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As Deep Neural Networks (DNNs) continue to be deployed in safety-
critical domains, two specific concerns — adversarial examples and 
Out-of-Distribution (OoD) data — pose significant threats to their 
reliability. This dissertation proposes novel methods to enhance the 
robustness of deep learning by detecting such inputs and mitigating 
their impact. 

A central insight of this work is that algorithmic stability plays a 
crucial role in generalizing to in-distribution data. Motivated by 
this, we formulate a dual perspective on stability with respect to 
the hypotheses and explore whether this perspective facilitates the 
separation of problematic inputs under two main lenses: epistemic 
uncertainty estimation and the choice of an appropriate inductive 
bias. By grounding our approach in generative modeling with a 
latent variable based on an information bottleneck and, specifically, 
employing Variational Autoencoders (VAEs), we first leverage Bayesian 
inference over model parameters to estimate the model’s uncertainty 
with respect to a particular input. Second, we investigate the required 
properties of both VAE maps and latent representations from a 
topological perspective. This reveals how OoD inputs predominantly 
map onto empty regions — or “holes” — in the latent manifold. Finally, 
we discover that adversarial examples likewise exhibit similar behavior. 
This finding is then used to craft new scoring functions that reliably 
distinguish between inliers, outliers, and adversarial attacks.
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SUMMARY
Adversarial examples and Out-of-Distribution (OoD) inputs pose a severe risk
for Deep Neural Network (DNN) employed in safety-critical tasks. This thesis
aims to alleviate these threats by developing robust models that are capable of
detecting and mitigating the impact of such inputs. To achieve this goal, we first
identify stability as a crucial ingredient that strongly relates to the generalization
of models to in-distribution (ID) data. Based on this insight, we focus on the
model sensitivity analysis addressing two core aspects: epistemic uncertainty
estimation and identifying an appropriate inductive bias.
This thesis starts with Chapter 1, where we thoroughly substantiate our model-

ing assumptions with regard to imposed inductive bias and choose Variational Au-
toencoder (VAE) as our candidate for tackling problematic inputs. Moreover, we
lay a rigorous theoretical foundation for learnability and generalization, acknowl-
edging known limitations related to the impossibility of OoD detection learnability
in a discriminative setting, which motivates switching to generative modeling.
Consequently, this thesis contextualizes in Chapter 2 the considered problem-

atic inputs and mitigations within a broader spectrum of available DNN attacks
and defenses. Specifically, we classify the outliers as a type of malicious input
by identifying their appropriate category within the Confidentiality, Integrity, and
Availability (CIA) triad.
Chapter 3 defines the first core aspect: uncertainty estimation based on the

parameter sensitivity analysis with respect to OoD versus ID inputs. The de-
rived uncertainty scores achieved promising results across several benchmarking
datasets, confirming our insight about the significance of the stability.
Subsequently, in Chapter 4, this thesis delves deep into the topological prop-

erties of VAE related to both the continuity of encoder and decoder mappings
and VAE’s latent space compactness. This has a deep motivation in a tighter
PAC-Bayes generalization bound for the VAE optimization objective, which is dis-
cussed in detail in Chapter 1. The most revealing discovery is the fact that OoDs
tend to land on latent holes within the latent representation. Based on this in-
sight, a new score has been devised that allows easy detection of the OoD inputs.
In Chapter 5, we take into consideration adversarial examples. The experi-

ments demonstrate that they gravitate towards the latent holes as OoD. Further-
more, an algorithm has been developed to differentiate between inliers, outliers,
and two varieties of adversarial inputs accurately.
The thesis concludes by reviewing the key results and discoveries. It also high-

lights the primary limitations of the research and suggests areas for future im-
provements in deep learning reliability. This development is not only technically
significant but also of considerable societal relevance, as resilient DNNs form the
core of reliable applications in safety-critical areas.

xv





SAMENVATTING
Adversariële voorbeelden en Out-of-Distribution (OoD) inputs vormen een ernstig
risico voor diepe neurale netwerken (DNNs) die worden gebruikt bij veiligheid-
kritische toepassingen. Dit proefschrift heeft tot doel deze risico’s te verminde-
ren door robuuste modellen te ontwikkelen die in staat zijn dergelijke inputs te
detecteren en hun impact te beperken. Om dit doel te bereiken, identificeren we
eerst stabiliteit als een cruciaal aspect dat direct gerelateerd is aan de genera-
lisatie van modellen naar identiek verdeelde (ID) data. Op basis van dit inzicht
richten we ons op de gevoeligheidsanalyse van het model, waarbij twee kerna-
specten worden aangepakt: epistemische onzekerheidsschatting en het identifi-
ceren van een passende inductieve bias.
Dit proefschrift begint met Hoofdstuk 1, waarin we onze modelaannamen over

de opgelegde inductieve bias onderbouwen en Variational Autoencoders (VAEs)
kiezen als de kandidaat voor het aanpakken van adversariële en OoD inputs.
Bovendien leggen we een theoretische basis voor leerbaarheid en generalisa-
tie van modellen. Daarbij houden we rekening met de bekende beperking die
onmogelijkheid aangeeft van leerbaarheid van OoD-detectie in discriminerende
taken. Deze beperking motiveert de overstap naar generatief modelleren in dit
proefschrift.
Vervolgens contextualiseert dit proefschrift in Hoofdstuk 2 de adversariële en

OoD inputs, en beschrijft tegenmaatregelen binnen een breder spectrum van
beschikbare DNN-aanvallen en verdedigingen. In het bijzonder classificeren we
outliers als een vorm van kwaadwillende input door hen in de juiste categorie
binnen de confidentialiteit-integriteit-beschikbaarheid (CIA) triade te classifice-
ren.
Hoofdstuk 3 definieert het eerste kernaspect van dit proefschrift: onzeker-

heidsschatting gebaseerd op de gevoeligheidsanalyse van parameters onder in-
vloed van OoD versus ID inputs. De afgeleide onzekerheidsscores bereiken veel-
belovende resultaten op verschillende benchmarkdatasets, wat ons inzicht over
het belang van stabiliteit bevestigt.
Vervolgens gaat dit proefschrift in Hoofdstuk 4 dieper in op de topologische

eigenschappen van VAE met betrekking tot zowel de continuïteit van encoder-
en decoderafbeelding, als de compactheid van de latente ruimte van VAE. Dit
heeft een diepe motivatie voor een scherpere PAC-Bayes generalisatiegrens voor
het VAE optimalisatiecriterium, wat in detail wordt besproken in Hoofdstuk 1. De
belangrijkste bevinding van dit proefschrift is het feit dat OoDs de neiging hebben
om op latente gaten binnen de latente representatie afgebeeld te worden. Op
basis van dit inzicht wordt een nieuwe score ontwikkeld die eenvoudige detectie
van de OoDs mogelijk maakt.
In Hoofdstuk 5 verbreden we het onderzoek van OoD inputs naar adversari-

ële voorbeelden. Experimenten laten zien dat ze als net als OoD inputs neigen
naar een afbeelding op gaten in de latente ruimte van de VAE. Tevens wordt
een algoritme ontwikkeld om inliers, outliers en twee soorten adversariële inputs

xvii



xviii Samenvatting

nauwkeurig te onderscheiden.
Het proefschrift wordt afgesloten met een overzicht van de belangrijkste re-

sultaten en conclusies. De voornaamste beperkingen van het onderzoek wor-
den besproken en een aantal verbeterpunten voor de betrouwbaarheid van deep
learning wordt voorgesteld. Deze ontwikkelingen beschreven in dit proefschrift
zijn niet alleen technisch van belang, maar hebben ook aanzienlijke maatschap-
pelijke relevantie, omdat in toenemendemate DNNs gebruikt worden in veiligheid-
kritische toepassingen.



1
INTRODUCTION

Deep learning is applied to a rather diverse set of safety-critical tasks
ranging from autonomous car driving to automatically-assisted medical
diagnosis. Such pervasiveness inherently accentuates the vulnerabilities
of deep learning, revealing a critical challenge: deep learning models
are not necessarily robust to specific inputs. It may result in either a
malicious exploitation of the model or in an unexpected model behavior.
To compound the existing challenge, it concerns both the training and
testing stages of the model, resulting in two different types of robustness
and separate appropriate approaches to their mitigation.
In this dissertation, we specifically focus on the second type of re-

silience, i.e., the one that deals with the testing or, from the perspective
of probabilistic modeling, the inference stage. The ultimate goal of this
work is to significantly enhance this type of model’s robustness, which
includes its detection and mitigation capabilities.
This venture implies making several pivotal decisions and choices to

constrain the branching diversity of the available research and experi-
mental paths since the current state of cutting-edge knowledge accumu-
lated for the last several decades in the domain of both machine and
deep learning cannot be feasibly addressed in one study. From one per-
spective, such constraints would necessarily limit the scope of applica-
bility and, as a result, the scope of potential discoveries. From another
perspective, however, choosing these constraints forces a researcher to
make a more principled and informed decision while considering which
options should be kept and which should be filtered out.
This dissertation boldly endeavors to find an equilibrium for the afore-

mentioned contrastive selection so that the suggested solution is still
valid for the majority of the deep learning models with respect to their
enhanced robustness.
To achieve this goal, we start by exploring a deeper understanding of

the problem of learning, learnability, and generalization in this introduc-
tion. This exploration helps categorizing the problem statement within

1
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this universal approach. In addition, it provides a key insight into the
essential elements of our suggested solution.
First, we consider the classical results of the generalization of machine

learning models and learning theory. We introduce the necessary no-
tation and formalize the learning framework, addressing the important
question of learnability in the case of independent and identically dis-
tributed (i.i.d.) samples.
Second, we pose the main problem of our research and investigate

the learnability of OoD detection. We recapitulate a recently formally
proven impossibility result indicating that there is no universally consis-
tent solution for OoD detection in the case of classification tasks where
learnability is characterized by a uniform convergence using Empirical
Risk Minimization (ERM) [1].
Third, considering these impossibility results in the case of a super-

vised discriminative setting, we focus on the unsupervised generative
setting instead. Furthermore, rather than ensuring uniform convergence
of ERM within the hypothesis class, we employ an alternative approach
to learnability by focusing on the variance of the learning rule. This ap-
proach leads to the notion of stability of a particular machine learning
algorithm. Such a shift in viewpoint is unsurprising since stability has
long been identified as the reliable tool to overcome overfitting. It al-
lows for the measurement of the sensitivity of the inferred results with
respect to slight variations in the input. We formulate a dual problem of
measuring the sensitivity of the pre-trained model to the slight variation
in the parameters given a particular fixed input. Hence, we change the
perspective from learnability to stability of the model.
Based on the guiding principle of stability, we focus on two core as-

pects:

1. an epistemic uncertainty estimator

2. the choice of an appropriate inductive bias for ensuring stability

Given the inductive nature of learning, the first aspect addresses the
problem of uncertainty estimation of a model. It allows us to infer the
model’s confidence about its output, indicating a potential direction for
tackling the problematic inputs and shedding light on the link between
the uncertainty of the model and its stability. The second aspect includes
a diverse set of choices related to one’s modeling assumptions that allow
for improving the underlying stability of the model in question.
Following our discussion of stability as a crucial aspect of model ro-

bustness, we introduce the main object of our study in the next section:
inputs to DNNs that pose challenges to their robustness.
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1.1. PROBLEMATIC INPUTS FOR DEEP NEURAL NETWORKS
Consider the following scenario: a DNN classifier is trained on a partic-
ular image dataset (e.g., Imagenet [2]). The dataset contains images
categorized into several categories (e.g., a popular version of Imagenet
consists of over a million training images categorized into a thousand
different classes). The trained model demonstrates high accuracy val-
ues on a test set, i.e., on the images that have never been used during
training but are independently sampled from the identical distribution as
the images used for training. Although an initial dataset can vary and
contain various categories that span a vast diversity of potential objects
there are still classes that are not included in the dataset. For example a
category of a measuring tape is not present among the available classes
in Imagenet. If we use an image of a measuring tape as an input then
it would classify it into the category of a chainsaw (see Figure 1.1a). Re-
markably, it would do it with a high value of a corresponding probability
indicating that the model is rather confident in the resulting output.

This behavior is persistent not only for the specifically chosen category
of a measuring tape but for an arbitrary class that is not included into the
limited set of the training classes. The phenomenon of assigning too high
posterior probabilities is called overconfidence of the model. It may be
a significant problem if one is confronted with a necessity of deployment
of such a model in the wild since there is almost a certain guarantee
that there will be inputs under categories outside of the training set.
This could confuse and mislead the interpretation of the model’s outputs.
These inputs are commonly called outliers or Out-of-Distribution (OoD)
inputs. Please note that we will use these terms interchangeably and
consider them as synonyms. For a precise definition of the term we refer
to Chapter 2.

Another example of inputs that are problematic for DNNs constitute the
so-called adversarial examples. These are specially forged inputs by an
adversarial player who intentially aims to mislead the classifier. These
attacks may be quite difficult to notice since the input quite often resem-
bles a particular benign category from the limited set of allowed classes.
However, the DNN classifies it in a totally different category which poses
a significant risk for the robustness of the model (see Figure 1.1b). Ad-
versarial examples, attacks and inputs are used interchangeably as syn-
onyms in this dissertation for naming this type of problematic inputs.

1.2. FORMALIZING MACHINE LEARNING
Before improving DNNs’ robustness, it is necessary first to understand
and formalize the general task of machine learning and its components.
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chainsawDeep Neural Network

(a) Measuring tape as an input image

peacockDeep Neural Network

(b) Adversarial attack on a cat image

Figure 1.1: () DNN trained on ImageNet classifies an outlier with a prob-
ability ≥ 90% as a chainsaw; (b) Untargeted adversarial at-
tack on a cat image that is classified by the same DNN as a
peacock again with a high probability ≥ 90%.

1.2.1. LEARNING FRAMEWORK AND NOTATION
There are several constituents of the machine learning framework:

• An input metric space (X , dX ), where X represents the domain of
inputs and dX is a corresponding metric. Let X be a random vari-
able taking values in X . This random variable represents an input to
our model. X is distributed according to some unknown probability
distribution PX(x), we denote a particular realization of X as x. Fur-
themore, where it is clear from the context, we use P(x) to denote
distribution of X to avoid clutter in notation.

• An output metric space (Y, dy) with a metric dy. In this dissertation
we consider only cases when Y ⊆ Rd, e.g., for a binary classification
task: Y = {+1,−1} or Y = {0,1}, in the case of multiclass classifi-
cation Y = [D], in the case of regression Y = Rd. We denote Y being
a random variable taking values in Y, and we use P(y) to denote its
distribution.

• A training dataset Sm = ((x1,y1) . . . (xm,ym)) sampled from an un-
known underlying joint distribution over X×Y such that each (x,y) ∼
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PXY (x,y). This joint distribution consists of two parts: the aforemen-
tioned probability over inputs P(x) and a conditional probability over
outputs for each domain point P(y|x), i.e., PXY (x,y) = P(y|x)P(x).

• An optimal predictor ƒ∗(x) that achieves the least irreducible error
possible for the predicted output given the joint distribution PXY .

• A hypothesis space H, which is a set of functions that map input
space to output space h : X → Y.

• A learning algorithm A returns a hypothesis (or a set of hypotheses)
based on a training dataset A(Sm) in a deterministic or probabilistic
manner. It attempts to allocate a single ĥ(x) (or a set of hypotheses)
that functionally substitutes ƒ∗(x).

Note that this formulation is provided for a supervised machine learn-
ing, in the case of unsupervised generative machine learning, it is suffi-
cient to set y := x and instead of sampling from PXY to sample directly
from PX. To unify notation in this introduction whenever possible we
will use PD and z instead of either (x,y) or (x,x) to cover both super-
vised discriminative, where D := XY, and unsupervised generative cases,
where D := X.
The task of learning in such case is formulated as the ability of the

model to generalize to the unseen datapoints. The general assumption
is that the unseen data is sampled from the same distribution PD as the
one available in the training set and that they are all independent and
identically distributed.

1.2.2. RISK, EMPIRICAL RISK AND LEARNING OBJECTIVE
In order to learn, we need first to define a cost of an error event or an
error value returned by a model in question. It is natural to represent
this cost by a non-negative real value, i.e., for an appropriate hypothesis
space H and a domain Z, let ℓ be ℓ : H × Z → R+ . Such functions are
called loss functions.
The overall measure of success of a machine learning model, i.e., how

good a particular model is at predicting the resulting output for both seen
and unseen i.i.d. data can be formulated utilizing a risk function:

R(h) := Ez∼PDℓ(h,z). (1.1)

It is the expected value with respect to the data distribution so they
represent the true error of the model, which is called the generalization
error. And that is exactly the error that one aims to minimize during
training. However, the problem is that it cannot be computed due to the
fact that the data distribution is unknown. The only available data is a
sample Sm based on which one can estimate the so-called empirical risk:
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R̂(h) :=
1

m

∑

z∈Sm
ℓ(h,z). (1.2)

Hence, the final learning objective will be1:

h∗ = rgmin
h∈H

R̂(h). (1.3)

This objective and the appropriate learning paradigm is called Empiri-
cal Risk Minimization (ERM). It encapsulates many machine learning al-
gorithms and covers all of the algorithms we are implementing in this
thesis.
As a result, machine learning can be summarized as follows: it is an

optimization for a hypothesis h ∈ H that should be as close as possible
to the optimal predictor ƒ∗(x). This is achieved via estimation of the risk
function R(h) based on the empirical risk function R̂(h). Empirical risk
is evaluated on a random sample Sm from the unknown data distribu-
tion PD where each datapoint is considered as a particular realization of
a random variable that is independent and identically distributed. The
questions arise when such an approach to learning is feasible, what are
the guarantees for a particular model to learn on a particular dataset,
and what do these guarantees depend on?

1.2.3. A LEARNABLE PROBLEM
The principal aim is to select a hypothesis h ∈ H that achieves the lowest
possible risk based on a limited set of observations. Unless training data
is randomly labeled, it is reasonable to assume that the risk decreases
with increasing sample size. Learning algorithms that identify such hy-
potheses are called consistent. To elaborate, a learning algorithm A is
consistent at a monotonically decreasing rate ϵcons(m) under a particu-
lar distribution PD if for every sample size m and a bounded loss it is true
that:

ESm∼PmD

�

R(A(Sm)) −min
h∈H

R(h)
�

≤ ϵcons(m).

Since we do not know the data distribution, the problem is feasible to
learn if it holds true for every possible distribution, which is summarized
in the following definition [3].

1Note that this objective applies only when either hypothesis space is finite or when the
minimum is attainable within the set (e.g. if the set is closed). Otherwise, this objective
is not feasible, and we aim at infimum, which is not a part of the hypothesis space. In
practice, the corresponding loss function is minimized until convergence, obtaining the
resulting hypothesis as close as possible to the infimum.
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Definition 1.2.1 (Learnable Problem, Shalev). A problem is learn-
able if there exists a consistent rule A and a monotonically decreasing
sequence ϵcons(m) such that

ϵcons(m)
m→∞−−−→ 0 and ∀PD ESm∼PmD

�

R(A(Sm)) −min
h∈H

R(h)
�

≤ ϵcons(m).

This single reasonable requirement for a learning procedure implies
that we can control the quality of our approximation in advance. To un-
derstand this, consider the following intuitive reformulation. Given that
[R(A(Sm)) −minh∈H R(h)] ≥ 0, we can apply Markov’s inequality to ob-
tain:

P

�

R(A(Sm)) −min
h∈H

R(h) < ϵ
�

> 1−
ESm∼Pm

D
[R(A(Sm)) −minh∈H R(h)]

ϵ
≥ 1−

ϵcons(m)

ϵ
.

Given that ϵcons(m) decreases monotonically, it is possible to identify
the smallest integer m′ satisfying ϵcons(m′) ≥ δϵ and ϵcons(m′ − 1) < δϵ,
where δ ∈ (0,1). Hence, for every ϵ > 0 and δ ∈ (0,1), a function m′(ϵ, δ)
can be defined which represents a sample complexity. As a result, when
the size of a sample for our training dataset has size m > m′(ϵ, δ), one
can guarantee with the probability at least 1 − δ that a hypothesis ob-
tained by a consistent learner will be within an arbitrary close neighbor-
hood of the true risk:

R(A(Sm)) −min
h∈H

R(h) < ϵ.

Such a reformulation provably allows obtaining an arbitrarily close ap-
proximation of optimal risk by setting an appropriate value for ϵ with
an arbitrary level of confidence by choosing an appropriate significance
level δ which in turn gives us a sample complexity m′ to learn a particu-
lar problem. This approach constitutes the essence of Probably Approxi-
mately Correct (PAC) learnability or PAC learning framework. To summa-
rize the idea, we provide the following definition [4].

Definition 1.2.2 (PAC learnability, Shai2). Given a hypothesis class
H, a set Z, and a loss function ℓ : H×Z → R+ , we say that H is PAC learn-
able if there exists a function mH : (0,1)2 → N and a learning algorithm
A such that for all ϵ, δ ∈ (0,1) and for every distribution PD, if A is run on
m ≥mH(ϵ, δ) i.i.d. samples from PD, then it produces an h ∈ H satisfying:

P

�

R(A(Sm)) −min
h∈H

R(h) < ϵ
�

≥ 1 − δ.

where the probability is taken over the choice of the m training exam-
ples from PD.
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Based on that, we can identify two types of errors related to PAC learn-
ability. The first error relates to the quality of our hypothesis space and
the lowest possible risk attainable by a predictor in this spaceminh∈H R(h).
This error is incurred due to the restriction to a particular class. It is
called the approximation error. The second error is the so-called estima-
tion error, manifested as the difference between the risk of an optimal
hypothesis R(A(Sm) obtained by a learning algorithm and the risk of a
true minimum hypothesis R(h) within a hypothesis class.
Note that the PAC learnability definition does not say anything about

how to achieve this learnability, i.e., how to choose an appropriate learner
(e.g., how to ensure that it is consistent). Moreover, it says nothing about
the choice of an appropriate hypothesis class or a loss function.

1.2.4. GENERALIZATION VIA INDUCTIVE BIAS
Can we devise a universal learner to attain PAC learnability on any data?
The No-Free-Lunch theorem (and its alternatives) proves that it is impos-
sible [4–6]. Specifically, in a scenario where no further information is
provided beyond a finite training sample Sm, it is logical to assume that
every potential predictor ƒ (x) consistent with Sm is plausible so it is cho-
sen uniformly, i.e., the distribution over the set of consistent predictors
P(ƒ ) is uniform. Hence, the No-Free-Lunch theorem claims, in general,
that there is no distinction in the performance between any two learn-
ing algorithms, denoted as A1(Sm) and A2(Sm), averaged across all the
potential predictors:

EP(ƒ )
�

R(A1(Sm)
�

= EP(ƒ )
�

R(A2(Sm)
�

.

To avoid the uniformity assumption over hypotheses we have to as-
sume some prior knowledge. In other words, we need an inductive bias
to allow our learning algorithm to generalize [7]. It also means that PAC
learnability alone is only necessary but not sufficient for generalization.
The reason lies in the selection of the hypothesis space; if the induc-
tive bias of this space is strong and happens to be incorrectly chosen,
then the approximation error will be substantial, irrespective of the sam-
ple size. This is because the optimal value minh∈H R(h) is also poor.
Therefore, even though PAC learnability applies, generalization remains
unattainable.
The most common bias is based on Occam’s razor, which represents a

bias towards parsimony [8].
In practice, inductive bias relates to any modeling assumption wemake,

so it comprises the following items:

• the choice of the hypothesis space

• the choice of the loss function
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• the choice of the learning algorithm

Every particular choice for any of the items stated above will bias our
solution, so it will be substantiated further in this chapter.

1.2.5. LEARNING ALGORITHMS, GENERALIZATION BOUNDS AND
STABILITY

Recall that PAC-learnability formulation tells us nothing about how to
come up with an appropriate learner. It simply allows for the bound-
ing of the true risk to an arbitrary level of precision with a desired level
of confidence. Classical statistical learning theory states that ERM is a
consistent learner if and only if it converges uniformly (the so-called key
theorem of learning [9]). Moreover, based on the Uniform Law Of Large
Numbers (ULLN), it is possible to derive generalization bounds for risk
function bounded by ERM and a ratio between the complexity of the ap-
propriate hypothesis class and the number of training examples. These
bounds vary depending on the underlying task to be solved, but for a bi-
nary classification task with a (0-1) loss, the most prominent result states
that:

Theorem 1.2.3 (Vapnik–Chervonenkis Bound). Assume that H is fi-
nite or has a finite Vapnik–Chervonenkis (VC) dimension. If the ERM al-
gorithm is trained with m i.i.d. examples sampled from PD, then with
probability 1 − δ, the risk of its output h∗ is bounded by:

R(h∗) ≤ R̂(h∗) +

√

√

√ log |H| + log(1/δ)

2m
.

where |H| is the complexity of the hypothesis class, which is either the
number of elements in the case of finite H or VC-dimension in the case
of infinite H. Hence, PAC learnability over class H is achievable with the

following sample complexity m(ϵ, δ) = 1
2ϵ2

�

ln |H| + ln 1
δ

�

.

There are numerous other generalizations of this bound, e.g., in the
case of multiclass classification, it is possible to utilize the Natarajan
dimension [10], the conditions on loss functions can be relaxed, etc. To
summarize, one can control the generalization of the learning up to an
arbitrary level of precision utilizing this bound if uniform convergence
holds true and the appropriate hypothesis class is used.
When the hypothesis space does not have a uniform convergence prop-

erty, the likelihood of overfitting becomes much more apparent since
there is no more guarantee that an optimal ERM hypothesis will be in the
vicinity of true risk [4]. Note that the generalization bound has a tension
between an ERM and the complexity of a hypothesis class. This tension
is similar to the bias-variance tradeoff in the statistics and is dubbed
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the bias-complexity tradeoff. The standard learning procedure in such
a case is Structural Risk Minimization (SRM), when the hypothesis class
is divided into subclasses of increasing or decreasing complexity, each
of which satisfies the uniform convergence property. Subsequently, via
fitting ERM and computing the bound, one can identify a sweet spot (a
minimum) where the bias-complexity tradeoff achieves the optimal bal-
ance.
In the case of SRM, we identify some prior discrete ranking of hypoth-

esis classes. There is also a possibility to make a continuous version of
this prior by utilizing a PAC-Bayes approach. It is a generalization of the
classical PAC learnability which allows to define a prior p on hypotheses
that does not depend on the data Sm. Let q(Sm) = q denote a posterior
distribution on hypotheses that can depend on the data. Then risk and
empirical risk functions can be defined as follows:

Rq = Eh∼q[R(h)] and R̂Sm,q = Eh∼q[R̂(h)|Sm].

Based on these assumptions, a PAC-Bayes generalization bound can
be formulated [11]:

Theorem 1.2.4 (PAC-Bayes Bound, McAllester). For any loss func-
tion ℓ ∈ {0,1}, arbitrary data distrubtion PD, any hypothesis class H and
a probability measure p supported on H, for all q probability measures
supported on H, it holds that:

Rq ≤ R̂Sm,q +

√

√

√KL[q∥p] + log 2
p
m
δ

2m
.

where KL(q∥p) denotes the Kullback-Leibler divergence between the
probability distributions q and p.

Since it is true for all q simultaneously, we can minimize the bound
with respect to q to find the appropriate posterior.
An alternative approach to a learning problem is the so-called Regu-

larized Loss Minimization (RLM). It represents a learning rule where one
jointly minimizes the empirical risk and a regularization function. The
regularization function usually bounds the model parameters aiming at
a more predictable and stable behavior. A classic example of such a
learner is a Tikhonov regularization [12]. RLM constitutes an instance of
the learning approach based on the stability of the learning algorithm.
Stability is a desirable condition for generalization. There are various
formalizations of stability that prove that it is a necessary condition or,
in some cases, even a necessary and sufficient condition for generaliza-
tion [3, 13, 14].
To summarize, the discussed learning approaches address generaliza-

tion within the following categories:
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1. Approaches based on Vapnik-Chervonenkis theory, including ERM
with uniform convergence over the hypothesis space, and SRM.

2. Approaches based on stability, such as RLM.

3. Approaches based on information-theoretic bounds, exemplified by
PAC-Bayes methods.

These three categories encompass the majority of learning theory ap-
proaches to addressing generalization. To further explore these con-
cepts, let us rely for the moment on an intuitive understanding of stability
as a mechanism to prevent overfitting, without delving into formal defi-
nitions. Consider the uniform convergence requirement first. This can be
viewed as the most stringent condition of stability in relation to the true
solution. It implies that the learning algorithm consistently stays within a
maximum ε-neighborhood of the true solution, representing the highest
achievable stability. In the context of SRM, we utilize our prior knowledge
to rank the complexities of models. This process involves sequentially
optimizing for the minimum value of a generalization bound, ultimately
selecting the most stable model. The PAC-Bayes framework builds on this
idea by extending the ranking of models to continuous cases, thereby
ensuring stability through probabilistic bounds. For RLM, stability is ex-
plicitly incorporated into the learning process. This is achieved by adding
a stability term directly to the objective function, which typically involves
bounding the norms of the model parameters. All this evidence strongly
indicates that stability is a critical condition for generalization.

1.3. UNCERTAINTY ESTIMATION
There are two types of uncertainties that are commonly associated with
any machine learning task [15]: aleatoric and epistemic.
The first type is related to the inherent random effects in our data

or data collection routines, which are unavoidable. For instance, con-
sider rolling a die. The outcome is inherently unpredictable due to the
stochastic nature of the process, and no amount of additional information
can predict the exact result, only the probabilities of each face appear-
ing. Another example is when there is an overlap between two classes,
making it uncertain for prediction in this region of overlap. The second
type is frequently referred to as systematic uncertainty, i.e., the one
that is caused by a lack of knowledge about the best model. Since this
type of uncertainty reflects the decision maker’s ignorance rather than
any intrinsic randomness, it comprises both estimation and approxima-
tion errors (see Figure 1.2). Thus, while aleatoric uncertainty is due to
the fundamental randomness of the process and cannot be reduced with
more information, epistemic uncertainty is due to incomplete knowledge
and can be decreased as more data and insights are obtained.
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(a) Aleatoric uncertainty

hypothesis space

estimation error

approximation 
error

(b) Epistemic uncertainty

Figure 1.2: () Aleatoric uncertainty is inherent to the randomness in
data or data collection process; e.g., there is no clear deci-
sion boundary. (b) Epistemic uncertainty stems from both
estimation and approximation errors where bh is a hypothesis
obtained by a learning algorithm A, h∗ is an optimal hypoth-
esis within the chosen hypothesis space, and ƒ∗ is a real op-
timal predictor.
Adapted from Hüllermeier and Waegeman [15].

In prediction, aleatoric uncertainty is modeled via a posterior distri-
bution over labels P(y|x). As for the epistemic uncertainty, a common
approach is to compute a posterior distribution over hypotheses P(h|x)
with a subsequent marginalizing over hypothesis space to calculate a
model predictive posterior. In the classic example of the classification
problem it results in the following estimation:

P(y|x) =
∫

H
P(y|x, h)dP(h|x). (14)

Since marginalization over the whole hypothesis space is typically in-
feasible, using a Monte-Carlo averaging over several models is common
practice.

1.4. PROBLEM STATEMENT
In this section, we formulate the problem that we aim to solve, namely,
to enhance the robustness of deep learning classifiers with respect to
OoD and adversarial inputs, enabling their detection and providing the
means for their mitigation. For OoD, we base our approach on the formal-
ization posited by Fang et al. [1]. Following this approach, we formalize
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OoD detection learnability and state the corresponding impossibility the-
orem. For adversarial examples, we formalize the essence of adversarial
attacks, providing several commonly used examples. Finally, we state
our research questions.

1.4.1. OOD DETECTION LEARNABILITY
First, we extend the previously introduced notation for classic inlier learn-
ing to encompass the OoD detection learning problem. We start with
defining inlier and outlier distributions. Recall that we have denoted an
input metric space (X , d) with a metric d that represents a set of pos-
sible inputs and a corresponding output metric space (Y, dy) which in
the case of multiclass classification problem represents a discrete label
space Y := {1, . . . , K} where K stands for number of classes. We denote
in-distribution random variables as X ∈ X and Y ∈ Y with a joint dis-
tribution PXY (x,y) over X × Y. Note that K covers only in-distribution
classes; hence, for the task of out-of-distribution detection, we introduce
an additional class K + 1 for all OoD inputs. For this class, we introduce
an OoD random variable YO. The OoD random variable in the input space
is correspondingly denoted as XO and their joint distribution: PXOYO(x,y)
over X × {K + 1}.
We train our model only on inlier joint distribution. However, during the

inference stage, we deal with a mixture of inlier and outlier joint distribu-
tions, namely: PXY (x,y) = (1− π)PXY (x,y)+ πPXOYO(x,y). Moreover, we
receive as an input only instances coming from the marginal distribution
PX(x) = (1− π)PX (x) + πPXO(x), where π ∈ (0,1) stands for the unknown
prior of the outlier distribution versus the inlier distribution.

Definition 1.4.1 (OoD Detection, Fang et al.). Assume an in-distribution
PXY (x,y) and a dataset Sm := {(x1,y1), . . . , (xn,yn)}, with each (x,y)
pair sampled independently from PXY (x,y). The objective for detect-
ing OoD instances is to devise a classifier ƒ using dataset Sm. Given
that x is drawn from the mixed marginal distribution PX(x), this classi-
fier should be capable of: 1) accurately categorizing a test instance x to
the appropriate in-distribution class when x originates from PX (x); and
2) recognizing a test instance x as an OoD input when x derives from
PXO(x).

Let DXY denote a domain space that comprises a collection of joint
distributions PXY (x,y), each formed by a mixture of ID joint distributions
PXY (x,y) with a OoD joint distributions PXOYO(x,y). In this context, the
mixed joint distribution PXY (x,y), which encompasses both ID and OoD
elements, is defined as the domain. We denote Dall

XY
as a domain space

that consists of all domains.
Let Y = Y ∪ {K + 1} to account for the additional OoD class.
Given a loss function ℓ : Y × Y → R+0 satisfying ℓ(y1,y2) = 0 if and

only if y1 = y2, and any h ∈ H, then the risk with respect to PXY is
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R(h) := E(x,y)∼PXY [ℓ(h(x),y)]. (1.4)

The separate risks for IDs Rn(h) and OoDs Rot(h) are defined as:

Rn(h) := E(x,y)∼PXY [ℓ(h(x),y)], Rot(h) := Ex∼PXO
[ℓ(h(x), K + 1)].

(1.5)

Definition 1.4.2 (Learnability of OoD Detection, Fang et al.). OoD
detection is learnable in DXY for H ⊆ {h : X → Y}, if there exists an al-
gorithm A : Sm → H and a monotonically decreasing sequence ϵcons(m),
such that ϵcons(m)→ 0, as m→ +∞, and for any domain PXY ∈ DXY ,

ES∼PmXY

�

R(A(Sm)) −min
h∈H

R(h)
�

≤ ϵcons(m), (1.6)

Such an algorithm A is consistent with respect to DXY .

Note that when π = 0 then Definition 1.4.2 is reduced to the PAC-
learnability. Hence, it is an extension of PAC-learnability 1.2.1 to the
OoD scenario. While supervised agnostic PAC-learnability is distribution-
free, meaning the domain space DXY includes all possible domains, the
learnability of OoD detection is inherently not distribution-free due to the
absence of OoDs during training.

Definition 1.4.3 (Overlap Between ID and OoD). There is an overlap
between in-distribution PX and out-of-distribution PXO if there exists at
least one event or subset A ⊆ X such that:

∃A ⊆ X : (PX (A) > 0)∧ (PXO(A) > 0)

In other words, there exists at least one subset of the feature space
where both PXI and PXO assign a non-zero measure, indicating the pres-
ence of an overlap between the two distributions.
Finally, we are ready to state the impossibility theorem for OoD detec-

tion learnability:

Theorem 1.4.4 (Impossibility Theorem, Fang et al.). Let H rep-
resent a hypothesis space and DXY denote a prior-unknown space of
distributions. Suppose there exists a distribution PXY within DXY where
overlaps occur between ID and OoD. If the minimum in-distribution error
minh∈H Rn(h) and the minimum out-of-distribution error minh∈H Rot(h)
are both zero, then it is impossible to learn OoD detection for H in the
space DXY .

Since inliers and outliers occupy the same support in all of the exam-
ples that we will consider, this result guarantees that OoD detection can-
not be learnt in such cases. Moreover, since learnability is a necessary
condition for generalization, it implies that there is no general solution
for the problem of OoD detection.
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1.4.2. ADVERSARIAL EXAMPLES
Adversarial examples are specially crafted inputs (typically images) that
cause DNNs to misclassify them, even though to humans, these inputs
appear almost identical to the original images. It should be noted, how-
ever, that from the attacker’s perspective, it is not always a concern to
make these modifications imperceptible to humans. For them, the focus
is on ensuring the success of their attacks without necessarily adhering
to the constraint of making changes unnoticeable. We provide three pri-
mary techniques for creating such adversarial examples starting from
normalized inputs x ∈ [0,1]n:
1. Fast Gradient Sign Method (FGSM): This approach exploits the

gradient-based learning of DNNs to generate adversarial examples. It
aims to maximize the loss by adjusting the pixels of the input image
through the sign of the gradient of the loss function concerning the input.
The equation details the method:

x′ = x + ϵ · sgn(∇xℓ(hθ(x), ys)),x′ ∈ [0,1]n

where ∇xℓ is the gradient of the loss function, with respect to the orig-
inal input x, ys is the true or source label for x, θ stands for the model
parameters that are constant, and ϵ is a small step size. The method
also allows for targeted attacks by altering the gradient direction and
the label.
2. Carlini-Wagner (CW) Attack: Focused on minimizing the added

noise for effective misclassification, the CW attack formulates an opti-
mization problem to find the smallest possible perturbation that leads to
misclassification into a specified target class. The optimization objective
encapsulates this approach:

minimize ||δ||p subj. to hθ(x + δ) = yt , x + δ ∈ [0,1]n

Here, δ represents the noise added to the original input x, aiming to
achieve minimal perturbation, and yt is the intended target class label of
a resulting attack.
3. Jacobian-based Saliency Map Attack (JSMA): This method uses

the DNN’s Jacobian matrix to identify and modify the most influential fea-
tures on the classification output. By altering features with high saliency
values, the attack iteratively pushes the input towards misclassification,
adhering to a perturbation limit. The attack focuses on making signifi-
cant, yet limited, changes to the input to deceive the DNN.
These techniques illustrate different strategies to create adversarial

examples, highlighting the balance between effectiveness and percepti-
bility and the diverse approaches attackers can employ to challenge DNN
image classifiers.
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1.4.3. RESEARCH QUESTIONS
Building upon the described and formulated problems, we proceed to
pose the following research questions (RQs):

RQ1: How can we categorize problematic inputs in the context of attack-
ing and defensive methods in deep learning?

RQ2: Is detecting problematic inputs utilizing epistemic uncertainty esti-
mation possible?

RQ3: How problematic inputs are interpreted from the perspective of
their internal latent representation?

1.5. OUR APPROACH ADDRESSING THE PROBLEM
We observe the fact that adversarial examples that aim at optimality,
such as a CW attack that produces minimum perturbation for misclassifi-
cation, may differ in a very small subset of pixels with the original image.
The fact that even so small perturbations can still mislead prediction re-
sults is indicative that these examples rely on some sort of instability
in the behavior of DNNs. Furthermore, considering the persistent phe-
nomenon of DNNs’ overconfidence with respect to both OoD and adver-
sarial inputs, we hypothesize that they may be considered similarly in
the DNNs internal representation. Taking these insights into account, we
elaborate our method based on sensitivity analysis of a trained model.
First, we motivate our approach by focusing on stability with respect

to parameters, rather than the training data discussed previously. This
approach introduces a novel perspective in our research, shifting the fo-
cus from data to parameters. To that end, we reiterate the definition of
algorithmic stability based on mutual stability between the inferred hy-
potheses and the training sample which is measured utilizing an overlap
coefficient [16].

Definition 1.5.1 (Overlap Coefficient). The overlap coefficient be-
tween two probability distributions P and Q on a measurable space (X ,F)
with a σ-algebra F is defined as:

〈P,Q〉 =
∫

X
min

�

dP

dμ
,
dQ

dμ

�

dμ,

where μ is a reference measure and dP
dμ and dQ

dμ are the Radon-Nikodym
derivatives of P and Q with respect to μ. And both P≪ μ and Q≪ μ.

Definition 1.5.2 (Mutual Stability). Mutual stability between two ran-
dom variables x ∈ X and y ∈ Y is defined as:

S(x;y) := 〈P(x)P(y),P(x,y)〉
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where 〈P,Q〉 stands for overlap coefficient between the corresponding
probability distributions P and Q.

It measures the stability of the distribution of one random variable,
e.g., X before and after observing an instance of another random vari-
able, e.g., Y. The lower the value of S, the less mutual stability there is
between these random variables.

Definition 1.5.3 (Algorithmic Stability, Alabdulmohsin). Stability of
a learning algorithm A trained on a finite dataset Sm drawn i.i.d from an
unknown data distribution P(z) is defined as S(A) = infP(z) S(A(Sm), Sm)
where the infimum is taken over all possible distributions of observations
P(z). A learning algorithm is called algorithmically stable if limm→∞S(A) =
1.

Second, we observe that mutual stability is symmetric with respect to
its input random variables, namely:

〈P(x)P(y),P(x,y)〉 = EX 〈P(y),P(y|x)〉 = EY 〈P(x),P(x|y)〉

Consequently, we can adopt a dual perspective on stability for the al-
gorithm during the inference stage when the training is finalized. Since
stability is necessary for learning, we assume that a trained model is sta-
ble with respect to the input data and has good generalization potential.
Hence, provided that input data is fixed, we can, in theory, measure the
algorithmic stability with respect to the distribution over the hypotheses,
i.e., taking infimum over h: infP(h) S(h, Sm) instead of z. To that end, we
devise several corresponding scores that are feasible to compute in prac-
tice, including the so-called hole indicator that demonstrated the most
promising results (see Chapter 4 for details).
Furthermore, considering the impossibility of OoD learnability, we aim

to minimize generalization errors for inliers so that only relevant features
play a role in the subsequent sensitivity tests that detect problematic
inputs.
In the next sections, we provide our motivation for choosing an ap-

propriate inductive bias to tackle this problem. Since we consider Deep
Generative Latent Variable Models (DGLVMs), we distinguish two parts of
our solutions: probabilistic modeling and parameterization of the proba-
bilistic models via DNNs.

1.6. PROBABILISTIC VERSUS NON-PROBABILISTIC
The first distinct choice connected to the modeling assumptions within
both supervised and unsupervised branches of machine learning relates
to the output of the designed model. In the cases when the output rep-
resents a parameterized probability density or mass function, we refer to
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such models as probabilistic models. In all other cases, we speak about
non-probabilistic models.
The examples of non-probabilistic machine learning can be coarsely

subdivided into logical and metric-based modeling. The first one incor-
porates the rule-based approach based on if-else comparisons. In the
cases when rules can be used for branching, and the branching results
can be represented as nodes and leaves, the corresponding model ex-
emplifies a classical decision tree.
In metric-based machine learning, the output result strongly depends

on the local or global metric within either instance or feature space.
This approach has numerous examples; we will list three of the most
prominent ones. First, the k-Nearest Neighbors (k-NN) algorithm relies
on the k-closest points with respect to some metric for either classifica-
tion or regression. Support Vector Machine (SVM) is based on identifying
a maximum margin hyperplane between the disjoint classes. Usually,
after applying an appropriate kernel trick, this margin is again based
on a corresponding metric in use. Third, linear regression aims to min-
imize the least squared error between predicted and actual values. It
should be noted that some metric-based approaches can be converted
to probability-based ones simply by assuring non-negativity and normal-
izing the corresponding results so that the sum or integral over the re-
sults is equal to 1. The most prominent example of such a conversion
represents a softmax function that takes any vector of real numbers as
input and produces probabilities of a categorically distributed random
variable.
Moreover, some metric-based methods, such as linear regression, can

be derived completely from the probabilistic perspective, making this
distinction not totally disjoint, demonstrating an overlap between these
modeling approaches.

DISCRIMINATIVE VERSUS GENERATIVE MODELING
There are two approaches to model the distribution of a random variable
(r.v.). The first method is directly related to the modeling of the condi-
tional distribution. Allow X be an input r.v. and Y be an output r.v, e.g.,
in the case of the classification task X can be any input to classify (e.g.,
images), and Y can be a corresponding label of a particular input. The
direct approach of acquiring PY |X(y|x) would constitute a mapping of an
X to a Y, which represents a classical instance of discriminative model-
ing. The common case is when X stands for a high-dimensional input,
which manifests a non-trivial underlying structure, whereas Y represents
a low-dimensional output such as categories or classes of the resulting
classification task. Both the training and the quality estimation of this
mapping are performed in a supervised manner when the training and
test datasets contain labeled data.
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(a) Discriminative model (b) Generative model

Figure 1.3: () Discriminative model learns the decision boundary be-
tween the classes P(y|x); (b) generative model learns the
joint distribution of the data P(x).

The second method poses a more difficult problem to solve: instead
of learning a conditional distribution that maps a high-dimensional input
to a lower-dimensional output, the problem becomes learning the joint
distribution of the data PX(x), i.e., modeling the data inputs themselves.
This approach allows to generate new unobserved samples of the train-
ing data, hence, the name: generative modeling.

1.7. PROBABILISTIC MODELING CONSTITUENTS
We choose a probabilistic approach for our model and, in particular,
a variant of a generative model, which introduces an additional latent
random variable whose posterior is to be estimated via a subclass of
Bayesian methods: amortized variational inference. In particular, our
probabilistic models are based on Variational Autoencoder (VAE). We ex-
plain the rationale behind this decision by examining the major charac-
teristics of the inductive bias inherent to VAE modeling assumptions.
First, the objective function of VAEs is based on a surrogate for Max-

imum Likelihood Estimation (MLE): Evidence Lower Bound (ELBO) that
tends to approximate the marginal likelihood of the input data. ELBO
can be expressed as the sum of two terms: the likelihood responsible
for reconstruction error and the KL-divergence that regularizes locations
of latent posterior within a predefined prior (see Chapter 3 for more de-
tails). It means we get a default regularizer on this level for our inductive
bias.
Second, VAEs have a bottleneck layer similar to classical autoencoders

that puts pressure on information flow, and that requires that the rele-
vant information for reconstruction is compressed. The ability to properly
compress your input data distilling the relevant features is an inherent
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constituent of successful learning.
Third, VAEs provide natural guarantees in terms of PAC-Bayes general-

ization bound for reconstruction loss [17]. Namely, let gθ(z) be a decoder
function parameterized by θ that, upon receiving a latent code z gener-
ates a reconstruction of x. The reconstruction loss is defined as:

ℓθrec(z,x) = ∥x − gθ(z)∥

Let the instance space’s diameter Δ := spx,x′∈X dX (x,x′) be finite
then the following generalization PAC-Bayes bound can be stated for loss
reconstruction:

Theorem 1.7.1 (PAC-Bayes VAE Bound, Mbacke et al.). Let Δ < ∞
be diameter of our input space X , PX the data-generating distribution,
Z the latent space, p(z) the prior on the latent space, θ the decoder’s
parameters, δ ∈ (0,1), λ > 0 be real numbers. With probability at least
1 − δ over the random draw of Sm ∼ PX, the following holds for any
posterior qϕ(z|x):

Ex∼PXEqϕ(z|x)
�

ℓθ
rec
(z,x)

�

︸ ︷︷ ︸

Test Rec. Loss

≤
1

m

m
∑

=1

Eqϕ(z|x)
�

ℓθ
rec
(z,x)

�

︸ ︷︷ ︸

Emp. Rec. Loss

+
1

λ

� m
∑

=1

KL
�

qϕ(z|x)||p(z)
�

�

︸ ︷︷ ︸

Emp. KL loss

+ λMϕMθΔ
︸ ︷︷ ︸

Compactness

+
λ2Δ2

8m
︸ ︷︷ ︸

Reg., Comp., Data Size

+
1

λ
log

1

δ

(1.7)
where Mϕ and Mθ are Lipschitz constant of encoder and decoder map-
pings correspondingly.

Note that this bound enables optimizing a standard ELBO objective
terms of reconstruction and KL-divergence, and it gets tighter as the
size of the training set grows. In addition, it contains terms related to
the compactness properties of the model which includes both Lipschitz
constants used in VAE mappings together with a diameter of the input
space and a regularization parameter for balancing a trade-off between
the strength of regularization and precision of reconstruction. We will
separately cover these points in Section 1.9.
Finally, VAE allows extending Bayesian inference over parameters within

the same Bayesian framework as the original ELBO objective function for
epistemic uncertainty estimation.
The number of beneficial characteristics makes the choice of VAE as

the major candidate for our problem rather straightforward.
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1.8. PARAMETERIZING PROBABILITIES WITH DNNS
We use DNNs for learning the parameters of our deep probabilistic model.
First, we state the following theorem.

Theorem 1.8.1 (Universal Approximation Theorem). Let C(X ,Y)
denote the set of all continuous mappings from X to Y. Let σ ∈ C(R,R)
represent an element-wise activation function. Then let N σ

n,m
represent

the class of feedforward neural networks with activation function σ, with
n neurons in the input layer, m neurons in the output layer, and one hid-
den layer with an arbitrary number of neurons. Let K ⊆ Rn be compact.
Then σ is nonpolynomial if and only if N σ

n,m
is dense in C(K,Y).

It means that an artificial neural network with a single hidden layer is
able to approximate any target continuous function up to an arbitrary
level of precision.
The first caveat, however, is the number of neurons in the hidden layer,

which grows with the approximation power of the network. The current
practice is to use DNNs instead, which consist of an arbitrary number of
layers. There are available alternatives for the UAT that postulate similar
approximation results for DNNs as for neural networks with a single hid-
den layer. Such an approach also seems to work better in learning the
hierarchy of more abstract features of the input data along with deeper
layers.
The second caveat relates to the stability concern. Although the ap-

proximation capabilities of DNNs lie in the usage of nonpolynomial activa-
tion functions, not all nonpolynomials are reasonable to use from the per-
spective of stability. In principle, according to the UAT one can achieve
arbitrary close approximation utilizing exponential functions used as ac-
tivations. Despite the fact that the solution may be close, such a DNN,
even with three hidden layers, would already be quite unstable. As a re-
sult, there is a common practice to restrict the space of activation func-
tions to Lipschitz continuous, e.g., sigmoid, tanh, relu are all 1-Lipschitz
continuous.
The third caveat pertains to the fact that DNNs are overparameterized,

meaning that the number of parameters significantly exceeds the num-
ber of training data. If we apply our knowledge from classical learning
theory, we will get a very high value for the corresponding VC dimension,
which makes most of the classical generalization bounds vacuous. Be-
sides, it means that, in theory, DNNs should overfit achieving very high
generalization error. However, the success of DNNs, on the contrary, re-
veals exceptional generalization capabilities and provides no evidence
for overfitting [18].
There are some seminal works that attempt to reconcile this theoret-

ical inconsistency. First, the theory of double descent [19] merges the
classical under-parameterized and over-parameterized regimes by ex-
perimentally showing that there is a certain level of complexity when the
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risk value starts decreasing, and models with very high capacity do not
overfit, demonstrating good generalization capabilities. This behavior
is observed across many over-parameterized machine learning models,
including DNNs. Second, the most prominent advance in understand-
ing deep learning theory is made via utilizing Neural Tangent Kernels
(NTKs) that connect DNNs in the infinite-width limit to the kernel meth-
ods making it possible to linearize a DNN around its initialization with a
subsequent study of its training dynamics [20]. Based on this insight, nu-
merous discoveries shed light on the generalization capabilities of DNNs.
The most notable ones include the fact that DNNs learn in accordance
with the Occam’s razor principle, namely: they fit successively higher
spectral modes of the target function as the size of training data mono-
tonically increases [21].
To summarize, we may choose a high-capacity DNN functions and fit

it to any target function and data with very good prospects for general-
ization. This combination of inductive biases is already providing a good
start for any machine learning task, which explains the recent success of
ubiquitous DNN applications.
Finally, we use a variant of the Stochastic Gradient Descent (SGD) al-

gorithm for optimization with the reparametrization trick [22].
As a result, our inductive bias for this layer comprises DNNs that can

learn any continuous function to an arbitrary level of precision with a
sufficient network depth, fitting the solutions from the simplest to the
most complicated as the size of the training dataset grows.

1.9. LINKING DNNS AND PROBABILISTIC MODELING
Despite the numerous beneficial modeling assumptions that both VAEs
and DNNs possess, there is still room for improvement. Namely, note
that according to the PAC-Bayes generalization bound on reconstruction
loss 1.7.1, the term that is related to compactness is not automatically
optimized when a standard ELBO optimization objective is used. More-
over, the bound depends on the diameter of the input Δ, which can also
be reduced by scaling the input instances. To that end, we delve deeper
into compactness and related continuity properties of both VAE’s map-
pings, input, and resulting latent space. In particular, we enforce various
Lipschitz constants on both the encoder and decoder of a VAE. Our Lips-
chitz constraint on DNN mapping results in both additional regularization
of the model and allows for controllable compactness of the latent space.
We devise a method for identifying appropriate values for these con-
stants, taking into account the intricate peculiarities of high-dimensional
representations. Note that this layer is related to both learning and infer-
ence procedures. Hence, it also constrains the degree of variation of the
outputs, smoothing out the continuity of the mapping and adding to the
overall stability of the model.
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1.10. CONTRIBUTIONS AND THESIS OUTLINE
In this dissertation, we present the following contributions:

1. We identified that measuring the VAE stability during inference through
its parameter sensitivity is a robust and effective method for detect-
ing problematic inputs.

2. We demonstrated that both adversarial and OoD inputs tend to
gravitate to holes in their latent representation.

3. We identified and addressed a fundamental theoretical flaw in VAE
modeling assumptions by imposing controlled compactness on the
latent space using two distinct methods, demonstrating their effec-
tiveness in enhancing the detection of OoDs and adversarial exam-
ples. Controlled compactness achieves the following:

a) It reduces the room available for latent holes, confining them
to the compact space used by the inliers.

b) It ensures that any input to the model, including problematic
inputs, is mapped within the same compact space as inliers,
increasing the likelihood of detecting these problematic inputs
when they land on a hole.

4. We developed a method to distinguish between inliers, outliers, and
adversarial examples.

5. Finally, we demonstrated that contrary to the established opinion,
Bayesian inference over model parameters is not necessary for sen-
sitivity analysis in VAEs.

These contributions collectively advance the understanding and capa-
bilities of VAEs, particularly in their application to detecting and miti-
gating problematic inputs. The following chapters will thoroughly cover
all contributions, providing theoretical background, methodological ap-
proaches, and empirical evaluations.

1.10.1. THESIS OUTLINE
This thesis is composed of multiple chapters that, with the exception of
the introduction and conclusion, correspond to the corresponding indi-
vidual publications. Hence, every chapter represents a separate self-
contained article and can be read separately. Moreover, it means that
an astute reader could detect some repetition in material among these
chapters, given the requirement to introduce the problem in each indi-
vidual publication. The beginning of each chapter offers details about
its corresponding publication. The structural outline of the dissertation is
provided below.
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CHAPTER 2. VULNERABILITIES AND DEFENSES OF DEEP NEURAL NETWORKS

This chapter answers RQ1. In the first part of this chapter, we contextu-
alize problematic inputs within a wider spectrum of deep learning vulner-
abilities, including attacks on the training stage and potential privacy-
related data leaks. In particular, we frame this range of attacks within
the Confidentiality, Integrity, and Availability (CIA) triad. We specifically
indicate the place of outliers within these categories by identifying pos-
sible uses of outliers in corresponding adversarial scenarios. Moreover,
we consider two potential definitions of adversarial examples, which, de-
spite their difference, are reconciled further in Chapter 5 through the
lens of their latent representation. In the second part, we describe the
available defensive mechanisms placing our approach within the current
landscape.

CHAPTER 3. EPISTEMIC UNCERTAINTY OF VARIATIONAL AUTOENCODERS

In this chapter, we implement our first guiding idea: measuring epis-
temic uncertainty over parameters with regard to inliers and outliers.
This chapter answers RQ2. We explore how Bayesian inference over
model parameters might improve the reliability of DNNs in identifying
OoD inputs. Our study evaluates three approaches to Bayesian infer-
ence: stochastic gradient Markov chain Monte Carlo (MCMC), Bayes by
Backpropagation (BBB), and Stochastic Weighted Averaging-Gaussian (SWAG),
applied to the weights of DNNs that parameterize the likelihood of the
VAE. We empirically assess these methods using benchmarks for OoD
detection, including the estimation of the marginal likelihood, a typical-
ity test, a disagreement score, and the Watanabe–Akaike information
criterion (WAIC). Additionally, we identify a phenomenon of difference in
variation of the model with respect to outliers versus inliers. Motivated
by this observation, we propose two simple scores for OoD detection that
show state-of-the-art performance based on the information entropy and
sample standard deviation of the likelihoods, which confirm our assump-
tion about the difference in the sensitivity levels.

CHAPTER 4. TOPOLOGY-AWARE APPROACH TO LATENT REPRESENTATION

In this chapter, we answer to RQ3 with respect to OoDs. We imple-
ment our second guiding idea: enforcing an appropriate inductive bias
to improve stability. In addition, we employ a topological lens to dive
deeper into the sensitivity phenomenon. First, we highlight a significant
theoretical flaw in the classical VAE model related to the assumption of
infinite latent space support. To address this, we propose enforcing com-
pactness in the latent space, making it possible to provably bound the
image within certain limits, thus squeezing both inliers and outliers. This
is achieved through the Alexandroff extension and setting a fixed Lips-
chitz continuity constant on the encoder mapping. The properly enforced



1.10. Contributions and Thesis Outline

1

25

compactness alleviates the mentioned flaw. Second, the most important
result is that we demonstrate that anomalous inputs tend to land on va-
cant holes within the compact latent space simplifying their detection. It
confirms our assumption that an appropriate inductive bias is beneficial
for OoD identification. To that end, we introduce a new score for hole de-
tection and evaluate the solution against several baseline benchmarks
obtaining promising results. Moreover, we link the new score with sam-
ple standard variation of the likelihoods that demonstrate comparable
results and can be utilized to detect outliers based on the difference in
their sensitivity level.

CHAPTER 5. ENHANCING ROBUSTNESS OF DEEP LEARNING VIA UNIfiED LATENT
REPRESENTATION
This chapter answers RQ3 with respect to adversarial examples. We
experimentally identify that these attacks can be successfully detected
utilizing Bayesian inference over VAE parameters in the same vein as
OoD inputs utilizing sensitivity. Furthermore, we disentangle Bayesian
inference over parameters versus latent codes experimentally, achiev-
ing comparable results for both of the applied methods. In addition, we
analyze the behavior of the adversarial examples in the latent space.
Namely, we observe that they also tend to gravitate to the latent holes
as OoDs. Moreover, we implement an algorithm to properly distinguish
between inliers, OoDs, and adversarial inputs.

CHAPTER 6. CONCLUDING REMARKS
This chapter provides a reflection with regard to the posed research ques-
tions, including limitations and directions for potential future work, and
finally discusses societal relevance.
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2
VULNERABILITIES AND

DEFENSES OF DEEP NEURAL
NETWORKS

Robustness of Deep Learning is an enormously vast and diverse topic. In
this chapter we first concentrate on vulnerabilities of Deep Neural Net-
works and challenges of their mitigation.

We describe the applicable threat models and the corresponding range
of potential vectors of attacks. They include attacks on Confidentiality,
Integrity, and Availability (CIA). A special emphasis is done on the cate-
gory of outliers that is traditionally not considered from the adversarial
perspective. However, we claim that from the perspective of malcreant
these inputs can be exploited in the same way as any other adversarially
forged input if they allow reaching the final goal of malicious exploitation.

In the second part we address the currently available defense mecha-
nisms that claim to demonstrate promising results in mitigating or de-
tecting attacks including outliers.

This chapter is published in the book Artificial Intelligence For Security: Enhancing Pro-
tection in a Changing World, Springer, (2024) [1].
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2.1. INTRODUCTION
Deep learning, powered by Deep Neural Networks (DNNs), underlies most
modern Artificial Intelligence (AI) algorithms. These models have proven
highly successful in various applications, including supervised, unsuper-
vised, and reinforcement machine learning. Furthermore, deep learn-
ing models have demonstrated state-of-the-art results in processing di-
verse data domains such as images, texts, audio recordings, electrocar-
diograms, malware, games, and many more. Despite their impressive
accuracy metrics, the fundamental theory of deep learning is missing.
First, the most critical lacking aspect is linked to the generalization ca-
pabilities of the modern DNNs. Generalization can be subdivided into
() generalization from training data to test data and () generalization
from inliers to outliers. Currently, there is no satisfying theory, even for
the first part, which would explain the surprising generalization capa-
bilities of DNNs. Suppose one employs the classical statistical learning
theory based on the Vapnik–Chervonenkis dimension [2]. In that case, it
likely indicates that DNNs are overfitting, considering that the number of
parameters quite often significantly exceeds the number of data points
used for DNN training. Many research works contribute to the gradual
progress in this direction [3–6], but no final theory is currently available.
The second part is also an active direction of current research [7–9];
however, nowadays, there is no theoretically rigorous foundation for that
either. As a result, both of the parts require further exploration. More-
over, the second missing cornerstone relates to the optimization routine,
e.g., to the convergence regime of DNNs: pointwise vs uniform. There
are several studies in this direction [10–12] and their connections to the
generalization [13] but, again, there is still no rigorous theoretical basis
for that. Finally, the architectural choices for DNNs are still empirical,
and no theory unifies them except for the very coarse results of the well-
known Universal Approximation Theorem (UAT) [14] and its variations
that basically aim at rigorous bounding either the depth [15–17] or the
width [18] of the DNNs. The lack of rigorous understanding of the theory
of deep learning results in many relevant questions that still need to be
answered. For instance, how exactly does the model produce the final
result? How can we be sure about these results? What are the limits
of a particular modeling approach? How can it be rectified in case of
malfunction? And many more others.
Therefore, these models are often used as a black-box tool, fed with

significant data to achieve the desired performance results. However,
this raises serious concerns about the robustness of these models to ma-
licious interventions because if there is no clear understanding of how
modern DNNs generalize from training data to test data (i.e., on inliers
and, further, on outliers), then it is an obvious direction of exploiting this
lack of understanding by probing the models for the potential vulnerabil-
ities, especially when they are used in so many critical domains, ranging
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from autonomous driving to medical diagnosis. It should be noted that
despite the significant progress in the methods of model interpretability
such as SHAP [19], GradCAM [20], CAM [21], RISE [22] and CXPlain [23],
all of these methods can be applied to any model, and they treat the
model in question as a black-box with only potential access to the loss
function and/or gradients. The interpretations are subsequently derived
from input features that indicate the decision made by the model based
on these input features and their corresponding contributions or weights
for a particular decision. However, none of these methods tell anything
about the model’s internal mechanics from the fundamental theoretical
perspective, e.g., how exactly did the particular DNN come up with this
particular solution and why (all the research dedicated to the generaliza-
tion and optimization of the DNNs)? How does the network architecture
influence the final decision and why (vast volume of different ad-hoc
solutions with too few theoretical foundations)? What can be done to al-
leviate the wrong output and modify the decision theoretically rigorously
(the operational question that logically follows from the first two)? Can
we debug the model, identify why these input features are essential for
this model, and fix the wrong outputs? (i.e., the practical question based
on the previous one).

Consequently, many practical attacks have been discovered that ex-
ploit this lack of understanding, which, in turn, assist us a lot in more pro-
found research and comprehension of the internal mechanisms of deep
learning. Let us momentarily take the role of an attacker and consider
the potentially vulnerable spots that can be exploited from the general
perspective in any machine learning modeling approach. Such an ap-
proach requires at least two parts: () data to be trained on and inferred
from and () a particular model to be trained and subsequently used for
inference.

Moreover, the attackers may not have access to both model and data.
In addition, both the model and data may evolve with time. Furthermore,
a model can be a composite one, i.e., consisting of several other machine
learning sub-models, and data can be non-homogenous or multimodal.
Based on various combinations of these components, different potential
scenarios are available for the attacker depending on their interests. For
example, the attackers may be interested in modifying the model’s be-
havior for particular inputs, e.g., they want to bypass a spam filter to
organize an advertising campaign for an illegal product. Alternatively,
they may want to trick a face recognition system to access the victim’s
smartphone. Conversely, the attackers may be interested in the data;
for example, they may have access to the model and can get inference
results but lack knowledge about the dataset used to train the model,
which could be of particular interest to them. Alternatively, suppose the
attackers cannot access the model. In that case, they may be interested
in getting it, e.g., the model architecture, the weights obtained after
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training, and the hyperparameters used for training.
Therefore, grounded in the distinctive attack vectors, we can discern

two principal categories of potential attacks. () Functionality-oriented
attacks, encompassing those that seek to manipulate the model’s behav-
ior. These may transpire during either the training or inference stages.
() Privacy-oriented attacks, encapsulating those designed to extract in-
sights into the private data employed during both training and inference
stages since models may be trained on private data, such as personal
information, medical records, or financial data, which can be extracted
from the trained model breaching the privacy. Moreover, even if the
training data is anonymized, recovering the data the model was trained
on may leak proprietary business information. In addition, this attack
category may aim to unveil proprietary facets of the machine learning
model itself. If the model is deployed in the cloud and used via the web,
then the model architecture and parameters leakage represent a serious
proprietary trade secrets privacy breach.
The first kind of functionality-oriented attack strongly relates to the un-

known inputs since we assume the model is not under the attacker’s con-
trol. Hence, something should be done with its input to modify the model
behavior. Unknown inputs can be further divided into two main cate-
gories. The first category includes inputs that differ significantly from
those on which the model has been trained. For instance, if a deep neu-
ral network classifier is trained to classify handwritten digits, how will it
process images of unknown numerical systems, languages, or even nat-
ural objects such as trees or dogs? Experiments demonstrate that DNNs
overconfidently fail when processing such inputs as they cannot distin-
guish between them and those they have been trained on [24, 25]. Such
inputs are closely related to the question of the proper model generaliza-
tion, and they are referred to as outliers. The model deployed in the wild
should be able to deal with the outliers, i.e., with the data points coming
from a different distribution than the one the model trained on [26]. In
such a case, the question arises of how good the model is in dealing with
such inputs and, most importantly, if it can distinguish outliers versus in-
liers. The second category includes inputs specifically manufactured by
adversaries to change the model’s output, such as adversarial examples.
These examples are becoming increasingly prevalent across all learning
approaches, model architectures, and data domains.
The attacker utilizes outliers and adversarial examples in the infer-

ence stage when the model is already pre-trained. Alternatively, the
poisonous attacks are introduced during the training stage. These are
also artificially forged inputs that tend to be covertly introduced in the
training dataset with the aim of the subsequent exploit during the infer-
ence stage.
The second kind of privacy-oriented attacks includes model stealing

and membership inference attacks.
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In this chapter, we briefly introduce the available attacking techniques
and indicate the potential directions for their mitigation and, if possible,
detection.

2.2. ATTACKING DEEP NEURAL NETWORKS
In this section, we introduce appropriate threat models together with po-
tential vectors of attacks at DNNs. It includes both functionality-oriented
and privacy-oriented threats. The former comprises outliers, adversarial,
and poisonous examples. The latter includes attacks that aim at steal-
ing private or sensitive data related either to the model parameters and
architecture or to the inputs used during the training of the model, i.e.,
to the training dataset. Finally, these attacks are mapped within the
Confidentiality, Integrity, and Availability triad components.

2.2.1. THREAT MODELS
We consider the two most common threat models concerning the at-
tacker’s abilities: white-box and black-box scenarios. The former relates
to the situation when the attacker knows, for instance, the DNN model,
including its architecture, learned weights, used hyperparameters, input
layer representation, and output layer results. This scenario implies that
the attacker has full knowledge of both model and training data in use.1

Conversely, the latter applies to cases without direct knowledge of the
DNN model. The attackers may only know the inputs used for the model.
Sometimes, they can also use the model as a service via a particular API
call to infer the outputs. Moreover, it usually denotes the lack of exact
knowledge about the data used during the training stage of the model.
Nevertheless, the general understanding of the data is particularly al-
ways available or can be inferred, such as, for example, in the case of
face detection on the image, the training dataset should have included
images with faces.
The privacy-oriented attacks imply the black-box scenario. Functionality-

oriented attacks, on the other hand, may concern both threat models.
The usual approach for them in the case of a black box is to train the so-
called surrogate model, which will be used for the proper adversarial or
poisonous input generations and the subsequent evaluations of the at-
tack success rates. The properties of this surrogate model depend on the
DNN under attack, and it usually entails the initial reconnaissance step
with respect to the model in use potentially involving privacy-oriented
attacks.

1Please note that it is not in contradiction with our previous assumption about the absence
of the control over the model by the attacker since the knowledge of the model still does
not imply the access to the model in use.
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Beyond the available knowledge of the attackers, as we mentioned
before, there is also a distinction between their possibilities over data
manipulation, namely, if they can manipulate data during training or in-
ference stages. The first type of attacks is called poisonous or sometimes
causative, and the second type is called exploratory or evasion attacks.
The latter includes both adversarial examples and outliers. We will use
both mentioned terms for each of the types interchangeably.

2.2.2. FUNCTIONALITY-ORIENTED ATTACKS
First, we explore the most active domain of the current research dedi-
cated to misleading the deep learning model behavior utilizing specific
inputs. Since such inputs can be provided during the training or infer-
ence stage of the DNN life cycle, we dedicate a separate section to each
stage.

EXPLORATORY ATTACKS ON INFERENCE

Inference relates to the stage when the model is already trained and val-
idated on a particular dataset. Hence, it can now infer the parameters of
the probabilities of the general population based on particular provided
inputs. Two types of attacks can be associated with the inference stage
of any DNN: () the attacks utilizing the outliers and () the attacks em-
ploying the adversarial examples. In the following sections, we consider
each of them in more detail.

OUTLIERS

We begin our discussion with the outliers. We consider that outliers are
generated by a different distribution than the inputs used during train-
ing. An input generated from the different distribution represents a tra-
ditional definition of outliers, and to the best of our knowledge, it was
first employed by Hawkins [26].2 The treatment of these inputs is of-
ten considered somewhat parallel to the attacker’s perspective in the
scientific literature. The reason is that they are more vividly related to
the question of the proper model generalization, i.e., to the ability of
the model to infer the actual parameters of the probability distributions
of the general population rather than to the attacking technique. De-
spite their traditional treatment in the research community, they can
also be used to mislead the model behavior by an attacker; the model
deployed in the wild should likely be able to deal with the data points
coming from a different distribution to the one on which the model has
been trained. For a toy example, let us consider the model trained on

2Hawkins distinguishes two categories of outliers: () inliers and outliers adhere to the
same distribution and () inliers and outliers generated by different distributions. In this
chapter and this thesis, we use the latter.
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the MNIST dataset [27]. This dataset contains the handwritten digits.
The outliers in such cases could be the inputs from a different dataset,
such as FashionMNIST [28] that contains various garments or even ran-
domly generated images. In such a case, the question arises: How good
is the model in dealing with such inputs, and, most importantly, can it
distinguish outliers versus inliers?

To better understand what the outliers mean, it is helpful to pose the
following question about a model in plain English: Does a trained ma-
chine learning model know what it does not know? To answer this ques-
tion, we first have to understand what it means exactly for the model
to deduce if it knows or does not know something. First, recall that
DNNs represent universal mapping approximators, i.e., they can learn
any function on a compact domain with an arbitrarily close level of pre-
cision. However, what type of functions do they learn in most of the
applied tasks? Probability functions! More precisely, DNNs parameter-
ize either probability density or probability mass functions based on a
particular input. This chapter considers attacks on deep learning models
based on the supervised discriminative approach, such as DNN classi-
fiers. Hence, such a modeling approach implies parameterizing a con-
ditional distribution over target values y conditioned on the input x:
pθ(y|x). The training of DNNs allows identifying optimum parameters
θ∗ based on a stochastic first-order optimization algorithm such as gra-
dient descent. In the case of classification tasks, the standard choice for
pθ(y|x) is a categorical distribution, in the case of regression—a Gaus-
sian distribution (quite often with a constant variance). It may seem
only logical to rely on the probability density in answering our question,
namely, if the density is low, then the model is uncertain about the input,
which can be interpreted as the model not knowing the current input.
Nevertheless, despite the neat theoretical motivation, such an approach

drastically fails in practice. The DNNs tend to assign relatively high prob-
ability values to the outliers. For example, consider an ImageNet dataset
used in Large Scale Visual Recognition Challenge (ILSVRC) [29]. This
dataset contains over a million images for 1000 object classes, includ-
ing various types of animals, aircrafts, fruits, vegetables, etc. However,
despite the vast coverage of potential objects, these 1000 classes do
not include images of a microscope or a measuring tape. What would
be the probability value for these unknown categories if we train a DNN
classifier on ILSVRC based on those 1000 classes? Surprisingly, it turns
out to be relatively high! For example, in the case of an image with
a microscope, the DNN is 98.18% confident that it is a joystick, and in
the case of an image with a measuring tape that it is a chainsaw with a
90.54% probability. Both joystick and chainsaw are present among those
1000 classes, but what is astonishing is the certainty with which the DNN
claims to detect objects it has never seen before.
This experiment demonstrates an interesting fact about DNNs: they
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tend to be overconfident with the outliers in their predictions. Such over-
confidence has at least two disadvantages. First, it makes it impossible
to detect the outliers during the inference stage utilizing the probability
values, making such DNNs less suitable for the tasks when such func-
tionality is necessary. Second, it allows an attacker to exploit this over-
confidence by allocating particular outliers and providing them as inputs
to such DNN, misleading the initially intended behavior, e.g., resulting
in misclassification. It is pretty easy to imagine that the impact of such
an attack might be life-threatening in many domains, ranging from self-
driving cars to medical diagnosis.

ADVERSARIAL EXAMPLES
Analysis of the input-output mappings of AlexNet Convolutional Neural
Network (CNN) [30] from the point of view of continuity reveals unfore-
seen properties of the DNNs [31]. Namely, the traversal over the mani-
fold learned by the CNN from one category to another with parallel visu-
alizing of the corresponding points in the input space does not result in
a smooth morphing of one category to another, e.g., imagine a gradual
and substantial transformation of a dog class into a cat class in the result-
ing images. On the contrary, the results of such a traversal turn out to
be quite intriguing; namely, when the CNN classifier indicates that it al-
ready observes a different class, the input image still contains a distinct
representation of the initial category (e.g., a category of a dog) with a
slight amount of the added noise over the image. This means that from
the human perspective, the obtained result is almost indistinguishable
from the initial image. However, from the perspective of CNN, the new
image represents a different category. In parallel, predictably, analysis
of the DNNs’ robustness against the evasion attacks at test time [32] re-
veals the same intriguing behavior as in [31]. Two different perspectives
on this behavior give rise to two definitions of the adversarial examples:
one from the perspective of the generalization properties of the DNN and
the other from the attacker’s perspective.
From the generalization perspective, an adversarial example [31] is

a technique in which the input for the DNN image classier is intention-
ally modified to look almost the same as the original image to the human
eye. Yet, it is perceived as something completely different by DNN. DNNs
incorrectly classify such adversarial examples from the human perspec-
tive. On the other hand, the attacker perspective does not necessarily
demand the part that relates to the imperceptibility of the difference.
On the contrary, if the miscreants want their attack’s outcome to suc-
ceed, they should not constrain themselves to the superfluous imper-
ceptibility demands. In this chapter, nevertheless, we are more inclined
to the definition that involves the imperceptibility aspect. The reason
for that is the new, often overlooked, category we include in our study:
the outliers. These inputs could be considered similar to the perspective
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of the adversarial attack to the maximum extent when there is nothing
similar between the original data and the outliers. In particular, we con-
sider three methods of generating adversarial examples: () fast gradient
sign method [33], () Carlini-Wagner attack [34], and () Jacobian-based
Saliency Map attack [35].

Fast Gradient Sign Method. The Fast Gradient Sign Method (FGSM
(FGSM) attacks DNNs by leveraging their learning process based on gra-
dients [33]. The following formula describes the process of generating
an FGSM example:

x′ = x + ϵ · sgn(▽xL(ƒθ(x), ys)) (2.1)

Here▽xL is the gradient of the loss function with respect to the original
input pixel vector x, ys is the actual or source label for x, and θ stands
for the parameters of the model ƒθ that are constant. Gradient w.r.t. x is
easier to calculate with backpropagation than for θ, which allows the fast
generation of adversarial examples. FGSM exploits gradient ascent to
increase the loss. Subsequently, the sign applies a max-norm constraint
on the gradient value, and ϵ represents a small magnitude of the step
to increase the loss. This formulation constitutes the untargeted type of
adversarial attacks, a particular example depicted in Figure 2.1.
The FGSM can be converted into a targeted attack by substituting the

source label with a target one yt and doing gradient descent instead of
ascent, namely:

x′ = x − ϵ · sgn(▽xL(ƒθ(x), yt)) (2.2)

However, since FGSM is designed to be fast rather than optimal, it is
not necessarily guaranteed to produce the targeted adversarial exam-
ples of minimal perturbations.

Carlini-Wagner. The Carlini-Wagner (CW) attack [34] aims at optimality
in contrast to FGSM, i.e., it attempts to generate as little noise as possible
to succeed in the attack. It poses the following optimization objective:

minimize ||δ||p subj. to ƒθ(x + δ) = yt , x + δ ∈ [0,1]n (2.3)

where, x ∈ [0,1]n represents an image, δ ∈ [0,1]n is the added noise to
the image, and ƒθ is a model that returns a target class label of the image
under attack. The noise level is calculated in terms of Lp norms. The
authors consider several norms; our example demonstrates the L2-norm.
The CW attack represents a targeted attack with powerful properties. Till
the moment, it is one of the strongest known adversarial attacks. The
examples of the CW-targeted attack on MNIST digits can be observed in
Figure 2.2.
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Figure 2.1: () the original image; (b) the max-norm constrained gradi-
ent of the loss generated by FGSM; (c) the resulting adversar-
ial image.

(a) CW MNIST adversarial examples
(b) JSMA adversarial fea-

tures

Figure 2.2: (): Carlini-Wagner targeted attacks. Top row: MNIST adver-
sarial examples targeted for 0. Bottom row: MNIST adversar-
ial examples targeted for 1. (b): Untargeted JSMA adversarial
features visualized for central number.

Jacobian-based Saliency Map Attack. Jacobian-based Saliency Map
Attack (JSMA) [35] leverages the saliency maps to devise an adversarial
input. Namely, it computes the forward derivative of the whole DNN (Ja-
cobian) w.r.t. the input, and based on this derivative, it constructs the
saliency map. Large absolute values of the saliency map reveal the fea-
tures significantly impacting the final output. The JSMA takes the maxi-
mum absolute value, perturbs it by a hyperparameter θ, and repeats the
process. The stopping criteria are either a successful attack with mis-
classification or reaching the total perturbation threshold of ϒ. Figure 2.2
depicts such a JSMA attack.

2.2.3. CAUSATIVE ATTACKS ON TRAINING
This type of attacks implies that the attacker can manipulate some part
of the dataset to be subsequently used for training the DNN model under
attack. Since this manipulation is always intended as malicious, the term
poisonous describes this fact rather appropriately and precisely. Gener-
ally speaking, there are two possible malicious intents: they aim at in-
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trusion without corrupting the system behavior with respect to benign
inputs or target an overall regular system operation, causing a denial of
service. First, we consider the way the training data is modified.

POISONING DATASET

Construction of a poisonous dataset includes collecting raw samples of
the statistical population distribution of interest with their subsequent
labeling. Depending on the attackers’ capabilities, they may be able to
modify raw samples or only their corresponding labels (or both). The
first attack is called a clean-label attack, and the second is a dirty or
corrupted-label attack. The clean-label attack may seem impossible at
first since there is no control over the output category, and it is unclear
how the attacker can exploit the training process in such a case. Nev-
ertheless, two known attacking techniques allow us to achieve this goal.
Both introduce slight disturbances to the inputs that mislead DNNs dur-
ing training. These disturbances are identified through the solution of
either a bi-level optimization problem or a feature-collision problem.

DATA POISONING TO DISRUPT OVERALL PERFORMANCE

This type incorporates several indiscriminate attacks, i.e., attacks that do
not target a specific category or class within the training dataset. First,
we describe a corrupted-label attack based on label flipping. After that,
we consider a clean-label attack based on bi-level optimization.

Label Flipping Attack. The attacker can significantly reduce the result-
ing DNN performance only via tampering with the labels of the dataset.
It means that it is optional to have access to the model and the raw data.
This type of attack can be implemented by mislabelling the data. Labels
can be assigned randomly, influencing the system’s overall performance;
the specific classification category or even several categories can be tar-
geted. The classifier is subsequently trained on the tampered dataset
without knowing which labels have been corrupted. The success rate of
this type of attack heavily depends on the ratio of the poisoned dataset:
the greater the ratio in favor of poisonous examples, the stronger the
impact it would have on misclassification.

Attacks via Bi-level Optimization. This type aims to solve the cor-
responding bi-level optimization problem and represents clean-label at-
tacks. Consider the following scenario: attackers want to attack a partic-
ular DNN model that will be trained, validated, and tested on the dataset
D. They want to poison this dataset to change the resulting model be-
havior. For that reason, the attackers split this dataset into training and
validating subsets D = Dtr ∪ Dval. Subsequently, they aim at poisoning
the training dataset Dtr with a specially crafted input xp. The crafting of
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the poisonous input is constrained within the space of allowed manipu-
lations imposed by , i.e., x′

p
∈ (xp). As a result, they get a poisoned

trained dataset Dp = Dtr ∪ {x′p}. The goal is to optimize for the optimal
poisonous solution allowed within the imposed constraints such that the
target input xt with the original label yt from the untampered valida-
tion dataset (xt , yt) ∈ Dval is misclassified by the model trained on the
poisoned dataset.

To achieve this goal, the optimization procedure should be run across
two levels. First, the model should be optimized with respect to the DNN
parameters on the dataset with the injected poisonous examples, which
represents a classical optimization objective of any DNN training, usu-
ally referred to as a training loss Ltr. Second, on top of the classical
optimization objective, there is an additional adversarial loss Ladv that
should be optimized for the best poisonous input modification in such a
way that this adversarial loss is maximized which eventually leads to the
sought-after misclassification. Note that the misclassification is untar-
geted in this particular case. Hence, this formulation of the optimization
objectives represents an attack on the availability of the model aiming
at disrupting the classification results for the poisonous inputs.

Formally, both of the optimization levels can be formulated as follows:

x∗
p
∈ rgmx

x′
p
∈(xp)

Ladv(Dval,θ∗(x′p)) (2.4)

s.t. θ∗ ∈ rgmin
θ

E(x′
p
,y)∼Dp[Ltr(ƒθ(x

′
p
), y))] (2.5)

where x′
p
∈ Dp, i.e., it is an input from the poisoned training dataset

under constrained manipulations allowed by , and x∗
p
is the resulting

poisonous input to be added in the original clean dataset.

The process of optimization of this bi-level problem seems straightfor-
ward at first glance; the inner minimization procedure obtains the op-
timal parameters of the DNN with the subsequent maximization of the
adversarial loss. This process can be repeated until the convergence.
However, in the case of DNNs, this solution is not feasible due to the
over-parameterization and impossibility of the exact solution of the in-
ner problem. For that reason, the truncated back-gradient optimization
is used [36]. The idea is to first optimize the inner problem for a limited
number of iterations, which allows computing the necessary gradients
with subsequent backpropagation for the outer objective by tracing the
necessary gradients backward. This approach allows the generating of
poisonous inputs for DNNs successfully.
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TARGETED POISONING ATTACKS
We consider one corrupted-label targeted attack based on a bi-level op-
timization objective and one clean-label targeted attack utilizing feature
collision.

Attacks via Bi-level Optimization. The indiscriminate bi-level opti-
mization poisonous attack described above can be easily changed into a
targeted one, if the outer objective is minimized instead, namely:

x∗
p
∈ rgmin

x′
p
∈(xp)

Ladv(D′val,θ
∗(x′

p
)) (2.6)

The dataset for validation contains the same raw inputs as Dval but with
the modified labels that the attacker wants to target, hence minimizing
the loss towards them.

Attacks on Feature Collision. The intuitive idea behind this type of
attacks is to look for the neighbors in the feature space within a relatively
close distance from the target class that simultaneously lie close in the
input space to the base class, i.e., to the class under attack:

x∗
p
∈ rgmin

x
∥ƒθ(x) − ƒθ(t)∥22 + β ∥x − b∥22 (2.7)

Given the feature space’s usual complexity and high dimensionality,
such a search appears feasible. Note that due to the closeness to the
target class in the feature space, there is no need to modify the label,
making this attack clean-label. Moreover, the closeness of the poisonous
sample to the base one in the input space does not raise concerns during
the visual inspection since the label is correctly assigned as if it repre-
sents a base class. Both of these factors make this attack very powerful.

DATA POISONING FOR INTRUSION
In this category, the attacker introduces a set of poisonous inputs that
contains a specifically crafted trigger that serves as a backdoor, allow-
ing the intruder to modify the behavior of the DNN in the desired direc-
tion [37].

Backdoor Patches. The first attack from this category exploits virtual
or physical visible patches [38]. The training dataset is poisoned with the
patched instances. Subsequently, the DNN is trained with the corrupted-
labels for the samples that contain the corresponding patches. These
patches serve as a trigger for the DNN classifier, allowing the attacker to
change the classification result of the model. Since the training dataset
contains benign and patched inputs, the normal behavior of the model
with benign inputs and classification test errors are not influenced by
these patched samples. Examples may represent a patch on the traffic
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(a) Patch (b) Semanti-
cal

(c) Blending (d) Blending (e) Feature Col-
lision

Figure 2.3: Different types of backdoor attacks: () artificial patch with
a corrupted label, (b) benign semantical trigger with a cor-
rupted label, (c) blending a fake reflection with a clean la-
bel, (d) introducing a strong signal with a clean label, and
(e) backdoor imperceptible to the human eye with a clean la-
bel.

stop sign to misclassify it as a traffic sign for the speed limit (see Fig-
ure 2.3a). Please note that such a patch can be imposed with the original
image during the construction of the poisonous input without needing a
physical photo with the patch. However, sometimes it is reasonable to
rely on some physical trigger that carries a distinct semantical meaning
but looks benign in contrast to the patching, for example, when a person
wears glasses (see Figure 2.3b).

Backdoor as a Strong Signal. Several functional approaches could be
applied to implement a clean-labels backdoor. First, it is possible to bind
a strong signal function that any DNN can easily detect with a particular
target class, e.g., a sinusoidal signal with a ramp can be mixed into the
small fraction of the target images with subsequent use of this signal as
a backdoor for any other image during the inference stage. The sufficient
ratio of poisonous examples before training the model for the successful
attack constitutes one-third of the target class for the MNIST dataset and
one-fifth of the traffic signs dataset [39] (see Figure 2.3d). The problem
with the sinusoidal ramp is that it is still quite visible in the resulting
image, which can be detected via visual inspection of the dataset.
Another type of signal can be stealthily encapsulated into the target

image representing a fake reflection [40]. The benefits of this approach
are that it cannot be easily detected as the previous signal and taking
into consideration that it is also a clean-label poisonous attack then it
provides all the benefits of a nice backdoor in cases when the target
images have reflecting surfaces (see Figure 2.3c).

Imperceptible Backdoor. Previous backdooring techniques still require
a visible trigger and a relatively high ratio of poisonous examples to
be added to the training set. The ultimate backdoor, however, can be
forged utilizing the technique that we have already described above,
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namely feature collision [41]. Such an approach allows the injection of
a backdoor even by poisoning one image only. Moreover, thanks to the
optimizing within the deep feature representation while minimizing the
difference in the input domain, the resulting poisoned image contains im-
perceptible perturbances to the human eye, making this backdoor one
of the most potent poisoning attacks (see Figure 2.3e).

2.2.4. TRANSFERABILITY
It has been discovered that different architectures of DNNs trained to
tackle the same classification problem on similar datasets tend to have
similar fairly piece-wise linear decision boundaries that separate cate-
gories in the input data domain [33]. This property is called transferabil-
ity. Transferability is especially dangerous since it allows devising either
an adversarial example or poisonous input that universally targets all
DNNs with a similar final objective in a black-box manner [42].
The thorough study of the transferability properties indicates the dif-

ference between adversarial and poisonous samples. In particular, the
adversarial examples tend to transfer better when forged on a simplified
surrogate model. However, for poisonous attacks, the best surrogate
models are the ones that match the complexity of the target [43]. More-
over, in the case of the white-box threat model, both adversarial and
poisonous inputs favor the more complex models, i.e., the success rate
of the attacks is higher for a more complex model than for a simpler one.

2.2.5. PRIVACY-ORIENTED ATTACKS
These attacks aim at stealing any private data. The first type of privacy-
oriented attacks involves stealing the pre-trained model’s proprietary pa-
rameters, including weights and hyperparameters. The model in this sce-
nario is usually queried remotely via the web. The second type relates
to identifying if a particular input was in the training dataset, allowing
the attacker to deduce the data on which the model under attack was
trained. In this section, we describe both of these types.

MODEL STEALING

Nowadays, the functionality provided by various DNNs is often offered
online as a service. Such practice amplifies the significance of securing
the privacy-related information related to the models deployed in the
cloud since its leakage may induce confidentiality-related infringements
and substantial financial costs.
Attacks that aim at model stealing attempt to extract this informa-

tion somehow and, eventually, to reconstruct the existing target model.
It may concern the reconstruction of the entire model along with its



2

46 2. Vulnerabilities and Defenses of Deep Neural Networks

weights, the reconstruction of the hyperparameters, or the reconstruc-
tion of a functionally equivalent alternative model. The adversary gath-
ers the data about the target model by sending a data sample and re-
ceiving the model’s prediction. This interaction is termed query-based.

Equation-solving Attacks. Equation-Solving Attack (ESA) is based on
formulating and solving a system of equations, the solution of which
yields desired values for an adversary. It aims at specific values of the
target model, e.g., learned parameters or training hyperparameters. Us-
ing model outputs y1, ..., yn for given data samples x1, ...,xn, it’s possible
to construct equations ƒθ(xi) = y,  = 1, ..., n, revealing parameter values
θ [44]. ESA is quite efficient: depending on the target model type, 1
to 4 queries per parameter is enough. This attack requires the knowl-
edge of the target model’s architecture and the data samples to query
the model. For black-box access, training hyperparameters need prior
architecture and parameter extraction attacks.

Meta-model Training Attacks. The Meta-Model Attack (MMA) is the
only query-based attack capable of uncovering target model architec-
ture to date. A meta-model is trained using a set of candidate CNNs with
varying architecture, optimization, and data parameters as the meta-
model’s dataset, predicting a model’s structure, training setup, and data
volume. The meta-model then links model hyperparameters and perfor-
mance through specific test samples, revealing target model hyperpa-
rameters [45].
MMA’s success depends on the hyperparameter’s influence and their

presence in the training set. For instance, to steal the convolutional layer
count, the target model must be a convolutional neural network and pos-
sess a corresponding number of layers in the training set for the meta-
model. Execution demands considerable computational resources: for
MNIST classifiers, 10,000 CNN candidates had to be trained for over 40
days on a GPU. On average, the attack correctly predicted hyperparam-
eters 80.1% of the time, surpassing a 34.9% guessing chance. However,
as MMA extracts hyperparameters, an extra parameter-stealing attack is
necessary to approximate the whole target model behavior [46].

MEMBERSHIP INFERENCE

Membership inference involves the identification of training data asso-
ciated with a trained model. When provided with a data instance and
granted access to a model, the objective is to detect whether this data
instance was a part of the model’s training dataset. The access to the
model can vary, falling into either the white-box or black-box category.
Membership inference attacks stem from the fact that a machine learn-

ing model might behave differently on the training dataset than the test
dataset. It is particularly evident in machine learning, especially within
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DNNs, which often are over-parameterized when the number of train-
able parameters exceeds the number of training instances. It enables
a machine learning model to “remember” instances from the training
data. Thus, it may assign significantly higher confidence to predictions
for training instances than test instances. By exploiting such differences,
attackers can deduce whether a given instance is likely to belong to the
training dataset.

2.2.6. CIA TRIAD
The classical information security triad comprises three main compo-
nents: Confidentiality, Integrity, and Availability (CIA). We can now look
at the described attacks through the CIA’s prism. The functionality-
oriented attacks relate to both Integrity and Availability. The integrity
component involves the attacks that maximize the model Type-II errors,
i.e., adversarial examples and backdoor attacks. Availability attacks aim
at minimizing the utility of the DNN model, e.g., by increasing the model
Type-I errors via poisonous attacks or by flooding the model with outliers,
exploiting model overconfidence, and making the model predictions ir-
relevant in most cases. The privacy-oriented attacks, however, are con-
nected with the Confidentiality component. It includes both model steal-
ing and membership inference. The summary of all of these aspects,
including the attacker’s capabilities, can be observed in Table 2.1.

2.3. AVAILABLE DEFENSES
This section covers several available defense strategies against the at-
tacks mentioned above.

2.3.1. DEFENSE AGAINST FUNCTIONALITY-ORIENTED ATTACKS
As for the available defenses against functionality-oriented attacks, it
should be stressed that the current state-of-the-art represents a con-
stant race between the invention of new defenses against known attacks
and the subsequent breaking of this defense with the newly discovered
vulnerabilities. Nevertheless, in this section, we introduce the defense
methods that demonstrate promising robustness results, and many of
them have already passed the test over time.

ADVERSARIAL TRAINING
Currently, there is no readily available universal defense mechanism that
provides complete protection against adversarial examples. Neverthe-
less, several techniques proved promising in mitigating the potential
damage and consequences, one of them being adversarial training [31,
33]. The transferability not only allows a black-box adversarial attack
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Table 2.1: Summary of the attacks and links to the CIA triad. Enhanced
from Biggio and Roli [47]

.
Attacker’s Capability Attacker’s Goal

Functionality-oriented Privacy-oriented

Integrity Availability Confidentiality

Train data Poisoning for subsequent intrusion Poisoning to invalidate model —
Test data Adversarial examples Outliers Model stealing, membership inference

but also means that it is possible to generate the known adversarial ex-
amples in advance automatically and add them to the training set be-
fore starting the training. Such an approach forces the DNN model to
consider the adversarial perturbations and increases the robustness of
DNNs to adversarial attacks.
The advantage of this method is its simplicity. The most significant dis-

advantage is the requirement to generate adversarial examples in ad-
vance, which may defend only against attacks known during the DNN
model training. Since adversarial examples can be generated with a
vast diversity of different techniques, this approach can be helpful only if
the model retraining and redeployment procedures are relatively cheap.
Thus, keeping the model up-to-date with developing new attacks is pos-
sible.

ENHANCED OPTIMIZATION OBJECTIVE FOR ADVERSARIAL TRAINING

The idea of this approach is first to enhance the standard optimization
objective and then exploit one of the adversarial attacking techniques
for approximating one of the stages of the optimizations. Namely, recall
the standard loss objective for the classification task:

θ∗ = rgmin
θ

E(x,y)∼D[L(ƒθ(x), y))] (2.8)

where x is the input, y is the corresponding label, D is the training
dataset, θ∗ are the optimal trained parameters of the DNN.
This objective may be improved so that its exact solution would guar-

antee the robustness against the adversarial examples [48]. Specifically,
it can be achieved by requiring that every neighbor of the current point
within the ϵ-ball adheres to the same class:

θ∗ = rgmin
θ

E(x,y)∼D

�

mx
∥x′−x∥p≤ϵ

L(ƒθ(x′), y))
�

(2.9)

Unfortunately, the exact solution for optimizing this min-max objective
is unattainable in a reasonable amount of time since it involves a stan-
dard process of first a non-concave inner maximization and then a non-
convex outer minimization. The solution is to approximate the worst-case
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inner approximation problem by optimizing for adversarial examples. In
particular, FGSM (see 2.2.2) can be interpreted as a single step for maxi-
mizing the inner part of this objective formulation. In order to get a more
precise approximation to the solution, one can also apply a multi-step
attack such as projected gradient descent (PGD) [34].

OUTLIER EXPOSURE
Similar to the idea of adversarial training is the outlier exposure ap-
proach [49], introduced for DNNs to deal with the outliers. The idea is to
enhance the training dataset of the inliers Din with the outliers. Since the
dataset with the real outliers Dout is not available, it is though possible
to enhance the dataset with the different available datasets for Outlier
Exposure DOE

out. This dataset is different from the inliers. The model ƒ
is subsequently trained to learn more conservative signals of the inliers
versus provided outliers that enhance robustness against previously un-
observed outliers. It is achieved by introducing an additional term to the
loss function, which is responsible for the outlier detector:

E(x,y)∼Din[L(ƒ (x), y) + λEx′∼DOE
out
[LOE(ƒ (x′), y)]] (2.10)

The first term of the loss is the standard cross-entropy loss L used in
the classification tasks where x represents the input, and y stands for the
corresponding label. The second term includes the outlier exposure loss
LOE for the outlier detector. It represents the cross-entropy from ƒ (x′)
to the uniform distribution. Unlike the adversarial training approaches
described in the previous sections, this method allows us to mitigate and
detect the outlier.

DEFENSE VIA GENERATIVE MODELS
Several defenses based on the Deep Generative Modeling (DGM) do not
imply any knowledge about the type of adversarial attack in use. More-
over, they can be applied independently of the classifier DNN since they
are used as a filter working with the input before passing it further to the
DNNmodel under protection. In addition, some DGMs allow the detection
of outliers in a completely unsupervised manner that can be combined
with the adversarial filtering approach, enhancing the robustness against
outliers and adversarial examples.

DGMs as Adversarial Filters. This approach exploits the DGMs’ ability
to learn a joint distribution of the data that results in a different learned
representation compared to the discriminative approach, e.g., in the case
of a DNN classifier. The most obvious difference with the discriminative
representation is that the generative representation allows the genera-
tion of new samples from the learned joint distribution that look similar
to those observed in the dataset during the training stage. Based on
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this representative power, it becomes possible to train a separate DGM
model that will work as a filter, i.e., any input is first fed to the DGM filter,
which mitigates the ongoing or attempted attack [50, 51]. The mitiga-
tion requires normal DGM training on the same dataset as the DNN under
protection. As a result, it allows projecting the adversarial input onto the
range of the DGMs’ generator based on the learned representation by
minimizing the reconstruction error. Hence, by default, this method in-
cludes filtering out the adversarial perturbations. Finally, the protected
DNN classifier will get the clean input without adversarial perturbations.

DGMs as Unsupervised Outlier Detectors. The methods within this
category allow the detection of outliers completely unsupervised. They
can rely either on the ensemble-based epistemic uncertainty estima-
tion [52] or the DGM latent representation [53]. In both cases, the DGM
can be again used as a filter to the DNN under protection. However, this
time, it is not only mitigating the attack but also detecting if the current
input falls under the category of outlier or not. Moreover, it turns out that
the outliers tend to gravitate toward the holes in the latent representa-
tion of DGMs (see Figure 2.4), specifically in the Variational Autoencoders
(VAEs), allowing its simple detection. Finally, the same DGM that is used
for the outlier detection can be applied in the same logic as the previ-
ously described DGMs for the adversarial mitigation, i.e., if the outlier
is not detected, then the input is purified from the adversarial perturba-
tions and subsequently fed to the DNN under protection. This approach
is auspicious since it targets adversarial examples and outliers utilizing
only one filtering model.

DEFENSE AGAINST POISONOUS ATTACKS
Defenses against poisonous attacks can be broadly categorized into one
of the following groups:

1. Data Level Defenses: Focus on removing poisonous data from the
input.

2. Model Level: Involve model retraining.

3. Interaction between Data and Model Levels: Identify patterns in the
interaction between the data and model training.

Data Level Defenses. The first approach to the defense in this cate-
gory is treating the poisonous samples in the tampered dataset as out-
liers. It implies that the defenders can access the benign dataset to train
an outlier detection model. For example, they can train another model
on the benign dataset with a different architecture from the original one
but with comparable accuracy metrics [54]. Subsequently, any new in-
put can be forwarded through both models, and if there is disagreement
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Figure 2.4: Compact spherical latent space of VAE trained only on two
digits of the MNIST dataset: 0’s and 1’s. It is a vivid demon-
stration of the fact that the outliers densely land on the hole
in the latent representation. From left to right: Yellow depicts
means of the estimated posteriors for 1’s and purple for 0’s;
Red represents the mapped means for a held-out outlier: a
class of digits 9’s; Kernel density estimation of all means with
the densest region in the hole packed with the outliers.

in the predictions between them, then this input is marked as potentially
poisonous.
Another approach is based on the intentional input perturbation when

the defender modifies the input by blending it with another benign input.
It has been noticed that the poisonous backdoor inputs are still success-
fully classified as the target of the backdoor, whereas the blending of
two benign inputs produces a random prediction result [55]. This differ-
ence is most likely due to the special optimization procedure used when
forging a backdoor input, in which the objective is set so that it should
overcome the original trigger “blending”, resulting in a successful attack
even when additional blending is applied.

Model Level Defenses. The defenses of this type imply that the de-
fender has access at least to the smaller subset of the original benign
dataset. In such a case, the defender can run a training procedure based
on fine-tuning the poisoned model utilizing this benign subset. The be-
nign data can be simultaneously augmented with the samples by adding
random Gaussian noise to make the defended model even more robust to
potential poisonous input perturbations. After several iterations of such
fine-tuning, the model becomes robust and immune to the previously
poisonous inputs [56, 57].
An alternative approach within this type of defense is based on meta-

classification when an additional DNN is trained on the features extracted
from the defended DNN to classify if this model has been compromised
by poisoning. The defender has to construct a set of DNNs evenly divided
into poisoned and benign ones. After that, the meta classifier is trained
based on the features extracted from these DNNs with a single purpose
to distinguish between the benign and tampered models. This approach
demonstrated good generalization results even with the before unseen
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poisonous techniques [58, 59].

Defenses based on the Interaction between Data and Model Train-
ing. This type of defense is relatively novel and looks like the most ro-
bust and promising one. It does not imply that the defender has access
to the benign dataset for outlier detection or a benign subset of the ini-
tial dataset for subsequent model retraining using fine-tuning. It does
not rely on the meta-classification either, implying that the defender has
access to benign and poisonous models. Instead, this defense is working
its way out utilizing the provided dataset and the given training objec-
tive interchangeably, resulting in the clustering of the samples based
on the incompatibility property [60]. The intuition is that the benign in-
puts should improve the optimization objective during the training or at
least not degrade it; however, the poisonous inputs, on the contrary,
should reduce the validation accuracy. This idea leads to the clustering
method that iteratively builds up clusters based on the incompatibility
with respect to the training objective, i.e., benign inputs will eventually
generalize to themselves as opposed to the poisonous inputs that would
be clustered separately in such cases.

2.3.2. DEFENSE AGAINST PRIVACY-ORIENTED ATTACKS
In this section, we cover both mitigation and detection defensive meth-
ods against privacy-oriented attacks. The mitigation methods focus on
minimizing the attack’s impact, i.e., they do not stop the attacker from
acquiring a model; their goal is to reduce the stolen model’s quality to a
point where it becomes unusable. The detection methods can further be
subdivided into ownership verification (usually achieved by unique model
identifiers or watermarking that can prove ownership of a stolen model;
aims at proving past attacks) and attack detection (monitors whether a
model is currently being attacked). Attack detection cannot prevent a
model from being stolen, but it can inform the owner about the incident.

BASIC DEFENSES

We begin with a listing of several simple basic defenses that can be ap-
plied to mitigate attacks that aim at stealing the DNN model. These
defenses demonstrate good protection results despite their simplicity.

Input Modification Defenses. The first type involves input modifica-
tion, i.e., a defender can modify the input provided to the DNN so that
only insignificant parts of this input are modified. For example, in the
case of CNNs and image classification tasks, these parts would represent
insignificant pixels for the resulting classification. If the defender adds
random noise to these pixels, it will make it very complicated for the at-
tacker to steal the DNN’s parameters [61]. The technique that identifies
such insignificant pixels in the first place is based on the Gradient-based
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CAM [20] that was initially developed for the visual interpretability of the
decisions made by CNN in the input feature space.

Ouput Modification Defenses. The second type implies output mod-
ification. It is based on rounding of the predicted values [44]. This
rounding prevents the attacker from stealing the model’s parameters
due to the impossibility of solving the corresponding system of equa-
tions. Another alternative is to utilize the so-called adaptive misinforma-
tion [62]. It is a special technique to return wrong predictions for user
queries but in an adaptive way. The intuition behind this approach is to
notice that model attackers quite frequently use queries that lie out-of-
the-distribution. Based on this observation, it is logical to adapt a model
so that it will assign wrong predictions to such queries, making it much
more complicated for the attacker to steal the model.

Model Modification Defenses. In addition to the perturbation of in-
puts and outputs, modifying the model architecture and parameters is
possible. A CNN feature extractor can be simulated to train a simpler
model, namely a shallow and sequential convolutional block, via Knowl-
edge Distillation [63]. Such an approach is akin to the source code ob-
fuscation technique obstructing the attacker from stealing the initial pro-
prietary model parameters and architecture. Moreover, it is possible to
choose an opposite way by adding redundant layers that do not change
the functionality, which makes theft of the model much more compli-
cated [64].

UNIQUE IDENTIfiERS AND WATERMARKING

This section addresses several ownership verification defensive tech-
niques.

Unique Model Identifier. Unique Model Identifier (UMI) is a detection
method that identifies a distinctive model property that transfers to a
substitute model during theft. By revealing this property, a model owner
can prove the model was stolen. This technique does not require an
active embedding of this unique, distinctive property in contrast to wa-
termarking, as it is inherent to the model. One example of this technique
is a Dataset Inference (DI) defense. DI detects if a model was trained
on a specific dataset [65]. This method is based on the idea that train-
ing samples lie farther from the decision boundary than other samples.
A subset of the original training data measures the distance of samples
from the boundary in the substitute model. If they are distant, the sub-
stitute model contains the target model’s identifier, indicating a poten-
tial model theft. However, DI is ineffective when the original dataset is
public, misclassifying independent models trained on it as stolen [66].
Alternatively, conferrable adversarial examples can form unique finger-
prints for substitute models [67]. These samples represent a unique set



2

54 2. Vulnerabilities and Defenses of Deep Neural Networks

of adversarial examples that transfer to the substitute models but not to
the other independently trained models.

Model Watermarking. Another approach is based on the active in-
tervention in the model training process so that the owner changes the
model behavior on some or all inputs so that only the owner can identify
these changes. Model watermarking actively embeds concealed data
to establish ownership. Unlike UMIs, it involves secret backdoors that
make models predict predefined values for some data containing out-
liers, revealing watermarks. However, embedded watermarks also have
to be persistent to model stealing, i.e., they have to be identifiable in the
model after it has been stolen. This property can be achieved by train-
ing a model that extracts common features from problem-domain inputs
and watermarking samples. Such an approach ensures that watermarks
would also be extracted during the model theft [68].

MONITOR-BASED DEFENSES
Monitor-based detection defense involves query analysis to identify mali-
cious users. For example, a defender can train a dedicated discriminative
DNN to classify adversarial versus benign samples, using each hidden
layer outputs of a protected DNN as features [69]. Alternatively, a DGM
such as VAE can also differentiate benign from malicious queries [70].

2.4. CONCLUSION
In this chapter, we have covered the broad range of attacks on discrimi-
native DNNs. We have touched upon all potentially vulnerable spots, in-
cluding the influence on the model’s behavior and the potential confiden-
tial data leakage. In addition, we detailed the most prominent examples
of adversarial and poisonous attacks, including the potential adversar-
ial usage of the outliers and various backdoor techniques. Furthermore,
we delved into two powerful privacy-related attacks: model stealing and
membership inference. Lastly, we highlighted the most promising and
robust defense mechanisms that are currently available in the arsenal of
the DNN developer to either mitigate or detect the undergoing attack.
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3
EPISTEMIC UNCERTAINTY OF

VARIATIONAL AUTOENCODERS

The problem of detecting the OoD inputs is of paramount importance
for Deep Neural Networks (DNNs). It has been previously shown that
even Deep Generative Modelings (DGMs) that allow estimating the den-
sity of the inputs may not be reliable and often tend to make over-
confident predictions for OoDs, assigning to them a higher density than
to the in-distribution data. This over-confidence in a single model can
be potentially mitigated with Bayesian inference over the model pa-
rameters that take into account epistemic uncertainty. This paper in-
vestigates three approaches to Bayesian inference: Stochastic Gradi-
ent Hamiltonian Monte-Carlo (SGHMC), Bayes by Backpropagation (BBB),
and Stochastic Weighted Averaging-Gaussian (SWAG). The inference is
implemented over the weights of the deep neural networks that parame-
terize the likelihood of the Variational Autoencoder. We empirically eval-
uate the approaches against several benchmarks that are often used
for OoD detection: estimation of the marginal likelihood utilizing sam-
pled model ensemble, typicality test, disagreement score, and Watan-
abe–Akaike information criterion (WAIC). Finally, we introduce two simple
scores that demonstrate the state-of-the-art performance.

This chapter is based on the paper "Do Bayesian Variational Autoencoders Know What
They Don’t Know?" by Glazunov, M., & Zarras, A. in Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2022 (pp. 718-727)[1].
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3.1. INTRODUCTION
Deep Neural Networks (DNNs) are trained by Maximum Likelihood Esti-
mation (MLE) over parameters θ given the training input data D: p(D|θ).
There exist two main approaches to modeling with DNNs: discriminative
and generative.
The discriminative approach implies parameterizing a conditional dis-

tribution over target values y: p(y|x,θ). The training of DNNs allows
identifying optimum parameters θ∗ based on a stochastic first-order op-
timization algorithm. In the case of classification tasks, the common
choice for p(y|x,θ) is a categorical distribution, in the case of regression—
a Gaussian distribution (quite often with a constant variance). As it has
been recently discovered: such models tend to be over-confident in their
predictions with Out-of-Distribution (OoD) inputs [2, 3]. This discovery
may not be surprising since MLE results in a point estimate and does
not account for epistemic uncertainty. Taking into consideration the fact
that in modern DNNs |θ| ≫ |D|, there may be several models θ∗ that
generated D.
Epistemic uncertainty can be estimated by inferring a posterior distri-

bution: p(θ|D) which can be done within the Bayesian frame of reference.
Several promising results were achieved with the discriminative DNNs for
OoD detection utilizing Bayesian inference over model parameters [4–6].
On the other hand, the generative approach allows learning the ap-

proximation of a true distribution over the training data: p(x). DNNs
again do the parameterization of this density, hence the name: Deep
Generative Modeling (DGM). Since DGMs provide a mechanism to esti-
mate the probability of a particular input, they should supposedly assign
a low density to the OoDs. However, recent research revealed that such
estimations are prone to errors as DGMs often provide higher density
values to OoDs than to in-distribution (ID) data [7].
As it was the case with the discriminative deep models, to overcome

this problem, one may use a Bayesian DGM that infers the posterior:
p(θ|D) for the training data D over the model parameters θ. Such an ap-
proach allows getting an ensemble of the approximations of a true distri-
bution of the data where each sample from the posterior θ ∼ p(θ|D) gives
a separate instance of the model in the ensemble. Based on sampling
from the posterior distribution, it is possible to estimate the density of
the input instance p(x) taking into consideration epistemic uncertainty.
In this work, we implement several methods that are widely applica-

ble to the Bayesian inference over DNN parameters, namely: Bayes by
Backpropagation (BBB) [4], Stochastic Gradient Hamiltonian Monte-Carlo
(SGHMC) [5], and Stochastic Weighted Averaging-Gaussian (SWAG) [6].
Most of the methods till now have been only applied to the discriminative
supervised DNNs. It should be noted that even though the theoretical
justification for Bayesian Variational Autoencoders (VAEs) was already
present in the original paper [8], there are still very few works address-
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ing this point. In fact, to the best of our knowledge: there is only one
paper dedicated to the Bayesian VAEs and OoD detection where only
one of the methods (i.e., SGHMC) was used [9]. Our work represents
an attempt to close this gap that is currently present between the dis-
criminative and generative approaches based on DNNs. We transfer all
of the mentioned methods to the deep generative VAEs and test them
against several benchmarks suggested for OoD detection on various im-
age datasets. Finally, based on our experiments, we introduce a couple
of simple scores for the OoD detection that surpass all baseline scores.
In summary, we make the following main contributions:

• We perform the first implementation of three different Bayesian ap-
proaches for VAEs estimating epistemic uncertainty.

• We do a practical benchmarking of the most frequently used scores
for OoD detection, taking into consideration Bayesian inference over
the parameters of the likelihood of VAE.

• We suggest and apply two simple and efficient scores for the OoD
detection that outperform baseline scores.

• We empirically evaluate the suggested approach based on several
datasets.1

3.2. BACKGROUND
3.2.1. OUT-OF-DISTRIBUTION
Deploying a successful model requires the system to detect input data
that are statistically anomalous or significantly different from those used
during training. This is especially important for DNNs since they tend
to produce overconfident predictions for such OoD inputs [10]. The lack
of reliability of supervised discriminative models based on DNNs, when
faced with OoD, was recently addressed by various methods [3, 11, 12].
Unsupervised DGMs such as autoregressive models [13], Generative

Adversarial Networks (GANs) [14], flow-based models [15–17], and VAEs [8,
18] provide the opportunity to learn the density of the input data.
We choose to apply VAE as a particular instance of DGM in our experi-

ments for several reasons:

1. It allows to obtain a particular value for the density in contrast to
GANs that can only be sampled in a black-box manner.

2. It represents a model based on the latent variable, which seems like
a reasonable assumption considering the complexity of the data’s

1The source code for the reproducibility of the results is available at https://
github.com/DigitalDigger/BayesianVAEsOoD
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underlying density. The latent space has a much lower dimensional-
ity in comparison with the dimensionality of the input. Such a bottle-
neck allows for learning the most relevant features. It distinguishes
VAE from the flow-based models where all the transformations are
invertible and represent a bijective mapping between the input and
the latent space [15, 17, 19].

3. It allows the parametrization of all the Bayesian inference constituents,
including the posterior over latent variable and the likelihood of the
data [8, 18]. Such separation of the constituents makes it possible
to work with the particular part, as in our case, with the decoder of
the VAE for weight uncertainty estimation, distinguishing VAEs from
the autoregressive models.

Furthermore, as it has been shown by [20], different DGM models may
not produce similar results, which suggests that it is a good idea to con-
centrate only on one type for the analysis, which VAEs represent in our
case.
However, it has been recently discovered that even in the case of

DGMs that allows estimating the density, it does not work as intended
and that DGMs return higher p(x) for input data from a different distribu-
tion [7].
There are several approaches to tackle this issue. One possible solu-

tion is to enhance the training dataset. [11] suggested incorporating the
pre-selected anomalous examples employing the so-called outlier expo-
sure technique, which achieved promising results. [21] proposed a dif-
ferent method: two DGMs are trained separately—one for the semantics
of the images and another for the background of the same images. The
background images are generated with substantial noise to make the
model learn this background, discarding the image’s semantics. Then by
calculating the likelihood ratios between the model that learned seman-
tics and the model that learned the background, it is possible to detect
OoD. However, both of the suggested approaches rely on the knowledge
of either the outlier or the image’s background, which cannot be rea-
sonably covered for all the possible inputs. Moreover, recent research
reveals that the likelihood ratio method does not achieve satisfactory re-
sults when a Bayesian VAE is applied [9]. Due to these reasons, we do
not consider methods of dataset enhancement in this work.
Another possible solution is to devise an alternative score for the OoD

detection. In that vein, the Watanabe–Akaike information criterion (WAIC)
was successfully used by [22]. Further, the disagreement score [9] was
suggested for the same purpose. This idea was motivated within the
information-theoretic framework and was also based on the posterior es-
timation over the model parameters. The considered scores were calcu-
lated in both works based on the densities obtained from several models.
In the former case, an ensemble was trained to calculate WAIC, while the
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latter case used the Bayesian VAE. In addition, [20] introduced a typ-
icality test of the input sequences under the conjecture that the inlier
sequences should be members of the DGM’s typical set.
We chose to address the OoD problem similarly: i.e., we suggest and

apply new simple scores that help to detect OoDs.

3.2.2. VARIATIONAL AUTOENCODER
VAE represents a type of DGM that provides the possibility of density es-
timation of the input x. The optimization objective of VAE is the Evidence
Lower Bound (ELBO), which allows joint optimization with respect to both
variational parameters ϕ of the encoder responsible for the variational
approximation of the posterior qϕ over the latent variable z, and the gen-
eration parameters θ of the decoder responsible for the parametrization
of the likelihood of the input pθ(x|z):

Lθ,ϕ(x) = Eqϕ(z|x)[ logpθ(x,z) − logqϕ(z|x)] (3.1)

VAEs are trained in an unsupervised manner from data and are widely
used for generative purposes.

3.2.3. ESTIMATION OF THE MARGINAL LIKELIHOOD
Marginal likelihood can be computed in the following way:

pθ(x) =
∫

z
pθ(x|z)p(z)dz (3.2)

However, it is difficult to calculate it precisely due to the integration
over the whole z-space. As suggested by [18], as soon as the VAE is
trained, it is possible to estimate the marginal likelihood of the input
under the generative model using importance sampling w.r.t to the ap-
proximated posterior, namely:

pθ(x) ≃
1

N

N
∑

=1

pθ(x,z (i))

qϕ(z (i)|x)
, where z (i) ∼ qϕ(z|x) (3.3)

As it has been discovered by [7], we cannot rely directly on the marginal
likelihood estimations produced by a single DGM. This fact is not surpris-
ing for the discriminative models based on DNNs. Therefore, it should
not be shocking for DGMs either, taking into consideration that they are
also based on the DNNs and that they also obtain the optimal parame-
ters θ∗ under the Maximum Likelihood Estimation (MLE) for the p(D|θ)
which represents a point estimate. Hence, without Bayesian inference
over model parameters, it is impossible to estimate the epistemic uncer-
tainty, which results in the model’s inability to provide a robust estima-
tion of the marginal likelihood for OoD inputs.

3.2.4. EPISTEMIC UNCERTAINTY
The required posterior estimation over model parameters p(θ|D) in the
case of discriminative DNNs is usually implemented in the following three
ways:
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1. By using variational posterior approximation [4];

2. By sampling from Markov chain Monte Carlo (MCMC) [5];

3. By capturing the local geometry of the posterior through fitting a
Gaussian with two first moments of the Stochastic Gradient Descent
(SGD) [6].

The first method represents a similar variational inference approach as
in the case of VAEs when their encoders are trained to infer the posterior
over the latent variable. The difference is that now it is applied to mini-
mize the KL-divergence between the intractable posterior over the model
parameters p(θ|D) and the distribution from the family of tractable dis-
tributions q(θ|D). It is also implemented by maximizing the ELBO. Since
in our work we implement it in VAE, it means that we are making the
variational inference for both the posterior for the latent variable condi-
tioned on the input and the posterior for the parameters conditioned on
the training data. Such an approach is called fully Bayesian in the case
of VAEs [8]. There are various methods for approximating the posterior
for the model parameters; we will use the one suggested in [4].
MCMC constructs a Markov chain with the desired posterior as its equi-

librium distribution. The most known method for MCMC is based on the
Metropolis-Hastings algorithm [23, 24]. This algorithm converges to the
real posterior by exploiting the random walk proposal distribution. How-
ever, this convergence may be pretty slow due to the slow exploration
of the state space based on the random walk. Hamiltonian Monte Carlo
(HMC) [25] postulates the exploration within the framework of the Hamil-
tonian dynamics. It allows producing distant proposals for the Metropolis
algorithm resulting in much faster convergence. We use a variant of
HMC adopted for deep learning, namely SGHMC, that relies on the noisy
gradient estimates [5].
Finally, it is possible to infer the desired posterior while training due

to the noise in the SGD [26]. We apply the Stochastic Weight Averaging
(SWA) [27] together with fitting a Gaussian using the SWA solution as the
first moment and covariance that is also derived from the SGD steps: the
so-called SWAG method [6]. Stochastic Weighted Averaging-Gaussian
(SWAG) is easy to implement since it does not require additional sam-
pling and can be used as a baseline for the rest of the methods.

3.3. METHODOLOGY
3.3.1. BAYESIAN VAES
We implement several possible methods for Bayesian VAEs. We apply
the Bayesian inference over the model parameters of the decoder of
the VAEs. Such a method allows sampling of several decoders to form
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an ensemble with the subsequent marginal log-likelihood estimation as
indicated in Equation 3.3.

Bayes by Backpropagation. We approximate the posterior distribution
of the VAE decoder parameters given the training data p(θ|D) based on
the method suggested by [4]. This method was initially applied to dis-
criminative learning. In our work, we implement it in VAEs. The ELBO ob-
jective is to find distribution parameters λ that minimize KL-divergence
between our approximation and the true posterior; hence, the ELBO is
formulated in the following way:

Fθ(D,λ) = Eq(θ|λ)
�

logp(D|θ) + logp(θ) − logq(θ|λ)
�

(3.4)

logp(D|θ) represents the sum of the marginal likelihoods of the individ-
ual inputs:

logp(D|θ) =
N
∑

=1

logp(x() |θ) (3.5)

and

logp(x() |θ) ≥ Lθ,ϕ(x()) (3.6)

where Lθ,ϕ(x) is the ELBO for the marginal likelihood marginalized over
the latent variable and it is defined in Equation 3.1. Since ELBO is the
lower bound of the marginal likelihood, we can use it for our approxima-
tion. The optimization objective is formulated as:

ÝFθ(D,λ) = Eq(θ|λ)
� N
∑

=1

�

Lθ,ϕ(x())
�

+ logp(θ) − logq(θ|λ)
�

(3.7)

Now, if we plug in the right-hand side of the objective in Equation 3.1
we can get the Monte-Carlo estimation of the combined variational ob-
jective:

ÖFθ,ϕ(D,λ) ≃
1

L

L
∑

j=1

� N
∑

=1

�

logpθ(j) (x
(),z) − logqϕ(z|x())

�

+ logp(θ(j)) − logq(θ(j) |λ)
�

(3.8)

where θ(j) is sampled from the posterior q(θ|λ), z is sampled from the
posterior q(z|x) and N is taken equal to the batch size.
For the minimization objective, we use the negated estimate: −ÖFθ,ϕ(D,λ).

We assume a diagonal Gaussian distribution for both variational posteri-
ors with parameters μ and σ. In order to make σ be always non-negative
we apply the same reparametrization as it was suggested by [4], namely
σ = log(1 + exp(ρ)), yielding the following posterior parameters λ =
(μ, ρ). For the prior over the latent variable, we use the standard nor-
mal density, for the prior over the weights we use the scale mixture of
two Gaussians as in [4].
The usual reparametrization trick [8] is applied to both θ and z for

training by backpropagation.
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Stochastic Gradient Hamiltonian Monte Carlo. This approach ex-
ploits sampling instead of optimization, which was the case with BBB.
This sampling is done within the MCMC framework and is based on the
proposals generated utilizing the Hamiltonian dynamics. Namely, as-
sume that the posterior distribution:

p(θ|D) ∝ exp(−U(θ,D)) (3.9)

where U(θ,D) stands for the potential energy function in the Hamilto-
nian.
In our work, we take:

U(θ,D) = − logp(θ,D) = −
N
∑

=1

logp(x() |θ) − logp(θ) (3.10)

where logp(x()|θ) is approximated by ELBO in our experiments and
logp(θ) is the prior over parameters.
Since HMC requires the computation of the gradient for the whole

batch, a stochastic gradient alternative has been suggested by [5] which
relies on the noisy gradients and allows proposal generation in a faster
mini-batch manner.
In our work, we also apply the improvements suggested by [28] which

significantly reduce the number of hyperparameters through adaptive
estimates of the parameters in question during the burn-in procedure
and subsequent training. Such an approach has been previously imple-
mented in the unsupervised generative setting with VAEs by [9].

Stochastic Weighted Averaging-Gaussian. SWAG is fitting the fol-
lowing Gaussian distribution:

N
�

θSWA,ØSWA

�

(3.11)

where θSWA is a running average over DNN parameters and SWA is the
sample covariance matrix that after T epochs can be calculated as:

θSWA =
1

T

T
∑

=1

θ and SWA =
1

T − 1

T
∑

=1

(θ − θSWA) (θ − θSWA)⊤ (3.12)

Since SWA is of a very high rank it is approximated by the K last epochs
during training resulting in ØSWA[6].
SWAG was previously applied only to the discriminative DNNs, in our

work we implement it within a generative approach with VAEs.

Combining several likelihoods. After the approximation of the vari-
ational posterior over the weights, the usual practice is to estimate the
expected likelihood, the exact form of which can be formulated as fol-
lows:

p(x∗ |D) =
∫

p(x|θ)p(θ|D)dθ (3.13)

The unbiased estimate of which can be obtained like this:

Ep(θ|D)[p(x∗ |θ)] ≃
1

N

N
∑

=1

p(x|θ); where θ ∼ p(θ|D) (3.14)
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p(x|θ) is computed by importance sampling as in Equation 3.3. As soon
as the expected likelihood is estimated, one can apply a threshold that
would distinguish if the considered input adheres to the in-distribution
sample or not.
In [22] the likelihoods returned by several generative models are used

to estimate the WAIC:
WAC(x∗ |D) = Ep(θ|D)[p(x|θ)] − Vrp(θ|D)[p(x|θ)] (3.15)

WAIC estimates the gap between the expected likelihood and the vari-
ance between the obtained likelihoods, which should benefit the small
variance cases.
Another alternative is calculating the disagreement score D[ ·] sug-

gested by [9]. This score measures the variation in the likelihoods {p(x∗|θ)N=1}
which captures the uncertainty of the models within the ensemble about
the particular input:

DΘ[x∗] =
1

∑

θ∈Θ
2
θ

; where θ =
p(x∗ |θ)

∑

θ∈Θ p(x∗ |θ)
(3.16)

The lower the score, the more informative the input is about the pa-
rameters θ, and consequently, the uncertainty value is higher.
The weights represent the normalized likelihoods between 0 and 1.

The disagreement score sums up the squares of the weights and takes
the reciprocal. If the score is large, it means that all models return close
values of the likelihoods. On the contrary, if the score is 1, then there is
one model that dominates.
Finally, [20] conjectured that due to the high dimensionality of inputs,

the over-confidence of DGMs may be due to the fact that in-distribution
images lie in the typical set in contrast to the tested OoDs that concen-
trate in the high-density region. Based on this conjecture, they intro-
duced the test for typicality that treats all input sequences of length M
as inliers if their entropy is sufficiently close to the entropy of the model,
i.e., if the following holds for small ε, then the given M-sequence is in-
distribution:

�

�

�

�

�

1

M

M
∑

m=1

− logp (xm;θ) − H[p(x;θ)]

�

�

�

�

�

≤ ε (3.17)

We applied this score to one-element sequences since it is the most
realistic scenario in practical applications of OoD detection.

Our scores. Based on the results of the experiments with the available
metrics on all of the considered methods, we decided to apply our scores
that capture the variation. In our work, we apply two simple scores for
the same purpose. First, we measure the information entropy of the
normalized likelihoods, namely:

HΘ[x∗] = −
∑

θ∈Θ
θ logθ; where θ =

p(x∗ |θ)
∑

θ∈Θ p(x∗ |θ)
(3.18)

It is a standard information-theoretic metric that measures the aver-
age information of the distribution: the lower the entropy, the more one
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of the models is confident about the predicted value. The entropy mea-
sure is applied to the normalized likelihoods. Such normalization may
be considered as the categorical distribution over the obtained marginal
likelihoods of the models.
Secondly, we calculate the sample standard deviation of the marginal

log-likelihoods returned by the models within the ensemble:

Θ[x∗] =

√

√

√

1

N − 1

∑

θ∈Θ
(logp(x∗ |θ) − logp(x∗ |θ))2 (3.19)

It measures the variation within the log-likelihoods directly without nor-
malizing step as in the case of the entropy, so if the variation persists
along with the considered methods and datasets, the standard deviation
will capture this difference: the higher the value, the more uncertainty
there is between the models about a particular input.

Thresholding. There remains an open question of the appropriate thresh-
old selection for the model evaluation. Since we are working in the unsu-
pervised setting, intuitively, the ideal situation would be some threshold
between the values of the scores returned by the model that successfully
divides the inputs into OoDs vs. IDs. In order to validate the efficiency
of the scores in achieving this task, we tackle this problem in the same
way as [3] by using three different metrics: Area Under the Receiver Op-
erating Characteristic Curve (AUROC), the Area Under Precision-Recall
(AUPR) curve, and the False-Positive Rate at 80% of True-Positive Rate
(FPR80). These metrics are threshold-independent because they com-
pute the true positives and false positives for all possible thresholds pro-
viding a final single value of the efficiency of the used non-thresholded
decision values in dividing them into two separate classes.

3.4. EVALUATION
We run all of our experiments on the four image datasets: MNIST [29],
Fashion-MNIST [30], SVHN [31], and CIFAR-10 [32]. As it has been ob-
served [7, 21], the likelihood estimations may be misled by the dataset
they have been trained on. For instance, if the model has been trained
on MNIST and OoD detection has been performed on the Fashion-MNIST,
then the researcher, only by chance, may obtain good results. To avoid
such mistakes, we train our models on all the datasets and check the fol-
lowing in-distribution vs. OoD: MNIST vs. Fashion-MNIST and vice versa,
SVHN vs. CIFAR-10 and vice versa.
The following hardware infrastructure was used in all of our experi-

ments: Xeon Platinum 8160 2.1 GHz 32 GB of RAM, 1 GPU NVIDIA Volta
V100.
First, we estimate the impact of the latent space’s number of dimen-

sions on the loss function. The dimensionality is closely connected with
the dataset the model is trained on. MNIST and FashionMNIST results
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Table 3.1: Scoring values across all types of Bayesian VAEs trained on
Fashion-MNIST data and tested on MNIST as OoD

Fashion-MNIST vs. MNIST

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 40.43 45.46 95.20 40.43 45.18 94.99 25.09 38.01 99.54
WAIC 59.53 59.35 71.88 55.79 53.86 74.56 19.90 35.14 99.83
Typicality test 40.51 43.40 86.36 41.02 43.85 86.05 56.40 50.32 64.88
Disagreement score 96.44 97.22 1.11 95.25 96.31 2.50 79.98 80.74 38.24
Entropy (ours) 97.97 98.43 0.19 97.28 97.92 0.53 82.50 84.05 35.61
Stds of LLs (ours) 99.64 99.55 0.34 99.56 99.50 0.55 19.90 34.22 94.42

Table 3.2: Scoring values across all types of Bayesian VAEs trained on
CIFAR-10 data and tested on SVHN as OoD

CIFAR-10 vs. SVHN

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 59.73 53.27 58.99 60.39 53.74 58.08 60.31 53.51 57.05
WAIC 61.15 54.22 57.15 62.39 55.38 55.07 64.29 55.81 50.59
Typicality test 63.73 60.89 65.53 64.44 61.05 64.01 64.93 61.52 64.33
Disagreement score 81.16 84.82 38.47 80.41 83.00 40.61 73.27 76.95 54.95
Entropy (ours) 84.76 88.21 29.31 84.56 86.90 29.12 76.51 80.54 49.37
Stds of LLs (ours) 89.98 85.83 16.03 92.52 91.48 12.27 71.26 64.65 44.34

Table 3.3: Scoring values across all types of Bayesian VAEs trained on
MNIST data and tested on Fashion-MNIST as OoD

MNIST vs. Fashion-MNIST

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 99.98 99.98 0.00 99.93 99.92 0.04 96.83 96.20 5.18
WAIC 99.99 99.99 0.00 99.94 99.94 0.02 80.37 76.25 33.56
Typicality test 99.98 99.98 0.00 99.88 99.90 0.00 94.91 96.47 1.58
Disagreement score 98.95 99.01 0.23 97.32 97.70 1.37 94.88 93.97 8.99
Entropy (ours) 99.42 99.47 0.02 98.50 98.75 0.29 95.72 95.20 8.37
Stds of LLs (ours) 99.99 99.99 0.00* 99.91 99.91 0.00* 80.37 82.78 39.12

* 0’s are possible since it is a value for false-positive rate at 80% of true-positive rate

Table 3.4: Scoring values across all types of Bayesian VAEs trained on
SVHN data and tested on CIFAR-10 as OoD

SVHN vs. CIFAR-10

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 58.65 61.79 77.72 57.09 60.56 80.18 58.98 62.06 76.52
WAIC 64.46 66.01 68.39 62.17 64.38 72.45 62.84 68.42 75.25
Typicality test 44.63 44.28 81.46 43.35 43.63 82.45 44.28 44.13 81.96
Disagreement score 85.20 88.35 30.26 85.31 88.52 28.66 77.58 80.36 45.60
Entropy (ours) 87.80 90.63 20.77 87.89 90.76 19.91 80.01 83.24 41.58
Stds of LLs (ours) 93.29 91.51 10.99 94.70 93.95 8.67 59.31 53.36 61.78

reveal no need to go over 10 latent dimensions since loss function did
not significantly decrease after that value. For SVHN and CIFAR-10, we
experimented with the number of latent dimensions up to 100; the most
optimal results have been achieved with dimensionality equals 20 for
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Figure 3.1: Histograms of the entropies of the marginal likelihoods.
They are estimated based on sampling from the Bayesian
VAEs, blue depicts in-distribution (ID) and orange - Out-of-
Distribution (OoD). From left to right: MNIST as ID vs
Fashion-MNIST as OoD, Fashion-MNIST as ID vs MNIST as OoD,
SVHN as ID vs CIFAR-10 as Ood, CIFAR-10 as ID vs SVHN as
OoD. Top: Sampling is done from Bayes-by-backprop VAE.
Bottom: Sampling is done from SGHMC VAE.

SVHN and 70 for CIFAR-10.
We experimented with two different architectures for all our tests: one

for the grayscale images and the second for the RGB images with 1 and 3
channels correspondingly. All models have been trained for 1000 epochs.
To evaluate the inputs, we sampled 200 different models for our ensem-
ble and evaluated them on a separate test data split of 5120 images that
models have not been trained on. We used test splits of both ID and OoD
datasets for all scores and metrics.
For our implementation of Bayes by backpropagation, we noticed that

random normal initializer of the DNNs weights suggested as a prior in
the original paper by [4] resulted in very slow convergence. To speed up
the process, we also experimented with the following parameters: ran-
dom normal initializer with 0 mean and 0.1 standard deviations for μ and
constant initializer for ρ = −3, which improved the training speed [33].2

In case of SGHMC we adhere to the same protocol as in [9], namely,
we use the same scale-adapted sampler implementation with learning
rate 10−3 for the training and momentum decay 0.05.3 We also place
Gaussian priors over decoder parameters with precision p(θ) = N (0, λ−1)
and with Gamma hyperprior over the precision p(λ) = (α, β) with α =
β = 1 that are resampled on each epoch.
For the experiments with SWAG, we set K = 40 and kept the default

values for all the rest hyperparameters as in the original SWAG imple-

2For BBB we used the PyTorch Bayesian layers available at https://github.com/
IntelLabs/bayesian-torch

3The SGHMC sampler that we used is available at https://github.com/automl/
pybnn
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mentation.4

All the experiments are done within the framework implemented by
[19]. The results of the experiments against the benchmark scores for
all datasets and models can be observed in the Tables 3.1 - 5.10.

3.5. DISCUSSION
As shown in the tables, Bayesian methods used in the discriminative ap-
proach can be successfully transferred to the generative models such as
VAEs for OoD detection. Moreover, from the point of view of the scores:
the variation among the model densities turns out to be persistent across
all of the types of the Bayesian VAEs and all the datasets. The best re-
sults are achieved for BBB and SGHMC types of VAEs. The simple entropy
score consistently demonstrates state-of-the-art results while detecting
OoDs by better capturing the variation compared to the previously in-
troduced baseline scores, the histograms for both BBB and SGHMC VAE
results are shown in Figure 3.1. In addition, the sample standard devia-
tion significantly outperforms the entropy score in the case of BBB and
SGHMC methods.
Interestingly, almost all scores achieve comparably good results when

trained on the MNIST dataset and tested on Fashion-MNIST (Table 5.9),
but many of the baseline scores demonstrate substantially worse val-
ues when the experiments are conducted the other way around, i.e.,
trained on Fashion-MNIST and tested on MNIST (Table 3.1). The reason is
that many of these scores are biased to a particular type of data. How-
ever, the bi-directional experiments easily identify these biases among
all datasets and benchmark scores.
It can be observed that the worst-performing scores either intrinsically

depend on the mean of the ensemble (such as WAIC) or on the log-
likelihood itself returned by the model (such as a typicality score). In the
first case, it results in the dominance of the variation of the particular val-
ues of the likelihoods for different inputs over the variation between the
models within the ensemble for a single input, e.g., the range of variance
of estimated likelihoods in the case of Fashion-MNIST is at least twice
greater than in case of MNIST. In general, the more complex dataset is
used for model training, the greater variance of the resulting likelihoods
that the model assigns to the inputs; hence, there is potentially less in-
fluence of the variation between the models within the ensemble (that
is completely lost in the case of WAIC for example). On the other hand,
our scores measure the variance within the ensemble. It allows catch-
ing even a slight difference in such variation. In the second case with
typicality, the log-likelihoods of inputs are used directly without any en-
sembling, which is susceptible to the well-known issue with modern deep

4SWAG sampler that we used is available at https://github.com/wjmaddox/
swa_gaussian
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generative models discovered by [7]. The same applies to the expected
log-likelihood metric.

From the point of view of the speed performance, we consider the run-
time required for the training convergence to get the same values of
the likelihoods as for the vanilla VAEs. In such a case, the overhead
of SWAG is almost negligible compared with the vanilla VAE. BBB and
SGHMC, on the contrary, both take much longer time, with BBB requiring
up to five times longer than the vanilla VAE training. SGHMC performs
relatively faster than BBB but still lags far behind SWAG. There is also a
clear tradeoff between the training performance and resulting accuracy
in distinguishing between OoD vs. ID inputs: the fastest method in train-
ing (i.e., SWAG) results in the lowest OoD detection scores; however, the
much slower training method (i.e., SGHMC) results in the best OoD de-
tection scores for the most complex dataset that we experimented with
(i.e., CIFAR-10). BBB turns out to be the slowest in training, and the re-
sults for OoDs are slightly worse than those obtained by SGHMC. Since
SWAG has a minor overhead during training, it implies better scalability
of this method to bigger datasets compared with SGHMC or BBB. If we
also consider the speed performance from the point of view of the scala-
bility to the bigger models, then it becomes clear that all of the methods
rely on sampling the weights, so there is no clear winner, i.e., the more
parameters a particular DNN would have the slower sampling would be
for all of the methods.

It should be emphasized that these discrepancies in speed performance
between the suggested Bayesian approaches can be seemingly treated
as limitations in comparison with the vanilla VAEs and with the differ-
ent ensemble techniques. First, let us consider the time required for the
convergence of the model. As mentioned above, it may take five times
longer in the worst case to obtain the values comparable to the ones of
the vanilla VAE for both components of the ELBO loss. However, this dis-
advantage is disappearing, and the proposed Bayesianmethods become
even advantageous when one is training an ensemble of separate mod-
els {p(x∗|θ)}N=1 with N > 5 under the similar hardware constraints. Sec-
ond, suppose we look at the resulting detection of OoD, which is slowed
down with the several estimations of the marginal likelihood within the
ensemble and subsequent calculation of the required score. In that case,
this limitation primarily concerns the performance comparison with a sin-
gle DGM without using ensembles. However, as we mentioned before,
such a point estimate cannot be reliably used to estimate epistemic un-
certainty. Therefore, if we compare with the traditional ensembling tech-
niques, the main difference with the suggested approach stems from the
way how the estimated marginal likelihoods are used. The former com-
putes the expected likelihood, and the latter calculates the entropy or
sample standard deviation of the marginal log-likelihoods, which means
that we get O(N) computations in either of these scenarios.
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3.6. CONCLUSION
The ability to detect OoD inputs by DGMs is of significant importance for
robust inference, especially in practical applications. Our work concen-
trates on a specific type of such DGMs: Bayesian VAEs. We addressed
this issue from three different perspectives:

1. Method-wise. We implemented three methods for estimating epis-
temic uncertainty in the generative setting based on VAEs utilizing
Bayesian inference over model parameters: BBB based on varia-
tional inference, SGHMC based on Monte-Carlo sampling, and SWAG
based on the noise in the SGD. Most methods have been previ-
ously applied exclusively to the discriminative models, and our pa-
per bridges this gap between two modeling approaches.

2. Score-wise. We benchmarked all methods against the frequently
used OoD benchmarks: expected log-likelihood, WAIC, disagree-
ment score, and typicality test. Moreover, during our experiments,
we noticed that the most promising score was based on the idea
of the variation of marginal likelihoods. Built on that, we proposed
using two simple scores: one is based on the information entropy,
and the second is on the standard deviation for the robust unsuper-
vised OoD detection. We achieved state-of-the-art results with them
across all the benchmarked methods and considered datasets.

3. Experiment-wise. We did thorough experiments with all methods
and scores on several datasets. Moreover, to avoid potential er-
rors, we evaluated the results bi-directionally, e.g., if we trained a
model on the MNIST dataset and used Fashion-MNIST as OoD, then
we also trained a model on the Fashion-MNIST dataset and checked
its ability to detect MNIST inputs as OoD. Such a check is necessary
to avoid the bias of any particular scoring method to either more
complicated or more simplified data.

The results of the experiments convincingly support the idea of the
beneficial usage of the epistemic uncertainty estimation based on the
variation for successful OoD detection in the case of VAEs. We observed
that both BBB and SGHMC demonstrated comparable performance. While
SWAG was always worse for the new OoD scores compared with other
methods, we still conclude that it can be used as a simple baseline for
epistemic uncertainty in the case of VAEs in the same manner as in the
case of the discriminative approach. Moreover, from the point of view
of the training convergence, SWAG turned out to be the fastest among
the all considered Bayesian methods. Future work may revolve around
a deeper understanding of the sources of variation within the ensemble
from the point of view of the latent space of the VAE: e.g., is there a
correlation between “holes” in the latent manifold and greater variance
of the likelihoods.



3

76 3. Epistemic Uncertainty of Variational Autoencoders

3.7. SUPPLEMENTARY MATERIALS
3.7.1. SAMPLE STDS OF THE MARGINAL LOG-LIKELIHOODS
The sample standard deviations of the marginal log-likelihoods for BBB
and SGHMC methods can be observed in Figure 3.2.
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Figure 3.2: Histograms of the sample standard deviations of the marginal
log-likelihoods, blue depicts in-distribution (ID) and orange -
out-of-distribution (OoD). From left to right: MNIST as ID
vs Fashion-MNIST as OoD, Fashion-MNIST as ID vs MNIST as
OoD, SVHN as ID vs CIFAR-10 as Ood, CIFAR-10 as ID vs SVHN
as OoD. Top: Sampling is done from Bayes-by-backprop VAE.
Bottom: Sampling is done from SGHMC VAE.

3.7.2. VAE DISTRIBUTIONS
• For prior we used a standard multivariate Gaussian without param-
eters: p(z) = N (z;0, )

• For variational distribution we used a multivariate factorized Gaus-
sian with learned mean and variance: qϕ(z|x) = N (z;μ, dg(σ2))

• For likelihood we used a multivariate factorized Bernoulli distribu-
tion:

p(x | z) =
D
∏

j=1

p
�

j | z
�

=
D
∏

j=1

Bernolli
�

j;pj
�

(3.20)

3.7.3. CNN ARCHITECTURES USED
For MNIST and FashionMNIST datasets with a single channel we used the
following architectures.
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Figure 3.3: From left to right: MNIST, Fashion-MNIST, SVHN, CIFAR-10
Top: Random samples from BBB VAE. Bottom: Random sam-
ples from SGHMC VAE.

Table 3.5: Encoder CNN
Operation Kernel Strides Feature Maps

Convolution 3 x 3 1 x 1 32
Convolution 3 x 3 1 x 1 16
Max pooling 2D 2 x 2 2 x 2 —
Linear for μ — — 10
Linear for logσ — — 10

Table 3.6: Decoder CNN
Operation Kernel Strides Feature Maps

Linear for sampled z — — 2306
Upsampling nearest 2D — — —
Max pooling 2D 2 x 2 2 x 2 —
Transposed Convolution 3 x 3 1 x 1 32
Transposed Convolution 3 x 3 1 x 1 1

For SVHN and CIFAR10 datasets with three channels we used the fol-
lowing architectures with additional padding = 1 and no bias for every
convolutional layer. For SVHN latent dimensionality = 20, for CIFAR10 =
70.

Table 3.7: Encoder CNN
Operation Kernel Strides Feature Maps

Convolution 3 x 3 1 x 1 16
Batch normalization — — 16
Convolution 3 x 3 2 x 2 32
Batch normalization — — 32
Convolution 3 x 3 1 x 1 32
Batch normalization — — 32
Convolution 3 x 3 2 x 2 16
Batch normalization — — 16
Linear — — 512
Batch normalization — — 512
Linear for μ — — 20 / 70
Linear for logσ — — 20 / 70

Table 3.8: Decoder CNN
Operation Kernel Strides Feature Maps

Linear for sampled z — — 512
Batch normalization — — 512
Linear — — 1024
Batch normalization — — 1024
Transposed Convolution 3 x 3 2 x 2 32
Batch normalization — — 32
Transposed Convolution 3 x 3 1 x 1 32
Batch normalization — — 32
Transposed Convolution 3 x 3 2 x 2 16
Batch normalization — — 16
Transposed Convolution 3 x 3 1 x 1 3

For all architectures we used ReLU as a non-linearity. In addition, all
pixels of the images have been normalized to [0,1] range for each chan-
nel for both training and testing phases.
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3.7.4. RUNTIMES OF DIFFERENT METHODS
The runtimes for the training convergence of the different Bayesianmeth-
ods are available in Table 3.9

Table 3.9: BVAE runtimes for learning
Method Time (mins)

BBB 1628
SGHMC 1473
SWAG 371
Vanilla 345

3.7.5. SAMPLES FROM TRAINED MODELS
Random samples from all of the trained models for both BBB and SGHMC
can be seen on Figure 3.3.
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4
TOPOLOGY-AWARE APPROACH
TO LATENT REPRESENTATION

Detection of the outliers is pivotal for any machine learning model de-
ployed and operated in real-world. It is essential for the Deep Neural
Networks (DNNs) that were shown to be overconfident with such in-
puts. Moreover, even deep generative models that allow estimation of
the probability density of the input fail in achieving this task. In this
work, we concentrate on the specific type of these models: Variational
Autoencoders (VAEs). First, we unveil a significant theoretical flaw in the
assumption of the classical VAE model. Second, we enforce an accommo-
dating topological property to the image of the deep neural mapping to
the latent space: compactness to alleviate the flaw and obtain the means
to provably bound the image within the determined limits by squeezing
both inliers and outliers together. We enforce compactness using two
approaches: () Alexandroff extension and () fixed Lipschitz continuity
constant on the mapping of the encoder of the VAEs. Finally and most
importantly, we discover that the anomalous inputs predominantly tend
to land on the vacant latent holes within the compact space, enabling
their successful identification. For that reason, we introduce a specifi-
cally devised score for hole detection and evaluate the solution against
several baseline benchmarks achieving promising results.

This chapter is based on the paper "Vacant Holes for Unsupervised Detection of the
Outliers in Compact Latent Representation" by Glazunov, M., & Zarras, A. in Conference
on Uncertainty in Artificial Intelligence (UAI), 2023 (pp. 701-711)[1].
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4.1. INTRODUCTION
Deep Generative Modelings (DGMs) allow for estimating the probability
density of the input. This capability may appear tempting to utilize in
the tasks of the detection of the outliers by casting all of the inputs that
lie Out-of-Distribution (OoD) with the low density as anomalous. Never-
theless, empirical evidence shows that DGMs may sometimes be over-
confident in their density estimation over OoDs [2]. Overconfidence is
observed in all types of DGMs, including autoregressive models [3], nor-
malizing flows [4], and VAEs [5, 6]. This fact may appear especially in-
triguing, considering the difference in the techniques used for density
estimation among these three distinct modeling approaches. However,
from the theoretical perspective, there is nothing peculiar in such per-
formance. It can be easily demonstrated that it is possible to learn an
invertible reparametrization of the actual density of the data in a way
that assigns an arbitrary density to each point in the new representa-
tion even in the models with perfect densities and in a low-dimensional
setting [7]. It means that the outlier detection is infeasible while relying
only on the arbitrary learned probability density.
There are several alternative approaches aiming at tackling this is-

sue that can be coarsely classified into one of the following categories:
() methods that augment the input data by outliers [8, 9], () ensemble-
based methods [10–12], ()methods that introduce new scores [13, 14],
()methods based on the model modification [15, 16], () and methods
that involve retraining of the models [17].
In this work, we refrain from augmenting data with outliers during train-

ing since it is not always feasible; we do not retrain the model to check
every input as it is time-consuming, and due to the same reason, we do
not apply ensemble-based methods. Instead, we utilize a model modi-
fication by introducing a new score. Specifically, we address the outlier
detection from the perspective of general topology. Namely, we con-
sider the property of compactness of the mapped image in the latent
space. This property satisfies the necessary condition for the modeling
assumption of a classical VAE from the viewpoint of the Universal Ap-
proximation Theorem (UAT) [18–20]. First, we implement compactifica-
tion using the Alexandroff extension of a flat subspace to a hypersphere.
Second, we utilize a related topological property: bounded continuity. It
equips us with two additional valuable tools. In particular, it lets enforce
the Lipschitz-continuity constraints on the mappings used in the model.
These constraints, in turn, permit both to establish the compactness of
the mapped image and simultaneously control its boundaries in the case
of the flat latent space. In addition, it helps to identify if the continuity
holes in the latent prior play a significant role in the outlier detection
during the ablation study.
Constraining the mapped image of the encoder may at first sound

counterintuitive since the common choice of a prior over the latent is
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used to be the standard normal distribution with the infinite support that
explicitly implies that outliers should be placed in some different loca-
tion, distinctly separated from the inliers. It includes the low-dimensional
cases where such inputs are placed in the tails far from the mode and
the high-dimensional cases where the outliers are located outside the
typical set. However, as we already indicated, there is no guarantee for
such behavior even in perfect density models since any density function
can be manipulated by an arbitrary choice of representation. Since there
is no control over the mapped compact in the latent space, the choice of
the bounds of the learned factors of variations of the VAE is basically ar-
bitrary. In some situations, it can be the case that the outliers are indeed
placed far from the inliers, which gives an excellent separation based
only on the density values; however, in other situations, the outliers and
inliers may overlap, which in some cases results in the overconfidence
of the model. Hence the purposeful control over the compactness of the
mapped image enforces the model to bind the learned factors of varia-
tions for any input within the predefined limits. If these limits are chosen
in such a way that enforces the model to squeeze all of its inputs in the
properly bounded space, then the model would have no other choice
than to map the outliers somewhere within the same space that is used
for the inliers in the latent representation. Experimental evidence shows
that when the model is confronted with such tight condensing, it tends
to place the outliers into the vacant latent continuity holes allowing their
successful detection.
In summary, we make the following main contributions:

• We reveal the persistent theoretical flaw in the modeling assump-
tion of VAEs.

• We mitigate this shortcoming by enforcing controlled compactness
of the latent space.

• By bounding the image of the encoder, we discover that the out-
liers tend to gravitate toward the vacant latent holes and devise an
appropriate score for their detection.

• We empirically evaluate the suggested approach based on several
datasets.

4.2. BACKGROUND
4.2.1. NOTATION
We use nonbold ’s to denote elements of general topological spaces,
including the ones equipped with the appropriate metric. In the case of
the normed vector spaces and random vectors within such spaces, we
adhere to traditional usage in the literature, namely x. When it comes to
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the particular elements comprising the random vector, we utilize x. The
spaces are denoted as a pair (X ,T ) for topological spaces with the corre-
sponding topology T . In the specific case of metric spaces, we indicate
the appropriate metric d that induces topology: (X , dX ).

4.2.2. VAES
VAE represents a DGM that allows to get an approximate value of the
density of the input x. It is based on the optimization of the Evidence
Lower Bound (ELBO), that provides joint optimization w.r.t variational pa-
rameters ϕ of the encoder responsible for variational approximation of
the posterior qϕ over the latent variable z, and the generative parame-
ters θ of the decoder responsible for the parameterization of the likeli-
hood pθ(x|z):

Lθ,ϕ(x) = Eqϕ(z|x)
�

logpθ(x|z) − log
qϕ(z|x)

pθ(z)

�

(4.1)

This equation involves a data likelihood term (used for generative pur-
poses) and a regularization term (the KL divergence between the varia-
tional family qϕ(z|x) and the prior distribution over the latent variables).
The final estimation of the marginal likelihood is done using importance

sampling. Backpropagation through the random variable z is performed
utilizing the standard reparameterization trick [21].

4.2.3. COMPACTNESS
A topological space is compact or, equivalently, possesses a compact-
ness property if every of its open cover has a finite subcover. In the case
of the Eucledian spaces, the following specific result exists.

Theorem 4.2.1 (Heine-Borel Theorem). Let K ⊂ Rn then K is compact
if and only if K is closed and bounded.

Compactification is the process of turning a topological space into a
compact one.

Definition 4.2.2. Let (X ,T ) be a topological space and let (X∗,T ∗) be a
compact topological space s.t. X is homeomorphic to a dense subspace
of X∗. Then (X∗,T ∗) is called a compactification of (X ,T ). Thus, a
compact space (X∗,T ∗) is a compactification of a space (X ,T ) if and
only if there exists a mapping ƒ of X into X∗ s.t. ƒ is homeomorphism of
X onto the subspace ƒ (X ) of X∗ and ƒ (X ) is dense in X∗.

An illustrative example of a frequently used compactification is an ex-
tension of R to R ∪ {−∞,+∞}.
Besides, there is a specific type of compactification by adjoining only

one point: the Alexandroff extension.
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Let (X ,T ) be a topological space and let ∞ be an object not belonging
to X . Let X∗ = X ∪∞ and let a topology T ∗ on X∗ defined as follows:
T ∗ = T ∪ {V ⊂ X∗ : ∞ ∈ Vand X \ V is closed and compact in X}. Then
(X∗,T ∗) is the Alexandroff extension of (X ,T ).
An intuitive example of the Alexandroff extension is the inverse stere-

ographic projection from the Euclidean plane to the sphere with the ad-
dition of a point at infinity.

4.2.4. LIPSCHITZ CONTINUITY
A map ƒ : X → Y, where (X , dX ) and (Y, dY ) are metric spaces with the
corresponding metrics dX and dY , is called Lipschitz continuous if for
any 1, 2 ∈ X , there exists a constant M ∈ R+ such that:

dY (ƒ (1), ƒ (2)) ≤ MdX (1, 2) (4.2)

M is called a Lipschitz constant. In this work, we refer to the Lipschitz
constant as the smallest possible M. A mapping with such a constant is
called an M-Lipschitz map. If not explicitly indicated otherwise, we let
X = Rn and Y = Rm.
Recall that widely used activation functions such as sigmoid, tanh, and

ReLU [22] are already generally scaled to be 1-Lipschitz. Hence, due
to the composition property of the Lipschitz mappings, the first intu-
itive attempt to enforce the desirable Lipschitz property on the mapping
would be to constrain the operator norm of the weights of each layer
of the Deep Neural Network (DNN) [23, 24]. However, it was proven
that such an approach could not approximate even a simple absolute
value function [25]. To tackle the issue, [26] observed the critical com-
ponent that influences the expressive power of any DNN, namely, the
gradient-preserving property of its transformations. Therefore, they in-
troduced the appropriate linear transformations and the 1-Lipschitz acti-
vation function, GroupSort, both of which are gradient preserving. They
provably allow setting a Lipschitz constant on a DNN mapping. Moreover,
DNNs utilizing them represent universal approximators of any Lipschitz
mapping.

LATENT HOLES
Continuity holes in the latent space can be detected based on the ratio
of the distances between two nearly located points in the input space
and the distances of their corresponding latent codes:

FLp = dY (ƒ (1), ƒ (2))/dX (1, 2) (4.3)

Alternatively, there exist vacant regions of low density in the aggre-
gated posterior where prior assigns a relatively high density. These re-
gions can be detected via estimating the negative log-likelihood of the
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manipulated reference latent codes under the aggregated posterior:

FAgg = − logp(z ± ε) (4.4)

where ε represents a magnitude of manipulation. Both of these scores
are connected despite the different motivation meaning that if the hole
is detected by the score FAgg then it will be also detected by FLp.

4.2.5. UNIVERSAL APPROXIMATION THEOREM
The theoretical underpinning of DNNs is rooted in the results obtained in
the approximation theory that is commonly referred to as the universal
approximation theorem [18–20].

Theorem 4.2.3 (Universal Approximation Theorem). Let C(X ,Y)
denote the set of all continuous mappings from X to Y. Let σ ∈ C(R,R)
represent an element-wise activation function. Then let N σ

n,m
represent

the class of feedforward neural networks with activation function σ, with
n neurons in the input layer, m neurons in the output layer, and one hid-
den layer with an arbitrary number of neurons. Let K ⊆ Rn be compact.
Then σ is nonpolynomial if and only if N σ

n,m
is dense in C(K,Y).

The activation functions currently used in DNNs are non-polynomial, so
they fulfill the main requirement of the theorem. However, we deliber-
ately emphasize that the results of the Universal Approximation Theorem
(UAT) apply only in the cases when the input of the neural network is a
compact set that is often overlooked.

4.3. RELATED WORK

New Scores-Based Methods. [13] conjecture that considering the
high dimensionality of inputs, the over-confidence of DGMs may be be-
cause in-distribution images lie in the typical set as opposed to the tested
OoDs that concentrate in the high-density region. They introduce the test
for typicality that treats all input sequences as inliers if their entropy is
close to the model’s entropy.
Since the likelihood of generative models is biased by the complexity of

the inputs, [14] propose to offset this bias by a factor that measures the
input complexity and use the length of lossless compression of the image
as the complexity factor, which is used to determine OoD. However, they
do not evaluate their method on VAEs.

Ensemble-Based Methods. [12] use an ensemble of independently
trained DGMs that allow to get the density value and score them against
the WAIC.
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Bayesian DGMs. Although the BDGMs represent a single model, the
Bayesian inference over model parameters allows building ensembles
on the fly. The theoretical justification for the Bayesian VAE has been
first laid out by [5]. Several works are dedicated to OoD detection using
Bayesian inference [10, 11]. They introduced new scores, such as the
disagreement score and entropy. Both are based on the discrepancy be-
tween the models’ estimations within the ensemble that achieved state-
of-the-art results.

Lipschitz Continuity Methods. Several works utilize the Lipschitz
continuity to improve the robustness of discriminative models against
adversarial examples [27–29]. [30] apply the gradient-preserving trans-
formations from [26] in a similar to our approach manner. However, their
main focus is to use Lipschitz mappings for certifiable robustness against
adversarial examples.

4.4. METHODOLOGY
4.4.1. COMPACTNESS OF THE LEARNED LATENT REPRESENTATION
A usual assumption for VAE models is that the prior follows the standard
normal distribution: p(z) = N (z;0, ). It is a meaningful choice from the
perspective of the generative process since it provides a clear and sim-
ple way of sampling. Moreover, it is a natural candidate for the ELBO
objective’s regularization term in learning a Gaussian posterior per each
input of VAE. However, it additionally implies an infinite support of the
latent prior. We show that such an assumption contradicts the UAT (the-
orem 4.2.3).

Lemma 4.4.1. Let ƒ : X → Y be a continuous mapping from a topological
space X to a topological space Y. If X is compact, then its image ƒ [X ] is
also compact (for proof, see Appendix A).

Hence, by combining both UAT and Lemma 1 it follows that the image
of any DNN trained on a compact set is also compact. This conclusion
contradicts the infinite support assumption of the standard normal prior
in the case of VAEs. Any DNN used as an encoder will map all inputs to
the compact subset of the latent space.
In the case of in-distribution inputs, this conclusion may be considered

subtle since all such inputs should be assigned the appropriate density
under the model learned during the DNN training. However, it plays a
significant role as soon as the model starts dealing with the OoD inputs.
These are the different inputs that the model has not seen before and
has not been able to generalize during training. Therefore, as it was
demonstrated in [7] the model is not constrained in putting those inputs
anywhere within the whole available support or, more precisely, within
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the learned image of the encoder mapping. The properties of the com-
pactness of the latent space become of great importance. One of the es-
sential questions concerns the locations where the model tends to map
the OoD inputs within the image compact space. As it was demonstrated
by Nalisnick et al., the DGMs and VAEs, in particular, tend to be overcon-
fident with OoD inputs. There were several attempts to explain this type
of behaviour [13, 31], but none addressed the issue of compactness.
In this paper, we deliberately enforce the latent space’s compactness.

The reason for that is twofold. First, it should alleviate the contradiction
above in the modeling assumption of the VAE by providing a principled
way to set the compactness of the image of the learned mapping. Fur-
thermore, the input support for the decoder also gets a compact space
during training which is again in line with UAT. Second, it allows us to
conduct experiments with the outliers’ detection in the controlled envi-
ronment with the desirable compactness properties so that all the holes
will be located within the predefined boundaries.
This approach can be implemented utilizing the following two separate

methods:

• by Alexandroff extension

• by setting a predefined Lipschitz constant of the encoder

() by Alexandroff extension and () by setting a predefined Lipschitz
constant of the encoder. The first method implies a change of the in-
trinsic curvature of the latent space by switching from a Euclidean to
a non-Euclidean manifold. On the other hand, the second method al-
lows keeping a flat latent space by only enforcing specific bounds on a
mapped compact.

4.4.2. COMPACTIfiCATION OF THE LATENT SPACE
COMPACTIfiCATION OF THE LATENT SPACE TO THE HYPERSPHERE

The Alexandroff extension of Rn can be done by adjoining a single point at
infinity, turning the flat Euclidean space into a hypersphere Sn embedded
into Rn+1.

Lemma 4.4.2. Let Sn := {x ∈ Rn+1 : ||x|| = 1} be a hypersphere with
radius r = 1 centered at 0 and embedded in Rn+1 then Sn is compact (for
proof, see Appendix B).

The appropriate type of distribution that can be utilized on the hyper-
spherical surface is the von Mises-Fisher distribution which is parameter-
ized by mean μ and concentration κ. If the concentration parameter κ is
greater than zero, then the distribution has properties similar to normal;
however, when κ = 0, then it is a uniform distribution. It allows choosing
the uniform prior and calculating the corresponding KL-divergence term
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for the regularization within the latent space. We utilize the same algo-
rithm introduced by [32] for the sampling and reparametrization trick.
They named it a Hyperspherical Variational Autoencoder (HVAE).

ENFORCING COMPACTNESS BY SETTING A LIPSCHITZ CONSTANT ON THE ENCODER
MAPPING

Although the Alexandroff extension of the Euclidean space to the hyper-
sphere is theoretically appealing, it has an issue with the surface area
collapse, which makes it infeasible to use in high-dimensional settings.
To alleviate these issues, we implement our own method of ensuring the
compactness of the latent codes. This method is beneficial since it keeps
the flat Euclidean space for the latent representation and provides the
necessary means to control the boundaries of the resulting compact.

Theorem 4.4.3. Image of an M-Lipschitz mapping ƒ : X → Z from a
compact K ⊆ X with , y ∈ K: ∥ƒ () − ƒ (y)∥ ≤ M ∥ − y∥ is bounded by
both a corresponding Lipschitz constant M and by a radius R of a closed
ball in the input support.

Proof. By the Heine-Borel theorem, a compact K ⊂ Rn is closed and
bounded, meaning that the set is contained in some closed ball with
a finite radius R. Hence, for any , y ∈ K: ∥ − y∥ ≤ R. Therefore, by
combining the two inequalities above, we get ∥ƒ () − ƒ (y)∥ ≤ MR, so the
mapping ƒ is bounded by the constant MR.

Note that it is necessary to consider three components simultaneously
to set a bound on the DNN output: bounds of the input compact, a norm
being used, and, finally, an M-Lipschitz constant. In this work, we nor-
malize the input support to the following compact vector space: [0,1]n.
It conveniently allows constraining R ≤ 1 by applying an L∞-norm.
Moreover, to preserve both the generative functionality and the com-

parable log-likelihood values with the non-compact latent prior, it is im-
portant to consider the properties of the standard normal prior distri-
bution. In the case of the low-dimensional setting, it is natural to bind
the resulting compact with some standard deviation multiplier depend-
ing on the condensing tightness one wants to obtain. However, in the
high-dimensional setting, the typical set should be considered. For that
reason, the actual values for the Lipschitz constant of the encoder should
be based on the dimensionality of the latent space. Namely, an upper
bound on the mapped image should depend on the location of the typi-
cal set of the prior and its width. Recall that the center of the typical set
of a centered normal distribution is located at the distance of σ

p
m from

the mode. In our experiments, we set the width equal to two standard
deviations, and we choose the closest whole number:

M := ⌊σ
p
m + 2σ⌉ (4.5)
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where m is the dimensionality of the latent representation and σ = 1
for the standard deviation of the prior.
In our work, we ensure the Lipschitz constant of the mapping utiliz-

ing the GroupSort activation function together with a projection of the
weights of each layer on L∞-ball during the forward-pass of the DNN.
The constant is set layerwise in the following way: for a DNN with K num-
ber of layers in order to guarantee the M-lipschitz constant of the entire

network mapping, we enforce the M
1
K constant per each of its layer. It

relies on the fact that the finite composition of Lipschitz functions is also
Lipschitz with the product of the corresponding constants used in com-
position:

M =
K
∏

n=1

M
1
K (4.6)

The main building blocks are both 1-Lipschitz non-linearity and 1-Lipschitz
linear mapping per each layer. The appropriate scaling of the results

makes them equal to M
1
K . For the complete algorithm, see Appendix E.
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Figure 4.1: Compact S2 latent space of VAE trained only on the two digits
of the MNIST dataset 0’s and 1’s. The outliers densely land
on the hole. From left to right: yellow depicts means of the
estimated posteriors for 1’s and purple for 0’s; red represents
the mapped means for a held-out outlier: a class of digits 9’s;
kernel density estimation of all means with the densest region
in the hole packed with the outliers.

4.4.3. LATENT HOLES
We look at the holes from two different viewpoints as mentioned in sec-
tion 4.2.4. First, we apply the following operational perspective to the
definition of the hole: if two closely located latent points produce two
distant samples in the input space, then we say that there is a hole in
the latent space. This definition is similar to the one introduced by [33].
Second, from the conceptual perspective, we treat the holes as the re-
gions where there is a discrepancy between the aggregated posterior
and the prior [34], i.e., the hole appears when the regions with the high
prior density have a low density of the aggregated posterior. Despite the
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seemingly different motivations for both definitions, it has been demon-
strated by [35] that they are, in fact, connected. Moreover, if it is possible
to squeeze all of the model’s inputs within the high-density region of the
prior, then the only “free” space within the latent compact turns out to
be these holes.

4.4.4. WHY SQUEEZING?
The reason for that is at least two-fold. First, because of the arbitrariness
of the mapping of outliers, it appears only logical to limit the whole im-
age for any input (including outliers) within the same constrained space
as for the inliers in order to eliminate this arbitrariness. The opposite ap-
proach, i.e., the widening of the compact, will not provide any benefits,
only allowing for the model to use more “free” space where the outliers
can be mapped to. Also, considering the well-known overconfidence is-
sue [2], the wide compact does not guarantee the usage by the model
of this available free space for any input. Some of the inputs can in-
deed be placed in the available space far from the mode; however, some
will still be placed close to the mode (see Figure 4.2). Second, recall
that VAEs, beside being probabilistic models, are also autoencoders. So
they can be viewed from the perspective of the information bottleneck
principle, i.e., when the information is put under pressure using the low-
dimensional bottleneck layer to extract the relevant factors of variations
of the input data in question. The compactness can be considered as
a supplementary constraint to the low latent dimensionality (note that
the dimensionality is also a topological property). By low dimensional-
ity, we mean in comparison with the dimensionality of the input. Hence,
by putting additional pressure in the form of a tight condensing of the
mapped image within the predefined limits of the compact, we force the
model to learn the bounded factors of variations for any input in a con-
trolled and principled manner, eliminating the unnecessary “free” space
for the model where it can potentially place outliers. The experimental
evidence reveals that in such case the model indeed tends to place the
outliers within the only available “free” space—the latent holes which, in
turn, can be easily detected.

4.4.5. SCORES
As we indicated before, currently available scores for the holes’ detec-
tion are based either on the availability of the suitable metric in the in-
put space [33] or on the computationally expensive estimation of the
aggregated posterior based on all the training samples [34]. The moti-
vation for that was clearly because these scores are based on the inlier
inputs; hence the search for the holes starts from their corresponding
latent codes. However, in the case of outlier detection, we can directly
check if the mapped input lands within the hole. For this purpose, we
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sample the approximated posterior qϕ(z|x) with several latent codes z
under a particular input x and compute the sample standard deviation of
the log-likelihoods logp(x|z) (see Appendix G).
The approximated posterior under the input provides a locality within

the latent space. Based on this locality—the samples from the posterior
give us the notion of nearness around this specific locality. Finally, the
standard deviation of the log-likelihoods based on the samples indicates
how far from each other the sampled codes are mapped back into the
input space. As a result, it becomes a beneficial indicator because it
does not require making a particular traversal along some path (as was
the case in [33]) or doing a thorough search through the latent space for
all available holes (as was done in [35]). On the contrary, it allows direct
checking if we are within the hole or not for a particular input.
There is also an alternative but still connected way of scoring the pres-

ence of a hole. Recall that density calculation of the given input under
probability models with latent variables can be done through marginal
likelihood. It is defined as the expected model likelihood marginalized
over the latent’s prior:

p(x) = Ep(z)[p(x|z)] (4.7)

First, let z ∈ L and |L| < ∞ then the marginal likelihood can be consid-
ered as a finite mixture of different p(x|z) with different constant weights
 = p(z) s.t.

∑|L|
=1 = 1:

p(x) =
|L|
∑

=1

p(x|z) (4.8)

And |L| is the size of the components in the considered finite mixture
of the likelihoods. Now suppose that p(x|z) is fully factorized, then the
variance of the mixture of individual random components x’s comprising
x is given by:

Vrp(x)(x) =
|L|
∑

=1

Vrp(x|z)[x]

︸ ︷︷ ︸

Weighed individual variances

+

+
|L|
∑

=1


�

Ep(x|z)[x]
�2 −

 

|L|
∑

=1

Ep(x|z)[x]

!2

︸ ︷︷ ︸

Jensen’s gap

(4.9)

The first term is a weighted sum of variances of individual model likeli-
hoods under all latent codes. Note that the difference of second and third
terms is always non-negative due to Jensen’s inequality. This difference
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represents a Jensens’s gap and can be interpreted as the variance of the
means of the likelihoods weighted by the appropriate prior probabilities
of the latent. Hence, by computing the variance of the marginal likeli-
hood under importance sampling due to this Jensen’s gap, it is possible
to estimate the variance of the means of the likelihoods, which can be
utilized for hole detection with outlier inputs. For that reason, we apply
the sample standard deviation of the estimated marginal likelihoods un-
der importance sampling (see Appendix G) and test the performance of
this score in our thorough experiments. Since the marginal likelihood is
already quite frequently estimated under importance sampling in many
practical implementations, it becomes possible to quickly adapt these
implementations for practitioners to incorporate the sample standard
deviation of the marginal likelihood under importance sampling to get
as a handy byproduct an alternative score for the hole identification. To
distinguish between the two scores, we label the first as the hole indica-
tor and the second as the Standard Deviation of Log-Likelihoods (Stds of
LLs).

Threshold. For identifying the best threshold for the scores, we uti-
lize threshold-independent metrics (these metrics are calculated for all
possible thresholds) such as the Area Under the Receiver Operating Char-
acteristic Curve (AUROC), the Area Under Precision-Recall curve (AUPR),
and the False-Positive Rate at 80% of True-Positive Rate (FPR80) [36].
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Figure 4.2: Estimated Gaussian kernel densities of L∞-norms of the ap-
proximated posterior means in the latent space for datapoints
from MNIST as inliers, and datapoints from FashionMNIST, KM-
NIST, white and black images as outliers. From left to right:
classical VAE trained on MNIST; VAE with a fixed Lipschitz
constant M = 1 for encoder trained on MNIST; classical VAE
trained on Fashion-MNIST; VAE with a fixed Lipschitz constant
M = 1 for encoder trained on Fashion-MNIST.
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4.5. EVALUATION
4.5.1. TOY EXPERIMENTS WITH COMPACT S2

We begin with the simple held-out experiments based on the MNIST
dataset [37]. For that reason, we utilize HVAE. 1 It is trained with the
hyperspherical uniform prior on S2 only on two digits as inliers, namely
zeros and ones. The rest of the handwritten digits are considered out-
liers. These experiments assist in acquiring a fundamental intuition in
the way how the encoder of the model maps the outliers in the compact
latent space. As it can be observed in Figure 4.1, the two inlier classes
are separated from each other on the sphere surface. There is also a hole
between the clusters formed by these classes. Next, we try to map to
the latent space held-out classes. As a result, we visually demonstrate
that the encoder is forced to place the unseen during training classes
somewhere within the constrained space and choose to land the out-
liers into latent holes. It happens when the model is confronted with the
bounded factors of variation. In addition, we run experiments with our
hole detection score z[x] first with all held-out classes as outliers and
second with all classes of Fashion-MNIST [38] as outliers. In addition, we
conduct the experiments for 10 separate runs and summarize the results
in a 99.9% confidence interval values that can be observed in Table 4.1.
The obtained result strongly support our hypothesis about holes as cen-
ters of attraction for the outliers. Moreover, we compare these results
with the corresponding baseline scores using Vanilla VAEs with the same
low dimensionality of the latent space and also benchmark the hole indi-
cator on the model trained on all classes of Fashion-MNIST vs. all MNIST
classes as outliers (see Appendix F).

4.5.2. EXPLORING COMPACTNESS ENFORCED BY LIPSCHITZ
CONTINUITY

We continue probing compactness properties based on the constrained
Lipschitz mapping to the latent space. We run experiments with both
the classical VAE models and the VAE models with the enforced Lipschitz
constant M = 1 for the encoder. We trained four separate models (for the
used DNN architectures, see Appendix D): on MNIST and Fashion-MNIST,
with and without continuity constraints—the dimensionality of the latent
space across all models: m = 10. We evaluate the means of the approxi-
mated posteriors for the outliers from KMNIST [39] (and analogously from
Fashion-MNIST for the models trained on MNIST and vice versa). In ad-
dition, we run the same tests with the specially forged datasets. One
contains non-realistic images, but all of their pixels tend to the black
color; another contains images that tend to the white color. The idea

1The source code of the implemented solution is freely available at https://github.
com/DigitalDigger/VAEOutliersDetectionByVacantHoles
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Table 4.1: Hole indicator (means and 99.9% confidence interval values
for 10 separate runs) for toy experiments with S2. The held-
out outliers are all digits except 0’s and 1’s.

MNIST held-out MNIST vs. Fashion-MNIST

ROC AUC↑ 89.05 (±0.25) 94.54 (±0.09)
AUPRC↑ 99.38 (±0.02) 99.01 (±0.02)
FPR80↓ 16.1 (±0.72) 5.60 (±0.2)

Table 4.2: Scoring values for the Lipschitz constrained VAEs trained on
MNIST, Fashion-MNIST and CIFAR10

MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST CIFAR10 vs. SVHN

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Vanilla VAE

Log likelihood 99.99 99.99 0.00 54.03 57.37 84.70 61.08 53.92 56.25
Input complexity 0.00 32.91 100.00 99.17 99.24 0.00 95.87 95.36 9.09
Typicality test 100.00 100.00 0.00 53.81 50.78 70.74 59.75 64.06 80.20

Bayesian VAE

WAIC 99.99 99.99 0.00 59.53 59.35 71.88 61.15 54.22 57.15
Disagreement score 98.95 99.01 0.23 96.44 97.22 1.11 81.16 84.82 38.47
Entropy 99.42 99.47 0.02 97.97 98.43 0.19 84.76 88.21 29.31

Lipschitz VAE

Stds of LLs 99.78 99.79 0.06 99.21 99.16 0.84 86.40 84.88 21.59
Hole indicator (ours) 99.87 99.87 0.00 99.69 99.65 0.28 91.76 89.58 12.30

The most robust scores are in bold. The highest values are in gray.

* 0’s in FPR80 are possible since it is a value for false-positive rate at 80% of true-positive rate

behind the two latter datasets is that they represent extreme values of
the compact support of the input data. As shown in Figure 4.2, the pos-
sible range of the values achievable by the classical VAE is considerably
broad based on the limited number of the outlier datasets. For the model
trained on MNIST, it goes as far as seven standard deviations from the
mean.
Meanwhile, the unconstrained model trained on Fashion-MNIST has a

range with a maximum of around four standard deviations. It demon-
strates the arbitrariness of the mapped compact and its limits. Note,
however, that when we bound the continuity of the encoder, then both in-
liers and outliers are squeezed together in a compact within the appropri-
ate limits, which experimentally confirms our theoretical result (see the-
orem 4.4.3). It allows the enforcement of a controlled and bounded com-
pactness on the flat prior.

4.5.3. DETECTING OUTLIERS
As we indicated before, due to the surface collapse of the sphere, it is
infeasible to use HVAE with high-dimensional priors. Hence, we apply
the fixed Lipschitz mapping together with the appropriate input normal-
ization (all inputs are normalized to [0,1]n). We evaluate our approach
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against several baseline methods. For them, we choose the classical
VAE, the ensemble-based VAE, namely, the one based on the Bayesian
inference over the weights of the DNN, and several approaches based
on the new scores, namely, typicality score and input complexity. For
scoring the Bayesian VAE, we utilize three available scores: WAIC, a dis-
agreement score, and entropy. Bayesian inference is implemented utiliz-
ing the Bayes by Backpropagation (BBB) [40]. The corresponding hyper-
parameters and the training protocol are based on the work by [11]. All
models trained on MNIST and Fashion-MNIST have the dimensionality of
the latent space equal to 10, and models trained on the CIFAR10 dataset
have the latent of 70 dimensions. For our suggested Lipschitz-based
model, we compute the appropriate Lipschitz constant for the decoder
based on the dimensionality of the latent space in order to preserve the
comparable log-likelihood values of the classical VAE and also to be able
to sample the prior in a standard way. For MNIST and Fashion-MNIST, it is
equal to 5, and for CIFAR10, it is equal to 10. The results can be observed
in Table 5.11. Our hole indicator demonstrates the best results among
the scores that consistently perform well across all datasets. Moreover,
the standard deviation of the likelihoods is the second most robust score,
which agrees with our theoretical derivation (see Equation 4.9). By ro-
bustness in this context, we mean the persistence of the state-of-the-art
results, independent of the dataset used for training the model and test-
ing for the outliers. For example, despite the high values for the typ-
icality test on MNIST vs. Fashion-MNIST datasets and input complexity
on CIFAR10 vs. SVHN datasets, they are inconsistent across all of the
considered datasets, making them unreliable in practical applications.
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Figure 4.3: ROC AUC values from the ablation study. VAE with differ-
ent Lipschitz constants enforced on the decoder, namely,
M = 1,M = 2,M = 3,M = 4,M = 5 and M = 10, all plotted
along -axis. VAE is trained on Fashion-MNIST with the En-
coder Lipschitz constant M = 1 for all tests and evaluated on
several outlier datasets.



4.6. Conclusion

4

99

The reason behind our score’s robustness is that the model maps the
outliers to the holes in the compact latent space (i.e., the only “free”
space available for the learned factors of variations) that can be easily
detected. Other scores rely either on the complexity of the dataset (as
input complexity score), which is a data-dependent score, or on the hy-
pothesis about the typical set, which is not always guaranteed because
of the arbitrariness of the mapping of the encoder to any available “free”
space including the holes in the typical set.

4.5.4. ABLATION STUDY
To check if the continuity holes are responsible for the obtained results,
we conduct experiments with the gradual reduction of the holes in the
latent space. This can be done by smoothing out the decoder mapping.
This approach is advantageous since it affects all holes in the latent
space. Hence, if our assumption is correct, then the results of the outlier
detection based on the holes should degrade according to the strength
of the smoothing. We enforce smoothing by setting the corresponding
Lipschitz constants on the decoder mapping in the same way as it was
done for the encoder in previous experiments. We train six separate
models, all of which have the Lipschitz encoder with M = 1. Decoder is
enforced with the values of the Lipschitz constants M from the following
set: {1,2,3,4,5,10}. As can be seen in Figure 4.3, there is an appar-
ent performance degradation of the hole indicator for the outliers with
decreasing of the corresponding Lipschitz constant enforced on the de-
coder, which is in line with our hypothesis that outliers land on the latent
holes. Finally, we separately ablated the compactness component (for
the results see Appendix H).

4.6. CONCLUSION
In this paper, we identified an implicit theoretical inconsistency from the
perspective of general topology between the VAE modeling and the UAT.
We addressed this discrepancy utilizing the compactness of the mapped
image to the latent space. In order to enforce the compactness, we de-
vised a provable method for controlling the bounds of the resulting com-
pact. The experimental evidence revealed that constraining the limits
of the factors of variation is beneficial for outlier detection. In particu-
lar, we discovered that outlier inputs tend to be mapped to the latent
continuity holes. By devising a special score for the hole indicator, we
conducted several experiments aimed at their detection. Utilizing this
score, we achieved promising results in unsupervised outlier detection
based on the latent representation. Specifically, the suggested method
and score demonstrated the most robust performance across all the used
benchmarks and datasets.
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4.7. SUPPLEMENTARY MATERIAL
4.7.1. PRESERVATION OF COMPACTNESS UNDER CONTINUOUS

MAPPING
Lemma 4.7.1. Let ƒ : X → Y be a continuous mapping from a topological
space X to a topological space Y. If X is compact then its image ƒ [X ] is
also compact.

Proof. 2 Let C = {U}∈ be any open covering of ƒ [X ] in Y. Then: ƒ [X ] ⊆
⋃

∈ U
Now let’s take the inverse of both its sizes:

X ⊆ ƒ−1
�

⋃

∈
U

�

(4.10)

X ⊆
⋃

∈
ƒ−1(U) (4.11)

Since ƒ is continuous and U is open in Y for all  ∈  we have that ƒ−1(U)
is open in X for all  ∈ . From above, we see that then {ƒ−1(U)}∈ is
an open cover of X . Since X is compact, this open cover has a finite
subcover, say {ƒ−1(U1), ƒ

−1(U2), ..., ƒ
−1(Un)} where n ∈  where:

X ⊆
n
⋃

k=1
ƒ−1(Uk ) (4.12)

Taking the image of both sides above and we have that:

ƒ [X ] ⊆ ƒ
�

n
⋃

k=1
ƒ−1(Uk )

�

(4.13)

ƒ [X ] ⊆
n
⋃

k=1
ƒ (ƒ−1(Uk )) (4.14)

ƒ [X ] ⊆
n
⋃

k=1
Uk (4.15)

Thus C∗ = {U1 , U2 , ..., Un} is a finite subcover of C. Hence ƒ [X ] is
compact in Y.

4.7.2. SPHERE IS COMPACT
Lemma 4.7.2. Let Sn := {x ∈ Rn+1 : ||x|| = 1} be a hypersphere with
radius r = 1 centered at 0 and embedded in Rn+1 then Sn is compact.
2Adapted from: http://mathonline.wikidot.com/
preservation-of-compactness-under-continuous-maps
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Figure 4.4: The problem of surface area collapse.

Proof. First note that Sn is obviously bounded. Next, observe that ||x|| =
∑

x2 which represents a continuous mapping whose inverse is a closed
set: {1}, therefore the Sn is closed. It follows that the Sn is both closed
and bounded, hence by Heine-Borel theorem it is compact.

4.7.3. SURFACE AREA COLLAPSE OF THE SPHERE
As can be observed from the Figure 4.4 the surface area grows up to ap-
proximately seven dimensions and after that it goes down completely
collapsing in cases with greater than twenty dimensions. This issue
makes it infeasible to use compact hyperspherical latent space in high-
dimensional configurations.

4.7.4. DNN ARCHITECTURES USED
For MNIST and FashionMNIST datasets with a single channel we used the
following architectures for baseline experiments.
For CIFAR10 dataset with three channels we used the following archi-

tectures with additional padding = 1 and no bias for every convolutional
layer. Latent dimensionality = 70.
For all architectures, we used ReLU as a non-linearity in the case of

classical VAE. For Lipschitz encoder we used GroupSort. In addition, all
pixels of the images have been normalized to the [0,1] range for each
channel for both the training and testing phases. For HVAE, we used
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Table 4.3: Encoder CNN for MNIST and FashionMNIST
Operation Kernel Strides Feature Maps
Convolution 3 x 3 1 x 1 32
Convolution 3 x 3 1 x 1 16

Max pooling 2D 2 x 2 2 x 2 —
Linear for μ — — 10

Linear for logσ — — 10

Table 4.4: Decoder CNN for MNIST and FashionMNIST
Operation Kernel Strides Feature Maps

Linear for sampled z — — 2306
Upsampling nearest 2D — — —

Max pooling 2D 2 x 2 2 x 2 —
Transposed Convolution 3 x 3 1 x 1 32
Transposed Convolution 3 x 3 1 x 1 1

Table 4.5: Encoder CNN for SVHN and CIFAR10
Operation Kernel Strides Feature Maps
Convolution 3 x 3 1 x 1 16
Convolution 3 x 3 2 x 2 32
Convolution 3 x 3 1 x 1 32
Convolution 3 x 3 2 x 2 16

Linear — — 512
Linear for μ — — 70

Linear for logσ — — 70

Table 4.6: Decoder CNN for SVNH and CIFAR10
Operation Kernel Strides Feature Maps

Linear for sampled z — — 512
Linear — — 1024

Transposed Convolution 3 x 3 2 x 2 32
Transposed Convolution 3 x 3 1 x 1 32
Transposed Convolution 3 x 3 2 x 2 16
Transposed Convolution 3 x 3 1 x 1 3

the same architectures as in the original implementation 3, i.e., two hid-
den linear layers for the encoder with the dimensionality 256 and 128
correspondingly, and two hidden linear layers for the decoder with di-

3We used the official implementation available at https://github.com/
nicola-decao/s-vae-pytorch
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mensionality 128 and 256. For Lipschitz VAE we also used two hidden
linear layers for both encoder and decoder with doubled dimensionality
for each corresponding hidden layer.

4.7.5. FORWARD PASS OF THE LIPSCHITZ CONSTANT ENFORCING

Algorithm 1: Ensuring Lipschitz constant in a DNN mapping
LInfBallProjection

Input : y ∈ RN
Output : x ∈ RN
Sort y into : 1 ≥ . . . ≥ N
Set K :=mx1≤k≤N{k|(

∑k
r=1 r − 1)/k < k}

Set τ := (
∑K
k
k − 1)/K

for n = 1, . . . , N do
Set n :=mxyn−τ,0

Input : Data point x
Result : Network output hL
Requires: Lipschitz constant M
Forward pass

h0 ← x
for  = 1, . . . , L do

W ← LInfBallProjection(W)

pre-activation ← M
1
LWh−1

h ← GropSort(pre-activation)

4.7.6. FURTHER EXPERIMENTS WITH HYPERSPHERICAL VAE
As can be observed in Table 4.7 the most robust scores are hole indica-
tors that achieve the most consistent results across all used datasets.

4.7.7. SCORES
STDS OF LLS
Recall that importance sampling is used to estimate the marginal likeli-
hood of the input under the trained VAE, namely:

pθ(x) ≃
1

N

N
∑

=1

pθ(x,z (i))

qϕ(z (i)|x)
, where z (i) ∼ qϕ(z|x) (4.16)

where ϕ represents the variational parameters of the encoder respon-
sible for the variational approximation of the posterior qϕ over the latent
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Table 4.7: Scoring values (means and 99.9% confidence interval) for toy
experiments with S2 for MNIST vs. held-out and Fashion-
MNIST. The held-out outliers are all digits except 0’s and 1’s.
And with S3 for Fashion-MNIST vs. MNIST. Note that Vanilla
VAEs in the experiments are equipped with the same low di-
mensional latent space as the surface of the corresponding
HVAE.

MNIST held-out MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Vanilla VAE

Log likelihood 96.84 (±0.07) 98.50 (±0.04) 4.43 (±0.27) 99.85 (±0.02) 99.86 (±0.01) 0.00 (±0) 45.13 (±0.1) 43.75 (±0.05) 75.60 (±0.27)
Input complexity 42.98 (±0.86) 45.28 (±0.52) 81.82 (±0) 18.27 (±2.12) 37.18 (±0.8) 100 (±0) 94.96 (±1.18) 95.57 (±1.12) 10.91 (±5.68)
Typicality test 96.84 (±0.05) 98.50 (±0.04) 4.24 (±0.25) 99.86 (±0.01) 99.87 (±0.01) 0.00 (±0) 45.16 (±0.1) 43.76 (±0.06) 75.60 (±0.35)

S-VAE

Log likelihood 97.07 (±0.05) 98.62 (±0.06) 4.34 (±0.24) 99.85 (±0.02) 99.87 (±0.01) 0.01 (±0.01) 45.25 (±0.07) 44.45 (±0.05) 76.21 (±0.26)
Input complexity 41.74 (±1.11) 44.67 (±0.44) 80.00 (±5.68) 17.54 (±2.45) 37.02 (±0.83) 100 (±0) 94.79 (±1.63) 95.45 (±1.39) 12.73 (±7.57)
Typicality test 97.04 (±0.05) 98.59 (±0.05) 4.34 (±0.25) 99.86 (±0.02) 99.87 (±0.02) 0.00 (±0) 45.25 (±0.08) 44.45 (±0.09) 76.17 (±0.24)
Hole indicator (ours) 89.05 (±0.25) 99.38 (±0.02) 16.1 (±0.72) 94.54 (±0.09) 99.01 (±0.02) 5.60 (±0.2) 87.37 (±0.16) 88.86 (±0.15) 19.25 (±0.46)

The most robust scores are in bold. The highest values are in gray.

* 0’s in FPR80 are possible since it is a value for false-positive rate at 80% of true-positive rate

variable z, and θ stands fr the generative parameters of the decoder re-
sponsible for the parametrization of the likelihood of the input pθ(x|z).
Hence, it is possible to compute the sample standard deviation of the
marginal likelihood under importance sampling by computing the sample
standard deviation of the terms within the given sum. This constitutes
the essence of the Stds of LLs score.

HOLE INDICATOR SCORE
For this score we sample the approximated posterior qϕ(z|x) with sev-
eral latent codes z under a particular input x and compute the sample
standard deviation of the log-likelihoods logp(x|z):

z[x] =

√

√

√

1

N − 1

∑

z

�

logp(x|z) − logp(x|z)
�2

(4.17)

TYPICALITY
The test for typicality treats all input sequences as inliers if their entropy
is sufficiently close to the entropy of the model, i.e., if the following holds
for small ε then the given input is in-distribution:

�

�

�

�

�

− logp
�

x∗
�

−
∑

x∈D
logp(x)

�

�

�

�

�

≤ ε (4.18)

This score is applied to one-element sequences in our work since it is
the most realistic scenario in practical applications of outlier detection.

INPUT COMPLEXITY
First, we compute the complexity estimate L(x) by compressing the input
x with JPEG2000. The result represents a string of bits: C(x). After
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that we apply the normalization of the length of the resulting string by
dimensionality d:

L(x) =
|C(x)|

d
.

Subsequently the input complexity score is calculated in the following
way (in bits per dimension):

S(x) = − logp(x) − L(x) (4.19)

The higher the S score, the more indicative it is that the current input is
the outlier.

4.7.8. COMPACTNESS ABLATION
Since the placement of the outliers within the unconstrained compact
space with Vanilla VAEs is basically arbitrary, it can be the case that
some outliers will still be successfully detected via hole indicator when
these outliers are mapped within the same space as the inliers. Hence,
in order to make an appropriate ablation study only for the compactness,
we conducted the following experiments. We gradually increase the pixel
intensity of the images from one to higher values by multiplying it with
a scalar. We calculate the hole indicator for each intensity step for both
Lipschitz VAE and Vanilla VAE. The corresponding results can be observed
in the Table 4.8.

Table 4.8: Ablation of compactness with hole indicator.

1x 3x 5x 7x 9x 11x 13x 15x

Vanilla VAE 100.0 100.0 100.0 99.69 53.40 0.00 0.00 0.03
Lipschitz VAE 100.0 100.0 100.0 99.48 99.36 95.32 99.48 95.70

As can be seen from the obtained values, there is a clear transition
from the detectable outliers vs. non-detectable ones through the latent
holes in the case of Vanilla VAE, and no degradation of the results in the
case with the Lipschitz VAEs.
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5
ENHANCING ROBUSTNESS OF
DEEP LEARNING VIA UNIfiED

LATENT REPRESENTATION

Adversarial examples and Out-of-Distribution (OoD) instances constitute
major problematic inputs for Deep Neural Network (DNN). DNNs tend
to be overconfident with their predictions assigning a different category
with a high probability. In this work, we suggest a combined solution
to both issues based on Variational Autoencoder (VAE). First, we put
under scrutiny the recent successful results in detecting OoDs utilizing
Bayesian epistemic uncertainty estimation over weights of VAEs. We ob-
tain comparable results without using Bayesian inference over weights
utilizing a standard procedure of importance sampling with the classical
formulation of VAEs. Second, we dissect the marginal likelihood approxi-
mation analyzing the main source of variation responsible for distinguish-
ing inliers versus outliers, and establish a link with the recent promising
results in the detection of outliers using latent holes. Finally, we identify
similarities between the latent representations of adversarial examples
and OoD inputs, which allows for devising separate methods for their de-
tection and mitigation taking into consideration their differences in the
input space. The suggested approach enables to pre-train a model under
particular input data that acts as a filter achieving two major goals: de-
fending the DNN classifier against the potential attack and filtering out
the OoDs. Once pre-trained, VAE can be plugged as a filter into any DNN
image classifier of arbitrary architecture trained on the same data inputs
without the need for its retraining or accessing the layers and weights of
the DNN.

This chapter is based on the journal article to be submitted to IEEE Transactions on Neural
Networks and Learning Systems
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5.1. INTRODUCTION
Deep Neural Network (DNN) started being universally applied to tasks
ranging from classification to anomaly detection. However, the thorough
theoretical foundation of deep learning is still lacking. It results in a
limited understanding of how deep neural networks generalize. Such a
situation led to the discovery of the following facts:

• There is a possibility to mislead the DNN classification with specif-
ically forged inputs that, while preserving the semantics from the
point of view of human observers, result in a wrong classification
category by a DNN, i.e., the adversarial examples [1–3].

• The inability of the DNN to infer the fact that the provided input
doesn’t adhere to the data distribution they have been previously
trained on, i.e., the overconfidence of DNN predictions with OoD
inputs [4–6].

The discriminative nature of the supervised image DNN classifiers im-
plies learning a mapping from the input pixel space to the target labels.
This mapping is usually considered to represent a categorical distribution
over labels y given the particular input x: p(y|x). However, in practice,
the categorical distribution is based on the softmax activation function.
As it has been recently formally proved, the softmax does not provide
the desirable properties of categorical distribution and operates in a way
similar to the k-means clustering, i.e., it partitions the transformed in-
put space into several cones where every cone represents a different
category [7]. It may explain why DNNs struggle with both adversarial
examples and OoD: on one hand, it is feasible to find an adversarial di-
rection from one category to another while attempting to preserve as
little modification to the input as possible, especially for the examples
that lie far from the cluster centroids, and on another hand when a new
unseen data input arrives, the k-means clustering would necessarily clus-
ter it into one of the categories resulting in overconfident predictions of
OoD as in-distribution examples.
Recently, many different solutions have been proposed to address ei-

ther the issue with adversarial examples [8][9][10][11][12] or the issue
with OoD inputs [13][14][15][16][17][18]. The works that provide a solu-
tion to both of the problems simultaneously within the same framework
are few [19][20]. These works are based on learning the DNN class-
conditional weight uncertainties which imply access to the model archi-
tecture, its weights, and output categories. Such an approach is closely
interlinked with the DNN model under the protection and it also intro-
duces the unnecessary inductive bias by class conditioning. It makes the
suggested methods non-modularizable and non-transferrable in a plug-
and-play manner to other DNN architectures that require the same func-
tionality of protection against adversarial attacks or OoD detection and
that have been trained on the same input data.
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Conversely, we apply an unsupervised Deep Generative Modeling (DGM)
to tackle both of the problems, i.e., instead of learning discriminative
mapping p(y|x) and subsequently attempting to estimate the uncer-
tainty of the weights under different inputs, DGM allows learning the
approximation of a true distribution over the training data: p(x) which
in theory should assign a low density to the OoD and adversarial inputs.
However, recent research revealed that such estimations are prone to er-
rors, often providing higher likelihood values to both OoD and adversarial
examples than to in-distribution data [6].
To overcome this problem, we apply two recently suggested methods

based on model parameter sensitivity analysis.

1. We use a Bayesian DGM, namely, VAE, that learns the weights un-
certainty during training yielding the following posterior distribu-
tion: p(θ|D) for the training data D over the model weights θ. It
allows us to get an ensemble of the approximations of a true data
distribution where each sample from the posterior θ ∼ p(θ|D) gives
a separate instance of the model in the ensemble. Based on sam-
pling from the posterior distribution, we estimate the likelihood of
the input instance, however, instead of the usual calculation of the
expected likelihood, we calculate the recently suggested scores of
variance of the likelihoods between the different instance models in
the ensemble [17]. The high degree of model/epistemic uncertainty
is captured by the high values of the variance score.

2. We use recently suggested scores based on detecting if the corre-
sponding latent code in the hole indicator [18]. We apply a single
instance of classic VAE. Moreover, we enforce both compactness
and continuity constraints on the latent representation and the cor-
responding encoder map.

We suggest a single DGM based on VAE to detect simultaneously both
the OoD and adversarial inputs. We make the following contributions:

1. We explicitly disentangle Bayesian inference applied to parameters
and Bayesian inference applied to latent codes, illustrating effective
techniques for assessing the VAE’s sensitivity to variations in its
latent representation.

2. We identify similarities in locations between the latent representa-
tions of adversarial examples and OoD inputs. As a result, we iden-
tify that adversarial examples can be successfully detected using
a hole indicator, which successfully works in the case of transfer-
ability from discriminative models to generative, and in the case of
attacking generative models.

3. We introduce an efficient algorithm for active defense against weak
adversarial examples that allow for identification if the generative
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model is under attack, distinguishing them from both OoD inputs
and discriminative adversarial attacks.

4. Our implementation of VAE represents a separate filtering layer that
is pre-trained on any given dataset and that models p(x) indepen-
dently of any other model so it can be plugged into any DNN trained
on the same data that requires OoD and adversarial examples de-
tection; the filtering is done based on the values computed with a
hole indicator.

We empirically evaluate the suggested approach based on the several
datasets achieving promising results.

5.2. PROBLEM STATEMENT
There are two types of problematic inputs that we deal with in this chap-
ter: adversarial examples and OoDs.

5.2.1. ADVERSARIAL ATTACKS
There are two different perspectives on adversarial examples that give
rise to two different definitions: one from the perspective of the general-
ization properties of the DNN and the other from the attacker’s perspec-
tive.
From the generalization perspective, an adversarial example [1] is a

technique in which the input for the DNN image classier is intention-
ally modified to look almost the same as the original image to the hu-
man eye. Yet, it is perceived as something completely different by DNN.
DNNs incorrectly classify such adversarial examples from the human per-
spective. On the other hand, the attacker perspective does not neces-
sarily demand the part that relates to the imperceptibility of the differ-
ence [21]. On the contrary, if the miscreants want their attack’s outcome
to succeed, they should not constrain themselves to the superfluous im-
perceptibility demands. In this chapter, we evaluate the imperceptible
examples. In addition, we analyze both alternatives from the perspective
of their internal representation.
Furthermore, we conduct the experiments with both the adversarial

examples generated for the discriminative model under attack and the
adversarial examples generated to attack our defending VAE filter.
Specifically, for the former case, we consider three types of such at-

tacks: Fast Gradient Sign Method (FGSM (FGSM) [2], Carlini-Wagner (CW)
attack [3], and Jacobian-based Saliency Map Attack (JSMA) [22]. For the
latter case, we evaluate attacks on the encoder in the same vein as
in [23]. All inputs are normalized into the [0,1] range.
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FAST GRADIENT SIGN METHOD

The FGSM attacks DNNs by leveraging their learning process based on
gradients [2]. FGSM can be described by the following formula:

x′ = x + λ · sgn(∇xℓ(hθ(x), ys)),x′ ∈ [0,1]n

Here ▽xℓ is the gradient of the loss function with respect to the original
input pixel vector x, ys is the true or source label for x, and θ stands for
the model parameters that are constant.
Gradient w.r.t. x is easier to calculate with backpropagation than for θ

which allows the fast generation of adversarial examples. FGSM exploits
gradient ascent to increase the loss. Subsequently, the sign applies a
max-norm constraint on the gradient value, and λ represents a small
magnitude of the step in the direction of increasing the loss. It represents
the untargeted type of adversarial attacks.
FGSM can be converted into a targeted attack by means of substituting

the source label with a target one yt and doing gradient descent instead
of ascent, namely:

x′ = x − λ · sgn(∇xℓ(hθ(x), yt)),x′ ∈ [0,1]n

However, due to the fact that FGSM is designed to be fast rather than
optimal, it is not necessarily guaranteed to produce the targeted adver-
sarial examples of minimal perturbations.

CARLINI-WAGNER

Carlini-Wagner (CW) attack [3] aims at optimality in contrast with FGSM,
i.e., it attempts to generate as little noise as possible in order to succeed
in the attack. It poses the following optimization objective:

minimize ||ϵ||p subj. to hθ(x + ϵ) = yt , x + ϵ ∈ [0,1]n

where, x ∈ [0,1]n represents an image, ϵ ∈ [0,1]n is added noise to
the image and yt is a target class label of the image under attack. The
noise level is calculated in terms of Lp norms. Authors consider several
norms, in this work we concentrate on L2-norm.
It represents a targeted attack with very strong properties, till the mo-

ment, it is one of the strongest known adversarial attacks.

JACOBIAN-BASED SALIENCY MAP ATTACK

JSMA [22] leverages the saliency maps to devise an adversarial input.
Namely, it computes the forward derivative of the whole DNN (Jacobian)
w.r.t. the input, and based on this derivative, it constructs the saliency
map. Large absolute values of the saliency map reveal the features with
a significant impact on the final output. The JSMA takes the maximum
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absolute value and perturbs it by a hyperparameter θ and repeats the
process. The stopping criteria are either a successful attack with mis-
classification or reaching the total perturbation threshold of ϒ.

ATTACK ON ENCODER

This attack aims at maximization of the symmetric KL-divergence be-
tween the latent code of the reference input and the latent code of the
reference input with the added perturbation:

ϵ = rg mx
∥ϵ∥p≤δ

SKL [q(z|x + ϵ), q(z|x)] (5.1)

where SKL is the symmetric KL-divergence, δ is the maximum amount
of noise, and q(z|x) is the encoder under attack. The resulting adversar-
ial perturbation is denoted as ϵ.

5.2.2. TRANSFERABILITY
It has been discovered that different architectures of DNNs trained to
tackle the same classification problem on similar datasets tend to have
similar fairly piece-wise linear decision boundaries that separate cate-
gories in the input data domain [2]. This property is called transferability.
Transferability is especially dangerous since it allows to devise an ad-

versarial attack that universally targets all DNNs with a similar final ob-
jective in a black-box manner [24].
Moreover, since we utilize a generative approach we explore if there is

transferability from the adversarial examples generated for a discrimina-
tive model to a generative one.

5.2.3. OUT-OF-DISTRIBUTION
Deploying a successful classifier requires from the system the ability to
detect input data that are statistically anomalous or significantly differ-
ent from those used in training. This is especially important for DNN clas-
sifiers since DNNs with the softmax classifier tend to produce overconfi-
dent predictions even for such Out-of-Distribution (OoD) inputs [19]. The
lack of reliability of DNN classifiers when faced with OoDs was recently
addressed by various methods [5][15][25].
According to recent research, the softmax activation function does not

model a categorical distribution but represents a k-means clustering [7].
That is why it seems logical to seek another approach. We decided to
consider using unsupervised DGMs for that purpose. In our case, we
apply the same VAE model to detect the OoDs based on the sensitivity
analysis [17, 18].
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5.3. METHODS
We employ an approach, which is based on the sensitivity analysis of the
model parameter with respect to the different inputs. Namely, we test
the level of stability of our model when dealing with OoDs versus IDs.
There are two possible ways to achieve this goal. The first one is to utilize
epistemic uncertainty estimation that would allow us to sample model
parameters to be subsequently used for sensitivity analysis. The second
one is to employ the learned posterior distribution over the latent codes
in VAE and sample posterior for different latent codes. This approach
does not change the parameters of DNNs used in the model, however, it
allows conducting sensitivity analysis with respect to different sampled
hypotheses from the latent posterior.

5.3.1. EPISTEMIC UNCERTAINTY IN OOD AND IN ADVERSARIAL
ATTACKS

It has been shown that DGMs do not produce valid estimations of p(x)
when it comes to distinguishing between OoD and in-distribution [6].
Most of the results reveal DGMs being overconfident when dealing with
OoD data. Another work dedicated to adversarial defense [26] showed
that it is possible to statistically differentiate between adversarial vs non-
adversarial input data using DGMs. In this work, we first rely on the esti-
mation of the weight uncertainty to address this issue utilizing Bayesian
and, in particular, variational inference.

5.3.2. BAYESIAN INFERENCE
The general idea of Bayesian inference is to estimate the posterior dis-
tribution of an unknown parameter given the data and the prior distribu-
tion:

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

p(x|θ)p(θ)
∫

p(x|θ)p(θ)dθ
(5.2)

where the nominator of the fraction consists of the known prior dis-
tribution p(θ) over the parameter and a known or possible-to-calculate
likelihood of the observed data p(x|θ).
In cases when we deal with high dimensional distributions and our pos-

terior and prior distributions are non-conjugate, one cannot compute a
closed-form expression to the problem due to the intractability of the
marginal integral in the denominator. In such situations, there are two
main methods used to estimate the posterior:

• Markov chain Monte Carlo (MCMC)

• variational inference
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MCMC represents a class of algorithms based on sampling, one promi-
nent example of which is Metropolis-Hastings [27][28]. This algorithm
estimates the posterior utilizing guided sampling from this intractable
distribution ignoring the denominator and sampling from the unnormal-
ized nominator.
Variational inference, on the other hand, estimates the posterior not

by sampling but by converting the problem of posterior estimation to the
optimization problem.

5.3.3. VARIATIONAL INFERENCE
Since the posterior is intractable, one can choose a function from the
family of tractable probability distributions that is closest to the intractable
posterior. This goal may be achieved by minimizing the KL-divergence
between the distribution q(θ) from the tractable family Q and intractable
posterior distribution p(θ|x):

rgmin
q(θ)∈Q

KL(q(θ)||p(θ|x)) (5.3)

The only problem is the fact that p(θ|x) is indeed intractable so the
given objective doesn’t provide an immediate criterion for divergence
minimization.
However, one can obtain an optimization objective by the following

reformulation:

log(p(x)) =
∫

q(θ) log(p(x))dθ =
∫

q(θ) log(
p(x,θ)

p(θ|x)
)dθ =

∫

q(θ) log(
p(x,θ)q(θ)

p(θ|x)q(θ)
)dθ =

∫

q(θ) log(
p(x,θ)

q(θ)
)dθ +

∫

q(θ) log(
q(θ)

p(θ|x)
)dθ =

L(q(θ)) + KL(q(θ)||p(θ|x))

So the log-marginal is reformulated as a sum of KL-divergence that we
would like to minimize and some other term L(q(θ)) that depends only
on our tractable q(θ) distribution. This term is called evidence lower
bound.

EVIDENCE LOWER BOUND (ELBO)
The Evidence Lower Bound (ELBO) is an optimization objective, com-
monly used for variational methods. As it has been shown in the pre-
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vious section: starting from the marginal log-likelihood: log(p(x)), the
variational lower bound L(q(θ)) can be derived [29] [30]:

log(p(x)) = L(q(θ)) + KL(q(θ)||p(θ|x)) (5.4)

with

L(q(θ)) =
∫

q(θ) log(
p(x,θ)

q(θ)
)dθ (5.5)

The KL-Divergence is used to evaluate the dissimilarity of the approxi-
mated distribution q(θ) w.r.t to the true distribution p(θ|x). KL is always
a positive number and is closer to zero when the distributions are similar.
With this property, the above equation can be formulated with the follow-
ing inequality that defines L(q(θ)) as ELBO for the marginal log-likelihood
log(p(x)).

log(p(x)) ≥ L(q(θ)) (5.6)

The gap between the ELBO and the marginal log-likelihood is called
tightness of the bound, which decreases when the true posterior distri-
bution is approximated well (hence smaller KL).
This leads us to the formulation of the main optimization objective in

the variational inference:

rgmx
q(θ)∈Q

L(q(θ)) (5.7)

As it can be seen, ELBO allows us to approximate the intractable pos-
terior just using the known information: the prior and the likelihood since
p(x,θ) = p(x|θ)p(θ) without the need to know anything about the true
intractable posterior.

OPTIMIZING ELBO

There are two main approaches to ELBO optimization:

• the first one is to allocate the optimal q(θ) by means of setting the
factorized constraint on the family of our distributions Q, namely,
we consider only those distributions that adhere to the following
factorization:

q(θ) =
m
∏

j=1

qj(θj),θ = [θ1, ·,θm] (5.8)



5

120 5. Enhancing Robustness of Deep Learning via Unified Latent
Representation

so we assume that all parameters are independent from each other.
Here we optimize the ELBO functional by means of the calculus of
variations and coordinate ascent optimization method, it is the so-
called mean-field approximation approach;

• the second one is making a parametric approximation, i.e., we con-
sider only those distributions that adhere to the space of some para-
metric family:

q(θ) = q(θ|λ) (5.9)

The difference between the two approaches lies in the scaling prop-
erties of the underlying optimization procedures: the second approach
converts the problem of functional optimization to the parametric op-
timization where the optimal parameter λ has to be found. It can be
implemented by means of mini-batch optimization algorithms such as
stochastic gradient ascent which scales up very efficiently to the large
volume of data. The second approach is also called amortized variational
inference.

5.3.4. VARIATIONAL AUTOENCODER
Variational Autoencoder (VAE) represents an amortized variational infer-
ence approach. VAE consists of two main parts: encoder and decoder.
First of all, the unknown parameters Θ in our previously introduced

Bayesian inference sense in VAE represent the latent space. VAE is a
non-fully observable model approach with latent random variable [31].
The latent space follows some predefined simple prior distribution as
before, e.g., standard Normal: p(z) = N (0, I). This latent space could
be easily sampled after training for the subsequent generation of the
samples that are coming from the same distribution as the input data.
Secondly, encoder is again represented by the neural network but now

it is used for our posterior density parametrization, namely, we want
to approximate our true posterior p(z|x) by some parametric family of
distributions qϕ(z|x;λ):

qϕ(z|x;λ) ≈ p(z|x) (5.10)

where we optimize for the parameters by means of the neural net-
work, for example, if we restrict our posterior family of distributions to
be Gaussians, the encoder will learn the following parametrization:

(μ,σ2) = EncoderDNNϕ(x) (5.11)

qϕ(z|x;λ) = N (z;μ, dg(σ2)) (5.12)
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Please note that the encoder tries to approximate the posterior by
learning the appropriate parameters for this posterior (in our example,
λ is represented by μ and σ for Gaussian), however, since encoder is in
itself a neural network, it has its own parameters ϕ, these are so-called
variational parameters and they include the weights and biases of the
neural network.
Finally, the decoder is responsible for the mapping of the latent space

back to the data space. It is also approximated by a separate neural
network that makes this mapping possible. Here, the decoder uses the
fact that if there is a random variable Z with one distribution, it is possible
to create a separate random variable X = g(z) with a totally different
distribution [32].
The optimization objective is the same: ELBO which allows joint opti-

mization with respect to both variational parameters ϕ of the encoder
and generation parameters θ of the decoder:

L(θ,ϕ;x) = Eqϕ(z|x)[ log(pθ(x,z)) − log(qϕ(z|x))]

VAEs are trained in an unsupervised manner from data and are widely
used for generative purposes.

5.3.5. ESTIMATION OF THE MARGINAL LIKELIHOOD
As suggested in [33], as soon as the VAE is trained, it is possible to
estimate the likelihood of the input under the generative model using
importance sampling w.r.t to the approximated posterior, namely:

pθ(x) ≃
1

N

N
∑

=1

pθ(x,z (i))

qϕ(z (i)|x)
, where z (i) ∼ qϕ(z|x) (5.13)

However, as it has been discovered in [6], we cannot rely directly on
the likelihood estimations produced by a single DGM. This discovery is
not surprising taking into consideration the fact that DGMs obtain the
optimal parameters θ∗ under the Maximum Likelihood Estimation (MLE)
for the p(D|θ), where D represents the training data, resulting in a point
estimate. Due to the fact that in modern DNNs |θ| ≫ |D|, it is possible
that there may be several models θ that generated D. Hence, it is impos-
sible to estimate the epistemic uncertainty with a point estimate which
results in the inability of the model to provide the robust estimation of
the likelihood for OoD and adversarial examples.

WEIGHT UNCERTAINTY: BAYES BY BACKPROPAGATION

Since we use variational inference to approximate our VAE posterior
based on the assumption of the model with latent variables, we have
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chosen to apply the same variational approach to the weight uncertainty
estimation instead of a point MLE estimate. Namely, we approximate
posterior distribution of the DGM parameters given the training data
p(θ|D) based on the method suggested in [34]. This method initially was
applied to the supervised learning, however, nothing prevents us from
using it in the unsupervised setting. The ELBO objective is formulated in
the following way:

Lθ(D, λ) =
∫

q(θ|λ)og(
p(θ)p(D|θ)
q(θ|λ)

)dθ (5.14)

The approximation of the negative ELBO is obtained by:

−ÓLθ(D, λ) =
1

N

N
∑

=1

�

logq(θ()|λ) − logp(θ()) − logp(D|θ())
�

(5.15)

where θ() is sampled from the posterior q(θ()|λ).

We assume a diagonal Gaussian distribution for the variational poste-
rior with parameters μ and σ. In order to make σ to be always non-
negative we apply the same reparametrization as it was suggested in
[34], namely σ = log(1+ exp(ρ)), yielding the following posterior param-
eters λ = (μ, ρ).

For the prior we also use the suggested scale mixture of two Gaussians:

p(θ) = πN (θ|0, σ21) + (1 − π)N (θ|0, σ
2
2), where π = 0.5 (5.16)

By adding weight uncertainty to the VAE, we are implementing a Bayesian
VAE.

SCORES USED FOR PROBLEMATIC INPUTS DETECTION

After we approximated the variational posterior over the weights, the
usual practice is to estimate the expected likelihood, the exact form of
which can be formulated like this:

p(x|D) =
∫

p(x|θ)p(θ|D)dθ (5.17)

The unbiased estimate of which can be obtained in the following way:
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Ep(θ|D)[p(x|θ)] ≃
1

N

N
∑

=1

p(x|θ); where θ ∼ p(θ|D) (5.18)

And p(x|θ) is computed by importance sampling as in (5.13). As soon
as the expected likelihood is estimated, one can apply some thresh-
old that would distinguish if the considered input adheres to the in-
distribution sample or not.
In this work, however, we aim at the estimation of the model param-

eter sensitivity. Hence, we calculate the sample standard deviation of
the marginal log-likelihoods returned by the models within the ensem-
ble [17]:

Θ[x] =

√

√

√

1

N − 1

∑

θ∈Θ
(logp(x|θ) − logp(x|θ))2 (5.19)

It measures the variation within the log-likelihoods, so if there is a
different level of sensitivity between the inliers and problematic inputs,
then the standard deviation will capture this difference: the higher the
value, the more uncertainty there is between the models about a partic-
ular input.
Furthermore, in the case of a single VAE, we instead apply the hole indi-

cator [18]. For this score we sample the approximated posterior qϕ(z|x)
with several latent codes z under a particular input x and compute the
sample standard deviation of the log-likelihoods logp(x|z):

z[x] =

√

√

√

1

N − 1

∑

z

�

logp(x|z) − logp(x|z)
�2

(5.20)

The higher the score, the farther the input is from the IDs.
Both of these scores allow for measuring the level of stability of the

model with respect to different parameters. We can detect our problem-
atic inputs based on the difference in this stability level.

SCORE FOR DISTINGUISHING BETWEEN ADVERSARIAL AND OOD INPUTS
Note that utilizing the same score for both outliers and adversarial ex-
amples does not allow us to distinguish between them. To address this
issue, we devise a simple algorithm that allows for such a distinction.
Leveraging the intuition that adversarial examples also tend to land

on the latent holes, it makes it possible to utilize the recently introduced
approach for utilizing Hamiltonian Monte Carlo (HMC) to reevaluate the
current latent code [23]. If the generated image of the reevaluated la-
tent code from the region close to the mean of the posterior is similar to
the one that has been provided as the input, then it is highly likely to as-
sume that there is an ongoing attack on the DNN. This similarity is based
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on Multi-Scale Structural Similarity (MSSSIM). This method represents an
active defense approach.

Algorithm 2: Active Defense Algorithm
H
Input: x, M, θ, ∅(·), henc(·), hdec(·), hmc(·), MSSSIM(·, ·)
Output: Decision on whether x is an attack, an outlier or an inlier

// Get a reconstruction and a latent code
z← henc(x)
x′ ← hdec(z)
// check if z is in the hole
if ∅(z) then

// Run active defense with M steps
for  = 1 to M do

// One step of HMC:
z← hmc(z)

xhmc ← hdec(z)
γhmc ← MSSSIM(x,xhmc)
γno_hmc ← MSSSIM(x,x′)
// Check MSSSIM gain with a threshold θ
if |γhmc − γno_hmc| > θ then

return “Attack”
else

return “Outlier”

else
return “Inlier”

The starting point is to identify if the corresponding latent code for
the current input is located in the hole utilizing a hole indicator. If it
is not in the hole then we can immediately classify it as in-distribution
input. Otherwise, the distinguishing between OoD and adversarial attack
is implemented on the basis of the restored latent code via HMC. The
insight is that the resulting distance in the input space should be much
closer for the adversarial inputs than for the OoDs (see Algorithm 3).
As a result, we implement the robust VAE model against both outliers

and adversarial examples with two level of defense allowing to identify if
we are being attacked or not.

ENFORCED CONTROLLED CONTINUITY AND COMPACTNESS BY LIPSCHITZ
CONTINUITY
To increase robustness even further, we enforce a predefined Lipschitz
constant on the encoder map of the VAE. First, it reduces the ability
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of the attacker to gain substantial benefits while generating adversar-
ial examples with VAEs that possess encoding maps with great Lipschitz
constants. Second, it allows the control of the properties of compact-
ness of the mapped image to the latent space which has recently been
demonstrated as being beneficial for outlier detections [18] utilizing la-
tent hole. To that end, we employ the GroupSort activation function and
compute the corresponding Lipschitz constant following the protocol de-
scribed in [18].

5.3.6. DISENTANGLING THE VARIATION AND THE BAYESIAN
INFERENCE.

We identify the source of the variation observed with Bayesian VAEs.
The general procedure of the marginal likelihood estimation follows these
steps:

1. Sampling the weights from the estimated posterior: θ ∼ p(θ|D).

2. Estimating the marginal likelihood for separate sampled models (Equa-
tion 4.16).

3. Computing a single value based on the separate estimated marginal
likelihoods.

As it can be seen, there are two possible sources of variation, namely,
variation from Step 1 and variation from Step 2. It was hypothesized
in [13, 17] that the Bayesian inference over the DNN parameters is re-
sponsible for the observed variation of the results. In our work, we test if
it is indeed the case by eliminating the first step and estimating the vari-
ation in the case of a simple classical VAE; namely, instead of sampling
from p(θ|D), we use a single VAE model that is used for marginal likeli-
hood estimation several times. In such a case, all the variation comes
only from the importance sampling. We apply the same scores as for
the Bayesian VAEs to identify if the variation still persists for the classical
VAEs.

DISSECTING THE SOURCE OF VARIATION.
By taking the log of both sides of the Equation 4.16 and by factoring the
joint probability pθ(x,z), we can obtain the following equation for the
importance sampling:

logpθ(x) ≃
1

N

N
∑

=1

�

logpθ(x|z (i)) + logp(z (i)) − logqϕ(z (i)|x)
�

(5.21)

All the scores that we have considered so far are measuring the vari-
ation of the left-hand side. To better understand where the variation
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comes from, we also consider the separate constituents of the right-
hand side; namely, we measure standard deviations of all three terms
separately, which allows us to identify the most uncertain term in case
of OoD detection.

5.3.7. ANALYZING LATENT REPRESENTATION
Our experiments confirm that adversarial examples can be identified us-
ing the same scores that were successfully applied to outliers. It implies
that adversarial examples occupy latent holes similar to the OoDs. The
difference is that it is possible to control the strength of the adversarial
attack. Hence, we can visualize the dynamics of the attack strength with
respect to the learned data representation in the latent space. To that
end, we employ the learning procedure suggested in [35] to mold the la-
tent data manifold into a mixture of Gaussians, the so-called Variational
Deep Embeddings (VADEs). Such an approach allows us to calculate
distances to the centroids of the learned clusters that can be visually
inspected. In addition, no Lipschitz constraints are used for these exper-
iments, so no restraints are applied for the adversarial locations.

5.4. EXPERIMENTS AND RESULTS
Our experiments have been conducted on several datasets widely used
for validation of OoD and adversarial attacks, namely: MNIST[36], Fash-
ionMNIST[37], SVHN[38] and CIFAR10[39].
First, we estimated the impact of the number of dimensions of the la-

tent space on the loss function. The dimensionality is closely connected
with the dataset the model is trained on. MNIST and FashionMNIST re-
sults reveal that there is no need to go over 10 latent dimensions since
the loss function didn’t significantly decrease after that value. For SVHN,
we experimented with the number of latent dimensions up to 50, and the
most optimal results have been achieved with dimensionality = 20.
For our tests, we used two different architectures: for grayscale im-

ages, we applied a multilayer perceptron for both the encoder and de-
coder with two fully connected hidden layers. For RGBs images, we ap-
plied a Convolutional Neural Network (CNN) with two convolutional layers
of 32 and 64 filters. For epistemic uncertainty estimation, all layers that
contain parameters have been enhanced with the BBB, namely, convolu-
tional 2D, fully connected, and convolutional 2D transpose. All the rest,
such as reshape and flatten, are used with their default implementations
as provided by the Tensorflow Keras [40] framework. For a single VAE, we
used the same architectures without the BBB. Moreover, the continuity
of the encoder map is controlled via the specifically predefined Lipschitz
constant calculated in the same way as in [18] for the cases where the
hole indicator is used.



5.4. Experiments and results

5

127

All models have been trained for 1000 epochs. For the evaluation of
the inputs, we sampled 100 different models for our ensemble. Since we
have a doubly stochastic nature of the results, one due to the sampling
from latent posterior and the second one due to the sampling from the
weights posterior, we ran the experiments 10 times each and averaged
the final results.
For our implementation of BBB we noticed that random Normal initial-

izer of the DNNs weights suggested as a prior in the original paper [34]
resulted in very slow convergence. So, to speed up the process, we also
experimented with the following parameters: random Normal initializer
with 0 mean and 0.1 standard deviation for μ and constant initializer for
ρ = −3, which improved the training speed.
The metrics that we used to validate both OoD are the area under

Receiver operating characteristic (ROC) curve (ROC AUC), the area under
the precision-recall curve (AUPRC), and the false-positive rate at 80% of
true-positive rate (FPR80). We used two OoD benchmarks: (i) MNIST as
in-distribution vs FashionMNIST as OoD and (ii) CIFAR10 as in-distribution
vs SVHN as OoD. As it can be observed from the results of Stds of LLs in
Table 5.1, they are comparable with the state-of-the-art in the field [13,
17].

Table 5.1: OoD detection results with Bayesian VAE based on Stds of LLs

Metric MNIST vs FashionMNIST CIFAR10 vs SVHN

ROC AUC↑ 99.76 90.88
AUPRC↑ 99.77 89.64
FPR80↓ 0.00 11.72

Subsequently, we performed experiments utilizing a single classical
VAE testing if the previously observed variation persists. The obtained
results clearly demonstrate that variation that comes from the impor-
tance sampling is sufficient for the detection of the OoD inputs (see Ta-
ble 5.2). It allows us to disentangle the variation from the Bayesian in-
ference over the weights and directly use latent posterior sampling with
a classical VAE.

Table 5.2: OoD detection results with classical VAE based on Stds of LLs

Metric MNIST vs FashionMNIST CIFAR10 vs SVHN

ROC AUC↑ 99.81 93.07
AUPRC↑ 99.82 91.23
FPR80↓ 0.00 11.36
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In addition, we calculate the sample standard deviation of the sepa-
rate terms on the right-hand side of Equation 5.21. The obtained values
reveal the fact that most of the observed variance results from the likeli-
hood term logpθ(x|z (i)) that is parameterized by the decoder DNN. The
boxplots of the standard deviations for all three terms (in the case of the
classical VAE trained on the Fashion-MNIST dataset and tested on the
MNIST as OoD) are plotted in Figure 5.1. As it can be seen, the variance
obtained by the variational inference over the latent variable qϕ(z|x)
does not result in high values as one may have expected, which denotes
that most of the responsibility for the variation is laid on the decoder
which is more sensitive to the OoD inputs versus IDs. Such sensitivity
has been observed for all of the considered datasets and models, which
strongly supports the usage of the recently introduced hole indicator [18]
for the OoD input detection.
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Figure 5.1: Standard deviations of the separate components of the ELBO
within the importance samples for Fashion-MNIST as in-
distribution (blue) vs MNIST as out-of-distribution (orange).
Left: variation of the log-likelihood of the decoder logp(x|z)
Middle: variation of the encoder logq(z|x). Right: variation
of the latent prior logp(z).

For the generation of the adversarial inputs, we used the Cleverhans
framework [41]. We use the default discriminative DNN architecture for
our victim classifier provided within this framework. We benchmark our
model on three common attacks: FGSM, CW and JSMA (see Section 5.2.1
for more details). For FGSM, we used ε = 3, for CW we used attack under
L2-norm, and we applied 128 attack iterations with 0.2 learning rate,
and, finally, for JSMA we used θ = 1 and γ = 0.1. For CW and JSMA we
generated targeted attacks per each of 10 categories available in MNIST
and FashionMNIST, for SVHN we applied an untargeted attack. In the
case of FGSM, all inputs implemented an untargeted attack.
Consequently, as Bayesian inference over DNN weights proves to be

unnecessary, we employ a single VAE model, evaluating the results using
a hole indicator (refer to Eq. 5.20).
Results of the experiments convincingly demonstrate that there is in-

deed transferability between discriminative and generative models. The
adversarial examples generated for the classifier can be detected by the
VAE, which is trained on the same dataset in an unsupervised manner
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(see Tables 5.3 - 5.5). It is reproduced across a wide range of adversarial
attacks and datasets.

Table 5.3: Discriminative adversarial results: MNIST

Metric MNIST vs FGSM MNIST vs CW MNIST vs JSMA

ROC AUC↑ 100.00 92.24 93.01
AUPRC↑ 100.00 92.55 90.13
FPR80↓ 0.00 11.72 10.16

Table 5.4: Discriminative adversarial results: FashionMNIST

Metric FMNIST vs FGSM FMNIST vs CW FMNIST vs JSMA

ROC AUC↑ 96.49 95.01 83.97
AUPRC↑ 96.52 92.36 78.38
FPR80↓ 5.47 10.94 16.66

Table 5.5: Discriminative adversarial results: SVHN

Metric SVHN vs FGSM SVHN vs CW SVHN vs JSMA

ROC AUC↑ 86.74 77.35 82.75
AUPRC↑ 77.76 71.40 78.19
FPR80↓ 24.13 56.21 17.28

It is especially remarkable that they also tend to land to the holes in
the VAE latent representation since they are detected based on the re-
sults of the hole indicator. Such a phenomenon may be explained by the
similarity of internal representation within DNNs that are trained on the
same datasets.
As can be observed from the results, the best values are achieved

for the FGSM adversarial inputs, which result in a higher standard de-
viation of the log-likelihoods, leading to better detection. It seems not
surprising, taking into consideration that FGSM does not aim at an opti-
mal attack but the fastest one. CW, on the contrary, represents the least
uncertainty, which also can be explained by the fact that this attack ex-
ploits the optimization procedure with the appropriate objective of as
few modifications as possible to the input. JSMA is located somewhere
in-between FGSM and CW.
We proceed to evaluate the robustness of the proposed VAE filter by

subjecting it to adversarial attacks designed explicitly for this model. We
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put under test a single VAE. The model is enforced with a controlled con-
tinuity on the encoder map taking into consideration appropriate proper-
ties of compactness of the latent image.

Table 5.6: Generative adversarial examples

Metric

Lipschitz MNIST:
MNIST
vs

Adversarial

Lipschitz FMNIST:
FMNIST

vs
Adversarial

Lipschitz MNIST
heldout: MNIST 01

vs
Adversarial

ROC AUC↑ 97.89 93.40 99.98
AUPRC↑ 98.70 94.51 99.98
FPR80↓ 9.06 9.10 0.00

As it can be seen from Table 5.6, the hole indicator successfully detects
attacks on VAEs. It allows using only one score to detect both outliers and
adversarial examples, including discriminative and generative ones.
Following this, we apply our algorithm based on active defense to dis-

tinguish between the outliers and both types of adversarial examples.
Since the major value responsible for this distinguishing is based on MSS-
SIM gain, we register the corresponding values in Tables 5.7 and 5.8. It
can be observed that generative adversarial examples can be easily dis-
cerned from the rest categories of problematic inputs. However, there
is no possibility to delimit outlier and discriminative adversarial attacks
relying only on the MSSSIM gain.

Table 5.7: MNIST: Multi-Scale Structural Similarity (MSSSIM)

No HMC HMC MSSSIM Gain

Discriminative Adversarial Examples
MNIST FGSM ϵ = 0.1 0.43 0.34 0.09
MNIST FGSM ϵ = 0.3 0.26 0.27 0.01
MNIST CW 0.18 0.20 0.02

Generative Adversarial Examples
MNIST ϵ = 0.1 0.43 0.85 0.42
MNIST ϵ = 0.2 0.30 0.67 0.37
MNIST ϵ = 0.3 0.25 0.64 0.39

Outliers
MNIST vs FMNIST 0.03 0.09 0.06
MNIST vs KMNIST 0.21 0.16 0.05
MNIST vs All White 0.03 0.10 0.07
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Table 5.8: FMNIST: Multi-Scale Structural Similarity (MSSSIM)

No HMC HMC MSSSIM Gain

Discriminative Adversarial Examples
FMNIST FGSM ϵ = 0.1 0.28 0.17 0.11
FMNIST FGSM ϵ = 0.3 0.19 0.24 0.05
FMNIST CW 0.33 0.26 0.07

Generative Adversarial Examples
FMNIST ϵ = 0.1 0.41 0.60 0.19
FMNIST ϵ = 0.2 0.25 0.45 0.20
FMNIST ϵ = 0.3 0.19 0.38 0.19

Outliers
FMNIST vs MNIST 0.18 0.23 0.05
FMNIST vs KMNIST 0.20 0.19 0.01
FMNIST vs All White 0.21 0.17 0.04

Finally, we visualize how the different levels of attack strength influ-
ence the location of adversarial latent codes within the learned data
representation. This location is calculated with respect to the closest
centroid of the cluster to the corresponding adversarial latent code. As
can be observed in Figure 5.2, the stronger the attack, the farther the
corresponding latent codes drift away from the inlier manifold. Note that
a weak adversarial attack is akin to the near-OoD instance, and a strong
attack is akin to the far-OoD input.
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Figure 5.2: From left to right: The strength of FGSM attack, expressed
by the magnitude of perturbations. Top: Distances to the
closest centroid within the latent manifold for various cate-
gories of inputs. Bottom: Examples of a particular Fashion-
MNIST instance that undergoes the corresponding strength of
an attack.
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5.5. DISCUSSION
The hole indicator confirms that transferability extends from discrimina-
tive to generative models, indicating a similar learned representation be-
tween these two approaches. However, even though adversarial exam-
ples from the discriminative model end up in the latent holes of the VAE,
the active defense through HMC cannot return to the regions with high
probability. This suggests that despite some commonalities, significant
differences still exist between discriminative and generative settings.
Adversarial attacks on the VAE’s latent space can be effectively distin-

guished from OoD inputs using active defense strategies. Furthermore,
the internal latent representations of near- and far-OoD instances are
similar to those of weak and strong adversarial attacks, respectively.
Contrary to common belief, Bayesian inference over DNN parameters

is not essential for sensitivity analysis. We observe different levels of
model stability with respect to inliers versus outliers, which is related to
the differences in the variances of log-likelihoods, revealing a connection
with the recently introduced score of the hole indicator.

5.6. CONCLUSION
We explore two common types of problematic inputs in DNN classifiers:
OoDs and adversarial attacks. Our proposed solution uses a variational
autoencoder (VAE) to address both problems simultaneously. We initially
evaluate the effectiveness of using Bayesian estimation of epistemic un-
certainty from VAE weights to detect OoD inputs and discover that com-
parable results can be achieved by importance sampling with classical
VAE formulations without resorting to Bayesian inference over weights.
This result indicates that latent codes possess all the necessary infor-
mation for measuring a model’s sensitivity. Furthermore, we introduce
a simple algorithm that distinguishes generative adversarial examples
from both outliers and discriminative adversarial attacks using active
defense. It enables identifying if the VAE model is currently being under
attack. In addition, this algorithm allows for detecting both types of ad-
versarial attacks: one is based on the imperceptible perturbations of the
input image to the classifier, and it is based on the transferability of the
adversarial examples from discriminative to generative models, while
another is based on the attacks aimed at the encoder of the VAE. Finally,
our approach allows a VAE model to be pretrained on specific datasets
so that it functions as a filter, serving the purpose of protecting the DNN
classifier from potential attacks and OoD inputs. This pre-trained VAE can
be easily integrated as a filtering engine with any DNN image classifier,
regardless of its architecture, trained on the same dataset, eliminating
the need for further training or modification of internal DNN configura-
tions.
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5.7. SUPPLEMENTARY MATERIALS
5.7.1. CLASSICAL VAE’S OVERCONfiDENCE
As it was demonstrated by Nalisnick et al. in [6], all of the DGMs suf-
fer from the overconfidence while trying to estimate the density of the
out-of-distribution data assigning a higher density to the OoD inputs in
comparison with ID data. We observed such an overconfidence during
our experiments as well. A couple of examples of the overconfidence of
the classical VAEs in our experimental setup can be seen in Figure 5.3.
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Figure 5.3: Left: Log-likelihoods for MNIST as in-distribution (blue) vs
Corrupted MNIST as out-of-distribution (orange). Right: Log-
likelihoods for MNIST as in-distribution (blue) vs MNIST FGSM
attacks as out-of-distribution (orange).

5.7.2. Bayesian VAES VARIATION SCORING FOR THE REST DATASETS
We ran out experiments also for MNIST as in-distrubtion vs Fashion-MNIST
as OoD and for SVHN as in-distribution and CIFAR-10 as OoD. The results
can be seen in Table 5.9 and Table 5.10.

Table 5.9: Scoring values across all types of Bayesian VAEs trained on
MNIST data and tested on Fashion-MNIST as OoD

MNIST vs. Fashion-MNIST

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 99.98 99.98 0.00 99.93 99.92 0.04 96.83 96.20 5.18
WAIC 99.99 99.99 0.00 99.94 99.94 0.02 80.37 76.25 33.56
Disagreement score 98.95 99.01 0.23 97.32 97.70 1.37 94.88 93.97 8.99
Entropy (ours) 99.42 99.47 0.02 98.50 98.75 0.29 95.72 95.20 8.37
Stds of LLs (ours) 99.99 99.99 0.00 99.91 99.91 0.00 80.37 82.78 39.12

5.7.3. HAMILTONIAN MONTE CARLO ALGORITHM
We employ the same approach as suggested in [23].
In the Hamiltonian Monte Carlo (HMC) framework, the target distribu-

tion is given by the product of p(x|z) and p(z). The Hamiltonian rep-
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Table 5.10: Scoring values across all types of Bayesian VAEs trained on
SVHN data and tested on CIFAR-10 as OoD

SVHN vs. CIFAR-10

BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 58.65 61.79 77.72 57.09 60.56 80.18 58.98 62.06 76.52
WAIC 64.46 66.01 68.39 62.17 64.38 72.45 62.84 68.42 75.25
Disagreement score 85.20 88.35 30.26 85.31 88.52 28.66 77.58 80.36 45.60
Entropy (ours) 87.80 90.63 20.77 87.89 90.76 19.91 80.01 83.24 41.58
Stds of LLs (ours) 93.29 91.51 10.99 94.70 93.95 8.67 59.31 53.36 61.78

resents the energy of the combined distribution of z and the auxiliary
variable p, defined as follows:

H(z,p) = U(z) + K(p),

where

U(z) = − logpθ(x|z) − logp(z),

and

K(p) = −
1

2
pTp.

For the corresponding pseudocode for restoring the latent code, please
see following Aglorithm 3.

Algorithm 3: A single iteration of HMC
Input: z, η, L

// Sample the auxiliary variable
p ∼ N (0, I)
z(0) := z,p(0) := p

// Make L steps of leapfrog
for  = 1 to L do

p() := p(−1) − η
2∇zU(z

(−1))
z() := z(−1) + η∇pK(p())
p() := p() − η

2∇zU(z
())

// Accept new point with probability α

α :=min
�

1,exp
�

−H(z(L),p(L)) + H(z(0),p(0))
��

z :=

¨

z(L) with probability α,
z(0) otherwise.

return z
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5.7.4. CLASSICAL VAES VARIATION SCORING FOR THE REST
DATASETS

Table 5.11: Scoring values for the classical VAEs trained on MNIST and
Fashion-MNIST data

Classical VAE
MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 99.97 99.97 0.00 46.72 51.54 92.57
WAIC 99.96 99.96 0.00 64.07 64.43 66.98
Disagreement score 97.86 98.09 1.11 96.83 97.56 0.84
Entropy (ours) 98.67 98.84 0.38 98.18 98.63 0.08
Stds of LLs (ours) 99.81 99.82 0.00 99.68 99.64 0.36
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6
CONCLUDING REMARKS

DNNs utilized in safety-critical tasks are highly susceptible to problematic
inputs, like OoD inputs, or adversarial attacks. A core part of this disser-
tation is dedicated to understanding and addressing the issue of model
robustness against these problematic inputs. We began by exploring
the concept of learnability and generalization within machine learning,
particularly by examining the generalization of models to non-identically
distributed samples and the formal challenges it poses. Recognizing the
impossibility of OoD learnability in general and taking into consideration
that good generalization to inliers is indicative of outliers detection, we
identified the notion of stability of the learning algorithm as a key in-
gredient for good generalization with respect to i.i.d. data. Based on
this insight, we formulated a dual problem of stability with respect to the
parameters of the model.
As for our modeling assumptions, we choose the DGM approach due to

its potential to learn the inlier data distribution. It is beneficial from the
perspective of features learned, contrasting it with discriminative model-
ing primarily interested in boundaries between the categories. In partic-
ular, we focused on VAEs since they allow for the setting of a desirable
inductive bias from various perspectives ranging from information bot-
tleneck compression to PAC-Bayes learnability.
Consequently, we concentrated on two key aspects: epistemic uncer-

tainty estimation and tailored inductive bias to address the issue of de-
tection of problematic inputs. We employed these tools as operational
means to either estimate the degree of sensitivity of a model regarding
inliers versus outliers or to improve model stability. Both of the consid-
ered aspects allow for the effective handling of evaluated problematic
inputs.
Finally, we formulated a novel approach to improving the robustness

of deep learning models based on their latent representation. The ma-
jor revelation is that both problematic inputs tend to gravitate toward
the vacant holes in the latent space that could be easily identified. As
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a result, we devised a defensive method addressing both OoD and ad-
versarial input mitigation and, in many practical scenarios, detection of
ongoing adversarial attacks.
In this thesis, we explored various aspects of deep learning, focusing

on understanding and addressing vulnerabilities that can compromise
the performance and reliability of DNNs. Considering the growing preva-
lence of DNNs in critical applications, it is necessary to ensure that these
models are resilient to potential threats. The following sections discuss
the basic issues of robustness, sensitivity, and latent representation of
problematic inputs in DNNs. Each section is structured around the key
research questions of our study, starting with the fundamental aspect of
deep learning robustness.

6.1. ROBUSTNESS IN DEEP LEARNING
Robustness in deep learning is a critical area of research, especially con-
sidering the growing use of DNNs in safety-critical applications. The re-
liability of these models can be significantly reduced by various types
of problematic inputs, such as adversarial attacks and outliers, which
can lead to model misbehavior or unauthorized data extraction. In this
section, we present our findings related to the categorization of these
problematic factors and corresponding defenses in the domain of deep
learning pertaining to RQ1:

RQ1: How can we categorize problematic inputs in the context of
attacking and defensive methods in deep learning?

In Chapter 2, we explored in detail the resilience of DNNs to various
threats, emphasizing the need for a better understanding of their vul-
nerabilities to ensure their reliability in safety-critical applications. Our
investigation included a comprehensive analysis of attack vectors target-
ing DNNs. We identified two major categories within the diverse spec-
trum of malicious activities related to DNN models which we dubbed as
functionality-oriented and privacy-oriented attacks. The former category
seeks to manipulate the model’s behavior, whereas the latter attempts
to extract any private data related to a particular model.
Based on this coarse categorization, it becomes apparent that both ad-

versarial examples and outliers fall under the category of functionality-
oriented attacks. This category also includes poisonous inputs. The dif-
ference between malicious inputs considered in this thesis and poisonous
inputs is that the latter aims to manipulate the behavior of the model
or violate the integrity of the data during the training stage, while the
former interferes with the inference stage. Privacy-oriented attacks, in-
cluding model theft and membership discovery, aim to unauthorizedly
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extract sensitive information related to the model’s architecture or the
data on which it was trained.
In addition, our study emphasizes the potential adversarial aspect of

outliers by categorizing them within the CIA triad along with other threats.
As for defensive mechanisms against problematic inputs, there are two

prominent approaches: adversarial training to mitigate adversarial at-
tacks and outlier exposure training to enhance DNN robustness against
outliers. Despite the difference in details, they are based on the same
underlying principle: to incorporate knowledge about these problematic
inputs into the training phase. It can be done either directly by adding
new instances into the training set, as is the case with outlier exposure,
or via modifying an objective function, as is the case with adversarial
training.

LIMITATIONS AND FUTURE WORK
The identified subset of potential vulnerabilities is limited to the infer-
ence stage. Although it was a deliberate decision due to the high criti-
cality of the exposure of DNNs to errors during testing in the wild, it still
represents a limitation. Nevertheless, the attacks related to the train-
ing stage could be curated much more efficiently. They may involve
additional preprocessing steps with a potential subsequent automatic or
manual verification. Such a privilege is not available during inference
when the model is already deployed in the wild.
For future work, it is critical to develop a theoretical framework for

DNNs that will not only improve our understanding of their generaliza-
tion and optimization but also contribute to creating more robust archi-
tectures. In addition, a promising direction is the exploration of new
defense strategies, especially those that exploit the interaction between
data and model properties. Such an approach could be beneficial for
detecting and neutralizing potential threats. Additionally, increasing the
transparency and interpretability of DNNs can play a critical role in iden-
tifying and mitigating vulnerabilities, and strengthening their defenses
against current and emerging threats.

6.2. SENSITIVITY OVER HYPOTHESES
Detecting problematic inputs in deep learning models is an important
task that has serious implications for the reliability and robustness of
these models, especially in safety-critical applications. One promising
way to address this problem is to estimate epistemic uncertainty, which
can provide insight into a model’s confidence in its predictions. In this
section, we explore the potential of using epistemic uncertainty to an-
swer RQ2:



6

144 6. Concluding Remarks

RQ2: Is detecting problematic inputs utilizing epistemic uncer-
tainty estimation possible?

To answer this question, we implemented three distinct Bayesian ap-
proaches to infer a posterior over VAE parameters. The key observation
is that our assumption about different degrees of sensitivity of parame-
ters of VAEs with respect to inliers versus outliers holds true in practice.
Namely, the stability of the model is lower with respect to OoDs. For
that reason, we devised two corresponding scores based on information
entropy and sample standard deviation with respect to the parameters
of the model. Both of these scores demonstrated state-of-the-art results
in detecting outliers.
Another key takeaway comes from comparing our scores with other

scores devised for the ensembles. The WAIC score is of particular in-
terest since it also involves a term responsible for variance of the like-
lihoods. Surprisingly, we identified a significant difference between our
scores and WAIC in performance: while our scores demonstrated state-
of-the-art performance along all considered datasets, WAIC, on the other
hand, achieved good results on simple datasets like MNIST and failed on
more complex datasets like CIFAR-10. Training models on more sophisti-
cated data results in a wider range of likelihoods being attributed to the
inputs; as a consequence, the difference between the models within an
ensemble may disappear and would be hidden behind the input likeli-
hood variability. This phenomenon is entirely overlooked by metrics like
WAIC. Conversely, our proposed metrics focus on evaluating the variance
observed within the ensemble itself. This approach enables the detection
of even minimal variations in the sensitivity capturing the model’s insta-
bility.

LIMITATIONS AND FUTURE WORK
There are three distinct limitations to this approach. First, Bayesian ap-
proaches, especially BBB and SGHMC, require significantly longer train-
ing time to converge compared to conventional VAEs. This may limit
their practical applications for large-scale solutions or when rapid model
development is strictly required.
Second, the relative complexity of the suggested methods since the

implementation of Bayesian methods for estimating epistemic uncer-
tainty is more complex than traditional methods which may potentially
prevent their widespread adoption without further simplification or opti-
mization.
Finally, there is a distinct speed-accuracy trade-off. Although SWAG

provides faster training convergence time, it generally provides lower
OoD detection performance compared to other Bayesian methods tested.
For future work, in Chapter 4, we elaborated on a similar approach
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based on the latent codes of VAE. It significantly increases training per-
formance. We also dived deeper into the reasons behind this sensitivity.

6.3. LATENT REPRESENTATIONS OF PROBLEMATIC
INPUTS

Understanding hidden representations of problematic inputs, such as
OoD inputs and adversarial examples, is necassary to improving the ro-
bustness of deep learning models. Latent space analysis provides in-
sight into how these inputs differ from normal inputs and offers a path
for developing effective detection mechanisms. This section addresses
research question RQ3 by exploring how problematic inputs can be in-
terpreted through their internal hidden representations, and using this
understanding to improve the robustness of the model:

RQ3: How problematic inputs can be interpreted from the perspec-
tive of their internal latent representation?

First, based on the sensitivity of VAE to different inputs, we have dis-
covered that both OoDs and adversarial examples tend to gravitate to
latent holes. These holes are low-density regions in the aggregated pos-
terior of the latent space. We devised a special score to detect these
holes based on two main ideas: the compressive nature of the latent rep-
resentation and the fact that low-density regions occupy space between
distinct inlier posteriors corresponding to the input space’s different in-
stances. Sampling from such a posterior would result in higher variability
of the likelihoods for problematic inputs in comparison with inliers, pro-
viding a simple and robust way of their detection.
Second, we enforced controllable compactness on the mapped image

of the encoder in the latent space in order to both limit the potential
variability of the mapping and squeeze the available holes within the
manifold available for the inliers. It achieved greater detection precision
and provably regularized the continuity of the mapping.
Third, we analyzed the behavior of the two distinct categories of ad-

versarial examples: discriminative and generative. Both of these cate-
gories can be detected through their latent representation using a hole
indicator. Moreover, the attacks that are based on the imperceptible
perturbation of the image tend not to drift far away from the original ref-
erence latent posterior. Thus it can be successfully distinguished from
both the outliers and the strong adversarial attacks by utilizing HMC and
comparing MSSSIM gain between the adversarial and restored images.
Additionally, the modification of VAE objective to incorporate the mixture
of Gaussians in the latent manifold instead of a standard Normal prior to
getting the centroids of learned clusters in the latent space allows visu-
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alization of the location of latent codes of adversarial attacks depending
on the strength. We detect that maximum damage adversarial examples
tend to gravitate away from the learned manifold. Their distinguishing
from the outlier is an open problem since they are similar to the far-OoD
inputs.

LIMITATIONS AND FUTURE WORK
The main limitation concerns the strong cases of adversarial attacks,
i.e., when a latent point moved away sufficiently far from being restored
with HMC. These cases currently represent an unsolved problem and can
be analyzed in future works. Another drawback relates to the speed
performance of the algorithm based on active defense. Since the HMC
needs time to restore the posterior to the regions with high probability, it
may be unfit for real-time problematic inputs distinguishing into separate
categories.

6.4. RESULTS
In summary, we achieved the following results:

• We categorized outliers within the diverse spectrum of deep learn-
ing vulnerabilities, stressing the possibility of exploiting them in at-
tacks in the same manner as untargeted adversarial examples to
cause a potential malfunctioning of the model.

• We identified the stability of the variational autoencoder during in-
ference that is measured via sensitivity over its parameters as a
robust and effective indicator for outliers detection.

• We implemented three different Bayesian inference methods and
estimated the parameters’ variation within the ensemble, obtaining
state-of-the-art results.

• We disentangled Bayesian inference over parameters and Bayesian
inference over latent codes, demonstrating the effective ways of
measuring the sensitivity of the model with respect to the latent
representation.

• We discovered that the source of the successful detection by means
of sensitivity comparison between inliers and problematic inputs lies
in the fact that the latter tends to gravitate to vacant holes in the
latent representation of the VAE.

• We employed the discovery of latent holes to dissect the variation
of the log-likelihood, and based on that, we devised a new score to
detect problematic inputs.
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• We addressed a persistent theoretical flaw in the modeling assump-
tions of VAEs by enforcing compactness on the latent space in two
different manners, which is validated as being advantageous for
OoD and adversarial examples detection.

• We addressed the encoder mapping’s variation range, employing
the stricter continuity condition based on the Lipschitz constant.
We devised a way to properly constrain the continuity taking into
account the properties of the resulting image and the dimensional-
ity of the corresponding latent space.

• We developed methods to discern generative adversarial examples
from both outliers and discriminative adversarial attacks.

• We developed a filter solution based on the VAE trained on the same
dataset as the classifier to be protected and enhance the robustness
during the inference stage, allowing for the detection of the prob-
lematic inputs and also mitigation of the classical definition of the
adversarial examples.

6.5. SOCIETAL RELEVANCE
DNNs play a critical role in a variety of applications that impact soci-
ety. These range from diagnostic tools in medicine that can detect early
signs of disease to manufacturing precision and safety and the reliability
of autonomous cars. The social impact is profound. These technologies
have the potential to save lives, improve efficiency, and reduce human
error. However, this promise depends on the DNNs’ ability to accurately
interpret and respond to the diverse range of its potential inputs. This
ability is currently undermined when it encounters OoD and adversarial
inputs. Potential threats may undermine public trust. As society be-
comes increasingly dependent on DNNs, the integrity of these systems
becomes very important. Lack of confidence in the accuracy and relia-
bility of DNN results can delay the adoption of useful technologies and
hinder progress.
Prior to the advances presented in this thesis, DNN were vulnerable to

various types of problematic inputs, such as adversarial attacks and OoD
data, which could compromise their functionality and reliability. These
vulnerabilities pose significant risks in safety-critical applications, lead-
ing to potential failures in medical diagnostics, autonomous vehicles, and
other applications where accuracy and reliability are paramount. The
lack of robust mechanisms to identify and mitigate these factors has un-
dermined confidence in these systems and slowed their integration into
critical industries.
The results of this thesis directly address these vulnerabilities by devel-

oping robust detection capabilities for both OoD and adversarial inputs.
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By deepening the understanding of how these problematic inputs inter-
act with the latent space of VAEs and implementing advanced Bayesian
approaches, this research proposes effective strategies for detecting and
mitigating such inputs. This results in a significant increase in the relia-
bility and stability of DNNs.
The social implications of these advances are significant. With im-

proved threat detection and mitigation, DNNs can be deployed to security-
critical applications with greater confidence. This means more reliable
medical diagnoses, safer autonomous vehicles and generally more reli-
able AI systems across various sectors. The ability to accurately iden-
tify and respond to problematic input reduces the risk of system failures
and increases public trust in AI technologies. This in turn speeds up the
adoption of these technologies, leading to broader societal benefits such
as improved health outcomes, increased production efficiency and safer
transport systems.
By addressing these issues, we can safely use the power of DNNs. The

future of deep learning depends not only on the experts who create it
but on all of those who use it and who are influenced by it.

6.6. CONCLUSION
This thesis offers valuable insights and contributions into the field of DNN
robustness, which are particularly relevant for safety-critical tasks. It fo-
cuses on notoriously problematic inputs for modern deep learning mod-
els, including OoD instances and adversarial attacks. Through a compre-
hensive analysis of learnability, generalization, and challenges inherent
to OoD learnability, this dissertation identified the stability of learning
algorithms as the key ingredient to both problematic input detection and
also to improving model robustness. Focusing on DGM, in particular on
VAE, this thesis presents a new approach based on the idea of measur-
ing different degrees of sensitivity of a model with respect to different
inputs. Moreover, this dissertation thoroughly examines and implements
the desirable topological properties in VAE models from the perspective
of better detection and mitigation of problematic inputs. The insights
gained from studying the latent space of VAE, especially identifying va-
cant latent holes as regions where problematic inputs tend to gravitate,
have led to the development of effective strategies for detecting and
mitigating adversarial and OoD inputs.
This work acknowledges limitations, such as the impossibility of OoD

learning in the discriminative case, and the need for further research into
the cases of strong adversarial attacks. In addition, a suggested separate
defensive filter solution may not always be feasible in practice due to
time constraints. Future work may aim to improve the current state and
discover new security strategies exploiting different DNN architectures.
The societal ramifications of this thesis are profound. DNNs play a
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crucial role in many applications that significantly impact society, from
healthcare to autonomous driving. The reliability and safety of these
systems depend on their ability to accurately process and respond to a
wide range of input data. The focus of this thesis on developing robust
DNNs for detecting and managing OoD and adversarial inputs is a step
forward in ensuring the integrity and reliability of these systems.
In conclusion, this thesis advances our understanding of the reasons

why DNNs and VAEs are susceptible to problematic inputs, and it also
provides the means to significantly enhance robustness in ensuring the
secure and efficient deployment of DNNs in real-world applications.
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Towards Robust Deep Learning
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As Deep Neural Networks (DNNs) continue to be deployed in safety-
critical domains, two specific concerns — adversarial examples and 
Out-of-Distribution (OoD) data — pose significant threats to their 
reliability. This dissertation proposes novel methods to enhance the 
robustness of deep learning by detecting such inputs and mitigating 
their impact. 

A central insight of this work is that algorithmic stability plays a 
crucial role in generalizing to in-distribution data. Motivated by 
this, we formulate a dual perspective on stability with respect to 
the hypotheses and explore whether this perspective facilitates the 
separation of problematic inputs under two main lenses: epistemic 
uncertainty estimation and the choice of an appropriate inductive 
bias. By grounding our approach in generative modeling with a 
latent variable based on an information bottleneck and, specifically, 
employing Variational Autoencoders (VAEs), we first leverage Bayesian 
inference over model parameters to estimate the model’s uncertainty 
with respect to a particular input. Second, we investigate the required 
properties of both VAE maps and latent representations from a 
topological perspective. This reveals how OoD inputs predominantly 
map onto empty regions — or “holes” — in the latent manifold. Finally, 
we discover that adversarial examples likewise exhibit similar behavior. 
This finding is then used to craft new scoring functions that reliably 
distinguish between inliers, outliers, and adversarial attacks.
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