat blijft lastig. Sideforces.
Pitch ervaar ik een klein beetje, beperkt. G krachten mis je.

13 C1: iets heftiger, iets meer afleiding. Iets lagere rating dan net. Verticale g is moeilijk. Iets minder: lateraal
vooral. Pitch blijft lastig: merk ik niet zo.

14 Beetje zoals net. Ik merk in z niet heel veel verschil. Met name dwarskrachten.

O
RC

9 C1: Harde inrollen viel mee. G krachten voel je een klein beetje, niet storend. C3 late rating. Beetje veel
zijdelingse krachten deel 2.

11 C1: Pitch voel ik nu wel. Iets minder dwarskrachten. Iets betere verticale g voel je aan het begin eventjes.
C2 en C3 geen CR: kwam natuurlijk over.

12 Redelijk natuurlijk. Lijk alsof je voorover hangt. Redelijk vergelijkbaar met run hiervoor. C2/3: Natuurlijk,
minder heftige bewegingen.
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Table G.7: Condition preferences of participant 6 derived from comments provided during the SRS experiment runs.

Run Comments
Sy
m
m
et
ric

St
al
l

CW
O 10 Ietsje beter. Nog steeds slap. Gevoel van ietsje meer naar voren.

11 Vergelijkbaar. Naar voren gevoel oke, niet overtuigend.
13 Niet veel verschil tussen deze en vorige.

O
RC

9 Buffet kan zwaarder, stall break mag heftiger. Ook pitch en g. Ik verwacht een forward motion.
12 Niet zo veel verschil. Marginaal verschil in g.
14 Niet overtuigend. Idee van verschil. In laatste stuk meer pitch moment.

La
rg
e
Ro

ll CW
O 15 Heel aardig. Allerlaatste stuk iets te heftig. Te veel sideforce.

16 Vergelijkbaar, laatste stuk sideforce he dit klopt niet.
18 Weer laatste stukje te heftig qua sideforce.

O
RC

17 Mooi smooth. Daarom geen rating. Mis alsnog de g.
19 Niet te heftig, maar idee na ijlen. Moeten nu steady zitten maar nee wobbelde nog wat na. Voel andere kant

op maar zie ik ook.
20 Was mooi, goed. Geen nazeef effect.

U
ps
et
s CW

O 5 Veel beter. Geen rare cue, alleen pitch te lafjes. Pitch te lafjes, moment en g.
6 Vergelijkbaar met vorige, goede kant op. Niet zo veel verschil.
8 Beter, alleen pitch nog zelfde als vorige. Geen verkeerde cues.

O
RC

3 Pitch te lafjes, reactie snelheid te laag. Eerste deel 4. 2e deel minder: roll cue verkeerde kant op voel je.
4 Inzetten vd bocht rare cue. Verkeerde kant op. Eerst verkeerde kant.
7 False cue, roll voel je verkeerde kant, daarna sideforce. Pitch ook weinig. 2e deel rare cue voelde ik weer.

Table G.8: Condition preferences of participant 7 derived from comments provided during the SRS experiment runs.

Run Comments

Sy
m
m
et
ric

St
al
l

CW
O

3 Buffet iets strakker in het echt. Dip voelt natuurlijk. Vlak voor recovery dip versnelling in nose down, hoofd
naar achter.

5 Geen CR. Je voelt iets geks aan het einde bij nose down.
8 Geen CR. Versnellen aan het einde gevoel.

O
RC

4 Geen CR. Heel erg zoeken naar verschillen. Voelde ook kleine versnelling, maar minder.
6 Late CR. Versnelling minder. Gehele run te veel in me stoel, daarom 2.
7 Geen CR. Zulke minieme verschillen. Niet het gevoel iets anders. Wel minder in stoel gedrukt: weet niet of

dit echt zo is.

La
rg
e
Ro

ll CW
O

10 Dit was raar. Gevoel van te lang doordraaien terwijl we de andere kant op gingen. Hangen, kracht of rotatie,
moeilijk te zeggen.

13 Nee! Hier klopt helemaal niks van. Zo raar gevoel. Roll perf off. Traagheid, vertraging.
14 Deze ook niet. Gevoel van voorlopen krachten op roll. Veel te veel in stoel gegooid.

O
RC

9 Lekker. Inrollen ging snel. Insturen in motion en visuals, dus prima. Terugrollen te snel. Roll out geen g.
Transitie te smooth.

11 Voelde beduidend beter. Kon weer op g’s letten. Roll goed, 3 door g’s.
12 Gevoel tussen de een en ander. Roll performance tikkie raarder.

U
ps
et
s CW

O

15 Gebeurde veel. Idee dat de roll niet klopte, bank angle en staat/krachten klopte niet. Mis 2.2g. Eerste deel
4. Inzetten overbank mis ik 2g. Idee tweede deel roll beter. Krachten zijkant komt overeen.

18 Roll was off. Daarvoor CR. Bank angle klopte niet op wat ik voel. Gevoel loopt achter. Gevoel van roll klopte
niet, traagheid.

19 C2 geen CR. Zo moeilijk gevoel dat het klopt, maar iets ook niet. Ik weet het niet. Teveel roll, heel lichtjes.
Te veel naar links voorloopt op visual.

O
RC

16 Motion lekker behalve g. Zuiverder roll, klopte beter. Lekkerder dan vorige. Roll beter g’s weinig verschil.
17 Ook lekker. Ietsje meer heen en weer, maar heel miniem. Wel lekker voelen. Iets meer pitch zou kunnnen.

Roll realistisch. CR op G’s.
20 Wel weer hetzelfde als vorige, ietsje erger. Weer minder dus beter. Meer achterover.
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Table G.9: Condition preferences of participant 8 derived from comments provided during the SRS experiment runs.

Run Comments
Sy
m
m
et
ric

St
al
l

CW
O 15 Buffet goed. In ac hogere frew. Idee dat pitch harder valt, abrupter. Deze gaat te geleidelijk. Richting een 3.

16 Deze pitchbreak beter.
18 Buffet perceptie goed. Nose drop goed, waarneembaar.

O
RC

17 Buffet dichterbij. Pitch break ook goed. Buffet te lang. Geen gevoel van g.
19 Overgang buffet naar pitchbreak beter.
20 Perceptie minder sterk, met ogen dicht. 3 of 4.

La
rg
e
Ro

ll

CW
O 5 Minder pitch. Dit was even slecht. Hele grote sideforce.

6 Pitch voel je bijna niet. Oh jongens. Te extreme sideforce. Geen gevoel van roll. Te weinig rating
8 Pitch voel je niet. Heel veel sideforce. Te veel in herstel.

O
RC

3 Aardig. Eigenlijk niet zo erg de sideforces.
4 Bijna zelfde als vorige. Nog steeds merkbaar.
7 Voel pitch. Dit was interessant. Balletje alleen naar een kant.

U
ps
et
s CW

O

10 Pitch merk je niet. Veel sideforces extremer. C3 grote sideforce, ontbreekt g. Minder extreem. Gevoel gaat
mee met wat je op de indicator ziet. Roll perf. Beter.

11 G voel je niet., terugrollen teveel. Roll heel aardig, voel wel sideforces. Vooral recovery. Gs weer probleem.
Het is lastig om de sideforces. Zou taak beinvloeden.

13 Gevoel op verkeerde been door pitch. Redelijke sideslip. Niet storend maar erger door de sideforces.

O
RC

9 90 graden linker bocht goed. Pitch up voelde ik niet. 7/8 voor pitch. Roll is heel weinig. Sideforce eng->CR.
Aanloop vd upset. Even naar recht, dan naar links. G ontbreekt.

12 Hee roll naar links, maar zie ik niet. Grote sideforces niet storend. G mis ik weer. Maneuver oke. Omgekeerder
illusie.

14 Gevoel van links roll dan rechts. Niet vervelend. Zie het ook. C2 niet onaardig. Behalve g. voel nu ook yaw.

Table G.10: Condition preferences of participant 9 derived from comments provided during the SRS experiment runs.

Run Comments

Sy
m
m
et
ric

St
al
l

CW
O 10 Voorwaarts zetje, meer voorover gevoel.

13 Geen CR. Zetje hier zeker niet. Dit is meer de kanteling ipv surge.
14 Je voelt hier de kist nose down. Voel je versnelling. Geen zetje. Vlak voor FF klein duwtje, acceleratie.

O
RC

9 Voelt buffet goed. Lichter worden beetje. Gevoel van doorzakken.
11 Doorzakken delay. Klein voorwaarts zetje. Recovery redelijk goed.
12 Timing goed. Zetje voorwaarts op goede moment.

La
rg
e
Ro

ll

CW
O 15 Roll met fixed rudder. Haak effec

18 Begon goed, initieel. Teveel sideforce erna. Opposite chasing.
19 Overcorrectie. Delay op de voeten. Te weinig proportie qua roll rate. Of 7.

O
RC

16 Kleine time delay. Beweging zelf minder hinderlijk.
17 Stuk betere timing. Gecoordineerd niet heel strak gebruik van voeten. Minder sideforce.
20 Roll ingaan liep iets achter op visual. Onset niet volledig gecoordineerd.

U
ps
et
s

CW
O

3 Verticale onset voel je niet. Veel sideforce. Pitch up niet te voelen in loadfactor. Doorrol boven neus sneller.
Onset roll was beter nog steeds lateraal kracht.

5 Inrollen out of sequence. Delay in roll gevoel. Lateraal grote krachten. Ook hier naijlen van laterale krachten.
8 Onset vriendelijk. Timing beter. Groot naijlen. Roll in goed, maar daarna veel sideforce. Gevoel van inrollen

goed.Haak effect, neus gaat naar buiten.

O
RC

4 Lateraal bewegingen minder uitgesproken. Roll beter aansluiten en gecoordineerd. Zakken neus meer verticale
gevoel. Ook grote laterale cue, yaw damper.

6 Dissonant roll delay. Pitch ook delay volgens mij. Ook hier time delay. Lateraal minder gebalanceerd.
Verschiler in zien en voelen.

7 Ook time delay. Onset heel vriendelijk lateraal uitzwaaien wat minder heftig. Visual achter motion. Lateraal
viel mee. Out of sequences.
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Table G.11: Condition preferences of participant 10 derived from comments provided during the SRS experiment runs.

Run Comments
Sy
m
m
et
ric

St
al
l

CW
O 5 Stuk beter. Buffet realistischer. Recovery voelde je echt. Sim kantelde echt naar voren.

6 Te gentle. Buffet te zwak. Recovery voel je wel, maar te weinig. Weinig verschil in g.
8 Weinig verschil met de vorige.

O
RC

3 Buffet goed. Recovery heel snel, tijdens recovery ook nog buffet. Nauwelijks verschil in g.
4 Initieel hetzelfde. Recovery nog steeds weinig verschil in g.
7 Recovery voelde je beter. Verschil in g, duwtje. Neus.

La
rg
e
Ro

ll CW
O 10 Slechter. Tijdens roll naar rechts voel je alleen initiele roll maar al vrij snel remmen en sideforce andere kant.

11 Hetzelfde, laatste roll terug, lichaam helemaal naar links.
13 Hing verkeerde kant op in de stoel. Geeft verkeerde indruk.

O
RC

9 Sideforce niet zoals echte werkelijkheid.
12 Stuk beter . Te gentle roll rate maar niet storend. Deze voelde goed aan. Je ziet roll rate en voelt hetzelfde.

Wordt niet andere kant vd stoel.
14 Deze voelde goed aan. Je ziet roll rate en voelt hetzelfde. Wordt niet andere kant van de stoel.

U
ps
et
s

CW
O

15 Initieel goed behalve g. Roll rate decelleratie gevoel. Stop rotatie en terug, tegenkracht. Positieve g voel je
niet.

16 Mis +-g. Init roll goed. Laatste roll voel je al een decelleratie. Init roll goed. Pitch en g init slecht.
18 Heftige roll links voel je decelleratie. Hangt verkeerde kant. Eigenlijk weer hetzelfde. Recovery lijkt.

O
RC

17 Roll rate goed. Pitch kan beter init. Beter dan de vorige. Voelde iets natuurgetrouwder. +- g moet beter.
Verschil in roll rate.

19 Tot nu toe de beste. Met name overgang g voel je als rotatie. 2e gedeelte voelt goed qua roll rate, beetje
gentle wel.

20 Hij voelde goed aan. Overgang in g minder. Minder gentle dan vorige. Decelleratie roll komt overeen met
visual. Weinig verschil, iets feller. Pitch kan echt beter.
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Chapter 1

Introduction

Accidents that are caused by Loss of Control In-Flight (LOC-I) are currently the largest contributor to
worldwide commercial aviation fatalities according to International Air Transport Association (IATA)
[14]. LOC-I accidents include situations in which the flight crew was unable to maintain control of the
aircraft, leading to an unrecoverable deviation from the intended flight path. Research over the past
decade intended to decrease the number of LOC-I accidents resulted in an addition of Upset Prevention
and Recovery Training (UPRT) in the pilot training curriculum as stated by the Federal Aviation
Administration (FAA) and European Union Aviation Safety Agency (EASA) [15].
This UPRT is partially done in Flight Simulator Training Devices (FSTDs), however, the current options
in FSTDs are limited and special care should be taken to prevent the introduction of negative training.
Two main problems arise when UPRT is performed in FSTDs: the lack of a complete and validated
aircraft model outside the normal flight envelope, that is where LOC-I often occurs [4], and secondly,
the difficulty of representing the aircraft motion with realistic motion cues [16].
Current FSTDs are often equipped with a hexapod motion system (also called Stewart’s Platform).
Such a motion system is able to move in 6 Degrees of Freedom (DOF), however, the motion in all these
DOF is limited. Especially when a so-called Classical Washout (CW) Motion Cueing Algorithm (MCA)
is used, which is the case in almost all FSTDs. This type of MCA is tuned in a way that the motion
system stays within limits for all training scenarios, which for many scenarios is not optimal.
An upcoming trend in the automotive simulator research industry is the use of a new type of MCA,
based on Model Predictive Control (MPC) [17, 18, 19, 20, 21, 22, 23]. This algorithm uses a prediction of
the driver/pilot control input to optimise the motion trajectory of the simulator over a certain horizon.
In this way, more efficient use of the simulator motion space can be achieved, which could lead to higher
motion cueing fidelity.
The specific investigation addressed in this study is about exploring the usefulness of this MPC-based
MCA for the use in UPRT. This will be done with the help of an offline analysis, assessing the objective
fidelity and a pilot/human experiment assessing the perceived fidelity. The main goal of this study is
to increase the fidelity of motion cues, perceived by the pilot during UPRT, by means of implementing
a new MCA based on MPC in a hexapod flight simulator.

1.1. Research Objective
The main research objective of this thesis is:

To achieve higher perceptual motion cueing fidelity during Upset Prevention and Recov-
ery Training in a hexapod simulator by means of implementing a new Motion Cueing
Algorithm based onModel Predictive Control and performing an offline analysis to assess
the objective motion cueing fidelity, followed by a pilot-in-the-loop experiment to assess
the perceptual motion cueing fidelity.

80



1.2. Research Questions 81

To reach this objective, multiple sub-objectives are proposed, which are presented below.
SO 1. Perform a literature review on flight simulator motion cueing.
SO 2. Perform a literature review on MPC-based MCAs.
SO 3. Develop an offline MPC-based MCA.
SO 4. Perform a literature review on UPRT.
SO 5. Perform an offline evaluation of objective fidelity of the proposed MCA.
SO 6. Design an experiment plan for a pilot-in-the-loop experiment in the SRS.
SO 7. Perform an experiment in the SRS to evaluate the perceived motion cueing fidelity

for the original and the proposed MCA.
A schematic overview of the thesis project, showing all objectives is presented in Figure 1.1. During the
final thesis phase, UPRT flight test data obtained with the PH-LAB laboratory aircraft from the Delft
University of Technology (TU Delft) will be used to design relevant motion scenarios for the experiment.

SO1: Perform literature

review motion cueing

SO3: Develop offline 


MPC MCA

SO5: Offline evaluation 


motion cueing fidelity

SO7: Perform 
pilot experiment in

SIMONA

Preliminary thesis Final thesis

SO2: Perform literature

review MPC MCA

SO6: Design experiment

plan

SO4: Perform literature

review UPRT

Literature Literature Software


framework

UPRT 


flight test data

Literature

Figure 1.1: Schematic overview of the objectives of the thesis project.

1.2. Research Questions
In this section, the main research question is posed along with sub-questions. These smaller sub-
questions together answer the main research question. The main research question is as follows:

Towhat extent canmotion cueing fidelity duringUpset Prevention andRecovery Training
performed in a hexapod simulator be improved using aMotionCueingAlgorithmbased on
Model Predictive Control with respect to a Classical Washout Motion Cueing Algorithm?

This research question is then further divided into five questions, which are subsequently divided into
smaller sub-questions. All research questions are listed below.
RQ 1. How does motion cueing in a hexapod flight simulator work?

1a. How can you define the fidelity of a flight simulator?
1b. How can you define a hexapod motion system?
1c. What type of motion cueing algorithms exist?
1d. How can you evaluate motion cueing?

RQ 2. How do MPC-based MCAs work?
2a. What is optimal control?
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2b. How can a continuous-time optimal control problem be parameterised into a numerical finite-
dimensional optimal control problem?

2c. What is MPC?
2d. How is MPC used for motion cueing?

RQ 3. How are FSTDs currently used for UPRT?
3a. To what extent are extended aerodynamic models required for UPRT in FSTDs?
3b. What training scenarios should be simulated for UPRT?
3c. What are the difficulties of motion cueing for UPRT?
3d. What are the limitations and shortcomings of current MCAs for UPRT?

SQ 4. How can the implementation of an MPC-based MCA during UPRT affect the objective motion
cueing fidelity with respect to the current SIMONA CW MCA?
4a. What optimal control and MPC formulation should be used for the analysis?
4b. What is the influence of the prediction strategy on the objective motion cueing fidelity?
4c. What is the influence of the prediction horizon length on the objective motion cueing fidelity?
4d. What is the influence of the cost function weights on the objective motion cueing fidelity?

SQ 5. How can the implementation of an MPC-based MCA during UPRT affect the perceptual
motion cueing fidelity with respect to the current SIMONA Research Simulator (SRS) CW MCA?
5a. What experiment conditions with different MCA settings should be used during the experi-

ment?
5b. What metrics should be used to evaluate the perceived motion cueing fidelity?
5c. What type of experiment participants are required for the experiment?
5d. What data should be logged during the experiment?

The first three research questions and their sub-questions are completely answered in this report. The
fourth and fifth research questions will be partly answered. For the fourth research question, additional
UPRT motion scenarios will be analysed during the final thesis phase. The fifth research questions can
be answered completely after the experiment is performed in the final thesis phase.

1.3. Report outline
The outline of this preliminary thesis report is as follows. To begin in Appendix 2, an introduction
to motion cueing in flight simulators is presented. In this chapter, the required definitions, principles,
and equations to understand and apply motion cueing are gathered. Furthermore, methods and metrics
that can be used to evaluate MCAs are elaborated. Finally, the SRS is presented with its motion cueing
relevant characteristics.
Thereafter, in Appendix 3, the theory about MPC and MPC-based motion cueing are discussed. More-
over, in this chapter, a literature review on how MPC-based MCAs are used in previous studies is
presented.
In Appendix 4, the requirements and shortcomings of current FSTDs are elaborated. Furthermore, the
training scenarios that are relevant to UPRT are identified.
Subsequently, in Appendix 5, the method, results and recommendations of the offline analysis to compare
the objective fidelity of the MPC-based and CW MCAs are presented. Additionally, the stall scenario
used for this analysis is described and the formulation used for the optimal control and MPC algorithms
are depicted.
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This report closes off with the preliminary experiment plan and design in Appendix 6. In this chap-
ter, among others, the preliminary hypotheses, experiment variables, conditions and procedures are
discussed.



Chapter 2

Motion cueing in flight simulators

In this chapter, the first research question posed in section 1.2 is answered.
How does motion cueing in a hexapod flight simulator work?

The objective of this chapter is to gather the required definitions, principles, and equations to under-
stand and apply motion cueing for flight simulators. Furthermore, methods and metrics that can be
used to evaluate MCAs are elaborated. Finally, the SRS is presented with its relevant motion cueing
characteristics.
The chapter starts off with the definition of the different fidelity types and the reference frame convention
used in this study in section 2.1 and Figure 2.2, respectively. In section 2.3 and section 2.4, the
equations related to inertial acceleration and Euler angles are presented. Thereafter, in section 2.5, the
basic working principle of motion cueing is elaborated on the basis of the human vestibular system.
Subsequently, the mathematical definition of a hexapod motion system is introduced in section 2.6,
after which common MCAs are presented in section 2.7. Motion cueing error definitions are given in
section 2.8 and in section 2.9, methods to evaluate MCAs are elaborated. Finally, in section 2.10, the
SRS with its characteristics is presented, followed by the chapter conclusions in section 2.11.

2.1. Fidelity
According to Sinacori [24], the veracity of a flight simulator is often expressed in fidelity. In practice,
four types of fidelity are used, which are explained below with respect to motion cueing. A schematic
overview of the different fidelity types can be seen in Figure 2.1.
Objective/engineering fidelity - Sinacori [24] and Heffley et al. [25] describe objective fidelity as the

degree of similarity between the aircraft and the simulator. This type of fidelity can be applied
to fidelity related to the human senses, for example, aural, visuals, motion, and haptics. For
objective fidelity, it is possible to completely isolate and measure the objective fidelity (aural,
visual, motion, etc.) under investigation. This means that, when, for example, the objective
motion cueing fidelity is studied, the visual, aural, and haptic objective fidelity does not interfere
with or influence this fidelity.

Perceptual fidelity - Sinacori [24] and Heffley et al. [25] describe perceptual fidelity as the degree
of similarity between how the pilot experiences the aircraft and the simulator. This perceptual
fidelity, like objective fidelity, can also be applied to the human senses. For this type of fidelity,
it is not possible to completely isolate the perceptual fidelity (aural, visual, motion, etc.) under
investigation. This means that, when, for example, the perceptual motion cueing fidelity is studied,
the visual, aural, and haptic objective fidelity can interfere with or influence this perceptual motion
cueing fidelity. When the perceptual motion cueing fidelity is studied, it is thus of importance
that the visual, aural, and haptic objective fidelity remain fixed.
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Behavioural fidelity - Heffley et al. [25] describe behavioural fidelity as the degree of similarity be-
tween the pilot’s (control) behaviour/strategy in the aircraft and the simulator. For FSTDs, this
behavioural fidelity is the most important fidelity and one should aim for the highest achievable
behavioural fidelity during the design of a FSTD. Like performance fidelity, behavioural fidelity
can not be applied individually to the various human senses and is always a result of all types
of objective fidelity. However, it is possible to study the influence of, for example, the objective
motion cueing fidelity on the behavioural fidelity by varying the objective motion cueing fidelity
and fixing the other objective fidelity.

Error/performance fidelity - Heffley et al. [25] describe error fidelity as the degree of similarity be-
tween the pilot performance in the aircraft and the simulator. This performance fidelity, contrary
to objective and perceptual fidelity, can also not be applied individually to the various human
senses and is always a result of the objective fidelity of all human senses. However, again it is pos-
sible to study the influence of, for example, the objective motion cueing fidelity on the performance
fidelity by varying the objective motion cueing and fixing the other objective fidelity.

Figure 2.1: Schematic representation of the different types of flight simulator fidelity, from Pool [1].

2.2. Reference frames
During this study, the reference frame convention is used from Reid and Nahon [2]. All the simulator
and equivalent aircraft reference frames are depicted in Figure 2.2. The relevant reference frames are
further elaborated on below.
Inertial frame, 𝐹𝐼 : The inertial reference frame is Earth-fixed with its z-axis aligned with the gravity

vector. The origin is located in the centroid of the simulator’s base platform, also known as the
Lower Gimbal Point (LGP). The x-axis is pointing forwards, through the simulator projector
screens when in the neutral position.

Platform frame, 𝐹𝐷 : The platform reference frame is a moving/body frame that moves with the
simulator’s upper platform. The origin is located in and attached to the centroid of the simulator’s
upper platform, the Upper Gimbal Point (UGP). The x-axis points forward, through the simulator
projector screens and the z-axis points downward. The x-y plane is parallel to the upper platform,
which is parallel to the simulator cabin. The equivalent aircraft reference frame is 𝐹𝐶 .
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Simulator frame, 𝐹𝑆: The simulator reference frame is a moving/body frame that moves with the
simulator cabin. For this study, the origin is located in and attached to the Design Eye Reference
Point (DERP). The x-axis points forward, through the simulator projector screens and the z-axis
points downward. The x-y plane is parallel to the upper platform and is thus parallel to reference
frame 𝐹𝐷. The equivalent aircraft reference frame is 𝐹𝐴.

Pilot frame, 𝐹𝑃𝑠: The pilot reference frame is attached to the simulator’s pilot head with its origin
located at and attached to a point midway between his left and right vestibular organs. The
x-axis points forward through the pilot’s eyes and the z-axis downward along the spine. The x-z
plane contains the pilot’s vertical plane of symmetry. The equivalent aircraft reference frame is
𝐹𝑃𝑎. This frame is not further used in this study, instead, the simulator frame, 𝐹𝑆, is chosen at
a convenient and fixed location, the DERP, which is assumed to be approximately equal to the
pilot’s head location. Meaning that in this study 𝐹𝑃𝑠 ≈ 𝐹𝑆 and 𝐹𝑆, defined in the DERP, will be
used to assess the motion cueing fidelity.

Figure 2.2: Schematic overview of the used aircraft and simulator reference frames, from Reid and Nahon [2].

2.3. Inertial acceleration
In (2.1), as defined by Reid and Nahon [2], the inertial acceleration of a point, 𝐴, on a rigid-body, 𝐵,
located at a distance, 𝒓𝐵,𝐴 from the origin of a body reference frame of the body 𝐵 is depicted.

𝒂𝐴 = 𝒂𝐵 + [𝛀𝐵𝛀𝐵 + 𝛀̇𝐵]𝒓𝐵,𝐴 (2.1)

Where the linear accelerations of the body, 𝐵, in an inertial frame, can be defined by the body ac-
celerations, body angular rates, and the body velocities, as can be seen in (2.2). And where the
skew-symmetric angular velocity matrix, depicted in (2.3), is used.

𝒂𝐵 = ⎡⎢
⎣

𝑢̇𝐵 + 𝑞𝐵𝑤𝐵 − 𝑟𝐵𝑣𝐵
̇𝑣𝐵 + 𝑟𝐵𝑢𝐵 − 𝑝𝐵𝑤𝐵

𝑤̇𝐵 + 𝑝𝐵𝑣𝐵 − 𝑞𝐵𝑢𝐵

⎤⎥
⎦

(2.2)
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𝛀𝐵 = ⎡⎢
⎣

0 −𝑟𝐵 𝑞𝐵
𝑟𝐵 0 −𝑝𝐵

−𝑞𝐵 𝑝𝐵 0
⎤⎥
⎦

(2.3)

When using the angular velocity and acceleration vectors, 𝝎 and 𝜶, and the vector cross product, a
more commonly known expression, shown in (2.4), is obtained for the inertial acceleration.

𝒂𝐴 = 𝒂𝐵 + 𝜶 × 𝒓𝐵,𝐴 + 𝝎 × (𝝎 × 𝒓𝐵,𝐴) (2.4)

2.4. Euler angles and angular velocities
Three Euler angles are used to define the orientation between two reference frames. A vector expressed
in one frame, 𝐹1, can be expressed in a different frame, 𝐹2, with the help of these Euler angles. The
rotation of a vector from 𝐹1 to 𝐹2 can be performed with the rotation matrix depicted in (2.5), where
the attitude of 𝐹2 with respect to 𝐹1 is expressed with the Euler angles.

𝑹𝐹1,𝐹2
= ⎡⎢

⎣

cos 𝜃 cos𝜓 sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓
cos 𝜃 sin𝜓 sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓 cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓

− sin 𝜃 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃
⎤⎥
⎦

(2.5)

The angular velocity of a body expressed in an inertial reference frame can be expressed by the time
derivative of the Euler angles. This angular velocity can be obtained by the angular velocity of the
body in its own reference frame and the Euler angles expressing the orientation of the body frame with
respect to the inertial frame. This relation is presented in (2.6). The opposite relation is obtained by
the inverse of (2.6), resulting in (2.7).

⎡⎢
⎣

̇𝜙
̇𝜃
̇𝜓
⎤⎥
⎦

= ⎡⎢
⎣

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

⎤⎥
⎦

⎡⎢
⎣

𝑝
𝑞
𝑟
⎤⎥
⎦

(2.6)

⎡⎢
⎣

𝑝
𝑞
𝑟
⎤⎥
⎦

= ⎡⎢
⎣

1 0 − sin 𝜃
0 cos𝜙 sin𝜙 cos 𝜃
0 − sin𝜙 cos𝜙 cos 𝜃

⎤⎥
⎦

⎡⎢
⎣

̇𝜙
̇𝜃
̇𝜓
⎤⎥
⎦

(2.7)

2.5. Human vestibular system
The human vestibular system is a sensory system located in the human head near the ears. According
to Reid and Nahon [2], the vestibular system consists of the semi-circular canals and the otoliths organs
and perceives the motion cues in a simulator. The three semi-circular canals, positioned approximately
orthogonal to each other, are used to sense angular motion, 𝝎, and can be interpreted as an angular
velocity sensor working around three axes. The otolith organ is able to perceive specific forces, being
the non-gravitational forces per unit mass. This can be defined as the vector difference between the
inertial acceleration and the gravitational acceleration, as seen in (2.8) from Reid and Nahon [2].

𝒇 = 𝒂 − 𝒈 (2.8)

Since simulators, and especially hexapod simulators, have limited actuator travel and thus a limited
motion space, sustained accelerations can not be simulated by accelerating the simulator cabin while
staying within the motion space. However, the human vestibular system senses specific forces, and not
accelerations, therefore, it is possible to use gravitational acceleration as a sustained motion cue. This
is done by slowly tilting the simulator resulting in a change of specific force. In combination with a
high-frequency onset acceleration of the simulator, a full motion cue can be represented, as can be seen
in Figure 2.3.
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Figure 2.3: Illustration of fully complementary cueing of specific forces, where motion cues can be split into a high-frequency
onset part and a low-frequency sustained part, from van Leeuwen [3].

2.6. Hexapod motion base
The naming of a hexapod simulator or motion base comes from the number of ”legs”, which in this
case are six actuators, connecting the base and upper platform of the system. A complete schematic
overview of a hexapod motion system is depicted in Figure 2.4.
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Figure 2.4: Schematic overview of a hexapod motion system.

The actuators are connected to the simulator base, a non-moving base that is fixed to the ground, with
six universal joints. The fixed locations of these joints with respect to the Lower Gimbal Point (LGP)
expressed in the 𝐹𝐼 reference frame can be described by the vector presented in (2.9).

𝑩 = [𝒃1, 𝒃2, 𝒃3, 𝒃4, 𝒃5, 𝒃6]⊤ ∈ ℝ18 (2.9)
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The simulator’s upper platform, a moving platform, is connected to the actuator with again six universal
joints. The location of these joints with respect to the Upper Gimbal Point (UGP) in the 𝐹𝐷 reference
frame is again fixed and is captured by the vector in (2.10).

𝑷 = [𝒑1, 𝒑2, 𝒑3, 𝒑4, 𝒑5, 𝒑6]⊤ ∈ ℝ18 (2.10)

The length of the actuators determines the position and attitude of the simulator platform. The length
of the actuators is described by the vector in (2.11).

𝒒 = [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6]⊤ ∈ ℝ6 (2.11)

To determine the length of the actuators, a method called inverse kinematics is used [26]. This method
derives the actuator lengths from the position of the UGP with respect to the LGP, which is 𝒓, the
orientation of the upper platform with respect to the inertial reference frame, being 𝑹𝐹𝐷,𝐹𝐼

, and the
base gimbal and platform gimbal positions, 𝑩 and 𝑷 , respectively. This relation is presented in (2.12).
The individual actuator length can be derived with (2.13).

𝒒 = ‖𝒓 − 𝑩 + (𝑹𝐹𝐷,𝐹𝐼
𝑷 ⊤)⊤‖ (2.12)

𝑞𝑖 = ‖𝒓 − 𝒃𝒊 + 𝑹𝐹𝐷,𝐹𝐼𝑝𝑖
‖ (2.13)

The velocity of the actuators, or the rate of change of actuator length, is the time derivative of the
actuator length. These velocities are derived with the simulator state derivative and the actuator
length Jacobian matrix, as seen in (2.14). The actuator length Jacobian is calculated with respect to
the simulator state and can be found in (2.15).

̇𝒒 = 𝑱𝒒(𝒙)𝒙̇ (2.14)

𝑱𝒒(𝒙) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑞1
𝜕𝑥

𝜕𝑞1
𝜕𝑦

𝜕𝑞1
𝜕𝑧

𝜕𝑞1
𝜕𝜙

𝜕𝑞1
𝜕𝜃

𝜕𝑞1
𝜕𝜓

𝜕𝑞2
𝜕𝑥

𝜕𝑞2
𝜕𝑦

𝜕𝑞2
𝜕𝑧

𝜕𝑞2
𝜕𝜙

𝜕𝑞2
𝜕𝜃

𝜕𝑞2
𝜕𝜓

. . . . . .

. . . . . .

. . . . . .
𝜕𝑞6
𝜕𝑥

𝜕𝑞6
𝜕𝑦

𝜕𝑞6
𝜕𝑧

𝜕𝑞6
𝜕𝜙

𝜕𝑞6
𝜕𝜃

𝜕𝑞1
𝜕𝜓

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.15)

2.7. Motion cueing algorithms
Motion systems are driven by a MCA that translates an input signal, often specific forces and angular
rates as a result of aircraft motion, into a simulator control input. In this study, two types of MCAs
are discussed, being filter-based MCAs and optimisation-based MCAs.

2.7.1. Filter-based

Filter-based MCAs, and especially Classical Washout (CW) MCAs, are the most widely used type of
MCA in flight simulators. This MCA is based on the use of linear high-pass filters for cueing the
high-frequency spectrum of the specific forces and angular velocities. Furthermore, this type of MCA
uses low-pass filters for cueing the low-frequency spectrum of the lateral and longitudinal specific forces
by tilting the simulator. The latter is often called tilt-coordination. A schematic overview of the CW
MCA is depicted in Figure 2.5.
Before a CW MCA can be used, it is required to tune the algorithm. This is because a CW MCA does
not account for the physical simulator motion limits. Tuning is often done manually and a selection
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Figure 2.5: Schematic representation of the CW algorithm as defined by Reid and Nahon [2], from Pool [1]

of parameters found in Table 2.1 should be determined. These parameters are often determined in
a conservative way, meaning that worst-case tuning is used to ensure that the simulator stays within
its limits for all possible motion scenarios. This results in not-”worst-case” reference motion being
sub-optimally represented by the algorithm.

Table 2.1: Typical CW motion filter tuning parameters.

Parameter Description DOFs
𝐾 Filter gain All
𝜔ℎ𝑝 Second-order high-pass break frequency All
𝜁ℎ𝑝 Second-order high-pass damping ratio All
𝜔𝑏 First-order high-pass break frequency All
𝜔𝑙𝑝 Second-order low-pass break frequency 𝑥, 𝑦
𝜁𝑙𝑝 Second-order low-pass damping ratio 𝑥, 𝑦

Parrish et al. [27] were the first to propose an Adaptive Washout (AW) MCA. With this MCA, an
attempt was made to avoid the sub-optimal tuning of the CWMCA by real-time adjusting the filter gains
during simulation. While minimising a cost function that penalises the difference between the aircraft
and simulator motion, the motion filter parameters are updated. However, no significant improvements
were observed when a AW MCA is applied compared to a CW MCA. Moreover, the algorithm is non-
linear, more complex, and sensitive to instability. Due to these reasons, this AW MCA is not commonly
used.

2.7.2. Optimisation-based

During this study, two optimisation-based MCAs are discussed. The first algorithm is an optimal MCA,
which is actually a trajectory optimisation problem, or an optimal control problem. This MCA is only
possible to use offline when an entire reference aircraft motion scenario is available. The algorithms
minimise a cost function that penalises the difference between the reference aircraft and simulator
motion, resulting in a simulator control input for the entire reference motion duration. The second
optimisation-based MCA is a so-called MPC-based MCA that solves smaller optimal control problems,
where the size is depending on the prediction horizon length, each time step. This type of MCA could
be applied offline, where the algorithm iterates through a reference motion scenario. Moreover, this
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algorithm could be applied in real-time, where each time step the algorithm solves the optimal control
problem using a reference aircraft motion depending on the pilot control input. This type of MCA
is further elaborated in Appendix 3. A summary of the main differences of the previously mentioned
MCAs can be seen in Table 2.2.

Table 2.2: Comparison of filter-based and optimisation-based MCA, based on Cleij [7]

MCA𝐹𝐼𝐿 MCA𝑂𝑃𝑇 MCA𝑀𝑃𝐶
Type Filter-based Optimisation-based Optimisation-based
Real-time capable Yes No Yes
Pilot-in-the-loop applications Suitable Not suitable Suitable
Sampling rate ≥100 Hz ≥20 Hz ≤100 Hz
Future reference Not required Entire trajectory Prediction horizon
Accounting simulator limits No, manual tuning Yes Yes

2.8. Motion cueing errors
Grant and Reid [28] divided motion cueing errors into three categories, false cues, scale errors, and
phase errors. With respect to false cues, they found that scale and phase errors are less determinative
for the reduction of perceived fidelity. The definition of the error categories is provided below.
False cue: Type 1) is a motion cue in the simulator that has the opposite direction of the cue in the

aircraft. Type 2) is a motion cue in the simulator when that motion cue was not present in the
aircraft. Type 3) is a high-frequency distortion of a sustained cue, while only a sustained cue was
present in the aircraft.

Scale error: A motion cue with a scale error means that the actual motion cue in the aircraft is larger
than the motion cue in the simulator. The extreme case of a scale error is a missing cue.

Phase error: A motion cue in the simulator that has a delay with respect to the motion cue in the
aircraft. This can occur due to the MCA used and due to the limits of the simulator, for example,
the actuator velocities or accelerations.

With these definitions, it is possible to more precisely identify and classify the deficiencies of an MCA.
For example, this could be useful for tuning a MCA. Moreover, it could help to explain the results of
objective and perceptual motion cueing fidelity analyses.

2.9. Motion cueing algorithm evaluation and tuning
Methods to evaluate MCAs are mostly developed for filter-based MCAs such as the CW MCA. The
principle of these methods is based on the gain and phase distortions as a result of the CW tuning
parameters. Sinacori [29] was the first to come up with a motion fidelity criterion based on this principle.
The criterion indicated three fidelity regions (low, medium, high) for CW high-pass filters. These criteria
can be found in Figure 2.6a by the boxes indicated by a dashed line. Schroeder [30] proposed a modified
version of the Sinacori criterion, resulting in the Sinacori-Schroeder criterion depicted in Figure 2.6a.
Advani and Hosman [31], applied this principle to the transfer function of the entire motion system,
assuming it is linear. This resulted first in the Advani-Hosman criteria. Later, Hosman and Advani [32]
developed the Objective Motion Cueing Test (OMCT), a more extensive method to compare entire
motion systems of different simulators in the frequency domain.
Gouverneur et al. [33] reversed this principle and derived a method two tune the algorithm using the
Sinacori-Schroeder criterion. Gouverneur displayed the possible filter settings as a result of the gain
and break-frequency parameters onto the Sinacori-Schroeder criterion, resulting in Figure 2.6b. In this
way, an analysis could be performed for a certain motion scenario, that results in a region of allowable
CW filter settings to keep the simulator within its physical limits. In Figure 2.6b, the red lines indicate
the allowable filter settings for the respective motion scenario, meaning that the settings above and to
the left of these lines are possible.
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(a) The Sinacori-Schroeder fidelity criterion. The dashed line shows the
original fidelity criterion from Sinacori [29]. From Schroeder [30].

(b) Example Gouverneur analysis for multiple simulations runs. From
Gouverneur et al. [33].

Figure 2.6: The Sinacori-Schroeder criterion and a Gouverneur analysis example using this criterion.

2.9.1. Evaluating non-linear algorithms

Non-linear motion cueing algorithms can be evaluated by comparing the simulator output inertial signal
as a result of the simulator movement with respect to the reference aircraft motion. For this, metrics
can be used that are suitable for comparing signals. The Root Mean Square Error (RMSE) is a measure
to indicate the magnitude difference between two signals and is depicted in (2.16). Due to the squared
difference in this relation, large differences between two signals have relatively more effect on the RMSE
than small differences. Other studies that use the RMSE to objectively evaluate motion cueing can be
found in [34, 35, 21, 36].

𝑅𝑀𝑆𝐸 = √∑𝑁
𝑛=1 ( ̂𝑦𝑛 − 𝑦𝑛)2

𝑁 (2.16)

To identify the resemblance of two signals, meaning the shape similarity of signals, the Pearson Corre-
lation Coefficient (PCC) is used, as seen in (2.17). For this measure, only the difference in the shape
of the two signals that are compared has an influence on the value. The amplitude difference, in con-
trary to the RMSE, is not penalised. Therefore, the PCC is a good measure to indicate smaller shape
differences that are not properly reflected by the RMSE. Studies that also use the PCC to objectively
evaluate motion cueing can be found in [21, 36].

𝑃𝐶𝐶 ̂𝑦𝑦 = 1
𝑁 − 1

𝑁
∑
𝑛=1

( ̂𝑦 − 𝜇 ̂𝑦
𝜎 ̂𝑦

) (𝑦 − 𝜇𝑦
𝜎𝑦

) (2.17)

2.10. SIMONA Research Simulator
In this study, the SRS will be the use-case simulator. The name of the simulator, SIMONA, stands
for SImulation, MOtion and NAvigation which are the driving factors of the simulator’s design. The
main purposes of the simulator are research and education. Research topics include human perception,
human performance, aircraft handling qualities, flight control system design, interface design and air
traffic management. The cabin has a rough design that is not completely focused on one type of
vehicle. The components of the cabin consist of a combination of off-the-shelf and custom-made parts.
Touchscreen panels resemble a modern glass cockpit and can be programmed to display any kind of
instrumentation and images, which contributes to a flexible cabin design. In this way, it is possible to
easily switch between different aircraft types, helicopters and even cars. To further support different
aircraft types, the cabin provides a yoke as well as a sidestick. The simulator has a hydraulic hexapod
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motion system, which can be seen in Figure 2.7b. The outside of the SRS cabin and the collimated
mirror attached to the cabin can be seen in Figure 2.7a.

(a) SRS cabin and outside of visual system. (b) SRS motion system.

Figure 2.7: The SIMONA Research Simulator (SRS) of the Faculty of Aerospace Engineering, Delft University of Technology
(TU Delft).

The motion system can be described by the parameters depicted in Table 2.3. With these geometric
properties, the SRS has an available motion space defined from the neutral position that can be found
in Table 2.4.

Table 2.3: SRS motion system characteristics, from
Berkouwer et al. [8].

Parameter Value
Platform radius 1650mm
Base radius 1650mm
Upper gimbal spacing 200mm
Lower gimbal spacing 600mm
Minimum actuator length 2081mm
Maximum actuator length 3331mm
Upper buffer length 50mm
Lower buffer length 50mm
Operational actuator stroke 1150mm
Maximum actuator velocity 750mms−1

Table 2.4: SRS motion space, from
Berkouwer et al. [8].

DOF Minimum Maximum
Surge −981mm 1259mm
Sway −1031mm 1031mm
Heave −636mm 678mm
Roll −25.9° 25.9°
Pitch −27.3° 24.3°
Yaw −41.6° 41.6°

2.11. Chapter conclusions
This chapter is concluded with the answers to the first research question and its sub-questions and is
provided below.
RQ 1. How does motion cueing in a hexapod flight simulator work?

The principle of motion cueing is based on the human vestibular system that senses specific forces
and angular rates. A MCA is used to translate reference aircraft motion into a simulator control
input that drives the actuators of the hexapod motion system.
1a. How can you define the fidelity of a flight simulator?

In general, four types of fidelity can be defined, being, objective, perceptual, behavioural
and error fidelity. The objective fidelity indicates the difference between the aircraft and the
simulator. The perceptual and behavioural fidelity indicates the difference in how the pilot
perceives the simulator and behaves in the simulator. Finally, the error, or performance,
fidelity indicates the difference between the aircraft response and the response of the aircraft
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model used in the simulator as a result of the pilot control input.
1b. How can you define a hexapod motion system?

A hexapod motion system can be defined by six actuators connected two the base and upper
platform by 6 gimbals on each side. Inverse kinematics is used to derive the actuator lengths
from the position of the UGP location and the attitude of the upper platform.

1c. What type of motion cueing algorithms exist?
Two types of MCAs can be distinguished, being filter-based and optimisation-based MCAs.
The CW MCA is the most used filter-based algorithm. For optimisation-based, a real-time
suitable algorithm can be based on MPC.

1d. How can you evaluate motion cueing?
Filter-based MCAs can be evaluated by criteria such as the Sinacori-Schroeder [29], Advani-
Hosman [31] or the OMCT [32]. Non-linear MCAs can objectively be evaluated by among
others the RMSE and PCC.



Chapter 3

Model predictive control-based motion
cueing

In this chapter, the second research question posed in section 1.2 is answered.
How do MPC-based MCAs work?

The objective of this chapter is to identify the required theory and definitions to understand opti-
mal control and MPC-based MCAs. Furthermore, a literature review on how MPC-based MCAs are
implemented is presented.
In section 3.1, the basic principles and background of optimal control problems, the main building block
of MPC, are discussed. Subsequently, in section 3.2, the theory of numerical optimal control is presented
to derive a mathematical description that can be deployed for use in MPC. Then, in section 3.3, the
optimal control problem is taken to the real-time domain, resulting in the theory of MPC. Finally,
in section 3.4, previous studies about MPC-based MCAs are investigated and chapter conclusions are
presented in section 3.5.

3.1. Optimal control
Optimal control addresses the optimisation problems that arise from the control and scheduling of dy-
namical systems. According to Vinter [37], this field of research originated in the 1950s from among
others the need of solving orbital and flight mechanics optimisation problems that arose in space pro-
grams. In the years to now, optimal control has been applied in many more areas. Examples of current
use areas are process control, economics, aerospace, robotics and simulation. Vinter [37] describes opti-
mal control as an outgrowth of the mathematical analysis of minima and maxima of functions (calculus
of variations). However, compared to calculus of variations, optimal control additionally allows for new
types of constraints that can be included in the mathematical problem.
The basic idea of optimal control is to find the optimum set of control inputs to a dynamical system to
minimise an objective function or cost function that quantifies the difference between the desired system
output and the actual system output. The desired system output can be described as a reference signal
and can be seen as the input to the optimal control problem. The optimisation variables are the state
of the system and control input to the system. Moreover, constraints can be imposed on the system
state as well as control input.

3.2. Numerical optimal control
When applying optimal control in practice, the optimisation problem needs to be solved numerically
while the system dynamics are often given in continuous-time in the form of differential equations. The
general mathematical description of continuous time optimal control problems as defined by Rawlings

95
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et al. [38] can be found in (3.1). In this equation, the time horizon is defined by 𝑡 ∈ [0, 𝑇 ] where 𝑇 is the
length of the trajectory. The state and control input trajectories are 𝑥(⋅) and 𝑢(⋅), respectively. The
continuous time objective function is defined by a running cost, ℓ𝑐(𝑥(𝑡), 𝑢(𝑡)), also called the Lagrangian,
and an optional final state cost, 𝑉𝑓(𝑥(𝑇 )). The initial state is defined by (3.1b) and the system dynamics
are described by (3.1c). Path constraints imposed on the state and control input are defined by (3.1d)
and the final state constraint is defined by (3.1e).

minimise
𝑥(⋅),𝑢(⋅)

∫
𝑇

0
ℓ𝑐(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝑉𝑓(𝑥(𝑇 )) (3.1a)

subject to 𝑥(0) = 𝑥0 (3.1b)
̇𝑥(𝑡) = 𝑓𝑐(𝑥(𝑡), 𝑢(𝑡)), 𝑡 ∈ [0, 𝑇 ] (3.1c)

ℎ(𝑥(𝑡), 𝑢(𝑡)) ≤ 0, 𝑡 ∈ [0, 𝑇 ] (3.1d)
ℎ𝑓(𝑥(𝑇 )) ≤ 0 (3.1e)

Since the optimal control problem in (3.1) is in continuous time, the optimisation problem has infinite-
dimensional decision variables and an infinite number of constraints. To solve continuous-time optimi-
sation problems, it should, somewhere in the solving process, be discretised.

3.2.1. Direct optimal control parameterisation

Rawlings et al. [38], depicts direct parameterisation as the most widely used method and this will also
be the method used in the remainder of this study. This method first discretises the continuous-time
optimal control problem into a finite-dimensional optimisation problem of the general form shown in
(3.2). Thereafter, it can be solved by a Non-linear Programming (NLP) solver.

minimise
𝑤 ∈ ℝ𝑛𝑤

𝐹(𝑤) (3.2a)

subject to 𝐺(𝑥0, 𝑤) = 0 (3.2b)
𝐻(𝑤) ≤ 0 (3.2c)

Single shooting, multiple shooting and collocation are approaches of direct parameterisation. As direct
collocation will be the parameterisation used in the remainder of this study, it will be elaborated in this
section by determining the mathematical definition. However, because direct single shooting and direct
multiple shooting are the bases of direct collocation, it is needed to introduce these concepts to fully
understand the latter.

3.2.2. Direct single shooting

The first step in the direct parameterisation process is to parameterise the continuous time control
trajectory into a finite-dimensional vector u. Which defines the control trajectory by the set 𝑢(𝑡) =
𝑢̃(𝑡;u) for 𝑡 ∈ [0, 𝑇 ]. Secondly, the state trajectory defined by the set 𝑥(𝑡) = ̃𝑥(𝑡;u) for 𝑡 ∈ [0, 𝑇 ]. By
dividing the time horizon [0, 𝑇 ] into 𝑁 subintervals of the form [𝑡𝑖, 𝑡𝑖+1], the discretised control vector,
u = (u0, u1, ..., u𝑁−1), with on each interval the vector u𝑖 ∈ ℝ𝑚 has a dimension of 𝑛u = 𝑁𝑚. Moreover,
the initial state is defined by a discretised variable x0 ∈ ℝ𝑛.
With these definitions it is possible to discretise the path constraints, resulting in the definition of
single shooting. The mathematical definition of single shooting is presented in (3.3). Note that also
the initial (discretised) state vector, x0, in addition to the discretised control vector (u) are included
as optimisation variables in single shooting. The objective function is still dependent on the entire
discretised control vector u. This requires sequential solving by a NLP solver. The total amount of
decision variables is defined by 𝑛𝑤𝑠𝑠

= 𝑛 + 𝑁𝑚.
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minimise
x0,u ∫

𝑇

0
ℓ𝑐( ̃𝑥(𝑡; 𝑥0,u), 𝑢̃(𝑡;u))𝑑𝑡 + 𝑉𝑓( ̃𝑥(𝑇 ;u)) (3.3a)

subject to x0 − 𝑥0 = 0 (3.3b)
𝐻(x0,u) ≤ 0 (3.3c)

3.2.3. Direct multiple shooting

Multiple shooting builds upon single shooting with as the main difference that now also the state
trajectory is discretised in a finite-dimensional vector x. This vector x = (x0, x1, ..., x𝑁), with on
each interval the vector x𝑖 ∈ ℝ𝑛 has a dimension of 𝑛x = (𝑁 + 1)𝑛. This allows the inclusion of the
discretised state vector as an optimisation variable, which subsequently allows us to now also discretise
the objective function and to include the system dynamics as optimisation constraints. A benefit of
this is that it is possible to completely decouple the separate intervals, which allows parallel solving by
NLP solvers. The final mathematical description of multiple shooting is presented in (3.4). The total
amount of decision variables is defined by 𝑛𝑤𝑚𝑠

= (𝑁 + 1)𝑛 + 𝑁𝑚.

minimise
x,u

𝑁−1
∑
𝑖=0

ℓ𝑖(x𝑖, u𝑖) + 𝑉𝑓(x𝑁) (3.4a)

subject to x0 = 𝑥0 (3.4b)
x𝑖+1 = ̃𝑥𝑖(𝑡𝑖+1; x𝑖, u𝑖), for 𝑖 = 0, ..., 𝑁 − 1 (3.4c)
𝐻𝑖(x𝑖, u𝑖) ≤ 0, for 𝑖 = 0, ..., 𝑁 − 1 (3.4d)
ℎ𝑓(x𝑁) ≤ 0 (3.4e)

Compared to single shooting, multiple shooting has more decision variables. However, due to the
possibility of parallel solving, it is in general solved faster. Moreover, the integration of the system
dynamics and the minimisation of the objective function are now performed by the NLP solver, which
simplifies the implementation and increases performance.

3.2.4. Direct collocation

For direct collocation, each subinterval [𝑡𝑖, 𝑡𝑖+1] is further divided into 𝑀 collocation time intervals
allowing for a control parameter and internal state parameter on each collocation interval. In contrary
to multiple shooting, the resulting trajectories can be in the form of piecewise polynomials of the order
𝑀 − 1. Where the degree of precision can be controlled by the order of collocation 𝑀 . The piecewise
polynomials allow examining the trajectories at a sub-sample time scale.
For the mathematical definition of collocation, a new discretised internal state vector,X = [X0, ...,X𝑁−1],
with on each interval the vector, X𝑖 = [x𝑖,1, ..., x𝑖,𝑀 ], should be introduced that defines the state trajec-
tory at the collocation time points. Subsequently, the internal state vector is included as an optimisation
variable requiring the collocation conditions 𝐺𝑖(x𝑖,X𝑖, u𝑖) to be included as constraints. If interested,
the full definition of the collocation conditions as defined by Rawlings et al. can be found in [38]. The
full mathematical definition of direct collocation is depicted in (3.5). The total amount of decision
variables is defined by 𝑛𝑤𝑑𝑐

= ((𝑀 + 1)𝑁 + 1)𝑛 + 𝑁𝑚.
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minimise
x,X,u

𝑁−1
∑
𝑖=0

ℓ𝑖(x𝑖,X𝑖, u𝑖) + 𝑉𝑓(x𝑁) (3.5a)

subject to x0 = 𝑥0 (3.5b)
x𝑖+1 = 𝐹𝑖(x𝑖,X𝑖, u𝑖), for 𝑖 = 0, ..., 𝑁 − 1 (3.5c)
0 = 𝐺𝑖(x𝑖,X𝑖, u𝑖), for 𝑖 = 0, ..., 𝑁 − 1 (3.5d)
𝐻𝑖(x𝑖,X𝑖, u𝑖) ≤ 0, for 𝑖 = 0, ..., 𝑁 − 1 (3.5e)
ℎ𝑓(x𝑁) ≤ 0 (3.5f)

3.3. Real-time optimal control: model predictive control
If the continuous-time optimal control problem shown in (3.1) is taken to the real-time domain, it can
be called MPC. To do so, a time interval [𝑡𝑘, 𝑡𝑘+1], that determines the system’s control input rate, is
defined that divides the time horizon [0, 𝑇𝐾] into 𝐾 intervals. Note that for many real-time control
processes, the total duration of the process, as defined by 𝑇𝐾, and thus 𝐾, is not known or even goes to
infinity. However, in this study, it will be relevant to define the control process duration, since the MPC
algorithm will be taken back to the offline domain, as further elaborated in subsection 3.3.3. Moreover,
in this section, it is assumed that the length of the time interval [𝑡𝑘, 𝑡𝑘+1] is equal to the length of the
optimal control discretisation interval [𝑡𝑖, 𝑡𝑖+1] as defined in section 3.2.
The basic principle of MPC is now that every current time interval [𝑡𝑘, 𝑡𝑘+1], an optimal control problem
of the form found in (3.1) is solved. This optimal control problem determines the future control input
by minimising an objective function that penalises the difference between the predicted future reference
signal and the predicted future output of the system. Note that the future reference signal is a prediction
and will never be entirely equal to the real future reference signal since it is dependent on environmental
and possibly human factors. The length in time of the optimal control problem is called the prediction
horizon and is determined by the length of [𝑡𝑖, 𝑡𝑖+1] (and in this case thus [𝑡𝑘, 𝑡𝑘+1]) and the number of
intervals, 𝑁 , in the optimal control problem. After solving the optimal control problem of the current
time interval [𝑡𝑘, 𝑡𝑘+1], the resulting system state of the next time interval, 𝑥𝑡𝑘+1

, is set as the initial
condition for the optimal control problem of the next time interval [𝑡𝑘+1, 𝑡𝑘+2]. Note that in practice, the
initial condition of the system state is often set by a combination of a measured and calculated system
state, however, in this study, only the calculated system state will be used. A schematic representation
of the MPC algorithm can be seen in Figure 3.1

k = 0 ... k − 2 k − 1 k k + 1 k + 2 k + 3 k + 4 ... k + N ... k = K

Begin of horizon

Reference signal

Predicted output

Past output

Predicted control input

Past control input

Figure 3.1: Schematic representation of MPC.



3.3. Real-time optimal control: model predictive control 99

3.3.1. Stability

As MPC applied to constrained dynamical systems leads to non-linear control, Mayne et al. [39] pleads
for the use of Lyapunov stability theory in order to analyse stability. They note that the value function
(in this study also called cost or objective function) can be deployed as a Lyapunov equation for stability
analysis of MPC of time-varying, non-linear, constrained and discrete systems. Moreover, they propose
the main ingredients necessary for the open-loop optimal control problem used in MPC of non-linear
systems to ensure closed-loop stability. These are first, the implementation of a terminal constraint set
and secondly, the addition of a terminal cost to the value function. More recently, Rawlings et al. [38]
argues that when a terminal constraint set is not necessary, for example when the initial state lies in a
subset of the terminal state that is sufficiently small, it is desired to leave out the terminal constraint
set in the optimal control problem formulation. This will result in optimal control problems that are
easier and thus faster to solve.

3.3.2. Computational challenge

One of the major drawbacks and limiting factors of the real-time MPC implementation is the challenging
computational burden that comes with it. Three main steps in the algorithm can be depicted that should
be performed every time interval [𝑡𝑘, 𝑡𝑘+1]. This time interval determines thus the maximum allowable
computation time needed for every iteration of the MPC algorithm. The first step is the prediction
of the future reference signal. Secondly and more challenging is the parameterisation of the optimal
control problem. The last and most challenging part is solving the optimal control problem.
The computational complexity of the parameterisation and solving of the optimal control problem is
mainly dependent on the size of the optimal control problem. This is subsequently determined by
the prediction horizon length, expressed in the number of samples, and the complexity of the system,
which is dependent on the size of the state, control input and output vectors and the complexity of the
relationship between these vectors in the terms of for example non-linearities.
Increasing the time interval [𝑡𝑘, 𝑡𝑘+1] reduces the pressure on the calculations, moreover, decreasing the
prediction horizon length decreases the computational burden. However, many dynamical systems have
multiple-time-scale dynamics, meaning that both fast and slow dynamics are present in the system. If
the time interval is increased, the presence of fast (high-frequency) dynamics in the reference signal and
the control input trajectory and thus the system output is decreased. Furthermore, the amount of slow
(low-frequency) dynamics present in the control trajectory is captured by the prediction horizon length.
Christofides and Daoutidis [40] stress that not taking into account the multi-time-scale properties in the
control design can lead to undesired and low-performance system output and even unstable behaviour.
Additionally, Geyer [41] shows that an increase in prediction horizon length leads to better performance.
Tan et al. [42] presented a method to reduce the dimension of the optimal control problem and thus
the computational complexity of the MPC algorithm while remaining to take into account both the fast
and slow dynamics of a system. They proposed a prediction horizon with a non-uniform grid, meaning
that in the near future the prediction horizon is discretised with a smaller time interval and in the
distant future with a larger time interval. To deploy this method, care should be taken to properly use
the reference signal to avoid large discretisation errors. High-frequency components in the reference
signal near the end of the prediction horizon, where the discretisation grid is larger, can lead to largely
fluctuating values captured by the discretised intervals, which could result in undesired or unstable
behaviour. Thus, it might be required to filter high-frequency components out of the reference signal
in the distant future, appropriate to the discretisation grid.
Chen et al. [43] propose a method to decrease the computational complexity of the optimal control
problem while remaining the original small discretisation grid. This method, called move blocking, re-
stricts constant control input over a number of discretisation intervals that increases over the prediction
horizon. This leads to an optimal control problem with fewer decision variables while retaining the same
level of sparsity, resulting in lower computational complexity.
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3.3.3. Offline model predictive control

As already mentioned earlier, in this study, the MPC algorithm will be deployed in an offline fashion.
In this way, the need to execute the steps discussed in subsection 3.3.2 in a time duration equal to the
length of interval [𝑡𝑘, 𝑡𝑘+1] is factored out. This simplifies the software implementation and allows the
use of interpreter programming languages, while still being to offline mimic and analyse the algorithm
performance.
Restating that for the offline case, the end of the control process is known, resulting in a known number
of MPC intervals 𝐾. The time 𝑡𝐾 is then referred to as the final time. Additionally, the time indicating
the end of the current prediction horizon, 𝑡𝑘+𝑁 , is referred to as the terminal time. The reason why
a distinction is made between these points in time is to be able to define a terminal state and a final
state on which different constraints can be imposed. Note that when 𝐾 − 𝑘 ≤ 𝑁 , the terminal time
and final time coincide. Note that when 𝐾 − 𝑘 < 𝑁 , the length of the prediction horizon, and thus the
length in time of the optimal control problem is changed from 𝑁 to 𝐾 − 𝑘.
Note that for the offline case, no environmental or human influence is present on the reference signal,
resulting in perfect knowledge of the reference signal. With this perfect ”prediction” of the reference
signal for the entire prediction horizon, the best possible control trajectory achievable by the MPC
algorithm can be determined for a certain prediction horizon length. By increasing the prediction horizon
length to the total length of the control scenario, only one MPC iteration is obtained. This results in
a full-length optimal control problem, instead of an offline MPC algorithm. This in combination with
the perfect knowledge of the reference signal, results in the optimum control trajectory to reach the
desired system output. In the remainder of this study, this optimal control problem is referred to as
the ”Oracle”.
On the contrary, for the offline MPC algorithm, it is still possible to not assume perfect knowledge of
the reference signal for the prediction horizon. For example, the assumption can be made that only the
reference signal at the current time interval is known, which is normally the case in control processes.
The remainder of the horizon can then be filled with a reference signal based on the reference signal
at the current time interval. An example of this can be a constant ”prediction” for the entire horizon,
based on the current time interval reference signal. This is often also often applied for (real-time) MPC
implementation studies where no emphasis is put on predicting the reference signal [34, 21, 22].
To summarise, three different definitions are used in the remainder of this study that refers to either
MPC with a certain prediction strategy or a full-length optimal control problem. The definitions are
presented below.
Oracle Offline MPC algorithm where the prediction horizon length is equal to the entire control sce-

nario. This results in a single MPC iteration and is thus actually an optimal control problem.
This in combination with the perfect knowledge of the reference signal will result in the best ob-
tainable control trajectory for the control scenario. This is not feasible in real-time, since perfect
knowledge of the reference signal for the entire control scenario is required.

Perfect Offline MPC algorithm that assumes perfect knowledge of the reference signal for the entire
prediction horizon. This will result in the best obtainable control trajectory obtained through
MPC for a certain horizon length. This prediction strategy is not feasible in real-time, since
it will never be possible to perfectly predict the future reference signal for the entire prediction
horizon.

Constant Offline MPC algorithm that assumes knowledge of the reference signal for the current time
interval only. The remainder of the horizon is then filled with a constant reference signal that is
equal to the current time interval. This prediction strategy is feasible in real-time since it will
only require knowledge of the reference signal for the current time interval.

3.4. Model predictive control-based motion cueing algorithms
If MPC is applied to motion cueing, the optimal control problem is solved in real-time, and each time
step the optimal control problem optimises the simulator control input for the prediction horizon by
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minimising a cost function. The reference motion used by the MPC MCA, if applied to flight simulation,
will be the specific forces, angular rates and possibly angular accelerations as experienced by the pilot
in the aircraft. The output specific forces and angular motion of the simulator are a result of the
simulator state and control input. In this study, the reference aircraft motion and the output motion
of the simulator are called reference inertial signal and output inertial signal, respectively.

3.4.1. Reference motion prediction

In flight simulation, specific forces and angular motion of the aircraft are obtained in real-time from an
aircraft model and are dependent on the control input of the pilot. Current flight simulators, equipped
with a CW MCA, only require the current output of the aerodynamic model. On the contrary, MPC-
based MCAs require a reference motion for the entire prediction horizon, which will be dependent on
the future control behaviour of the pilot. In this study, the focus will not be on predicting the pilot
control behaviour. Luckily, more prediction strategies are possible without requiring the prediction of
the future control input of the pilot. An example of this, as already mentioned in subsection 3.3.3,
could be a constant prediction, equal to the current time step, over the entire prediction horizon.

3.4.2. Sensory models
Sensory models, also often called vestibular models, are models that try to simulate the human otolith
and semicircular canals. The idea of these models is to obtain the specific forces and angular rates
as perceived by the pilot from the actual specific forces and angular rates applied to the pilot’s head.
These vestibular models can be linear transfer functions as well as non-linear functions. In the coming
sections, the presented MPC-based MCAs often include a sensory model. However, during this study,
sensory models will not be included. The reason for this is that in this study the effect of applying
a MPC-based MCA compared to CW MCA is investigated. Therefore, assumptions made in sensory
models that would be included in the MPC algorithm and not in the CW algorithm, could affect the
outcome of the offline analysis presented in Appendix 5 and the experiment elaborated in Appendix 6.

3.4.3. Early implementations

The increasing popularity of the use of MPC-based MCA originated from the use of the algorithm
in driving simulators. The first implementation of a real-time MPC-based MCA was developed by
Dagdelen et al. [17], which was implemented in the RENAULT ULTIMATE driving simulator for a
2-DOF problem for simplicity. This MPC-based MCA was designed with the simulator motion space
constraints defined in Cartesian coordinates and was completely linear. Additionally, human threshold
constraints were implemented for the deceleration artefacts that arise when the physical limits of the
simulator were approached. The MPC-based MCA showed more usage of the available motion system
during a five-minute drive. Moreover, a first experimental test showed that drivers subjectively preferred
the algorithm over a CW reference.
Garret and Best [18] were the first to introduce a real-time MPC-based MCA with motion space con-
straints based on the actuator length limits of the hexapod motion platform instead of constraints
defined in Cartesian coordinates. However, deriving the actuator lengths from the motion platform
state, so-called inverse kinematics, introduces time-varying non-linearity to the system, leading to an
increase in computational complexity. Therefore, Garret and Best assumed that the velocity variation
with the position of the actuators was constant over the prediction horizon, resulting in a Linear Time-
invariant (LTI) model. To further decrease the computational burden, the DOFs were split up into two
tilt-coordinated pairs and two single-DOF channels. Furthermore, vestibular models have been included
in the MPC formulation. Offline analysis of this algorithm showed better tracking of the ”perceived”
vehicle motion compared to a CW MCA, resulting in higher objective fidelity. Furthermore, during
driver-in-the-loop experiments, the algorithm was rated better than the CW reference.
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3.4.4. State-of-the-art

The state-of-the-art in MPC-based MCAs is in this report defined as non-linear and real-time feasible
algorithms. Studies using this type of MCA are investigated on among others the prediction horizon
length, sample time, prediction strategy used and cost function definition.
Katliar et al. [34, 35] were the first to present a real-time non-linear time-varying MPC-based MCA
implemented for the cable robot simulator and the 8-DOF Robot simulator. In this algorithm, a sample
time of 0.05 s is used, resulting in feasible prediction horizon lengths up to 3 s. Furthermore, the cost
function includes terms on the simulator state and terminal state, the control input and the inertial
signal incongruence. Katliar et al. [44] also studied the influence of the prediction horizon length on the
motion cueing fidelity during offline analysis.
Grottoli et al. [20] executed an objective evaluation of an MPC-based MCA. They compared the outcome
of an MPC-based MCA with a prediction strategy with perfect knowledge of vehicle trajectory and a
prediction strategy with a constant prediction with the reference vehicle motion. During this study,
a prediction horizon of 5 s was used in combination with a sample time of 0.1 s. The cost function
included terms on the simulator state and terminal state, the control input and the difference between
the reference inertial signal and the output inertial signal.
Van der Ploeg et al. [21] performed an offline sensitivity analysis on the lateral specific force error weight
and the roll rate error weight, followed by an experiment. They discovered a very high correlation
between the continuous perceived motion cueing fidelity rating of the experiment participants and the
RMSE of the lateral specific force and roll rate cues. In this study, a short prediction horizon of 2 s was
used in combination with a sample time of 0.1 s. Moreover, terms on the simulator state and terminal
state, the control input and the difference between the reference inertial signal and the output inertial
signal were included in the cost function.
Cleij et al. [22] performed a human-in-the-loop simulator experiment to compare two MPC-based MCAs
with different cost function weight settings. The baseline weight setting was equal to the weights used
in [44]. The newly proposed weights were derived with the help of a Motion Incongruence Rating (MIR)
model from Cleij [7]. The cost function contained terms penalising the control input, state, terminal
state, and the difference between the reference and output inertial signal. A constant prediction strategy
was used and a prediction horizon length of two seconds was chosen. No sensory model was used in this
study. Contrary to expectations, the majority of the participants preferred the baseline weights over
the optimised weights.
Lamprecht et al. [23] recently compared a MPC-based MCA with a classical filter-based MCA. They
performed a driver-in-the-loop experiment in the Daimler driving simulator. In real-time, with a sample
time of 4ms, they were able to predict the driver control input to obtain a reference inertial signal for
a prediction horizon of 4 s. Moreover, during this time interval, the reference inertial signal was passed
through a sensory model and the simulator control input was determined with the MPC algorithm.
No terminal state cost was included in the cost function. The subjective ratings obtained during the
experiment resulted in a high preference for the MPC-based MCA compared to the classical filter-based
MCA.

3.4.5. Particular implementations

Qazani et al. [45] implemented a decoupled MPC-based MCA, meaning that two MPC-based MCA
were used in parallel. These MPC-based MCAs were used to cue the motion sensed human semicircular
canals and the human otolith organs separately. The algorithms were both linear and included linear
vestibular models of the otolith and semicircular canals. Moreover, the output of the separate algorithms
was fed back into each other. Offline analysis showed that the decoupled algorithm, compared to the
equivalent coupled algorithm, resulted in better RMSE and PCC values and thus higher objective
fidelity. Qazani et al. [46, 47] also implemented a time-varying MPC-based MCA with constraints on
the joint limitations and, moreover, a linear time-varying algorithm with linearised inverse kinematics.
In both studies, vestibular models were used. Furthermore, a sample time of 0.01 s and a prediction
horizon of 150 samples were used. In these studies, only offline analysis was performed.
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Bukal et al. [48] proposed an adaptive real-time MPC-based MCA with the motion gains included as an
optimisation variable. The algorithm included linearised human perception and actuator models and was
applied to driving as well as aircraft simulation. Offline analysis showed that ”good” motion cueing was
achievable by the algorithms provided that accurate reference motion was available. Kushro et al. [36]
proposed a different version of an adaptive MPC-based MCA with the error weights increasing when
reaching the bounds of the optimisation constraints. This algorithm was non-linear due to the actuator-
based constraints and included linear vestibular models. Again, this algorithm was only analysed offline
while using a sample time of 0.01 s and a relatively short prediction horizon of 50 samples. The results of
this analysis showed fewer false and missing cues compared to a CW MCA and better reference motion
tracking.

3.5. Chapter conclusions
RQ 2. How do MPC-based MCAs work?

If MPC is used for motion cueing, an optimal control problem is solved in real-time by optimising
an objective function to find the control input of the simulator. To do this, reference vehicle
motion as a result of the pilot/driver control behaviour is used, which are specific forces and
angular motion.
2a. What is optimal control?

Optimal control is a type of optimisation problem that tries to find the optimal control input
trajectory to match the system’s output to a reference signal.

2b. How can a continuous-time optimal control problem be parameterised into a numerical finite-
dimensional optimal control problem?
A continuous-time optimal control problem can be parameterised into a numerical finite-
dimensional problem with the help of direct parameterisation techniques. Examples of this
are single shooting, multiple shooting and collocation. Multiple shooting and collocation are
preferred for MPC since these allow for parallel solving, decreasing the computation time.

2c. What is MPC?
MPC is a control strategy where every time interval an optimal control problem is solved
that results in the system control input for the next time interval.

2d. How is MPC used for motion cueing?
The use of MPC for motion cueing is mainly applied for driving simulation applications and
is limited to the use in research. Recently, fast real-time implementations (sample time of
4ms) including driver prediction and sensory models are shown to be feasible for prediction
horizon lengths of 4 s.



Chapter 4

Upset Prevention and Recovery
Training simulation

In this chapter, the literature review for answering the fourth research question posed in section 1.2 is
presented.

How are FSTDs currently used for UPRT?

The objective of this chapter is to identify what requirements and shortcomings exist for UPRT in
FSTDs. Furthermore, training scenarios relevant to UPRT and useful for the analysis in Appendix 5
and the proposed experiment in Appendix 6 are investigated.
First, the requirements for the use of FSTDs for UPRT are identified in section 4.1. Thereafter, in
section 4.2, the definition of the FSTD Training Envelope is given and the effect of extended aerodynamic
models is investigated. Relevant training sequences and scenarios that are used in UPRT are explored
in section 4.3. Subsequently, in section 4.4, the methods of how the training scenarios are used for
and implemented into UPRT. Thereafter, the focus will be shifted towards motion cueing for UPRT in
section 4.5, where first the importance and difficulties are discussed, followed by an overview of previous
studies about motion cueing for UPRT.

4.1. Upset and stall training in flight simulators
The Simulation of Upset Recovery in Aviation (SUPRA) project by Groen et al. [49] was a project
funded by the European Union with the goal of enhancing UPRT in FSTDs. They pointed out the
disadvantages of in-aircraft UPRT, being safety, costs and time. The implementation of UPRT into the
pilot training curriculum and these disadvantages of in-aircraft UPRT, led to FSTDs being a substantial
training platform. However, the usefulness of simulator UPRT is dependent on multiple factors. Advani
and Field [50] already pointed out the requirements for FSTDs a decade ago, being a representative
aerodynamic model, a suitable Instructor Operator Station (IOS), relevant training scenarios, pilot
control authority, stall buffet, motion feedback and upset forcing functions. While they note that
most of these requirements were satisfied with minor changes to (existing) FSTDs, for example, stall
buffet motion implemented as a special effect and the use of active stick shakers, the representative
aerodynamic model and motion feedback requirements are more difficult to meet. This has led to
research being done into the influence of aerodynamic models and motion cues during UPRT in FSTDs,
which will be discussed in the coming sections [51, 52, 53, 54, 55, 56, 49, 16, 57, 58, 59, 11, 60, 61].

4.2. FSTD Training Envelope
Although Advani, Field and Schroeder [50, 4] stress that most upsets occur inside the normal flight
envelope, recovery may lead to high load factors and large aerodynamic angles. The latter causes the
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problem that the pilot, during upset recovery in a FSTD, may find him- or herself on or over the edges
of the normal flight envelope. Furthermore, training to recover from aircraft stalls will always occur
outside the normal flight envelope. Simulating these trajectories with an unsuitable and not-validated
aircraft model can lead to unrealistic aircraft behaviour and possibly a negative transfer of training.
The flight envelope can be defined by the load factor, the airspeed, the angle of attack, and the angle
of sideslip and is dependent on aircraft configuration and altitude. An example flight envelope from
Advani and Schroeder [4] can be seen in Figure 4.1.
For this reason, EASA published FSTD certification specification relating to the fidelity of extended
aerodynamic models used for UPRT [62]. The FSTD Validation Envelope, as defined by EASA and
originally by the ICAO, consists of three parts. The first part is the Flight-test-validated region of the
aerodynamic model, which will have the highest obtainable fidelity. The second part is the Wind tunnel
and/or analytical region, which will have lower but reasonable fidelity compared to the first region. The
third part is the Extrapolated region, which has the lowest fidelity and within this region, there is low
confidence that the model will behave as the real aircraft. The various confidence regions can be seen
in Figure 4.1b.
A second definition, the FSTD Training Envelope, is defined by EASA [62] as the first two parts of
the FSTD Validation Envelope, that is the Flight-test-validated region and the Wind tunnel and/or
analytical region, and should thus not contain extrapolated data. For UPRT in FSTDs, EASA obliges
to stay within this envelope to avoid negative transfer of training.

(a) Example 𝑉 -𝑛 diagram. (b) 𝛼-𝛽 diagram with the three aerodynamic model confidence regions.

Figure 4.1: 𝑉 -𝑛 and 𝛼-𝛽 diagram with the various aerodynamic model confidence regions presents for the latter, from Advani
and Schroeder [4].

4.2.1. Effect of extended aerodynamic models

During the already earlier mentioned SUPRA project, an extended aerodynamic model for the stall/post-
stall flight envelope of a generic large category aircraft was developed with Computational fluid dynamics
(CFD) and wind tunnel data and validated by a pilot-in-the-loop experiment [57]. The evaluation of the
model was performed inside and outside the normal flight envelope. For both evaluations, guided free
flight was performed, where the pilots were required to fly a set of manoeuvres, as well as scenario-based
upsets, where only upset recovery was required. The model was evaluated by the pilots as ”acceptable”.
Consistent comments provided were the model being sensitive in roll and the little phugoid/speed stabil-
ity observable for normal flight manoeuvres. For the manoeuvres outside the normal flight envelope, the
very realistic stall buffet and lateral-directional instability were praised and the nose-down unloading
tendency was criticised.
Schroeder et al. [58] performed a pilot-in-the-loop experiment in a certified FSTD assessing the influence
on the transfer of training of applying different Boeing 737 (stall) models for UPRT. The key point of
this study was to investigate to what extent stall models are required to meet civil transport UPRT
objectives. Four different models were used in this study, each created with different resources resulting
in varying fidelity. The first model was a 737-800 FSTD model derived from a Boeing data package with
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added stall buffet, which was validated until stick-shaker activation. The second model was developed
by Bihrle Applied Research using CFD, scaled wind tunnel data and test pilot input. The third model
was developed by Boeing using 737-800 flight test data from hundreds of fully developed stalls and
turning flight stalls. Unpredictable roll-of was ensured by adding randomised asymmetric components
to this model. The fourth and final model was equal to the first model with in addition only the
randomised asymmetric components of the third model. The models were first assessed by nine test
pilots, they concluded that the stall buffet was less present in the simulation compared to the aircraft,
even after doubling the buffet response. After that, 45 airline pilots performed the experiment for only
the first three models. Although no specific preference for one of the models used in the experiment was
given by the airline pilots, differences in roll angles (smaller roll angles for the first model) and required
recovery times (larger for the second model) were discovered. The airline pilots were all able to train
to proficiency, regardless of the model used.
A very similar study was performed by Grant et al. [11]. The main differences were the use of a T-tailed
turbo-prop with a stick pusher model, the control over the fidelity of the different models used in the
experiment by the experimenters themselves, and the use of a Flight Research Simulator (FRS). In this
study, three models were used. The first model was created by Grant et al. [59] from certification flight
test data and wind-tunnel data, the second and third models were other versions of the first model
with exaggerated and milder stall characteristics, respectively. The outcome of the experiment was in
line with the study by Schroeder et al. [58], and the fidelity of the model had an insignificant effect
on recovery performance. The pilots indicated being able to recover from a real in-aircraft stall event,
independent of the model used for training. The pilots had difficulties distinguishing between the three
models, except for the degree of roll-off during the stall. Although not mentioned in the paper, the
outcome of the experiment could be explained by questioning whether the classical MCA used in this
study was capable to translate the different models into good enough and distinguishable motion cues.

4.3. Training sequences and scenarios
In the Airplane Upset Prevention & Recovery Training Aid (AUPRTA) published by International
Civil Aviation Organization (ICAO) [63] recommended training sequences by major aircraft Original
Equipment Manufacturers (OEM) are presented and divided into seven groups, being:

1. Aircraft handling characteristics;
2. Upset recognition and recovery;
3. Stall;
4. Environmental factors;

5. Wake vortex;
6. Mechanical/system-induced;
7. Pilot factors.

Since not all these training sequences will be relevant or helpful to identify the importance, difficulties,
and effect of motion cueing or the usefulness of a new MCA, a selection of training sequences has been
made for this study. This selection includes the second and third sequences, being Upset recognition
and recovery and Stall, respectively. In the coming sections, only training scenarios relevant to these
training sequences will be presented. Furthermore, training scenarios related to the third and fourth
training sequences, Environmental factors and Mechanical/system-induced, will only be included when
used as a forcing function, for example, wind shear to put the aircraft in an upset of the second training
sequence.
Training scenarios that are assigned by the ICAO to the Upset recognition and recovery training se-
quences are nose high, nose low, and spiral dive upsets. For the Stall training sequence, ICAO recom-
mends a clean configuration stall, take-off stall with partial flaps, landing configuration stall, and stick
pusher demonstration. IATA agrees with these recommendations and refers to the AUPRTA training
sequences and scenarios in their UPRT manual [64]. In this manual, IATA stresses that these training
sequences should be used in combination with the recommended UPRT of the respective aircraft OEM.
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4.3.1. Scenarios required by regulations and for certification

Since the ED Decision 2019/005/R [65], EASA distinguishes between basic UPRT, advanced UPRT
and type-specific UPRT. The main differences between the basic and advanced courses are that for the
advanced course it is mandatory that the training exercises are executed in-aircraft and that additional
instructor qualifications are required. Type-specific UPRT is dependent on the respective aircraft OEM
recommendations and is often performed in FSTDs. Scenarios included in type-specific UPRT are
mostly in accordance with the basic and advanced UPRT scenarios, however, then performed with the
respective aircraft (FSTD). All these three UPRT courses are required for the MPL and thus Airline
Transport Pilot License (ATPL) licenses. For the CPL license, only basic UPRT and type-specific (if
applicable) courses are required [65]. Scenarios that are relevant to training sequences Upset recognition
and recovery and Stall as defined by ICAO, that are included in the basic UPRT course are nose-
high attitudes at various bank angles; nose-low attitudes at various bank angles including spiral dive;
and stall events at take-off, clean, and landing configurations. Training scenarios that are included in
the mandatory in-aircraft advanced UPRT course are nose high, nose low, spiral dive, stall event, and
incipient spin upsets. Both these basic and advanced UPRT course descriptions are given in Amendment
7 of the EASA Part-FCL [15].
For the certification of FSTDs, EASA composed a set of training scenarios for which the FSTD should
be evaluated. These scenarios are specified in the CS-FSTD(A) [62] and include a nose-high wings
level aeroplane upset, a nose-low aeroplane upset, and a high bank angle aeroplane upset. Furthermore,
either a stall approach and entry at wings level event or a stall approach and entry in turning flight of
at least 25° bank angle event should be evaluated.

4.3.2. Scenarios included in previous studies
Advani and Field [50] derived an advisory set of important scenarios containing unusual attitudes, pre-
stall, accelerated stall, nose low stall, high altitude stall, stall with yaw present, stall break, incipient
spin, and developed spin. In a later study, Advani and Schroeder [4] advised additional and more
specific upset scenarios to be implemented in UPRT, being pitch trim runaway during take-off, and
recovery from overbank.
Fucke et al. [5], as part of the SUPRA project, categorised the UPRT scenarios into 3 categories, being
unusual attitudes, approach to stall and stall scenarios, with each category containing a subset of about
4 scenarios that were analysed individually.
In an early study of Chung [51], a large roll upset of more than 100 degrees and a large pitch upset
of over 50 degrees were evaluated. Liu and Grant [54] used five scenarios in their study that were
derived from actual accidents, a stall with full thrust and full nose-up trim during approach, a milder
stall during approach, a large roll upset, a large attitude upset due to jammed rudder, and a nose-low
upset due to wind shear. Ko and Grant [55] used identical scenarios in their study in addition to a
new pilot-induced stall scenario. Schroeder et al. [58] and Zaal [61] focused on stall scenarios in their
experiments, whereas Schroeder et al. [58] used stall scenarios at low, medium and high altitudes.

4.3.3. Summary and definition of upset and stall scenarios

The scenarios mentioned in subsection 4.3.1 and subsection 4.3.2 are summarised with their relation to
EASA regulations, FSTD certification, and previous research in Table 4.1. From this table, it is possible
to derive the most important and relevant scenarios for simulator UPRT and which thus should be used
for the analysis in Appendix 5 and the experiment of which the design is presented in Appendix 6.
The incipient spin scenario that is required for the advanced UPRT course and not for the basic UPRT
course would not be very relevant since it is required by EASA [15] that advanced UPRT is performed
in-aircraft. Moreover, this scenario is not required by EASA [62] for FSTD certification. The same goes
for the developed spin scenario, which is not required by regulations or for certification. Both these
scenarios are recommended by Advani and Field [50], however, they do not specify if these scenarios
should be included in simulator UPRT.
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The spiral dive scenario is not required for FSTD certification and is not included in any of the research
presented earlier. Since it is required for the basic and advanced UPRT courses, it is considered in this
study as somewhat relevant for simulator UPRT, but less than the scenarios treated next.
All the remaining scenarios (nose high, nose low, high bank, stall, accelerated stall) are required by
EASA [15, 62] for the basic and advanced UPRT courses and for FSTD certification. Additionally, these
scenarios are considered useful in various studies [5, 54, 50, 55, 58, 4, 61]. These scenarios are, therefore,
considered very relevant and useful for simulator UPRT and thus for the analysis in Appendix 5 and
the experiment presented in Appendix 6.

Table 4.1: Upset and stall scenarios and their relation to EASA regulations, FSTD certification and previous research.

Scenario Specified in regulations Used for FSTD
certification

Included in previous
research

Nose high Basic & Advanced UPRT [15] Yes [62] Yes [51, 5, 50, 4]
Nose low Basic & Advanced UPRT [15] Yes [62] Yes [51, 5, 54, 50, 55, 4]
High bank Basic & Advanced UPRT [15] Yes [62] Yes [51, 5, 54, 50, 55, 4]
Spiral dive Basic & Advanced UPRT [15] No No
Stall Basic & Advanced UPRT [15] Yes [62] Yes [5, 54, 50, 55, 58, 4, 61]
Accelerated stall Basic & Advanced UPRT [15] Yes [62] Yes [5, 50, 4]
Incipient spin Advanced UPRT [15] No Yes [50]
Developed spin Not specified No Yes [50]

The definitions of the scenarios mentioned in subsection 4.3.1, subsection 4.3.2 and Table 4.1 are pre-
sented below.
Nose high - Fucke et al. [5] define a nose high upset as a situation where the aircraft pitch attitude

is around 30° nose up. This can be in combination with wings level, or with various bank angles
between 45° and 90°.

Nose low - Fucke et al. [5] define a nose low upset as a situation where the aircraft pitch attitude is
around 25° nose down. This can be in combination with wings level, with various bank angles
between 45° and 90°, or with inverted bank angles larger than 90°.

High bank - Fucke et al. [5] define a high bank upset as a situation where the aircraft bank angle is
between 45° and 90° in combination with a pitch angle around 0°.

Spiral dive - EASA [15] defines a spiral dive upset as a high bank angle descending turn with the
aircraft in a nose-down attitude resulting in rapidly increasing airspeed and load factor.

Stall - EASA [15] defines a stall as the loss of lift caused by exceeding the aircraft’s critical angle
of attack. A stall can exist at any attitude and airspeed and may be recognised during the
approach to stall by a stick pusher, stick shaker, stall buffeting, lack of pitch authority and/or
roll control, and inability to arrest the descent rate. Stall scenarios include stall during take-off,
clean configuration (high altitude), and approach.

Accelerated stall - EASA [62] defines an accelerated stall as the loss of lift caused by exceeding the
aircraft’s critical angle of attack during a coordinated turn of at least 25° due to the increase of
load factor caused by applying a positive pitch-up moment. Due to the increased load factor, an
accelerated stall occurs at an increased airspeed compared to a normal stall.

Incipient spin - EASA [15] defines an incipient spin as a transient flight condition in the post-stall
regime where an initial, uncommanded roll in excess of 45° has resulted from yaw asymmetry, for
example in an uncoordinated turn, during a stall and which, if recovery action is not taken, will
lead rapidly to a developing spin. Prompt recovery during this incipient spin stage will normally
result in an overall heading change from pre-stall conditions of not more than 180°.

Developed spin - EASA [15] defines a developed spin as a situation where the aircraft is in the post-
stall regime and has achieved approximately a constant pitch attitude, yaw rate and roll rate on
a descending flight path. In the transition from a stall with significant and persistent yaw to
attaining a developed spin, the aircraft is likely to have rolled through at least 540°.
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4.4. Training methods
There are two main methods of how the scenarios presented in section 4.3 are used for UPRT. The first
method is Scenario-Based Training (SBT) and focuses on the prevention of upset scenarios. SBT makes
use of dynamical scenarios, starting in normal flight, and where the upset is often triggered by external
(environmental, mechanical) forces which only result in a full upset when incorrect or late measures are
taken by the pilot. The training objective as defined by IATA [64] is that pilots should recognise and
manage the threats and take appropriate and timely measures, using all pilot competencies.
Maneuver-based Training (MBT) is the second method and serves only upset recovery training. During
this type of training, it is assumed that prevention was not successful and that the aircraft is in an
upset. The training, therefore, starts after establishing the aircraft upset. IATA [64] defines the training
objective of MBT for pilots to analyse the current situation, give initial control inputs, recover from
the upset, and return to the original normal, stabilised flight path. Pilot competencies used during this
type of training are mainly situation awareness, flight path management, manual control and multi-crew
aircraft communication.
Both these methods can be used in FSTD training as well as in-aircraft training. ICAO [63] stresses
that when upset training is performed in FSTDs, it is of importance that the instructor has knowledge
of the FSTD deficiencies during UPRT and communicates these deficiencies towards the trainees. Basic
and advanced UPRT will mainly be performed in-aircraft, in contrast to type-specific training, which
will mostly be in FSTDs. During type-specific training, stall training is often treated separately from
upset training and is always performed as SBT. This includes the three flight phases, normal flight,
approach to stall, and fully developed stall. The focus during this training in FSTDs is on prevention
and often a fully developed stall is only treated for demonstration purposes.

4.5. Motion cueing for upset scenarios
According to Ko and Grant [55], current FSTDs’ motion systems are commonly driven by a CW MCA.
As already explained in section 2.7, this type of MCA is a sub-optimal motion filter that is limited in
reproducing the motion cues experienced in real aircraft. This raises the question of to what extent the
generated motion cues are useful for UPRT, or flight simulation in general.
De Winter et al. [66] performed a meta-analysis of 24 transfer of training experiments, assessing the
effectiveness of whole-body flight simulator motion. This analysis showed an overall preference for
motion. The effect of motion was stronger for novice pilots compared to intermediate pilots and not
present for expert pilots. Furthermore, for control tasks with external disturbances and control tasks
with low or unstable dynamics, the motion had a positive effect on the transfer of training. In a later
study, Zaal and Mobertz [67] used two hexapod motion conditions to compare the effect of motion on
training for a multi-axis control task. Although neither the baseline nor optimised motion conditions
could be unambiguously chosen as the best motion condition for this training task, the optimised
condition resulted in better disturbance-rejection performance. If these results are projected onto UPRT
training, a reserved conclusion can be made that motion can be effective for upsets that can be compared
to disturbance tasks, and stalls, which contain unstable aircraft dynamics.

4.5.1. Challenges of upset motion cueing

Chung [51] was one of the first to publish a preliminary investigation about motion cueing for UPRT
in FSTDs. He questioned whether a positive transfer of training was possible in these devices, with
or without an active motion system. While not answering his posed question, he did identify motion
cueing limitations for classical MCAs, related to large-amplitude UPRT motion scenarios. He identified
two key problems, the first one being the cueing of sustained specific forces, taking up almost all motion
space and leaving no room for other cues. Secondly, the introduction of lateral specific force false cues
during large roll motions, resulting in a trade-off between angular and translational motion cues.
According to Zaichik et al. [52], the high-frequency washout of a CWMCA resulted in false opposite-sign
accelerations and angular rates during large-amplitude motions. Furthermore, in line with Chung [51],
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they pointed out that large angular motions introduce false specific force cues.
Fucke et al. [5] estimated the magnitude of the aircraft accelerations and angular rates for unusual
attitude and stall upsets based on expert analysis and experience with in-flight recovery. In Figure 4.2,
the estimated aircraft accelerations and angular rates for nose high and nose low upsets with various
bank angles are presented for both approach and recovery. The estimated linear accelerations and
angular rates for approach and recovery of stalls and accelerated stalls are displayed in Figure 4.3.

linear accelerations (𝑔) angular rates (∘𝑠−1)

(a) Nose-high, including wings-level and bank angles between 45° and
90°.

linear accelerations (𝑔) angular rates (∘𝑠−1)

(b) Nose low, including bank angles between 45° and 90° and inverted
bank angles larger than 90°.

Figure 4.2: Estimated aircraft accelerations and angular rates for nose high and nose low upsets with various bank angles for
both approach and recovery, from Fucke et al. [5].

linear accelerations (𝑔) angular rates (∘𝑠−1)

(a) Stall

linear accelerations (𝑔) angular rates (∘𝑠−1)

(b) Accelerated stall

Figure 4.3: Estimated aircraft accelerations and angular rates for stalls and accelerated stalls for both approach and recovery,
from Fucke et al. [5].

Thus, the challenges of upset and stall motion cueing arise mainly due to the, compared to normal
flight, larger amplitude and longer duration aircraft accelerations, potentially leading to larger and
sustained specific forces and angular rates to be cued. The first challenge is to leave sufficient motion
space for other cues when sustained specific forces are cued. The second challenge is the minimisation
of specific force false cues when large-amplitude angular motion is cued. The third and final challenge
is to minimise the false cues that appear due to high-frequency washout of a (CW) MCA.

4.5.2. Motion cueing algorithms used in previous studies

Zaichik et al. [56] optimised a CW MCA with the focus on g-loading (specific forces), resulting in
an MCA that was positively assessed by pilots and which contributed to better pilot control activity.
Furthermore, Zaichik et al. [60] analysed available motion fidelity criteria for UPRT motion cueing.
They concluded that only for the upset approach, for example, approach to stall, the Sinacori-Schroeder
criteria, based on phase and gain distortions, could be used.
As part of the SUPRA project, Field et al. [16] developed an extension to the CW MCA. This extension
was a pre-positioning module, bringing the simulator to a not-neutral position before a large amplitude
motion was expected, resulting in more available actuator travel for the simulator. Although there was
no difference in pilot performance, the adjusted MCA was subjectively rated better by the pilots and
objective analysis showed improved matching with onset cues. Furthermore, no negative effect on the
pilot control behaviour was discovered during this experiment compared to the same training scenario
in fixed-base simulation.
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Ko and Grant [55] were the first to exploit an adaptive MCA for the use in UPRT. They conducted
a pilot-in-the-loop experiment and concluded that false lateral specific force cues should be minimised,
resulting in less angular motion. However, when the aircraft became unstable, no preference was
seen due to the angular motion being a helpful cue for controlling the aircraft. Zaal [61] performed
six experiments with an MCA similar to Ko and Grant. He concluded that, due to this enhanced
MCA, pilot performance was increased. This included lower maximum roll angles, fewer stick shaker
activations, higher minimum load factor and maximum calibrated airspeed. Although improvement in
motion cueing fidelity was present, Ko and Grant and Zaal both pointed out that the UPRT motion
cueing difficulties depicted by Chung were still present and that further research is required.
Wu et al. [68, 69] applied an MPC-based MCA to an UPRT motion scenario with as goal to improve the
motion cueing fidelity. The results in the paper show better tracking of the reference signal compared to
a classical MCA. However, only a few results are presented and little detail about the MPC formulation
is given in these papers, which makes these papers less useful for this study.

4.6. Chapter conclusions
The conclusion of this chapter is provided by giving the answer to the third research question and its
sub-questions and is presented below.
RQ 3. How are FSTDs currently used for UPRT?

FSTDs are used for generic as well as type-specific UPRT. Both upset and stall scenarios are
performed in FSTDs. The various training scenarios can be implemented by two training methods,
being Maneuver-based Training (MBT), mainly for recovery skills and Scenario-Based Training
(SBT) for training upset prevention and training to take adequate and appropriate measures.
Upset scenarios are used for MBT and SBT and stall scenarios are solely implemented as SBT.
3a. To what extent are extended aerodynamic models required for UPRT in FSTDs?

Extended aerodynamic models are required by regulations as specified by the EASA. Three
aerodynamic model confidence regions are defined by EASA: the Flight-test-validated region,
the Wind tunnel and/or analytical region, and the Extrapolated region. The first two regions
define the FSTD training envelope. Previous studies showed that the effect of extended
aerodynamic models compared to normal aerodynamic models is minimal.

3b. What training scenarios should be simulated for UPRT?
Two types of training scenarios can be defined, being unusual attitudes and stalls. Unusual
attitudes include scenarios such as nose high, nose low, and high bank and more severe
scenarios such as a spiral dive. Stall scenarios include normal stalls, accelerated stalls, and
incipient spin as a result of a stall in an uncoordinated turn that eventually can develop into
a full spin.

3c. What are the difficulties of motion cueing for UPRT?
Aircraft motion during UPRT includes accelerations and angular rates with larger amplitudes
compared to normal flight. Additionally, the duration of these accelerations and angular rates
can be longer, resulting in large attitude angles and sustained g-loading.

3d. What are the limitations and shortcomings of current MCAs for UPRT?
Current MCAs, which are mostly CW MCAs, introduce false cues during the wash-out phase
of cueing large amplitudes. Furthermore, the cueing of sustained specific forces resulted in no
motion space left for other cues. Finally, false lateral cues arise when a large rolling motion
is cued.



Chapter 5

Evaluation of objective motion cueing
fidelity during stall simulation

In this chapter, the method, results, and recommendations for answering the fourth research question
posed in section 1.2 are presented.

How can the implementation of an MPC-based MCA during UPRT affect the objective
motion cueing fidelity with respect to the current SIMONA Research Simulator (SRS) CW
MCA?

The objective of the analysis presented in this chapter is to get familiarised with the MPC-based MCA.
Furthermore, the behaviour of the algorithm is identified by answering the sub-questions of the research
question presented above. The outcome of the analysis will be used to derive substantiated preliminary
experiment conditions that are included in the experiment plan, presented in Appendix 6.
The chapter starts off with the presentation of the motion scenario used for the analysis. Subsequently,
the software used for this analysis is elaborated in section 5.2. In section 5.3 and section 5.4, the
mathematical definitions of the optimal control and MPC formulations used are presented. Thereafter,
the constraints are validated in section 5.5. The behaviour of the algorithms is presented in section 5.6,
which is discussed in section 5.7. Finally, preliminary recommendations and conclusions are included
in section 5.8 and section 5.9, respectively.

5.1. Citation stall scenario
For the analysis presented in this chapter, a simulated stall upset of a Cessna Citation-II is used. The
aerodynamic stall model used for this simulation is developed by the stall task force group of the Delft
University of Technology and is based on real flight test data obtained with the TU Delft PH-LAB
laboratory aircraft. The simulation resulting in the stall scenario depicted in Figure 5.1 was created
with the help of an autopilot developed by Smets et al. [70] which was later also used by Imbrechts et
al. [10].
During the upset phase of the stall, the altitude hold mode controller and bank angle controller were
both activated. Furthermore, a thrust setting was used that resulted in a deceleration of about one
knot per second. When the angle of attack reached an angle of 16.05°, the upset recovery was triggered.
During this phase, the altitude hold mode was disabled and the reference pitch angle was set to −0.5°.
The reference pitch angle was changed to 10° after the threshold airspeed was reached, resulting at the
end of the recovery phase. The resulting symmetric stall scenario only has motion in three DOFs, the
specific force in 𝑥 and 𝑧 direction and angular motion around the 𝑦 axis.
To make this motion scenario more useful for analysis, data, starting at zero and at −9.81ms−2 for
the specific force in 𝑧 direction, is appended at the beginning of the stall scenario with a slope of zero
for the first second and ending at the first original data point of the respective DOF. Additionally,
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Figure 5.1: Angle of attack, true airspeed, specific force in 𝑥 and 𝑧 direction, and the pitch rate for the Citation stall scenario.

the scenario is extended at the end of the scenario with the same but opposite strategy. Furthermore,
zero-phase digital filtering was performed to smooth the original and appended data connections and
to decrease the amount of stall buffet present in the signal to simplify visual analysis. Moreover, as
explained in subsection 4.5.1, the high-frequency motion cues resulting from the stall buffet will not be
the limiting motion cues for the MCAs and can, therefore, safely be removed from the reference motion
without affecting the outcome of the analysis. The resulting motion scenario used in the remainder of
this chapter can be seen in Figure 5.2, represented with the orange line.
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Figure 5.2: Specific force in 𝑥 and 𝑧 direction and the pitch rate for the Citation stall scenario including the appended and
filtered stall scenario.
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5.2. The Offline Motion Simulation Framework
The software used for the analysis presented in this chapter builds upon the Offline Motion Simulation
Framework (OMSF) by Katliar et al. [12, 71]. This software library is designed to optimise simulator
trajectories for a certain reference motion. Furthermore, the software tool allows for the optimisation
of simulator design parameters, however, the latter will not be relevant during this study. To be able
to efficiently solve the numerical optimisation problems, the OMSF uses the direct collocation method
as defined by Rawlings et al. [38] and elaborated in section 3.2. The CasADi software framework [72]
in combination with the Interior Point Optimizer (Ipopt) [73] non-linear optimisation software is used
in the OMSF.
To make this software suitable for the analysis of the objective and perceptual motion cueing fidelity of
the SRS, a copy of the software is created and changed to a SRS optimal control problem solver. This
means that the software optimises the simulator control input to reach a certain simulator state and
output. To do this, the motion system of the SRS was programmed into the OMSF with the control
input, state and output definitions equal to the definition used in the SRS motion software [74]. This
is further elaborated in section 5.3. Furthermore, the reference frame convention is changed to the
convention used in the SRS and the possibility to use sensory models is removed throughout the OMSF
as explained in subsection 3.4.2. Finally, the option to use the software as an offline MPC-based MCA
is implemented, which is elaborated in section 5.4.

5.3. Optimal control problem definition: ”Oracle”
Throughout this chapter, the ”Oracle” definition, already explained in subsection 3.3.3, will be used
to refer to the OMSF being used as a SRS optimal control problem solver, meaning that the entire
reference motion scenario is used during the optimisation and that it is performed once. The naming
of this definition derives from the fact that this will be the best achievable motion cueing possible with
the SRS motion system, for a certain set of cost function weights. This is due to the perfect and infinite
knowledge of the reference motion. In the remainder of this section, the formulation of this optimal
control problem is presented.

5.3.1. Simulator state, control input and reference and output definitions

The simulator state, control input and output definitions are chosen and implemented in such a way
that it resembles the motion software of the SRS. In this way, the offline generated simulator control
input can be directly used to playback the motion in the SRS during the experiment. The resulting
definitions are presented in (5.1) up to and including (5.5).
The simulator state vector, defined in the inertial frame with respect to the UGP in the neutral position,
𝐹𝐼,𝑈𝐺𝑃 :

𝒙 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, ̇𝑥, ̇𝑦, ̇𝑧, ̇𝜙, ̇𝜃, ̇𝜓]⊤ (5.1)

This state is split up into two sub-states, where 𝒙𝑣 is the derivative of 𝒙𝑟, as can be seen in (5.2).

𝒙 = [𝒙𝑟, 𝒙𝑣]⊤ ∈ ℝ12 (5.2a)
with

𝒙𝑟 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]⊤ (5.2b)

𝒙𝑣 = [ ̇𝑥, ̇𝑦, ̇𝑧, ̇𝜙, ̇𝜃, ̇𝜓]⊤ (5.2c)

The reference inertial signal, describing the aircraft motion that is attempted to be replicated by the
simulator, is defined in the aircraft frame, 𝐹𝐴:

̂𝒚 = [ ̂𝒇⊤, 𝝎̂⊤, 𝜶̂⊤]⊤ ∈ ℝ9 (5.3)
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The output inertial signal as a result of the simulator motion, defined in the simulator frame, 𝐹𝑆 (origin
of 𝐹𝑆 in DERP):

𝒚 = 𝑓(𝒙, 𝒖) = [𝒇⊤, 𝝎⊤, 𝜶⊤]⊤ ∈ ℝ9 (5.4)

The simulator control input, with the linear accelerations defined in the inertial frame, 𝐹𝐼 , and the
angular accelerations defined in the platform and simulator frame, 𝐹𝐷 and 𝐹𝑆:

𝒖 = [ ̈𝑥, ̈𝑦, ̈𝑧, ̇𝑝, ̇𝑞, ̇𝑟]⊤ (5.5)

5.3.2. System equations

The relation between the simulator control input and state can be described by two first-order differential
equations. The simulator output inertial signal can be described by an output function that is dependent
on the aircraft state and control input.
The first differential equation, defining the relation between the sub-states earlier seen in (5.2), is
depicted in (5.6).

𝒙̇𝑟 − 𝒙𝑣 = 0 (5.6)

The second differential equation relates the derivative of substate 𝒙𝑣 to the simulator control input and
current state and can be seen in (5.7).

𝒙̇𝑣 − [ ̈𝑥, ̈𝑦, ̈𝑧, ̈𝜙, ̈𝜃, ̈𝜓]⊤ = 0 (5.7)

In (5.7), the linear accelerations, [ ̈𝑥, ̈𝑦, ̈𝑧] come directly from the simulator control input 𝒖 (5.5). The
Euler angular accelerations are derived by (5.8). This relation between the body angular accelerations
and the Euler angular accelerations can be described by the derivative of the relation between the body
angular rates and the Euler angular velocities as previously presented in (2.6). The resulting expression
can be seen in (5.8) and includes both state and control input variables. Furthermore, the body angular
rates are derived from the simulator state by the relation between the Euler angular velocities and the
body angular rates depicted in (2.7).

[ ̈𝜙, ̈𝜃, ̈𝜓]⊤ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̇𝑝 + ̇𝑞 sin𝜙 tan 𝜃 + 𝑞 ̇𝜙 cos𝜙 tan 𝜃 + 𝑞 ̇𝜃 sin𝜙 sec2 𝜃
+ ̇𝑟 cos𝜙 tan 𝜃 − 𝑟 ̇𝜙 sin𝜙 tan 𝜃 + 𝑟 ̇𝜃 cos𝜙 sec2 𝜃

̇𝑞 cos𝜙 − 𝑞 ̇𝜙 sin𝜙 − ̇𝑟 sin𝜙 − 𝑟 ̇𝜙 cos𝜙

sec 𝜃 ( ̇𝑞 sin𝜙 + 𝑞 ̇𝜙 cos𝜙 + 𝑞 ̇𝜃 sin𝜙 tan 𝜃 + ̇𝑟 cos𝜙 − 𝑟 ̇𝜙 sin𝜙 + 𝑟 ̇𝜃 cos𝜙 tan 𝜃)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.8)

The output equations are used to define the simulator inertial signal output (5.4), the specific forces
and angular motion produced by the simulator in the simulator frame (𝐹𝑆) with its origin in the DERP.
The simulator output inertial signal specific forces, 𝒇 (5.4), are defined by (5.9).

𝒇 = 𝒂𝑆 − 𝑹𝐼,𝑆 ⋅ 𝒈 (5.9a)
where:

𝒂𝑆 = 𝑹𝐼,𝐷 ⋅ 𝒂𝐼 + 𝜶𝐷 × 𝒓𝐷,𝑆 + 𝝎𝐷 × (𝝎𝐷 × 𝒓𝐷,𝑆) (5.9b)

𝒂𝐼 = [ ̈𝑥, ̈𝑦, ̈𝑧]⊤ (5.9c)
𝝎𝐷 = [𝑝, 𝑞, 𝑟]⊤ (5.9d)
𝜶𝐷 = [ ̇𝑝, ̇𝑞, ̇𝑟]⊤ (5.9e)
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The simulator output inertial signal angular rates, 𝝎 (5.4), can be derived from the angular rates in the
platform frame (𝐹𝐷), found by applying (2.7), and subsequently applying (5.10). Note that during this
analysis, the simulator frame is parallel to the platform frame, resulting in an identity matrix for 𝑹𝐷,𝑆.

𝝎 = 𝑹𝐷,𝑆 ⋅ 𝝎𝐷 = 𝝎𝐷 (5.10)

The simulator output inertial signal angular accelerations, 𝜶 (5.4), can directly be derived from the
angular accelerations found in the simulator control input 𝒖 from (5.5) with the help of (5.11).

𝜶 = 𝑹𝐷,𝑆 ⋅ 𝜶𝐷 = 𝜶𝐷 (5.11)

5.3.3. Cost function

The cost function that is used to optimise the optimal control problem can be divided into two parts and
is similar to the cost function used by Katliar et al. [12]. The first part is the inertial signal incongruence
cost and penalises the squared difference between the reference inertial signal and the output inertial
signal produced by the simulator. This incongruence cost can be defined by (5.12). The inertial signal
weight matrix is defined by 𝑾𝑦, as found in (5.13).

𝐽𝑖𝑛𝑐(𝒚, ̂𝒚) = ||𝒚 − ̂𝒚||2𝑾𝑦
(5.12)

𝑾𝑦 = 𝟙9×9 ⋅ [w𝑓 ,w𝜔,w𝛼]⊤ (5.13)

The second part of the cost function is the simulator cost and penalises the simulator state and control
input. This ensures washout to the neutral position of the simulator and minimum required control
input to reach a certain state. The simulator cost can be defined by (5.14). The state and control input
weight matrices are defined by 𝑾𝑥 and 𝑾𝑢, as found in (5.15) and (5.16), respectively.

𝐽𝑠𝑖𝑚(𝒖, 𝒙) = ||𝒙||2𝑾𝑥
+ ||𝒖||2𝑾𝑢

(5.14)

𝑾𝑥 = 𝟙12×12 ⋅ w𝑥 (5.15)

𝑾𝑢 = 𝟙6×6 ⋅ w𝑢 (5.16)

The total cost is defined by the sum of the incongruence cost and the simulator cost, resulting in the
expression seen in (5.17).

𝐽𝑡𝑜𝑡𝑎𝑙(𝒚, ̂𝒚, 𝒖, 𝒙) = 𝐽𝑖𝑛𝑐(𝒚, ̂𝒚) + 𝐽𝑠𝑖𝑚(𝒖, 𝒙) (5.17)

The total cost 𝐽𝑡𝑜𝑡𝑎𝑙(𝒚, ̂𝒚, 𝒖, 𝒙) will serve as the Lagrangian, ℓ𝑐(𝑥(𝑡), 𝑢(𝑡)), as previously defined in
section 3.2 and (3.1). A final state cost, 𝑉𝑓(𝑥(𝑇 )), as found in (3.1), will not be included in the cost
function for the analysis presented in this chapter.

5.3.4. Constraints

To ensure the simulator stays within its physical limits and to set initial and final conditions of the
simulator state, constraints on the state, control input, and actuators are included in the optimal
control formulation. The constraints are presented for the discretised state, control input and actuator
vectors, x, u, and q, respectively. These discretised vectors contain the simulator state, control input
and actuator length estimated at every 𝑖th subinterval [𝑡𝑖, 𝑡𝑖+1], for 𝑁 subintervals on the time interval
[0, 𝑇 ]. These constraints are presented in (5.18) up to and including (5.23). The discretisation interval
is indicated with a subscript, meaning that x𝑖 = x[𝑖]. Lower boundaries are indicated with an underline,



5.3. Optimal control problem definition: ”Oracle” 117

for example, 𝒙, and upper boundaries are indicated with an overline, for example, 𝒙. Note that the
boundaries are defined as vectors of continuous time, where the subscript indicates the point in time,
meaning 𝒙𝑡 = 𝒙(𝑡).
The state constraint for 𝑖 = 1, 2, ..., 𝑁 − 1:

𝒙 ≤ x𝑖 ≤ 𝒙 (5.18)

The initial state constraint for 𝑖 = 0:
𝒙0 ≤ x0 ≤ 𝒙0 (5.19)

The final state constraint for 𝑖 = 𝑁 :
𝒙𝑇 ≤ x𝑁 ≤ 𝒙𝑇 (5.20)

The control input constraint for 𝑖 = 0, 1, ..., 𝑁 :

𝒖 ≤ u𝑖 ≤ 𝒖 (5.21)

The actuator length constraint for 𝑖 = 0, 1, ..., 𝑁 :

𝒒 ≤ q𝑖 ≤ 𝒒 (5.22)

The actuator velocity constraint for 𝑖 = 0, 1, ..., 𝑁 :

̇𝒒 ≤ q̇𝑖 ≤ ̇𝒒 (5.23)

5.3.5. Baseline

To start the analysis, a baseline setting for the ”Oracle” optimal control problem should be formulated.
The state, control input and actuator boundaries are derived from the SRS motion system charac-
teristics. Bounds that can not be defined by the SRS motion system characteristics, since they are
simply not limited by design, are set to non-limiting values. The weights of the cost function used in
the baseline model are based on literature. Two settings of the angular rate weights, w𝜔, were taken
into account. First, a setting of [10,10,10] rad2 s−2, as used by Ploeg et al. [21], Cleij et al. [22] and
Katliar [71]. Secondly, a setting of [100,100,100] rad2 s−2 used by Katliar et al. [34] and Grottoli et
al. [20]. After visual inspection of the outputs produced by the two different weight settings, the setting
of 10 rad2 s−2 was chosen due to the fewer false cues present. The total list of parameters used for the
baseline ”Oracle” formulation can be seen in Table 5.1. The complete solution of the baseline ”Oracle”
SRS optimal control problem can be found in Appendix A.
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Table 5.1: Parameters of the baseline ”Oracle” SRS optimal control problem.

Parameter Value
Δ𝑡𝑖 0.05𝑠
𝑾𝒚 𝟙9×9 ⋅ [1, 1, 1, 10, 10, 10, 1, 1, 1]⊤
𝑾𝑥 𝟙12×12 ⋅ 0.01
𝑾𝑢 𝟙6×6 ⋅ 0.01
𝒙 [𝒙𝑟, 𝒙𝑣]⊤
𝒙 [𝒙𝑟, 𝒙𝑣]⊤
𝒙𝑟,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤
𝒙𝑟,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤
𝒙𝑣,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑣,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑟 [−0.981𝑚, −1.031𝑚, −0.636𝑚, −25.9𝜋
180 𝑟𝑎𝑑, −23.7𝜋

180 𝑟𝑎𝑑, −41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑟 [1.259𝑚, 1.031𝑚, 0.678𝑚, 25.9𝜋
180 𝑟𝑎𝑑, 24.3𝜋

180 𝑟𝑎𝑑, 41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑣 [−1000𝑚, −1000𝑚, −1000𝑚, −1000𝑟𝑎𝑑, −1000𝑟𝑎𝑑, −1000𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑣 [−1000𝑚, −1000𝑚, −1000𝑚, −1000𝑟𝑎𝑑, −1000𝑟𝑎𝑑, −1000𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑟,𝑇 [−0.981𝑚, −1.031𝑚, −0.636𝑚, −25.9𝜋
180 𝑟𝑎𝑑, −23.7𝜋

180 𝑟𝑎𝑑, −41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑟,𝑇 [1.259𝑚, 1.031𝑚, 0.678𝑚, 25.9𝜋
180 𝑟𝑎𝑑, 24.3𝜋

180 𝑟𝑎𝑑, 41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑣,𝑇 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑣,𝑇 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒖 [−10𝑚, −10𝑚, −10𝑚, −2𝑟𝑎𝑑, −2𝑟𝑎𝑑, −2𝑟𝑎𝑑]⊤𝑠−2

𝒖 [10𝑚, 10𝑚, 10𝑚, 2𝑟𝑎𝑑, 2𝑟𝑎𝑑, 2𝑟𝑎𝑑]⊤𝑠−2

𝒒 [2.131, 2.131, 2.131, 2.131, 2.131, 2.131]⊤𝑚
𝒒 [3.281, 3.281, 3.281, 3.281, 3.281, 3.281]⊤𝑚

̇𝒒 [−0.75, −0.75, −0.75, −0.75, −0.75, −0.75]⊤𝑚𝑠−1

̇𝒒 [0.75, 0.75, 0.75, 0.75, 0.75, 0.75]⊤𝑚𝑠−1

5.4. Model Predictive Control definition
To take the optimal control problem one step further and change it into an offline MPC-based MCA, it
is required to introduce additional parameters, make changes to the constraints, and define prediction
strategies.
First, the time interval [0, 𝑇 ] is divided into 𝐾 subintervals of the form [𝑡𝑘, 𝑡𝑘+1]. Every 𝑘th interval,
the MPC algorithm creates a smaller reference inertial signal on the time interval [𝑡𝑘, 𝑡𝑘+𝑁 ] existing of
𝑁 subintervals of the form [𝑡𝑖, 𝑡𝑖+1], resulting in an optimal control problem of the form found in (3.5).
The resulting new parameters are the MPC sample time, Δ𝑡𝑘, and secondly, the prediction horizon
length, 𝑁 , which is equal to the number of discretisation intervals in the optimal control problem. It
is important to note that Δ𝑡𝑘 = Δ𝑡𝑖, meaning that the subintervals for 𝑘 and the subintervals for 𝑖 are
perfectly aligned. For reference and visualisation of the interval definitions, Figure 3.1 can be used.

5.4.1. MPC constraints

In (5.24) to (5.27), the constraints for the MPC formulation are found. It is essential to note that it
is necessary to define the constraint boundaries in either continuous time, for example, 𝒙𝑡 = 𝒙(𝑡), or
discrete time, for example, x𝑘,𝑖 = x[𝑘, 𝑖].
The changes applied to the constraints regard among others the initial state condition constraint. Since
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there are now 𝐾 smaller optimal control problems to be solved, 𝐾 initial state conditions should be set.
Meaning that for 𝑘 = 0 and 𝑖 = 0:

𝒙0 ≤ x𝑘,𝑖 ≤ 𝒙0 (5.24)
And for 𝑘 = 1, 2, ..., 𝐾 − 1 and 𝑖 = 0:

x𝑘−1,1 ≤ x𝑘,𝑖 ≤ x𝑘−1,1 (5.25)

Additionally, terminal state constraints are introduced, defined as the final conditions of the smaller
optimal control problems at interval [𝑘 = 𝑘, 𝑖 = 𝑁] and where this same interval is not equal to the
interval [𝑘 = 𝐾, 𝑖 = 0 = 𝑁]. Meaning that for 𝑘 = 0, 1, ..., 𝐾 − 𝑁 − 1 and 𝑖 = 𝑁 :

x𝑘,𝑁 ≤ x𝑘,𝑖 ≤ x𝑘,𝑁 (5.26)

The final state constraints are subsequently defined as the final condition of the entire MPC problem,
thus at time 𝑇 . Meaning that for 𝑘 = 𝐾 − 𝑁, ..., 𝐾 and 𝑖 = 𝑁 :

𝒙𝑇 ≤ x𝑘,𝑖 ≤ 𝒙𝑇 (5.27)

Note that for the normal (not initial, terminal or final) state constraints, the control input constraint
and actuator constraints nothing changes, since these constraints will only be used within the smaller
optimal control problems.

5.4.2. MPC prediction strategies

The last requirement for the MPC formulation is the introduction of the prediction strategies. Note the
difference between the discretised reference inertial signal vector, ŷ𝑘,𝑖 = ŷ[𝑘, 𝑖], indicating the prediction
horizon, and the continuous time reference inertial signal vector, ̂𝒚𝑡 = ̂𝒚(𝑡), indicating the reference
inertial signal for the entire reference motion. For now, two strategies are proposed. The first strategy
assumes perfect knowledge of the reference inertial signal for the entire prediction horizon length and
is named the ”Perfect” prediction strategy, as also elaborated in subsection 3.3.3. This strategy is
mathematically defined by (5.28). The ”Perfect” prediction strategy means that for 𝑘 = 0, 1, ..., 𝐾:

ŷ𝑘,𝑖=0,...,𝑁 = ̂𝒚[𝑡𝑘,...,𝑡𝑘+𝑁 ] (5.28)

The secondly proposed prediction strategy is the ”Constant” prediction strategy and is based on only
knowledge of the reference inertial signal of the current point in time, 𝑡𝑘, as also elaborated in subsec-
tion 3.3.3. This strategy is mathematically defined by (5.29). The ”Constant” prediction strategy means
that for 𝑘 = 0, 1, ..., 𝐾:

ŷ𝑘,𝑖=0,...,𝑁 = ̂𝒚𝑡𝑘
(5.29)

5.4.3. MPC baseline
With the complete baseline MPC formulation, Table 5.2 is created with the additionally required pa-
rameters with respect to the parameters presented in Table 5.1.
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Table 5.2: Parameters of the baseline MPC formulation

Parameter Value
Δ𝑡𝑘 0.05𝑠
𝑁 200
𝒙𝑟,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤
𝒙𝑟,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤
𝒙𝑣,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑣,0 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

x𝑟,𝑘,𝑁 [−0.981𝑚, −1.031𝑚, −0.636𝑚, −25.9𝜋
180 𝑟𝑎𝑑, −23.7𝜋

180 𝑟𝑎𝑑, −41.6𝜋
180 𝑟𝑎𝑑]⊤

x𝑟,𝑘,𝑁 [1.259𝑚, 1.031𝑚, 0.678𝑚, 25.9𝜋
180 𝑟𝑎𝑑, 24.3𝜋

180 𝑟𝑎𝑑, 41.6𝜋
180 𝑟𝑎𝑑]⊤

x𝑣,𝑘,𝑁 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

x𝑣,𝑘,𝑁 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑟,𝑇 [−0.981𝑚, −1.031𝑚, −0.636𝑚, −25.9𝜋
180 𝑟𝑎𝑑, −23.7𝜋

180 𝑟𝑎𝑑, −41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑟,𝑇 [1.259𝑚, 1.031𝑚, 0.678𝑚, 25.9𝜋
180 𝑟𝑎𝑑, 24.3𝜋

180 𝑟𝑎𝑑, 41.6𝜋
180 𝑟𝑎𝑑]⊤

𝒙𝑣,𝑇 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

𝒙𝑣,𝑇 [0𝑚, 0𝑚, 0𝑚, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑, 0𝑟𝑎𝑑]⊤𝑠−1

5.5. Validation of the constraints
The initial and final state constraints and the actuator length and velocity constraints can be validated
by inspecting the solution to the ”Oracle” optimal control problem. First, it is checked that the initial
value is zero for all state variables. Furthermore, it is checked that the final condition is zero for the 𝒙𝑣
variables and arbitrary for the 𝒙𝑟 variables. From this, it can be concluded that the initial and final
state constraints are working correctly. If interested, the figure used for this validation can be found in
Figure A.2.
The actuator length and velocity constraints are validated by inspecting Figure 5.3 and Figure 5.4.
From Figure 5.3, it can be concluded that the actuator length constraint is working correctly since the
actuator length reaches its limits and stays within these limits. For the actuator velocity, the limits
of 75 cm s−1 are not reached during the ”Oracle” baseline solution. Therefore, only for this constraint
validation, the actuator velocity limit is set to 25 cm s−1 resulting in Figure 5.4. From this figure, it can
be concluded that the actuator velocity constraint is working properly.
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Figure 5.3: Actuator length and velocity for the ”Oracle” baseline condition, with the original actuator velocity limit of
75 cm s−1. The actuator length limit is shown by the black dashed line.
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Figure 5.4: Actuator length and velocity for the ”Oracle” condition, after lowering the actuator velocity limit to 25 cm s−1. The
original actuator velocity limit is shown by the black dashed line, lower actuator velocity limit is shown by the black

dashed-dotted line.

5.6. Results
The results presented in this section are related to the prediction strategy, the prediction horizon
length, and the inertial signal weights used in the cost function. The ”Oracle” results and the MPC
with ”Perfect” and ”Constant” prediction strategies results are compared to the CW used in the SRS.
For this, two different CW settings are used, being the motion filter parameters used by Imbrechts et
al. [10], defined as CW𝐼 , and the parameters used by Grant and Schroeder [11], defined as CW𝐺. For
the parameters used by Grant and Schroeder [11], the pitch and roll fidelity are close to high-fidelity
and the translational motion is low-fidelity according to the Sinacori-Schroeder motion fidelity criteria
[30]. Compared to the parameters used by Grant and Schroeder [11], the parameters used by Imbrechts
et al. [10] result in higher fidelity for translational motion and lower fidelity for angular motion. Both
these CW settings, CW𝐼 and CW𝐺, can be found in full in Appendix B.

5.6.1. Influence of the prediction strategy

The influence of the prediction strategy is studied by comparing the ”Oracle”, the ”Perfect” and the
”Constant” baseline conditions with the two CW settings mentioned previously. In Figure 5.5, the
RMSE and PCC are shown for the various conditions. In this figure, it can be seen that the ”Oracle”
and ”Perfect” baseline conditions are very similar. Furthermore, these conditions outperform all other
conditions except for the angular rates PCC, where the two CW conditions are slightly better. Looking
at Figure 5.6, these results can be visibly validated, in 𝑓𝑥 the ”Oracle” and ”Perfect” conditions are more
close to the reference signal due to more pitch up tilt of the simulator. Additionally, in 𝑓𝑧, the shape of
the ”Oracle” and ”Perfect” output signal is more similar to the reference and shows larger amplitudes.
Finally, the pitch rate signal shape of the ”Oracle” and ”Perfect” conditions is particularly different from
the reference around 𝑡 = 20𝑠 and during the final 20 seconds of the scenario. This could explain the
higher PCC value for the angular rates of the two CW references. However, less phase shift is present
in the pitch rate for the ”Perfect” condition compared to the CW references, as found at 𝑡 = 22𝑠 in
Figure 5.6.
In Figure 5.5, for the ”Constant” condition, only the RMSE of the specific forces is better than the CW
references and it is slightly worse than the ”Oracle” and ”Perfect” conditions. The ”Constant” RMSE for
the angular rates and the PCC for the specific forces and angular rates are the worst of all conditions.
This can be validated by inspecting Figure 5.6, the reasonable RMSE for the specific forces is due to
the good pitch tilt coordination resulting in a decent 𝑓𝑥. However, the shape and amplitudes of the
”Constant” 𝑓𝑧 signal are very bad since there is almost no motion, resulting in the low PCC value for
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the ”Constant” specific forces. Finally, for the angular rates, more delay (at 𝑡 = 13𝑠) and false cues (at
𝑡 = 22𝑠) can be identified, resulting in the low RMSE and PCC values for the angular rates.
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Figure 5.5: RMSE and PCC for the inertial signal specific forces and angular rates as a result of different prediction strategies.
For the RMSE, the sum of the three RMSE values of the specific forces and of the angular rates are presented. For the PCC,

the average of the three PCC values is presented.
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Figure 5.6: Reference inertial signal and the output inertial signal for the ”Oracle”, the ”Perfect”, the ”Constant” and the two
CW conditions.
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5.6.2. Influence of the prediction horizon length

The influence of the prediction horizon length is studied by comparing horizon length ranging from 0.5 s
to 10 s and comparing the RMSE and PCC with the ”Oracle” condition. This can be seen in Figure 5.7.
From this figure, it can be concluded that increasing the horizon length over 6 s has very little influence
on the RMSE and PCC values. Furthermore, the angular rates’ RMSE and PCC for the ”Constant”
condition, get worse with an increasing horizon length. For the ”Perfect” condition, the angular rates’
RMSE and PCC are also best for a horizon of 0.5 s, slightly worse for a horizon of 1 s to 5 s and finally,
close to the ”Oracle” condition for a horizon of 6 s to 10 s.
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Figure 5.7: RMSE and PCC for different prediction horizon lengths, for the ”Perfect” and ”Constant” conditions.

5.6.3. Influence of the specific force and angular rate weights
The influence of the specific force and angular rate weights are studied to check whether the angular
rates of an ”Oracle” condition can outperform the CW references. Secondly, a weight setting is looked
for that results in better specific force performance than the baseline, while the angular rates remain
reasonable.
This was done by performing two sensitivity analyses, the first analysis was done by comparing the
results obtained by ranging all three specific forces weights, captured in the vector w𝑓 , from 1m2s−4

to 8m2s−4 with weight increment steps of 1m2s−4. The output inertial signal, RMSE, and PCC were
compared for all the different weights. During this comparison, the output inertial signal was visually
analysed and assessed on reference inertial signal tracking performance and the amount and size of false
cues. Thereafter, this was validated by the RMSE, indicating tracking performance, and the PCC,
indicating false cues. If interested, the figures used for this analysis can be found in Appendix D,
containing in Figure D.2 the reference and output inertial signals and in Figure D.1 the RMSE and
PCC values. This analysis resulted in a chosen specific force weight setting of 2m2s−4 and is referred to
as the ”Oracle𝑓 ” condition, as shown in Figure 5.8 and Figure 5.9. From Figure 5.8, it can be concluded
that the specific forces are performing better than the baseline ”Oracle” condition, which is validated
by looking at Figure 5.9. The angular rates RMSE values are very similar to the ”Oracle” baseline
condition, however, the angular rate PCC is clearly worse. In Figure 5.9, a reason for this can be found
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at 𝑡 = 27, where a false cue is present for the pitch rate of the ”Oracle𝑓 ” condition.
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Figure 5.8: RMSE and PCC for the inertial signal specific forces and angular rates as a result of different weight settings. For
the RMSE, the sum of the three RMSE values of the specific forces and of the angular rates are presented. For the PCC, the

average of the three PCC values is presented.
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Figure 5.9: Reference inertial signal and the output inertial signal for the ”Oracle” with three different weight settings and the
two CW conditions.

During the second sensitivity analysis, the results were compared by ranging all three angular rate
weights, captured in the vector w𝜔, from 10 rad2s−2 to 100 rad2s−2, with weight increment steps of
10 rad2s−2. The results were analysed with an equal approach as the approach used for the analysis of
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the specific force weights. If interested, the figures used for this analysis can be found in Appendix D,
containing in Figure D.6 the reference and output inertial signals and in Figure D.5 the RMSE and
PCC values. The analysis resulted in the ”Oracle𝜔” condition with angular rate weights of 60 rad2s−2,
as found in Figure 5.8 and Figure 5.9. The angular rates now outperform both CW references, while
the specific forces remain also better than the CW references. The ”Oracle𝜔” performs slightly worse
for the specific forces compared to the baseline ”Oracle” and the ”Oracle𝑓 ”, which is mainly due to the
larger error of 𝑓𝑥, as visible in Figure 5.9.

5.7. Discussion of the results
The results are discussed in the same order used in section 5.6, being first the prediction strategy, then
the prediction horizon length, and finally, the specific force and angular rate weights.

5.7.1. Prediction strategy
An explanation of why the ”Oracle” and ”Perfect” conditions are very similar (see Figure 5.5 and Fig-
ure 5.6) could be that both conditions have perfect knowledge of the reference signal. Furthermore,
the prediction horizon length of the ”Perfect” condition is 10 s, which is apparently long enough to fully
utilise the available motion space for onset cues and possible simulator pre-positioning for this reference
motion scenario.
The reason why more pitch tilt coordination is present for the ”Oracle”, ”Perfect” and ”Constant” con-
ditions compared to the CW references (see 𝑓𝑥 in Figure 5.6) could be explained by the CW gain,
𝐾𝑓𝑥

. This gain is 0.5 and 0.4 for, respectively, the CW𝐼 and CW𝐺 conditions, meaning that the CW
references will never try to replicate the 𝑓𝑥 signal for more than 50% of the original reference inertial
signal magnitude.
The ”Constant” condition has almost no motion in heave (see 𝑓𝑧 in Figure 5.6), the non-sustained or
onset amplitude variations in 𝑓𝑧 are not present at all. This is explainable by the fact that there is a
terminal constraint present, constraining the state velocities and angular rates to be zero at the end of
the prediction horizon. This means that every acceleration in a certain direction should be counteracted
by an acceleration in the opposite direction. Hence, this will result in the same absolute error as when
no acceleration at all is applied since the ”Constant” condition demand a constant acceleration over
the entire horizon. Combining this with the fact that the control input is also slightly penalised, the
no-acceleration scenario is preferred by the algorithm, leading to almost no heave motion. When there
would be no terminal constraint, it will not solve this problem completely, since the same phenomenon
will be present due to the limited actuator lengths and velocity. However, better performance in heave
is expected.
An explanation of the large false cues in the pitch rate for the ”Constant” condition (see 𝜔𝑦 at 𝑡 = 22𝑠 in
Figure 5.6), could be that the simulator is very good at reproducing sustained, thus constant, 𝑓𝑥 cues.
This is done by tilt coordination, thus the algorithm continuously follows the 𝑓𝑥 signal by tilting the
simulator in pitch. The algorithm probably prefers to correctly cue the 𝑓𝑥 over the pitch rate due to
the chosen weights in the cost function. This results in false cues in the pitch rate signal when the 𝑓𝑥
changes rapidly. An explanation why this false cue at 𝑡 = 22𝑠 is not present for the ”Perfect” condition
can be explained by the fact that, in contrary to the ”Constant” condition, the ”Perfect” condition can
pre-position itself (see 𝜔𝑦 at 𝑡 = 18𝑠 until 𝑡 = 22𝑠 in Figure 5.6), since it exactly knows up to 10 s in
front what motion is coming.

5.7.2. Prediction horizon length
Why very short horizon lengths (0.5 s) are good for tracking the angular rate signals (see Figure 5.7),
could be explained by the fact that the angular onset cues are better reproducible by the simulator than
the specific force onset cues. This results in the algorithm preferring cueing onset angular rates at the
cost of lower fidelity specific forces.
The reason why increasing the prediction horizon length over 6 s has little influence (see Figure 5.7)
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could be that the reference inertial signal does not contain motion cues that need longer simulator
pre-positioning of 6 s. Secondly, it could be that the size of the motion system, meaning the actuator
range, and the actuator velocity limit are an explanation of this. A larger motion system with higher
actuator velocity limits could possibly benefit from longer knowledge of the reference signal because it
can simply reproduce more of the reference signal. It can better and longer cue onset-specific forces
resulting in higher actuator velocities and has more space for pre-positioning.

5.7.3. Specific force and angular rate weights

For the specific force sensitivity analysis, possibly better results are possible. The chosen weight setting
”Oracle𝑓 ”, with specific force weights of 2m2s−4, is namely the first of seven weight increment steps of
1m2s−4 from the baseline condition used in the sensitivity analysis.

5.8. Preliminary recommendations
In this section, recommendations are given that can be taken into account while designing the experiment
in Appendix 6 and for future or additional analyses similar to the analysis presented in this chapter.
The first recommendation is to either choose the ”Oracle” or the ”Perfect” condition as experiment
conditions due to the large similarity. The ”Perfect” condition would then be favoured due to the fact
that it is more realistic.
Secondly, the ”Constant” condition should be improved by trying first to remove the terminal constraint.
If this will lead to unstable behaviour, an additional terminal state weight could be added to the cost
function. If the ”Constant” prediction is still not performing well, a different prediction strategy should
be proposed. This could be for example a strategy where the first half of the prediction horizon is the
original constant prediction, and the second half of the horizon is the opposite of that prediction. If this
still leads to reaching the actuator velocity constraint, a prediction strategy could be chosen where the
reference signal is for the first part of the horizon the original constant prediction strategy, the second
part the opposite, and the rest of the horizon zero. Of course, this should be implemented with smooth
and ”continuous” transitions.
Thirdly, one prediction horizon length should be chosen between 6 s and 10 s, because this range is
computationally feasible and does not have an influence on the motion cueing fidelity. Furthermore,
the influence of making the prediction horizon non-uniform should be investigated. This might result
in less computationally heavy problems and this is more realistic since it is often used in practice.
Fourthly, the specific force weight sensitivity analysis grid should be made finer, resulting in a more
precise analysis. This could also be done for the angular rate weight analysis, once the optimal or
desired weight is approximately reached.
Finally, it could be beneficial to perform spectral analysis. This could for example identify the lack of
heave motion for the ”Constant” prediction without having to visualise the inertial signal output. This
would mainly be useful when a full stall buffet is present, which makes visual analysis of the inertial
signal difficult, contrary to the filtered buffet in this chapter.

5.9. Chapter conclusions
The answer to the fourth research question and the answers to the accompanying sub-questions are
provided below to conclude this chapter.
SQ 4. How can the implementation of an MPC-based MCA during UPRT affect the objective motion

cueing fidelity with respect to the current SRS CW MCA?
The ”Oracle” and ”Perfect” conditions both show better and more tilt coordination, resulting in
an increase in longitudinal motion cueing fidelity. Moreover, the ”Perfect” condition shows less
phase shift (delay) and more resemblance in shape with the reference motion. The optimal control
problem can be tuned (”Oracle𝜔”) to outperform the reference CW filters for all used measures.
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The ”Constant” prediction shows promising longitudinal performance, however, in heave and pitch,
it performs clearly worse than the CW references.
4a. What optimal control and MPC formulation should be used for the analysis?

The state and control input definitions used in the optimal control and MPC formulation
match the definitions used in the SRS motion software [74]. The system equations are two
first-order implicit differential equations relating the control input and the state. Constraints
are imposed on the actuator lengths and velocities and the initial, current, terminal and final
state.

4b. What is the influence of the prediction strategy on the objective motion cueing fidelity?
The prediction strategy has a large influence on the motion cueing quality. Both the ”Oracle”
and ”Perfect” conditions outperform the reference CW motion filters. Moreover, these con-
ditions are very much alike, using both conditions in the pilot experiment would therefore
not be recommended. The ”Constant” condition performs worse than the CW references,
mainly due to the very little motion in heave and a large false cue in pitch due to fast tilt
coordination.

4c. What is the influence of the prediction horizon length on the objective motion cueing fidelity?
The prediction horizon length has little influence on the motion cueing quality if the length
is increased from 6 s to 10 s. It is recommended to use one prediction horizon length for the
remainder of this study.

4d. What is the influence of the cost function weights on the objective motion cueing fidelity?
The cost function weights are very decisive for the output of the MCA. The analysis showed
that it is possible to derive substantially different specific force and angular rate weight set-
tings without introducing large false cues. In the pilot experiment, multiple weight conditions
are recommended. Lastly, the specific force weights are a factor of 10 to 100 more effectual
than the angular rate weights, meaning that a specific force weight sensitivity analysis should
be performed with a much smaller weight grid.



Chapter 6

Experiment plan

In this chapter, the (tentative) plan and design of the proposed experiment for answering the fifth
research question posed in section 1.2 are presented.

How can the implementation of an MPC-based MCA during UPRT affect the perceptual
motion cueing fidelity with respect to the current SRS CWMCA?

The experiment plan will answer the accompanying sub-questions that were also presented in section 1.2.
This chapter starts with the experiment objective and hypothesis in section 6.1 and section 6.2, respec-
tively. Thereafter, in section 6.3, the experiment design, including the used apparatus and different
experiment variable definitions, is introduced. This is followed by the experiment conditions, partici-
pants (matrix), and procedures in section 6.4, section 6.5, and section 6.6. Subsequently, in section 6.7,
the approach for post-experiment data analysis is presented. To conclude this chapter, the posed re-
search questions and the corresponding sub-questions are succinctly answered in section 6.8.

6.1. Experiment objective
The objective of the experiment is to evaluate the perceived motion cueing fidelity for the newly pro-
posed MCA. Furthermore, the influence of the cost function weights and the prediction strategy are
investigated. Finally, the experiment serves as validation of the objective motion cueing fidelity assess-
ment presented in Appendix 5 and as an investigation towards a potential correlation with the perceived
motion cueing fidelity as a result of the experiment.

6.2. Hypotheses
The following preliminary hypotheses are derived from the analyses performed in Appendix 5:

1. The CW MCA will result in a lower perceived motion cueing fidelity compared to the MPC-based
MCA (MCAs specified in subsection 6.3.2).

2. The perceived motion cueing fidelity will increase under increasing prediction correctness of the
reference inertial signal.

3. The perceived motion cueing fidelity will be higher for the balanced weight setting compared to
the specific force or angular weight settings (weight settings specified in subsection 6.3.2).

4. The perceived motion cueing fidelity will be higher for the specific force weight setting compared
to the angular weight settings (weight settings specified in subsection 6.3.2).

5. The perceived motion cueing fidelity ratings will be in line with the objective motion cueing fidelity
defined by the RMSE and PCC.
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6.3. Experiment design
The subjects of the experiment will participate in a passive simulated aircraft upset scenario presented
in a flight simulator and will be asked to rate the incongruity between the visual images, including an
Primary Flight Display (PFD) extended with the angle of attack and load factor indication, and the
motion they experience. This incongruence rating will then be used to evaluate the proposed MCA,
compared to a baseline CW MCA. Furthermore, the outcome of the experiment is used to identify
a possible correlation between the offline evaluation of the objective motion cueing fidelity and the
perceived motion cueing fidelity.

6.3.1. Apparatus

For the experiment, the SIMONA Research Simulator (SRS) will be used. Since it will be a passive
experiment, that means no control inputs, no aircraft model and control instruments are required. The
visual system will be used and will provide the outside visuals, driven by offline-generated flight path
data. Furthermore, a PFD will be used that will be extended to additionally present the angle of attack,
load factor and a flight freeze indicator. The flight freeze indicator shows whether the upset scenario
is in progress, this is necessary since the simulator will be moving before and after the upset scenario
to correctly position itself. The motion system will be driven by offline generated input data, linear
accelerations in inertial axes and angular accelerations in simulator body axes, which is transferred to
the Motion Control Computer (MCC) with the help of a direct motion filter. If too much simulator
drift is experienced during testing, another simulator control strategy with simulator state feedback
should be implemented. Finally, if the upset scenarios are of sufficient duration, a continuous rating
device that can be operated by the subjects will be required.

6.3.2. Independent variables

Motion cueing algorithm: Two different MCAs will be used in the experiment. a) CW MCA: this
will be the baseline motion case, using the SRS CW16 algorithm. The tuning will be similar to
Grant and Schroeder [11], Imbrechts et al. [10] or modified tuning of these references and will
be depending on the motion scenarios. A modified tuning can be derived with the help of the
Gouverneur analysis [33] mentioned in section 2.9. A single CW tuning will be used for all the
motion scenarios. b) MPC-based MCA: this will be the newly proposed MCA as explained in
Appendix 3 and used in Appendix 5. Additionally, a terminal state cost term will be included in
the cost function.

Cost function weights: Three different weight settings will be used in the experiment and will be
the same for the different motion scenarios. a) Specific force: this includes weights optimised to
represent specific forces. b) Angular motion: this include weights optimised to represent angular
motion. c) Balanced: this includes weights optimised to represent specific forces equally as angular
motion.

Prediction strategy: Two different prediction strategies are proposed for the experiment. a) Perfect:
this prediction strategy implies perfect knowledge of the entire reference trajectory. As shown in
Appendix 5, with sufficient prediction horizon length, the result of this prediction strategy is very
similar to the result of the ”Oracle”. b) Constant(+): this prediction strategy assumes knowledge
of the reference signal for the current time interval only. The remainder of the horizon is then
filled with a constant reference signal that is equal to the current time interval. If necessary,
this strategy should be adjusted to a strategy where only a part of the horizon is constant, then
constant but negative/opposite and for the remainder of the horizon zero.

Upset/motion scenario: The number of upset scenarios used in the experiment will be dependent on
the upset scenarios that will be obtained from the UPRT flight test data during the final phase of
the thesis. As elaborated in Appendix 4, both upsets and stalls are relevant to UPRT. Therefore,
it will be desirable to include both upsets and stalls in the motion scenarios. It could also be that
the different upset scenarios will be appended to each other, to obtain motion scenarios with a
longer duration. The proposed method will then be one motion scenario with multiple upsets and
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one motion scenario with multiple stalls.

6.3.3. Dependent variables
Two dependent variables will be acquired:
Continuous subjective rating of perceived motion incongruence: This is a continuous rating

provided in real-time by the subjects of the experiment to indicate the difference between the
visuals, including the extended PFD, and the provided motion cues. This variable was introduced
by Cleij et al. [13] and later used in experiments found in [19, 75, 76, 22].

Overall subjective rating of perceived motion incongruence: This is a single rating provided
after each experiment condition. The single rating will be given with the help of the Motion
Fidelity Rating (MFR) from Hodge [6].

6.3.4. Control variables

The control variables during the experiment conditions are listed below.
• Prediction horizon length 𝑁
• Sample time Δ𝑡𝑛 and Δ𝑡𝑘

• Constraints
• Simulator cost weights 𝑾𝒖 and 𝑾𝒙 (cost on control input and state deviation from neutral)

6.4. Experimental conditions
In Table 6.1, the preliminary experiment conditions are summarised. To check the consistency of the
dependent variables, it will be necessary to perform multiple repetitions for each experiment condition.
Cleij et al. [22] successfully used three repetitions per condition and this will most likely be the number
of repetitions used in this experiment.

Table 6.1: Preliminary experiment conditions.

Condition Scenario MCA Prediction Weights
1 Upset CW - -
2 Upset MPC Perfect Specific forces
3 Upset MPC Perfect Angular motion
4 Upset MPC Perfect Balanced
5 Upset MPC Constant(+) Specific forces
6 Upset MPC Constant(+) Angular motion
7 Upset MPC Constant(+) Balanced

8 Stall CW - -
9 Stall MPC Perfect Specific forces
10 Stall MPC Perfect Angular motion
11 Stall MPC Perfect Balanced
12 Stall MPC Constant(+) Specific forces
13 Stall MPC Constant(+) Angular motion
14 Stall MPC Constant(+) Balanced
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6.5. Experiment participants and matrix
Commercial airline pilots will be asked to participate in the experiment. The pilots will serve as
within-participants. The experiment conditions will be provided to the participants in a balanced and
alternating order, an example of this is shown in Table 6.2.

Table 6.2: Example of an experiment participant and condition matrix.

Participant Trial 1 Trial 2 Trial 3 Trial ...
1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3
5 4 3 2 1
6 3 2 1 4
7 2 1 4 3
... 1 4 3 2

6.6. Experiment procedures
The experiment will start with a briefing, followed by one or more training trials. Between some of the
experiment trials, one or more breaks will be included. The experiment is concluded with a debriefing.

6.6.1. Briefing

During the briefing of the experiment, an introduction to the experiment will be given that includes
the general purpose of the experiment and experiment procedures. It is important to not show what
the hypotheses are during the briefing. Furthermore, the continuous incongruence rating, the MFR
(Figure 6.1) and MIsery SCale (MISC) (Table 6.3) will be explained.

Table 6.3: 11-point MIsery SCale (MISC), from Bos et al. [9].

Symptoms MISC
No problems 0
Some discomfort, but no specific symptoms 1

Dizziness, cold/warm, headache,
stomach/throat awareness, sweating,
blurred vision, yawning, burping,
tiredness, salivation, ... but no nausea

Vague 2
Little 3
Rather 4
Severe 5

Little 6
Nausea Rather 7

Severe 8
Retching 9

Vomiting 10
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Figure 6.1: Motion Fidelity Rating (MFR), from Hodge et al. [6].

6.6.2. Training
Training is performed by using experiment conditions, similar to the real experimental conditions. This
training will be used to make the participants familiar with the use of the continuous rating scale.
Furthermore, the participants will be requested to fill in the MFR and MISC ratings. In this way,
experiment participants’ internal subjective motion incongruence grading scale can be identified. A
training procedure used by Cleij et al. [22] consisted of two runs for each experiment condition. In the
first run, the participants were asked to indicate the minimum and maximum experienced mismatch
and to give an overall rating. In the second run, the participants were asked to give a continuous rating
and give the overall rating.

6.6.3. Communication during the experiment

During the experiment, the SRS audio system will be used to communicate with the participants. Before
each trial, a confirmation of readiness is requested and a reminder is given to use the continuous rating
scale. During the trials, except for the training trials, no communication is preferred. After each trial,
some time is given to fill in the MFR and MISC. Finally, the MISC rating is discussed and a decision
is made to continue with the next trial or abort the experiment. The maximum MISC rating will be
three.

6.7. Experiment data analysis
During the experiment, the independent variables are logged and sorted with respect to the participant
numbers. To identify possible deficiencies during the experiment, the SRS motion logger will be used
to log the input and output motion data of the SRS. For the analysis of the independent variables,
most likely non-parametric tests will be used due to the limited number of experiment participants.
Non-parametric tests suitable for within-participant experiments are, for example, the Friedman Test
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and Mood’s Median Test.
To check the consistency of the continuous rating, the approach from the experiments found in [77, 19,
13, 75, 76, 22] is used. This approach calculates the consistency with Cronbach’s alpha [78]. If the
Cronbach’s alpha is smaller than 0.7 the ratings are considered inconsistent [79] and excluded from the
analysis.

6.8. Chapter conclusions
SQ 5. How can the implementation of an MPC-based MCA during UPRT affect the perceptual motion

cueing fidelity with respect to the current SRS CW MCA?
To evaluate the perceived motion fidelity for the MPC-based MCA in comparison with the SRS
CW MCA, a passive experiment in the SRS will be performed.
5a. What experiment conditions with different MCA settings should be used during the experi-

ment?
Two types of MCAs, CW and MPC-based. Three cost function weight settings, optimised
for specific forces, optimised for angular rates, and finally, a balanced setting will be used.
Two prediction strategies, one with perfect knowledge of all samples of the prediction horizon
and one with only knowledge of the current sample of the prediction horizon.

5b. What metrics should be used to evaluate the perceived motion cueing fidelity?
The continuous subjective rating of perceived motion incongruence and the MFR.

5c. What type of experiment participants are required for the experiment?
Experienced commercial airline pilots are desired to participate in the experiment.

5d. What data should be logged during the experiment?
During the experiment, the continuous subjective motion incongruence rating, the MFR, the
input and output motion data of the SRS, and the MISC will be logged.



Appendix A

Baseline ”Oracle” SIMONA Research
Simulator optimal control solution

In this appendix, the full solution of the baseline ”Oracle” SIMONA Research Simulator (SRS) optimal
control problem as described in section 5.3 is presented for the Citation stall scenario from section 5.1.
In Figure A.1, the resulting simulator output, the inertial signal, is compared to the reference inertial
signal. In Figure A.2 and Figure A.3, the resulting simulator state and control input are presented,
respectively. The actuator length, velocity and acceleration are presented in Figure A.4. Finally, the
cost function components and total cost are depicted in Figure A.5.
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Figure A.1: Baseline ”Oracle” output inertial signal and reference inertial signal.
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Figure A.2: Baseline ”Oracle” state.
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Figure A.3: Baseline ”Oracle” control input.
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Appendix B

Reference Classical Washout motion
filter settings

In this appendix, the Classical Washout (CW) motion filter settings used in Appendix 5 as reference
are presented. In Table B.1 and Table B.2, the filter settings used by Imbrechts et al. [10] and Grant
and Schroeder [11] are presented, respectively.

Table B.1: CW filter settings used by Imbrechts
et al. [10]

𝑥 𝑦 𝑧 𝑝 𝑞 𝑟
𝐾 0.5 0.0 0.5 0.0 0.5 0.0
𝜔ℎ𝑝 1.2 0.0 2.0 0.0 1.0 0.0
𝜁ℎ𝑝 0.7 0.0 0.7 0.0 0.5 0.0
𝜔𝑏 0.0 0.0 0.3 0.0 0.0 0.0
𝜔𝑙𝑝 2.4 0.0
𝜁𝑙𝑝 0.7 0.0

Table B.2: CW filter settings used by Grant and
Schroeder [11].

𝑥 𝑦 𝑧 𝑝 𝑞 𝑟
𝐾 0.4 0.3 0.5 0.6 0.6 0.3
𝜔ℎ𝑝 2.0 2.0 4.0 0.6 0.5 0.7
𝜁ℎ𝑝 0.7 0.7 1.0 0.0 0.0 0.7
𝜔𝑏 0.0 0.0 0.5 0.0 0.0 0.0
𝜔𝑙𝑝 2.0 2.5
𝜁𝑙𝑝 0.7 0.7
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Appendix C

Full results for the prediction strategy
analysis

In this appendix, the full solution of the prediction strategy analysis performed in section 5.6 is presented.
In Figure C.1, the resulting simulator output inertial signal for the various prediction strategies is
compared with the reference inertial signal, the ”Oracle” baseline and the reference CW results. In
Figure C.2 and Figure C.3, the resulting simulator state and control input are presented, respectively.
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Figure C.1: Inertial signal output for the ”Oracle”, ”Perfect”, ”Constant”, ”CW𝐼 ”, ”CW𝐺” conditions.
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Figure C.2: State for the ”Oracle”, ”Perfect”, ”Constant”, ”CW𝐼 ”, ”CW𝐺” conditions.
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Appendix D

Full results for the specific force and
angular rate weight sensitivity analysis

In this appendix, the full solution of the specific force and angular rate weight sensitivity analysis
performed in section 5.6 is presented.

D.1. Specific force weight sensitivity analysis results
The RMSE and PCC for various specific force weights are presented in Figure D.1. The simulator
output inertial signal for the various specific force weights and the reference inertial signal are depicted
in Figure D.2. In Figure D.3 and Figure D.4, the resulting simulator state and control input are
presented, respectively.
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Figure D.1: RMSE and PCC for various specific force weights.
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Figure D.3: State for varying specific force weights.
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D.2. Angular rate weight sensitivity analysis results
The RMSE and PCC for various angular rate weights are presented in Figure D.5. The simulator
output inertial signal for the various angular rate weights weights and the reference inertial signal are
depicted in Figure D.6. In Figure D.7 and Figure D.8, the resulting simulator state and control input
are presented, respectively.
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Figure D.7: State for varying angular rate weights.
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D.3. Full results for the baseline, specific force, angular rate, and
reference classical washout conditions

In this section, the chosen conditions resulting from the specific force and angular rate sensitivity
analyses are compared to the baseline and CW conditions. The simulator output inertial signal for
the various conditions and the reference inertial signal are depicted in Figure D.9. In Figure D.10 and
Figure D.11, the resulting simulator state and control input are presented, respectively.
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Figure D.9: Inertial signal output for the ”Oracle𝐵𝐿”, ”Oracle𝑓 ”, ”Oracle𝜔”, ”CW𝐼 ”, ”CW𝐺” conditions.
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Figure D.10: State for the ”Oracle𝐵𝐿”, ”Oracle𝑓 ”, ”Oracle𝜔”, ”CW𝐼 ”, ”CW𝐺” conditions.
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