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Preface

This thesismarks the conclusion of myMaster’s studies in Aerospace Engineering at the Delft University
of Technology. It is the result of nearly a year of research, analysis, and writing on the development of a
surrogate model using symbolic regression to predict the weight and efficiency of radial inflow turbines
for Organic Rankine Cycle (ORC) systems. My background in turbomachinery and thermodynamics,
along with my interest in data-driven modeling, motivated me to explore this topic in depth.

The process of writing this thesis has been both challenging and rewarding. A significant challenge was
determining appropriate settings for data generation, ensuring that the dataset was both representative
and useful for training the surrogate model. Additionally, becoming familiar with TurboSim took con-
siderable time, as understanding the intricacies of the program and its functionalities was essential for
generating reliable simulation data. Overcoming these challenges has helped me grow both technically
and personally. I especially enjoyed working on the implementation of symbolic regression techniques
and analyzing their impact on turbine performance modeling.

I would like to thank my supervisors, Dr. Matteo Pini and especially Ir. Matteo Majer, for their invaluable
guidance, insightful feedback, and continuous support throughout this thesis project. Their expertise
and encouragement have been crucial in shaping this research. Additionally, I acknowledge the Delft
Blue supercomputer for providing the computational resources necessary for this research.

A special thank you to my friends and family, whose support, encouragement, and motivation have
made this journey much more enjoyable. Whether through discussions, feedback, or simply sharing
the challenges of research, their presence has been invaluable. My family’s consistent belief in me has
been a constant source of strength throughout my academic journey, and I am deeply grateful for their
patience and encouragement.

Finally, I hope that this thesis contributes to the ongoing research in surrogate modeling for ORC tur-
bines and provides a useful reference for future studies in this field.

Thank you for taking the time to read my work. I hope you find it insightful.

Tota De Hauwere
Delft, April 2025
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Summary

Organic Rankine cycle (ORC) turbines for combined cycle engines offer significant potential for im-
proving fuel efficiency. However, turbine weight remains a critical design factor, as the turbogenerator
can account for up to one-third of the power unit mass [28]. The turbine design tool TurboSim, devel-
oped by Majer and Pini [34], is computationally expensive. This study aims to develop an accurate
and computationally efficient symbolic regression surrogate model to predict ORC radial-inflow turbine
(RIT) efficiency and weight. Additionally, it examines the impact of working fluid selection and key
geometrical parameters on turbine efficiency and weight.

A parametric study was performed to identify the six design variables (DVs) that have the highest
influence on net total-to-total efficiency (ηttnet ) and turbine weight (Wturb), which includes the stator
blades, impeller, backplate and shroud casings, as well as a locking ring. The training data is generated
using TurboSim [34] and split into a 90% training set and a 10% test set. The surrogate models are
trained on working fluid, indicated by the molecular complexity; mass flow rate; volumetric flow ratio
and compressibility factor, as well as the six most influential DVs on efficiency and weight, which are the
following: R3/R2, Rh/Rt, Lax/∆R, ϕ2,is, ψis and (g/h)le. The model performance was evaluated using
mean-squared-error (MSE) and R-squared (R2). The MSE gives an indication of the model accuracy,
while the R2 indicates how well the trend in the data is captured. Using both of these metrics allows for
comparing the performance of the different models.

While a single multi-output model was initially explored, separate models for each working fluid provided
better accuracy. Four fluid categories — refrigerants (R134a), hydrocarbons (butane, cyclopentane,
toluene), alcohols (ethanol), and siloxanes (MM) — were analyzed, showing that working fluid has
a minor effect on efficiency but a significant impact on turbine weight. A parametric study identified
key design variables, with impeller radius ratio (R3/R2) and hub-to-tip radius ratio (Rh/Rt) having
the greatest impact. While efficiency predictions were generally reliable, weight predictions exhibited
greater variability, with lower R2 values and higher MSE for some fluids.

This research provides an efficient method for estimating ORC turbine performance, reducing compu-
tational costs in early-stage design. The insights on parameter influence can aid engineers in making
informed decisions, potentially leading to improved turbine designs and broader adoption of ORC tech-
nology.

The results highlight the potential of symbolic regression for rapid and interpretable turbine design
optimization. However, further research is needed to improve weight prediction consistency.
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1
Introduction

The aviation industry has undergone a process of progressive decarbonization throughout the past
decades. The general trends are 1) improving fuel efficiency thanks to an increased thermodynamic
efficiency due to increasing the maximum cycle temperatures and overall pressure ratio, and 2) an
increased propulsive efficiency by increasing the engine bypass ratio. The industry is now also turning
towards more electric and all electric aircraft. One way of achieving further improvement is to use
combined cycle configurations which can use the unused thermal power available at the exhaust of
turbine engines.

Organic Rankine cycle (ORC) combined cycle (CC) systems show very promising results in increasing
fuel efficiency. A study performed by Majer and Pini [34] showed that the turbine stage efficiency of
high-pressure ratio supersonic radial-inflow turbine (RIT) of ORC systems can be predicted indepen-
dently of the working fluid. However, an important objective as weight was not considered in the work.
Weight is an important parameter to consider because the turbogenerator of an ORC system can take
up one-third of the power unit mass [28]. This highlights the need to further investigate how such a
turbogenerator can be made lighter by increasing the amount of detail in the turbogenerator design
optimization. Another concern that the industry might have is that performing these optimizations can
be very time-consuming. A solution to this problem is to use machine learning to create a surrogate
model that can predict efficiency and weight of radial-inflow turbines at a very low computational cost.
The aim of this research is to propose a computationally efficient and highly accurate method to predict
the efficiency and weight of ORC radial-inflow turbines for combined cycle engines.

The report is structured as follows: the motivation for the study, which includes background information
on the problem and key findings from the literature review on various machine learning algorithms, is
presented in chapter 2. Chapter 3 outlines the project description, including the research objective and
the research questions. Chapter 4 details the research methodology, explaining the approach used to
calculate turbine weight and the parametric study conducted to identify the design variables with the
greatest influence on efficiency and weight. Additionally, the development of the surrogate model is
discussed. Chapter 5 presents and analyzes the results of data generation and surrogate modeling.
Finally, chapter 6 provides the conclusions and limitations of the study, and recommendations for future
research.
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2
Background

2.1. Motivation of Study
According to the Paris Agreement stipulated in 2015, the global average temperature rise should be kept
well below 2◦C above pre-industrial levels to mitigate the negative effects and limit the consequences
of the ongoing climate change [36]. Among the several contributing factors, lowering the global amount
of greenhouse gas (GHG) emissions emitted in the atmosphere is of primary importance.
The EuropeanCommission has created the EuropeanGreenDeal1 to be able to reach the commitments
stated in the Paris Agreement. One of the initiatives stated in the European Green Deal is ‘Fit for 55’2.
The target for this package is to reduce net greenhouse gas emissions by at least 55% by 2030.

The aviation industry, with a share of about 2–2.5% of the global CO2 emissions3 [17], has under-
gone a process of progressive decarbonization throughout the past decades. To cite the main ones,
engines for commercial aircraft saw a rapid increase in fuel efficiency thanks to, on the one hand, ever-
increasing maximum cycle temperatures (TIT) and overall pressure ratio (OPR) to boost the engine
thermodynamic efficiency. On the other hand, propulsive efficiency has steadily increased by increas-
ing the engine bypass ratio (BPR) [10, 21, 31]. From 2005 to 2019, the fuel efficiency has improved by
39%, however, this cannot offset the large absolute growth of emissions3. CO2 is not the only emission
that is produced by flying. There are also non-CO2 warming effects, e.g., condensation of water in con-
trails at high altitudes. These can lead to a net increased warming effect. Another chemical process
that happens at high altitudes is the production of ozone from NOx, which is a greenhouse gas as well
[17]. To be able to reach the previously mentioned goals, the industry will need to investigate disruptive
solutions, such as alternative fuels and other non-combustion based technologies.

Airbus announced the ZEROe4 project, where they are developing three hybrid-hydrogen powered
and one electric aircraft by 2035. Faber and Lee [13] state that fully electric aircraft will be limited to
shorter ranges since batteries are heavy. Thus, the contribution to the reduction of emissions will only
have a small effect on the larger picture. A bigger impact could be achieved when medium and long
range aircraft are converted into more electric aircraft (MEA) or all electric aircraft (AEA). However,
the electrification of an aircraft increases the complexity of the power systems on board of it [4]. The
following three alternative fuel propulsion related projects aim to reduce fuel consumption as well as
CO2 emissions: RISE5, SWITCH6 and UltraFan7. The CFM Revolutionary Innovation for Sustainable

1https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en,
accessed on April 3rd 2024

2https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transitio
n/, accessed on April 3rd 2024

3https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/decarbonizing-aviation-execu
ting-on-net-zero-goals#/, accessed on April 3rd 2024

4https://www.airbus.com/en/innovation/low-carbon-aviation/hydrogen/zeroe, accessed on April 3rd 2024
5https://www.safran-group.com/videos/what-rise-program-sustainable-engines, accessed on April 16th 2024
6https://www.airbus.com/en/newsroom/press-releases/2022-11-clean-aviation-switch-project-to-advance-h

ybrid-electric-and-water, accessed on April 16th 2024
7https://www.rolls-royce.com/innovation/ultrafan.aspx, accessed on April 16th 2024
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Engines (RISE) project is a joint venture between Safran and General Electric. They are developing an
open fan engine8 that is fully compatible with alternative fuels. The RISE engine is expected to have a
20% CO2 emissions and fuel consumption reduction [22]. The SWITCH (Sustainable Water-Injecting
Turbofan Comprising Hybrid-Electrics) project combines Water Enhanced Turbofan (WET) and hybrid-
electric propulsion. The aim is to reduce CO2 emissions and fuel consumption by 25% compared to
today’s state-of-the-art engines6. Rolls-Royce created the UltraFan, which is a demonstrator engine
that can operate on 100% Sustainable Aviation Fuels (SAF) and is designed to have 40% less NOx,
25% decrease in fuel consumption and a 35% decrease in noise at cruise7.

Hybrid aircraft are also an option to be able to transition to fully electric alternatives. The authors
of [37] highlighted different technological solutions and the challenges ahead of MEA. In this context,
researchers of TU Delft [29] looked into hybridizing the Auxiliary Power Unit (APU) using combined
cycle architectures. The APU provides secondary power for the main engine start-up and electricity for
all the electrical components on the aircraft.

Combined cycle configurations can be interesting to look at because of the large amount of unused
thermal power available at the exhaust of gas turbine engines. By combining multiple thermodynamic
cycles in a topping (high temperature) and bottoming (low temperature) cycle, one can use the rejected
heat from the topping cycle in the bottoming cycle. This can lead to increased efficiency and power
output [24] depending on the selected ORC working fluid, the size and performance of the heat ex-
changers, and the isentropic efficiency of the ORC turbine. Krempus et al. [29] showed that thermal
power harvesting from the exhaust gases of a modern day APU can lead to efficiency improvements
in the range of 1% of mission total fuel mass. A combined cycle APU (CC-APU) system was designed
and optimized numerically, featuring an ORC system as a bottoming cycle of the Joule-Brayton cycle.
However, since the aircraft APU is usually operated only during taxiing and for on-ground power, the
potential for fuel savings resulting from APU efficiency improvements is rather limited.

Later research by Krempus et al. [28] focused on the preliminary design and assessment of a combined
cycle turboshaft (CC-TS) engine using an ORC as a bottoming cycle to recover exhaust gas thermal
power. Such a combined cycle engine would then drive electrical generators that provide the power
needed by the turboelectric propulsion system. A multidisciplinary optimization (MDO) framework in-
cluding models for the engine, ORC system, ORC turbine, heat exchangers, and mission analysis was
created for this purpose. The results presented that a fuel saving of 4% could be reached when using
the optimized system instead of the aircraft employing turboshaft engines. To maintain the computa-
tional cost within reasonable limits, the number of design variables used in the optimization was limited
to 18 and mainly included system design variables such as the OPR, maximum ORC temperature,
maximum ORC pressure, et cetera. The ORC turbogenerator was designed including a radial-inflow
turbine stage driving a high-speed permanent magnet generator [28, 29], and it was optimized by in-
cluding only three design variables, namely the work coefficient, the flow coefficient and the impeller
radius ratio, related to the RIT stage. Nevertheless, the optimization of a radial turbine for ORC ap-
plications encompass several other design variables as shown by other authors [11, 35]. An in-house
sensitivity study performed by Majer shows that fuel consumption can be further improved by looking
into different working fluids, size and configurations (ORC turbogenerator vs direct-drive), showing that
optimizing an ORC turbine is desirable.

Majer and Pini [34] studied the design guidelines for high-pressure ratio supersonic RIT of ORC sys-
tems. A reduced-order model of RIT including a loss model based on the first principles is presented. In
the investigation, it was shown that one can find a simplified turbomachinery equation to predict stage
efficiency independently of the working fluid. The model cannot be generalized to optimize a turbogen-
erator (including volute, diffuser and generator), however, it gives a preliminary prediction to guide the
design based on the parameters given. The authors managed to achieve further order reduction by
means of simple data fitting to predict the efficiency of the ORC turbine, but other important objectives
such as turbine weight were not considered in the work.

8An open fan engine is different from a turboprop engine and it is able to fly atM = 0.8, similar to current single aisle aircraft
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The weight breakdown of the ORC system for the optimized CC power unit (CC-PU) configuration found
in [28], illustrated in Figure 2.1, shows that one-third of the power unit mass (total weight excluding
generator (mgen) and turboshaft (mts)) is taken up by the turbogenerator (mtg). This highlights the
need to further investigate how such a turbogenerator can be made lighter by increasing the amount
of detail in the turbogenerator design optimization. The process flow diagram of the combined cycle
turboshaft proposed in this report is shown in Figure 2.2.

Giuffré et al. [15] presented a data-driven model for high-speed centrifugal compressors for aircraft
environmental control systems. They showed that by using an Artificial Neural Network (ANN) surrogate
model (Multilayer Perceptron), the total computational cost can be reduced by a factor of 3.33 (125h
to 27.5h). By using a filtered dataset, the training computational cost was reduced by 30% without
any loss of useful information. ANN require hyperparameter optimization, however, other types of
machine learning algorithms might be a better choice for the surrogate model. Exploring whether a
similar approach can be applied to a turbine model can provide valuable insights into computational
efficiency and model performance.

Figure 2.1: CC-TS mass breakdown. The dry mass of the engine without generatorsmts is shown in blue, the generator mass
mgen is shown in red and the ORC turbogenerator massmtg is shown in green. One can see thatmtg is about one third of the

left over mass (total - engine - generator) [28]

Figure 2.2: Process flow diagram of the Combined Cycle Turboshaft configuration discussed by Krempus et al. [28]

2.2. Algorithm selection
A literature study was conducted before starting the thesis project. A more detailed version was written
for the course AE4020 Literature Study, however, the key findings are provided in the following sections.

Many machine learning algorithms have been developed over the decades. The following section
provides a brief overview of those that are suitable for developing a surrogate model for ORC turbine
design. The Literature Study report, as mentioned previously, also discusses some algorithms that are
not suitable; however, they have been omitted from this report for the sake of conciseness.
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A set of requirements was defined to filter through the large number of algorithms and determining
which ones best meet the specified criteria. The requirements are as follows:

• Can use labeled datasets: It is preferred that the algorithm can use labeled datasets, because
the training data will be structured in labeled format. However, it is not a hard requirement. If
an algorithm would outperform the others and label the data in its own structured way, that is
accepted as well.

• Able to handle large datasets well: This surrogate is created to predict the efficiency and weight
of ORC turbines. To be able to have an accurate prediction for a wide variety of input parame-
ters, the surrogate model must be trained with a very large number (> 100 000) of unique turbine
configurations.

• Can predict nonlinear relationships: The chance of finding an accurate linear relationship is very
small. To be certain that the model can make an accurate prediction, the algorithm used should
also allow for nonlinear relationships. This will probably apply to most algorithms that are investi-
gated; however, it should be mentioned.

• Efficient algorithm: A key objective of this study is to develop a computationally efficient model
by minimizing computational time. Therefore, a fast algorithm is preferred. It is important to note
that while the training process may be time-consuming, it is a one-time effort required solely for
developing the surrogate model.

Two types of algorithms were selected as suitable candidates for developing the surrogate model: neu-
ral networks and evolutionary algorithms, which are discussed in subsection 2.2.1 and 2.2.2, respec-
tively.

2.2.1. Neural network
Neural networks (NN) were initially developed to adress problems that could be solved using linear
regression9. They are specifically designed to efficiently identify low-dimensional patterns in high-
dimensional data [9].

Artificial Neural Networks (ANNs) are inspired by the interconnection of neuron cells in a brain. An
ANN has three types of layers: input, hidden and output layer, which is very similar to the parts in a
neuron: dendrites (receptor), soma (processor of electric signal), nucleus (core of neuron) and axon
(transmitting end of neuron) [2].

The advantages and disadvantages of NN are summarized below.
Advantages [19]:

• Automatic feature extraction
• Modeling of non-linear dependencies
• Various architectures for supervised and un-
supervised tasks

• Transfer learning
• Flexible
• One hidden layer is enough to approximate
any continuously differentiable function

Disadvantages [19]:
• Computationally expensive
• Huge amount of training data needed
• Sensitive to initial randomization of weight ma-
trix

• Can get stuck in local minima
• Each type of NN is designed to solve one
class of problems

Leijnen and van Veen [32] have created the Neural Network Zoo, where they give an overview of com-
monly used neural network architectures. Four types will be discussed in this report, namely multilayer
perceptron, feed-forward, recurrent and deep neural networks. A simplified visual representation of
these networks are shown in Figure 2.3.

9https://www.baeldung.com/cs/neural-net-advantages-disadvantages, accessed on March 15th 2024

https://www.baeldung.com/cs/neural-net-advantages-disadvantages
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Figure 2.3: Neural network types [32]

Multilayer Perceptron
The perceptron, introduced by Frank Rosenblatt in 1958, is considered the foundation of Artificial Neural
Networks, which are based on neuron interaction in the brain [2, 12]. A perceptron is the simplest type
of NN, as it does not contain any hidden layers. However, most modern NNs are more complex and use
hidden layers in their NN structure. A Multilayer perceptron (MLP) (used by Giuffré et al. [15]) consists
of multiple layers of perceptrons, as the name suggests and it will use step-function nonlinearities in
the hidden units [6].

Feed-forward Neural Network
A feed forward neural network (FFNN) will, as the name implies, feed the information forward from input
to output. Connections can be formed between different layers, however, they cannot form feedback
loops (see recurrent neural network) [7]. A single layer will not have any connections, while two adjacent
layers will be fully connected. It has information about ”what goes in” and ”what we want to have coming
out” [32].

A neural network differs from amultilayer perceptron because the NN uses continuous sigmoidal nonlin-
earities in the hidden units, while the perceptron uses step-function nonlinearities. Thus, the functions
in the NN are differentiable with respect to the network parameters. This will have a major role when
training the network [6]. If the NN would have linear activation functions for all hidden units, then there
would exist an equivalent network without the hidden units. This is due to the fact that the composition
of successive linear transformations is itself a linear transformation [6].

Recurrent Neural Network
A recurrent neural network (RNN) is dependent on the order you feed the input to the network and how
it is trained [32]. RNNs take information from downstream nodes and feed the information back into
previous nodes, creating feedback loops. These feedback loops can allow you to have memory and
model, learn and memorize time series trends. For systems that evolve in time, RNN would be a very
suited option.

Deep Neural Network
Deep neural networks (DNNs) are more evolved than ANNs. They usually consist of semi-supervised
learning algorithms and many hidden layers, which are fully connected [23]. Deep NN are created to
handle very large and complicated problems. However, DNNs are very complex, difficult to scale and
have high computational costs [12, 23].

2.2.2. Evolutionary Algorithms
Evolutionary learning is inspired by biological organisms that can adapt to the environment [2].The
algorithm analyzes the system’s behavior and adjusts based on the inputs, eliminating less probable
solutions. It operates on the principle of fitness to identify the most optimal solution for the problem.

Any evolutionary algorithm will have the following six steps [9]:

1. A population of individual is defined, along with a fitness function and a set of mutation operators.
2. A randomly chosen subset of size ns is selected from the population. ns usually equals 2, however

larger numbers are allowed.
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3. Each individual in this subset is evaluated based on the fitness function.
4. The fittest individual is chosen as the winner with probability p; if not selected, it is removed from

the subset, and the process repeats until only one remains, which is then selected.
5. A duplicate of the chosen individual is created and a randomly selected mutation is applied.
6. The mutated individual replaces an existing member of the population.

Genetic Programming (GP) is an Evolutionary Algorithm (EA) technique developed by Koza (1992) [27]
and it is similar to Genetic Algorithms (GA), however, they do differ in some parts. Both are based on
evolution, however, GA evolves solutions, while GP evolves a program. The most common application
of GP is symbolic regression. GP approaches building surrogate models by searching for the best
functional combination of basis functions. This differs from other approaches where they will try to
find the best linear combination of the basis functions [14]. GP models are directly created from the
datasets given as they do not require a specific model to learn the mathematical expression needed
for the basis functions.

Genetic Programming uses a tree-like structure where each interior node of an expression tree is occu-
pied by an arithmetic operation from a function set (e.g. sum, division, square root, etc.). The number of
children of an interior node must match its function arity (i.e., the number of operands of the operation).
Three methods can be used for initializing the population [14]:

1. Full method: As the name implies, this method will produce full trees with a specified maximum
depth.

2. Grown method: It will create trees with different shapes and sizes. It will select nodes randomly
until the specified maximum depth is reached.

3. Ramped half-and-half method: As suggested by the name, it will create a tree by using the pre-
viously mentioned methods to crease each half of a tree.

Every iteration consists of two parts, namely the selection and evolution operators. During the selec-
tion stage, the reproduction solutions are selected based on their fitness value. During the evolution
operators stage, new solutions are created using crossover, mutation and reproduction operators in a
probabilistic way to select new solutions. After performing these two parts, a new population is formed
[14, 20].

Crossover describes the process when two nodes are randomly selected, for each parent, and the
subtree of the first parent is replaced with the subtree of the second parent. The mutation operator will
take a solution and mutate or randomly modify it. This solution can be either a subtree mutation or a
node mutation. Lastly, the reproduction operator will reproduce or copy the solution and pass it on to
the next generation.

Symbolic Regression
One of the problems commonly used with GP is symbolic regression (SR). Symbolic regression [27]
can be classified as a supervised learning algorithm which will search the space of mathematical ex-
pressions, while minimizing various error metrics and model complexity [9, 38]. An implicit function
is typically expressed as f(x⃗, y) = 0, whereas an explicit function takes the form y = f(x⃗). Implicit
equations are often more versatile and can effectively describe complex surfaces or multi-output func-
tions in a compact manner. In SR, the objective is to automatically identify implicit equations that best
represent experimental data. Instead of traditional SR, which predicts a specific signal or value, implicit
equations are formulated to always evaluate to zero across the dataset, ensuring consistency in their
representation.

SR problems can also be solved by using a different approach, e.g. deep learning methods. These
methods are dependent on pre-defined models and the training dataset to solve the given SR problem,
while GP will focus on finding the solution in a search space [20]. Symbolic regression is used to fit a
model to a data set, and it is based on the use of expression trees [14].

A recent development in symbolic regression is its application in interpreting neural networks. Cranmer
et al. [9] developed PySR, a Python package that applies evolutionary algorithms to discover symbolic
equations. While it is primarily designed for symbolic regression on raw data, it can also be integrated
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with neural networks to extract interpretable mathematical expressions that approximate the network’s
behavior.

PySR
PySR is an open-source library for practical symbolic regression developed by M. Cranmer [9]. It was
designed to address limitations found in many existing algorithms, making them more applicable in a
broader setting. The package integrates a Python interface with a Julia backend, which utilizes just-in-
time compilation to enhance performance.

The internal search algorithm used by PySR is a multi-population evolutionary algorithm designed to
optimize unknown scalar constants in newly discovered empirical expressions. Parallelization is used
to speed up training time required. By using a migration step in the outer loop of PySR that allows to
migrate on a global permanent hall of fame, the computational search time can be sped up significantly,
which in return decreases the computational cost [9]. The inner and outer loops of PySR are shown in
Figures 2.4 and 2.5, respectively.

PySR has very attractive features, which are presented below and a full overview of the software’s
abilities presented in [9]:

• Noisy data: It can work with noisy data because it has a denoising preprocessing step that uses
the kernel stated in Equation 2.1 to optimize the Gaussian process.

k(x, x′) = σ2 exp

(
−|x− x′|2

2l2

)
+ αδ(x− x′) + C (2.1)

• Custom losses: It can work with any user-defined loss function.
• Custom operators: If the operator can de defined as either f : R −→ R or R2 −→ R, it can be
used in PySR.

• Feature selection: PySR uses a gradient-boosting tree algorithm to first fit the dataset, and then
select the most important features.

• Constraints: Hard constraints can be specified and will be enforced at every mutation.

Figure 2.4: Inner loop of PySR showing the evolutionary operators [9]
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Figure 2.5: Outer loop of PySR showing the migration process between islands [9]



3
Project Description

3.1. Problem Statement
As discussed in chapter 2, modeling ORC enhanced combined-cycle turboshaft (CC-TS) engines for
More Electric Aircraft (MEA) entails a large number of design variables. Consequently, component
modeling, such as that of the ORC turbogenerator, must be as simple and computationally efficient as
possible. Due to the numerous constraints and limitations of size and power-to-weight ratio onboard
of an aircraft, investigating the design of an ORC turbogenerator for the CC-TS requires a flexible tool
that can be used to study different configurations. To address these challenges, the following research
objective was formulated:

Research Objective

This research aims to propose a computationally efficient and highly accurate method to predict
the efficiency and weight of ORC radial-inflow turbines.

3.2. Research Questions
As already mentioned in the Research Objective stated above, the aim of the project is to propose a
computationally efficient and highly accurate method to predict efficiency and weight of ORC RIT. A
surrogate model must be created to be able to comply with the computationally efficient requirement.
As demonstrated by Giuffré et al. [15], surrogate modeling can significantly reduce computational time.
While Artificial Neural Networks (ANN) are commonly used for this purpose, other algorithms, such as
symbolic regression (SR), may also be capable of generating fast and accurate surrogate models. This
leads to the first research question of the thesis:

Research Question 1

Can a symbolic regression surrogatemodel be developed for predicting the efficiency andweight
for ORC RIT?

The choice of working fluid has a significant impact on the efficiency and overall performance of ORC
systems [24, 25]. Additionally, the state (wet or dry) of the fluid has an impact on the turbine blade life [1].
Since different working fluids operate under different conditions, they can lead to changes in the turbine
architecture, which may in return have a considerable impact on turbine weight. Given these factors,
the working fluid is a crucial parameter to consider when developing the surrogate model. Therefore,
the second research question will examine the impact of working fluid on ORC efficiency and weight.

10
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Research Question 2

What is the impact of working fluid on ORC RIT efficiency and weight?

The design process of a turbine is often complex and time-consuming. It involves multiple factors and
parameters, each influencing the final performance. These parameters, known as design variables
(DVs), include aspects such as geometry, material properties, and operating conditions, all of which
can have varying degrees of impact on the turbine’s efficiency and weight. Given the large number
of design variables, it is essential to identify which ones have the most significant role in determining
these critical performance metrics. This leads to the formulation of Research question 3, presented
below.

Research Question 3

What are the design variables that have the largest impact on efficiency and weight?

Lastly, the accuracy of the surrogate model is a critical aspect to consider, as it directly impacts the re-
liability and effectiveness of the model predictions. Given the complexity of the turbine design process
and the variety of fluids that can be used, it is important to assess how accurately the surrogate model
can predict turbine efficiency and weight. Furthermore, since different working fluids exhibit varying
thermodynamic properties, it is crucial to determine if the accuracy of the surrogate model is consis-
tent across different fluids. Evaluating its performance under various operating conditions will provide
insights into the model’s generalizability and highlight any potential limitations.

Research Question 4

What is the accuracy of the surrogate model and will it change with working fluid?



4
Methodology

The following chapter will cover the methodology applied to create the surrogate model for predicting
efficiency and weight of organic Rankin cycle (ORC) turbines for combined-cycle (CC) engines. First,
the method developed to determine the turbine weight will be explained in section 4.1. Then, a para-
metric study was performed to identify the parameters that have the largest impact on net total-to-total
efficiency and turbine weight, which is explained in section 4.2. Lastly, the development of a surro-
gate model for radial-inflow turbines is discussed in section 4.3, with emphasis on the available model
architectures, the training setups, and verification of the resulting surrogate.

4.1. Turbine Weight Estimation
The method developed to estimate the radial-inflow turbine weight will be discussed in this section. A
part of the objective of this work is to show the abilities of a symbolic regression in predicting turbine
weight. The following assumptions were made:

1. A simple geometry and volume estimation method provides a sufficiently accurate turbine weight
to show the abilities of a symbolic regression surrogate model to predict turbine weight accurately.

2. The casing thickness is fixed for all turbine designs, as well as the length of the outer part of the
backplate casing, shown in Figure 4.1.

Disk integration or disk method calculates the volume of a solid. For sections of the turbine with a
constant inner and outer radius, the volume can be calculated as follows:

V = π (R2
2 −R2

1) l, (4.1)

where V is the volume, R the radii (R2 > R1) and l is the length of the 3D shape.
For sections where the radius varies along the length of the turbine, the volume is determined using
Equation 4.2:

V =

∫ x2

x1

π
(
R2(x)

2 −R1(x)
2
)
dx, (4.2)

where R2(x) and R1(x) are functions of the axial coordinate x. This approach ensures an accurate
volume estimation for both constant and varying radius sections of the radial-inflow turbine.

Figure 4.1 shows the radial-inflow turbine in a meridional view1. It contains the impeller blisk2, stator
blades and casings (backplate and shroud). To be able to have an accurate estimation of the weight
using the disk method, the turbine and its casings need to be divided into multiple parts (indicated in
red). The backplate casing (part 1) is divided into two parts (A and B) to estimate the volume correctly
when applying Equation 4.1. The stator blades are assumed to take up 50% of the volume of the nozzle

1The meridional view is a cross-section of the turbine along the axis of rotation.
2Radial turbine impellers are typically referred to as blisks, which stands for bladed disk, and indicates a disk and blades in

a single solid piece.

12
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(part 2). Part 3 and 4 make up the impeller blisk and the shroud casing is shown in part 5. The shaft is
indicated by a blue hatching pattern and is excluded from the turbine weight. The length from the start
of backplate casing to the stator blades was fixed to 10 mm, the thickness of the backface and shroud
casing were set to 0.5 mm and 5 mm, respectively. The contour of the rotor blades was determined
based on assumptions presented by Glassman [16]. He stated that the contour of the rotor blade hub
can be approximated by a quarter-ellipse, when drawn in the meridional view, and the tip contour by a
circle. However, a discrepancy was observed when comparing the contours in TurboSim using spline
integration and the ellipse approximation. Adjusting the tip contour to a quarter-ellipse resolved this
discrepancy, as shown in Figure 4.2.

Figure 4.1: Sketch of radial-inflow turbine

The following section explains how the quarter-ellipses are calculated. The center of both ellipses is
located at (x, y)center = (0.01 + Lax, R2). The start and end point of the impeller hub contour are
(x, y)inducer,hub = (0.01, R2) and (x, y)exducer,hub = (0.01 + Lax, R3,hub), Similarly, the tip contour starts
at (x, y)inducer,tip = (0.01+z0,tip, R2) and ends at (x, y)exducer = (Lax, R3,tip). An ellipse has two types
of axis, namely the major (largest) and minor axis (smallest). The orientation of an ellipse is determined
based on the orientation of the major axis. When the horizontal difference (xend − xstart) is larger than
the vertical difference (yend − ystart), then the ellipse has an horizontal orientation, meaning that the
major axis is in a horizontal position. The opposite is true for cases that have its major in a vertical
position. The elliptic curve can be found by applying the formulae below:

Horizontal orientation:

xellipse = xcentre +∆x · cos(θ) (4.3)
yellipse = ycentre +∆y · sin(θ) (4.4)

Vertical orientation:

xellipse = xcentre +∆x · cos(θ) (4.5)
yellipse = ycentre +∆y · sin(θ) (4.6)

where ∆x and ∆y are the semi axes of the ellipse and θ are the locations of the third quadrant of the
ellipse in radians.

The contour of the shroud is also calculated using the ellipse approximation to ensure compliance with
the specified radial clearance between the rotor blades and the shroud casing. The meridional channel
contours, from the blade hub to shroud casing, are shown in Figure 4.2. It is clear that the shroud
contour aligns perfectly with the spline, which was initially used in TurboSim, confirming the earlier
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statement that the all contours could be calculated using the ellipse approximation. Note that when the
major and minor axes are equal, it will result in a perfect quarter circle, as suggested by Glassman [16].
The volume of the meridional channel, based on the ellipse approximations, is 4.8% larger than that
of the original contour. This difference is small enough to assume that the approximation is sufficiently
accurate for predicting turbine weight using the surrogate model.

Figure 4.2: Meridional channel contour using the ellipse approximation method from Glassman [16]

When the shapes of all the parts of the geometrical domain are determined, their volume can be cal-
culated. The volumes of the backplate (part 1A and 1B), the stator blades (part 2) and the backface
(part 3A) can be calculated using the simplified disk integration, Equation 4.1.The volumes of the disk
part of the blisk (part 3B) and the shroud casing are determined with Equation 4.2. By taking a small
increment in the axial direction (dx), the risk of over- or underestimating the volume is reduced. It was
chosen divide the shapes up into 100 sections. Finding the most optimal contour of the rotor blades
requires many extra steps in the calculation process. Similarly as for the stator blades, the volume
of the rotor blades is based on simple assumptions. The ORCHID impeller is used as the base case.
The ORCHID is the Organic Rankine Cycle Hybrid Integrated Device located at the aerospace faculty
[39]. The volume of one ORCHID impeller blade is about 1% of the total impeller weight. Assuming
that this is the case for most radial-inflow turbines, the total blade volume of the impeller blisk can be
determined by

Vblades =
Zrot
100

1− Zrot
100

· (Vdisk − Vshaft), (4.7)

where Zrot is the number of rotor blades, Vdisk the volume of the disk part of the blisk (including the
backface), and Vshaft is the shaft volume. The impeller design includes a 4 mm bore to fit the part on
the rotor shaft, thus the corresponding volume should be subtracted from the impeller volume.

Vshaft = π · 0.0042 · (tbf + Lax) (4.8)

The total volume of the radial-inflow impeller blisk can be found by applying:

Vblisk = Vdisk − Vshaft + Vblades. (4.9)

Additionally, the ORCHID has a locking ring to secure the impeller blisk to the shaft. It is 2 mm thick
and 2.5 mm long, the volume of this locking ring can be estimated to be

Vlocking ring = π · (0.0212 − 0.0192) · 0.0025 = 6.28 · 10−7 m3 = 628 mm3. (4.10)
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The weight of each component can be found by multiplying the volume by the density of stainless steel
(ρ = 7850 kg/m3). Since the turbine will consist only of stainless steel, the total weight of the turbine
can be determined by taking the total volume of the turbine and multiplying it by the density.

Wturbine = ρ ·
∑

V (4.11)

The turbine weight distribution is presented in Figure 4.3, with a total assembly weight of 0.371 kg.
The backplate and shroud casing are dominating the total weight, accounting for 63.6% and 23.1%,
respectively, while the impeller makes up only 10.2% of the total weight. Since the thickness of the
thickest part of the backplate and the thickness of the shroud casing are fixed, their influence on the
total weight may vary. It is expected that for significantly larger turbines, this ratio will decrease and the
impeller will constitute a larger portion of the total weight.

Figure 4.3: Weight distribution of a RIT based on the ORCHID settings using the simplified turbine architecture

4.2. Parametric Study
The TurboSim model requires many input variables, namely fluid, reduced temperature and pressure,
mass flow rate, volumetric flow ratio (VR), stator inlet angle (α0), rotor outlet angle (α3) and 17 geomet-
ric variables. The number of design variables to include in the surrogate model was chosen using a
sensitivity study, which was designed with the purpose of identifying the most relevant variables. Con-
ducting this sensitivity analysis provides two main advantages. First, including all design variables in
the training dataset for the surrogate model would result in a substantial increase in training time. Sec-
ond, the objective of this thesis is to assess the feasibility of developing a highly accurate surrogate
model. Thus, it is more effective to begin with a smaller set of design variables. If this initial approach
satisfies the predefined accuracy criteria, the model can then be expanded to incorporate additional
variables.

The investigated design variables are tabulated in Table 4.1.
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Table 4.1: Description of design variables

Symbol Description
α0 and α3 Flow angles at stator inlet (location 0) and exducer (location 3)

(g/h)bf , (g/h)le and (g/h)te Gap ratios located at the backface, leading edge and trailing edge
H/∆R Aspect ratio
Lax/∆R Axial-to-radial length ratio
ϕ2,is Isentropic flow coefficient at inducer (location 2)
ψis Isentropic head coefficient

R1/R0, R2/R1, R3/R2 Radius ratios
Rh/Rt Hub-to-tip radius ratio

(t/s)st and (t/s)rot Stator and rotor thickness ratios
Vm ratio Meridional velocity ratio

The values of the design parameters are chosen according to radial turbine design best practices, with
the mass flow rate set to 3 kg/s and the volumetric flow ratio to 20. These values are listed inTable 4.2
and 4.3.

The parametric study was performed by only varying one design variable in 10 steps between the
minimum and maximum value while keeping the other design variables constant at their average value.
The sensitivity of a parameter is determined by calculating the difference between the minimum and
maximum values in the dataset, ∆η for efficiency and ∆W for weight.

To enable a meaningful comparison between the efficiency and weight results, the percentage increase
is taken as the relative change, calculated by dividing the difference between the maximum and mini-
mum values by the minimum value, and multiplying by 100.

It is assumed that the complete turbine is made out of the same material, stainless steel, and its weight
can be estimated by using Equation 4.11.

Table 4.2: Fixed parameters in parametric study

Parameter Value Unit
Working fluid MM -

Pr 0.937 -
Tr 1.105 -
V R 40.83 -
ṁ 0.132 kg/s

Table 4.3: Varying design variables for parametric study

Design variable Min value Max value Design variable Min value Max value
α0 5◦ 45◦ ψis 0.6 1.3
α3 -10◦ 20◦ R1/R0 0.65 0.9

(g/h)bf 0.01 0.1 R2/R1 0.8 0.975
(g/h)le 0.01 0.2 R3/R2 0.4 0.6
(g/h)te 0.01 0.1 Rh/Rt 0.2 0.6
H/∆R 0.2 0.4 (t/s)rot 0.03 0.1
Lax/∆R 0.7 1.2 (t/s)st 0.01 0.05
ϕ2,is 0.3 0.5 Vm ratio 1.2 2.0
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The results of the parametric study, presented in Table 4.4, reveal notable differences in the influence of
design variables on efficiency and weight. For efficiency, the six most influential parameters (indicated
in red), ranked from highest to lowest, are R3/R2, Rh/Rt, Lax/∆R, ϕ2,is, ψis and (g/h)le. Conversely,
the parameters with the greatest impact on weight are R3/R2, Rh/Rt, ϕ2,is, V m ratio, R1/R0 and ψis.

It was observed that most design variables exhibit a stronger influence on weight compared to efficiency.
The design variables are geometrical parameters, which will therefore have a stronger affect the weight.
This difference is particularly evident in the magnitude of the relative changes calculated during the
study. The maximum percentage increase found for efficiency was 33.47%, while for weight it equals
414.38%. Such findings emphasize the importance of accounting for these variations when training a
surrogate model, as the relative sensitivity of parameters directly affects the accuracy of predictions for
efficiency and weight.

Table 4.4: Results parametric study for efficiency and weight. The six most influential design variables are indicated in red

Parameter ηmin [%] ηmax [%] ∆η [%]
Percentage
increase η

[%]
Wmin [kg] Wmax [kg] ∆W [kg]

Percentage
increase W

[%]

α0 81.34 81.36 0.02 0.02 3.48 3.49 0.01 0.08
α3 78.73 82.86 4.13 5.24 3.16 3.96 0.80 25.23

(g/h)bf 81.32 81.40 0.08 0.09 3.47 3.51 0.04 1.25
(g/h)le 78.72 83.73 5.01 6.37 3.28 3.70 0.42 12.80
(g/h)te 81.09 81.62 0.53 0.65 3.41 3.49 0.08 2.42
H/∆R 81.34 81.34 0.00 0.00 3.49 3.49 0.00 0.00
Lax/∆R 76.70 85.46 8.76 11.43 2.99 4.17 1.18 39.55
ϕ2,is 75.81 83.48 7.68 10.13 2.52 7.34 4.83 91.77
ψis 76.13 83.38 7.26 9.53 2.77 4.10 1.34 48.27

R1/R0 81.29 81.37 0.08 0.10 2.73 4.72 1.99 73.03
R2/R1 81.27 81.46 0.19 0.24 3.00 4.15 1.15 38.33
R3/R2 66.75 89.09 22.34 33.47 1.87 9.62 7.75 414.38
Rh/Rt 73.76 86.93 13.17 17.86 1.77 8.37 6.59 371.77
tsst 79.79 82.47 2.68 3.36 3.41 3.49 0.07 2.19
tsrot 80.39 80.39 1.68 2.08 3.41 3.54 0.13 3.74

Vm ratio 78.82 83.24 4.42 5.61 2.77 5.01 2.24 80.68

4.3. Model Development
A surrogate model can be best defined as an approximation model used to simulate the behavior of a
more complex and computationally expensive system. The surrogate fits the input and output data to
combinations of simple functions to approximate the behavior of the system which it mimics. Figure 4.4
shows the basic concept of surrogate modeling when the system is computationally expensive (slow
computation time). The surrogate model, which is trained with data obtained from the system, is able
to predict results faster, reducing the computational cost of the system.
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Figure 4.4: Basic concept of surrogate modeling [26]

4.3.1. Surrogate Model Input Parameters
Four parameters, namely the molecular complexity (N ), the compressibility factor (Z), the volumetric
flow ratio (VR), and the mass flow rate (ṁ) were chosen for the surrogate input layer. Molecular com-
plexity is a constant value for each fluid, allowing the model to distinguish between different working
fluids based on this number and account for their thermodynamic behavior. The compressibility factor
captures deviations from ideal gas behavior, ensuring that real fluid effects are considered. The vol-
umetric flow ratio is a key parameter in turbine performance, reflecting expansion characteristics and
efficiency trends. Finally, the mass flow rate directly influences power output and operational charac-
teristics, making it essential for accurate predictions.

Working fluid selection
The surrogate model will be trained with data from different working fluids, making it a flexible system.
Krempus et al. [30], listed 26 working fluid candidates for air-cooled organic Rankine cycle (ORC)
bottoming power plants of gas turbines, containing refrigerants, hydrocarbons, siloxanes and perflu-
orochemical (PFC) fluids. Four working fluids are selected covering all except PFCs categorizations:
refrigerant R134a, hydrocarbons cyclopentane and toluene, and siloxane MM. Ethanol is added to in-
vestigate the effect of alcohols. Lastly, butane completes the list. It was selected because it has a
much lower critical temperature than cyclopentane, even though the molecular weight is similar.

The chemical properties of the investigated working fluids are tabulated in Table 4.5.

Table 4.5: Chemical properties of the investigated working fluids [5, 33]

Working fluid Chemical
composition

Molecular
weight

Critical
temperature

Critical
pressure

Maximum
temperature

[g/mol] [K] [bar] [K]

Ethanol C2H6O 46.07 514.71 62.68 650
Butane C4H10 58.12 425.13 37.96 575

Cyclopentane C5H10 70.13 511.72 45.83 550
Toluene C7H8 92.14 591.75 41.26 700
R134a C2H2F4 102.03 374.21 40.59 455
MM C6H18OSi2 162.38 518.70 19.31 580
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In an ideal scenario, the surrogate model is trained with all fluid data simultaneously, enabling the use
of a single model across different working fluids. However, critical properties such as the critical temper-
ature and pressure, as well as the maximum temperature of a fluid, can vary significantly depending on
the working fluid. Therefore, it is necessary to investigate whether it is feasible to develop a model that
is sufficiently flexible to accurately predict turbine efficiency and weight across these varying fluids. If it
is not possible, every working fluid will have its own unique surrogate model, which in return removes
the molecular complexity input parameter from the training dataset.

Compressibility factor
The compressibility factor (Z) shows the deviations from ideal gas behavior, since it equals one when a
fluid is in the ideal gas state. A fluid is in a supercritical state when both the temperature and pressure
are above the vapor-liquid critical value, Tcrit and Pcrit, respectively [18]. This study will cover work-
ing fluids operating in the dense vapor region for which the reduced pressure is below 1, as well as
supercritical fluids for which the reduced pressure is above 1. For each fluid, the values of the reduced
total turbine inlet temperature (Tt0r ), of the minimum cycle temperature (T3r ), i.e., the condensation
temperature, and of the reduced total turbine inlet pressure were computed as follows:

Tr =
T

Tcrit
(4.12)

Pr =
P

Pcrit
(4.13)

where T and P are the temperature and pressure. Tcrit and Pcrit are the critical temperature and
pressure. The properties were estimated using the REFPROP thermodynamic libraries [33]. They are
also stated in Table 4.5. The turbine inlet and outlet temperatures, as well as the critical and saturation
temperatures are visualized on a T-s diagram in Figure 4.5.

Figure 4.5: T-s diagram

The compressibility factor corresponding to the chosen total turbine inlet pressure and temperature
ranges was computed by discretizing the interval of each quantity with 10 values, and combining them
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to obtain 100 values of the compressibility factor. This large number of points ensures a uniform distri-
bution of Z values across the specified range.

The process of determining those ranges is explained below. Table 4.6 displays the compressibility
factor ranges (lower bound (LB) and upper bound (UB)) for each investigated working fluid.

Table 4.6: Compressibility factor ranges for different working fluids

Working fluid Z [-]
LB UB

Butane 0.1 1.0
Cyclopentane 0.1 0.8

Ethanol 0.1 1.0
MM 0.1 0.9

R134a 0.1 0.9
Toluene 0.1 0.9

Reduced temperature
The temperature ranges chosen for this work are based on the previous work of Krempus et al. [28],
where the condensation temperature bounds were set to 323 and 423 K, while the total turbine inlet
temperature ranged between Tt0UB ∈ (Tmax − 100 [K], Tmax). It is important that the condensation
temperature remains below the supercritical threshold.

For R134a, the upper bound of the condensation temperature lies within the supercritical range, while
for butane, the reduced condensation temperature is 0.995. As a result, a temperature range that
accommodates all the investigated working fluids must be identified. After testing various temperature
ranges, it was decided to set the upper bound of the reduced condensation temperature to Tcondr = 0.9,
ensuring that the temperature remains below the supercritical threshold.

The total turbine inlet temperature (Tt0) range of the investigated working fluids, cannot overlap with the
condensation temperature (Tcond). When this is the case, there is no thermodynamic cycle possible.
To be able to investigate the complete range of the compressibility factor (0 ≤ Z ≤ 1), the maximum
cycle inlet temperature range needs to cover both sub- and supercritical temperatures, while still com-
plying with Tt0r > Tcondr . It was found that when using a 100 K temperature range for Tt0 resulted in
supercritical lower bounds for butane, ethanol and toluene. Hence, these Tt0r values were lowered to
Tt0r = 0.95. Ensuring the inlet temperature range covers both sub- and supercritical temperatures for
every working fluid. These temperature ranges are tabulated in Table 4.7.

Table 4.7: The reduced temperatures used in TurboSim and its corresponding temperatures expressed in Kelvin. The
temperatures deviating from the initial temperature range are highlighted in blue

Working fluid Tcondr [-] Tt0r [-] Tcond [K] Tt0 [K]
LB UB LB UB LB UB LB UB

Butane 0.76 0.90 0.95 1.35 323 382 404 575
Cyclopentane 0.63 0.83 0.88 1.08 323 423 450 550

Ethanol 0.63 0.82 0.95 1.26 323 423 489 650
MM 0.62 0.82 0.93 1.12 323 423 480 580

R134a 0.86 0.90 0.95 1.22 323 336 355 455
Toluene 0.55 0.72 0.95 1.18 323 423 562 700

Reduced Pressure
In TurboSim, the reduced pressure input parameter corresponds to the reduced condensation pressure.
While Krempus et al. [28] considered only supercritical pressures, the surrogate model incorporates
both sub- and supercritical pressures. As a result, the reduced condensation pressure range for this
model is set between 0.75 and 1.25.
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Molecular complexity
The molecular complexity N of the fluid was determined according to the following definition [8]:

N =
2Cv,id(Tc)

R
, (4.14)

where Cv,id(Tc) is the ideal gas specific heat at constant volume evaluated at the critical temperature Tc
and R is the universal gas constant. The fluid with the lowest molecular complexity is ethanol (alcohol),
the refrigerant R134a follows closely, then it is the hydrocarbons and lastly, siloxane MM is the most
complex fluid. These results are shown in Table 4.8.

Table 4.8: Molecular complexity of investigated working fluids

Working fluid N
Ethanol 23.52
R134a 23.64
Butane 31.52

Cyclopentane 37.19
Toluene 46.76
MM 80.36

Volumetric flow ratio
The volumetric flow ratio (VR) can be determined by using Equation 4.15

V R =
Pt0

Pliq,min
, (4.15)

where Pt0 is the total pressure at the inlet, which is calculated by using Equation 4.16 and Pliq,min is
the vapor saturation pressure.

Pt0 = Pr · Pcrit (4.16)

The VR ranges can be found in Table 4.9. There is a large difference between the working fluids,
indicating that creating an accurate surrogate model that is trained with data from all working fluids at
once is not possible. The solution is to create a separate model for every working fluid.

Table 4.9: VR ranges for the investigated working fluids

Working fluid VR [-]
LB UB

Butane 1.56 9.61
Cyclopentane 2.94 55.43

Ethanol 4.80 268.36
MM 4.15 138.34

R134a 1.66 3.86
Toluene 11.28 422.43

Mass flow rate range selection
The effect of mass flow rate on net total-to-total efficiency (ηttnet ), size parameter (VH) and power (Pw)
was investigated by running TurboSim while only specifying the necessary input parameters and using
predefined values for the other parameters. MM was selected as the working fluid, with the reduced
temperature and pressure were set to 1.105 and 0.937, respectively, similarly to the parametric study.
The mass flow rate varied from 0.5 kg/s to 5 kg/s, while VR was set to 3.0, as it lies within the VR
ranges of all fluids (see Table 4.9). Note that TurboSim cannot find a solution for every investigated
design because some combinations violate thermodynamic property limits.
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The mass flow rate had no significant impact on efficiency, as is shown in Figure 4.6. However, an
increase in VH and Pw was observed in Figure 4.7 and 4.8, respectively. Since the size parameter
is indirectly related to turbine weight, a lower VH indicates a more compact design, while a larger VH
corresponds to a heavier turbine. Therefore, a mass flow rate range of 0.5–5.0 kg/s was selected as it
provides sufficient variation to analyze its influence on turbine design.

Figure 4.6: Effect of mass flow rate on efficiency (ηttnet )

Figure 4.7: Effect of mass flow rate on size parameter (VH)
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Figure 4.8: Effect of mass flow rate on power (Pw)

4.3.2. Design Variables
The number of design variables included in the training dataset for the surrogate model, will have a
large influence on the required time allocated to the data generation. The data generation is performed
by using TurboSim, which can take anywhere between a couple of seconds to hundreds of seconds
to generate a result. This comes from how TurboSim is created. It has iteration loops, with stopping
criteria to prevent it ending up in an endless loop. However, not every tested combination of input
parameters has a result, making it difficult to have an accurate time estimation for the data generation.
The estimated time required to collect the training data for the surrogate model is calculated below,
assuming an average computation time of 2 seconds per result.

Six surrogate models will be created, one per working fluid. To ensure a uniform coverage of the
compressibility factor, 100 points are investigated. The next step is to determine how many values per
variable are needed to get a good prediction. Giuffre et al. [15] generated a data-driven model for high-
speed centrifugal compressors. The dataset consisted of 240 000 unique compressor stage designs,
obtained by varying 10 design parameters and for 8 different fluids. Thus, this yields 240 000/8 = 30 000
compressor configurations for each fluid. To compute the discretization of each design parameter one
can use the following formula:

#steps =
10
√
30000 = 2.8 ≈ 3 steps per parameter.

Using this result for the present work, which includes 6 working fluids, 100 values of Z, 3 mass flow
rates, 3 volumetric flow ratios, and a design variables, yields:

#investigated configurations = 6 · 100 · 32 · 3a

As mentioned above, one configuration is assumed to take 2 seconds to generate. Table 4.10 lists
the number of unique turbine configurations based on how many varying design variables are included
in the data generation and an estimate of the generation time on the Delft Blue Supercomputer using
36 processing cores. One can see that the minimum generation time increases exponentially with the
number of design variables, as well as the complexity of the surrogate model. To evaluate the feasi-
bility and accuracy of the surrogate model, only a limited number of DVs are included. This approach
maintains flexibility in the turbine design space while avoiding unnecessary complexity.
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Table 4.10: Details on how large the data generation dataset will be and how long the generation will take on the Delft Blue
Supercomputer

# DVs # configurations Minimum generation time on 36 cores
[h] [days]

4 437 400 6.75 0.28
5 1 312 200 20.25 0.84
6 3 936 600 60.75 2.53
7 11 809 800 182.25 7.59

Using the results from the parametric study, it was decided to include the six highest scoring design vari-
ables on percentage increase, whichmakes up about one-third of number of design variables. Themost
influential DVs for efficiency are, from highest to lowest influence, R3/R2 (33.47%), Rh/Rt, Lax/∆R,
ϕ2,is, ψis and ghle (6.37%). However, the six most influential design parameters for weight are R3/R2

(414.38%), Rh/Rt, ϕ2,is, V mratio, R1/R0 and ψis (48.27%). Considering that the surrogate will be
trained for efficiency and weight separately, as well as simultaneously, the selected parameters will
need to be the same for all cases. Therefore, the parameters with the highest influence on weight
weight are selected. The settings for the data generation are presented in Table 4.11 and 4.12.

Table 4.11: Design variable ranges used to generate training data in TurboSim

Design variable Value
Minimum Maximum

Head coefficient ψis 0.8 1.3
Flow coefficient ϕ2,is 0.25 0.5

Radius ratio nozzle R1/R0 0.65 0.9
Radius ratio impeller R3/R2 0.4 0.6
Hub-to-tip radius ratio Rh/Rt 0.2 0.6

Meridional velocity ratio Vm ratio 1.2 1.6

Table 4.12: Fixed design variables to
generate training data in TurboSim

Design variable Value
α0 10◦
α3 5◦

(g/h)le 0.1
(g/h)te 0.05
H/∆R 0.3
Lax/∆R 1.0
R2/R1 0.9
(t/s)rot 0.05

4.3.3. Data Generation and Post Process
The next step is to generate the training data using TurboSim. As mentioned above, it was decided to
investigate 3 values per design variable, mass flow rate and volumetric ratio. In total, 3 936 600 cases
will be tested, resulting in 656 100 cases for every working fluid. The overall data generational time can
be significantly reduced when the test cases are divided into the 9 unique combinations of mass flow
rate and volumetric flow rate. These were ran in parallel on the Delft Blue Supercomputer.

The first step of the post processing process is to combine the 9 generated datasets into one. The next
step is to decide how the data will be used, there are two ways: 1. keep it as is (complete dataset), 2.
apply constraints to filter out unfeasible cases (reduced dataset).

The reduced dataset was created by specifying 13 constraints (Equation 4.17 - 4.29). The numbers
written in square brackets indicate the location along the cross-section. For each location, the distance
between the hub and tip is divided into 5 sections. Location [x,0] indicates the hub, location [x,2] is at
the mid point and location [x,-1] is located at the tip.

The first three constraints are related to the blade angles at the stator outlet α1 (location 1), impeller
inlet or inducer β2 (location 2) and impeller outlet or exducer β3 (location 3). To limit the risk of flow
separation, the blade angles at the stator outlet and impeller inlet need to be smaller than 85◦ and 45◦,
respectively. The exducer blade angle is required to be larger than −65◦. The difference between the
hub and tip exducer blade angles (∆β3) cannot exceed 30◦. To ensure that the flow at the exducer is
at most transonic, the relative Mach number was limited to 1.2. The tip velocity U2 at the impeller inlet
cannot exceed 650 m/s. A higher tip velocity would expose the rotor blades to higher stresses, which
could result in material fatigue and failure of the blades. The number of blades is limited to 20 and
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30 for rotor and stator blades respectively, to limit the amount of added weight on the rotor.The blade
thickness was chosen to be above 0.5 mm, to ensure manufacturability of the blades. A minimal tip
clearance of 0.05 mm is chosen to allow room for vibrations that occur during operation. The minimal
blade height should exceed 2 mm and the blade radius should be at least 4 mm. Lastly, the difference
between the radius at the stator and inducer taken at the mid point should be at least 1 mm.

α[1, 2]− 85

85
< 0 (4.17)

β[2, 2]− 45

45
< 0 (4.18)

−
(
β[3, 2] + 65

65

)
< 0 (4.19)

Mrel[3,−1]−1.2

1.2
< 0 (4.20)

U [2,−1]− 650

650
< 0 (4.21)

Zrot − 20

20
< 0 (4.22)

Zst − 30

30
< 0 (4.23)

|β[3, 0]− β[3,−1]| − 30

30
< 0 (4.24)

−
(
min(t)− 0.0005

0.0005

)
< 0 (4.25)

−
(
min(g)− 0.00005

0.00005

)
< 0 (4.26)

−
(
min(H)− 0.002

0.002

)
< 0 (4.27)

−
(
min(R)− 0.004

0.004

)
< 0 (4.28)

0.001− (R[1, 2]−R[2, 2])

0.001
< 0 (4.29)

The dataset was additionally filtered to remove design points for which the loss models converged to
non-physical values, causing unlikely high values of the turbine efficiency (net total-to-total), which in
some cases resulted in a 100% efficiency. It was observed that applying the constraints, except for 5
cases of working fluid ethanol, removed these non-physical cases as well.

The next step involves splitting the dataset into training data and test data. This was done to assess
whether the equations generated by PySR produce consistent results when applied to data that was
not used in training. A 90/10% split of the data was selected over an 80/20% split due to the large size
of the dataset. This ensures that the model can be trained with the highest number of datapoints, while
keeping a large enough dataset size to perform a meaningful validation. A similar approach was taken
by Giuffré et al. [15], who allocated 6% of the dataset for development and 6% for testing, leaving
88% of the dataset for training the surrogate model. This is comparable to the selected split in this
study. The validation step of the surrogate model is computing the R-squared value for the test data
also called ’new data’ and compare it to the R2 value of dataset of the same size randomly selected
from the training dataset (’seen data’). More information on the R2 method can be found in Appendix A.

4.3.4. PySR
From the literature study performed on machine learning algorithms, see section 2.2, it was determined
to use symbolic regression. The advantage of using symbolic regression over a neural network is that it
is not a black-box model, making the resulting expressions more interpretable. Unlike neural networks,
which require extensive training data and can struggle with extrapolation beyond the training dataset,
symbolic regression generates explicit mathematic expressions that provide insight into the underly-
ing relationships between variables. These expressions can easily be analyzed, and implemented
in various applications without the need for retraining. Additionally, symbolic regression can uncover
fundamental physical relationships within the data, making it especially valuable in engineering and
scientific applications.

The best suitable off-the-shelf python package is PySR. The changed PySR settings are listed in Ta-
ble 4.14. A more extensive list, including the default settings, can be found on the PySR website3.
The optimizer algorithm used is the Broyden-Fletcher-Goldfarb-Shanno or BFGS algorithm, which is
a widely used second-order optimization algorithm. PySR uses a loss function created in Julia that

3https://astroautomata.com/PySR/api/
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measures the squared L2 distance between predicted and target values,

L2 Distance Loss =

N∑
i=1

(ytrue,i − ypred,i)
2. (4.30)

It is similar to the mean-squared-error, as can be seen in

MSE =
1

N

N∑
i=1

(ytrue,i − ypred,i)
2. (4.31)

The default model selection criterion is set to ’best,’ which chooses the expression with the highest score
among those that achieve a loss no more than 1.5 times greater than the loss of the most accurate
model. This setting is maintained to avoid overcomplicating the model, ensuring that the selected
expression remains both effective and efficient. The number of cycles per iteration (380) is the number
of total mutations to run, per 10 samples of the population, per iteration. This setting was untouched.

When test cases were run, it became clear that the standard settings were not ideal for the large
training dataset. The training was very slow (>14 h) because it took the whole dataset into account at
once. A solution was to turn ’batching’ on. Different testing cases were performed and three cases are
tabulated in Table 4.13. It can be seen that the computational time increases with increasing the batch
size. However, the Mean Squared Error (MSE) of the models drastically reduced when increasing the
batch size. The MSE is used by PySR to indicate the accuracy of the model, more information on MSE
can be found in Appendix B. A batch size of 2000 came out to be the best time-accuracy combination,
since it required only half of the training time required for a batch size of 4000, while achieving a better
MSE value.

Table 4.13: Testing different batch sizes on accuracy and computational time

Batch size Computational time [min] MSE
50 7.1 11.3
2000 20 7.5
4000 49 8.7

Unary operators such as sin, cos, tan, ln and exp were included to enable more complex expressions.
Additionally, the power operator (’^’) was added to the set of binary operators, expanding the search
space for potential solutions. The maxsize was increased from 30 to 40 and 60, so that it has more
room to explore. The surrogate model is trained on 9 parameters (compressibility factor, mass flow
rate, volumetric flow ratio and the 6 selected DVs), which would result in a minimal complexity of 17
(9 parameters and 8 operators) when only the simple binary operators are used and if all parameters
are included in the expression. The number of iterations was lowered to 40, to reduce the training
time, while the population size was slightly increased from 27 to 33, to allow for more individuals per
population. The creators of PySR suggested running the training of the surrogate model in parallel
on multiple processing cores and set ’populations’ = 3 · # cores. The surrogate was run on the Delft
Blue Supercomputer as well, and 20 cores were used. Thus, each training would have 60 populations.
Due to the fact that unary operations were used, constraints need to be specified. The three types of
constraints stated below were tested separately.

1. Only self nesting is allowed up to a depth of 1, meaning that sin (sin (x)) is allowed
2. No nesting of any sorts is allowed
3. No constraints are specified

Each time PySR is run, the model is initialized from scratch, meaning that different results may be
obtained even when using the same settings. To improve the consistency of the results, it is advisable
to keep the number of operators minimal and avoid redundant ones, such as using both ’-’ and ’neg’,
or ’^’ and ’pow’. However, given that the optimal operator selection is not always known in advance, all
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combinations of the operators specified in Table 4.14 are tested, resulting 188 unique testing settings.
Additionally, the training code is structured so that every session involves splitting the dataset into
training and verification sets, ensuring that each training run uses a unique subset. While this can
introduce slight variations in the results, the large size of the dataset mitigates any significant impact
on the overall outcomes.

Table 4.14: Changed PySR settings for training surrogate model [3]

Setting Default Used
Binary operators +, -, *, / +, -, *, /, ^
Unary operators None sin, cos, tan, ln, exp, abs4

Maxsize 30 40 & 60
Niterations 100 40
Populations 31 60

Population size 27 33
constraints None Specified

nested constraints None Specified
batching False True
batch size 50 2000

4Only used for training weight separately using the complete dataset



5
Results and Discussion

This chapter will discuss the results of the study. Section 5.1 discusses the distribution of the datasets
used to train the surrogate models, as well as the effect of applying constraints to these different
datasets. The performance of the surrogate models are discussed in section 5.2.

5.1. Data Generation and Post-Process
This section is organized as follows. Firstly, subsection 5.1.1 will look at the distribution of mass flow rate
and volumetric flow ratio in the different datasets. Secondly, subsection 5.1.2 looks into the distribution
of the six selected design variables in the datasets. Lastly, the distribution of efficiency and weight in
the datasets is discussed in subsection 5.1.3.

The number of cases for which TurboSim generated a turbine design is tabulated in Table 5.1. It
contains the complete dataset, which are the results obtained from TurboSim for which the loss models
converged to physical values; and the reduced dataset, which is obtained by filtering the data based
on feasibility constraints, which are discussed in more detail in subsection 4.3.3. It can be seen that
the obtained datasets are relatively small compared to the number of cases that were tested. This is a
direct result from the stopping criteria in the iterative processes in TurboSim to limit the search time to
find a design.

Since the dataset was generated using only three discrete values (minimum, mean, maximum) for each
design variable, mass flow rate and volumetric flow ratio, intermediate feasible designs may not have
been captured. As a result, applying the 13 constraints reduced the dataset size to only a fraction
of its original size (1.7% to 15.4%). The percentage of feasible designs relative to the total number
of investigated cases per working fluid is even lower (0.8 to 6.7%). Relaxing the constraints had little
effect on the reduced dataset size, suggesting that the limited coverage of feasible regions is the primary
issue rather than overly restrictive constraints.

Table 5.1: Dataset size of complete and reduced datasets generated by TurboSim

Working fluid Complete dataset Reduced dataset

[cases] [% investigated
designs] [cases] [% investigated

designs] [% complete dataset]

Butane 358 524 54.6 29 562 4.5 8.2
Cyclopentane 157 762 24.0 17693 2.7 11.2

Ethanol 172 506 26.3 9686 1.5 5.6
MM 287 224 43.8 44 162 6.7 15.4

R134a 304 196 46.4 5257 0.8 1.7
Toluene 290 645 44.3 29 685 4.5 10.2

28
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5.1.1. Distribution of Mass Flow Rate and Volumetric Flow Ratio in Dataset
Table 5.2 shows the dataset breakdown across all tested combinations of mass flow rate and volumetric
ratio. It is useful to analyze the datasets obtained from TurboSim to understand how the surrogate
models behave after training. It is expected that a surrogate model trained on an equally distributed
dataset will predict different results compared to a model that is trained on a skewed dataset.

It can be seen that the mass flow rate does not affect the number of cases generated by TurboSim
(complete dataset). However, the volumetric flow ratio has a large affect on the distribution of working
fluid ethanol, which is the fluid with the lowest molecular complexity investigated in this research. The
dataset size will halve each time the volumetric ratio is increased. A similar trend is observed in the
dataset for toluene, where the dataset size drops significantly from the minimum to the mean VR but
remains nearly the same between the mean and maximum VR values. This indicates that TurboSim
requires more iterations than the set termination criterion to converge on designs operating at the mean
or maximum VR. For further research, increasing iteration limit could allow more designs to be included
in the dataset. However, increasing the number of iterations can also increase the computational time.

In the complete dataset generation, mass flow rate does not affect the number of cases that are gener-
ated by TurboSim. However, the volumetric flow ratio does have an influence on the number of cases.
This suggests that the surrogate model will be trained with datasets that are more sensitive to a change
in volumetric flow ratio than to mass flow rate. This can have an effect on the performance of the model,
which will be discussed in section 5.2.

The data distribution of the reduced datasets show that both mass flow rate and volumetric flow ratio
affect the number of cases in the datasets. It can be seen that when ṁ = 0.5 kg/s (minimum), it will not
result in any feasible designs for butane andR134a. The other fluids will not have any feasible design for
the combination of minimum mass flow rate and minimum VR. This shows that most designs operating
at the minimum mass flow rate do not comply with the specified constraints, stated in subsection 4.3.3.
The surrogate models trained on these datasets will be sensitive to the given mass flow rate as well as
the volumetric flow ratio.
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Table 5.2: Breakdown of dataset size, split into the 9 unique combinations of mass flow rate and volumetric ratio

Working fluid VR [-] Mass flow rate [kg/s] Size dataset [cases]
Complete Reduced

Ethanol
(N=23.515)

4.80 (min)
0.5 34559 0
3.0 34532 1229
5.0 34531 3629

136.585 (mean)
0.5 14282 113
3.0 14280 1379
5.0 14284 1755

268.36 (max)
0.5 8680 84
3.0 8683 653
5.0 8675 844

R134a
(N=23.638)

1.66 (min)
0.5 33558 0
3.0 33590 58
5.0 33566 863

2.76 (mean)
0.5 34136 0
3.0 34160 253
5.0 34159 1430

3.86 (max)
0.5 33639 0
3.0 33707 496
5.0 33681 2157

Butane
(N=31.515)

1.56 (min)
0.5 38885 0
3.0 38942 849
5.0 38903 2933

5.585 (mean)
0.5 40521 0
3.0 40508 3333
5.0 40539 7051

9.61 (max)
0.5 40064 0
3.0 40057 5980
5.0 40105 9416

Cyclopentane
(N=37.188)

2.94 (min)
0.5 18065 0
3.0 18054 325
5.0 18029 1196

29.185 (mean)
0.5 18179 16
3.0 18195 3425
5.0 18203 5079

55.43 (max)
0.5 16332 197
3.0 16352 3321
5.0 16353 4134

Toluene
(N=46.760)

11.28 (min)
0.5 37131 0
3.0 37153 4475
5.0 37145 7865

216.855 (mean)
0.5 30412 1055
3.0 30460 4277
5.0 30484 4752

422.43 (max)
0.5 29287 815
3.0 29302 3044
5.0 29271 3402

MM
(N=80.355)

4.15 (min)
0.5 29816 0
3.0 29833 2477
5.0 29820 5027

71.245 (mean)
0.5 32921 1324
3.0 32930 8271
5.0 32962 9516

138.34 (max)
0.5 32936 1861
3.0 33003 7423
5.0 33003 8263
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Butane is considered to investigate the effect of feasibility constraints on the turbine design space, as
per Table 5.3. Tables for the other working fluids considered in this study can be found in Appendix B.
When more than 50% of the dataset violates a constraint, it is indicated in red. The constraint equations
were reported in subsection 4.3.3.

As the mass flow rate increases, the blade height must increase to accommodate the larger flow area
required. Therefore, imposing smaller mass flow rates tends to lead to unfeasible turbine designs be-
cause of either too low blade thickness, or too low blade height. The blade height constraint (constraint
9) is violated the most in the cases operating at the minimum mass flow rate of 0.5 kg/s. Figure 5.1
shows the minimum blade height plotted against the compressibility factor Z for the complete VR range
and ṁ = 0.5 kg/s. The design variables were fixed at their respective mean value. The blade height
for the cases operating at the smallest VR required the largest blades. The blade height is found by
applying Equation 5.1:

H =
ṁ

2π · vm · ρ ·R
, (5.1)

where ṁ is the mass flow rate, vm the meridional velocity, ρ the density and R the radius. The VR,
determined in Equation 4.15, is a pressure ratio which can be used to calculate the density. The
equation of state is given in Equation 5.2:

ρ =
P

R · T
, (5.2)

with P the pressure, R the gas constant and T the temperature. A smaller VR will result in a lower
density, therefore resulting in a larger blade height.

Figure 5.1: Minimum blade height vs compressibility factor for working fluid butane, ṁ = 0.5 kg/s, DVs are fix at their
respective mean value

Two constraints are never violated for any of the investigated working fluids, namely the constraint on
the exducer blade angle (constraint 3) at the midpoint between the hub and the tip, and the constraint
on the maximum number of stator blades allowed (constraint 6). This is shown in Table 5.3 for working
fluid butane and Appendix B for the other working fluids.

The tip blade speed constraint (constraint 5) was necessary for working fluid ethanol. Alcohols, like
ethanol, have a low molecular weight compared to hydrocarbons, shown in Table 4.5. The specific
heat capacity at constant pressure (cp) of alcohols is higher than that of hydrocarbons, which results in
a higher isentropic work and consequently larger peripheral speeds U2, following

U2 =

√
wis
ψ
, (5.3) wis = cp · (Tt0 − Tt2). (5.4)
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One-third of all cases generated by TurboSim required more than 30 stator blades (constraint 7). The
mass flow rate and volumetric flow ratio do not affect this percentage. However, the design variable
R1/R0 does affect the constraint violations, as is shown in Figure 5.2. All designs that operate at the
maximum R1/R0 value, required more than 30 stator blades. This is the case for all six working fluids.

Figure 5.2: Number of stator blades required vs compressibility factor for the complete VR range. Working fluid butane,
ṁ = 0.5 kg/s, R1/R0 = 0.9 (maximum), other DVs are fixed at their respective mean value.

The minimal tip clearance (constraint 10) was chosen equal to 0.05 mm which deemed feasible with
typical manufacturing techniques, and assuming that machine vibrations while in operation are com-
paratively small. Only designs featuring small values of ṁ were impacted by this constraint, as the size
of the turbine reduces in such cases.

Table 5.3: Constraint violations for working fluid butane expressed in percentage of the number of cases in the complete
dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1. α1 - - - - - - - - -
2. β2 5.13% 5.18% 5.12% 4.90% 4.85% 4.84% 5.00% 5.02% 5.04%
3. β3 - - - - - - - - -
4. Mrel - - - 8.10% 8.11% 8.11% 21.38% 21.39% 21.33%
5. U2,tip - - - - - - - - -
6. Zrot - - - - - - - - -
7. Zst 33.27% 33.36% 33.24% 33.34% 33.24% 33.32% 33.30% 33.29% 33.32%
8. ∆β3 18.42% 18.44% 18.36% 27.91% 27.91% 27.91% 27.52% 27.47% 27.43%
9. tmin 100.00% 97.01% 90.35% 99.99% 89.31% 77.46% 99.85% 79.84% 67.70%
10. gmin - - - 0.19% - - 0.32% - -
11. Hmin 36.48% - - 57.51% 0.85% 0.03% 60.57% 2.06% -
12. Rmin 61.70% 19.67% 0.03% 51.03% 10.22% 5.57% 43.25% 7.21% 6.39%

13. R1 −R2 12.53% - - 4.30% - - 0.53% - -

The most restrictive constraint is the one for the minimum blade thickness (constraint 9). Figure 5.3
shows the blade thickness computed by TurboSim for all six working fluids, sorted in ascending order.
A minimum thickness of 0.5 mm was assumed to ensure manufacturability of the blades, as indicated
by the dashed horizontal line in the figure. It can be observed that designs operating with fluids of lower
molecular complexity (ethanol, R134a, butane and cyclopentane) do not meet this criterion. For the
more complex fluids, MM and toluene, approximately 50% of the designs fail to meet the constraint.
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Figure 5.3: Minimum thickness constraint violation for all investigated working fluids

5.1.2. Effect of Design Variables on Dataset
The next step is to examine how the design variables influence the datasets. This is necessary as it
provides insight into how the training process might be performed and the potential accuracy of the
predictions. Working fluid butane will be discuss in detail, because it has the largest dataset. The
dataset distributions of the other working fluids can be found in Appendix C.

Butane
In the complete dataset, as shown in Figure 5.4, the flow coefficient (ϕ2,is) and radius ratio R3/R2 are
unevenly distributed. The minimum values of these parameters account for only about 20% of the
dataset, while the maximum values make up more than 40%. Since the other parameters are more
evenly distributed, this imbalance suggests that the dataset inherently favors certain design regions,
potentially impacting future modeling efforts.



5.1. Data Generation and Post-Process 34

Figure 5.4: Distribution of parameters in complete dataset for Butane

The distribution of the design parameters for the constrained dataset is illustrated in Figure 5.5. The
most significant difference compared to the distribution of the entire dataset is observed for the radius
ratio of the nozzle (R1/R0). As R1/R0 increases, the nozzle aspect ratio decreases and so does the
nozzle blades thickness and the blade height. The minimum thickness is in most cases lower than the
minimum feasible value based on manufacturing considerations, which corroborates with the reduction
in the number of feasible designs when considering larger values of R1/R0. Similarly, the radius ratio
R3/R2 excluded certain cases at its maximum value due to constraint violations.

The distribution of the remaining design variables appears to be largely unaffected by the constraints.
However, the reduced dataset has a significantly different distribution compared to the complete dataset.
As a result, the relative importance given to these portions of the dataset will be different during training.
The accuracy of the model can improve or decrease depending on the shape of the dataset. This will
be discussed in section 5.2

Figure 5.5: Distribution of parameters in reduced dataset for Butane
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5.1.3. Efficiency and Weight Distribution
To gain a deeper understanding of how the surrogate model is trained and the predictions it is likely
to produce, the efficiency and weight distributions of the dataset are analyzed. By identifying peaks in
these distributions, it is possible to evaluate whether the model aligns with the most frequently occurring
values. When certain efficiency or weight values appear more frequently in the dataset, the surrogate
model can have a bias toward this particular part of the dataset. On the other hand, in regions where
data is sparse, the model may exhibit greater uncertainty and tend to predict values corresponding
to the dominant peaks. Working fluids with a larger range in turbine assembly weights are likely to
produce a higher Mean Squared Error (MSE) compared to fluids with a smaller range, as the error can
be more significant. The MSE is calculated over the complete dataset, whereas squared error can be
used to evaluate the accuracy of individual samples.

For the complete dataset, shown in Figure 5.6, the most frequently occurring efficiency values are
found around η = 87.5% for working fluids butane, cyclopentane and R134a. Ethanol, MM and toluene,
however, have a peak at η = 85%. When filtering out the unfeasible designs by applying the constraints,
as shown in Figure 5.7, the distribution changes. The data becomes more concentrated around the
mean value and it contains a lower amount of outliers. The mean efficiency is presented in Table 5.4,
where it can be seen that the mean efficiency will reduce when applying the feasibility constraints. In
both the complete and reduced datasets, themean efficiency values are very close together, suggesting
that the working fluid has little impact on the efficiency of the turbine designs.

(a) Butane (b) Cyclopentane (c) Ethanol

(d) MM (e) R134a (f) Toluene

Figure 5.6: Efficiency histograms for complete dataset
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(a) Butane (b) Cyclopentane (c) Ethanol

(d) MM (e) R134a (f) Toluene

Figure 5.7: Efficiency histograms for reduced dataset

Table 5.4: Mean efficiency of complete and reduced datasets for all investigated working fluids

Working fluid Mean Efficiency [%]
Complete dataset Reduced dataset

Ethanol 84.56 81.09
R134a 86.15 82.82
Butane 85.88 82.64

Cyclopentane 84.46 80.83
Toluene 82.97 79.68
MM 84.08 79.77

The majority of the turbine weights are concentrated at the lower values, although significant variations
are observed between the different working fluids. Turbines designed for working fluids such as MM,
ethanol and toluene exhibit extremely high weights, as shown in Table 5.5. This can be due to the higher
upper limit of the volumetric flow ratio for these fluids. A higher VR can lead to an increased impeller
radius R2, which is shown in Figure 5.8. As a result, the overall turbine weight increases. Therefore,
the choice of working fluid plays a key role in determining the turbine’s weight characteristics.
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Figure 5.8: Impeller radius vs compressibility factor for the complete range of VR, while the DVs are fixed at their respecity
mean value and the mass flow rate equals 0.5 kg/s

Despite these variations, most cases fall below 100 kg. The minimum weight predicted by TurboSim
across all working fluids is approximately 0.02 kg, while the feasible designs have a minimum weight
of around 1.5 kg. Figure 5.9 and 5.10 illustrate the weight breakdown of a light and heavy turbine
operating with ethanol. The relative contribution of turbine components shifts with increasing weight.
In small turbines, the heaviest components are the backplate (67.8%) and shroud casing (20.7%),
while the impeller accounts for only 5.7% of the total turbine weight. This distribution changes for larger
turbines, as seen in Figure 5.10, where an 86 kg turbine has the impeller as the dominant contributor
(52.6%), with the backplate and shroud casing making up most of the remainder. The locking ring has
a negligible effect and the stator blades contribute less than 1% of the total weight.

Figure 5.9: Turbine weight breakdown of a 0.128 kg turbine
operating on ethanol

Figure 5.10: Turbine weight breakdown of a 86.009 kg
turbine operating on ethanol

After applying the constraints, most extreme cases were filtered out for most fluids. However, for cy-
clopentane and toluene, which are the two more complex hydrocarbons, the data filtering primarily
removes low weight designs while leaving the heavier cases unaffected, as can be seen in Table 5.5.
The new mean weights are found in Table 5.6.
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Table 5.5: Weight distribution for the complete and reduced datasets

Working fluid Complete dataset Reduced dataset
Minimum weight [kg] Maximum weight [kg] Minimum weight [kg] Maximum weight [kg]

Ethanol 0.02 1344.26 1.60 741.32
R134a 0.01 11.31 1.60 7.89
Butane 0.02 37.48 1.53 25.10

Cyclopentane 0.02 94.14 1.58 94.14
Toluene 0.03 1268.48 1.54 1268.48
MM 0.03 730.18 1.60 478.40

Table 5.6: Mean weight of complete and reduced datasets for all investigated working fluids

Working fluid Mean Weight [kg]
Complete dataset Reduced dataset

Ethanol 21.61 55.68
Butane 1.60 5.51

Cyclopentane 4.36 14.35
R134a 0.64 3.10
Toluene 40.81 83.61
MM 16.58 40.91

5.2. Surrogate Models
Surrogatemodels have been generated to predict the efficiency andweight of radial-inflow turbines. In a
first phase, a single surrogate model with two output nodes (i.e., the two quantity of interest, efficiency
and weight) was trained using the data obtained from TurboSim simulations. These models will be
referred to as Symbolic Regression 2 Outputs (SR2O). Subsequently, two additional surrogates, each
one trained to predict a single quantity of interest (either the efficiency or the weight) and thus featuring
a single output node, were generated using the same dataset. They will be abbreviated to SR1E and
SR1W, respectively. The PySR [9] implementation of a symbolic regression model was chosen to
generate the surrogates presented in this work, which was discussed in subsection 4.3.4. The present
section provides a summary of the main results obtained after the training process, along with an
assessment of the accuracy of the surrogate on a test dataset, performed using the Mean-Squared-
Error (MSE) and the R-squared (R2) performance metrics. This was done for both the surrogate model
including two output nodes (SR2O) and the two additional models, each consisting of a single output
node to predict each quantity of interest separately (SR1E and SR1W). TheMSE quantifies the average
squared error between actual values and predictions. A high MSE indicates that the model predictions
deviate significantly from the actual values, which may be due to larger overall errors or due to the
presence of outliers in the dataset. The R2 score indicates the fit of the predictions compared to the
actual data. A perfect fit would result in R2 = 1, therefore, a high value is preferred. A more detailed
explanation can be found in Appendix A.

Initially, all regression equations were limited to a maximum complexity (setting ’maxsize’ in PySR) of
40. However, this limit was later increased to 60 to allow for higher R2 values, which in turn give a
better approximation of the trend in the generated data. The binary operators +, -, * and / were always
included. The original decision was to include unique combinations of the binary operator power (^)
and unary operators sin, cos, tan, ln and exp. However, it was found that in some cases the predicted
weight was negative. This can be due to the fact that the datasets have the highest concentration of
data located at the lower weights, as can be seen by the low mean values listed in Table 5.6, as well
as, being a result of not filtering out the non-physical values in the loss models. To solve this issue,
these non-physical designs were filtered out and additionally the unary operator abs (absolute value)
was added to the list of operators to train SR1W models using the complete dataset. It was not added
to the SR2O and SR1E models because it would be redundant in the efficiency expressions since the
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predictions were always positive. Since unary operators are used, it was necessary to add constraints
to avoid creating very complex expressions. These constraints were explained in subsection 4.3.4.

The dataset sizes are summarized in Table 5.7. Approximately 90% of the dataset was randomly
selected and used to train the model (training set), while the remaining 10%was reserved for evaluating
the R2 (test set), which will be referred to as ’unseen’ or ’new data’. An equal number of data points
were randomly selected from the training dataset to compute the R2 value for ’seen data’.

It was observed that the R2 values of both cases (seen and new data) were nearly identical. In addition,
this is also observed when comparing the average R2 values of the different models that were tested
in the verification phase, see Appendix D. Thus, indicating that a train-test split of 90/10 is sufficient
to reach acceptable accuracies on unseen data. The selection of the best model was based on the
highest R2 score, this either being the one for ’seen data’ or ’new data’.

Table 5.7: Datasets split between used for training and used for verification

Working fluid Complete dataset [cases] Reduced dataset [cases]
Training Test Training Test

Ethanol 155 006 17 500 8691 1000
R134a 273 696 30 500 4757 500
Butane 322 525 36 000 26 562 3000

Cyclopentane 141 762 16 000 15 693 2000
Toluene 261 645 29 000 26 685 3000
MM 258 724 28 500 39 662 4500

5.2.1. Training Efficiency and Weight Simultaneously
When training a single model to predict both efficiency and weight simultaneously (SR2O), the model
accuracy when predicting the two outputs can differ significantly. In particular, it was observed that
a more complex model, indicated with a high complexity, is required to obtain a sufficiently accurate
evaluation of the efficiency. In contrast, weight predictions can be satisfactory even with a simpler
structure of the surrogate. However, the R2 values for efficiency were consistently higher than those for
weight, suggesting that PySR was able to identify clearer trends in the dataset for efficiency. Another
key observation was that different mathematical operators were preferred for efficiency and weight.
Although a possible alternative approach could be to include all possible operators and let the optimizer
determine the best surrogate, it is generally preferable to minimize the number of operators [3].

Table 5.8 shows the best surrogate models to predict either of the outputs (efficiency and weight) for
butane as working fluid. The corresponding R2 values and complexities are shown. The best perform-
ing model at predicting the efficiency using the reduced dataset reaches a R2 = 0.8897. Conversely,
the weight prediction results in R2 = 0.5264. This suggests that a trade-off exist for the selection of a
suitable SR2O model.
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Table 5.8: Best result for efficiency and weight when trained in a single model (SR2O) for working fluid butane, maximum
allowed complexity is 40

Type dataset
Best

performing
on

R2 Complexity Selected
operators

Corresponding
parameter R2 Complexity

Reduced Efficiency 0.8897 35

+, -, *, / , cos,
tan, exp, only
self-nesting
allowed

Weight 0.5264 16

Weight 0.7032 28
+, -, *, /, sin,

exp, no nesting
allowed

Efficiency 0.8189 12

Complete Efficiency 0.9357 31
+, -, *, /, sin, tan,
self nesting
allowed

Weight 0.7504 19

Weight 0.8329 24
+, -, *, /, ˆ, tan,
exp, no nesting

allowed
Efficiency 0.8382 14

5.2.2. Training Efficiency and Weight Separately
From the results listed in Table 5.8, one can see that the operators preferred by the PySR optimizer
for generating surrogates with high scores in efficiency and weight prediction are vastly different. To
minimize the number of operators, keep surrogate complexity at aminimum, and obtain an overall better
fit of the data, the training process was carried out by feeding the algorithmwith data of the efficiency and
weight separately, resulting in the creation of two independent surrogates, SR1E and SR1W. Another
benefit is that the two models can be trained in parallel on the Delft Blue Supercomputer, reducing the
time spend on training the surrogate models.

An overview of the best performing models are listed in Table 5.9 and 5.10. It can be seen that in-
creasing the maximum allowed complexity from 40 to 60 significantly increased the training time, even
when the training was performed on the Delft Blue Supercomputer on 36 processing cores. Note that
only the cases with the highest R2 value are presented, the average values of the all training tests are
summarized in Appendix D. In most cases, increasing the maximum complexity (maxsize) to 60 led to
higher R2 value. If this was not the case, it will be indicated in blue. The models that obtained a low R2

value, indicating that they did not capture the trend of the dataset, are indicated in red.
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Table 5.9: Overview of the best surrogate models for each type of trained model for working fluids butane, cyclopentane and ethanol

Fluid Trained for Type dataset Maxsize Best R2 MSE Equation complexity Training time [s]

Butane

Efficiency
Reduced 40 0.890 4.066 27 138.1

60 0.933 2.454 38 293.7

Complete 40 0.910 4.058 33 388.6
60 0.918 3.613 35 667

Weight
Reduced 40 0.711 2.705 29 202.8

60 0.706 2.784 41 378.2

Complete 40 0.828 0.742 27 369.3
60 0.857 0.635 42 2412.8

Cyclopentane

Efficiency
Reduced 40 0.889 3.576 39 151.8

60 0.914 2.780 51 283.2

Complete 40 0.909 4.143 25 268.0
60 0.912 3.992 35 410.9

Weight
Reduced 40 0.808 23.489 34 202.2

60 0.841 21.049 30 226.6

Complete 40 0.878 6.246 26 319.8
60 0.892 5.570 32 315.9

Ethanol

Efficiency
Reduced 40 0.887 3.099 23 179.5

60 0.900 2.626 37 266.1

Complete 40 0.903 4.100 21 312.5
60 0.908 3.880 39 332.9

Weight
Reduced 40 0.928 517.0 27 185.3

60 0.938 463.38 34 219.8

Complete 40 0.887 380.22 31 216.0
60 0.892 375.02 26 346.7
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Table 5.10: Overview of the best surrogate models for each type of trained model for working fluids MM, R134a and toluene

Fluid Trained for Type dataset Maxsize Best R2 MSE Equation complexity Training time [s]

MM

Efficiency
Reduced 40 0.913 3.672 28 187.1

60 0.937 2.855 35 376.6

Complete 40 0.905 4.449 24 295.8
60 0.938 2.934 39 439.1

Weight
Reduced 40 0.868 308.818 27 209.5

60 0.885 278.65 35 405.9

Complete 40 0.886 154.342 33 397.9
60 0.877 137.633 55 539.7

R134a

Efficiency
Reduced 40 0.920 1.720 28 240.3

60 0.916 1.791 30 211.8

Complete 40 0.913 3.732 28 350.9
60 0.923 3.283 31 427.3

Weight
Reduced 40 0.513 0.361 32 198.2

60 0.569 0.351 30 222.6

Complete 40 0.843 0.081 36 1179.2
60 0.892 0.057 44 492.2

Toluene

Efficiency
Reduced 40 0.905 3.264 38 224.6

60 0.909 3.143 52 265.4

Complete 40 0.895 5.241 22 357.9
60 0.910 4.391 40 602.1

Weight
Reduced 40 0.926 1287.78 30 156.2

60 0.931 1185.2 44 353.8

Complete 40 0.867 901.884 30 317.1
60 0.905 629.918 47 1124.4
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The SR1E models were be trained on both the complete dataset and reduced dataset (feasible designs
only) for each working fluid. For all fluids, the R2 value exceeds 0.9 when trained on both datasets.
The best and worst performing models are corresponding to working fluids siloxane MM and ethanol
(alcohol), respectively. The R2 score of the hydrocarbons tends to decrease with increasing molecular
complexity, a trend observed for both the complete and reduced dataset. The complexity of the surro-
gate models trained on the complete dataset is between 35 and 40, with the exception of working fluid
R134a, which has a complexity of 31.

A visual representation of the R2 values is provided in Figure 5.11, where both the ’seen’ and ’new’
datasets are shown. To illustrate the range of performance, only the fluids with the highest (MM) and
lowest (ethanol) R2 value are plotted. The results indicate that the testing cases align closely with the
red line indicating a perfect fit (y = x). The efficiency datasets do not exhibit significant variations, as
was illustrated in Figure 5.6 and 5.7. This is also confirmed by the relatively low MSE values compared
to those of the weight models, with most surrogate predictions falling within a ±5% deviation from the
actual values.

(a)Working fluid ethanol trained on the complete dataset (155 006
cases), 17 500 cases were used to calculate the R2 value

(R2 = 0.908)
(b)Working fluid ethanol trained on the reduced dataset (8691 cases),

1000 cases were used to calculate the R2 value (R2 = 0.900)

(c)Working fluid MM trained on the complete dataset (258 724 cases),
28 500 cases were used to calculate the R2 value (R2 = 0.938)

(d)Working fluid MM trained on the reduced dataset (39 662 cases),
4500 cases were used to calculate the R2 value (R2 = 0.937)

Figure 5.11: Comparison of efficiency predictions vs actual values for the best and worst performing working fluids using the
complete and reduced datasets during training

The accuracy of the weight models (SR1W) show a relation with the working fluid properties. The R2

scores of the SR1Wmodels are in general slightly lower compared to the SR1E results. However, their
R2 values remain between 0.86 and 0.91, indicating that the overall trend in the data was successfully
captured. Note that the weight dataset is heavily skewed toward lower weight values, leading to an
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uneven data distribution. This is the case when considering ethanol, MM and toluene, as working fluids,
for which the turbine weight is generally higher due to the larger range in investigated volumetric flow
ratios, as tabulated in Table 5.5. The high MSE values for these fluids are a direct result of this large
variation in turbine weight.

The reduced dataset for working fluid R134a contains the lowest number of cases. It consists of only
5257 cases in total, of which 4747 cases were used for training and 500 cases for evaluating the R2 value
of the surrogate model. The resulting R2 = 0.569 indicates that the model did not manage to capture the
trend in the dataset. This can be seen in Figure 5.12, where most of data points are located between
± 30% lines (orange). Figure 5.13 shows the change in the predicted weight distribution, shown as a
histogram. It can clearly be seen that the reduced dataset has a different shape compared to the one
using the surrogate model.

However, despite this, the turbine assembly weight itself exhibit very little variation (1.60 - 7.89 kg),
which is reflected in its low MSE value (MSE = 0.35). Therefore, it can be concluded that the design
space for R134amight not be appropriate. Relaxing themost violated constraints, such as theminimum
thickness, blade height and radius constraints, can result in more feasible designs. Hence, a more
appropriate dataset. However, as mentioned before, the design space of the dataset is not ideal, so
relaxing the constraints has a minimal effect on it.

Figure 5.12: Working fluid R134a trained on the reduced dataset (4747 cases), 500 cases were used to calculate the R2 value
(R2 = 0.569)
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(a) R134a TurboSim (b) R134a Surrogate model (R2 = 0.569)

Figure 5.13: Weight histograms of the reduced dataset of working fluid R134a

On the contrary, the models for working fluids ethanol and toluene successfully captured the trend in
the weight dataset, achieving R2 values above 0.93, despite the datasets being widely spread. It can
be seen that a higher number of predictions for ethanol (Figure 5.14) are closer to the perfect fit line
compared to R134a (Figure 5.12), where the datapoints were more spread. However, the accuracy
of the weight predictions for ethanol can be more than 30% off for turbine weights lower than 200 kg,
as is indicated by the orange lines. The surrogate model has more datapoint underneath the red line,
meaning that it has a tendency to overpredict the turbine weight.

Figure 5.14: Working fluid ethanol trained on the reduced dataset (8691 cases), 1000 cases were used to calculate the R2

value (R2 = 0.938)

Accuracy of surrogate models based on DVs
The next step is to analyze the performance of the surrogate models in greater detail. The parametric
study demonstrated that some design variables have a more significant impact on turbine efficiency
and weight than others. The dataset contains three discrete values for the mass flow rate, the VR, as
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well as for the six DVs. This approach significantly reduced the dataset size, making data generation
more efficient. However, it also resulted in the loss of detailed information on how individual design
variables influence efficiency and weight predictions.

The ability of the surrogate models to predict the trend of the training data will be examined in the
following section. The predictions will be compared to the training dataset (three discrete values) as
well as using a larger dataset (15 discrete values). To illustrate the difference between a well performing
and a poorly performing model, working fluid R134a is used. There is a large difference in R2 value
for the SR1W models using working R134a and the other working fluids, as tabulated in Table 5.9 and
5.10. When trained on the complete dataset, the surrogate model for turbine weight achieved a high
R2 score of 0.892, capturing the overall trend well. However, when trained on the reduced dataset, the
model failed to recognize any clear tends in the data, resulting in a much lower R2 score of 0.569. In
contrast, the efficiency model performed well in both cases, achieving R2 scores of 0.923 and 0.926 for
the complete and reduced datasets, respectively. Figure 5.15 to 5.18 show the surrogate predictions
compared to the actual dataset for the most and least influential DVs used in the data generation. They
show only a fraction of the dataset used during training. The process of selecting the settings for those
figures as well as analyzing the presented results will be discussed in the following section.

Test settings
Identifying an ideal test case is challenging because the models are trained on multiple varying param-
eters. To address this, the analysis focuses on the regions in the dataset with the highest data density.
The goal is to evaluate the model accuracy when varying a single design variable, this being either the
one that has the largest impact or the smallest impact on efficiency and weight.

All input parameters, compressibility factor (Z), mass flow rate (ṁ) and volumetric flow ratio (VR),
were fixed at the values for which the highest data density was identified. The compressibility factor
is calculated for the maximum reduced temperature of 1.216 and a reduced pressure of 0.972 (high-
est subcritical investigated value). Both mass flow rate and VR are fixed at their mean value of 3.0
kg/s and 2.76, respectively, as they are evenly distributed across the complete dataset. Although the
reduced dataset contains the highest number of cases operating at their respective maximum values,
this analysis primarily focuses on how the surrogate trained on the complete dataset performs. Finding
exact test points that are also included in the reduced dataset is more complex, but it can still be used
to evaluate how well the model generalize outside its training range.

One design variable is allowed to vary over its complete range (three discrete points), while the remain-
ing DVs are fixed at their respective mean values. Although this only covers three points in the large
dataset, the surrogate models operate in a higher-dimensional space, making a complete visualization
of the results challenging. Only the DVs which have the greatest and lowest impact on efficiency and
weight are shown in the report for conciseness.

Analysis SR1W
Design variable R3/R2 has the highest influence on turbine efficiency as well as the turbine weight.
The SR1W model using the complete dataset achieved a R2 value of 0.892, which indicates that the
surrogate model managed to capture the overall trend in the dataset. In contrast, the model trained
on feasible designs only (reduced dataset) achieved a much lower R2 value of 0.569, meaning that it
failed to capture the trend. This discrepancy is illustrated in Figure 5.15. The points included in the
complete dataset generated by TurboSim are indicated in red. The blue points were excluded from
the training datasets, however, they are included as test points in the plot to show the trend of the
weight generated by TurboSim. It can be seen that both surrogate models captured the shape of the
data. The three points included in the complete dataset were removed in the reduced dataset because
they did not comply with the constraints. As a result, the model trained on feasible designs predicts a
much higher weight than the actual one, since the mean feasible weight increased, as was discussed
in subsection 5.1.3.
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Figure 5.15: Weight predictions when varying design variable R3/R2, while keeping the others fixed at their mean value

Similarly, the surrogate model using only feasible designs for R134a cannot predict the weight accu-
rately for the design variable with the lowest impact on weight. This is illustrated in Figure 5.16, where
the variation in weight is significantly smaller compared to the cases where R3/R2 was varied. Once
again, the three data points indicated in the plot are not included in the reduced dataset. As a result, the
corresponding surrogate model was not able to reproduce the slight increase in the weight observed
with increasing ϕis, further emphasizing the limitations of using the reduced dataset.

Figure 5.16: Weight predictions when varying design variable ψis, while keeping the others fixed at their mean value

Analysis SR1E
The efficiency predictions from the surrogate model trained on the complete dataset closely match the
actual TurboSim results, as can be seen in Figure 5.17 and 5.18. However, the reduced surrogate
model shows an unexpected behavior when varying R3/R2. This is likely the result of a scarce dataset.
Since DV R3/R2 has the largest impact on efficiency, this is more prominent in Figure 5.18. This
further confirms that surrogate models are a good tool to get an initial estimate of the turbine efficiency,
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however, it is advised to run TurboSim to obtain the correct turbine efficiencies.

Figure 5.17: Efficiency predictions when varying design variable ψis, while keeping the others fixed at their mean value

Figure 5.18: Efficiency predictions when varying design variable R3/R2, while keeping the others fixed at their mean value

Improving weight prediction accuracy
The accuracy of the surrogate model’s weight predictions varies significantly. One reason for this larger
discrepancy, compared to the efficiency predictions, is that the DVs have a larger impact on the weight.
To investigate this, a test was performed using toluene, as it has the highest R2 score, as well as the
highest MSE among all working fluids trained on the complete dataset. The data was generated using
DVs that have a comparable impact on weight as the six most influential DVs for efficiency. These
are: Lax/∆R (39.55%), R2/R1 (38.33%), α3 (25.23%), (g/h)le (12.80%), (t/s)rot (3.74%) and (g/h)te
(2.42%). The results show that the R2 score increased significantly from 0.905 to 0.936, while the MSE
decreased from 629.9 to 437.0. This suggests that the model is more accurate in predicting weight.



6
Conclusion

This thesis documents research work on developing surrogate models to predict the efficiency and
weight of ORC turbines for combined cycle engines. The objective of this research is to create a compu-
tationally efficient and highly accurate surrogate model based on symbolic regression trained to predict
net total-to-total efficiency and weight of radial-inflow turbines. A parametric study was performed to
identify the design variables (DVs) which have the highest influence on turbine efficiency and weight.
The DVs investigated were mostly geometrical parameters, which have the highest influence on the
turbine weight. These models were trained on two types of datasets: the complete dataset, which
contains the results directly generated from TurboSim; and the reduced dataset which was obtained
by applying feasibility constraints to the complete dataset. The main conclusions found in this study
are presented in section 6.1, the limitations of the study and recommendations for further research are
presented in section 6.2.

6.1. Main Conclusions
Based on the research performed and documented in this report, the following conclusions can be
drawn:

1. The performance of ORC radial-inflow turbines can be predicted by using TurboSim, which is a
tool developed by Majer and Pini [34]. However, it is a computationally expensive tool when used
for generating large amounts of data. This results in the first research question:

Research Question 1

Can a symbolic regression surrogate model be developed for predicting the efficiency and
weight for ORC RIT?

The goal of this thesis was to develop a surrogate model using symbolic regression, which is
trained on data from multiple working fluids, to accurately predict ORC RIT efficiency and weight.
To allow for a flexible model, a diverse set of fluids were selected: butane, cyclopentane and
toluene (hydrocarbons); ethanol (an alcohol); R134a (a refrigerant) and siloxane MM.

A single surrogate model trained on data of all fluids considered and based on four input param-
eters, that are, the molecular complexity, the compressibility factor, the mass flow rate and the
volumetric flow ratio, was initially sought after. However, due to the widely different thermody-
namic properties of the different fluids, separate surrogate models had to be developed for each
working fluid.

The Python package PySR was chosen as a development framework to generate surrogate mod-
els suitable to predict single output and multiple outputs from the training data. However, it was
observed that selecting the best model was difficult because it only calculated the accuracy per
output and no overall accuracy is computed. In such cases, a trade-off should be made to choose

49
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the model that best fits its application. However, a possible solution to address the shortcomings
of the multiple output surrogate model, is to generate two single output surrogate models for each
working fluid considered. These can be trained independently on data generated by TurboSim
(complete dataset), as well as, trained on only feasible designs (reduced dataset), which were
obtained by applying constraints.

In conclusion, while multi-output symbolic regression was used to generate a surrogate able to
predict the turbine efficiency and weight, it was observed that using separate surrogate models
yields better overall fitting of the data, which comes at the cost of computational overhead to
train twice as many machines for each working fluid considered. This procedure resulted in the
generation of 24 different surrogate models.

2. Majer and Pini [34] studied the design guidelines for high-pressure ratio supersonic RIT of ORC
systems. The authors managed to devise best practices for the selection of the turbine duty
coefficients that maximize the efficiency, however turbine weight was not considered in the work.
Krempus et al. [28] showed that the turbogenerator mass is about one-third of the power unit
mass (total mass excluding the dry mass of the engines and the generator mass). This highlights
the need to include the turbine weight into the design process of RIT ORC turbines. Since the
surrogate model is designed to be flexible and capable of making predictions for multiple types
of working fluids, it is important to examine how the choice of working fluid affects efficiency and
weight. This leads to the following research question:

Research Question 2

What is the impact of working fluid on ORC RIT efficiency and weight?

Turbine designs featuring net total-to-total efficiency ranging between 60% and 98% were ob-
tained for all working fluids considered in the analysis. Fluids with lower molecular complexity
achieved the highest mean efficiency. R134a has the highest mean efficiency in both datasets,
86.15% for complete dataset and 82.82% for the reduced dataset. In the complete dataset, bu-
tane follows closely with a mean efficiency of 85.88%. Ethanol, cyclopentane andMM have nearly
identical mean efficiencies of 84.56%, 84.46% and 84.08% respectively, while toluene shows the
lowest mean efficiency at 82.97%.

Applying constraints to filter out the unfeasible designs, also removed the outliers, leading to a
slight reduction in mean efficiency. As before, the highest efficiencies were found for fluids with
the lowest molecular complexity. The new mean efficiencies, ranked from highest to lowest, are:
R134a (82.82%), butane (82.64%), ethanol (81.09%), cyclopentane (80.93%), MM (79.77%) and
toluene (79.68%).

In contrast, the impact of the working fluid on ORC RIT weight is more pronounced. A clear
relationship exists between the volumetric flow ratio (VR) and the turbine weight. The larger
the investigated range, the higher the turbine assembly weights registered. Based on the dataset
generated by TurboSim (complete dataset), the working fluids can be ranked in order of increasing
mean turbine weight: R134a (0.64 kg), butane (1.60 kg), cyclopentane (4.36 kg), MM (16.58 kg),
ethanol (21.61 kg) and toluene (40.81 kg).

The applied constraints eliminated most of the turbine assemblies below 2 kg, since the minimum
weight found in these datasets is around 1.5 kg. However, the ranking of the working fluids
remained unchanged. Turbines operating with R134a result in the lightest designs, while those
using toluene are the heaviest.

To conclude, the working fluid has a minor effect on efficiency but a significant influence on turbine
weight. Working fluid R134a appears to be the best choice, since it has the lowest mean turbine
weight and the highest efficiency. However, the reduced dataset for R134a is highly constrained,
it only contained 0.8% of the tested cases (656 100 cases per working fluid). Alternatively, the
largest dataset was found for butane: 54.6% of the tested cases found a solution in TurboSim
and the reduced dataset contains a much larger fraction of the cases (8.2% compared to 1.7%
for R134a).
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3. The TurboSim model relies on numerous input variables, including fluid properties, operating
conditions and 17 geometrical parameters. A sensitivity study was conducted to identify the
most influential design variables, which has two main advantages. First, including all design
variables in the training dataset for the surrogate model would result in a substantial increase in
training time. Second, the objective of this thesis is to asses the feasibility of developing a highly
accurate surrogate model, making it effective to begin with a smaller set of design variables. This
parametric study allowed to answer the following research question:

Research Question 3

What are the design variables that have the largest impact on efficiency and weight?

The parametric study was performed by varying a single design variable in 10 steps between its
minimum and maximum values (stated in Table 4.3), while keeping the other DVs fixed at their
average values. The relative change, expressed as a percentage increase, was calculated by
dividing the difference between the maximum and minimum values by the minimum value and
multiplying by 100.

For efficiency, the six most influential parameters – ranked from highest to lowest – are R3/R2

(33.47%), Rh/Rt (17.86%), Lax/∆R (11.43%), ϕ2,is (10.13%), ψis (9.53%) and (g/h)le (6.37%).
Conversely, the parameters with the greatest impact on weight are R3/R2 (414.38%), Rh/Rt
(371.77%), ϕ2,is (91.77%), V m ratio (80.68%), R1/R0 (73.03%) and ψis (48.27%).

The DVs are mostly geometric parameters, which in return will strongly influence the turbine
weight. The surrogate models are trained on the six DVs that have the highest impact. Since
the initial goal was to train the models for efficiency and weight simultaneously, the six highest
scoring design variables were selected, these are the ones for weight: R3/R2, Rh/Rt, ϕ2is , Vm
ratio, R1/R0 and ψis.

4. To evaluate the reliability of the surrogate model, it is essential to assess its accuracy and deter-
mine whether it varies depending on the selected working fluid. This lead to the following research
question:

Research Question 4

What is the accuracy of the surrogate model and will it change with working fluid?

The multiple output surrogate models generated to predict the efficiency and the weight simul-
taneously (SR2O) were found to yield insufficient accuracy, and were therefore replaced by two
single output models, each one able to predict either the efficiency or the weight of the turbine,
SR1E and SR1W respectively.

These models were evaluated based on two complementary metrics, i.e., the Mean-Squared-
Error (MSE) and R-squared (R2).

All efficiency models – either if trained on the complete dataset or on the reduced dataset –
achieved R2 values above 0.9, indicating overall good fit to the dataset. The maximum MSE
was found to be around 4.39, indicating good overall accuracy. When MM was selected as the
working fluid, the surrogate model achieved the highest R2 value for both datasets, 0.938 and
0.937 for the complete and reduced dataset, respectively. Ethanol scored the lowest with a R2

score of 0.908 for the complete dataset and 0.900 for the reduced dataset. This suggests that the
training algorithm captures the trend in siloxane data most effectively, while performing worst for
alcohols. The difference between the refrigerant R134a and the hydrocarbons is minimal, with the
refrigerant achieving a R2 of 0.923, close to MM. A trend can be observed among hydrocarbons
trained on both datasets: butane scored the highest R2, followed by cyclopentane and lastly
toluene. This indicates that the algorithm more easily captures trends in the datasets of less
complex fluids.
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However, the accuracy of the models used to predict the weight was significantly lower in contrast
to the efficiency. There is a large difference in weight datasets when comparing the different
working fluids. As mentioned before, the range of generated weight is related to the investigated
range of the volumetric flow ratio for every working fluid. The smallest range was observed for
R134a (maximum 11.3 kg), while when using ethanol, MM and toluene as working fluids, turbine
assembly weights above 100 kg were found.

The weight models trained on the complete dataset performed relatively well in detecting the trend
in the dataset, because they have a R2 score between 0.857 and 0.905. The best performing fluid
is toluene although it has highest MSE value of all fluids. This indicates that the surrogate model
was able to capture the trend in the dataset, despite it being widely spread. The model trained
for working fluid butane performed the worst on capturing the trend, however, the MSE value
is very low 0.63 compared to 629.92 for toluene. This shows that the spread of the data does
not directly affect the ability to capture the trend in the dataset. However, it does have an affect
on the accuracy of the predictions. Significantly, within the hydrocarbons, the most molecularly
complex fluid (toluene) exhibited the highest R2 score, while the least complex (butane) had the
lowest, suggesting a relationship between molecular complexity and model performance for this
fluid category.

Applying the constraints to the dataset removed mostly the outliers of the datasets but had little
direct impact on most R2 scores. While the R2 value for ethanol and toluene increased, they
decreased for the other fluids. The model for R134a performed the worst, with a R2 score of
0.569, likely due to the small size of the reduced dataset – only 5257 points, representing just
0.8% of all the tested designs in TurboSim or 1.7% of the complete dataset.

The best performing model is the one for ethanol, which achieved a R2 score of 0.938, however,
it has a high score for MSE (463.4). This again suggests that even with widely spread data, it is
still possible to develop a surrogate model that captures the trend well. The best performing fluid
for capturing the trend is again ethanol, while the refrigerant R134a performed the worst. The
same pattern was observed for hydrocarbons: the most complex fluid exhibited the highest trend
accuracy, while the least complex performed the worst.

To conclude, the working fluid does not have a great affect on the accuracy of the models trained
for predicting the turbine efficiency. However, the accuracy of the weight models are fluid de-
pendent. The models trained on the complete dataset were able to capture the trends in the
weight dataset well. However, the accuracy of the models using ethanol, MM and toluene can
vary more compared to the other fluids because of their higher MSE values. When using the
reduced datasets, it was not possible to capture the trend for R134a and only slightly for butane.
The other fluids performed well.

6.2. Limitations and Recommendations for Future Work
This study presents several limitations in the modeling approaches used. In this section, these limita-
tions are discussed, along with suggestions for future research to address them.

• The parametric study conducted in section 4.2 normalized only the results, not the design variable
values. This can give a misleading impression of the influence of certain DVs on the turbine
efficiency and weight. The DVs were normalized by dividing the difference between the minimum
and maximum value by the mean value of the DV and multiplying it by 100. Although the top
five most influential DVs remained unchanged, the normalization affected the ranking of the less
influential parameters. The new top six most influential DVs – ranked from highest to lowest –
are R3/R2 (10.36%), ϕ2,is (3.84%), Rh/Rt (3.72%), R1/R0 (2.26%), R2/R1 (1.94%) and Vm ratio
(1.61%). Since this study demonstrated that accurate surrogate models can be developed using
a subset of six DVs, future work should consider extending the models to include additional DVs.
A correctly normalized parametric study should be conducted to ensure the proper selection of
the influential DVs, enabling the models to predict turbine efficiency and weight for a broader
range of cases.
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• The training datasets in this study were generated using TurboSim. However, an alternative ap-
proach could be to use optimized data, such that the model is only trained on optimized turbine
architectures. This could bias the predictions toward the optimal Pareto front, however, it is im-
portant to note that the surrogate model’s predictions would not necessarily represent optimal
designs.

A preliminary test using a Pymoo optimization revealed that obtaining a single optimized result
took quite a long time (about 2h), making it computationally expensive. Further research could
explore more efficient methods for generating optimized datasets and compare the impact of this
approach on the surrogate model’s predictive performance.

• TurboSim successfully generated results for only 24-55% of the investigated designs (Table 5.1).
To increase the dataset size, while maintaining the number of investigated designs, the following
strategies could be explored:

1. Adjusting TurboSim’s termination criteria: Relaxing the termination criteria in iterative loops
could allow more cases to be computed. However, this may also increase the computation
time.

2. Refining the design space: Few cases in the dataset operate at the minimum value of the
design variables flow (ϕ2,is) and R3/R2, shown in section C.1. Increasing their lower limits
might result in a larger dataset.

3. Optimizing the volumetric flow ratio range: For ethanol, most cases were obtained at the
minimum VR value, indicating that the selected upper value might be too high. Narrowing
the range of VR might lead to a better model.

• Since symbolic regression is a genetic algorithm, it does not naturally converge to a final expres-
sion, as it continuously explores new functional forms. In this thesis research, the number of
iterations (’niterations’) was limited to 40 to allow for shorter training times, while still achieving
high accuracy.

According to M. Cranmer, the developer of PySR, once all settings have been finetuned, the
model should be trained using a significantly larger number of iterations, potentially running it for
a week or until the job finishes by complying with the stopping criteria [3]. However, due to the
24 hour job limit on a student account on the Delft Blue Supercomputer used for this research,
this was not feasible. Further research should evaluate the trade-off between extended training
duration and model accuracy.

• The accuracy of the weight predictions varies significantly depending on the investigated case. A
reason for this could be the inherent high variance in the dataset, which shows a large spread in
turbine weights compared to the efficiency dataset. While PySR was able to identify trends in the
data for most working fluids, except R134a for the complete dataset, the MSE of these models
remains extremely high, indicating that the predictions are not highly accurate. This variability in
the data could be due to the sensitivity of turbine weight to certain design variables, which leads
to significant fluctuations in the results across similar cases. There are several approaches that
can be taken to address this:

1. Refining the VR range: It was observed that turbine weight tends to increase as the VR
range investigated becomes larger. Lowering the maximum investigated VR could reduce
the variability in turbine weights. Additionally, as shown in Figure C.1 to C.6, the number
of cases in the datasets operating at the maximum VR is typically lower than those at the
minimum or mean VR. Adjusting the VR ranges could not only reduce variability but also
increase the number of cases in the dataset generated by TurboSim.

2. Denoising the training data: PySR was applied directly to the raw training datasets without
denoising, as each DV was only investigated at three data points. As seen in Figure 5.15 to
5.18, the three red training points do not capture the full dataset trend. PySR has a built in
denoising tool, which could be tested to determine if it enhances prediction accuracy.
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3. Comparing Neural Networks: An alternative approach is the use of Neural Networks, as was
done by Giuffré et al. [15]. NNs can model complex, nonlinear relationships within the data,
potentially improving prediction accuracy. However, NNs do not provide the same level of
interpretability as symbolic regression models. To address this, PySR could be integrated
into PyTorch as a layer, allowing for both accurate predictions and the extraction of symbolic
expressions [9]. It is advised to start with a simple NN, e.g. Multi-layer perceptron (MLP).
While NNs might offer higher predictive performance, they can come at a cost of reduced
transparency, which might be critical in turbine design where understanding the relationships
between variables is important.

• The surrogate models in this report are created for RITs, not turbogenerators. These models
could, however, be adapted for different configurations. For example, the ORC system analyzed
by Krempus et al. [28] (Figure 2.2) contains two generators in the main engine system and one
in the ORC system. Further studies could explore the differences in performance between the
following two configurations: one configuration could be a turbogenerator (turbine + generator),
while another configuration could be to directly couple the turbine to one of the generators in the
main engine, making it a direct drive system.

Another potential application of these surrogate models is in determining which settings should
be tested in an experimental setup. While the ORCHID test bench at the Aerospace Faculty is not
yet operational, once available, it is expected to be in high demand. Therefore, efficient planning
of experiments will be essential. Surrogate models could help by predicting expected outcomes
beforehand. This would allow researchers to prioritize necessary tests, potentially reducing future
operational time and costs.

• A test was conducted by running a single-objective optimization in Pymoo for the working fluid
MM. When optimizing for efficiency, the results revealed a significant difference in computational
efficiency: the surrogate model converged after 6 seconds, requiring 15 generations across 32
cores on the Delft Blue Supercomputer. In contrast, the TurboSim model took 54 932 seconds
and 35 generations to complete the same task. A similar trend was observed when optimizing for
weight, where the surrogate model converged in 11 seconds after 26 generations, while TurboSim
required 78 703 seconds and 45 generations.

The optimized efficiency predicted by both models were very similar. The optimized input param-
eters and design variables for both optimizations are presented in Table 6.1. While the design
variables exhibit similar values, the input parameters, such as reduced pressure, volumetric flow
ratio and mass flow rate, show a more significant discrepancy. Despite these differences, the
advantages of using the surrogate model over TurboSim are evident. The surrogate model offers
a significantly faster optimization process, requiring fewer generations, and provides results that
are sufficiently accurate for obtaining optimized values.

In contrast, the weight optimization produced unrealistic results. TurboSim predicted an optimal
turbine weight of 1.67 kg, whereas the surrogate model yielded an infeasible value of 1.5 · 10−8

kg. The main differences were observed in volumetric flow ratio and mass flow rate: the surro-
gate model optimized for a VR of 4.9 and a mass flow rate of 4.3 kg/s, while TurboSim required
a significantly higher VR of 23.6 and a much lower mass flow rate of 0.6 kg/s. These inconsis-
tencies confirms that the surrogate model’s weight predictions are not yet reliable for practical
application. While a constraint on minimum weight could be imposed, this would not resolve the
underlying issue, as the optimization would simply seek configurations that meet the constraint
rather than accurately predicting weight. Future work should focus on improving weight predic-
tion by refining the training dataset, incorporating additional constraints, or exploring alternative
modeling approaches.



6.2. Limitations and Recommendations for Future Work 55

Table 6.1: Pymoo optimization using TurboSim and the surrogate model for working fluid MM

DV TurboSim Surrogate DV TurboSim Surrogate
ψis 1.24 1.26 ṁ 4.00 4.86
ϕ2,is 0.43 0.46 Rh/Rt 0.46 0.44
Tr 0.97 0.94 R3/R2 0.60 0.57
Pr 1.20 1.02 R1/R0 0.67 0.70
V R 12.13 9.05

• The obtained analytical expressions are complex, and it is advised to remove (part of) the unary
operators to obtain simpler functions. However, it was observed that the models trained on only
binary operators were less accurate in capturing the trend of the dataset. This can be due to
large number of variables used during training. A hyperparameter optimization was performed
for the complete dataset, presented in section E.9, and it shows that different fluids prefer different
settings. When expanding these surrogate models to include more DVs in training, one can use
these tables to select the operators for training the models. This will reduced the number of
training runs required.
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A
Evaluation Metrics

The surrogate model can be used to predict the efficiency and weight of an Organic Rankine Cycle
(ORC) radial-inflow turbine for combined-cycle engines. The following chapter will explain the metrics
that were used to evaluate the accuracy of the surrogate model. The results and precision of the
surrogate models can be found in chapter 5.

There aremany different metrics that can be used to indicate the accuracy of amodel. This study looked
at the Mean-Squared-Error (MSE) and R-squared (R2). They will both be explained in section A.1 and
section A.2, respectively.

A.1. Mean-squared-error
The Mean Squared Error (MSE) measures, as the name suggests, the average of the squared differ-
ence between predicted and actual values. A lowMSE is preferred because it means that the difference
between the actual and predicted values is small, resulting in a more accurate model. The MSE is sen-
sitive to outliers in the dataset. This means that a model with good accuracy can have a high MSE when
the data is wide spread. However, it can also be that the dataset has very little variation, resulting in a
small MSE, but the predictions are not accurate.

The MSE is the loss function used by PySR to minimize the prediction error when training the surrogate
model.

The MSE is calculated as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (A.1)

where n is the number of data points, yi the actual value generated by TurboSim and ŷ the value
generated by the surrogate model.

A.2. R-squared
The R-squared method indicates the proportion of variance in the dependent variable that the model
explains. It ranges from 0 to 1, where 1 indicates a perfect fit. The R2 metric can be used to compare
models with different datasets, which is useful for this particular project because every fluid has its own
surrogate model. However, it cannot give any information on how far the predictions are from the actual
values. R2 is not as affected by outliers as the MSE, because it looks at the overall trend in the data.
This means that a model with a high MSE can still have a high R2 and vice versa.

R2 = 1− SSres
SStot

(A.2)

with
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SSres =

n∑
i=1

(yi − ŷi)
2 (A.3) SStot =

n∑
i=1

(yi − ȳ)2 (A.4)

where yi are the actual values, ŷi are the predicted values and ȳ are the mean of the actual values.



B
Constraint violations

An overview of the constraint violations is presented per working fluid. The constraint violations for
butane can be found in Table 5.3.
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Table B.1: Constraint violations for working fluid cyclopentane expressed in percentage of the number of cases in the complete dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1 - - - - - - - - -
2 5.28% 5.26% 5.20% 4.60% 4.67% 4.74% 3.67% 3.79% 3.81%
3 - - - - - - - - -
4 - - - 37.99% 38.00% 37.96% 43.15% 48.65% 48.69%
5 - - - - - - - - -
6 - - - - - - - - -
7 33.29% 33.31% 33.35% 33.31% 33.31% 33.29% 33.31% 33.34% 33.33%
8 20.73% 20.78% 20.71% 26.73% 26.74% 26.70% 26.66% 26.52% 26.55%
9 100.00% 97.65% 91.77% 98.07% 64.61% 51.39% 91.07% 48.18% 38.45%
10 0.22% - - 3.99% - - 5.80% - -
11 67.14% 1.23% 0.02% 70.03% 6.94% 1.13% 69.85% 9.55% 3.16%
12 66.13% 25.45% 11.68% 34.93% 6.92% 5.61% 18.52% 6.24% 6.29%
13 21.02% - - - - - - - -

Table B.2: Constraint violations for working fluid ethanol expressed in percentage of the number of cases in the complete dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1 - - - - - - 7.12% 7.09 7.15
2 4.97% 4.93% 4.92% 5.65% 5.90% 5.88% 7.12% 7.09% 7.15%
3 - - - - - - - - -
4 7.36 7.36 7.36 66.34% 66.41% 66.37% 73.12% 73.09% 73.12%
5 - - - 25.10 25.09 25.08 41.90 41.99 42.04
6 - - - - - - - - -
7 33.36% 33.40% 33.38% 33.29% 33.33% 33.33% 33.33% 33.43% 33.24%
8 28.15% 28.15% 28.14% 18.49% 18.52% 18.48% 13.16% 13.12% 13.06%
9 100.00% 95.35% 86.36% 58.04% 25.58% 16.86% 41.89% 11.09% 2.50%
10 0.99% - - 19.08% - - 21.76% - -
11 72.30% 3.80% 0.19% 79.37% 26.80% 14.06% 78.73% 28.73% 15.80%
12 61.33% 19.64% 7.80% 6.71% 6.03% 5.87% 4.62% 3.49% 3.45%
13 13.51% - - - - - - - -
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Table B.3: Constraint violations for working fluid MM expressed in percentage of the number of cases in the complete dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1 - - - - - - - - -
2 4.67% 4.73% 4.68% 4.13% 4.14% 4.19% 4.31% 4.34% 4.34%
3 - - - - - - - - -
4 1.03 1.03 1.04 45.38% 45.37% 45.34% 53.55% 53.49% 53.53%
5 - - - - - - - - -
6 - - - - - - - - -
7 33.31% 33.33% 33.34% 33.26% 33.37% 33.28% 33.27% 33.29% 33.29%
8 25.00% 25.00% 24.97% 27.16% 27.16% 27.22% 33.27% 33.29% 33.29%
9 99.99% 90.02% 78.32% 80.07% 40.40% 31.40% 66.69% 30.27% 20.95%
10 - - - 0.22% - - 1.17% - -
11 43.29% 0.05% - 47.68% 2.47% - 47.44% 3.87% 0.03%
12 50.82% 10.21% 6.66% 12.17% 5.43% 4.51% 6.55% 4.55% 4.35%
13 3.87% - - - - - - - -

Table B.4: Constraint violations for working fluid R134a expressed in percentage of the number of cases in the complete dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1 - - - - - - - - -
2 5.21% 5.30% 5.29% 5.28% 5.33% 5.33% 4.70% 4.73% 4.72%
3 - - - - - - - - -
4 - - - - - - 2.98% 2.98% 2.98%
5 - - - - - - - - -
6 - - - - - - - - -
7 33.32% 33.30% 33.33% 33.35% 33.31% 33.33% 33.29% 33.31% 33.32%
8 18.08% 18.13% 18.12% 21.37% 21.43% 21.41% 25.882% 25.81% 25.82%
9 100.00% 99.52% 96.53% 100.00% 98.87% 94.85% 100.00% 97.89% 92.22%
10 - - - 0.76% - - 1.82% - -
11 67.96% 0.09 - 77.44% 2.85% 0.19% 78.75% 4.90% 0.45
12 72.32% 28.30% 18.42% 70.81% 31.03% 17.67% 67.50% 28.37% 13.12%
13 35.35% - - 30.50% - - 25.32% - -
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Table B.5: Constraint violations for working fluid toluene expressed in percentage of the number of cases in the complete dataset

Constraint VR min VR mid VR max
ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0 ṁ = 0.5 ṁ = 3.0 ṁ = 5.0

1 - - - - - - 2.50% 2.50% 2.50%
2 5.41% 5.33% 5.34% 4.24% 4.35% 4.39% 3.40% 3.44% 3.45%
3 - - - - - - - - -
4 20.48% 20.49% 20.47% 65.18% 65.32% 65.35% 70.33% 70.37% 70.43%
5 - - - - - - - - -
6 - - - - - - - - -
7 33.29% 33.41% 33.35% 33.27% 33.31% 33.32% 33.33% 33.35% 33.33%
8 28.39% 28.42% 28.42% 22.55% 22.63% 22.68% 19.43% 19.45% 19.42%
9 99.96% 83.47% 71.15% 56.99% 24.11% 14.21% 42.45% 10.95% 3.70%
10 0.93% - - 9.29% - - 14.92% - -
11 66.32% 3.76% 0.14% 64.24% 16.68% 6.81% 67.04% 20.77% 8.94%
12 45.99% 7.75% 6.55% 7.98% 2.40% 2.41% 6.27% 4.14% 3.62%
13 1.50% - - - - - - - -



C
Dataset distribution

The dataset distributions of the six working fluids are presented below.

C.1. Design variables
The distribution of the design variables, as well as the mass flow rate and volumetric flow ratio are
presented below.

C.1.1. Complete dataset

Figure C.1: Distribution of parameters in complete dataset for butane
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Figure C.2: Distribution of parameters in complete dataset for cyclopentane

Figure C.3: Distribution of parameters in complete dataset for ethanol
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Figure C.4: Distribution of how the training dataset is made up for working fluid MM

Figure C.5: Distribution of parameters in complete dataset for R134a
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Figure C.6: Distribution of parameters in complete dataset for toluene

C.1.2. Reduced dataset

Figure C.7: Distribution of parameters in reduced dataset for butane
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Figure C.8: Distribution of parameters in reduced dataset for cyclopentane

Figure C.9: Distribution of parameters in reduced dataset for ethanol



C.1. Design variables 70

Figure C.10: Distribution of how the reduced training dataset is made up for working fluid MM

Figure C.11: Distribution of parameters in reduced dataset for R134a
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Figure C.12: Distribution of parameters in reduced dataset for toluene

C.2. Reduced temperature
Figure C.13 to Figure C.18 display the number of cases per investigated Tr. It can be seen that most
of the cases operate at higher reduced temperatures.

Figure C.13: Number of cases generated for input parameter reduced temperature, working fluid butane
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Figure C.14: Number of cases generated for input parameter reduced temperature, working fluid cyclopentane

Figure C.15: Number of cases generated for input parameter reduced temperature, working fluid ethanol
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Figure C.16: Number of cases generated for input parameter reduced temperature, working fluid MM

Figure C.17: Number of cases generated for input parameter reduced temperature, working fluid R134a
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Figure C.18: Number of cases generated for input parameter reduced temperature, working fluid toluene



D
Analysis of R2 Consistency for

Training and Test Data

A 90/10% split of the data was selected oven an 80/20% split due to the large size of the dataset. A
check is performed to see if this data split is correct. The R2 value will be calculated for two datasets:
1. it will use 10% of the dataset that was set aside during training (’new data’), 2. the same number of
cases is randomly selected from the dataset using in training (’seen data’).

For every working fluid, the best performing R2 value and the average R2 value obtained during training
are presented in Table D.1 to D.6, with the highest value highlighted in blue. The number of tested
cases varies across fluids due to the 24-hour runtime limit on the Delft Blue Supercomputer. Since the
training time depends significantly on the selected PySR settings, some runs did not complete within
the allowed time and had to be repeated. Each fluid was tested with 188 unique training settings unless
explicitly stated otherwise.

The difference between the average R2 values is small, indicating that a 90/10% data split provides
accurate results for both training and unseen data. As expected, the R2 values of the seen data are
generally slightly higher than those for new data, as the model was directly trained on them.

Table D.1: Average and best R2 scores for butane from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.836965 0.837272 0.00031 0.88655 0.889702 0.00315

60 0.856255 0.856910 0.00065 0.932592 0.92987 0.00272

Complete 40 0.844828 0.844672 0.000155 0.909871 0.90780 0.00198
60 (205 cases) 0.851922 0.851895 0.000027 0.91761 0.917911 0.00030

Weight
Reduced 40 0.557602 0.55875 0.00114 0.70809 0.710905 0.00282

60 0.596634 0.596096 0.000537 0.705616 0.68578 0.01984

Complete 40 (194 cases) 0.761727 0.761797 0.00007 0.828104 0.82804 0.00006
60 (220 cases) 0.781845 0.781511 0.000334 0.856571 0.85565 0.00092
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Table D.2: Average and best R2 scores for cyclopentane from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.825023 0.825409 0.000386 0.888877 0.88625 0.00262

60 0.853573 0.852989 0.000584 0.914051 0.90604 0.00801

Complete 40 0.839888 0.840048 0.00016 0.909318 0.90825 0.00107
60 0.849383 0.849467 0.00008 0.91044 0.912017 0.00158

Weight
Reduced 40 0.707925 0.707083 0.000842 0.807935 0.78871 0.01922

60 0.752112 0.747523 0.004589 0.83623 0.841421 0.00519

Complete 40 (192 cases) 0.811208 0.811259 0.000051 0.877597 0.86974 0.00785
60 (193 cases) 0.844862 0.844196 0.000666 0.892234 0.88704 0.00520

Table D.3: Average and best R2 scores for ethanol from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.819767 0.816496 0.003271 0.87905 0.886521 0.00747

60 0.842998 0.843126 0.000128 0.900271 0.88841 0.01186

Complete 40 0.839765 0.839677 0.000088 0.89941 0.902885 0.00348
60 0.847515 0.84745 0.000065 0.90571 0.908412 0.00270

Weight
Reduced 40 0.890137 0.889601 0.000536 0.91817 0.92756 0.00939

60 0.900767 0.899981 0.000786 0.938202 0.92916 0.00904

Complete 40 (192 cases) 0.777327 0.77802 0.000693 0.886825 0.88533 0.00150
60 (192 cases) 0.809943 0.811079 0.001136 0.891542 0.87884 0.01270

Table D.4: Average and best R2 scores for MM from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.848351 0.847689 0.000662 0.90751 0.912831 0.00532

60 0.873696 0.874118 0.000422 0.93563 0.936593 0.00096

Complete 40 0.842165 0.84213 0.000035 0.905286 0.904900 0.00039
60 0.850504 0.85016 0.000344 0.93788 0.938008 0.00013

Weight
Reduced 40 0.791927 0.791832 0.000095 0.8673278 0.86772 0.00061

60 0.815357 0.815446 0.000089 0.884995 0.87879 0.00620

Complete 40 (195 cases) 0.780128 0.780664 0.000536 0.85337 0.885769 0.03240
60 (229 cases) 0.801378 0.801147 0.000231 0.877003 0.87398 0.00302
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Table D.5: Average and best R2 scores for R134a from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.848964 0.84631 0.002654 0.90061 0.919854 0.01925

60 0.866122 865167 0.000955 0.915559 0.88641 0.02915

Complete 40 0.847309 0.847406 0.000097 0.91135 0.913421 0.00207
60 0.856653 0.856801 0.000148 0.92341 0.92147 0.00194

Weight
Reduced 40 0.265624 0.264983 0.000641 0.51041 0.51346 0.00305

60 0.307856 0.306972 0.000884 0.568717 0.51255 0.05617

Complete 40 (195 cases) 0.752491 0.752339 0.000152 0.842891 0.83585 0.00704
60 (229 cases) 0.782343 0.782015 0.000328 0.88693 0.891962 0.00503

Table D.6: Average and best R2 scores for toluene from training phase

Trained for Type dataset Maxsize Average R2 Best R2

Seen data New data |Difference| Seen data New data |Difference|

Efficiency
Reduced 40 0.837129 0.836791 0.000338 0.905298 0.90495 0.00035

60 0.860099 860137 0.000038 0.90912 0.90949 0.00037

Complete 40 0.834621 0.834424 0.000197 0.895204 0.89422 0.00099
60 0.850221 0.850011 0.000210 0.91005 0.910365 0.00194

Weight
Reduced 40 0.891984 0.891817 0.000167 0.91747 0.926218 0.00875

60 (197 cases) 0.897937 0.897509 0.000428 0.931205 0.92258 0.00862

Complete 40 (192 cases) 0.793623 0.79092 0.002703 0.866797 0.85917 0.00762
60 (230 cases) 0.821907 0.822283 0.000376 0.90056 0.905253 0.00470



E
Surrogate expressions

The equations corresponding to the highest scoring R2 models trained on the complete dataset are
presented below.They are grouped by working fluid The differences and similarities in the surrogate
models and symbolic expressions will be discussed. The training settings for each fluid are tabulated
and the operators that appear in the expressions are indicated in blue. An overview of all the parameters
is also included in each section. This can give an insight on which settings are preferred during training.

E.1. Ethanol
ηttnetEth = 34.4 ·R3/R2 − 2 ·Z − ln (V R) + 86.1+

34.4 · (−Rh/Rt + 1.60 · tan (R3/R2)− 0.972)

ψis · (3.56− 4.19 · ϕ2,is)
− 2.60

ϕ2,is
(E.1)

WEth =

∣∣∣∣ Rh/Rt · V R · ṁ · sin (Z − tan (R3/R2))

R1/R0 · V mratio (ϕ2,is · 4.37− ψis · tan (Rh/Rt))

∣∣∣∣ (E.2)

E.2. Refrigerant R134a

ηttnetR134a
= −V R+

24.4 +
(6.02·ϕ2,is−0.0747) sin

(
ψis·(−0.542)+Rh/Rt·1.99+ 1.59

R3/R2

)
ψis· 1

Vmratio

0.268
+ tan (0.652) (E.3)

= 0.011− V R+
24.4 +

(−(−1)·6.02·ϕ2,is−0.0747) sin
(
ψis·(−0.542)+Rh/Rt·1.99+ 1.59

R3/R2

)
ψis· 1

Vmratio

0.268
(E.4)

WR134a =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z · ṁ · tan

 Rh/Rt

R1/R0+

∣∣∣∣∣ 1.47·ϕ2,is·Vm2
ratio

·(cos (Rh/Rt)−tan (tan (tan (cos (R3/R2)))))
ψis

−2.04·tan (tan (tan (Rh/Rt−0.0697)))

∣∣∣∣∣
VR


ϕ2,is +R1/R0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(E.5)

E.3. Butane

ηttnetBut = 6.43 · ψis − ln (V R) + 84.1 +
6.43 · V mratio · sin

(
1.89 · cos

(
cos (cos (1.32·Rh/Rt))
sin (R3/R2)−0.103

))
ψis (− ln (ϕ2,is)− 0.0558)

(E.6)
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WBut = 0.185

∣∣∣∣∣∣∣∣
ψis · Z · ṁ · (V R− ln (0.141 · ψis)) ·

(∣∣∣Rh/Rt+1.03
R3/R2

∣∣∣− 2.16
)
·
∣∣∣∣ 2.72− 0.885

R3/R2

ϕ2,is

∣∣∣∣
R1/R0 · V mratio · (ψis + V mratio)

∣∣∣∣∣∣∣∣ (E.7)

E.4. Cyclopentane

ηttnetCyclo =

V mratio

[(
−Rh/Rt + sin

(
sin

(
sin

(
V R

(−1)·0.419 1
R3/R2

)
+ 0.117− Rh/Rt

ψis

))
1.73

)
ϕ2,is · 12.4 + sin (V R)

]
ψis

+ ψis − 0.265 + 86.8

(E.8)

=

V mratio

[(
−Rh/Rt + sin

(
sin

(
sin

(
V R

−0.419 1
R3/R2

)
+ 0.117− Rh/Rt

ψis

))
1.73

)
ϕ2,is · 12.4 + sin (V R)

]
ψis

+ 86.535 + ψis
(E.9)

WCyclo =

∣∣∣∣∣∣V R ·

0.0113 +
ṁ · sin (−0.764) · sin

(
− 0.0609
R3/R2−0.407

)
V mratio ·R1/R0 ·

(
ϕ2,is

0.487·(−0.544)·Rh/Rt·Z + ψis

)
∣∣∣∣∣∣ (E.10)

E.5. Toluene
ηttnetTol = ϕ2,is − tan (V R · tan (V R)) + 81.8

+
16.8 · sin [sin (0.571 · ψis +R3/R2 − tan [Rh/Rt · sin (R3/R2)− ln (R3/R2)])]

ψis − V mratio · (ϕ2,is − 0.396)

(E.11)

WTol = |x| − 0.938 (E.12)

with

x = (2 · ϕ2,is − ṁ) · cos (R1/R0) · tan (Rh/Rt) · tan (tan (Z))

·

∣∣∣∣∣∣ cos (R3/R2 − 1.74) · |V R|∣∣∣V mratio ·
(
ψis + cos (ψis) + cos

(
20.6

cos (R3/R2)
− ψisRh/Rt

ϕ2,is

))∣∣∣
∣∣∣∣∣∣ (E.13)

E.6. Siloxane MM

ηttnetMM = ϕ2,is +R1/R0 +

V mratio sin

(
Rh/Rt+1.01+ 0.328

ψis

R3/R2

)
0.212 · 0.219 · 1

ϕ2,is
· ψis

−
cos

(
V R
1.05

)
0.356

− 1 · −1.55 + 83.8 +
0.472

Z

(E.14)

= 85.35 +
0.472

Z
+ ϕ2,is +R1/R0 +

V mratio sin

(
Rh/Rt+1.01+ 0.328

ψis

R3/R2

)
0.212 · 0.219 · 1

ϕ2,is
· ψis

−
cos

(
V R
1.05

)
0.356

(E.15)

WMM =

∣∣∣∣∣∣
ψis ·Rh/R2

t ·
(
R3/R2 − ṁ

tan (ϕ2,is)

)
·
(

V R
4.46·Vmratio − 0.707

)
· tan (tan (Z))

R1/R0 · tan (tan (R3/R2 + 1.21))

∣∣∣∣∣∣ (E.16)
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E.7. Training settings for surrogate models trained on the complete
dataset

The selected operators in the training process are tabulated in Table E.1. The nesting constraint settings
are also indicated. Self nesting was allowed up to a depth of 1, meaning that sin(sin(x)) is allowed.
When nothing was specified, PySR has the freedom to nest the operators indefinitely,which clearly
results in deep nesting, as can be seen in Equation E.6 and E.8.

The binary operator power (^) was never included in the best performing model expressions, while sin
and tan are always included when they were specified. The type of constraints specified did not affect
the complexity of the best performing surrogate models, because they all have a complexity between
31 and 40, when a maximum complexity of 60 was allowed.

Table E.1: Used operators in efficiency surrogate equations using complete dataset. The operators indicated in blue are
appearing in the final equation

Working
fluid

Binary
operator Unary operators Type of nesting allowed

Power (^) Sin Cos Tan Ln Exp No nesting Self nesting Nothing
specified

Ethanol ✓ ✓ ✓ ✓
R134a ✓ ✓ ✓ ✓
Butane ✓ ✓ ✓ ✓

Cyclopentane ✓ ✓ ✓ ✓
Toluene ✓ ✓ ✓ ✓ ✓
MM ✓ ✓ ✓ ✓

Similarly to the efficiency expressions trained on the complete dataset, operators sin and tan are always
included when they were specified during training. The PySR manual said to specify the least amount
of operators to choose from during training. In the case of trigonometric functions sin and cos, it is
suggest to only specify one, because the other one can be found by adding a phase shift. One can
clearly see that when both were used during training, only sin was included in the expression, making
cos redundant. Thus, it is recommended to only include one of them in further studies using PySR as
the training model.

Table E.2: Used operators in weight surrogate equations using complete dataset. The operators indicated in blue are
appearing in the final equation. Note the absolute value was always specified.

Working fluid Binary operator Unary operators Type of nesting allowed
Power Sin Cos Tan Ln Exp No nesting Self nesting Nothing specified

Ethanol ✓ ✓ ✓ ✓
R134a ✓ ✓ ✓ ✓ ✓
Butane ✓ ✓ ✓

Cyclopentane ✓ ✓ ✓
Toluene ✓ ✓ ✓ ✓ ✓
MM ✓ ✓ ✓

E.8. Overview of operators used in expressions
Table E.3 and E.4 present the design variables and input parameters used in the expressions above.
The expressions for turbine weight include most of these parameters, whereas the efficiency expres-
sions primarily include those with the highest influence of efficiency. This distinction arises because
the impact of these parameters on weight is generally more significant than on efficiency, as discussed
in section 4.2.
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Table E.3: Design variables and input parameters included in surrogate equations for efficiency predictions based on the
complete dataset

Working fluid Binary operator Unary operators Type of nesting allowed
ϕ2,is ψis R1/R0 R3/R2 Rh/Rt Vm ratio Z ṁ V R

Ethanol ✓ ✓ ✓ ✓ ✓ ✓
R134a ✓ ✓ ✓ ✓ ✓ ✓
Butane ✓ ✓ ✓ ✓ ✓ ✓

Cyclopentane ✓ ✓ ✓ ✓ ✓ ✓
Toluene ✓ ✓ ✓ ✓ ✓ ✓
MM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table E.4: Design variables and input parameters included in surrogate equations for weight predictions based on the
complete dataset

Working fluid Binary operator Unary operators Type of nesting allowed
ϕ2,is ψis R1/R0 R3/R2 Rh/Rt Vm ratio Z ṁ V R

Ethanol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R134a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Butane ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cyclopentane ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Toluene ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E.9. Hyperparameter Optimization
The surrogate models were trained using 188 unique combinations of binary and unary operators, as
outlined in subsection 4.3.4. Given the extensive number of combinations, performing hyperparameter
optimization could help identify trends in the preferred training settings. The data was first sorted
by MSE and the five cases with the lowest values were selected. If the difference in MSE between
the lowest and the fifth-lowest case was less than 5%, additional cases were included to ensure a
minimum 5% increase in MSE. This was the case for the cyclopentane SR1W model, were the six
lowest MSE cases are considered. The results of the hyperparameter optimization for the SR1E and
SR1W models, trained on the complete dataset with a maximum expression complexity of 60, are
summarized in Table E.5 and E.6.

Table E.5: Hyperparameter optimization for SR1E models

Working fluid hat sin cos tan exp log
Ethanol 1 4 1 3 3 3
R134a 3 4 3 2 2 2
Butane 2 5 2 - 2 4

Cyclopentane 1 1 3 3 1 4
Toluene 3 4 4 4 2 3
MM 4 4 4 3 - 3
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Table E.6: Hyperparameter optimization for SR1W models

Working fluid hat sin cos tan exp log abs
Ethanol 1 2 2 4 1 2 5
R134a 2 3 4 4 3 3 5
Butane 4 2 1 2 3 4 5

Cyclopentane* 1 4 4 3 1 2 6
Toluene 2 1 4 5 4 1 5
MM 4 2 3 4 1 2 5
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