
Better than Worst-Case Design for

Streaming Applications under

Process Variation

Better than Worst-Case Design for

Streaming Applications under

Process Variation

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.Ch.A.M. Luyben,
voorzitter van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 13 december 2013 om 12.30 uur

door

Davit Mirzoyan

Master of Science
Kungliga Tekniska Högskolan, Zweden

geboren te Yerevan, Armenië

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr. K.G.W. Goossens

Copromotor:

Dr. K.B. Åkesson

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr. K.G.W. Goossens, Technische Universiteit Delft, promotor
Dr. K.B. Åkesson, Technische Universiteit Eindhoven, copromotor
Prof.dr. K.L.M. Bertels, Technische Universiteit Delft
Prof.dr. H.J. Sips, Technische Universiteit Delft
prof.dr. J. Pineda de Gyvez, Technische Universiteit Eindhoven
prof.dr. H. Corporaal, Technische Universiteit Eindhoven
Dr. S.D. Cotofana, Technische Universiteit Delft

The work in this thesis is supported by the Dutch government in their STW
research program within the NEST project 10346.

Copyright 2013 Davit Mirzoyan
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means without the prior
written permission from the copyright owner.

Printing by Ipskamp Drukkers.

Dedicated to my family
for their unfailing

encouragement and support

Acknowledgments

I am glad to have this opportunity to express my gratitude to all who directly
or indirectly had their contribution in this work. I would like to thank Prof. Koen
Bertels at Delft University of Technology for all the practical support during
these four years. I extend my gratitude to Ms. Lidwina Tromp, the secretary
at the Computer Engineering laboratory, who has always been very helpful with
practical matters. I acknowledge fellow Ph.D. students Andrew Nelson, Ashkan
Beyranvand Nejad, a former postdoctoral researcher Dr. Anca Molnos, and all
the sta↵ at the Computer Engineering laboratory. Being a�liated with Delft
University of Technology, my workplace was arranged at Eindhoven University
of Technology, where I have always worked. Over the course of these years, I
have been fortunate to work in such a friendly environment, as in the Electronic
Systems group. My deep appreciation to the group for all the hospitality that I
have been shown.

I am sincerely grateful that four years ago Prof. Kees Goossens gave me the
opportunity to work with him. I have been fortunate to have a mentor with
such a strong work ethic. My deepest gratitude to Dr. Benny Åkesson, my co-
supervisor and once a student of Prof. Goossens. Working with him has been a
real pleasure. I have had the opportunity to enjoy beautiful Porto, Portugal with
Benny on a business travel, which turned out to be very memorable, as we can
agree. I would like to acknowledge Dr. Sander Stuijk, who always found time to
give me insight into the theory of data flow graphs. Discussions with him have
always been fruitful. I extend my gratitude to Prof. José Pineda de Gyvez for the
circuit-level discussions that he has provided on multiple occasions. They were
always helpful. My special appreciation goes to Ms. Marja de Mol - Regels and
Ms. Rian van Gaalen, the truly kind secretaries at the Electronic Systems group.
I would like to thank Rian for organizing the “uurtje Nederlands”, an hour of
weekly delightful dutch lessons, for us and for all the enthusiasm she has shown
on di↵erent occasions.

I have always enjoyed the working environment in our o�ce, with great o�ce
mates Firew Siyoum, Manil Dev Gomony, Cedric Nugteren, Roel Jordans and
Luc Vosters. During these four years, we have had all the interesting discussions

covering a variety of topics, such as science, technology, work, etc. I would like
to add that I feel fortunate to have known Firew Siyoum, Manil Dev Gomony
and Karthik Chandrasekar during these years. Last but not the least, I extend
my gratitude to all the sta↵ members at the Electronic Systems group, who have
made these years more enjoyable.

From the bottom of my heart, I would like to thank my family, my mother
Juletta Makaryan, my father Razmik Mirzoyan, and my lovely sister Yevgeniya
Harutyunyan, for all the support and encouragement over the course of these
years.

I cannot finish writing these acknowledgments without expressing my deepest
gratitude and admiration towards my heavenly Father, the Lord Jesus Christ, for
his unconditional love and boundless riches for those who love him; his mercies
are new every morning. I thank him for the increasing amount of strength he has
given me; as it is written “Even youths grow tired and weary, and young men
stumble and fall; but those who hope in the Lord will renew their strength. They
will soar on wings like eagles; they will run and not grow weary, they will walk
and not be faint.” Isaiah 40:30-31.

Summary

Modern multimedia and wireless applications require considerable computa-
tional power due to an increasing amount of functionality added to these applica-
tions. Additionally, many portable consumer electronics impose requirements on
low power consumption for long battery life. To meet these requirement, stream-
ing applications are implemented on a multi-processor system-on-chip (MPSoC),
where multiple (slower) processing cores exploit task and data-level parallelism
to increase performance. The hardware components inside an MPSoC are usually
connected to each other by a scalable network on chip (NoC). To be able to analyze
the timing of an application implemented on an MPSoC and provide timing guar-
antees at design time, all MPSoC components must be predictable. To remove
the bottleneck of global clock-tree routing and reduce a major source of power
consumption, multi-processor systems are implemented with the globally asyn-
chronous, locally synchronous (GALS) design style. GALS architectures enable
the use of voltage-frequency islands to additionally reduce power consumption by
scaling the frequency (voltage) of individual components in an MPSoC.

To reduce circuit area and thus integrate more functionality on a chip die,
CMOS technology has traditionally been scaled down. However, scaling in the
nanoscale era has brought significant variability in the manufacturing process.
This variability or inability to precisely control the manufacturing process results
in significant variation in the maximum supported frequency of hardware com-
ponents in a multi-processor system. Given this variation, it becomes di�cult to
provide timing guarantees for an application mapped to a multi-processor sys-
tem. As a solution, circuits are conventionally implemented with design margins
or guard-bands to guarantee the target frequency of hardware components inside
an MPSoC. Under this design paradigm, known as worst-case design, an applica-
tion sees the hardware components in a multi-processor platform with determin-
istic minimum frequencies, leading to a mapping of the application tasks to the
hardware components, such that a certain timing requirement (e.g. throughput
or latency) imposed on the application is satisfied. However, worst-case design
results in a considerable up-sizing of circuit area and in increased power consump-
tion. Because of this, the benefits of technology scaling can be lost with worst-case
design.

This thesis deals with the design of real-time streaming applications con-
strained by a throughput requirement with reduced design margins, referred to
as better than worst-case design. With better than worst-case design, the area,
the power consumption and the leakage of a circuit are reduced. Smaller cir-
cuit area and thus die size results in a larger number of gross dies on a wafer.
However, the target maximum supported frequency of hardware components in a
multi-processor system is not guaranteed anymore, and the spread in the maxi-
mum supported frequency of hardware components needs to be considered when
mapping an application to the platform. The goal of this thesis is to maximize
the number of good dies that satisfy the throughput requirement of a real-time
streaming application.

To this end, a design flow consisting of three stages is presented in this thesis.
In the first stage of the flow, a streaming application is allocated to a NoC-based
multiprocessor system with voltage-frequency islands, where each hardware com-
ponent is characterized by process-induced frequency variations. The goal is to
maximize the timing yield, which is a system-level metric quantifying the percent-
age of manufactured chips that satisfy the timing requirement of the application.
Maximizing the timing yield is essential as the number of good dies is given by the
product of the number of gross dies and timing yield. Two mapping approaches
are possible: single and multiple bindings for manufactured chips. Multiple bind-
ings can exploit the availability of within-die variation-induced faster and slower
processing cores on the same chip by adopting the allocation of application tasks.
Following the mapping stage, trade-o↵s between the number of voltage-frequency
islands, as well as the number of clock-frequency levels provided to each island,
(area and power consumption cost) and timing yield are performed. Having de-
cided on the binding (or a set of bindings), a set of voltage-frequency island
configurations and a number of clock-frequency levels per island, the number of
good dies on a wafer is evaluated for di↵erent guard-band reduction values in the
third and final stage of the flow. The reduction in guard-bands providing the
most good dies is selected. We show on both synthetic and real applications that
the proposed design flow can increase the number of good dies by up to 9.6% and
18.8% for designs with and without fixed SRAM and IO blocks, respectively.

Samenvatting

Moderne multimedia en draadloze applicaties vereisen aanzienlijke rekenkracht
als gevolg van hun toenemende functionaliteit. Bovendien eist veel draagbare
consumentenelektronica een laag stroomverbruik om een lange levensduur van
de batterij te garanderen. Om aan deze eisen te voldoen worden streaming-
applicaties gëımplementeerd op een multi-processor system-on-chip (MPSoC),
waarbij meerdere (tragere) processorkernen taak en data-parallellisme benutten
om de prestaties te verhogen. De hardwarecomponenten in een MPSoC zijn
meestal met elkaar verbonden door middel van een schaalbaar network-on-chip
(NoC). Alle MPSoC onderdelen moeten voorspelbaar zijn om tijdsanalyse van ap-
plicaties te kunnen geven en om tijdsgaranties te kunnen geven tijdens de ontwerp-
fase. Deze systemen worden ontworpen volgens het globally asynchronous, locally
synchronous (GALS) principe om zo de bottleneck van een globale klokfrequentie-
boom te omzeilen en om een belangrijke bron van vermogen te verlagen. GALS
architecturen maken het mogelijk om frequentie-spanningseilanden te vormen die
het vermogensgebruik verder verminderen door de frequentie (of spanning) van
componenten in een MPSoC individueel te schalen.

Het schalen van CMOS technologie heeft er voor gezorgd dat chip oppervlakte
verkleind werd om zodoende meer functionaliteit op een enkele chip te kunnen
integreren. Echter, het schalen naar nanometer-technologie heeft aanzienlijke ve-
randerlijkheid gebracht in het fabricageproces. Deze veranderlijkheid (het onver-
mogen om het productieproces te controleren) resulteert in aanzienlijke variaties
in de maximaal ondersteunde frequentie van componenten in een multi-processor
systeem. Door deze variaties wordt het moeilijk om tijdsgaranties te geven voor
applicaties die afgebeeld zijn op zulke systemen. Als oplossing worden chips ge-
bruikelijk uitgerust met marges (zogenoemde guard-bands) om vooraf vastgestelde
frequenties toch te kunnen garanderen. Volgens deze ontwerpstijl (worst-case on-
twerp) ziet een applicatie dat alle componenten van een multi-processor platform
deterministische frequenties hebben. Dit leidt er toe dat een afbeelding van ap-
plicatietaken op de hardwarecomponenten aan vooraf bepaalde tijdsvereisten kan
voldoen (bijvoorbeeld doorvoersnelheid of latentie). Echter, de worst-case on-
twerpstijl resulteert in aanzienlijk grotere chips en in een verhoogd stroomver-

bruik. Hierdoor kunnen de voordelen van het schalen van CMOS weer verloren
gaan.

Dit proefschrift behandelt het ontwerpen van real-time streaming-applicaties
die beperkt zijn door een doorvoersnelheidseis met verkleinde marges, bekend als
de beter dan worst-case ontwerpstijl. Een dusdanig ontwerp verlaagt het opper-
vlaktegebruik en vermindert het stroomverbruik en de lekstromen. Een kleiner
oppervlaktegebruik resulteert in een groter aantal chips per wafer. Echter worden
de vooraf vastgestelde frequenties niet meer gegarandeerd en moet de spreiding
van de maximaal ondersteunde frequentie in overweging genomen worden wan-
neer een applicatie wordt afgebeeld op een platform. Het doel van dit proefschrift
is om het aantal goede chips dat aan de doorvoersnelheidseis van een real-time
streaming-applicatie voldoet te maximaliseren.

Hiertoe wordt een ontwerp dat bestaat uit drie fases gepresenteerd. In de
eerste fase wordt een streaming-applicatie toegewezen aan een NoC-gebaseerd
multi-processor systeem met frequentie-spanningseilanden, waarbij elke hardware-
component gekarakteriseerd wordt door proces-gestuurde frequentievariaties. Het
doel is om de yield te maximaliseren: een systeemniveau metriek die kwantificeert
welk percentage van de geproduceerde chips aan de tijdsvereiste van de applicatie
voldoen. Het maximaliseren van de yield is essentieel, omdat het aantal goede
chips wordt bepaald door het product te nemen van het bruto aantal chips en
de yield. Twee afbeeldingstechnieken zijn mogelijk: ofwel een enkele afbeelding
ofwel meerdere afbeeldingen. Meerdere afbeeldingen maken de toekenning van
applicatietaken adaptief. Hierdoor kan rekening gehouden worden met de aan-
wezigheid van variaties in snelheden van processorkernen binnen een chip. Vol-
gend op de toekenningsfase worden de yield en de compromissen (oppervlaktege-
bruik versus vermogensgebruik) van het aantal frequentie-spanningseilanden en
frequentieniveaus bepaald. In de derde en laatste fase van het ontwerp wordt het
aantal goede chips geëvalueerd voor verschillende guard-band reducties. Uitein-
delijk wordt een guard-band gekozen die het grootste aantal goede chips oplevert.
We tonen aan dat de gepresenteerde ontwerptechniek voor zowel synthetische als
echte applicaties het aantal goede chips kan verhogen met 9.6% of 18.8%, waarbij
het eerste resultaat er vanuit gaat dat er vaste SRAM en IO-blokken zijn die niet
meeschalen met guard-band reducties.

vi

Content

1 Introduction 1
1.1 Real-time embedded systems . 1
1.2 Manufacturing process variation 2
1.3 Problem statement . 5
1.4 Overview of solution . 6
1.5 Contributions . 8

2 Formal Modeling 11
2.1 Platform graph . 12
2.2 Variation in hardware resources . 14

2.2.1 Global variation . 15
2.2.2 Local variation . 15

2.3 Clock-frequency characterization 17
2.4 Resource-aware application graph 21
2.5 Bound application graph . 24

2.5.1 Modeling resource allocation 25
2.5.2 Throughput computation 29
2.5.3 Scheduling . 31

2.6 Summary . 32

3 Variation-aware mapping 33
3.1 Optimization problems . 33
3.2 Single-binding . 34

3.2.1 Best-e↵ort applications . 34
3.2.2 Firm real-time applications 36
3.2.3 Soft real-time applications 37

3.3 Multiple-bindings . 39
3.4 Implementation algorithms . 40

3.4.1 Exhaustive algorithm . 40
3.4.2 Heuristic algorithm . 42

3.5 Experimental results . 46
3.5.1 Experimental setup . 47
3.5.2 Evaluation results . 49

3.6 Summary . 59

4 Voltage-frequency island partitioning 63
4.1 Outline of CGU architectures . 64
4.2 Heuristic Partitioning Algorithms 65

4.2.1 Single binding . 66
4.2.2 Multiple bindings . 69

4.3 Experimental results . 71
4.3.1 Experimental setup . 71
4.3.2 Evaluation results . 73

4.4 Summary . 86

5 Better than worst-case design 89
5.1 Number of good dies . 89
5.2 Variation characterization . 90
5.3 Experimental setup . 92

5.3.1 Evaluation results . 94
5.4 Summary . 99

6 Related work 101
6.1 Mitigating variation at the circuit level 101
6.2 Task allocation for MPSoC . 102
6.3 VFI partitioning . 103
6.4 Variation-aware throughput analysis 103

7 Conclusions and future work 105
7.1 Conclusions . 105
7.2 Future directions . 106

A Glossary 119
A.1 List of abbreviations . 119
A.2 List of symbols . 119

B Application SDF graphs 123

C About the author 129

D List of publications 131

viii

List of Figures

1.1 Process-induced spread in frequency of a hardware component for
worst-case and better than worst-case designs, where f

tg

is the
target frequency. 4

1.2 Circuit area and clock period trade-o↵ curves for slow, nominal and
fast process corners. The timing margin accounting for within-die
process variation is shown by an arrow. 4

1.3 An application (1:) constrained by a throughput requirement is
allocated to a multi-processor platform (2:) under worst-case and
better than worst-case designs. 6

1.4 Design flow. 7

2.1 The template of a multi-processor platform consisting of processing
elements connected to each other by an interconnect. The process-
ing elements and the interconnect are placed in di↵erent voltage-
frequency islands. The separation between clock domains is shown
by the dotted lines. 13

2.2 f

r

g

PDF (due to global variation) for a processing element with
µ

r

g

= 300 MHz, �r

g

= 12 MHz; fr

l

PDFs (due to local variation)
with respect to f

r

g

= 273, 285 and 297 MHz, �r = 15 MHz, �r

l

= 10
MHz; combined PDF of fr is the convolution of PDFs of fr

g

and f

r

l

. 16
2.3 An example showing how equidistant clock-frequency levels are se-

lected for a voltage-frequency island comprising two hardware re-
sources. 18

2.4 An example illustration of how the probability that an island is
operated at a particular clock frequency is computed. 20

2.5 An example SDF model of an H.263 encoder. 22

2.6 Modeling resource allocation in an SDF graph. 27

2.7 SDF model of a connection in the interconnect. 28

2.8 Continuous slot reservation strategy in a TDM slot table. 28

3.1 Throughput against chip-frequency vector for a fixed binding. The
average throughput over all chip-frequency vectors is shown by the
dotted line. 35

3.2 Throughput against chip-frequency vector for a fixed binding. The
timing yield is given by the percentage of fc points (with associated
probabilities pc(gp, fc)) above t

req

. 36

3.3 Throughput against chip-frequency vector for a fixed binding. Two
bindings b

1

and b

2

are shown, where b
2

has a higher average through-
put but a lower timing yield than b

1

. 37

3.4 Throughput against chip-frequency vector for a fixed binding. Se-
lecting a binding with the lowest objective function ⇣ is equivalent
to minimizing the shaded area below t

req

. 38

3.5 Throughput against chip-frequency vector for a fixed binding. Two
bindings b

1

and b

2

are shown, where b
2

has higher timing yield, but
also a higher average throughput degradation, than b

1

. 39

3.6 The multi-processor platform used in the experiments. It consists
of three processing elements connected to each other by an inter-
connect. The processing elements and the interconnect are placed
in separate voltage-frequency islands. 48

3.7 Timing yield of applications using the exhaustive MFBE, SBE and
MBE mapping algorithms for the class of firm real-time applications. 50

3.8 Timing yield of applications using the heuristic MFBH, SBH and
MBH mapping algorithms for the class of firm real-time applications. 52

3.9 Timing yield against the number of allocated TDM slots for each
dependency edge mapped to a connection in the interconnect for
the H.263 decoder, H.263 encoder and MP3 decoder applications. . 55

3.10 Normalized average throughput of applications using the exhaus-
tive MFBE, SBE and MBE mapping algorithms for the class of
best-e↵ort applications. 56

3.11 Normalized average throughput of applications using the heuristic
MFBH, SBH and MBH mapping algorithms for the class of best-
e↵ort applications. 57

3.12 Average throughput degradation of applications using the MFBE,
SBE and MBE heuristic mapping algorithms for the class of soft
real-time applications. 58

3.13 Timing yield of applications using the MFBE, SBE and MBE
heuristic mapping algorithms for the class of soft real-time appli-
cations. 58

x

3.14 Average throughput degradation of applications using the MFBE,
SBE and MBE heuristic mapping algorithms for the class of soft
real-time applications. 59

4.1 Example platform graph comprising three voltage-frequency is-
lands. Depending on the clock frequencies of islands, one or an-
other binding of the three actors belonging to a resource-aware
application graph to the processing elements, which are placed in
the islands, is required to achieve high throughput. 71

4.2 The multi-processor platform used for the synthetic application. It
consists of seven processing elements connected to each other by
an interconnect. The processing elements and the interconnect are
placed in separate voltage-frequency islands. 73

4.3 Throughput CDF for VFI-8, VFI-5, VFI-3 and VFI-2 architectures
for the synthetic application. The results presume a single binding
of the application to a NoC-based multi-processor platform con-
sisting of seven processing elements. 74

4.4 Throughput CDF for five and three VFI architectures, based on
both variation-aware (VFI-4, VFI-2) and deterministic partitions
(DVFI-4, DVFI-2). 76

4.5 Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the
H.263 decoder, H.263 encoder and MP3 playback applications. The
results presume a single binding of the application to a NoC-based
multi-processor platform consisting of three processing elements. . 77

4.6 Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for
the Modem and MP3 decoder applications. The results presume
a single binding of the application to a NoC-based multi-processor
platform consisting of three processing elements. 78

4.7 Throughput CDF for VFI-8, VFI-5, VFI-3 and VFI-2 architec-
tures for the synthetic application. The results presume multiple
bindings (eight) of the application to a NoC-based multi-processor
platform consisting of seven processing elements. 80

4.8 Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the
H.263 decoder, H.263 encoder and MP3 playback applications. The
results presume multiple binding of the application to a NoC-based
multi-processor platform consisting of three processing elements. . 82

4.9 Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for
the Modem and MP3 decoder applications. The results presume
multiple binding of the application to a NoC-based multi-processor
platform consisting of three processing elements. 83

xi

4.10 Throughput CDF for a VFI-5 architecture for the synthetic appli-
cation. The results presume a single binding of the application to a
NoC-based multi-processor platform consisting of seven processing
elements. The graphs are presented for eight, five, three, two and a
single clock-frequency levels provided to voltage-frequency islands
in the platform graph. 84

4.11 Throughput CDF for a VFI-4 architecture for the H.263 decoder,
H.263 encoder and MP3 playback applications. The results pre-
sume a single binding of the application to a NoC-based multi-
processor platform. The graphs are presented for eight, five, three,
two and a single clock-frequency levels provided to voltage-frequency
islands in the platform graph. 85

5.1 Combined f

r PDF of a hardware resource due to a 0%, 40%, 100%
guard-band reduction. The target frequency f

r

tg

is 300 MHz, �r

g

=
4%, �r

l

= 3.3%, and thus �r

u%

⇡ 5.186% of mean frequency. 91
5.2 Number of good dies per wafer against reduced guard-band for the

synthetic application and a VFI-8 architecture. The graphs are
given for both a single and multiple bindings. Designs with and
without fixed blocks are considered. 95

5.3 Number of good dies per wafer against reduced guard-band for the
synthetic application a VFI-5 architecture. The graphs are given
for both a single and multiple bindings. Only a design with fixed
blocks is considered. 95

5.4 Number of good dies per wafer against reduced guard-band for
the H.263 decoder, H.263 encoder and MP3 playback applications
and a VFI-4 architecture. The graphs are given for both a single
and multiple bindings. Designs with and without fixed blocks are
considered. 97

5.5 Number of good dies per wafer against reduced guard-band for the
Modem and MP3 decoder applications and a VFI-4 architecture.
The graphs are given for both a single and multiple bindings. De-
signs with and without fixed blocks are considered. 98

B.1 An SDF model of an H.263 decoder. 123
B.2 An SDF model of an H.263 encoder. 124
B.3 An SDF model of an MP3 playback. 125
B.4 An SDF model of a Sample rate converter. 125
B.5 An SDF model of a Modem. 126
B.6 An SDF model of an MP3 decoder. 127
B.7 An SDF model of a synthetic application. 128

xii

List of Tables

3.1 Optimization criteria for application classes 34
3.2 Application SDFG overview. 47
3.3 Parameters assumed for connection bandwidth, TDM slot-table

size and flit size for the interconnect. 48
3.4 Parameters assumed for random variables modeling the maximum

supported frequency of hardware resources. 49
3.5 The run time of exhaustive MFBE, SBE and MBE mapping algo-

rithms. 51
3.6 The run time of heuristic MFBH, SBH and MBHmapping algorithms. 53
3.7 The number of bindings selected by MBH. 54

4.1 Di↵erent mappings of the actors in an application to the processing
elements in a multi-processor platform shown in Figure 4.1 based
on the clock frequencies of voltage-frequency islands. 71

4.2 Overview of the synthetic application 72
4.3 Grouping of processing elements and the interconnect into VFIs,

as a result of both variation-aware (VFI-5, VFI-3) and determinis-
tic (DVFI-5, DVFI-3) partitioning algorithms considering a single
binding. 75

4.4 Grouping of processing elements and the interconnect into VFIs, as
a result of the variation-aware partitioning algorithm considering
multiple bindings. 80

5.1 Target frequency and variation-related parameters assumed for hard-
ware resources. 93

5.2 Timing yield for u% reduced guard-bands. 96

A.1 List of symbols. 120

B.1 The execution time (in cycles) of actors and the size of data tokens
(in bytes) sent across the dependence edges for the H.263 decoder. 124

B.2 The execution time (in cycles) of actors and the size of data tokens
(in bytes) sent across the dependence edges for the H.263 encoder. 124

B.3 The execution time (in cycles) of actors and the size of data tokens
(in bytes) sent across the dependence edges for the MP3 decoder. . 126

B.4 The execution time (in cycles) of actors and the size of data to-
kens (in bytes) sent across the dependence edges for the synthetic
application. 127

xiv

1
Introduction

1.1 Real-time embedded systems

Embedded systems contribute to most aspects of our daily activities. They sur-
round us and provide us with entertainment, daily information and assist us
in completing our every day tasks. Examples of embedded systems are mobile
phones, digital cameras, TV sets, global positioning systems, air tra�c manage-
ment, etc. An important portion of embedded systems is represented by embedded
multimedia and wireless systems. Applications in these systems work on streams
of audio and video data, and are termed streaming applications. Examples of
streaming applications are video decoding (encoding) [63, 82] from the multime-
dia domain and software defined radio [59] from the wireless domain. Streaming
applications are usually constrained by a throughput requirement associated with
user perception. An example throughput requirement for video decoding is the
number of frames per second. Timing requirements exist in firm and soft real-
time application classes. In firm real-time applications, such as software-defined
radio, violations of the timing requirement are not allowed. Soft real-time appli-
cations, such as such as video decoding, are characterized by less stringent timing
requirements. In such applications missing a deadline causes only a performance
degradation, often evaluated through some quality-of-service parameter. There
are also best-e↵ort applications, which do not have any timing requirements. An
example best-e↵ort application is a graphical user interface. Although there are
no timing requirements set on the applications of this class, high performance is
preferred by the user.

To enhance user experience, an increasing amount of data must be processed
(e.g. to achieve higher video resolutions) and more computationally intensive cod-

Chapter 1. Introduction

ing schemes must be implemented. As a result, an increasing computational ca-
pability to implement such applications is required. Additionally, many portable
consumer electronics, such as mobile phones, digital cameras, and tablets, impose
requirements on power consumption for longer battery life. To meet the increasing
demand on computational capability and low power consumption, such applica-
tions are implemented on a multi-processor system-on-chip (MPSoC) [35, 49, 87,
95], where multiple (slower) processing cores exploit task and data-level paral-
lelism to increase performance without increasing power consumption.

The components inside a multi-processor system were traditionally connected
to each other by a bus. However, traditional buses do not provide scalable inter-
connection. For this reason, a paradigm shift towards network on chips (NoC)
based interconnection inside multi-processor systems has been seen in recent
years [17]. All hardware components in an MPSoC must be predictable, such that
the timing of an application implemented on the MPSoC can be formally analyzed
and timing guarantees can be given at design time. Present-day MPSoCs are im-
plemented by means of the globally asynchronous, locally synchronous (GALS)
design style [48, 60], which was introduced to alleviate the bottleneck of global
clock distribution and reduce the related major source of power consumption in
multi-processor systems. The GALS architecture is composed of synchronous
blocks, communicating with each other on an asynchronous basis. The concept
of voltage-frequency islands (VFI), within the GALS design paradigm, enables
scaling the frequency (voltage) of each individual hardware component (clusters
of components) in a multi-processor system to further reduce power consumption.

Due to rapid technology changes, consumers replace old products with new
ones much more frequently. For example, two major products are released annu-
ally by mobile phone manufacturers, such as Apple and Samsung. These products
o↵er more and more functionality, leading to a considerable increase in design ef-
fort. This imposes requirements on short time to market of products. To address
this issue, a platform-based design methodology has been proposed [4, 69]. A
platform consists of multiple hardware and software components specific to a par-
ticular application domain. The software components are application software,
middleware and operating systems used for programming the hardware compo-
nents. A platform, as a result of integration of di↵erent components, serves as
a starting point in application development. Which components to integrate de-
pends on the requirements imposed on the application [94]. Given a platform, an
application, which can be partially specified in software and partially in hardware,
is mapped to the multi-processor platform, such that the timing requirements im-
posed on the application are satisfied.

1.2 Manufacturing process variation

To reduce the power consumption of consumer electronics and decrease the area
of integrated circuits, thus enabling integration of more functionality on a chip

2

1.2. Manufacturing process variation

die, transistor feature sizes have traditionally been scaled down . An observation
that the integration density of integrated circuits doubles approximately every
two years was made by Gordon Moore in 1956. This observation, known as
Moore’s law [56, 57], still holds up to this day. However, scaling CMOS tech-
nology into nanometer feature size nodes has made it practically impossible to
precisely control the manufacturing process. Major sources of manufacturing pro-
cess variation are random dopant fluctuations and sub-wavelength lithography for
patterning transistors [11]. Process variation results in variability in key design
parameters, such as transistor channel length and threshold voltage, and intercon-
nect width [12,61]. Parameter variability, in turn, influences circuit speed [13,20],
power consumption and leakage [51]. Considerable variability of up to 50% in the
longest path delay of a processor is reported in available literature [20,51]. Process
variation can be categorized into die-to-die and within-die variations. Die-to-die
variation acts globally on the entire chip die, a↵ecting parameters of all devices
(i.e. transistors) on the die identically. Die-to-die variation is seen between dies
within a wafer and between dies of di↵erent wafers (due to wafer-to-wafer varia-
tion). In contrast, within-die variation a↵ects parameters of devices on the same
die di↵erently. It can be classified into systematic and random components. Sys-
tematic within-die variation exhibits spatial correlation, such that nearby devices
possess similar parameter values due to high correlation, which dies out quickly as
a function of distance on a die [22]. Random within-die variation is purely random
from device to device on a die. The impact of within-die variation is expected
to worsen as technology scales. Both die-to-die and within-die variations impact
the maximum supported frequency of hardware components inside an MPSoC.
Di↵erent (identically designed) hardware components on the same die, as well as
the same hardware component across di↵erent dies, can have di↵erent maximum
supported frequencies.

As a solution to process-induced variations, circuits are conventionally im-
plemented with conservative design margins, or guard-bands, to guarantee the
target frequency of each hardware component in manufactured multi-processor
chips. This is known as worst-case design. Circuit guard-banding is typically
done by using corner-files during the design and verification stages. These files
describe the worst-case and best-case delay values of standard-cells, correspond-
ing to slow and fast process corners, respectively. Under worst-case design, design
synthesis is performed for the slow process corner, while the fast process corner is
used in the design verification stage to correct possible set-up timing violations.
Corner files lack detailed information on within-die variation. Instead, on-chip
timing variation margin is added during the design verification stage to account
for within-die variation with a pessimistic assumption that all the devices within
a die are performing according to their worst case under slow process conditions.

Figure 1.1 shows a qualitative example of the process-induced spread in fre-
quency of a hardware component. As shown, almost all manufactured instances
of the hardware component meet the target frequency f

tg

under worst-case de-
sign (WCD). Therefore, from the perspective of an application, which can be

3

Chapter 1. Introduction

partially defined in software and partially in hardware, the hardware components
in a multi-processor platform have deterministic minimum frequencies, leading
to a mapping of the application tasks to the hardware components in the multi-
processor platform, such that a certain timing requirement (e.g. throughput or
latency) imposed on the application is satisfied. However, worst-case design has
a considerable impact on circuit area, power consumption and leakage [33, 40].
Consider the qualitative circuit area and clock period trade-o↵ curves for slow,
nominal and fast process corners for a generic circuit, illustrated in Figure 1.2. As
can be seen, larger circuit up-sizing is performed for a lower clock period (higher
performance) under worst-case design. The added timing variation margin to
account for within-die process variation also results in increased circuit area, as
illustrated in the figure. Due to increased circuit area, power consumption and
leakage, the benefits of technology scaling can be lost.

Frequency

N
u
m

b
e
r

o
f
h
a
rd

w
a
re

co

m
p
o
n
e
n
ts

WCD
Better than WCDftg

Figure 1.1: Process-induced spread in frequency of a hardware component for worst-case and
better than worst-case designs, where f

tg

is the target frequency.

clock period

ci
rc
u
it
ar
ea

timing margin

extra area

fast

nominal slow

target performance

WCD

Figure 1.2: Circuit area and clock period trade-o↵ curves for slow, nominal and fast process
corners. The timing margin accounting for within-die process variation is shown by an arrow.

4

1.3. Problem statement

1.3 Problem statement

The trends outlined in Sections 1.1 and 1.2 show that the requirements on com-
putational capability and low energy consumption of multimedia and wireless
applications are increasing. Designers use multi-processor systems and platform-
based design to deal with the increasing complexity of systems and to shorten
time to market. As a solution to increasing process-induced variation in the fre-
quency of hardware components in a multi-processor system, a worst-case design
approach is adopted. This results in a considerable increase in circuit area and
power consumption, and can lead to a loss in the benefits of technology scaling.
This thesis deals with the design of real-time streaming applications constrained
by a throughput requirement with reduced design margins, referred to as better
than worst-case design. With better than worst-case design, the area, the power
consumption and the leakage of a circuit are reduced. Smaller circuit area and
thus die size results in a larger number of gross dies on a wafer. However, the tar-
get maximum supported frequency of hardware components in a multi-processor
system is not guaranteed anymore. The spread in the maximum supported fre-
quency of an example hardware component with respect to its target speed, under
better than worst-case design, is illustrated in Figure 1.1. The goal of this thesis
is to maximize the number of good dies that satisfy the throughput requirement of
a real-time streaming application. This goal is accomplished by providing algo-
rithms to exploit process-driven variation in frequency of hardware components
in a multi-processor system in the application mapping and voltage-frequency
island partitioning stages. The main concept of the work is illustrated in Fig-
ure 1.3, where an application with a throughput requirement is mapped to a
multi-processor platform under both worst-case and better than worst-case de-
signs. With worst-case design (Figure 1.3a), the target speed of the processing
cores (denoted by pe) is guaranteed at the cost of large area. All processing cores
are operated at their target speeds, providing su�cient computational capability
for the application to satisfy its throughput requirement (for a given mapping).
With better than worst-case design (Figure 1.3b), the area of the processing cores
is reduced, but the target speed is not guaranteed anymore. However, there may
be processing cores with higher and lower than the target speeds on the same chip
die due to the impact of within-die variation. Operating the processing cores at
their corresponding speeds and using the available mapping flexibility, the alloca-
tion of the tasks of an application to the processing cores can be tailored for each
specific chip, such that the throughput requirement is satisfied whenever possible.
This can result in a larger number of good dies, given that a larger number of
gross dies are available on a wafer due to smaller die area.

The building blocks of this thesis are a multi-processor platform, a stream-
ing application and a model of computation (MoC) that can capture a streaming
multimedia or wireless application along with its mapping to a multi-processor
platform. Using the model of computation, timing guarantees can be given by

5

Chapter 1. Introduction

performing design-time analysis. Due to process variation, the frequency of hard-
ware components is given by a probability distribution. A network on chip pro-
vides interconnection between hardware components in the multi-processor sys-
tem. The hardware components are partitioned into voltage-frequency islands. A
set of clock-frequency levels are provided to each island. We introduce a metric
termed timing yield quantifying the percentage of manufactured chips satisfying
the throughput requirement imposed on an application. The number of good dies
is given by the product of timing yield and the number of gross dies on a wafer.
Therefore, the algorithms presented in this thesis aim at designing systems with
high timing yield, such that the number of good dies is maximized.

t1 t2 t3

pe1 pe2 pe3

pe1 pe2 pe3

f
tg

f
tg

1:

2:

3:

4:

(a) Worst-case design. The processing cores
in the platform are operated at their tar-
get speeds (3:). For a certain mapping, the
throughput requirement is satisfied.

t1 t2 t3

pe1 pe2 pe3

pe1
pe2

pe3
f
tg

f
tg

(b) Better than worst-case design. There
may be cores with higher and lower than the
target speeds on a die (4:). The mapping
can be adjusted for each specific chip, such
that the throughput requirement is satisfied
whenever possible. Given a larger number
of dies on a wafer (smaller area (2:)), the
number of good dies can be maximized.

Figure 1.3: An application (1:) constrained by a throughput requirement is allocated to a
multi-processor platform (2:) under worst-case and better than worst-case designs.

1.4 Overview of solution

To address the problem in Section 1.3, this thesis proposes a design flow, called
better than worst-case design. This section provides a brief overview of the flow.
The design flow is shown in Figure 1.4. It assumes that a streaming applica-
tion that has to be implemented on a multi-processor platform is modeled by a
synchronous data-flow (SDF) graph [36,37]. SDF graphs are well-suited for mod-

6

1.4. Overview of solution

eling and analysis of streaming applications, and have multiple e�cient techniques
for throughput computation [79]. The hardware platform is a NoC-based multi-
processor platform with voltage-frequency islands, as introduced in Section 1.3.
The SDF graph of the application includes information on the number of clock
cycles it takes to execute each actor (modeling computation) on each processing
element in the multi-processor platform and the amount of data sent between
actors. This SDF model of the application is decoupled from the process-induced
variation in the frequency of hardware components in the platform.

(1) Variation-aware mapping
Single binding and multiple

bindings. (Chapter 3)

(2) VFI partitioning
Number of islands, as well

as number of clock-frequency

levels per island, (area cost)

and timing yield trade-o↵s.

(Chapter 4)

(4) Number of good dies
Impact of guard-band reduc-

tion on the number of good

dies. (Chapter 5)

Application SDF graph,
a throughput constraint.
(Chapter 2)

MPSoC template, variation
characterization for hardware
components. (Chapter 2)

Single or a set of bindings.

Set of VFI configurations. Num-
ber of clock-frequency levels.

Die area.

Figure 1.4: Design flow.

In Step 1 of the flow, the application is allocated to the platform, such that the
timing yield is maximized. For this purpose, both exhaustive and heuristic map-
ping algorithms are proposed in this thesis. Two di↵erent mapping approaches are
presented: single-binding and multiple-bindings. With the single binding mapping
approach, only a single binding for all manufactured chips is derived. In contrast,
with the multiple-bindings mapping approach, a set of bindings are selected for the
manufactured chips. These bindings are stored and based on each manufactured

7

Chapter 1. Introduction

chip, a binding is selected at an initial run-time configuration stage, such that the
throughput of the application is maximized. Multiple bindings always result in
equal or higher timing yield. To compute the timing yield, a characterization of
the hardware multi-processor platform in terms of possible clock-frequency sets
for processing elements and the network on chip is performed. The probability
that the processing elements and the network on chip are operated at a certain
set of clock frequencies is computed. The throughput of the mapped application
for the di↵erent clock frequency sets is analyzed by constructing another model of
the application, which captures the resource allocation for the application on the
platform. The actors in this graph are characterized by execution times in sec-
onds. Therefore, this model of the application is not decoupled from the variation
in frequency of hardware components.

From the first stage of the flow, a single or a set of bindings are derived that
result in maximized timing yield. Using these bindings, trade-o↵s between the
number of voltage-frequency islands, as well as the number of clock-frequency
levels per island, and timing yield are performed in the second stage of the flow
(Step 2). The higher the number of islands and clock-frequency levels per island,
the higher the additional area (and power consumption) cost of clock-generation
units associated with the islands is. Therefore, by reducing the number of islands,
the die size becomes smaller, resulting in more gross dies on the wafer. On the
other hand, a reduction in the number of voltage-frequency islands and clock-
frequency levels for each island may lead to decreased timing yield. This thesis
introduces heuristic algorithms to perform voltage-frequency island partitioning,
such that the timing yield is maximized for a given number of islands. Algorithms
considering both a single and multiple bindings are proposed. The result of the
second stage of the flow is a set of voltage-frequency island configurations and a
number of clock-frequency levels for the islands, such that high timing yield is
provided.

In the final stage of the flow (Step 3), the change in the number of good
dies due to reducing circuit guard-bands is evaluated. In this stage, the mapping
of the application to the platform in terms of a single or a set of bindings, the
set of voltage-frequency island configurations and the number of clock-frequency
levels for each island are known. The number of good dies are evaluated for a
set of guard-band reduction values, such that the reduction providing the highest
number of good dies is selected. In this stage, characterization of variation in
the frequency of hardware components for each guard-band reduction value must
be provided. Additionally, the circuit (die) area reduction factor due to reduced
guard-bands has to be known.

1.5 Contributions

This thesis makes five contributions to develop real-time streaming applications,
constrained by a throughput requirement on a multi-processor system under bet-

8

1.5. Contributions

ter than worst-case design (i.e. with reduced design margins).

1. A formal framework is presented to estimate the probability distribution of
application throughput in a NoC-based multi-processor system with voltage-
frequency islands in the presence of process-induced frequency variations of
hardware resources (Chapter 2). Both within-die and die-to-die variations
are considered. Any set of clock-frequency levels can be specified per VFI
domain. We use synchronous data-flow (SDF) to model a streaming appli-
cation mapped to an MPSoC. The novelty of our SDF formulation lies in
the explicit modeling of software execution in terms of clock cycles (which
is independent of the frequency variation of hardware components), and in
terms of seconds (which does depend on the frequency variation of hardware
components), which are linked by an explicit binding. This modeling allows
a system designer to analyze the throughput of an application mapped to
an MPSoC in the presence of process-driven variations. An earlier version
of this work was published in [52–54].

2. Optimal and heuristic mapping algorithms are proposed to map streaming
applications to a NoC-based multi-processor system with voltage-frequency
islands under within-die and die-to-die process-driven variations (Chap-
ter 3). We di↵erentiate best-e↵ort, firm real-time and soft real-time appli-
cation classes, and define an optimization criteria for each of them. Single-
binding and multiple-bindings mapping approaches are presented. With
the single-binding mapping approach, a single binding for all manufactured
chips is computed, while a set of bindings are derived with the multiple-
bindings approach. At an initial run-time configuration stage, the right
binding that maximizes throughput for a particular chip is selected. This
work was published in [52,53].

3. Heuristic algorithms to partition processing elements in a NoC-based multi-
processor system into voltage-frequency islands for maximized timing yield
in the presence of die-to-die and within-die variations are presented (Chap-
ter 4). Algorithms considering both a single and multiple bindings for man-
ufactured chips are given. An earlier version of this work was published
in [54]

4. A demonstration on case-studies is presented showing how the framework
proposed in this thesis can be used to estimate the impact of reducing circuit
design margins on the number of good dies that satisfy the throughput
requirement of a real-time streaming application (Chapter 5). We show for
both synthetic and several real applications that the proposed design flow
can increase the number of good dies per wafer, compared to conventional
worst-case design.

5. All the presented algorithms and the formal models have been implemented
in C++ in the publicly available SDF For Free (SDF3) tool-kit [72, 81].

9

Chapter 1. Introduction

10

2
Formal Modeling

To analyze the performance of an application mapped to a multi-processor plat-
form at design time, a model of computation is required. The model needs to
capture the application, the platform and the mapping of the application to the
platform. The impact of process variation on the hardware resources (i.e. pro-
cessing elements, routers, network interfaces and links) in the platform also needs
to be captured in the model. This chapter introduces the formal models that
are used throughout this thesis. We start by defining a hardware multi-processor
platform as a platform graph. We present how the modeling of variation in the
maximum supported frequency of hardware resources due to process variation is
performed. Based on this variation, a characterization of the platform graph in
terms of possible clock-frequency sets for processing elements and the interconnect
is performed. The methodology to compute the probability that the processing
elements and the interconnect are operated at a certain set of clock frequencies
is presented. Later, an SDF model of a streaming application, named a resource-
aware application graph, is introduced. This model is unaware of the binding of
application actors to processing elements, and is hence decoupled from hardware
variation. Finally, we define another SDF model of the application, coined as
a bound application graph. This graph captures the binding of a resource-aware
application graph to a platform graph. We describe how resource allocation is
modeled in a bound application graph. This model is used to perform timing
analysis of the mapped application. While a resource-aware application graph
describes performance in terms of execution time in cycles, the essence of a bound
application graph is that it considers performance in terms of execution time in
seconds. This allows us to take process-induced variation in the frequency of pro-
cessing elements into account. The presented techniques are general and apply to

Chapter 2. Formal Modeling

any system that implements the models described in this chapter. Examples of
such systems are CoMPSoC [25], CA-MPSoC [73], DaedalusRT [5], MAMPS [34],
and systems by NXP [59] and STE / Ericsson [84].

2.1 Platform graph

The template of a hardware multi-processor platform used in this thesis and re-
ferred to as a platform graph is illustrated in Figure 2.1. It consists of generic
processing elements, such as processors, DSPs, or hardware accelerators, con-
nected to each other by a network on chip (NoC), later referred in this thesis as
an interconnect. Processing elements are denoted by pe. We assume an arbitrary
topology interconnect, which consists of routers, denoted by rt, network interfaces,
denoted by ni, and unidirectional links, denoted by lk. Routers are connected to
each other and to network interfaces by links. The interconnect provides lossless
and ordered data transmission. Each processing element is connected to a single
network interface in the interconnect. It is assumed that the network interfaces
sit close to processing elements, and that the connections between processing
elements and network interfaces do not introduce any delay. The path from a
network interface to another network interface in the interconnect is referred to
as a connection. A connection provides a certain maximum bandwidth (in bytes
per cycle) assuming that all resources on the connection are reserved. It also has
a certain hop count, given by the number of routers on the path. For constructing
a connection model in an application SDF graph, presented later in Section 2.5.1,
we require that any arbitration point in a connection can be modeled as a latency
rate server [78], independent of other connections. Note that any starvation free
arbitration can be modeled by a latency rate server. Examples of interconnects
that fulfill these requirements are [21,26,27,32,39,50,70,77,83,89,90,92]. In this
thesis we assume a time-division multiplexing (TDM) arbitration policy (although
other arbitration policies can be used). The arbitration for the shared router net-
work is performed in network interfaces, which packetize the transactions from the
processing elements and inject them into the router network as flow control digits
(flits). All network interfaces in the interconnect have the same slot table size (in
number of slots). The injection of flits, regulated by the TDM tables, is done such
that no two flits ever arrive at the same link at the same time. Therefore, the
flits are forwarded without arbitration in the interconnect. Resource reservation
on a connection is performed by allocating a number of slots in the TDM slot
table. This provides a certain minimum bandwidth and maximum latency on the
connection, as described in more details in Section 2.5.1. Network-on-chips that
provide the described properties are Æthereal [26], Aelite [27], dAElite [77], Nos-
trum [50], SoCBUS [92], SurfNoC [89], and NoCs given in [70], [90], [21] and [83].
We formally define an interconnect in Definition 1. We refer to a processing ele-
ment, a router, a network interface and a link in a platform graph as a (hardware)
resource . As such, the union of the sets of processing elements, routers, network

12

2.1. Platform graph

interfaces and links represents the set of all resources in the platform graph (Def-
inition 2). The multi-processor platform is given by a globally asynchronous,
locally synchronous (GALS) architecture [48], where the processing elements and
the interconnect are partitioned into voltage-frequency islands (VFI). The inter-
connect is placed in an separate VFI, and thus the resources in the interconnect
belong to that island. The set of voltage frequency islands is denoted by FI. Com-
munication between the processing elements and the interconnect is accomplished
by means of mixed-clock first-in-first-out (FIFO) bu↵ers, which are part of net-
work interfaces. In Figure 2.1, the separation between clock domains is shown by
the dotted lines. A clock-generation unit (CGU) that provides a set of discrete
clock-frequency levels, is dedicated to each voltage-frequency island. The formal
definition of a platform graph gp is given in Definition 3. The set of all platform
graphs is denoted by GP. The multi-processor platform depicted in Figure 2.1 is
partitioned into three islands, namely fi

1

and fi
2

comprising processing elements
pe

1

and pe
2

, respectively, and fi
3

consisting of the interconnect.

pe
1

pe
2

in
te
rc
on

n
ec
t

rt
1

rt
2

ni
1

ni
2

lk
3

lk
1

lk
2

fi
1

fi
2

fi
3

Figure 2.1: The template of a multi-processor platform consisting of processing elements
connected to each other by an interconnect. The processing elements and the interconnect are
placed in di↵erent voltage-frequency islands. The separation between clock domains is shown
by the dotted lines.

Definition 1. (Interconnect) An interconnect noc is a 6-tuple hRT,NI,LK, ⌘, sz
tb

,

sz
fl

i consisting of a set RT of routers, a set NI of network interfaces, a set LK of
links connecting routers and network interfaces in an arbitrary topology, a TDM
slot table size sz

tb

(in number of slots) for all network interfaces, a flit size sz
fl

(in bytes), a function ⌘(ni
i

,ni
j

), which for a connection from a network interface
ni

i

2 NI to a network interface ni
j

2 NI (ni
i

6= ni
j

) returns a tuple h�, i with �
the maximum bandwidth (in bytes per cycle) assuming that all slots in the TDM
table are reserved, and the number of hops.

Definition 2. (Set of resources) The set R of resources is the union of the sets
PE of processing elements, RT of routers, NI of network interfaces, and LK of

13

Chapter 2. Formal Modeling

links in a platform graph, and is defined as

R = PE [RT [NI [LK (2.1)

Definition 3. (Platform graph) A platform graph gp is a 5-tuple hPE,noc,FI, ,�i
consisting of a set PE of processing elements, an interconnect noc, a set of voltage-
frequency islands FI, a function (fi) : FI ! P(R), which for each voltage-
frequency island fi 2 FI returns the set R

fi

2 R of resources belonging to the is-
land, and a function �(pe) : PE ! FI, which for each processing element pe 2 PE
returns the voltage-frequency island fi 2 FI to which the processing element be-
longs. Each processing element pe 2 PE is connected to a single network interface
ni 2 NI in the interconnect noc.

2.2 Variation in hardware resources

In this section, we present the modeling of the impact of manufacturing process
variation in the maximum supported frequencies of hardware resources in a plat-
form graph. Manufacturing process variation can be classified into die-to-die and
within-die variations. Die-to-die variation, also referred to as global variation,
acts globally on the entire chip die, a↵ecting parameters of all devices (i.e. tran-
sistors) and wires on the die identically. Global variation is seen between dies
within a wafer and between dies of di↵erent wafers (due to wafer-to-wafer vari-
ation); therefore, overall global variation presumes multiple wafers. In contrast,
within-die variation, also known as local variation, a↵ects parameters of devices
on the same die di↵erently. It can be classified into systematic and random com-
ponents. Systematic local variation exhibits spatial correlation, such that nearby
devices possess similar parameter values due to high correlation, which dies out
quickly at the level of devices on a die, as a function of distance [22]. While the
parameter correlation between adjacent devices on a die is high, the correlation
between larger adjacent logic blocks on a die, such as a processing element, is typ-
ically much lower. Furthermore, measurements performed by Pang et al. [64, 65]
show no significant spatial correlation at 45 nm technology, in contrast to 90 nm
technology. This is partially because random local variation, which is purely ran-
dom from device to device, has more than doubled at 45 nm technology whereas
systematic local variation has decreased. For simplicity, we assume zero corre-
lation between maximum supported frequencies of processing elements, routers,
network interfaces and links in a chip due to local variation. An extension of the
models presented in this section, such that correlation between maximum sup-
ported frequencies can be specified, is one of the possible future works of this
thesis. It has been shown that a normal distribution is a good fit for modeling the
impact of global and local manufacturing process variations [13, 64]. We, there-
fore, use normal distributions to model the impact of global and local process

14

2.2. Variation in hardware resources

variations in the maximum supported frequency of resources in a platform graph.
We thus proceed by presenting the models.

2.2.1 Global variation

To model the impact of global variation, we describe the maximum supported
frequency of each hardware resource r 2 R in a platform graph gp by a random
variable f

r

g

distributed normally with µ

r

g

mean and �

r

g

standard deviation. To
denote that f

r

g

is normally distributed, the notation f

r

g

= N(µr

g

, (�r

g

)2) is used.
Global variation a↵ects the maximum supported frequency of all hardware re-
sources on a chip die identically. This results in equally faster or equally slower
resources on each manufactured die. Therefore, we can say that the correlation
between (fr

i

g

, f

r

j

g

) for any r

i

, r

j

2 R is equal to 1. Additionally, the standard
deviation to mean ratio (�r

g

/µ

r

g

) is the same for all resources. The Probability
Density Function (PDF) of a normally distributed random variable x = N(µ,�2)
is given by Equation (2.2). The Cumulative Distribution Function (CDF) of
x = N(µ,�2) is computed by Equation (2.3), where �(x) is the CDF of the stan-
dard normal distribution N(0, 12) (Equation 2.4). The CDF ✓(x

0

, µ,�) represents
the probability that the random variable x takes on a value less than or equal to
x

0

. Equations (2.2) and (2.4) can be used to compute the PDF and the CDF of
f

r

g

= N(µr

g

, (�r

g

)2).

�(x, µ,�) =
1

�

p
2⇡

· e�
(x�µ)

2�2 (2.2)

✓(x, µ,�) = �

✓
x� µ

�

◆
(2.3)

�(x) =
1p
2⇡

·
xZ

�1

e

(t

2
/2) dt (2.4)

2.2.2 Local variation

Let us assume that a hardware resources has a certain maximum supported fre-
quency f

r

g

= f

0

due to global variation. The impact of local variation on the
maximum supported frequency of the resource is overlaid on f

0

. We thus intro-
duce a normally distributed random variable f

r

l

= N(f
0

� �

r

, (�r

l

)2) to model
the impact of local variation on the maximum supported frequency of a hardware
resource with respect to a global frequency value f

r

g

= f

0

of the resource. Here,
�

r

l

is the standard deviation and �

r models a reduction in mean frequency of
the hardware resource. Processing elements often contain multiple critical paths.
The frequency of a processing element is decided by the slowest critical path. The
probability that at least one of the critical paths is slowed down due to variation
is higher than the probability that a single path is slowed down. This results in

15

Chapter 2. Formal Modeling

a mean frequency reduction, as shown by Bowman et al. in [13]. Links contain
multiple wires, which has a similar impact on the mean frequency as in processing
elements. The reduction for links has been shown experimentally by Hernandez
et al. in [29]. In the same paper it is shown that the reduction in mean frequency
is negligible for routers. We make a similar assumption of a negligible mean
frequency reduction for network interfaces. As we assume no spatial correlation
between the variation in maximum supported frequencies of hardware resources
due to local process variation, the covariance between (fr

i

l

, f

r

j

l

) for any r

i

, r

j

2 R

is equal to zero. Figure 2.2 illustrates an example PDF of fr

g

for a processing
element with µ

r

g

= 300 MHz and �r

g

= 12 MHz. The same figure shows the PDFs
of fr

l

with respect to f

0

= (µr

g

+k ·�r

g

) for (k = �1, 0, 1), where �r = 15 MHz and
�

r

l

= 10 MHz; these numbers are representative for 45 nm technology nodes, as
the measurements in [64] show.

240 260 280 300 320 340 360

0.015

0.03

0.045

Frequency (MHz)

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

fr
g = N(µr

g,σ
r
g)

fr
l = N(µr

g - σr
g - δr,σr

l)

fr
l = N(µr

g - δr,σr
l)

fr
l = N(µr

g + σr
g - δr,σr

l)

fr = (µr,σr)

Figure 2.2: fr

g

PDF (due to global variation) for a processing element with µr

g

= 300 MHz,
�r

g

= 12 MHz; fr

l

PDFs (due to local variation) with respect to fr

g

= 273, 285 and 297 MHz,
�r = 15 MHz, �r

l

= 10 MHz; combined PDF of fr is the convolution of PDFs of fr

g

and fr

l

.

To describe the maximum supported frequency of a hardware resource by a
single distribution, global and local distributions are combined by convolution, as
given by Equation (2.5). Using this equation, the convolution for arbitrary distri-
butions can be derived. However, as explained before, global and local variations
in the maximum-supported frequency of a resource are modeled by means of nor-
mal distributions. It is known that the convolution of two normal distributions is
also a normal distribution with added means and variances. Therefore, the max-
imum supported frequency of a hardware resource due to both global and local
variations is described by a normally distributed random variable given by Equa-
tion (2.6). The combined distribution for the example described in Figure 2.2 is
shown in the figure.

16

2.3. Clock-frequency characterization

�

cv

(f) =

1Z

�1

�(x, µr

g

,�

r

g

)⇤�(f � x, 0,�r

l

)) dx (2.5)

f

r = N(µr

g

� �

r

,

�
�

r

g

�
2

+ (�r

l

)2) = N(µr

, (�r)2) (2.6)

2.3 Clock-frequency characterization

From an implementation perspective, all clock-generation units, associated with
voltage-frequency islands in a platform graph, provide only a set of discrete clock-
frequency levels. The selection of a set of clock-frequency levels for a voltage-
frequency island is based on the variation in the maximum supported frequencies
of hardware resources belonging to the island. It is performed in the follow-
ing way. In a general case, a voltage-frequency island is comprised of multiple
hardware resources (either processing elements or interconnect resources). Each
resource is characterized by a combined distribution of its maximum supported
frequency, reflecting both global and local process variations (Equation (2.5)).
For the purpose of clock-frequency selection, we consider only the frequency range
within three standard deviations from mean (i.e. µ

r ± 3�r) in the distributions.
The probability of the maximum supported frequency being outside the range of
three standard deviations is only 0.3%. Considering the range outside the three
standard deviations, and thus providing clock-frequency levels in a wider range,
will result in a lower number of clock frequencies in the range of three standard
deviations (for the same number of levels). This can result in a performance
degradation in manufactured chips, as the gap between the actual maximum sup-
ported frequency and the clock frequency a resource is operated will be larger for
99.7% of the resources. Figure 2.3 illustrates example combined distributions for
the range of three standard deviations for two hardware resources belonging to
the same island. We assume that the combined distributions can be in any arbi-
trary positioning with respect to each other. The clock frequency of an island is
limited by the slowest resource belonging the island. Considering all resources in
a voltage-frequency island, we identify the frequency given by the lowest positive
three standard deviations from mean (i.e. µ

r + 3�r) in the combined distribu-
tions. In Figure 2.3, this frequency is shown by f

high

. Similarly, the frequency
given by the lowest negative three standard deviations is derived, as shown by
f

low

in Figure 2.3. Once the frequencies f

low

and f

high

are identified, the clock-
frequency levels are selected in the range given by (f

high

� f

low

). In principle,
clock-frequency levels in the range (f

high

� f

low

) can be selected in any arbitrary
way. The policy of selection does not a↵ect the rest of the methodology in this
thesis. We choose to select the clock-frequency levels equidistantly, as formally
defined in Definition 4. Figure 2.3 illustrates how five equidistant clock-frequency
levels are obtained for the given example.

17

Chapter 2. Formal Modeling

Definition 4. (Clock-frequency levels) A set of n equidistant clock-frequency lev-
els available to a voltage-frequency island fi 2 FI in a platform graph gp 2 GP,
where (fi) hardware resources belong to fi, is given by c(gp,fi, n) : GP⇥FI⇥N !
P(R+), and is defined as

c(gp,fi, n) = {f
low

+ (k � 1) · (fhigh � f

low

)

n

| k = 1, 2, .., n} (2.7)

where
f

low

= min
r2 (fi)

(µr � 3�r)

f

high

= min
r2 (fi)

(µr + 3�r)

270 280 290 300 310 320 330 340
0

0.01

0.02

0.03

0.04

0.05

0.06

Frequency (MHz)

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

fr1 = N(µr1 ,σr1)
fr2 = N(µr2 ,σr2)

f 3
clk f 4

clkf 1
clk f 2

clk

flow

f 5
clk

fhigh

Figure 2.3: An example showing how equidistant clock-frequency levels are selected for a
voltage-frequency island comprising two hardware resources.

Given that each voltage-frequency island can be operated at any clock-frequency
level in the set c(gp,fi, n), for a set FI of islands in a platform graph, there are
multiple possible combinations of clock-frequency levels. An instance of clock-
frequency levels for all islands in a platform graph is captured in a chip-frequency
vector, denoted by fc, and is an M-dimensional vector for M islands (Definition 5).
Each element in fc represents a clock-frequency level f

clk

2 c(gp,fi, n) for a corre-
sponding island fi 2 FI. The set of all possible chip-frequency vectors is obtained
by the Cartesian product of individual sets c(gp,fi, n) (Definition 6).

Definition 5. (Chip-frequency vector) A chip-frequency vector for a set FI of
voltage-frequency islands in a platform graph gp specifies a clock frequency f

clk

from the set c(gp,fi, n) for every island fi 2 FI, and is given by fc(fi) : FI ! R+.

Definition 6. (All chip-frequency vectors) The set of all possible chip-frequency
vectors for a set FI of voltage-frequency islands in a platform graph gp is given by

FC =
Y

fi2FI

c(gp,fi, n) (2.8)

18

2.3. Clock-frequency characterization

Each chip-frequency vector fc 2 FC is associated with a probability, which is
the probability that voltage-frequency islands in a platform graph are operated
at the particular clock-frequency levels specified by fc. From probability theory,
it is known that the joint probability of independent events equals the product of
their individual probabilities. However, due to the correlated global variation in
hardware resources in a platform graph, frequencies described by random variables
f

r are not independent. On the other hand, resource frequencies described by
random variables f

r

l

are independent, as we assume no spatial correlation for
local variation. For this reason, the joint probability of a chip-frequency vector
fc is represented as a sum of components. Each component is the joint local
probability, which is the probability that the islands are operated at the particular
clock-frequency levels based on local distributions with respect to global frequency
values of resources corresponding to a chip-level global variation. To simplify the
computation of global frequency values of resources corresponding to a chip-level
global variation, we introduce a base hardware resource, denoted by r

b

, which
is chosen arbitrarily among hardware resource in the platform graph. Given an
absolute global frequency value f

r

b

g

= f

0

of a base hardware resource, the global
frequency values of any resource r 2 R is given by f

0

· (µr

g

/µ

r

b

g

), where µ

r

b

g

and
µ

r

g

are the global mean frequencies of hardware resources r
b

and r, respectively.

We proceed by explaining how the probability that an island is operated at a
clock frequency with respect to a global frequency value of the base resource is
computed. In a general case, an island consists of multiple hardware resources.
The clock frequency of the island is decided based on the slowest resource in the
island. To compute probability that the island is operated at a clock frequency
f

clk

, the probability that the maximum supported frequency of all hardware re-
sources in the island is higher than f

clk

need to be considered. This is given by the
product of probabilities (1�✓(f

clk

, µ

r

l

,�

r

l

) for all hardware resources belonging to
the island. Definition 7 defines the CDF of the minimum of maximum supported
frequencies of hardware resources in an island; the CDF ✓

m

(x
0

, vfi, f
0

) represents
the probability that the minimum of the maximum supported frequencies of hard-
ware resources takes on a value lower than x

0

with respect to an absolute global
frequency value f

r

b

g

= f

0

of the base hardware resource r

b

.

Definition 7. (Cumulative distribution of minimum) The CDF of the minimum
of maximum supported frequencies of hardware resources r 2 (fi) belonging to a
voltage-frequency island fi in a platform graph gp 2 GP is given by ✓

m

(gp, x,fi, f
0

) :
GP⇥ R+ ⇥ FI⇥ R+ ! R+, and is defined as

✓

m

(gp, x,fi, f
0

) = 1�
Y

r2 (fi)

(1� ✓(x, µr

l

,�

r

l

)) (2.9)

where µ

r

l

is the mean of the normally distributed random variable f

r

l

, and is
computed with respect to an absolute global frequency value f

r

b

g

= f

0

of the base

19

Chapter 2. Formal Modeling

hardware resource r

b

2 R by

µ

r

l

= f

0

·
µ

r

g

µ

r

b

g

� �

r

Depending on the maximum supported frequency of hardware resources in a
voltage-frequency island, each island is operated at the highest possible clock-
frequency level. Let us consider the CDF of the minimum of frequencies of
hardware resources in an island, shown in Figure 2.4. The plot is given with
respect to an arbitrary global frequency value f

0

of the base hardware resource.
For any actual x in the range (f4

clk

, f

5

clk

], the island is operated at f

4

clk

. The
probability of x being in the interval (f4

clk

, f

5

clk

] is computed by the di↵erence
(✓

m

(gp, f5

clk

,fi, f
0

) � ✓

m

(gp, f4

clk

,fi, f
0

)). Similarly, the probability that the island
is operated at f5

clk

is given by (1� ✓

m

(gp, f5

clk

,fi, f
0

)). This is formally defined in
Definition 8.

275 300 325 350
0

0.2

0.4

0.6

0.8

1

Frequency (MHz)

C
D

F
 o

f
m

in
im

u
m

f 1

clk
f 2

clk
f 3

clk
f 4

clk
f 5

clk

Figure 2.4: An example illustration of how the probability that an island is operated at a
particular clock frequency is computed.

Definition 8. (Probability of clock frequency) The probability that a voltage-
frequency island fi 2 FI in a platform graph gp 2 GP is operated at a clock fre-
quency f

i

clk

for a set {f1

clk

, · · · , fn

clk

} of clock-frequency levels, where f

i

clk

< f

i+1

clk

,
with respect to a global frequency value f

r

b

g

= f

0

of the base hardware resource
r

b

2 R is given by pf(gp, f i

clk

,fi, f
0

) : GP⇥R+ ⇥FI⇥R+ ! R+, and is defined as

pf(gp, f i

clk

,fi, f
0

) =

(
✓

m

(gp, f i+1

clk

,fi, f
0

)� ✓

m

(gp, f i

clk

,fi, f
0

) i < n

1� ✓

m

(gp, f i

clk

,fi, f
0

) i = n

(2.10)

20

2.4. Resource-aware application graph

The probability of a chip-frequency vector fc 2 FC for a set FI of voltage-
frequency islands, with respect to a global frequency value f

0

of the base hardware
resource, is computed by the product of individual probabilities pf(gp, fc(fi),fi, f

0

)
and the probability of the global frequency value. This is formally defined in
Definition 9.

Definition 9. (Local probability of fc) The probability of a chip-frequency vector
fc 2 FC for a set FI of voltage-frequency islands in a platform graph gp 2 GP,
with respect to a global frequency value f

r

b

g

= f

0

of the base hardware resource
r

b

2 R, is given by p(gp, fc, f
0

) : GP⇥ FC⇥ R+ ! R+, and is defined as

p(gp, fc, f
0

) = �(f
0

, µ

r

b

g

,�

r

b

g

) ·
Y

fi2FI

pf(gp, fc(fi),fi, f
0

) (2.11)

The overall probability of a chip-frequency vector fc is obtained by adding
the joint local probabilities for all global frequency values in the range of three
standard deviations from mean for the base hardware resource, as defined in
Definition 10.

Definition 10. (Probability of fc) The probability of a chip-frequency vector
fc 2 FC in a platform graph gp 2 GP is given by pc(gp, fc) : GP ⇥ FC ! R+,
and is defined as

pc(gp, fc) =
X

f02I

p(gp, fc, f
0

) (2.12)

where
I = [µr

b

g

� 3�r

b

g

, µ

r

b

g

+ 3�r

b

g

]

2.4 Resource-aware application graph

We model best-e↵ort and real-time streaming applications by means of Syn-
chronous Data-Flow (SDF) graphs [36]. An SDF graph provides a good com-
promise between expressiveness, modeling ease, analysis potential and implemen-
tation e�ciency. With an SDF model, an application is captured by a directed
graph, where the nodes, called actors, represent computation, communication or
storage; actors communicate with each other by sending streams of data elements,
called tokens, over their edges. This is similar to the constructs used in domain-
specific languages for streaming applications, such as StreamIt [2]. We denote the
set of all actors as A, and formally define an SDF graph in Definition 11.

Definition 11. (SDF graph) An SDF graph sdfg is a 3-tuple hA,D, P i consisting
of a set A of actors, a set D = A

2 of dependency edges and a set P of ports. Each
dependency edge has a number of initial tokens, given by ⇠(d) : D ! N0. Each

21

Chapter 2. Formal Modeling

actor a 2 A is associated with input and output ports, where each port pt 2 P

is associated with a rate rate(pt) : P ! N+. The source of a dependency edge
d 2 D is an output port of an actor, and the destination of a dependency edge is
an input port of an actor. Each port of each actor is connected to a single edge,
and each edge is connected to ports of actors.

Figure 2.5 illustrates an example SDF model of an H.263 encoder application.
It consists of five actors connected to each other by seven dependency edges.
Edges d

3

, d
6

and d

7

each contain one initial token, illustrated by black dots in
the figure. The execution of an actor is called a firing. An actor fires when it has
su�cient number of tokens on each of its input ports, as specified by port rates
rate(pt). The port rates are shown near the channel ends in Figure 2.5. When
an actor fires it removes the number of tokens from all its input edges and at the
end of the firing (after its execution), it produces a number of tokens on each
output port, as given by its output port rates. The sequence of actor firings that
restores the initial configuration of the graph (the initial distribution of tokens on
dependency edges d 2 D) is termed an iteration. During a single iteration of the
graph, each actor can fire multiple times. This is determined by the port rates of
actors, and is captured by the repetition vector of the graph (Definition 12).

Definition 12. (Repetition vector) A repetition vector of an SDF graph sdfg
specifies the number of times each actor a 2 A fires during a single iteration, and
is given by : A ! N, such that for each dependency edge d 2 D from an actor
a

i

2 A to actor an a

j

2 A, i 6= j, rate(ptsr
d

) · (a
i

) = rate(ptds
d

) · (a
j

), where
ptsr

d

2 P and ptds
d

2 P , are the source and destination ports of the dependency
edge, respectively.

a

1

Motion est.

a

2

MB enc.

a

3

VLC

a

5

Motion comp.

a

4

MB dec.

99 1

d

1

1 99

d

2

d

3

1

1
d

4

199

d

5

d

6

1

1
d

7

1 1

1

1 1

11

Figure 2.5: An example SDF model of an H.263 encoder.

An SDF graph is called consistent if it has a repetition vector such that for all
a 2 A, (a) > 0. If an SDF graph is not consistent, it requires unbounded memory
for storing data tokens [37]. Deadlock freedom is also an important property of an

22

2.4. Resource-aware application graph

SDF graph. If an SDF graph is not free of deadlock, the actors cannot fire due to
insu�cient initial tokens on the cycles of the graph. In this thesis, only consistent
and deadlock-free SDF graphs are considered. The repetition vector of the SDF
graph shown in Figure 2.5 is equal to h1, 99, 1, 1, 99i for actors ha

1

, a

2

, a

3

, a

4

, a

5

i,
respectively. Therefore, the SDF graph is consistent (and deadlock free).

When mapping an application described by an SDF graph to a multi-processor
platform, the minimum throughput requirement (in iterations per second) of the
application (for real-time applications) and information on resource requirements
of the application must be known. Such information includes the number of clock
cycles each actor requires to finish its execution on a processing element, for all
processing elements to which the actor can be bound (Definition 13), the bu↵er
space (in number of tokens) assigned to each dependency edge for storing the data
tokens produced by actors (in a real implementation these bu↵ers can be allocated
in local memories of processing elements), and the size (in bytes) of data tokens
sent across each dependency edge. After the actors in an application are bound
to the processing elements in a multi-processor platform, dependency edges may
be allocated to connections in the interconnect (i.e. if two actors connected by
a dependency edge are bound to di↵erent tiles). To reserve resources on the
interconnect, additional information on the minimum bandwidth (in bytes per
cycle) required by dependency edges has to be known. We formally define an
SDF model of an application, called a resource-aware application graph (ga) that
includes the described information in Definition 14. The set of all resource-aware
application graphs is denoted by GA. Note that, a resource-aware application
graph states the resource requirements, but does not include the binding of actors
to processing elements and dependency edges to connections in the interconnect.

Definition 13. (Execution cycles) The number of cycles required to execute an
actor a 2 A on a processing element pe 2 PE to which it can can be bound is
given by ec(a, pe) : A⇥ PE ! N.

Definition 14. (Resource-aware application graph) A resource-aware application
graph ga is a 4-tuple hsdfg, t

req

, ec,!i consisting of an SDF graph sdfg, a mini-
mum throughput requirement t

req

for real-time applications, the function ec(a, pe)
that assigns each actor a 2 A with execution cycles for the subset of processing
elements in the set PE that a can be bound to, and a function !(d), which for
each dependency edge d 2 D returns a 3-tuple hsz

d

,�

rq

d

,↵

d

i with sz
d

the size of the
data token (in bytes) sent across the dependency edge, �rq

d

the required bandwidth
(in bytes per cycle), and ↵

d

the bu↵er space (in number of tokens) assigned to the
dependency edge.

In this thesis, the bu↵er space (in number of tokens) assigned for storing
data tokens produced by actors on each dependence edge is fixed throughout the
experiments. It is not a relevant parameter for the scope of this thesis, and the
impact of it on the throughput of an SDF graph has been previously explored by
Stuijk et al. in [80]. In this work, we limit the constraining of the throughput due

23

Chapter 2. Formal Modeling

to insu�cient bu↵er space as follows. The bu↵er space ↵
d

(in number of tokens)
assigned to a dependency edge d 2 D is given by Equation (2.13), where rate(ptsr

d

)
is the rate of the source port of the edge and (asr) is the number of times the
source actor fires in an iteration. As such, the term rate(ptsr

d

) · (asr) represents
the number of tokens produced on the edge in a single iteration. Because of
possible overlapping of multiple iterations (i.e. multiple iterations being active at
the same point in time), a higher number of tokens than rate(ptsr

d

) · (asr) can be
produced on the edge. For this reason, a bu↵er space twice larger than the term
rate(ptsr

d

) ·(asr) is assigned to each dependency edge to limit the constraining of
the throughput due to insu�cient bu↵er space.

↵

d

= 2 · rate(ptsr
d

) · (asr) (2.13)

The required bandwidth �rq

d

(in bytes per cycle) for a dependency edge d 2 D

in a resource-aware application graph ga is estimated by Equation (2.14), where
t

↵

d

is the throughput (in iterations per cycle) of the resource-aware application
graph with the specified ↵

d

bu↵er space for each dependency edge. The first
three terms give the number of bytes that are produced on the edge and thus
must be sent across a connection in the interconnect during a single iteration.
The product of these terms and the throughput t

↵

d

represents the number of
bytes produced on the edge in a single cycle. Note that the throughput t

↵

d

is
evaluated on the resource-aware application graph assuming that only a single
execution of each actor is allowed at the same point in time, as described in more
details in Section 2.5.1. The throughput of the application when it is mapped
to a multi-processor platform may be lower than t

↵

d

due to resource sharing and
communication delays. As such, the throughput t

↵

d

is simply used to derive
an estimated required bandwidth (independent of mapping) that is not overly
pessimistic. The derived required bandwidth is later used to model the latency
for sending data tokens across the interconnect in the bound application SDF
graph, as described in Section 2.5.1.

�

rq

d

= rate(ptsr
d

) · (asr) · sz
d

· t
↵

d

(2.14)

Note that actors are non-blocking pieces of code. Therefore, execution times in
cycles can be determined on a processor in isolation, and no complete mapping of
the application to the hardware platform is necessary. For real-time applications,
execution cycles can be derived using Worst-Case Execution-Time (WCET) esti-
mation tools, such as given in [93]. For best e↵ort applications, typical execution
times can be obtained by simulations.

2.5 Bound application graph

In the previous section, we introduced a resource-aware application graph, consist-
ing of an SDF model of an application that includes information on the execution

24

2.5. Bound application graph

cycles of actors on processing elements, the size of data tokens communicated
between actors, the required bandwidth of dependency edges, the bu↵er space
assigned to each dependency edge, and the minimum throughput requirement for
real-time applications. When implementing the application on a multi-processor
platform, designers need to make choices on mapping of application actors to pro-
cessing elements and thus dependency edges to connections in the interconnect,
reserving resources on the connections, and scheduling of actors on the same pro-
cessing element. Once these decisions have been made, a new SDF model, coined
as a bound application graph, that captures these decisions is constructed, such
that it can be used to perform timing analysis of the system. While a resource-
aware application graph describes performance in terms of execution time in cy-
cles, the essence of a bound application graph is that it considers performance in
terms of execution time in seconds. This allows us to take process-induced vari-
ation in the frequency of processing elements into account. This section details
how a bound application graph is constructed.

2.5.1 Modeling resource allocation

We start by capturing the binding of the resource-aware application graph to
the platform graph. We assume that each actor can be bound to a number of
processing elements from the set PE, as given by Definition 15. Therefore, there
are multiple bindings of a set A of actors to a set PE of processing elements. The
set of all possible bindings is obtained by the Cartesian product of the individual
sets of possible bindings (Definition 16).

Definition 15. (Actor bindings) The function ba(a) : A ! P(PE) \ ; returns the
set of processing elements to which an actor a 2 A can be bound.

Definition 16. (Binding) The set B of all possible actor to processing element
bindings is given as

B =
Y

a2A

ba(a) (2.15)

A given binding of actors to processing elements is captured in a binding
vector, denoted by b, and is an N-dimensional vector for N actors (Definition 17).
Each element in b specifies the processing element to which each actor is bound.
For example, let us assume that the resource-aware application graph shown in
Figure 2.5 is mapped to a multi-processor platform comprising two processing
elements; a

2

, a
3

are bound to pe
1

and a

1

, a
4

, a
5

are bound to pe
2

. This is given
in a binding vector ha

1

, a

2

, a

3

, a

4

, a

5

i ! hpe
2

, pe
1

, pe
1

, pe
2

, pe
2

i.

Definition 17. (Binding vector) A binding vector for a set A of actors specifies
the processing element pe 2 PE to which each actor a 2 A is bound, and is given
by b(a) : A ! PE.

25

Chapter 2. Formal Modeling

For a given binding vector b, the execution cycles ec(a, pe) of each actor a 2 A is
known from Definition 13. The execution time et(gp, a, pe) in seconds is obtained
by the division of ec(a, pe) by the clock frequency fc(�(b(a))) of the voltage-
frequency island to which the processing element belongs (Definition 18).

Definition 18. (Execution time) The execution time (in seconds) of an actor
a 2 A on a processing element pe 2 PE, which belongs to a voltage-frequency island
�(b(a)) operated at a clock frequency fc(�(b(a))) in a platform graph gp 2 GP, is
given by et(gp, a, pe) : GP⇥A⇥ PE ! R+, and is defined as

et(gp, a, pe) =
ec(a, pe)

fc(�(b(a)))
(2.16)

In this thesis, we assume that only a single execution of an actor on a pro-
cessing element at the same point in time is allowed. In an SDF graph, this is
modeled by adding a self edge with a single initial token and with rates equal to
one on source and destination ports on all actors, as shown in Figure 2.6a. This
prohibits an execution to start before the previous execution has finished.

Now we proceed by discussing how bu↵ers with a finite capacity are modeled
in an SDF graph. In a real implementation, a bu↵er space needs to be assigned
to each dependency edge in an SDF graph for storing the data tokens produced
by actors (tasks). These bu↵ers can be allocated in local memories of processing
elements. Thus, an actor can only fire when su�cient space is available in the
bu↵er to which the actor writes data. Figure 2.6b illustrates two actors a

i

and a

j

,
connected to each other by a dependency edge d with port rates (rate(ptsr

d

) = q)
and (rate(ptds

d

) = o), where ptsr
d

and ptds
d

are the source and destination ports of
the dependency edge, respectively. The FIFO bu↵er is illustrated by the dotted
rectangle, and is assumed to have a size ↵

d

(in number of tokens), as given by
function !(d) in the resource-aware application graph. There can also be a number
of initial data tokens stored in the bu↵er, shown as ⇠(d). When actor a

i

fires, it
produces q data tokens, which have to be stored before they are consumed by a

j

.
We use the approach in [67] to model the bu↵er space available to dependency
edges in an SDF graph. Figure 2.6c shows how the available bu↵er space to the
dependency edge d of the example shown in Figure 2.6b is modeled in the graph.
For this, a backward edge d

b

from a

j

to a

i

is added with (↵
d

� ⇠(d)) initial tokens
on the edge, for which (rate(ptsr

d

b

) = rate(ptds
d

)) and (rate(ptds
d

b

) = rate(ptsr
d

))

hold, where ptsr
d

b

and ptds
d

b

are the source and destination ports of the edge d

b

,
respectively. The size o the FIFO bu↵er is ↵

d

, ⇠(d) models the number of initial
tokens in the bu↵er and (↵

d

� ⇠(d)) models the available space in the bu↵er.
Token consumption from the edge d

b

can be seen as claiming space in the bu↵er for
writing the data tokens. Token production on d

b

can be seen as freeing space in the
bu↵er. Note that self edges do not require bu↵er space in a real implementation,
as they only model the absence of multiple executions of a task at the same point
in time. Modeling constructs similar to the ones described in this paragraph are
also used by Stuijk et al. in [79].

26

2.5. Bound application graph

a

i

1 1

1

(a) actor
bound to a
processing
element.

a

i

a

j

↵

d

⇠(d)
q o

(b) bu↵ered communica-
tion between actors.

a

i

a

j

q o

d

⇠(d)

o

q

d

b

(↵
d

� ⇠(d))

(c) model of available bu↵er
space between actors.

Figure 2.6: Modeling resource allocation in an SDF graph.

Connection model

Now we consider how to model latency of data communication across a connection
in the interconnect in an SDF graph. In Figure 2.6c, the latency for sending date
tokens across the dependency edge d equals zero. We assume that this is the case
when two actors are bound to the same processing element, as they communicate
through a shared local memory. However, when two actors are bound to di↵erent
processing elements, the dependency edge that connects the actors is bound to
a connection in the interconnect. In this scenario, the interconnect introduces
latency for sending a data token across the connection. The following discussion
describes how a connection model that considers the interconnect architecture is
constructed in an SDF graph. As detailed in Section 2.1, we require that any arbi-
tration point in a connection can be modeled as a latency rate server, independent
of other connections. More specifically, we use a TDM-based arbitration with a
single arbitration point in a connection at the network interface. Therefore, the
connection model includes only a single latency rate component. The connection
model used in this thesis is shown in Figure 2.7. It assumes the SDF graph of
Figure 2.6c, where actors a

i

and a

j

are bound to di↵erent processing elements,
and thus, the dependency edge d is bound to a connection in an interconnect. The
execution time of actor a

l

captures the maximum latency a data token can ever
experience in a connection. The actor does not have a self edge with an initial
token on it. This ensures that the latency can be experienced my multiple tokens
at the same time; as such, the model captures pipelining between data tokens.
The edge d

ds

b

, with ↵ds

d

initial tokens on it, models the bu↵er space at the desti-
nation tile. As such, actor a

l

fires only when su�cient tokens are available on the
edge, corresponding to a data transaction being initiated only when bu↵er space
is available at the destination processing element. The execution time of the actor
can be broken down to two di↵erent components: slot table injection latency and
path latency. Data injection into the router network is regulated by the reserved
slots in the TDM table of a connection. The slot table injection latency depends
on the number of reserved slots. Based on the required bandwidth �

rq

d

of a de-
pendency edge d 2 D, a number ⇤ of slots are reserved in the TDM table (with a

27

Chapter 2. Formal Modeling

size sz
tb

) of a connection, as shown in Equation (2.17), where � is the maximum
bandwidth (in bytes per cycle) of a connection from a network interface ni

i

to a
network interface ni

j

, i 6= j, given by the function ⌘(ni
i

,ni
j

) (Definition 3). The
bandwidth � assumes that all slots in the TDM table are reserved. The allocated
bandwidth �

al

(in bytes per cycle) is computed by Equation (2.18).

a

i

a

l

a

⇢

a

j

q

1⇠(d) 1 1 1 o

1
q

(↵sr

d

� ⇠(d))d

sr

b

o1

↵

ds

d

d

ds

b

1 11

Figure 2.7: SDF model of a connection in the interconnect.

⇤ =

⇠
�

rq

d

�

· sz
tb

⇡
(2.17)

�

al

=
⇤

sz
tb

· � (2.18)

The slot table injection latency not only depends on the number of reserved
slots, but also on the distance between them. In this thesis, we assume a contin-
uous slot reservation strategy due to the simplicity of its analysis and implemen-
tation; this strategy is shown in Figure 2.8. With this strategy, in the worst-case
situation, a data token arrives right after the reserved ⇤ slots, resulting in a wait-
ing time of a number (sz

tb

�⇤) of slots. The slot table injection latency (in cycles)
is given by Equation (2.19), where sz

fl

/� represents the latency (in cycles) of a
single slot. Note that other reservation strategies, such as distributed slot reser-
vation, are possible. These strategies may give a lower service latency, but are
more di�cult to analyze and implement.

sz
tb

⇤

Figure 2.8: Continuous slot reservation strategy in a TDM slot table.

⇥
tb

= (sz
tb

� ⇤) · szfl
�

(2.19)

28

2.5. Bound application graph

The path latency depends on the number of hops, given by the function
⌘ (Definition 3), and the pipelining depth ↵

rt

of the routers. In the case of
the Æthereal network, the pipelining depth of the routers is three, which is also
chosen in this thesis. The path latency (in cycles) is given by Equation (2.20).
Combining the path latency and the slot table injection latency, the execution
time (in seconds) of actor a

l

is given by Equation (2.21).

⇥
hp

= · ↵
rt

(2.20)

et
l

(a
l

) =
(⇥

tb

+⇥
hp

)

fc(fi
noc

)
(2.21)

Actor a

⇢

bounds the rate at which data tokens are sent. With a self edge
and a single initial token on it, the execution time of the actor captures the time
it takes to serve a data token after an initial latency et

l

. The execution time
(in seconds), given an allocated bandwidth �

al

and a token size sz
d

, is given by
Equation (2.22). The edge dsr

b

with (↵sr

d

�⇠(d)) initial tokens models the available
bu↵er space at the source processing element. In this thesis, both ↵

sr

d

and ↵

ds

d

are chosen to be equal to ↵
d

/2. The presented connection model is similar to the
one given by Hansson et al. in [28]. Having presented the modeling of resource
allocation in the resource-aware application graph, a bound application graph gb
is formally defined in (Definition 19).

et
⇢

(a
⇢

) =
sz

d

/�

al

fc(fi
noc

)
(2.22)

Definition 19. (Bound application graph) A bound application graph gb is a
5-tuple hsdfg, ga, gp, b, fc, i consisting of an SDF graph sdfg that models resource
allocation when the resource-aware application graph ga is mapped to the platform
graph gp, a binding vector b that specifies the processing element pe 2 PE to which
each actor a 2 A is bound, and a chip-frequency vector fc 2 FC that specifies the
clock-frequency of each voltage-frequency island fi 2 FI.

2.5.2 Throughput computation

Throughput is an important design metric in streaming applications. In the
context of an SDF graph, it quantifies the rate at which output data tokens are
produced. An example is frames per second for an H.263 decoder. There is a body
of work that addresses the problem of throughput computation for SDF graphs.
As proposed by Sundararajan et al. [75], the throughput of an SDF graph can be
computed by performing Maximum Cycle Mean (MCM) analysis on an equivalent
HSDF graph, which is a special case of an SDF graph with all rates associated
to ports equal to 1. This suggests that an SDF graph must be converted to an
equivalent HSDF graph. An algorithm for this conversion is given by the same
authors in [75]. The throughput of an HSDF graph is then given as 1 over the

29

Chapter 2. Formal Modeling

maximum cycle mean of the graph. The cycle mean of a cycle is the sum of
the execution times of actors on the cycle over the number of initial tokens in it.
Several algorithms to perform e�cient MCM analysis have been proposed, and are
compared for run time and additional properties in [19]. However, the drawback
of computing the throughput based on an equivalent HSDF graph is that it can
be exponentially larger in size than the original SDF graph. This is decided
by the repetition vector of the graph. For example, the SDF model of an MP3
Playback application given in [91] consists of only four actors, while the number of
actors in an equivalent HSDF graph after conversion becomes 10601. Performing
throughput analysis on a large graph results in prohibitively high computation
times. For this reason, a di↵erent technique to compute the throughput directly on
an SDF graph has been proposed by Ghamarian et al. in [24]. The authors show
that the throughput of an SDF graph computed by their approach is equivalent
to 1 over the MCM of the corresponding HSDF graph. This technique is based on
the timed execution of an SDF graph, later being constructed with the following
principle. All actors that have su�cient data tokens on their input edges fire; the
execution of actors is captured by time transitions or increments (e.g. in seconds
or cycles). When an actor finishes its firing, it produces data tokens on its output
edges. This changes the token distribution on the edges in the graph, enabling
other actors (or the same actor) to fire. The distribution of data tokens on the
edges of the graph is termed state. After each firing of an actors, the state of the
graph is saved. The timed execution of the graph continues until a previously
visited or a recurrent state (i.e. distribution of tokens on the edges) is reached.
At this point, the periodic phase of the timed execution is found. Note that
throughput computation is usually restricted to strongly connected SDF graphs,
in which all actors can be reached from another actor in the graph. This is the
case in this thesis, as the back edges modeling the available bu↵er space make the
SDF graph strongly connected. Following the throughput computation approach
of timed execution, the throughput of a bound application graph is given by
Definition 20.

Definition 20. (Throughput) The throughput of a bound application graph gb is
defined as

⌧(gb) =
⌧(a)

(a)
(2.23)

where ⌧(a) is the throughput of an arbitrary actor a 2 A, which is equal to
the average number of firings per second in the periodic part of the self-timed
execution of bound application graph gb, and is the repetition vector.

A tool called SDF For Free (SDF3) has been developed and is available for use
by research community [72, 81]. Besides being able to generate SDF graphs with
specified properties with support for visualization, SDF3 o↵ers a library that can
be used to perform throughput computation based on timed execution of an SDF
graph. In this thesis, this library is used to perform throughput computation.

30

2.5. Bound application graph

2.5.3 Scheduling

Several actors of a resource-aware application graph are often allocated to the
same processing element. In this scenario, the firings of actors must be scheduled
on shared processing elements. In this thesis, the actors allocated to the same
processing element are scheduled with static-order scheduling s

pe

, which specifies
a sequence of actor firings repeated infinitely. For an example binding vector
(a

1

, a

2

, a

3

, a

4

, a

5

) ! (pe
2

, pe
1

, pe
1

, pe
2

, pe
2

), presented for the graph shown in Fig-
ure 2.5, the schedules for two processing elements can be s

pe1
= ((a

2

)99a
3

)⇤ and
s

pe2
= (a

1

(a
4

)99a
5

)⇤, where (a
i

)j specifies that a

i

fires j times, and ⇤ indicates
that the schedule is repeated indefinitely.

Scheduling of SDF graphs on uni-processor systems was addressed by Bhat-
tacharyya et al. [6]. They proposed a class of single appearance schedules, in
which each actor appears only once in the regular expression of a schedule. As
the authors demonstrate, the benefit of a single appearance schedule is the min-
imized program-code size, as no duplication of the software code implementing
the functionality of an actor is performed. Sundararajan et al. address schedul-
ing of HSDF graphs on multi-processor systems in [75]. Using this approach on
an SDF graph requires conversion to an equivalent HSDF graph, which can be
exponentially larger in size, resulting in prohibitively high throughput computa-
tion times. To limit the increase in the graph size, clustering algorithms may
be used, as shown in [66]. With this approach, several actors in an SDF graph
are clustered into a single actor before conversion. The actors belonging to the
same cluster are then scheduled with uni-processor schedulers on the same pro-
cessor. A scheduling policy for multi-processor systems working directly on SDF
graphs is proposed in [79]. When computing the throughput of an SDF graph
mapped to a multi-processor platform, the scheduling can be captured following
two approaches. The first approach is to model the schedules in the graph itself.
The work in [76] shows how static-order schedules can be modeled in an HSDF
graph. It is accomplished by adding additional edges in the graph, such that the
schedules (i.e. order of actor firings) is enforced. Following a similar approach,
static-order schedules can also be modeled directly in an SDF graph, as addressed
by Damavandpeyma et al. in [18]. In contrast to modeling schedules in HSDF
graphs, with this method, additional edges and also actors with zero execution
time are added in the SDF graph to enforce the actor firings according to the
schedule on a processor.

When computing the throughput of an SDF graph, the second approach to
capture scheduling between actors bound to the same processing element in a
multi-processor system is to account for them during the self-timed execution of
the SDF graph. This is demonstrated by Stuijk et al. in [79]. In this thesis, we use
this approach to construct and capture static-order scheduling for all processing
elements when computing the throughput of a bound application graph. An
intuitive explanation of the method is given as follows. During the construction
of the self-timed execution of the SDF graph, each time an actor is enabled for

31

Chapter 2. Formal Modeling

firing, it does not start its firing immediately. Instead, it is added to a ready list of
the processing element to which it is bound. When no other actor is firing on the
processing element, the actor is added to the schedule of the processing element
and starts firing. When a recurrent state is reached, a finite length schedule for
each processing element is constructed.

2.6 Summary

Formal models are required to perform design-time analysis and give timing
guarantees in a system with voltage-frequency islands, considering the impact
of process-induced variations. To this end, this chapter introduced the formal
models used throughput this thesis. We presented a multi-processor platform,
coined as a platform graph, consisting of multiple processing elements connected
to each other by an interconnect. The maximum supported frequency of the
hardware resources in a platform graph is given by normally distributed random
variables, capturing the impact of process-induced die-to-die and within-die vari-
ations. A methodology was presented to select a set of clock-frequency levels
provided to each voltage-frequency island based on the frequency variations in
hardware resources. We later characterized the platform graph with possible sets
of clock frequencies for the voltage-frequency islands. Based on process-induced
frequency variations, the probability that the voltage-frequency islands are oper-
ated at each set of clock frequencies was derived.

Following the introduction of a platform graph, we presented a general SDF
model of computation for performance (timing) analysis. Our main contribu-
tion lies in the separation of a resource-aware application graph and a bound
application graph. The resource-aware application graph uses clock cycles as the
basis for performance specification. Since variation a↵ects the length of the clock
cycles, the resource-aware application graph is unaware of process-induced vari-
ations. The bound application graph captures the mapping of a resource-aware
application graph to a platform graph, where the maximum supported frequency
of hardware resources is a↵ected by process variation. Therefore, the bound
application graph models the performance of an SDF application mapped on a
multi-processor platform considering the impact of process-induced variations.
We illustrated how bu↵ers with a finite capacity, used for data communication,
and the latency for sending data tokens across a connection in an interconnect
are modeled in the bound application graph.

32

3
Variation-aware mapping

In this chapter, we describe the requirements of best-e↵ort, firm real-time and
soft real-time applications, and define a mapping optimization problem for each
of them in the presence of process-induced variations in the maximum supported
frequency of hardware resources in a multi-processor platform. For best-e↵ort ap-
plications, we maximize the average throughput over all manufactured chips. The
optimization objective for firm real-time applications is to maximize the timing
yield, which is the percentage of manufactured chips that satisfy the minimum
throughput requirement of an application. For soft real-time applications, we
maximize the timing yield and/or reduce the average throughput degradation, as
the chips with a low degradation in the throughput can be used in this class of
applications. The optimization criteria for the di↵erent application classes are
summarized in Table 3.1.

3.1 Optimization problems

For the di↵erent application classes, we present single-binding andmultiple-bindings
mapping approaches. With the single-binding mapping approach, the objective
is to find a binding at design time that results in an optimized objective function
for an application class. For example, the objective function for firm real-time
applications is the timing yield. With the multiple-bindings mapping approach, a
set of bindings are found and stored at design time, and based on the variation in
each manufactured chip, the right binding that satisfies the throughput require-
ment of the application (for real-time applications) or maximizes the throughput
(best-e↵ort applications) is selected at a run-time configuration stage for each

Chapter 3. Variation-aware mapping

chip independently. We experimentally compare both mapping approaches in
Section 3.5.

Table 3.1: Optimization criteria for application classes

Best-e↵ort Firm real-time Soft real-time

Average throughput
p

– –

Timing yield –
p p

Average throughput degradation – –
p

3.2 Single-binding

With the single-binding mapping approach, a single binding is selected at design
time, such that the objective function for an application class (e.g. timing yield for
firm real-time applications) is optimized. As explained in Section 2.3, depending
on the maximum supported frequency of hardware resources in a platform graph,
each voltage-frequency island is operated at a particular clock frequency from the
set of frequency levels selected for the island. The clock frequencies for the overall
number of islands on the chip is given by a chip-frequency vector fc. The set of
all possible chip-frequency vectors for a chip is given by FC. With the single-
binding mapping approach, all manufactured chips that can have have di↵erent
chip-frequency vectors from the set FC have an identical binding. We proceed
by presenting the optimization criteria for the di↵erent application classes and
defining the single-binding optimization problem for each of them.

3.2.1 Best-e↵ort applications

Best-e↵ort applications do not have real-time performance requirements. Al-
though there are no timing requirements set on the applications of this class,
high performance is preferred by the user. Our optimization objective for best-
e↵ort applications is hence to maximize the average throughput taken over all
manufactured chips.

For a given binding b 2 B, the chips that have di↵erent chip-frequency vec-
tors can have di↵erent throughputs. Figure 3.1 depicts the throughput ⌧(gb)
of a bound application graph gb = hsdfg, ga, gp, b, fci for di↵erent chip-frequency
vectors fc 2 FC, given a fixed binding b 2 B. With the single-binding mapping ap-
proach, the objective is to find a binding that maximizes the average throughput
t

avg

over all chip-frequency vectors (i.e. average throughput over all manufac-
tured chips). This is illustrated in Figure 3.1. Note that each chip-frequency

34

3.2. Single-binding

vector fc 2 FC, shown on the x-axis in Figure 3.1, is a vector specifying the
clock frequency of each voltage-frequency island fi 2 FI in the platform graph
gp. Therefore, the x-axis does not assume any increasing or decreasing ordering
of fc 2 FC. Furthermore, the figures presented in this section do not represent
realistic applications, but are given for illustrative purposes; experiments on real
applications are presented in Section 3.5. For clarity, the throughput ⌧(gb) is
shown as a continuous curve, but is discrete in reality.

fc 2 FC

⌧(gb)

t

avg

maximize t

avg

Figure 3.1: Throughput against chip-frequency vector for a fixed binding. The average
throughput over all chip-frequency vectors is shown by the dotted line.

The average throughput of a binding b 2 B over all chip-frequency vectors
fc 2 FC, where each chip-frequency vector has a probability-weight pc(gp, fc) is
given by Definition 21.

Definition 21. (Average throughput of a binding) The probability-weighted av-
erage throughput of a bound application graph gb = hsdfg, ga, gp, b, fc, i over all
chip-frequency vectors fc 2 FC, for a specified resource-aware application graph
ga 2 GA, platform graph gp 2 GP and binding b 2 B, is given by ⌧

avg

(ga, gp, b) :
GA⇥GP⇥B ! R+, and is defined as

⌧

avg

(ga, gp, b) =
X

fc2FC

⌧(gb) · pc(gp, fc) (3.1)

The objective of the single-binding mapping approach for best-e↵ort applica-
tions is formulated as: given a resource-aware application graph ga and platform
graph gp, find a binding b

sb

2 B of actors in the resource-aware application graph
to processing elements in the platform graph, such that the average throughput
t

avg

= ⌧

avg

(ga, gp, b
sb

) is maximized.

35

Chapter 3. Variation-aware mapping

3.2.2 Firm real-time applications

In firm real-time applications, violations of the timing requirements are not al-
lowed. Examples of such applications are software-defined radio, air-tra�c con-
trol, robotics and military systems. The manufactured chips that have less than
the required performance cannot be used in such systems. Providing more than
the required performance is not important as long as the performance requirement
is satisfied. The optimization for this class of applications aims at maximizing
the timing yield, which is the percentage of chips that satisfy the throughput
requirement.

With the single-binding mapping approach for firm real-time applications, the
objective is to find a binding that maximizes the timing yield. In our modeling
framework, the timing yield of a binding b 2 B over all chip-frequency vectors
fc 2 FC, where each chip-frequency vector has a probability-weight pc(gp, fc), is
given by Definition 22. The timing yield computation of a binding is graphically
illustrated in Figure 3.2.

fc 2 FC

⌧(gb)

t

req

maximize the number
of fc points above t

req

Figure 3.2: Throughput against chip-frequency vector for a fixed binding. The timing yield is
given by the percentage of fc points (with associated probabilities pc(gp, fc)) above t

req

.

Definition 22. (Timing yield of a binding) The percentage of chips, characterized
by a bound application graph gb = hsdfg, ga, gp, b, fc, i, that satisfy the throughput
requirement t

req

over all chip-frequency vectors fc 2 FC, for a specified resource-
aware application graph ga 2 GA, platform graph gp 2 GP and binding b 2 B, is
given by �(ga, gp, b) : GA⇥GP⇥B ! R+, and is defined as

�(ga, gp, b) =
X

fc2FC

(
pc(gp, fc) if ⌧(gb) � t

req

0 otherwise
(3.2)

Figure 3.3 shows two bindings b

1

and b

2

, where b

2

has a higher average
throughput (better for best-e↵ort applications), but a lower timing yield (worse

36

3.2. Single-binding

for firm real-time applications) than b

1

. This illustrates the benefits of having dif-
ferent optimization criteria for best-e↵ort and firm real-time application classes.

fc 2 FC

⌧(gb)

t

req

⌧

avg

(gu, gp, b
2

)

b

2

b

1

Figure 3.3: Throughput against chip-frequency vector for a fixed binding. Two bindings b1
and b2 are shown, where b2 has a higher average throughput but a lower timing yield than b1.

The objective of the single-binding mapping approach for firm real-time ap-
plications is formulated as: given a resource-aware application graph ga and plat-
form graph gp, find a binding b

sb

2 B of actors in the resource-aware application
graph to processing elements in the platform graph, such that the timing yield
�(ga, gp, b

sb

) is maximized.

3.2.3 Soft real-time applications

Compared to firm real-time application, soft real-time applications are charac-
terized by less stringent timing requirements. In such applications, missing a
deadline causes only a performance degradation, often evaluated through some
quality-of-service parameter. Examples of such applications are multimedia sys-
tems, monitoring apparatuses, virtual reality, and interactive computer games.
The optimization objective for this class of applications is to improve the timing
yield, but also to reduce the average throughput degradation (deviation from the
requirement) over all chips, as the chips with a low degradation can be used in
this class of applications.

With the single-binding mapping approach, the objective is to find a bind-
ing that results in maximized timing yield and/or minimized average throughput
degradation over all chip-frequency vectors (i.e. over all manufactured chips). De-
pending on the particular (timing yield, average throughput degradation) value
pairs, one binding may be preferred over another. A binding that has a lower
timing yield but also a lower average throughput degradation may be preferred
over another binding with a higher timing yield. The trade-o↵ between the timing
yield and the average throughput degradation is captured in an objective function
that guides the binding selection process (Definition 23). The optimization prob-
lem for soft real-time applications is formulated based on the objective function

37

Chapter 3. Variation-aware mapping

and aims at minimizing it. This is graphically illustrated in Figure 3.4.

Definition 23. (Probability-weighted sum of throughput degradation) The sum
of the probability-weighted di↵erence between the throughput requirement t

req

and
the (lower than the requirement) throughput of a bound application graph gb =
hsdfg, ga, gp, b, fc, i, over all chip-frequency vectors fc 2 FC, for a specified resource-
aware application graph ga 2 GA, platform graph gp 2 GP and binding b 2 B, is
given by ⇣(ga, gp, b) : GA⇥GP⇥B ! R+, and is defined as

⇣(ga, gp, b) =
X

fc2FC

(
(t

req

� ⌧(gb)) · pc(gp, fc) if ⌧(gb) < t

req

0 otherwise
(3.3)

fc 2 FC

⌧(gb)

t

req

minimize the sum of throughput
degradations below t

req

Figure 3.4: Throughput against chip-frequency vector for a fixed binding. Selecting a binding
with the lowest objective function ⇣ is equivalent to minimizing the shaded area below t

req

.

A binding selected for a soft real-time application, as a result of minimized
objective function, provides certain timing yield and average throughput degra-
dation. The timing yield of a binding is estimated by Definition 22. The average
throughput degradation of the binding with a certain value of the objective func-
tion is computed by Definition 24.

Definition 24. (Average throughput degradation of a binding) The average through-
put degradation of a binding b 2 B, for a specified resource-aware application graph
ga 2 GA, platform graph gp 2 GP, is given by �⌧

avg

(ga, gp, b) : GA⇥GP⇥B !
R+, and is defined as

�⌧
avg

(ga, gp, b) =
⇣(ga, gp, b)

1� �(ga, gp, b)
(3.4)

Figure 3.5 shows two bindings b

1

and b

2

, where b

2

has a higher timing yield
(better for firm real-time applications), but also a much higher average through-
put degradation (worse for soft real-time applications) than b

1

. This example

38

3.3. Multiple-bindings

shows that a good solution for a soft real-time application may not necessarily be
preferred for a firm real-time application and vice versa. This is why, di↵erent
optimization criteria are defined for the application classes.

fc 2 FC

⌧(gb)

t

req

b

2

b

1

Figure 3.5: Throughput against chip-frequency vector for a fixed binding. Two bindings b1
and b2 are shown, where b2 has higher timing yield, but also a higher average throughput
degradation, than b1.

The objective of the single-binding mapping approach for soft real-time appli-
cations is formulated as: given a resource-aware application graph ga and platform
graph gp, find a binding b

sb

2 B of actors in the resource-aware application graph
to processing elements in the platform graph, such that the objective function
⇣(ga, gp, b

sb

) is minimized.

3.3 Multiple-bindings

With the multiple-bindings mapping approach, a binding for each chip-frequency
vector is selected at design time. Therefore, a set of bindings are found and stored
at design time. Based on the chip-frequency vector of each manufactured chip, the
right binding that satisfies the application throughput requirement or maximizes
the throughput is then selected at a run-time configuration stage. The run-time
binding selection for each chip is done only once at a system initial configuration
stage through the operating system, and is not detrimental to real-time deadlines.
Per chip binding selection always provides better or equal results as compared to
the case where a single binding is used for all chips. The downside of the approach
is that multiple bindings, together with information on which binding needs to be
applied to each chip-frequency vector, has to be stored for the configuration stage.
Additionally, diverse application instances are present for the same product, which
can complicate the processes of software maintenance and upgrading.

The objective of the multiple-bindings mapping approach for best-e↵ort appli-
cations is to find a binding for each chip-frequency vector fc 2 FC, such that the
throughput of the bound application graph at that chip-frequency vector is maxi-
mized. For firm real-time applications, a binding for each chip-frequency vector is

39

Chapter 3. Variation-aware mapping

selected that satisfies the throughput requirement of the bound application graph
at that chip-frequency vector. If there is no binding that satisfies the require-
ment, then the chips with that particular chip-frequency vector cannot be used,
reducing the timing yield. For soft real-time applications, the objective is to find
a binding for each chip-frequency vector, such that the throughput requirement
is satisfied. If there is no binding that satisfies the requirement, then a binding is
selected that provides the lowest throughput degradation.

3.4 Implementation algorithms

To implement any of the optimization problems, various bindings of actors in an
unbound graph to processing elements in a platform graph have to be explored.
In this section, we present two algorithms for the evaluation of bindings, an ex-
haustive and a heuristic algorithm. With the exhaustive approach, we evaluate all
binding possibilities (as given by Definition 16) to find a single binding for all chips
(i.e. chip-frequency vectors) in the case of single-binding approach, or a binding
per chip (i.e. for each chip-frequency vector) in the case of multiple-bindings map-
ping approach. This approach enables us to find the optimum solution. However,
it is too computationally expensive for problems of a large size (i.e. large number
of actors in an resource-aware application graph and processing elements in a plat-
form graph). To overcome this limitation, we also provide a heuristic algorithm
that prunes the search space and obtains results close to the optimum.

The exhaustive and the heuristic algorithms presented in this section are given
for the class of firm real-time application, and therefore aim at maximizing the
timing yield. The algorithms for best-e↵ort and soft real-time applications are
similar to the ones presented and are not given in this section. The di↵erences in
the algorithms are explained where necessary.

3.4.1 Exhaustive algorithm

The exhaustive algorithm for the single-binding mapping approach for firm real-
time applications is shown in Algorithm 1. As input, the algorithm requires
a resource-aware application graph ga, platform graph gp, desired number n of
clock-frequency levels for each voltage-frequency island fi 2 FI, and µ

r

g

,�

r

g

, �

r

,�

r

l

values for the random variables describing the maximum supported frequency of
each hardware resource r 2 R (see Section 2.2). As the algorithm shows, the
set of clock-frequency levels for each voltage-frequency island are first computed,
followed by the derivation of the set FC of all possible chip-frequency vectors for
the set of islands (Definition 6). The algorithm exhaustively evaluates the timing
yield (Definition 22) for all possible bindings, and returns the binding b

sb

that re-
sults in the highest timing yield y

max

= �(ga, gb, b). The algorithms for best-e↵ort
and soft real-time applications use the functions ⌧

avg

(ga, gb, b) (Definition 21) and

40

3.4. Implementation algorithms

⇣(ga, gb, b) (Definition 23) to exhaustively find a binding with the highest average
throughput or the lowest objective function for soft real-time applications.

Algorithm 1: Exhaustive mapping algorithm implementing the single-
binding mapping approach for firm real-time applications.

Require: ga; gp;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: Compute c(gp,fi, n) 8fi 2 FI

2: Derive FC

3: y
max

 0
4: for all b 2 B do

5: if �(ga, gp, b) > y
max

then

6: b
sb

 b
7: y

max

 �(ga, gp, b)
8: end if

9: end for

10: return b
sb

, y
max

Algorithm 2 illustrates the exhaustive algorithm for the multiple-bindings
mapping approach for firm real-time applications. As shown, for each chip-
frequency vector fc 2 FC, the algorithm exhaustively evaluates all possible bind-
ings to find a binding that satisfies the requirement t

req

. The first binding that
satisfies the requirement t

req

is stored for each chip-frequency vector. The algo-
rithm returns a set B

mb

of bindings that includes a binding for each individual
fc 2 FC and an estimated timing yield y

max

. For best-e↵ort applications, the algo-
rithm exhaustively evaluates all possible bindings for each chip-frequency vector
fc 2 FC to find a binding with a maximized throughput. Note that the break
statement on Line 10 in Algorithm 2 does not apply for the best-e↵ort mapping
algorithm, as all bindings for each chip-frequency vector have to be explored. For
soft real-time applications, the algorithm exhaustively selects a binding for each
chip-frequency vector fc 2 FC, such that the requirement t

req

is satisfied (the
break statement on Line 10 is used) or otherwise the lowest throughput degrada-
tion is obtained by evaluating all possible bindings.

The exhaustive algorithms enable us to find the optimum solution. The limita-
tion of the exhaustive algorithms is that they are too computationally expensive
for problems of a large size. The total number |B| of bindings to evaluate for
timing yield or for throughput for each fc 2 FC is given by Equation 3.5, where
|ba(a)| is the number of processing elements in a platform graph to which an ac-
tor a can be bound, and A is the set of all actors belonging to a resource-aware
application graph. Thus, the complexity of the exhaustive algorithms is given
by O(|A| · |PE|). To address this problem, we proceed by presenting a heuristic
algorithm that prunes the search space to reduce computation time, while still
obtaining results close to the optimum.

41

Chapter 3. Variation-aware mapping

Algorithm 2: Exhaustive mapping algorithm implementing the multiple-
bindings mapping approach for firm real-time applications.

Require: ga; gp;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: Compute c(gp,fi, n) 8fi 2 FI

2: Derive FC

3: y
max

 0
4: B

mb

 ;
5: for all fc 2 FC do

6: for all b 2 B do

7: if ⌧(gb) � t
req

then

8: B
mb

 B
mb

[{b} //save b for current fc
9: y

max

 y
max

+ pc(gp, fc)
10: break

11: end if

12: end for

13: end for

14: return B
mb

, y
max

|B| =
Y

a2A

|ba(a)| (3.5)

3.4.2 Heuristic algorithm

With the heuristic algorithm, only a small number of bindings from the total num-
ber of possibilities are explored. The bindings that are evaluated by the heuristic
algorithm are generated by a two-phase procedure, initial resource allocation and
allocation optimization. In the initial resource allocation, an initial binding of
application actors to processing elements is derived. This initial binding later un-
dergoes an optimization stage where the allocation of each actor is reconsidered to
either improve the timing yield (the average throughput or the objective function
for soft real-time applications) with the single-binding mapping approach or the
throughput for each chip-frequency vector with the multiple-bindings mapping
approach.

In the initial resource allocation, the actors whose execution time are likely to
have a large impact on the throughput of an application, referred to as critical
actors, are considered first. The criticality of an actor a 2 A is estimated by the
product of its repetition vector (a) (Definition 12) and average execution time
(in cycles) (Definition 13) over all processing elements to which the actor can be
bound (Definition 15), as formally defined in Definition 25. This is an approx-
imate way of determining the criticality, as it intuitively estimates the average
computational demand of an actor. Note that depending on the topology of an
SDF graph, an actor a with the highest ca(a), as given by Definition 25, may

42

3.4. Implementation algorithms

not necessarily be on the critical cycle of the graph and therefore, may not have
the largest impact on the throughput of the graph. For an exact estimation of
criticality, all the cycles in the equivalent HSDF graph have to be analyzed, which
is computationally more expensive. In this thesis, the criticality estimation given
by Definition 25 is chosen for several reasons. First, it is simple to implement and
has low computational complexity. Second, mis-predictions in criticality estima-
tion can be tolerated, as the mapping derived in the initial resource allocation
stage is later improved in the allocation optimization stage, as described in this
chapter. An implementation of a graph-topology aware criticality estimation is a
possible future extension to this work.

Definition 25. (Actor criticality) The criticality of an actor a 2 A in a resource-
aware application graph ga is given by ca : A ! Q, and is defined as

8a 2 A. ca(a) =
(a)

|ba(a)| ·
X

pe2ba(a)

EC(a, pe) (3.6)

When allocating actors in a resource-aware application graph to processing
elements in a platform graph, the initial resource allocation tries to balance the
load in terms of execution time (in seconds) on the processing elements. The
load of a processing element is computed by the sum of products of the repetition
vector and the execution time (in seconds) of the actors bound to the processing
element (Definition 26).

Definition 26. (Load of a processing element) The load of a processing element
pe 2 PE is given by lpe : PE ! Q, and is defined as

8pe 2 PE. lpe(pe) =
X

a2A

b(a)=pe

(a) · et(a, pe) (3.7)

Algorithm 3 shows the heuristic algorithm for the single-binding mapping ap-
proach for firm real-time applications. In the first part of the algorithm (Lines 5–
10), initial resource allocation is performed. The actors in a resource-aware ap-
plication graph are sorted in decreasing order of criticality and are allocated to
processing elements in a platform graph, such that the load on the processing
elements is balanced. Each time an actor is to be bound to a processing ele-
ment, the processing element with the lowest load is selected (Line 8). If several
processing elements are not yet allocated or have equal loads, an actor is bound
to the processing element with the highest mean frequency µ

pe

g

of the normally
distributed random variable f

pe

g

describing the maximum supported frequency of
the processing element. This is done to ensure that the actors with high criticality
are allocated to processing elements with high computational power (processing
elements with high mean frequencies µpe

g

are faster on average). In the second part

43

Chapter 3. Variation-aware mapping

of the algorithm (Lines 15–27), allocation optimization is performed. The alloca-
tion of each actor, in increasing order of criticality, is changed from the processing
element to which it is bound to all other processing elements (to which it can be
bound) in sequence (Lines 15–19). Each time the allocation of an actor is changed,
the new binding is evaluated for timing yield. If the timing yield is improved, the
new allocation of the actor is kept, otherwise the actor is moved back to the
processing element to which it was bound (Lines 20–24). This process continues
until the allocation of all actors has been reconsidered. The algorithm returns
a binding b

sb

that has the highest timing yield y

max

= �(ga, gb, b
sb

) among the
bindings that have been explored. For best-e↵ort and soft real-time applications,
the functions ⌧

avg

(ga, gb, b
sb

) and ⇣(ga, gb, b
sb

) are used instead of �(ga, gb, b
sb

)
to find a binding with an improved average throughput and reduced objective
function, respectively.

Algorithm 3: Heuristic mapping algorithm implementing the single-binding
mapping approach for firm real-time applications.

Require: ga; gp;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: Compute c(gp,fi, n) 8fi 2 FI

2: Derive FC

3: y
max

 0
4: //Initial resource allocation
5: 8pe 2 PE. initialize loads
6: Sort A in decreasing ca(a)
7: for all a 2 A do

8: Bind a to pe with lowest lpe(pe) or highest µpe

g

(if equal loads)
9: Update the load of pe

10: end for

11: //initial binding b
sb

retrieved
12: y

max

= �(ga, gp, b
sb

)
13:

14: //Allocation optimization
15: for all a 2 A do

16: pe

0 = b
sb

(a)
17: for all pe 2 ba(a) do
18: if pe 6= pe

0
then

19: Bind a to pe //new binding b
sb

retrieved
20: if �(ga, gp, b

sb

) > y
max

then

21: y
max

 �(ga, gp, b
sb

)
22: else

23: Revert the allocation of a
24: end if

25: end if

26: end for

27: end for

28: return b
sb

, y
max

44

3.5. Implementation algorithms

The heuristic algorithm for the multiple-bindings mapping approach for firm
real-time applications is illustrated in Algorithm 4. For each chip-frequency vec-
tor fc 2 FC, the algorithm performs initial resource allocation and allocation
optimization, such that a binding is found that satisfies the requirement t

req

. The
initial resource allocation approach (Lines 8–12) is similar to the one described
for Algorithm 3. The di↵erence lies in binding an actor to the processing element
with the highest clock frequency fc(pe), as specified by current chip-frequency
vector, in case several processing elements are not yet allocated or have equal
loads (Line 10). In the allocation optimization stage (Lines 16–35), the allocation
of each actor in increasing order of criticality is reconsidered, as described before
for Algorithm 3. Whenever a binding is found that satisfies the requirement t

req

,
the binding is stored in a set B

mb

of output bindings and the timing yield y

max

is
incremented by the probability of the chip-frequency vector (Lines 18–21, 25–29).
Note that the break statement on Line 27 is used to stop the optimization pro-
cess when the throughput requirement is satisfied. The algorithm returns the set
of output bindings and an estimated timing yield. For best-e↵ort applications,
the initial resource allocation and allocation optimization are performed for each
chip-frequency vector to find a binding with a maximized throughput. For soft
real-time applications, a binding is found for each chip-frequency vector, such
that the requirement t

req

is satisfied or otherwise the throughput degradation is
minimized.

With the heuristic algorithm, the number n
b

of bindings to evaluate for tim-
ing yield or for throughput for each fc 2 FC is given by Equation (3.8). The
complexity of the algorithm is O(|A|). Given a large problem, n

b

is consider-
ably lower than the total number |B| of bindings explored by the exhaustive
algorithm (Equation (3.5)). For example, one of our test applications that has
sixteen actors is allocated to a platform consisting of three processing elements.
With the exhaustive algorithm, the overall number of bindings to be evaluated
is |B| = 316 = 43046721 (given that each actor can be bound to any processing
element), while only 16 · 2 = 32 bindings are explored by the heuristic algorithm.
The proposed heuristic algorithm thus addresses the scalability problem of the ex-
haustive mapping algorithms from the perspective of the number of bindings that
must be evaluated. However, given a large number of voltage-frequency islands
fi 2 FI in the presence of a large number processing elements, and a large number
of clock-frequency levels c(gp,fi, n) (Definition 4) per voltage-frequency island, the
number of chip-frequency vectors FC (Definition 6) becomes very large, resulting
in a very large number of throughput evaluations. This limits the scalability of the
proposed mapping algorithms. The treatment of this scalability issue is possible
future work for this thesis.

n

b

=
X

a2A

(|ba(a)|� 1) (3.8)

45

Chapter 3. Variation-aware mapping

Algorithm 4: Heuristic mapping algorithm implementing the multiple-
bindings mapping approach for firm real-time applications.

Require: ga; gp;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: Compute c(gp,fi, n) 8fi 2 FI

2: Derive FC

3: y
max

 0
4: B

mb

 ;
5: Sort A in decreasing ca(a)
6: for all fc 2 FC do

7: //Initial resource allocation
8: 8pe 2 PE. initialize loads
9: for all a 2 A do

10: Bind a to pe with lowest lpe(pe) or highest fc(pe) (if equal loads)
11: Update the load of pe
12: end for

13: //initial binding b retrieved
14:

15: //Allocation optimization
16: for all a 2 A do

17: pe

0 = b(a)
18: if ⌧(gb) � t

req

then

19: B
mb

 B
mb

[{b} //save b
20: y

max

 y
max

+ pc(gp, fc)
21: else

22: for all pe 2 ba(a) do
23: if pe 6= pe

0
then

24: Bind a to pe //new binding b retrieved
25: if ⌧(gb) � t

req

then

26: B
mb

 B
mb

[{b} //save b
27: y

max

 y
max

+ pc(gp, fc)
28: break

29: else

30: Revert the allocation of a
31: end if

32: end if

33: end for

34: end if

35: end for

36: end for

37: return B
mb

, y
max

3.5 Experimental results

In this section, we use the presented algorithms to map SDF graphs modeling
real multimedia and DSP applications to a NoC-based MPSoC platform consid-

46

3.5. Experimental results

ering the impact of process variation on the hardware resources. We demonstrate
the average throughput, the timing yield, and the average throughput degrada-
tion, as a result of the exhaustive and heuristic mapping algorithms implementing
the single-binding and multiple-bindings mapping approaches for best e↵ort and
real-time applications. We analyze how well the heuristic algorithms perform,
compared to the optimum results provided by the exhaustive algorithms. Addi-
tionally, we illustrate how allocating more resources in the interconnect (NoC) and
thus providing higher bandwidth for communication impacts the timing yield con-
sidering firm real-time applications. We proceed by describing the experimental
setup.

3.5.1 Experimental setup

The presented variation-aware mapping algorithms for best-e↵ort and real-time
applications are evaluated on a set of six SDF graphs that model real DSP and
multimedia applications. From the DSP domain, the set contains a Sample rate
converter and a Modem [7], and from the multimedia domain an H.263 encoder
[63], an H.263 decoder [82], an MP3 playback [91] and an MP3 decoder [82]. An
overview of the SDF graphs is shown in Table 3.2. The table reports the number
of actors, the number of cycles (feedback loops) in each graph and the available
parallelism in terms of the minimum number of processing elements that can fully
exploit it. The topologies of the applications, together with the execution times
(in cycles) of actors and the size of data tokens (in bytes) sent across dependency
edges, are given in Appendix B. These application SDF graphs are the resource-
aware application graphs in our formal framework. For simplicity, we interpret
the same six applications as best e↵ort, firm real-time and soft real-time when
evaluating the mapping algorithms for the di↵erent application classes.

Table 3.2: Application SDFG overview.

SDF graph Nr. actors Nr. cycles Parallelism

(Nr. PEs)

H.263 decoder 4 0 3

H.263 encoder 5 1 3

MP3 playback 4 1 2

Sample rate 6 0 3

Modem 16 5 3

MP3 decoder 14 0 3

The described applications are allocated to a NoC-based MPSoC platform
consisting of three homogeneous processing elements (most of the applications
have a parallelism of three processing elements). The MPSoC platform, described

47

Chapter 3. Variation-aware mapping

by a platform graph in our modeling framework, is shown in Figure 3.6. The three
processing elements and the interconnect (NoC) are placed in separate voltage-
frequency islands; as such, there are four islands. The number of clock-frequency
levels provided by clock-generation units (not shown in Figure 3.6) to each of
the four voltage-frequency islands is chosen to be five. The interconnect consists
of two routers, three network interfaces and multiple links, which connect the
processing elements to each other. Table 3.3 shows the parameters assumed for
the interconnect. The net bandwidth (i.e. the overall bandwidth capacity) of
each connection in the interconnect is assumed to be four bytes per cycle. The
flit size is set to twelve bytes, and a TDM table size of twenty slots for each
network interface is assumed. Note that the net bandwidth may be a↵ected by
possible overheads, such as inserted headers. To account for this, we assume a
worst-case scenario, where four out of twelve bytes in a flit is a header. Therefore,
the net bandwidth used for transferring data becomes two-thirds of the original
bandwidth.

pe
1

pe
2

pe
3

in
te
rc
on

n
ec
t

rt
1

rt
2

ni
1

ni
2

n
i 3

lk
1

lk
2

fi
1

fi
2

fi
3

fi
4

Figure 3.6: The multi-processor platform used in the experiments. It consists of three pro-
cessing elements connected to each other by an interconnect. The processing elements and the
interconnect are placed in separate voltage-frequency islands.

Table 3.3: Parameters assumed for connection bandwidth, TDM slot-table size and flit size
for the interconnect.

�
c

(bytes/cycle) sz

tb

sz

fl

(bytes)

(2/3)·4 20 12

Table 3.4 illustrates the parameters assumed for the hardware resources. The
mean of the random variable describing the maximum supported frequency of each
processing element due to global variation is 300 MHz. For routers and network
interfaces, a 500 MHz mean is chosen. The choice of the mean frequency for links,
compared to the mean for routers, is made according to a NoC implementation
given in [29], where the authors design a link slightly faster than the routers not to

48

3.5. Experimental results

limit the performance of the NoC and to preserve power. We select a mean of 560
MHz for links. As reported in [20], at high computing frequencies (in the order of
GHz), the variation is large. In our work, we target embedded systems running
streaming applications, where the typical frequencies are in the order of hundreds
of MHz. Measurements at 45 nm technology in the frequency range of interest are
provided by Pang et al. [64]. Based on this data, we assume standard deviation to
mean ratios of 4% and 3.3% for within-die and die-to-die variations, respectively
(Table 3.4). We assume a 5% reduction in mean frequency for processing elements
and links due to multiple critical paths and wires, respectively. For routers and
network interfaces, no reduction in mean frequency is assumed. These choices
correspond to the discussion presented in Chapter 2.2.

Table 3.4: Parameters assumed for random variables modeling the maximum supported fre-
quency of hardware resources.

pe rt ni lk

µr

g

(MHz) 300 500 500 560

�r

g

(% of µr

g

) 4 4 4 4

�r (% of µr

g

) 5 0 0 5

�r

l

(% of µr

g

) 3.3 3.3 3.3 3.3

3.5.2 Evaluation results

Below, we demonstrate how the proposed algorithms, implementing the single-
binding and multiple-bindings mapping approaches, perform when allocating the
set of applications given in Table 3.2 to the multi-processor platform shown in
Figure 3.6. The results are presented for best-e↵ort, soft real-time and firm real-
time application classes with corresponding optimization criteria. We show that
the multiple-bindings mapping approach provides better results, compared to the
single-binding approach. Both exhaustive and heuristic mapping algorithms are
evaluated. The exhaustive algorithms are applied to a subset of small to medium
size applications, as they are are too computationally expensive for applications
having a large number of actors (Modem, MP3 decoder). The heuristic map-
ping algorithms are evaluated on the complete set of applications. For the set of
small to medium size applications, we analyze how the heuristic mapping algo-
rithms perform, as compared to the optimum results provided by the exhaustive
algorithms. We additionally compare the algorithms for the single-binding map-
ping approach to a mean-frequency based mapping, where the binding of actors
to processing elements is derived based on the mean frequencies µ

r

g

of the pro-
cessing elements. The purpose is to see if the lower complexity mean-frequency
based mapping can provide similar results as the single-binding mapping algo-
rithm without considering the variation in the mapping process.

49

Chapter 3. Variation-aware mapping

Firm real-time applications

Figure 3.7 illustrates the timing yield for the H.263 decoder, H.263 encoder, MP3
playback and Sample rate converter applications, as a result of mean frequency-
based, single-binding and multiple-bindings exhaustive mapping algorithms for
the class of firm real-time applications. As shown in Table 3.2, these applica-
tions have a small to medium number of actors (6 actors the largest), enabling
the use of the exhaustive mapping algorithms. The exhaustive algorithms for the
single-binding and multiple-bindings mapping approaches are denoted by SBE
and MBE, respectively. The lower complexity exhaustive mean-frequency based
mapping algorithm is denoted by MFBE. With this mapping algorithm, all map-
ping possibilities are evaluated with the assumption that the processing elements
possess mean frequencies given by µ

r

g

. There can be multiple bindings of actors to
processing elements that satisfy the throughput requirement. A binding that just
satisfies the requirement can potentially result in a low timing yield, as any neg-
ative deviation from the mean frequency of the processing elements can lead to a
violation. For this reason, a binding that provides the highest throughput among
all bindings is chosen. Later, the timing yield of the selected binding is estimated
by the formula given in Definition 22. Note that, there can be multiple bindings
that provide the same highest throughput. Evaluating them all for timing yield
and selecting the one that provides the highest timing yield would increase the
complexity and the run time of the algorithm, which is not the intention of in-
troducing the algorithm (instead single-binding heuristic mapping algorithms can
be used). Therefore, one of the bindings that provide the highest throughput is
arbitrarily selected and evaluated for timing yield.

H.263 decoder H.263 encoder MP3 playback Sample rate Average
0

10

20

30

40

50

60

70

80

90

100

T
im

in
g

 y
ie

ld
 (

%
)

MFBE SBE MBE

Figure 3.7: Timing yield of applications using the exhaustive MFBE, SBE and MBE mapping
algorithms for the class of firm real-time applications.

Figure 3.7 shows that SBE provides better results than MFBE for the H.263
encoder and Sample rate converter applications, providing a 12% higher timing

50

3.5. Experimental results

yield for H.263 encoder. For Sample rate converter, the improvement is negligi-
ble. For the rest of the applications, MFBE results in an identical timing yield
as SBE. Therefore, we observe that the bindings providing a high throughput
for mean frequencies of processing elements typically result in high timing yield.
However, as shown with the H.263 encoder application, it can be necessary to con-
sider the variation in the frequencies of processing elements in the binding process
for finding a better solution. Moreover, processing elements may have identical
mean frequencies, but di↵erent frequency distributions (in our setup, we assume
identical frequency distributions for processing elements). Without considering
the variation in frequencies, mean-frequency based mapping algorithms can pro-
vide low timing yield. As expected, MBE performs better than SBE, resulting in
improvements for all applications. Timing yield improvements of up to 17% com-
pared to SBE are reported. Figure 3.7 additionally illustrates the average timing
yield for the set of applications. The exhaustive mean-frequency based mapping
algorithm (MFBE) results in a 73% average timing yield, which is improved to
76% and 90% by SBE and MBE, respectively. These results show that having
multiple bindings for the chip population provides higher timing yield in the pres-
ence of process variation, compared to the case where only a single binding is used.
We also observed that lower-complexity mean-frequency based mapping, which
does not consider the probability distribution of frequency, on average provides
results close to SBE. However, without the knowledge of variation, it can result
in a lower timing yield, as demonstrated with one of our benchmark applications
in Figure 3.7. The run time of the exhaustive algorithms on a 3.07 GHz machine
is reported in Table 3.5. As can be seen, the mean-frequency based algorithm
(MFBE) is considerably faster than the variation-aware algorithms (SBE and
MBE). The run time of the algorithm for multiple-bindings mapping approach is
lower than the one for the single-binding approach, as not all bindings are evalu-
ated in the allocation optimization stage (Algorithm 2). The optimization stops
whenever the throughput requirement is satisfied.

Table 3.5: The run time of exhaustive MFBE, SBE and MBE mapping algorithms.

MFBE (sec.) SBE (sec.) MBE (sec.)

H.263 decoder 13 870 224

H.263 encoder 4 640 63

MP3 playback 136 9694 2716

Sample rate 181 20716 7097

The timing yield achieved by the variation-aware and mean-frequency based
heuristic mapping algorithms for the complete set of applications is shown in Fig-
ure 3.8. The mean-frequency based mapping algorithm, denoted by MFBH, is
implemented by the same heuristic algorithm presented in Section 3.4.2. With

51

Chapter 3. Variation-aware mapping

0

10

20

30

40

50

60

70

80

90

100

H.263 decoder

H.263 encoder

MP3 playback

Sample rate
Modem

MP3 decoder
Average

T
im

in
g

 y
ie

ld
 (

%
)

MFBH SBH MBH

Figure 3.8: Timing yield of applications using the heuristic MFBH, SBH and MBH mapping
algorithms for the class of firm real-time applications.

this mapping algorithm, application actors, in decreasing order of criticality (Def-
inition 25), are initially allocated to processing elements based on their mean
frequencies. The derived initial binding is later optimized, in the allocation opti-
mization stage, for higher throughput. The heuristic MFBH mapping algorithm
results in the same timing yield, as the exhaustive MFBE mapping algorithm
(Figure 3.7) for the H.263 decoder, H.263 encoder and Sample rate applications.
For H.263 encoder, the provided timing yield is higher by 12%. The reason is that
twelve bindings are found by the exhaustive MFBE algorithm that provide the
highest throughput for mean frequencies, and only one of the bindings is selected
arbitrarily. The binding which is selected provides 73% timing yield, while there
are other bindings that provide 85% timing yield. In principle, all bindings found
by MFBE can be evaluated for timing yield, such that the binding providing the
highest timing yield can be selected. However, by doing so, we loose the benefit
of having a fast mean-frequency based mapping algorithm (instead SBH may be
used). The heuristic MFBH algorithm finds a single binding that results in 85%
timing yield. For the H.263 decoder, H.263 encoder and Sample rate applica-
tions, the heuristic mapping algorithm implementing the single-binding mapping
approach, denoted by SBH, provides the optimum results found by the compu-
tationally expensive exhaustive SBE mapping algorithm, the results of which are
shown in Figure 3.7. With MP3 playback, SBH results in only 4% timing yield,
compared to the 74% provided by SBE. With this application, SBH is not able
to find the binding selected by SBE, resulting in a significant reduction in timing
yield. Similar to SBH, the heuristic algorithm for the multiple-bindings mapping
approach, denoted by MBH, gives the optimum result with the H.263 decoder,
H.263 encoder and Sample rate applications. With MP3 playback, the provided
timing yield is 58%, compared to the 90% given by the exhaustive MBE algorithm.
For this application and MBH algorithm given in Algorithm 4, we observed that

52

3.5. Experimental results

the bindings that provide high throughput for some of the chip-frequency vectors
(Algorithm 4), but are not found for these chip-frequency vectors (reducing the
yield), are in fact located for other chip frequency vectors. We combined all the
bindings found by the algorithm and evaluated the timing yield for the precom-
puted bindings. This provided the same 90% timing yield. As such, although
the reported timing yield with MBH is only 58%, in reality, the selected set of
bindings provide 90% timing yield. For the rest of the applications, the reported
timing yield with MBH and the provided timing yield with the selected set of
bindings are identical. These results show that the heuristic algorithm performs
well on average. It is able to find the optimum for all applications in question,
except MP3 playback.

Figure 3.8 additionally illustrates the timing yield achieved by the heuristic
mapping algorithms for the Modem and MP3 decoder applications of a larger
size (16 actors the largest). For Modem, the timing yield with the variation-
unaware MFBH algorithm is only 26%. In contrast, SBE provides a considerably
higher timing yield of 62%. This is further improved to 70% by MBH. For the
MP3 decoder application, both MFBH and SBH provide the same 62% timing
yield, while 77% is given with MBH. The figure also shows the average timing
yield for the complete set of applications. Table 3.6 shows the run time of the
heuristic mapping algorithms. Significant reductions, compared to the run time
of the exhaustive algorithms can be seen. Note that the exhaustive mapping
algorithms for Modem and MP3 decoder applications are unfeasible and do not
finish in reasonable time. These results show that the heuristic algorithms can be
e�ciently applied to problems of a medium to large size.

Table 3.6: The run time of heuristic MFBH, SBH and MBH mapping algorithms.

MFBH (sec.) SBH (sec.) MBH (sec.)

H.263 decoder 11 157 57

H.263 encoder 3 47 9

MP3 playback 121 1128 841

Sample rate 29 855 124

Modem 9 285 138

MP3 decoder 75 2088 51

In Table 3.7, we analyze the number of bindings selected by the heuristic al-
gorithm implementing the multiple-bindings mapping approach. This is relevant
to observe, as these bindings must be stored to be used in a configuration stage,
where one of the stored bindings is selected based on the chip. As can be seen
a low number of (di↵erent) bindings are required to be stored. For the Modem
applications, 106 non-identical bindings are returned. However, there are only
23 bindings that provide the highest throughput for all chip-frequency vectors;

53

Chapter 3. Variation-aware mapping

we refer to these bindings as dominant. The rest of the bindings do not pro-
vide a higher throughput for any of the chip-frequency vector. Therefore, only
23 bindings need to be stored for Modem. This shows the applicability of the
multiple-bindings mapping approach as it provides significant improvements with
a low impact on storage requirements.

Table 3.7: The number of bindings selected by MBH.

Total Dominating bindings

(if less than total #)

H.263 decoder 17 –

H.263 encoder 12 –

MP3 playback 9 –

Sample rate 6 –

Modem 106 23

MP3 decoder 6 –

Lowering communication latency

As detailed in Section 2.5, the number of slots allocated in the TDM table of a
connection in the interconnect for each dependence edge mapped on this connec-
tion depends on the required bandwidth of the edge, as given by Equation (2.14).
In the experiments above, only a single TDM slot in the table of a connection,
for each dependency edge mapped on the connection is allocated. By allocating
more slots and thus providing lower communication latency in the interconnect, a
higher timing yield may be achieved. For the class of firm real-time applications,
we analyze the impact of allocating more interconnect resources on the timing
yield. Figure 3.9 illustrates the impact of increasing the number of allocated
TDM slots, for each dependency edge mapped on a connection in the intercon-
nect, on the timing yield for the H.263 decoder, H.263 encoder and MP3 decoder
applications. The graphs given by H.263 decoder (a), H.263 encoder (a) and MP3
decoder are derived based on the bindings that are selected by the variation-aware
heuristic SBH mapping algorithm. As these graphs show, allocating more slots
has no e↵ect on the timing yield. This is due to the bindings derived by SBH.
Application actors which communicate large amounts of data in a single itera-
tion of the application graph are bound to the same processing element. Binding
these actors to di↵erent processing elements and thus the dependency edge con-
necting the to a connection in the interconnect reduces the timing yield. As the
variation-aware mapping algorithms aim at maximizing the timing yield, they
rule out the bindings where these actors are bound to di↵erent connections. We
conclude that for the graphs given by H.263 decoder (a), H.263 encoder (a) and

54

3.5. Experimental results

MP3 decoder, the actors modeling the latency and rate of communication are not
on the critical cycle of the graph, and thus reducing the latency does not improve
the timing yield. To strengthen this observation, Figure 3.9 additionally shows
how the timing yield for H.263 decoder and H.263 encoder changes when allo-
cating a higher number of TDM slots, given a binding where dependency edges
that incur large amounts of data communication are allocated to a connection in
the interconnect. These graphs are shown by H.263 decoder (b), H.263 encoder
(b). With a single allocated slot, these bindings provide 30% and 6% timing yield
for H.263 decoder and H.263 encoder, respectively. The increase in the number
of allocated TDM slots provides considerable improvements in the timing yield,
such that 73% and 75% timing yield is achieved with three and five slots for H.263
decoder and H.263 encoder, respectively. Note that depending on the application,
not always a binding can be derived by the variation-aware mapping algorithm,
such that no dependency edge with associated with large data amounts is bound
to a connection in the interconnect. In this scenario, allocating more resources
on connections in the interconnect can help to increase the timing yield.

1 2 3 4 5 6
0

20

40

60

80

100

Number of allocated TDM slots

T
im

in
g

 y
ie

ld
 (

%
)

H.263 decoder (a)

H.263 decoder (b)

H.263 encoder (a)

H.263 encoder (b)

MP3 decoder

Figure 3.9: Timing yield against the number of allocated TDM slots for each dependency edge
mapped to a connection in the interconnect for the H.263 decoder, H.263 encoder and MP3
decoder applications.

Best-e↵ort applications

Figure 3.10 illustrates the normalized average throughput for the H.263 decoder,
H.263 encoder, MP3 playback and Sample rate converter applications provided
by the exhaustive MFBE, SBE and MBE algorithms for the class of best-e↵ort
applications. Both MFBE and SBE perform equal to each other and result in
the same average throughput. The algorithm implementing the multiple-bindings
mapping approach provides a 3% higher average throughput for all applications.
We thus observe that the benefits of having multiple bindings for manufactured

55

Chapter 3. Variation-aware mapping

chips, in the presence of process variation, are lower for best-e↵ort applications,
compared to firm real-time application. For this class of applications, a single
binding may be preferred over multiple bindings if the cost of storing the multiple
bindings, together with the information on which binding needs to be applied
to each chip-frequency vector, is high. To experimentally illustrate the benefits
of having di↵erent optimization criteria for firm real-time and best e↵ort appli-
cations, consider the H.263 encoder application. A binding found by the SBE
algorithm targeting to maximize the average throughput (Definition 21) provides
the highest average throughput for the H.263 encoder application. This result
is reported in Figure 3.10. For the same application, the same binding provides
only 73% timing yield (this is shown in Figure 3.7 by MFBE). However, the SBE
algorithm targeting to maximize the timing yield (Definition 22) provides a higher
timing yield of 85% (see SBE in Figure 3.7). This experimentally shows that a
binding preferred for a best-e↵ort application may not be good for a firm real-time
application.

H.263 decoder H.263 encoder MP3 playback Sample rate Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o

rm
a

liz
e

d
 a

ve
ra

g
e

 t
h

ro
u

g
h

p
u

t

MFBE SBE MBE

3%3% 3%3% 3%

Figure 3.10: Normalized average throughput of applications using the exhaustive MFBE, SBE
and MBE mapping algorithms for the class of best-e↵ort applications.

The normalized average throughput with the heuristic mapping algorithms
for the complete set of applications is illustrated in Figure 3.11. The results are
normalized to the results of MFBE in Figure 3.10, such that the di↵erence between
exhaustive and heuristic algorithms can be captured. For all small to medium size
applications, except the MP3 playback, the optimum results are provided by both
MFBH and SBH algorithms. With MP3 playback, SBH is unable to find a binding
that results in the highest average throughput, resulting in a 14% lower average
throughput. The MBH algorithm provides the optimum result for only H.263
decoder. For H.263 encoder, MP3 playback and Sample rate converter, 2%, 6%
and 1% reductions in the average throughput are seen, compared to the result of
MBE. Similar results are also reported for larger in size Modem and MP3 decoder
applications.

56

3.5. Experimental results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

H.263 decoder

H.263 encoder

MP3 playback

Sample rate
Modem

MP3 decoder
Average

N
o

rm
a

liz
e

d
 a

ve
ra

g
e

 t
h

ro
u

g
h

p
u

t

MFBH SBH MBH

3% 1%
3%

2% 3%
6%

2% 2%
2%

Figure 3.11: Normalized average throughput of applications using the heuristic MFBH, SBH
and MBH mapping algorithms for the class of best-e↵ort applications.

Soft real-time applications

As explained in Section 3.2.3, the optimization objective for soft real-time appli-
cations is to improve the yield and/or reduce the average throughput degradation,
as the chips with a low degradation can be used in this class of applications. Note
that, with the single-binding mapping approach, a binding with a particular (yield,
average throughput degradation) value pair is selected based on minimized objec-
tive function, as presented in Section 3.2.3. In this section, we illustrate the yield
and the average throughput degradation (measured in percents of the through-
put requirement) for the set of applications as a result of mean-frequency based
and variation-aware mapping algorithms. With the exhaustive MFBE, SBE and
MBH mapping algorithms, the yield results for (the small to medium size) soft
real-time applications are identical to the ones given for firm real-time applica-
tions in Figure 3.7. In fact, identical bindings are selected in both cases. We
thus observe that, for the given SBE and MBE mapping algorithms and the set
of applications, the same bindings provide the best results for both soft and firm
real-time applications. The average throughput degradation as a result of MFBE,
SBE and MBH for the subset of applications is shown in Figures 3.12. It can be
seen that the mean-frequency based MBE and variation-aware SBE mapping al-
gorithms provide identical average throughput degradation for all applications,
except for H.263 encoder. Although the binding selected by MFBE has a slightly
lower average throughput degradation, it has a 12% lower timing yield. Compared
to SBE, MBE provides improvements in the average throughput degradation of
only 1% on average, whereas the timing yield with MBE is improved by 14% on
average (see Figue 3.7).

Figures 3.13 and 3.14 show the yield and the average throughput degrada-
tion for the heuristic MFBH, SBH and MBH algorithms and the complete set

57

Chapter 3. Variation-aware mapping

H.263 decoder H.263 encoder MP3 playback Sample rate Average
0

1

2

3

4

A
ve

ra
g

e
 t

h
ro

u
g

h
p

u
t

d
e

g
ra

d
a

tio
n

 (
%

 o
f

t re
q
)

MFBE SBE MBE

Figure 3.12: Average throughput degradation of applications using the MFBE, SBE and MBE
heuristic mapping algorithms for the class of soft real-time applications.

0

10

20

30

40

50

60

70

80

90

100

H.263 Decoder

H.263 Encoder

MP3 Playback

Sample Rate
Modem

MP3 Decoder
Average

T
im

in
g

 y
ie

ld
 (

%
)

MFBH SBH MBH

Figure 3.13: Timing yield of applications using the MFBE, SBE and MBE heuristic mapping
algorithms for the class of soft real-time applications.

of applications. The yield results are similar to the ones given for firm real-time
applications in Figure 3.8. One of the di↵erence is seen for the Sample rate con-
verter application, where the algorithm for soft real-time optimization provides a
slightly higher timing yield. For the Modem application, SBE results in a 51%
timing yield. As such, it is unable to find the binding selected by the same al-
gorithm for firm real-time optimization that gives 62% timing yield. On average,
MBH improves the timing yield of MFBE by 21%. The heuristic mapping algo-
rithms result a negligible increase in the average throughput degradation for the
subset of applications, compared to the optimum results given by MBE. The only
exception is the MP3 playback application. As can be seen from Figure 3.14, the

58

3.6. Summary

selected binding that provides a low yield of 4% for the MP3 playback application,
results also in a high average throughput degradation of 18%. For the same ap-
plication, MBH provides a 3% higher average throughput degradation, compared
to MBE.

0

2

4

6

8

10

12

14

16

18

H.263 decoder

H.263 encoder

MP3 playback

Sample rate
Modem

MP3 decoder
Average

A
ve

ra
g

e
 t

h
ro

u
g

h
p

u
t

d
e

g
ra

d
a

tio
n

 (
%

 o
f

t re
q
)

MFBH SBH MBH

Figure 3.14: Average throughput degradation of applications using the MFBE, SBE and MBE
heuristic mapping algorithms for the class of soft real-time applications.

3.6 Summary

In this chapter, we described the requirements of best-e↵ort and real-time ap-
plications. In the presence of process-induced variations, we formalized a map-
ping optimization problem for each of them. Two mapping approaches were
presented. The first approach is to have a single binding for all manufactured
multi-processor chips, which possess di↵erent process-induced variations in the
maximum-supported frequency of the hardware resources. With the second map-
ping approach, multiple di↵erent bindings of the actors in an application to the
processing elements in the multi-processor platform in the manufactured chips
are present. This mapping approach makes use of the faster and slower hard-
ware resources on the same chip die due to within-die variation, which a↵ects the
maximum-supported frequency of resources on the same die di↵erently. Thus,
the mapping of the application to the platform can be tailored based on process-
induced variations in each manufactured chip, resulting in better performance. To
implement the mapping optimization problems with the defined objective func-
tions (e.g. maximizing timing yield for firm real-time applications), the chapter
also presented exhaustive and heuristic algorithms. From the perspective of the
number of bindings that are evaluated, the heuristic mapping algorithm e↵ectively
addresses the scalability problem of the exhaustive algorithm. These algorithms
are used to derive a binding or a set of bindings at design time, such that the

59

Chapter 3. Variation-aware mapping

corresponding objective function is optimized. In the case of multiple bindings,
a one-time system configuration through the operating system takes place for
each manufactured chip at run time, such that the right binding from the set of
computed bindings is selected based on the process-induced variations in a chip.

The presented algorithms implementing both mapping approaches with a sin-
gle and multiple bindings were evaluated on a set of SDF models of real appli-
cations. As expected, multiple bindings make use of fast and slow processing
elements on a chip die due to within-die variation and provide better results than
a single binding for the manufactured chips. An average of 19% higher timing
yield is reported for the set of applications considering them as firm real time.
We observed that the benefits of multiple bindings are much lower for best-e↵ort
applications, providing only a 4% improvement in the average throughput. The
results for soft real-time applications are similar to the results for firm real-time
and best-e↵ort applications with respect to timing yield and average throughput
degradation, respectively. Interestingly, a small number of bindings are required
to be stored for an on-line selection with the multiple-bindings mapping approach.
At most 23 bindings are derived considering all the applications. This shows that
the multiple-bindings mapping approach imposes low storage requirements, while
providing significant improvements in timing yield, compared to the single-binding
mapping approach.

Allocating more resources on the interconnect in a multi-processor platform,
and thus providing lower communication latency may increase the timing yield
and/or the average throughput. Analysis of this is provided in the experimen-
tal section for firm real-time applications. An observation was made that the
single-binding mapping algorithm derives a binding, where the application’s ac-
tors communicating large amounts of data are allocated to the same processing
element. This is the result of the algorithm, which aims at maximizing the timing
yield. For this reason, allocating more interconnect resources does not increase
the timing yield for the given set of applications. However, depending on an appli-
cation, a binding may not always be derived where no two actors communicating
large amounts of data are bound to di↵erent processing elements. In this scenario,
allocating more resources on the interconnect will improve the timing yield, as
experimentally shown in this chapter.

The same chapter also provided an evaluation of the heuristic mapping al-
gorithms, compared to the exhaustive mapping algorithms, which provide the
optimum results. This evaluation is performed on a set of four small to medium
size applications, which enable the use of the exhaustive mapping algorithms. For
the MP3 playback application, the heuristic mapping algorithm implementing the
single-binding mapping approach leads to a considerable 70% lower timing yield
for firm real-time applications. For the rest of the applications, the optimum re-
sult is provided. Similarly, considering the multiple-bindings mapping algorithms,
optimum results are found by the heuristic algorithms for three out of the four
applications. Similar accuracy of the heuristic mapping algorithm is observed
considering best-e↵ort and soft real-time applications. Concerning the run time

60

3.6. Summary

of the algorithms, the heuristic mapping algorithms provide improvements of up
to 24 and 57 times for single-binding and multiple-bindings mapping algorithms,
respectively.

61

Chapter 3. Variation-aware mapping

62

4
Voltage-frequency island partitioning

In a multi-processor platform, a clock-generation unit is associated with each
voltage-frequency island. Each clock-generation unit provides a set of clock-
frequency levels. The cost of a CGU in terms of area and power consumption
depends on its implementation, which in turn is dependent on the desired num-
ber of clock-frequency levels and the step size between them. A large number
of clock-frequency levels within a frequency range provided by clock-generation
units to corresponding voltage-frequency islands in a multi-processor platform
translates into a higher cost hardware (in terms of area and power consumption).
Note that the actual maximum supported frequency of a hardware resource in a
manufactured chip can be any value within the process-induced frequency spread.
Thus, a large number of clock-frequency levels available to islands can better
match the actual maximum supported frequencies of hardware resources. This
leads to higher throughput values of the application mapped to the hardware
platform in manufactured chips, which in turn result in higher timing yield. Sim-
ilarly, the number of voltage-frequency islands in a multi-processor platform can
be reduced, resulting in a smaller number of clock-generation units and thus a
lower area (power consumption) cost. However, with a reduced number of voltage-
frequency islands, multiple processing elements are placed in a single island. If
one of the processing elements is slow due to within-die process variation, the
whole island is operated at the low clock frequency supported by the slow pro-
cessing element. This may reduce the throughput of the application mapped to
the platform in manufactured chips, resulting in reduced timing yield. Therefore,
it is important to partition the processing elements into voltage-frequency islands,
such that a minimal reduction in the timing yield is obtained. In this chapter,
we consider only firm real-time applications constrained by a throughput require-

Chapter 4. Voltage-frequency island partitioning

ment, which cannot be violated, as described in Section 3.2.2. We first outline the
possible architectures of a clock-generation unit based on the desired number of
clock-frequency levels. Later, we introduce algorithms to partition the processing
elements in a platform graph into multiple voltage-frequency islands, such that
a high timing yield for the given number of islands is obtained. Note that the
interconnect is always placed in a separate voltage-frequency island, as described
in Section 2.1.

4.1 Outline of CGU architectures

Process variation results in a spread in the maximum supported frequency of
hardware resources in a multi-processor platform. The actual maximum sup-
ported frequency of a hardware resource in a manufactured chip can be any value
within this spread. With a large number of clock-frequency levels provided by
clock-generation units to each voltage-frequency island in a platform graph, a
better matching of the actual maximum supported frequencies of the hardware
resources can be performed. This provides higher throughput values in manufac-
tured chips, resulting in higher timing yield. On the other hand, the finer the
granularity of clock-frequency levels, the higher the complexity and cost in terms
of area (power consumption) of a clock-generation unit can be. In this section, we
outline possible architectures for implementing a clock-generation unit depending
on the number of clock-frequency levels. Note that we do not provide actual data
on hardware cost, but rather show that a larger number of clock-frequency levels
translates into a higher complexity and hardware cost. We proceed by presenting
three kinds of clock frequency generation.

Frequency Division

The simplest way to generate clock frequencies is to use frequency dividers. With
this approach, it is only possible to generate frequencies of f ref

clk

/N, where f

ref

clk

is
the reference clock frequency. However, the process-induced spread in the maxi-
mum supported frequency of a hardware resource is not as large (e.g. 16% three
standard deviations from the mean for 45 nm technology considering combined
die-to-die and within-die variations) to accommodate multiple f ref

clk

, f ref

clk

/2, f ref

clk

/3,
etc, clock frequencies with frequency division.

Programmable Ring Oscillators

Another approach to generate clock frequencies is to use programmable ring os-
cillators. A simple ring oscillator is composed of an odd number of inverters. The
clock frequencies are generated by programming the length of the ring oscilla-
tor [46]. For a ring oscillator consisting of a chain of m = 2 ·k+1; k 2 N inverters,
the frequency is given by Equation (4.1), where t

d

is the inverter delay. For two
adjacent ring oscillator lengths, 2·k+1 and 2·(k+1)+1, the step in the oscillating

64

4.2. Heuristic Partitioning Algorithms

frequencies is relatively large [46]. For example, assuming an inverter delay of 100
ps (this is a representative number for 0.13 µm technology), the oscillating fre-
quencies assuming 15, 17 and 19 inverters are 333, 294, and 263 MHz, respectively,
resulting in step sizes of 39 and 31 MHz. Thus, this approach of clock-frequency
generation can provide a small number of clock-frequency levels within the range
of process-induced variation in the maximum supported frequency of a hardware
resource.

f

osc

=
1

2 ·m · t
d

(4.1)

Voltage Control

To generate clock frequencies with a higher resolution, the voltage supply of the
ring oscillator is controlled. The relation between gate supply voltage (v

dd

) and
gate propagation delay [3] is given by Equation (4.2), where c

l

is the load capac-
itance at the gate’s output, v

th

is the threshold voltage, and ↵

v

is the velocity
saturation index.

t

d

⇡ c

l

· v
dd

(v
dd

� v

th

)↵v

(4.2)

By controlling the supply voltage of the gates of the ring oscillator, we can
adjust the oscillating frequency. Voltage control is achieved by using on-chip
or o↵-chip voltage regulators. O↵-chip voltage regulators are separate board-
level components, which utilize bulky filter components [96] (i.e. large inductors
and capacitors). Therefore, it is impractical and cost prohibitive to have many
o↵-chip voltage regulators. A fully-digital on-chip voltage regulator is proposed
in [44]. The supply voltage regulation is achieved by creating a voltage drop on
power-transistor segments, which are connected to the circuit of the ring oscillator
sequentially. By carefully choosing the number and the size of power-transistor
segments, di↵erent voltage drops on the transistor segments and therefore on
the circuit of the ring oscillator is achieved. The disadvantage of using on-chip
voltage regulators is the reduced power-conversion e�ciency (power dissipation
on transistor segments) compared to o↵-chip regulators. The power transistors
are of high threshold-voltage type. In the implementation presented in [44], the
transistors have a large width of 10 µm. Therefore, a large number of clock-
frequency levels comes at the cost of a large number of large transistor segments.

4.2 Heuristic Partitioning Algorithms

In this section, we present heuristic algorithms to partition the processing ele-
ments in a platform graph into multiple voltage-frequency islands. We consider
only the class of firm real-time applications. Therefore, the objective of the par-
titioning algorithms is to derive a partitioning that results in high timing yield,

65

Chapter 4. Voltage-frequency island partitioning

which represents the percentage of manufactured chips satisfying the throughput
requirement of an application. The algorithms for soft real-time and best-e↵ort
applications are similar to the ones presented in this section, and can be derived
based on the discussions presented in Section 3.4. The heuristic algorithms in this
section are given assuming a single and multiple bindings for all chips. As the
presented model of a multi-processor platform suggests, the interconnect is never
grouped with a processing element in the same voltage-frequency island, but is
always placed in an unshared voltage-frequency island (see Section 2.1). Thus,
the partitioning is only performed for the processing elements in a platform graph.
This choice is motivated as follows. The interconnect is usually operated at higher
clock frequencies, so that the latency for sending data across the connections in
the interconnect is low, thus avoiding the bottleneck of communication. Placing
the interconnect in a voltage-frequency island with other processing elements will
slow down the interconnect. Low latency of communication can also be achieved
by reserving large amount of resources (slots in the TDM slot table) on a con-
nection. However, this may deprive other dependency edges bound to the same
connection of the same or a di↵erent application from getting su�cient resources,
resulting in long communication latency.

4.2.1 Single binding

To guide the process of merging multiple voltage-frequency islands into a single
island, such that fewer partitions are created, we define a metric called island crit-
icality, which assumes a given binding of the actors in a resource-aware application
graph to processing elements in a platform graph. This metric quantifies the sen-
sitivity of the throughput of a bound application graph to the clock frequency of a
voltage-frequency island. The higher the island criticality of a voltage-frequency
island, the higher the reduction in the throughput of a bound application graph is
when the clock frequency of the island is reduced. A voltage-frequency island with
a low criticality value suggests that the actors, which are bound to the processing
elements in the island, are either not on the critical cycle or have low execution
times on the cycles of the bound application graph. Island criticality of a voltage-
frequency island for a given binding is defined as the reduction in the throughput
of a bound application graph as a result of reducing the clock frequency of the
island from the highest to the lowest value among its clock-frequency levels, while
the clock frequency for the rest of the voltage-frequency islands in the platform
graph is set to their maximum values (Definition 27). Merging a voltage-frequency
island with a high criticality value with other islands into a single partition can
result in high reductions in the throughput of manufactured chips. This is because
the clock frequency of the voltage-frequency island is reduced due to the presence
of other processing elements in the island (the clock frequency of the island is
decided by the slowest processing element in it). This in turn can result in low
timing yield.

66

4.2. Heuristic Partitioning Algorithms

Definition 27. (Island criticality) The criticality of a voltage-frequency island
fi 2 FI in a platform graph gp 2 GP, for a given resource-aware application graph
ga 2 GA and a binding b 2 B, is given by ci(ga, gp, b,fi) : GA⇥GP⇥B⇥FI ! R+,
and is defined as

ci(ga, gp, b,fi) =
⌧(gb

1

)� ⌧(gb
2

)

⌧(gb
1

)
(4.3)

where gb
1

= hsdfg, ga, gp, b, fc
1

i, gb
2

= hsdfg, ga, gp, b, fc
2

i; chip-frequency vectors
fc

1

and fc
2

are given as

8fi
i

2 FI. fc
1

(fi
i

) = max
f

clk

2c(gp,fi

i

,n)

f

clk

8fi
i

2 FI. fc
2

(fi
i

) =

8
<

:

max
f

clk

2c(gp,fi

i

,n)

f

clk

fi
i

6= fi

min
f

clk

2c(gp,fi

i

,n)

f

clk

fi
i

= fi

Algorithm 5 demonstrates our proposed heuristic algorithm for partitioning
processing elements in a platform graph into voltage-frequency islands. The algo-
rithm requires as input a resource-aware application graph ga, a platform graph
gp, a binding b

sb

, a specified number n of clock-frequency levels for each voltage-
frequency island, and µ

r

g

,�

r

g

, �

r

,�

r

l

values for the random variables describing the
maximum supported frequency of each hardware resources r 2 R. Initially, all
processing elements in the platform graph are placed in separate voltage-frequency
islands. The binding b

sb

is derived using the variation-aware heuristic algorithm
implementing the single-binding mapping approach (Algorithm 3) with each pro-
cessing element placed in a separate VFI. In each of its iterations, the algorithm
sorts the voltage-frequency islands FI

pe

comprising all processing elements (except
for the interconnect) in increasing order based on their criticality (Line 7). Two
islands are merged together, forming a single partition. This process continues
until all processing elements are placed in a single partition; thus, two voltage-
frequency islands remain considering the interconnect that is in a separate island.
As such, the algorithm evaluates all possible granularities of partitions.

Intuitively, islands having the lowest criticality values, as given by the order
of islands based on criticality, shall be merged in each iteration. This may allow
processing elements with higher criticality values, which are more likely to limit
the throughput of a bound application graph, to remain in unshared voltage-
frequency islands, resulting in high timing yield. However, merging two adjacent
islands (adjacent in the ordered list of islands based on criticality) with higher
criticality values may result in lower throughput reductions (e.g. when these
islands have equal or close criticality values). For this reason, the timing yield
given the binding b

sb

as a result of merging each pair of adjacent voltage-frequency
islands is evaluated in each iteration. This is shown on Lines 8–20 in Algorithm 5.
Each adjacent pair of islands fi

x

and fi
y

are merged on Lines 9–10, where fi
x

and
fi
y

are grouped into fi
y

, and fi
x

is removed from the list of islands FI. Each merge

67

Chapter 4. Voltage-frequency island partitioning

is reverted on Lines 18–19, such that the next pair of islands can be merged and
evaluated for timing yield. Once the timing yield for merging all adjacent pairs
of voltage-frequency islands FI

pe

is evaluated, the grouping providing the highest
timing yield is chosen, and the corresponding islands are merged permanently
in FI. This is performed on Lines 21–22, where fitmp

x

and fitmp

y

are the voltage-
frequency islands, the grouping of which provides the highest timing yield (derived
on Lines 14–15). The algorithm performs an overall number of (M/2 ·(M�1)�1)
evaluations of timing yield, M being the number of processing elements. Note
that an exhaustive evaluation of all possible groupings of processing elements into
voltage-frequency islands requires (2M)!/((M + 1)! · n!) (given by the Catalan
number) evaluations, resulting in prohibitively long computation times for a large
number of processing elements. Algorithm 5 returns a set FI

v

of pairs {FI, y
max

}
of voltage-frequency island configurations with di↵erent number of partitions and
associated timing yield values.

Algorithm 5: Heuristic VFI partitioning algorithm considering a single
binding for all chips

Require: ga; gp; b
sb

;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: FI

v

 ;
2: Compute c(gp,fi, n) 8fi 2 FI

3: while |FI| > 2 do

4: y
max

 0
5: FI

pe

 FI \ fi
noc

6: Sort FI
pe

in increasing ci(ga, gp, b
sb

,fi)
7: for all adjacent fi

x

,fi
y

2 FI

pe

do

8: fi

y

 fi

y

[fi

x

9: FI FI \ fi
x

10: Compute c(gp,fi
y

, n)
11: Derive FC

12: if �(ga, gp, b
sb

) � y
max

then

13: fi

tmp

x

 fi

x

14: fi

tmp

y

 fi

y

15: y
max

 �(ga, gp, b
sb

)
16: end if

17: fi

y

 fi

y

\ fi
x

18: FI FI [fi

x

19: end for

20: fi

tmp

y

 fi

tmp

y

[fi

tmp

x

21: FI FI \ fitmp

x

22: FI

v

 FI

v

[{FI, y
max

}
23: end while

24: return FI

v

68

4.2. Heuristic Partitioning Algorithms

4.2.2 Multiple bindings

This section presents a heuristic algorithm to partition processing elements in a
platform graph into multiple voltage-frequency islands considering that multiple
bindings of actors in a resource-aware application graph to the processing ele-
ments in a platform graph are present. Compared to the case with only a single
binding, the availability of multiple bindings can improve the timing yield, as
demonstrated in the following example. Consider the example platform graph
shown in Figure 4.1. It consists of three voltage-frequency islands, namely fi

1

,
fi
2

and fi
3

. The interconnect is placed separately in voltage-frequency island fi
3

.
There are three processing elements pe

1

, pe
2

and pe
3

, which are partitioned into
two voltage-frequency islands, such that processing element pe

1

is in one island
and processing elements pe

2

and pe
3

are in another. Multiple clock-frequency
levels are provided to each of the voltage-frequency islands. As processing ele-
ments pe

2

and pe
3

are in a single voltage-frequency island, the clock frequency of
the island is decided by the slowest processing element belonging to the island.
Let us assume that a resource-aware application graph comprising three actors
a

1

, a
2

and a

3

is mapped to the platform. Actor a

1

has the highest computa-
tional demands, and its execution time has the largest impact on the application
throughput. Depending on the clock frequencies of islands fi

1

and fi
2

, given by
the chip frequency vector fc 2 FC, di↵erent bindings of the actors to the process-
ing elements may provide high throughput. In manufactured chips where fi

1

is
operated at a higher clock frequency than fi

2

, allocating actor a

1

to processing
element pe

1

, a
2

to pe
2

and a

3

to pe
3

provides higher throughput, as actor a

1

is
given higher computational power (Table 4.1). In contrast, in manufactured chips
where fi

2

is operated at a higher clock frequency than fi
1

(due to pe
2

and pe
3

both
being faster than pe

1

), allocating a

1

to pe
2

, a
2

to pe
1

and a

3

to pe
3

provides higher
throughput. In this example, we do not consider the latency of communication
across the interconnect, and assume that it is infinitely fast. This demonstrates
how multiple bindings can improve the timing yield, given a certain partitioning
of processing elements into voltage-frequency islands. We proceed by introducing
the partitioning algorithm considering multiple bindings.

Algorithm 6 specifies the heuristic algorithm to partition processing elements
in a platform graph into multiple voltage-frequency islands, given a set of bindings
of the actors in a resource-aware application graph to the processing elements in
the platform graph. The algorithm requires as input a resource-aware applica-
tion graph ga, a platform graph gp, a set B

mb

of bindings, a specified number
n of clock-frequency levels for each voltage-frequency island, and µ

r

g

,�

r

g

, �

r

,�

r

l

values for the random variables describing the maximum supported frequency of
each hardware resources r 2 R. The set B

mb

of bindings are derived using the
variation-aware heuristic algorithm implementing the multiple-bindings mapping
approach, given in Algorithm 4, with each processing element placed in a sepa-
rate island. Algorithm 6 is similar to Algorithm 5, which considers only a single
binding for all chips. In each of its iterations, two islands are grouped forming

69

Chapter 4. Voltage-frequency island partitioning

Algorithm 6: Heuristic VFI partitioning algorithm considering multiple
bindings for all chips

Require: ga; gp;B
mb

;n 8fi 2 FI; (µr

g

,�r

g

, �r,�r

l

) 8r 2 R
1: b

p

2 B
mb

2: FI

v

 ;
3: Compute c(gp,fi, n) 8fi 2 FI

4: while |FI| > 2 do

5: y
max

 0
6: y

tmp

 0
7: FI

pe

 FI \ fi
noc

8: Sort FI
pe

in increasing ci(ga, gp, b
p

,fi)
9: for all adjacent fi

x

,fi
y

2 FI

pe

do

10: fi

y

 fi

y

[fi

x

11: FI FI \ fi
x

12: Compute c(gp,fi
y

, n)
13: Derive FC

14: for all fc 2 FC do

15: for all b 2 B
mb

do

16: if ⌧(gb) � t
req

then

17: y
tmp

= y
tmp

+ pc(gp, fc)
18: break

19: end if

20: end for

21: end for

22: if y
tmp

� y
max

then

23: fi

tmp

x

 fi

x

24: fi

tmp

y

 fi

y

25: y
max

 y
tmp

26: end if

27: fi

y

 fi

y

\ fi
x

28: FI FI [fi

x

29: end for

30: fi

tmp

y

 fi

tmp

y

[fi

tmp

x

31: FI FI \ fitmp

x

32: FI

v

 FI

v

[{FI, y
max

}
33: end while

34: return FI

v

a single partition (Lines 5–32). Note that an arbitrary binding b

p

2 B

mb

(Line
1) is used for sorting the voltage frequency islands on criticality (Line 8). Sim-
ilar to Algorithm 5, all adjacent pairs of voltage-frequency islands given by the
ordered list of criticality are merged and are evaluated for timing yield (Lines
9–28), such that the grouping that provides the highest timing yield is found. In
contrast to the algorithm considering only a single binding, the timing yield is
computed based on the set B

mb

of bindings (Lines 14–21). The algorithm eval-

70

4.3. Experimental results

uates all granularities of partitions, until all processing elements are placed in a
single voltage-frequency island. It returns a set FI

v

of pairs {FI, y
max

} of voltage-
frequency island configurations with di↵erent number of partitions and associated
timing yield values.

pe
1

pe
2

pe
3

interconnect

a

1

a

2

a

3

fi
1

fi
2

fi
3

Figure 4.1: Example platform graph comprising three voltage-frequency islands. Depending
on the clock frequencies of islands, one or another binding of the three actors belonging to a
resource-aware application graph to the processing elements, which are placed in the islands, is
required to achieve high throughput.

Table 4.1: Di↵erent mappings of the actors in an application to the processing elements in a
multi-processor platform shown in Figure 4.1 based on the clock frequencies of voltage-frequency
islands.

Actors a1 a2 a3

fc(fi1) > fc(fi2) pe1 pe3 pe2

fc(fi1) < fc(fi2) pe2 pe1 pe3

4.3 Experimental results

This section demonstrates, on both synthetic and realistic applications, how the
proposed framework can be used by system designers to make trade-o↵s between
the number of voltage-frequency islands (area cost) and timing yield. We illustrate
that the proposed VFI partitioning algorithm e↵ectively groups resources into
islands for maximized timing yield. Additionally, the impact of the number of
clock-frequency levels provided to voltage-frequency islands on timing yield is
analyzed. We proceed to describing our experimental setup.

4.3.1 Experimental setup

The experimental setup in this chapter is similar to the one presented in Sec-
tion 3.5.1. The same H.263 decoder, H.263 encoder, MP3 playback, Modem and
MP3 decoder (except the Sample Rate Converter) applications are used. These

71

Chapter 4. Voltage-frequency island partitioning

applications are mapped to a multi-processor platform consisting of three process-
ing elements, as most of the applications have a parallelism of three processing
elements. Five clock-frequency levels are provided to each voltage-frequency is-
land. Detailed information on the applications and the platform can be found
in Section 3.5.1 and in Appendix B. In addition to the set of real applications
described above, a single synthetic application is included for experimentation in
this chapter. The reason we include a synthetic application is that it has a higher
level of parallelism, compared to the real applications, and is mapped to a multi-
processor platform comprised of a larger number of processing elements. This
allows us to better demonstrate the important concepts of the proposed voltage-
frequency island partitioning methodology. The SDF For Free (SDF3) tool was
used to generate the synthetic SDF graph [72, 81]. An overview of the synthetic
application, showing the number of actors and cycles, as well as the available par-
allelism in terms of the minimum number of processing elements that can fully
exploit it, is shown in Table 4.2. The topology of the application, together with
the execution times of the actors and the size of data tokens sent across depen-
dency edges, can be found in Appendix B. Note that mapping an application to a
platform consisting of a higher than the minimum number of processing elements
needed to exploit the parallelism of the application will result in larger slacks in
some of the processing elements. Grouping these processing elements in a single
voltage-frequency island may have a low impact on timing yield, resulting in un-
fair trade-o↵s between the number of voltage-frequency islands and timing yield.
As Table 4.2 shows, the synthetic application has a parallelism that can be fully
exploited by a minimum number of seven processing elements. This application is
mapped to a multi-processor platform consisting of seven homogeneous process-
ing elements. The platform-graph that describes the multi-processor platform is
shown in Figure 4.2. Each processing element and the interconnect are placed in
separate voltage-frequency islands; as such there are eight islands in total. Five
clock-frequency levels are provided to each of the eight islands. The parameters
of the interconnect and the random variables describing the maximum supported
frequency of hardware resources are the same as those presented for the platform
used for the real applications described above. These parameters are given in
Tables 3.3 and 3.4.

Table 4.2: Overview of the synthetic application

SDF graph Nr. actors Nr. cycles Parallelism

(Nr. PEs)

Synthetic cyclic 17 3 7

Note that single and multiple bindings must be provided to the voltage-
frequency partitioning algorithms given by Algorithms 5 and 6, respectively.

72

4.3. Experimental results

These bindings are determined using the variation-aware heuristic mapping al-
gorithms illustrated in Algorithms 3 and 4.

pe
1

pe
2

pe
3

pe
4

pe
5

pe
6

pe
7

in
te
rc
on

n
ec
t

rt
1

rt
2

rt
3

rt
4

rt
5

rt
6

ni
1

ni
2

ni
3

ni
4

ni
5

ni
6

n
i 7

lk
1

lk
2

lk
3

fi
1

fi
2

fi
3

fi
4

fi
5

fi
6

fi
7

fi
8

Figure 4.2: The multi-processor platform used for the synthetic application. It consists of
seven processing elements connected to each other by an interconnect. The processing elements
and the interconnect are placed in separate voltage-frequency islands.

4.3.2 Evaluation results

Below, we demonstrate the trade-o↵s between the number of voltage-frequency
islands and timing yield for the set of real and the synthetic applications presented
above. The trade-o↵s are given for both single and multiple bindings of the ac-
tors in a resource-aware application graph to the processing elements in a platform
graph, which is a single and multiple bindings for the manufactured chips. In ad-
dition to this, the e↵ectiveness of the proposed variation-aware voltage-frequency
island partitioning algorithm is evaluated based on a comparison with a baseline
deterministic partitioning algorithm. We also analyze the impact of changing the
number of clock-frequency levels provided to each voltage-frequency island on the
timing yield for each application.

Single binding

In this section, the results are obtained considering a single binding of the actors
in an application to the processing elements in a multi-processor platform. The
throughput requirements of the applications are determined arbitrarily. As shown

73

Chapter 4. Voltage-frequency island partitioning

in Algorithm 5, the proposed heuristic VFI partitioning algorithm returns a set
FI

v

of pairs {FI, y
max

} of voltage-frequency island configurations with di↵erent
number of partitions and associated timing yield values. To better illustrate the
results in this chapter, we show not only the single timing yield value y

max

for
each voltage-frequency island configuration FI, but the Cumulative Distribution
Function (CDF) of the throughput of an application. This allows us to deter-
mine the timing yield for any throughput requirement. Consider the CDF of the
inverse of the throughput of the synthetic application illustrated in Figure 4.3.
The distributions are presented for four di↵erent system implementations, namely
VFI-8, VFI-5, VFI-3 and VFI-2. VFI-8 is an eight voltage-frequency domain ar-
chitecture, where each processing element and the interconnect are in separate
voltage-frequency islands. VFI-5 and VFI-3 are architectures, where the process-
ing elements are partitioned into four and two voltage-frequency islands, respec-
tively. The partitioning is decided by the proposed heuristic VFI partitioning
algorithm given in Algorithm 5. For the given throughput requirement t

req

, the
inverse of which is shown by the vertical dashed line, the grouping of the pro-
cessing elements and the interconnect into islands for VFI-5 and VFI-2 is shown
in Table 4.3. Finally, with VFI-2, all processing elements are placed in a single
voltage-frequency island (together with the interconnect, there are two islands).
For any throughput value t

0

within the throughput spread t, the CDF of 1/t
0

represents the probability that the inverse of the throughput is less than or equal
to 1/t

0

(i.e. 1/t 1/t
0

), and thus the throughput is greater than or equal to
t

0

(i.e. t � t

0

). Therefore, for any throughput requirement t

0

, the CDF of the
inverse of throughput determines the timing yield.

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−8

VFI−5

VFI−3

VFI−2

1/t
req

Figure 4.3: Throughput CDF for VFI-8, VFI-5, VFI-3 and VFI-2 architectures for the syn-
thetic application. The results presume a single binding of the application to a NoC-based
multi-processor platform consisting of seven processing elements.

Figure 4.3 shows that the throughput distribution for VFI-5 closely tracks
the one for VFI-8. This is because the processing elements pe

6

, pe
7

, pe
3

and pe
2

74

4.3. Experimental results

have low criticality values, and grouping them in a single voltage-frequency island
results in low throughput reductions. For the given throughput requirement,
VFI-8 provides a 66% timing yield, while a 62% timing yield is provided by
VFI-5. In contrast, the VFI-3 architecture results in considerable reductions in
throughput, providing a 12% lower timing yield compared to VFI-8 for the given
throughput requirement. Note that for a di↵erent throughput requirement, the
reduction in timing yield can be much higher. For example, for a requirement
resulting in an 88% timing yield with VFI-8, the reduction with VFI-3 is 32%.
Note that the partitioning of the processing elements into VFIs is based on the
requirement. Therefore, we can argue that a di↵erent grouping for VFI-3 may
be derived given a di↵erent requirement. The VFI-2 architecture results in a
sub-sampled throughput distribution, and can lead to considerable reductions in
the timing yield. For the given throughput requirement, VFI-2 gives only a 40%
timing yield compared to the 66% with VFI-8. This information can be used by
system designers to make informed trade-o↵s between the granularity of VFIs and
thus area cost and timing yield.

Table 4.3: Grouping of processing elements and the interconnect into VFIs, as a result of both
variation-aware (VFI-5, VFI-3) and deterministic (DVFI-5, DVFI-3) partitioning algorithms
considering a single binding.

Architecture grouping

VFI-5 {pe6, pe7, pe3, pe2} {pe5} {pe4} {pe1} {noc}
VFI-3 {pe6, pe7, pe3, pe2} {pe5, pe4, pe1} {noc}
DVFI-5 {pe1, pe2} {pe3, pe4} {pe5, pe6} {pe7} {noc}
DVFI-3 {pe1, pe2, pe3, pe4} {pe5, pe6, pe7} {noc}

To show the e↵ectiveness of the proposed variation-aware VFI partitioning
algorithm, we compare it to a baseline deterministic partitioning approach. From
the perspective of clock-tree routing, it is desirable to have a low number of
processing elements in each voltage-frequency island. This can reduce the com-
plexity of local clock wiring in the partitions. Therefore, for a specified number of
voltage-frequency islands, the deterministic partitioning tries to equally distribute
the processing elements into voltage-frequency islands, thus reducing the maxi-
mum number of processing elements in a single island. Figure 4.4 shows the CDF
of the inverse of the throughput for five and three domain architectures based on
groupings of processing elements to islands derived by both variation-aware and
deterministic partitioning algorithms. The grouping of the processing elements
into islands for both variation-aware and deterministic partitioning algorithms is
given in Table 4.3. As the table shows, with the deterministic partitioning (DVFI-
5 and DVFI-3), the processing elements are equally distributed in the islands (ex-
cept one island, as there is an odd number of processing elements). The choice

75

Chapter 4. Voltage-frequency island partitioning

of processing elements in the voltage-frequency islands is based on the adjacent
index values of processing elements. For the given throughput requirement, the
deterministic five-domain partitioning (DVFI-5) results in an 11% lower timing
yield than the variation-aware partitioning (VFI-5). Similarly, a 14% lower yield
is achieved by DVFI-3, compared to VFI-3. Note that for a throughput require-
ment resulting in a 64% timing yield with DVFI-3, the timing yield is reduced
with VFI-3. However, it can be argued that with this throughput requirement
specified, the partitioning of the processing elements into voltage-frequency is-
lands with VFI-3 may be di↵erent, leading to improved timing yield (the current
grouping is derived based on the throughput requirement shown in Figure 4.4).
These results show the importance of variation-aware voltage-frequency island
partitioning for improved timing yield.

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−5

VFI−3

DVFI−5

DVFI−3
1/t

req

Figure 4.4: Throughput CDF for five and three VFI architectures, based on both variation-
aware (VFI-4, VFI-2) and deterministic partitions (DVFI-4, DVFI-2).

Figure 4.5 illustrates the CDFs of the inverse of the throughput for the H.263
decoder, H.263 encoder and MP3 playback applications. For all applications, ar-
chitectures with four (VFI-4), three (VFI-3) and two (VFI-2) voltage-frequency
islands, are considered. VFI-4 is an architecture where each processing element is
in a separate voltage-frequency island. On the other hand, all processing elements
are placed in a single partition with VFI-2, and thus together with the intercon-
nect, there are two VFIs. The grouping of the processing elements into islands for
VFI-3 is performed by the proposed variation-aware heuristic partitioning algo-
rithm. Figure 4.5 shows that for all three applications, the reduction in the timing
yield when moving from VFI-4 to VFI-2 is considerable. More precisely, there is
an 18%, 29% and 19% reduction for the H.263 decoder, H.263 encoder and MP3
playback applications, respectively. On the other hand, VFI-3 may or may not
reduce the timing yield. For H.263 decoder, there is a negligible decrease in the
timing yield, compared to VFI-4. For MP3 playback, VFI-4 and VFI-3 result in
identical throughput distributions. This is due to two processing elements having

76

4.3. Experimental results

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(a) H.263 decoder

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(b) H.263 encoder

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(c) MP3 playback

Figure 4.5: Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the H.263 decoder,
H.263 encoder and MP3 playback applications. The results presume a single binding of the
application to a NoC-based multi-processor platform consisting of three processing elements.

77

Chapter 4. Voltage-frequency island partitioning

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2
1/t

req

(a) Modem

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(b) MP3 decoder

Figure 4.6: Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the Modem and
MP3 decoder applications. The results presume a single binding of the application to a NoC-
based multi-processor platform consisting of three processing elements.

equal criticality values. Grouping them in a single voltage-frequency island does
not result in throughput reductions. In contrast, the timing yield is lower by 4%
than the 85% provided by VFI-4 fro the H.263 encoder application. Similar results
are illustrated for the Modem and MP3 decoder applications in Figure 4.6. For
both applications, VFI-4 and VFI-3 both provide the same timing yield, while
VFI-2 results in a 7% lower timing yield compared to VFI-4 for both Modem
and MP2 decoder. Note that for the Modem application, there are much more
di↵erent throughput points in the distribution, compared to the MP3 decoder ap-
plication. This is dependent on the topology and the mapping of the application.
There is a large number of chip-frequency vectors (sets of clock frequencies for the
voltage-frequency islands) (Definition 5). For the Modem application, many of

78

4.3. Experimental results

these chip-frequency vectors provide di↵erent throughput values, while identical
throughput values are obtained for most of them for the MP3 decoder application
due to its topology and mapping (e.g. only the frequency change in one processing
element a↵ects the throughput).

The discussion presented in this section demonstrates on both a synthetic
SDF graph and SDF models of real applications how the proposed framework can
be used by system designers to make trade-o↵s between the number of voltage-
frequency islands, and thus cost (in terms of area and power consumption), and
timing yield. Now, we proceed to demonstrating the results of VFI partitioning
given multiple bindings of the actors in a resource-aware application graph to the
processing elements in a platform graph.

Multiple bindings

In this section the results are presented considering multiple bindings of the actors
in an application to the processing elements in a multi-processor platform. The
set of bindings is derived by the variation-aware heuristic algorithm implementing
the multiple-bindings mapping approach given in Algorithm 4. Figure 4.7 shows
the CDF of the inverse of the throughput of the synthetic application for VFI-8,
VFI-5, VFI-3 and VFI-2 architectures. Initially, 125 non-identical bindings are
selected by the algorithm, out of which only 38 bindings are dominant, and thus
they provide the highest throughput for all chip-frequency vectors. However, from
the set of 38 bindings, only eight bindings are manually chosen, as the rest are
dominant only for a few chip-frequency vectors. The grouping of the processing
elements and the interconnect into voltage-frequency islands for the five and three
domain architectures is given in Table 4.4. As can be seen, a di↵erent partitioning
for both VFI-5 and VFI-3 is derived compared to the partitioning considering a
single binding, given in Table 4.3. In Table 4.4, the voltage-frequency islands
are given in increasing order of criticality (from left to right). Note that with
VFI-5 islands consisting of processing elements pe

7

and pe
6

are merged into a
single island, even though the island with pe

1

has a lower criticality value. This
happens as merging pe

7

and pe
6

into a single partition provides higher timing
yield (the islands with these processing elements have close criticality values).
This illustrates the benefits of evaluating the timing yield, as a result of merging
each pair of adjacent voltage-frequency islands in each iteration of the proposed
heuristic partitioning algorithms given in Algorithms 5 and Algorithm 6.

Figure 4.7 shows significant improvements in the timing yield, compared to the
case where only a single binding of the actors in the resource-aware synthetic ap-
plication graph to the processing elements in the platform graph is present. More
specifically, the eight domain architecture (VFI-8) considering a single binding
provides a 66% timing yield, as given by Figure 4.3. The same eight domain im-
plementation considering multiple (eight) bindings provides an 84% timing yield,
resulting in an 18% improvement. Similar observations are made for the VFI-5
and VFI-3 architectures. With VFI-5, the timing yield is increased from 62% (sin-

79

Chapter 4. Voltage-frequency island partitioning

gle binding) to 77% (multiple bindings) with an improvement of 15%. An increase
in the timing yield of 10% is observed in the case of the VFI-3 implementation,
where a single and multiple bindings result in a timing yield of 54% and 64%, re-
spectively. From these results, we make an observation that the benefits of having
multiple bindings (in terms of increased timing yield) are lower for a lower number
of voltage-frequency islands. Note that the throughput distributions with VFI-2
in the case of both single and multiple bindings are identical. With the VFI-2 ar-
chitecture all processing elements are operated at the clock frequency the slowest
processing element in the platform can support. Therefore, multiple bindings do
not result in throughput improvements in this case. As suggested by Figure 4.3,
which presumes a single binding, the timing yield decreases by 4% and 8% when
moving from VFI-8 to VFI-5 and from VFI-5 to VFI-3, respectively. On the other
hand, in Figure 4.7, higher reductions of 7% and 13% are seen between VFI-8,
VFI-5 and VFI-5, VFI-3, respectively. We thus make another observation that
the loss in timing yield when moving to a smaller number of voltage-frequency
islands is larger with multiple bindings than with a single binding.

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−8

VFI−5

VFI−3

VFI−2
1/t

req

Figure 4.7: Throughput CDF for VFI-8, VFI-5, VFI-3 and VFI-2 architectures for the syn-
thetic application. The results presume multiple bindings (eight) of the application to a NoC-
based multi-processor platform consisting of seven processing elements.

Table 4.4: Grouping of processing elements and the interconnect into VFIs, as a result of the
variation-aware partitioning algorithm considering multiple bindings.

Architecture grouping

VFI-5 {pe5, pe3, pe2} {pe1} {pe7, pe6} {pe4} {noc}
VFI-3 {pe1, pe5, pe3, pe2} {pe4, pe7, pe6} {noc}

Figure 4.8 illustrates the CDFs of the inverse of the throughput of the H.263

80

4.3. Experimental results

decoder, H.263 encoder and MP3 playback applications for VFI-4, VFI-3 and VFI-
2 architectures. The number of bindings selected for each application can be found
in Table 3.7. Figure 4.8 shows significant improvements in timing yield with both
VFI-4 and VFI-3, compared to the case where only a single binding is present.
For the H.263 decoder, the improvements are 7% and 17% with VFI-3 and VFI-4,
respectively. Similarly, a 7% and a 16% higher timing yield is provided with the
VFI-3 and VFI-4 architectures for the MP3 playback application. In the case of
the H.263 encoder application, the timing yield is the same for both single and
multiple bindings with VFI-3, while the VFI-4 architecture considering multiple
bindings increases the timing yield by 5%. Similar to the case with the synthetic
application, we observe that the benefits of having multiple bindings (in terms of
increased timing yield) are lower for a lower number of voltage-frequency islands.

Similar results are seen for the Modem and MP3 decoder applications in Fig-
ure 4.9. For MP3 decoder, multiple bindings do not benefit in increasing the
timing yield considering a three voltage-frequency island architecture (VFI-3).
With both single and multiple bindings, the timing yield is 62%. In contrast,
an increase of 15% with VFI-4, where each processing element is in a separate
island, is provided by multiple bindings. For the Modem application, there is a
considerable gain in timing yield with both VFI-4 and VFI-3 when moving to
multiple bindings. With a four domain architecture, the timing yield is improved
by 23% (from 62% to 85%), compared to the case with a single binding. Note that
the timing yield for the Modem application reported by the heuristic algorithm
implementing the multiple-bindings mapping approach (MBH) in Figure 3.8 is
70%. This result is given for the same four domain architecture, and the same
set of bindings are also used in the experiment, the results of which are shown in
Figure 4.9. The reason of this di↵erence is that, with the MBH algorithm, some
bindings that provide high throughput for certain chip-frequency vectors, but are
not found for these chip-frequency vectors (reducing the timing yield), are in fact
located for other chip frequency vectors. However, with the VFI partitioning al-
gorithm given in Algorithm 6, the complete set of bindings are evaluated for each
chip-frequency vector, providing a higher 85% timing yield. As such, although
the reported timing yield with MBH is 70%, in reality, the selected set of bindings
provide 85% timing yield for the Modem application. Similar to the improvement
with VFI-4, multiple bindings with the VFI-3 architecture for the Modem appli-
cation provide an 18% increase in the timing yield. Note that the reduction in the
timing yield when moving from VFI-4 to VFI-3 is 5% (Figure 4.9). The results and
the discussion presented in this section illustrate that multiple bindings result in
considerable improvements in the timing yield, compared to the case with a single
binding. We also showed that the reduction in the timing yield when decreasing
the number of VFI partitions is higher with multiple bindings. This information
can be used by system-designer to make informed trade-o↵s between single and
multiple bindings, as well as the number of VFI partitions and timing yield. We
proceed to analyzing the impact of changing the number of clock-frequency levels
provided to islands on timing yield.

81

Chapter 4. Voltage-frequency island partitioning

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2
1/t

req

(a) H.263 decoder

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(b) H.263 encoder

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2
1/t

req

(c) MP3 playback

Figure 4.8: Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the H.263 decoder,
H.263 encoder and MP3 playback applications. The results presume multiple binding of the
application to a NoC-based multi-processor platform consisting of three processing elements.

82

4.3. Experimental results

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(a) Modem

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

VFI−4

VFI−3

VFI−2

1/t
req

(b) MP3 decoder

Figure 4.9: Throughput CDF for VFI-4, VFI-3 and VFI-2 architectures for the Modem and
MP3 decoder applications. The results presume multiple binding of the application to a NoC-
based multi-processor platform consisting of three processing elements.

Number of clock-frequency levels

The results in this section presume a single binding of the actors in a resource-
aware application graph to the processing elements in a platform graph. Fig-
ure 4.10 shows the CDF of the throughput of the synthetic application for a five
voltage-frequency island architecture. The graphs are presented for eight, five,
three, two and a single clock-frequency levels provided to the voltage-frequency is-
lands in the platform graph. The figure shows that the number of clock-frequency
levels has a large impact on the throughput distribution and hence on the timing
yield. The higher the number of levels is the finer the distributions (i.e. more
points are present in them). It can be seen that a larger number of clock-frequency
levels does not necessarily result in higher timing yield. For example, two clock-

83

Chapter 4. Voltage-frequency island partitioning

frequency levels provide a much higher timing yield of 52%, compared to the 17%
given with three levels. Similarly, five levels provide a 3% higher timing yield,
compared to the case where the number of levels is eight. A larger number of
clock-frequency levels can reduce the timing yield, as the timing yield depends
not only on the number, but also on the specific clock frequencies. In this work,
equidistant clock-frequency levels are selected (in the same range), as detailed in
Section 2.3. Therefore, the set of a certain number of clock-frequency levels (e.g.
n = 2, and the set of levels is c(gp,fi, 2)) is not always a subset of a larger number
of clock-frequency levels (i.e. c(gp,fi, 2) 6⇢ c(gp,fi, 3)). For this reason, the timing
yield may be reduced with an increase in the number of levels. Note that the tim-
ing yield is never reduced when going from two to eight clock-frequency levels, as
shown in Figure 4.10. This is because, with the equidistant clock-frequency selec-
tion policy, the set of two clock-frequency levels is a subset of the set of eight levels
(i.e. c(gp,fi, 2) ⇢ c(gp,fi, 8)). Note that for a di↵erent throughput requirement,
two and five clock-frequency levels can result in up to 44% and 20% reduction
in the timing yield, compared to the case with eight levels. Depending on the
requirement, we observe that it is more likely that the timing yield is higher for
a larger number of clock-frequency levels. Finally, a single clock-frequency level
results in a single low throughput point and a 0% timing yield.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

n = 8

n = 5

n = 3

n = 2

n = 1
1/t

req

Figure 4.10: Throughput CDF for a VFI-5 architecture for the synthetic application. The
results presume a single binding of the application to a NoC-based multi-processor platform
consisting of seven processing elements. The graphs are presented for eight, five, three, two and
a single clock-frequency levels provided to voltage-frequency islands in the platform graph.

Figure 4.11 shows similar results for the H.263 decoder, H.263 encoder and
MP3 playback applications. The graphs are shown for a single binding and for
eight, five, three, two and a single clock-frequency levels provided to the voltage-
frequency islands in the platform graph. For the H.263 decoder application, eight,
five, three, two and a single clock-frequency levels result in 79%, 73%, 76%, 38%
and 0% timing yield, respectively. As in the case of the synthetic application, here

84

4.3. Experimental results

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

n = 8

n = 5

n = 3

n = 2

n = 1
1/t

req

(a) H.263 decoder

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

n = 8

n = 5

n = 3

n = 2

n = 1

1/t
req

(b) H.263 encoder

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.2

0.4

0.6

0.8

1

1/Throughput (normalized units)

C
u

m
u

la
tiv

e
 p

ro
b

a
b

ili
ty

n = 8

n = 5

n = 3

n = 2

n = 1

1/t
req

(c) MP3 playback

Figure 4.11: Throughput CDF for a VFI-4 architecture for the H.263 decoder, H.263 encoder
and MP3 playback applications. The results presume a single binding of the application to a
NoC-based multi-processor platform. The graphs are presented for eight, five, three, two and a
single clock-frequency levels provided to voltage-frequency islands in the platform graph.

85

Chapter 4. Voltage-frequency island partitioning

too, the timing yield is reduced when moving from a smaller to a larger number
number of clock-frequency levels (e.g. from three to five levels). With the H.263
encoder, 92%, 85%, 76% and 52% timing yield values are provided with eight, five,
three and two clock-frequency levels, respectively. This illustrates the possible
benefits in terms of improved timing yield when increasing the number of clock-
frequency levels. Similar results are shown for the MP3 playback application.
Note that for this application the timing yield provided by three clock frequency
levels is higher by 5% than the timing yield of eight clock-frequency levels.

The discussion presented in this section demonstrates on both a synthetic
SDF graph and SDF models of real applications how the proposed framework
can be used by system designers to make informed trade-o↵s between single and
multiple bindings, the number of voltage-frequency islands, as well as the number
of clock-frequency levels provided to islands, (i.e. cost in terms of area and power
consumption) and timing yield.

4.4 Summary

Reducing the number of voltage-frequency islands in a multi-processor platform
results in a smaller number of clock-generation units, which provide a set of
clock-frequency levels to the islands. This in turn reduces the cost in terms
of area and power consumption. On the other hand, with a reduced number of
voltage-frequency levels, multiple processing elements share a single island, the
clock-frequency of which is decided based on the slowest processing element in
the island. If one of the processing elements is slow due to within-die process
variation, the whole island is operated at a reduced clock frequency. This may
lower the throughput of the application mapped to the platform in manufactured
chips, negatively a↵ecting the timing yield. Additionally, the area and power
consumption costs of a clock-generation unit are decided based on its implemen-
tation, which in turn depends on the desired number of clock-frequency levels
and the step size between them. Thus, a reduction in the number of levels may
lead to a lower area cost. On the other hand, a smaller number of levels pro-
vide a worse matching of the actual maximum supported frequency, which can
be any value within the process-induced frequency spread, of hardware resources.
This in turn lowers the throughput in manufactured chips and as a consequence
the timing yield. This chapter introduced a heuristic algorithm, for each case
with a single and multiple bindings for the manufactured chips, to partition the
processing elements into voltage-frequency islands with a minimal reduction in
timing yield. A new metric, coined as island criticality, was proposed to guide
the partitioning process. The metric quantifies the sensitivity of the throughput
of an application mapped to a multi-processor platform to the clock frequency
of a voltage-frequency island in the platform. An island with a high criticality
value presumes a high reduction in the throughput when the clock frequency of
the island is reduced. Thus, merging an island with a high criticality value with

86

4.4. Summary

other islands may result in high reductions in the throughput in manufactured
chips, as the clock frequency of the created island is lowered due to the presence
of slower processing elements in the island. In addition to this, an outline of
possible architectures of a clock-generation unit based on the desired number of
clock-frequency levels was presented, showing that the finer the granularity of the
clock-frequency levels, the higher the area cost can be.

The proposed partitioning algorithms were evaluated on a synthetic and a
set of SDF graphs modeling real applications. As such, the chapter illustrates
the trade-o↵s that can be performed by system designers between the number
of voltage-frequency islands (i.e. area and power consumption costs) and timing
yield. Given a single binding for the manufactured chips, we experimentally
showed that the number of islands can be reduced with a negligible reduction in
timing yield. More specifically, for the synthetic application, a 4% lower timing
yield is provided with a five-island architecture, compared to an architecture with
eight islands in a platform consisting of seven processing elements. Meanwhile,
there is no reduction in the timing yield for a six-domain architecture. This is a
positive observation, as it allows us to reduce the area and power consumption
costs with a negligible or no impact on timing yield. The reduction in timing yield
increases when the number of islands is further reduced. For example, 12% and
23% lower values of timing yield are reported for three and two VFI architectures,
respectively. Similar results are reported for the SDF models of real applications
for the same case of a single binding for the manufactured chips. For four out of
five applications, going from a four to a three voltage-frequency island architecture
negligibly lowers the timing yield in a platform with three processing elements. On
the other hand, up to a 29% reduction is seen when placing all processing elements
in a single island (i.e. two islands in total considering one for the interconnect).

For the case of multiple bindings for the manufactured chips, the following
results are experimentally reported. An observation is made that the benefits of
having multiple bindings (in terms of increased timing yield) reduce together with
a reduction in the number of voltage-frequency islands. More specifically, for the
synthetic application, the increase in timing yield due to having multiple bindings
for eight, five and three island architectures are 18%, 15% and 10%, respectively.
The reported results suggest that the loss in timing yield when moving to a
smaller number of voltage-frequency islands is larger for multiple bindings than
for a single binding. With the synthetic application example, reductions of 7%
and 13% in timing yield when moving from eight to five and from five to three
island architectures are obtained. These numbers are larger than the 4% and 8%
values that presume a single binding. Similar results are reported for the SDF
graphs of real applications.

The same chapter additionally illustrates the e↵ectiveness of the proposed
variation-aware heuristic partitioning algorithm by comparing it to a baseline
deterministic partitioning approach. With this approach, the processing elements
are equally distributed among voltage-frequency islands to reduce the complexity
of local clock tree routing within partitions. We have observed that the proposed

87

Chapter 4. Voltage-frequency island partitioning

variation-aware heuristic partitioning algorithm provides 11% and 14% higher
values of timing yield, compared to the deterministic partitioning.

Lastly, experimental results of timing yield for varying the number of clock-
frequency levels provided to voltage-frequency islands are provided in the chapter.
The results show that the number of clock-frequency levels has a large impact
on timing yield. However, a larger number of clock-frequency levels does not
necessarily result in higher timing yield. For the synthetic application example,
a 35% lower timing yield is reported with three clock-frequency levels, compared
to two clock-frequency levels. Similarly, five clock-frequency levels improve the
result provided by eight levels by 3%. A larger number of clock-frequency levels
can reduce the timing yield, as the timing yield depends not only on the number,
but also on the specific clock frequencies. In this work, equidistant clock-frequency
levels are selected within the same frequency range. Therefore, the set of a certain
number of clock-frequency levels (e.g. n = 2, and the set of levels is c(gp,fi, 2)) is
not always a subset of a larger number of clock-frequency levels (i.e. c(gp,fi, 2) 6⇢
c(gp,fi, 3)). For this reason, the timing yield may be reduced with an increase
in the number of levels. As such the timing yield is never reduced when going
from two to eight clock-frequency levels, as the set of two clock-frequency levels
is a subset of the set of eight levels with the equidistant clock-frequency selection
policy. With the rest of the applications, the timing yield is mostly increased
due to increasing the number of clock-frequency levels. Improvements of up to
41% when going from two to eight levels are reported. We thus observe that it
is more likely that the timing yield is improved when increasing the number of
clock-frequency levels.

88

5
Better than worst-case design

Reducing the design margins or guard-bands when implementing a circuit provides
the benefit of decreased circuit area, resulting in a higher number of dies on a
wafer. This in turn may provide a higher number of good dies that satisfy the
throughput requirement imposed on the system. In this chapter, we demonstrate
on case studies, how our framework is used to estimate the impact of guard-band
reduction on the number of good dies on a wafer. The number of good dies is given
by the product of the number of gross dies and timing yield. The timing yield
corresponding to a guard-band reduction value is estimated by the methodology
proposed in this thesis. We consider both cases where a single and multiple
bindings of the actors in a resource-aware application graph to the processing
elements in a platform graph are present. We additionally illustrate the impact of
reducing the number of voltage-frequency islands in a platform graph, and thus
cost in terms of area, on the number of good dies.

5.1 Number of good dies

Circuit guard-banding is typically done by using corner-files during the design and
verification stages; these files describe the worst-case and best-case delay values of
standard-cells, corresponding to slow and fast process corners, respectively. The
change in circuit area when reducing these guard-bands (i.e. implementing the
circuit with reduced WC and increased BC delay values) is assessed by Jeong et
al. in [33]. They use open-source cores and an industrial embedded processor
core with target clock frequencies ranging from 300 to 600 MHz; the cores are
synthesized using 90, 65 and 45 nm technology model libraries. Based on measured
data, the authors provide a linear regression model for circuit-area reduction

Chapter 5. Better than worst-case design

versus guard-band reduction. Equation (5.1) shows the model, where v is the
area reduction factor and u is the guard-band reduction in percent.

v = 1� 0.0033 · u (5.1)

The number of gross dies on a wafer is given by Equation (5.2), where l is the
radius of the wafer and V is the die area [33]; the second term in the equation
accounts for wasted area around the edges of the circular wafer. Using Equa-
tion (5.1), the number of gross dies corresponding to a u% guard-band reduction
can be computed.

N

gross

= ⇡ ·
✓
l

2

V

� 2lp
2V

◆
(5.2)

We are interested in the number of good dies that provide throughput at
least equal to the minimum throughput requirement of an application. As the
timing yield metric quantifies the percentage of manufactured chips that satisfy
the throughput requirement of an application, the number of good dies is given
by the product of timing yield and the number of gross dies (Equation (5.3)).
Note that random defect yield can also be taken into account in the equation,
as shown by Jeong et al. [33]. However, due to low error density values, the
random defect yield is high, and has a negligible impact on the number of good
dies [33]. Furthermore, guard-band reduction has almost no impact on random
defect yield, as shown in [33]. For these reasons, we do not take random defect
yield into consideration.

N

good

= y ·N
gross

(5.3)

5.2 Variation characterization

Each guard-band value results in a particular circuit implementation with a cer-
tain area, after the design and verification stages. By performing statistical char-
acterization (Monte Carlo simulations) on each circuit implementation, the PDFs
of the maximum supported frequency of the hardware resources (processing ele-
ments, routers, network interfaces and links) in a platform graph is obtained. A
statistical characterization flow is proposed by Miranda et al. in [51]. However, in
this chapter, we do not perform statistical characterization to obtain the frequency
distributions for hardware resource. Instead, we make the following intuitive as-
sumptions. With the original guard-band (i.e. 0% guard-band reduction), we
assume that manufactured hardware resource instances within the range of three
standard deviations from mean (⇡ 99.7%) satisfy the target frequency f

r

tg

. This
corresponds to a combined normal distribution of maximum supported frequency,
where (µr

0%

� 3�r

0%

· (µr

0%

/100)) = f

r

tg

, where �r

0%

is the standard deviation in
percents of mean frequency. Therefore, the mean frequency µ

r

0%

is computed by

90

5.2. Variation characterization

Equation (5.4). For a resource with f

r

tg

= 300 MHz target frequency, �r

g

= 4%,
�

r

l

= 3.3%, and thus �r

0%

⇡ 5.186% of mean frequency, the combined distribution
f

r = N(µr

0%

,�

r

0%

) is shown in Figure 5.1. The mean frequency µ

r

0%

for this ex-
ample is equal to ⇡ 355 MHz. These numbers are based on the available data at
45nm technology [64].

µ

r

0%

=
f

r

tg

1� 3�r

0%

/100
(5.4)

With no guard-band (i.e. 100% guard-band reduction), we assume that half
of manufactured hardware resource instances satisfy the target frequency f

tg

con-
sidering only global variation. This corresponds to a global normal distribution
of maximum supported frequency with f

r

tg

mean. Therefore, the mean of the
combined distribution is given by µ

r

100%

= (fr

tg

� �

r · (fr

tg

/100)), where �r is the
reduction in mean frequency (in percents) due to local variation (Equation (5.5)).
For the example described above, where f

r

tg

= 300 MHz, �r

g

= 4%, �r

l

= 3.3%,
and �r

100%

⇡ 5.186% of mean frequency, the distribution f

r = N(µr

100%

,�

r

100%

) is
shown in Figure 5.1.

µ

r

100%

= f

r

tg

· (1� �

r

100
) (5.5)

250 300 350 400 450
0

0.01

0.02

0.03

Frequency (MHz)

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

f r=N(µr
0%,σ

r
0%)

f r=N(µr
40%,σ

r
40%)

f r=N(µr
100%,σ

r
100%)f r

tg

µ
r
100%

µ
r
0%

Figure 5.1: Combined fr PDF of a hardware resource due to a 0%, 40%, 100% guard-band
reduction. The target frequency fr

tg

is 300 MHz, �r

g

= 4%, �r

l

= 3.3%, and thus �r

u% ⇡ 5.186%
of mean frequency.

Given the values µr

0%

and µ

r

100%

, a u% guard-band reduction results in a new
combined normal distribution with a mean frequency µ

r

u%

given by Equation (5.6).
Figure 5.1 shows the combined distribution f

r = N(µr

40%

,�

r

40%

) for a 40% guard-
band reduction. We assume that the standard deviation to mean ratio of the
combined normal distribution for any u% guard-band reduction is constant. For

91

Chapter 5. Better than worst-case design

the example described above this ratio is �r

u%

/µ

r

u%

⇡ 5.186%. In reality, it may
change due to local variation that depends on circuit implementation, which is
di↵erent for each u% guard-band reduction (global variation does not depend on
circuit implementation). However, only small di↵erences in a close range of mean
frequency are expected (e.g. the ratio di↵erence for 300 MHz and 355 MHz mean
frequency circuit implementations is much lower than for 300 MHz and 2 GHz
circuit implementations). For a given a mean frequency µ

r

u%

, the frequency µ

r

g

corresponding to a guard-band reduction vale can be computed by Equation 5.7,
where �r is the mean reduction in percents of µr

g

.

µ

r

u%

= µ

r

0%

� u ·
µ

r

0%

� µ

r

100%

100
(5.6)

µ

r

g

=
µ

r

u%

(1� �

r

100

)
(5.7)

5.3 Experimental setup

The results in this section are presented for the synthetic and the set of real ap-
plications used in Sections 3.5.1 and 4.3.1. This set contains an H.263 decoder, an
H.263 encoder, an MP3 playback, a Modem and an MP3 decoder. The set of real
applications are mapped to a NoC-based multi-processor platform consisting of
three homogeneous processing elements. As the synthetic application has a higher
level of parallelism, it is mapped to a platform consisting of seven homogeneous
processing elements. For both platform graphs with three and seven processing
elements, the number of clock-frequency levels provided to each of the voltage-
frequency islands is chosen to be five. More information on the applications and
multi-processor platforms can be found in Sections 3.5.1, 4.3.1 and in Appendix B.
The target frequency and the variation-related parameters for the random vari-
ables describing the maximum supported frequency of hardware resources in the
multi-processor platforms are shown in Table 5.1. An explanation on the choice
of these numbers is presented in Section 3.5.1. The single and multiple bindings
of the actors in each resource-aware application graph to the processing elements
in a platform graph are derived using the variation-aware heuristic mapping algo-
rithms given in Algorithms 3 and 4. Similarly, the partitioning of the processing
elements in a platform graph into voltage-frequency islands, given a single and
multiple bindings, is determined by Algorithms 5 and 6, respectively.

We assume that die area consists of standard logic cells and embedded SRAM
together with IO cells. Two scenarios are distinguished: guard-band reduction re-
sults in an overall decrease in die area; only the area of logic cells is reduced when
reducing guard-bands. For the scenario, where overall die area is reduced, the for-
mula for area computation is given in Equation (5.8). In the formula, v is the area
reduction factor due to a u% guard-band reduction (Equation (5.1)); n

pe

and n

cgu

92

5.3. Experimental setup

Table 5.1: Target frequency and variation-related parameters assumed for hardware resources.

pe rt ni lk

fr

tg

(MHz) 300 500 500 560

�r

g

(% of µr

g

) 4 4 4 4

�r (% of µr

g

) 5 0 0 5

�r

l

(% of µr

g

) 3.3 3.3 3.3 3.3

are the number of processing elements and clock-generation units, respectively;
and V

pe

, V
noc

and V

cgu

are the area of a processing element, the interconnect and
the clock-generation unit, respectively. Note that an assumption that the area
of clock-generation units does not change due to guard-band reduction is made.
The area of a processing element is assumed to be 0.7 mm2, based on the area of
an ARM Cortex-A5 processor at 45 nm technology. The area of the interconnect
is 3.1 mm2. We assume that a typical fine-grained clock-generation unit has area
of 0.03 mm2 [68]. Note that, with 0% guard-band reduction, all processing ele-
ments and the interconnect can be clocked at their target clock frequencies. This
requires a simple clock-generation unit providing a fixed clock frequency for all
voltage-frequency islands. In contrast, a higher area cost clock-generation unit
per island is necessary with reduced guard-bands. For a fair comparison, the area
of clock-generation units with 0% guard-band reduction is neglected.

V = v · (n
pe

· V
pe

+ V

noc

) + n

cgu

· V
cgu

(5.8)

For the scenario, where only the area of logic cells is reduced, the are is com-
puted by Equation (5.9), where (V

logic

+V

fixed

= n

pe

·V
pe

+V

noc

). We assume that
70% of the area of processing elements and the interconnect (n

pe

·V
pe

) consists of
standard logic cells, and 30% of embedded SRAM and IO cells. Equations (5.8)
and (5.9) are used to compute the die area corresponding to a u% guard-band
reduction. The number of gross dies on a wafer is derived by (5.2).

V = v · V
logic

+ V

fixed

+ n

cgu

· V
cgu

(5.9)

The timing yield is evaluated by means of the proposed framework, using the
mean frequency µ

r

g

of hardware resources corresponding to a u% guard-band re-
duction. The mean frequency µ

r

g

is computed by Equation (5.7). The throughput
requirement of the cyclic synthetic application is set based on the target clock
frequency of the hardware resources (Table 5.1). With the specified target fre-
quencies, we assume that the application just satisfies its throughput requirement.
This assumption enables us to have fair results when estimating the impact of
guard-band reduction on timing yield (a relaxed throughput requirement creates
a large slack in performance). To determine the throughput requirement, each

93

Chapter 5. Better than worst-case design

application is mapped to the platform with the specified target frequencies, such
that the throughput is maximized. The heuristic mapping algorithm presented
in Section 3.4.2 is used for finding a mapping with maximized throughput. The
result of the mapping is a throughput value, which is taken as the requirement
for each application.

5.3.1 Evaluation results

Figure 5.2 illustrates the change in the number of good dies per wafer (normalized
units) against guard-band reduction for the synthetic application with an eight
voltage-frequency domain architecture (VFI-8), and for two di↵erent assumptions:
a design with fixed blocks, where the area of embedded SRAM and IO cells does
not change with guard-band reduction; and a design without fixed blocks (i.e.
hard macros are newly designed corresponding to the guard-band reduction).
The graphs are given for both a single and multiple bindings of the actors in
the resource-aware synthetic application graph to the processing elements in the
platform graph consisting of seven processing elements (Figure 4.2). The timing
yield corresponding to di↵erent u% guard-band reduction values for both single
and multiple bindings is shown in Table 5.2. Figure 5.2 shows that the number
of good dies is maximized at a 20% guard-band reduction with a single binding
and fixed blocks. This results in a 0.6% more dies that satisfy the throughput
requirement imposed on the application. When there are no fixed blocks, a 30%
reduction in the guard-band leads to a 3.1% increase in the number of good dies.
With a single binding, the number of good dies beyond 30% guard-band reduction
gradually decreases. This is because the reduction in the timing yield becomes
considerable (see Table 5.2). It can be seen that a larger number of good dies
is provided with multiple bindings. This is due to high timing yield, as reported
in Table 5.2. Assuming a design with fixed blocks, the number of good dies is
maximized at a 50% guard-band reduction, resulting in a 6.1% more good dies.
A design without fixed blocks provides 12.3% more good dies with the same 50%
guard-band reduction. Note that a 6.1% increase in the number of good dies is
significant. For example, if 4 K wafers are required to produce 30 M good dies,
a 6.1% larger number of good dies per wafer translates into 230 fewer wafers for
the same 30 M good dies. For a wafer cost of e3000, the cost saving is e690,000.

Figure 5.3 shows the normalized change in the number of good dies per wafer
against guard-band reduction for the same synthetic application, but with a five
voltage-frequency domain architecture (VFI-5). A design with fixed blocks assum-
ing a single and multiple bindings are considered. The timing yield for guard-band
reduction values is given in Table 5.2. With a single binding, a 0.8% larger num-
ber of good dies are provided for a 20% guard-band reduction. This is slightly
larger than the 0.6% given by the eight domain architecture due to the lower area
cost of clock-generation units with VFI-5 (approximately the same timing yield is
achieved by both VFI-8 and VFI-5 at the 20% reduction in guard-band, as shown
in Table 5.2). On the other hand, multiple bindings with VFI-5 provide a much

94

5.3. Experimental setup

lower 3.25% improvement in the number of good dies, compared to the 6.1% with
VFI-8. This is due to the considerably lower timing yield provided by the five
domain architecture. Note that guard-band reduction also benefits in reduced
dynamic and leakage power. These results show that a higher number of good
dies with reduced guard-bands is obtained, increasing profit.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o

rm
a

liz
e

d
)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

Figure 5.2: Number of good dies per wafer against reduced guard-band for the synthetic
application and a VFI-8 architecture. The graphs are given for both a single and multiple
bindings. Designs with and without fixed blocks are considered.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o

rm
a

liz
e

d
)

SB: with fixed blocks

MB: with fixed blocks

Figure 5.3: Number of good dies per wafer against reduced guard-band for the synthetic
application a VFI-5 architecture. The graphs are given for both a single and multiple bindings.
Only a design with fixed blocks is considered.

Figure 5.4 illustrates the number of good dies per wafer (normalized units) as
a result of reducing guard-bands for the H.263 decoder, H.263 encoder and MP3
playback applications with a four voltage-frequency domain architecture (VFI-
4). Both designs with and without fixed blocks are considered. The graphs are

95

Chapter 5. Better than worst-case design

given for both a single and multiple bindings of the actors in each resource-aware
application graph to the processing elements in the platform graph consisting
of three processing elements. Similar results are seen for the H.263 decoder and
MP3 playback applications. Considering the design with fixed blocks, the number
of good dies is maximized at a 30% reduction in guard-bands, resulting in 1.6%
and 4.8% more good dies for single and multiple bindings, respectively. For a
design without fixed blocks, a single binding results in a 4.8% increase in the
number of good dies for the same 30% guard-band reduction for both applications.
With multiple bindings and without fixed blocks, a 30% guard-band reduction
provides 10.3% and 11.5% more good dies for H.263 decoder and MP3 playback,
respectively. For the H.263 encoder application, 0.6% and 3.7% increase in the
number of good dies is observed with a single binding and for designs with and
without fixed blocks. With multiple bindings, the improvements are 3.7% and 7%
(30% reduction in guard-bands) with and without fixed blocks, respectively.

Table 5.2: Timing yield for u% reduced guard-bands.

u% 0 10 20 30 40 50 60 70 80 90 100

y% (SB, VFI-8) 99 97 97 94 75 74 67 30 30 13 4

y% (SB, VFI-5) 99 96 96 92 74 74 63 30 30 12 4

y% (MB, VFI-8) 99 98 98 97 95 95 85 53 53 24 14

y% (MB, VFI-5) 99 98 98 96 89 89 78 46 46 17 7

The change in the number of good dies due to reducing guard-bands for the
Modem and MP3 decoder applications are shown in Figure 5.5. Significant im-
provements in the number of good dies are seen for the Modem application. More
specifically, with a single binding and with a design with fixed blocks, a 50%
guard-band reduction leads to an increase of 3.5% in the number of good dies.
This is due to relatively high timing provided at a 50% reduction in guard-bands.
When fixed blocks are not present, the improvement goes up to 9.5% with the
same single binding. With multiple bindings, the guard-bands can be reduced
by 70%, resulting in an increase of 9.6% and 18.8% for designs with and without
fixed blocks, respectively. The number of good dies is maximized at the 70%
guard-band reduction, as high timing yield is provided for guard-band reduction
values up until 70%. Beyond 70%, the timing yield reduces, leading to a decrease
in the number of good dies. For the MP3 decoder application, the number of
good dies is in fact reduced by 0.5% at a 30% guard-band reduction with a single
binding and a design with fixed blocks. This is due to a relatively low timing yield
for the 30% reduced guard-bands. However, multiple bindings provide a higher
timing yield and result in a 3.7% more good dies. With a design without fixed
blocks, an increase of 2.7% and 7% in the number of good dies is observed with

96

5.3. Experimental setup

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o
rm

a
liz

e
d

)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

(a) H.263 decoder

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o

rm
a

liz
e

d
)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

(b) H.263 encoder

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o

rm
a

liz
e

d
)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

(c) MP3 playback

Figure 5.4: Number of good dies per wafer against reduced guard-band for the H.263 decoder,
H.263 encoder and MP3 playback applications and a VFI-4 architecture. The graphs are given
for both a single and multiple bindings. Designs with and without fixed blocks are considered.

97

Chapter 5. Better than worst-case design

a single and multiple bindings, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p
e

r
w

a
fe

r
(n

o
rm

a
liz

e
d

)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

(a) Modem

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Guard−band reduction (%)

N
r.

 g
o

o
d

 d
ie

s
p

e
r

w
a

fe
r

(n
o

rm
a

liz
e

d
)

SB: with fixed blocks

SB: without fixed blocks

MB: with fixed blocks

MB: without fixed blocks

(b) MP3 decoder

Figure 5.5: Number of good dies per wafer against reduced guard-band for the Modem and
MP3 decoder applications and a VFI-4 architecture. The graphs are given for both a single and
multiple bindings. Designs with and without fixed blocks are considered.

Note that the numbers for the SDF graphs modeling real applications are pre-
sented for an architecture where each processing element is in a separate voltage-
frequency domain. As experimentally illustrated in Chapter 4, for most of the
applications the number of islands can be reduced without a↵ecting the timing
yield (with a single binding). This leads to a reduction in the are cost due to
clock-generation units, and in turn to more good dies per wafer. Similarly, the
results in this section are given for an architecture, where five clock-frequency
levels are provided to each of the voltage-frequency islands. It has been shown
in Chapter 4 that more clock-frequency levels are more likely to provide a higher
timing yield. Therefore, increasing the number of clock-frequency levels to each

98

5.4. Summary

island is more likely to result in an increased number of good dies.

5.4 Summary

Designing circuits with reduced margins or guard-bands, referred to as better
than worst-case design, provides the benefits of reduced circuit area and power
consumption. Due to a smaller circuit and thus die size, a larger number of dies
are placed on a wafer. This in turn may provide a larger number of good dies
that satisfy the throughput requirement imposed on the system. The number of
good dies is given by the product of the timing yield and the overall number of
dies. In this chapter, we demonstrated on the synthetic and the set of SDF graphs
modeling real applications how the proposed framework can be used to estimate
the change in the number of good dies due to guard-band reduction. The results
are presented for both cases with a single and multiple bindings for manufactured
chips, and two di↵erent assumptions: a design with fixed blocks, where the area
of embedded SRAM and IO cells does not change with guard-band reduction; and
a design without fixed blocks, where the the overall area is reduced. Additionally,
the impact of reducing the number of voltage-frequency islands, and thus circuit
area (die size), on the number of good dies is analyzed.

For the case of a single binding for manufactured chips, an average of 1.4%
increase in the number of good dies is observed due to 20%–50% guard-band
reductions assuming a design with fixed blocks. The maximum improvement is
3.5% for the Modem application for a 50% reduction in guard-bands. For the
MP3 decoder application, a 0.5% lower number of good dies is actually provided
at a 30% guard-band reduction due to a relatively low timing yield. Considering
a design without fixed blocks and a single binding for manufactured chips, the
average improvement increases from the 1.4% to 4.8%. This increase is because
of a larger reduction in circuit area when guard-bands are reduced, resulting in
more dies on a wafer. The maximum improvement of 9.5% is still with the Modem
application at a 50% guard-band reduction. This improvement is due to a rela-
tively high timing yield value at the 50% reduction in the guard-bands. Further
reducing the guard-bands considerably lowers the timing yield, and although the
area is further reduced (i.e. more dies on a wafer), this results in a lower number
of good dies.

With multiple bindings for manufactured chips, larger improvements in the
number of good dies are obtained. This is due to higher timing yield values
at larger guard-band reductions, compared to the case with a single binding.
The larger the reduction in the guard-bands, the smaller the circuit is, resulting
in more dies on a wafer. Therefore, if the timing yield is relatively high at a
large guard-band reduction value, large improvements in the number of good dies
are obtained. On average, the number of good dies is increased by 5.5% for
30%–70% guard-band reduction assuming a design with fixed blocks. The largest
increase of 9.6% is for the Modem application, for which a high timing yield is

99

Chapter 5. Better than worst-case design

provided given a large 70% reduction in guard-bands. The lowest improvement is
for the H.263 encoder and MP3 playback, being 3.7%. Note that the average 5.5%
increase in the number of good dies is significant. For example, if 4 K wafers are
required to produce 30 M good dies, a 5.5% larger number of good dies per wafer
translates into 208 fewer wafers for the same 30 M good dies. For a wafer cost of
e3000, the cost saving is e624,000. For a design without fixed blocks, the average
improvement in the number of good dies is 11.2% (18.8% the highest and 7% the
lowest) for the same 30%–70% guard-band reduction. Additionally, the impact
of reducing the number of voltage-frequency islands on the number of good dies
was analyzed on the synthetic application. A five island architecture resulted in
a negligible improvement in the number of good dies for the case with a single
binding for manufactured chips, compared to an eight voltage-frequency islands
(the timing yield for both five and eight island architectures is approximately
the same). Another benefit of a reduced number of islands is the reduced power
consumption, the evaluation of which is out of the scope of this thesis. However,
with multiple bindings for manufactured chips, the five island architecture leads
to a 2.8% smaller number of good dies with respect to eight islands. This is due
to the considerably lower timing yield provided by the five island architecture.

100

6
Related work

This thesis proposes better than worst-case design or a design with reduced mar-
gins for real-time streaming applications, constrained by a throughput require-
ment, on a NoC-based multi-processor system with voltage-frequency islands. In
this chapter, we position our work with respect to related work. In Section 6.1,
we present techniques to mitigate the impact of process variation at the circuit
level, and discuss the advantages and disadvantages of them. Later, we position
the proposed mapping algorithms with respect to existing task allocation and
scheduling techniques for MPSoCs in Section 6.2. Existing voltage-frequency is-
land partitioning methods for multi-processor systems are briefly discussed in Sec-
tion 6.3. Finally, Section 6.4 presents existing solutions for performing variation-
aware throughput analysis of an application mapped to a multi-processor system.

6.1 Mitigating variation at the circuit level

The main ideas for reducing the impact of process variation at the circuit level
are related to adaptive supply voltage and body biasing approaches [8, 15, 43, 45,
47, 55, 85, 86]. With voltage scaling, the supply voltage of an integrated circuit is
changed, while body biasing refers to the adaptation of the threshold voltage of
transistors. With both approaches, the current of transistors is changed, a↵ecting
the speed and power consumption of an integrated circuit. By increasing the
supply voltage and applying forward body bias, the performance is increased. On
the other hand, reverse body biasing together with reducing the supply voltage
results in decreased power consumption. As shown in [47] by Meijer et al., supply
voltage upscaling and forward body biasing are e↵ective for process-dependent
performance compensation, and provide a large range of frequency upscaling. The

Chapter 6. Related work

disadvantage of the approach is the considerable increase in power consumption
[47]. The better than worst-case design approach proposed in this thesis can be
used in combination with voltage scaling and body biasing methods to further
reduce design margins and increase the number of good dies.

6.2 Task allocation for MPSoC

There has been extensive research in the area of task allocation and scheduling
for MPSoC [1, 9, 10, 14, 16, 30, 74, 79, 88]. The researchers in [1, 9, 10, 79] proposed
methods to map throughput-constrained applications modeled as SDF graphs to
resources in an MPSoC. However, none of them considers the impact of pro-
cess variation. With a variation-unaware mapping approaches, the impact of
process variation cannot be reflected by having di↵erent resources with di↵erent
frequencies as the availability of a resource with a specific frequency is a matter
of probability.

Wang et al. [88] introduced a new design metric called performance yield, de-
fined as the probability of an assigned schedule meeting a predefined performance
constraint. They proposed a variation-aware scheduling algorithm that allocates
and schedules tasks with latency requirements modeled as an acyclic task graph
to MPSoC, such that the performance yield is maximized. Resource sharing in
task allocation and scheduling under process variation has been studied by Chon
and Kim [16]. They proposed a statistical static timing analysis technique, which
schedules and binds tasks in an acyclic task graph to the resources in an MPSoC
in the presence of resource sharing, such that the performance yield is maxi-
mized. Singhal and Bozorgzadeh [74] introduced the problem of stochastically
optimal task allocation, which tries to minimize the overall execution time of
tasks in sequence and in parallel under process variation. Huang and Xu [30]
took into account the spatial correlation characteristics of systematic within-die
variation and presented a scheduling algorithm that schedules tasks with latency
constraints in an acyclic task graph, such that the performance yield is maxi-
mized. With their solution, a set of schedules is synthesized o↵-line and based on
the variation in each chip, a run-time scheduler selects the right one, such that
the latency constraint is satisfied whenever possible.

All the solutions above that account for process variation use acyclic task
graphs for application modeling and are based on latency requirements. Acyclic
task graphs are not able to capture the iterative and overlapping execution of
real-time streaming applications, which are primarily constrained by throughput
requirements. Several real-life streaming applications, such as our H.263 Encoder,
MP3 Playback and Modem benchmark applications, presented in Section 3.5 and
in Appendix B, include cyclic data dependencies. For these applications, none
of the solutions in the above work apply, as they cannot capture the cyclic data
dependencies in the applications. In contrast, we allow arbitrary task graphs
that may include cyclic data dependencies. Our solutions are primarily based on

102

6.4. VFI partitioning

throughput requirements, but can be extended to cover latency requirements [58].
We additionally distinguish best-e↵ort, firm real-time and soft real-time applica-
tion classes, which benefit from having di↵erent optimization criteria. To the best
of our knowledge, this is the first work that addresses the problem of variation-
aware task allocation for cyclic task graphs.

6.3 VFI partitioning

The works in [38] and [31] address the problem of partitioning a tile-based net-
work on chip architecture into voltage-frequency islands for minimized energy
consumption, subject to performance constraints. The authors in [62] solve a
similar problem, and propose a methodology for a run-time energy management
through voltage (frequency) scaling, given workload and technology-related vari-
ations. None of these works consider process variation in the partitioning process.
Majzoub et al. include process, voltage and temperature variations in the VFI
partitioning process to minimize energy consumption [41]. They estimate ex-
pected voltage and temperature variations, and assume a given core-frequency
map across a chip due to within-die process variation. In contrast, we consider
both within-die and die-to-die variations, such that di↵erent chips have di↵erent
core-frequency maps with associated probabilities; this is how the variation in
reality behaves, as demonstrated by measurements in [64]. Moreover, the authors
in [41] perform voltage-frequency island partitioning to minimize energy consump-
tion, while we maximize timing yield in a probabilistic setting. We are not aware
of any other work addressing the problem of voltage-frequency island partitioning
for improved timing yield, considering process-driven variations.

6.4 Variation-aware throughput analysis

Marculescu et al. analyze the probability distribution of latency of systems with
multiple voltage-frequency islands, considering within-die variation [42]. Their ap-
proach is only applicable to systems specified as acyclic task graphs, which are not
able to capture the iterative and overlapping execution of many real-life stream-
ing applications primarily constrained by a throughput requirement. In contrast,
we allow arbitrary task graphs that may include cyclic data dependencies. We
model a system by means of an SDF graph, which is well-suited for modeling
and analysis of real-time streaming applications with throughput requirements.
A methodology to perform system-level throughput analysis of multiple VFI de-
signs, considering process variation, is presented in [23] by Garg et al. However,
they only account for within-die variation, while we consider both within-die and
die-to-die variations. Their approach is based on Homogeneous SDF (HSDF)
graphs, which is a special case of an SDF graph, where all token rates associated
with edges are equal to 1. We use an SDF graph for system modeling. An SDF

103

Chapter 6. Related work

graph provides much more compact application models, which is why many real-
time streaming applications are modeled in an SDF formulation. To be able to
use the approach in [23] for an application specified as an SDF graph, a conversion
from the SDF graph to an equivalent HSDF graph is required [75]. This can lead
to an exponential increase in the graph size (in terms of the number of actors and
edges), as compared to the original SDF graph. For example, the SDF graph of
our MP3 Playback benchmark application consists of only four actors, while the
number of actors in an equivalent HSDF graph after conversion becomes 10601.
Performing throughput analysis on such a large graph results in prohibitively high
computation times, making the approach in [23] unsuitable for many applications.
Additionally, the work in [23] assumes a one-to-one mapping of tasks to process-
ing elements, while we allow resource sharing and assume static-order scheduling
among tasks of an application allocated to the same core.

104

7
Conclusions and future work

This chapter provides concluding remarks on the work presented in this thesis.
The limitations of the proposed approaches are briefly discussed and possible
future directions for the work are proposed.

7.1 Conclusions

This thesis addresses the problem of designing real-time streaming applications,
constrained by a throughput requirement, on a multi-processor system under
better than worst-case design (i.e. with reduced design margins). With better
than worst-case design, circuit area is reduced, resulting in more dies on a wafer.
However, with reduced guard-bands, the target maximum supported frequency
of hardware components in a multi-processor system is not guaranteed anymore.
The goal of the work is to provide more good dies, which satisfy the throughput
requirement of a real-time streaming application. To this end, a design flow
is proposed in this thesis, consisting of several steps. Firstly, an application is
allocated to a multi-processor platform, such that the timing yield, quantifying
the percentage of chips that satisfy the throughput requirement of the application,
is maximized. Maximizing the timing yield is essential, as the number of good
dies is given by the product of the overall number of dies and timing yield. In
this stage, we take advantage of having faster and slower processing elements in a
multi-processor system due to process-induced within-die variation, which a↵ects
di↵erent hardware components on a chip die di↵erently. The binding of the actors
in the application to the processing elements is adapted based on the frequency
of the processing elements in a chip instance. This is accomplished by deriving
a set of bindings at design time, and based on each manufactured chip, the right

Chapter 7. Conclusions and future work

binding that maximizes the throughput of the application is selected. Heuristic
algorithms to derive a single or a set of bindings for manufactured chips, such
that the timing yield is maximized are presented in this thesis. Once the binding
(or set of bindings) are derived, a system designer can perform trade-o↵s between
the number of voltage-frequency islands, as well as the number of clock-frequency
levels provided to each island, and timing yield. Both the number of voltage-
frequency islands and clock-frequency levels per island have an impact on the area
cost of the clock-generation units associated with voltage-frequency islands. By
reducing the number of islands and clock-frequency levels, circuit area is reduced
and more gross dies on a wafer are provided. However, the timing yield can also
decrease due to reducing the number of VFI partitions and clock-frequency levels.
This may in the end provide less good dies. This is why careful trade-o↵s must
be made. Heuristic algorithms are proposed to perform voltage-frequency island
partitioning, such that the minimal loss in timing yield is achieved.

Having selected the binding (set of bindings), the voltage-frequency island
configuration (set of configurations) and the number of clock-frequency levels, the
number of good dies on a wafer is evaluated for di↵erent guard-band reduction
values in the final stage of the flow. The reduction in guard-bands providing the
most good dies is selected. All the steps of the design flow are evaluated on both
synthetic and real applications. We show that the proposed better than worst-
case design methodology can increase the number of good dies by up to 9.6%
and 18.8% for designs with and without fixed SRAM and IO blocks, respectively,
compared to worst-case design. Intuitively, the design without fixed blocks, where
the overall die area is scaled down with guard-band reduction, results in more good
dies, as smaller circuit area and thus more gross dies on a wafer are provided. Note
that a 9.6% increase in the number of good dies is significant. For example, if
4 K wafers are required to produce 30 M good dies, a 9.6% larger number of good
dies per wafer translates into 350 fewer wafers for the same 30 M good dies. For
a wafer cost of e3000, the cost saving is e1,050,000.

7.2 Future directions

The work in this thesis can be extended in multiple ways. This section briefly
outlines possible future directions.

• Systematic within-die variation exhibits spatial correlation. At the level of
gates, this correlation is high, such that the parameters of nearby gates are
a↵ected similarly. However, it dies out quickly as a function of distance
between gates on a die, resulting in much lower correlation between larger
adjacent logic blocks. For simplicity, zero correlation between hardware
components, such as processing elements, routers, network interfaces and
links, is assumed in this thesis, as presented in Section 2.2. As an extension,
the models presented in Section 2.2 can be extended such that correlation

106

7.2. Future directions

between hardware components can be specified. This will provide a mod-
eling framework that more accurately captures the physical phenomenon of
process-induced variation. The impact of di↵erent correlation maps on the
number of good dies can also be analyzed.

• To evaluate the timing yield for an application, given a single or multiple
bindings of it to a multi-processor platform, the throughput of a bound
application graph must be computed for each chip-frequency vector. This
can be seen in Algorithms 3, 4, 5 and 6. Given a large number of voltage-
frequency islands in a platform graph and a large number of clock-frequency
levels per island, the number of chip-frequency vectors (Definition 6) be-
comes very large, resulting in a very large number of throughput evaluations.
This limits the scalability of the proposed mapping and voltage-frequency
island partitioning algorithms. The scalability can be improved by prun-
ing the combinations of chip-frequency vectors or by sacrificing accuracy.
The treatment of this scalability problem will enable experimentation for
future embedded systems with larger applications (in number of actors),
platform graphs (in number of processing elements) and a larger number of
clock-frequency levels.

• In the mapping stage, it is important to derive a binding or a set of bindings
providing high timing yield. This ultimately translates into more good dies
at the end of the flow. As illustrated in Section 3.5, the heuristic mapping
algorithm is unable to find the binding that provides high timing yield for
the MP3 playback application, resulting in a 70% reduction in the timing
yield. An improvement of the heuristic algorithm can be a future extension
to this work. A possible place to start is to implement a topology-aware
actor criticality estimation (Section 3.4.2), such that a better initial resource
allocation is performed.

• With reduced design margins, the power consumption of a circuit is lowered
due to smaller area. It is interesting to evaluate the impact of the pro-
posed better than worst-case design methodology on power consumption,
compared to worst-case design. To this end, algorithms to minimize dy-
namic power consumption subject to throughput constraints can be devised
considering the impact of process variation. This requires implementing
necessary models to capture power consumption.

• In the proposed design-flow (including variation-aware mapping, voltage-
frequency island partitioning and estimation of the number of good dies
with reduced guard-bands), a single application is considered. In practice,
multiple applications are mapped to a multi-processor platform. Possible
future work is to extend the proposed design-flow, such that multiple ap-
plications are considered. For example, this can be achieved by TDM vir-
tualization, where each application is given a portion of a multi-processor

107

Chapter 7. Conclusions and future work

platform, such that there is no temporal interference between applications.
In such a case, the presented mapping approaches for each application on
a virtual platform may require no changes. However, as there are multiple
applications mapped on the same platform, the metric of island criticality
in the voltage-frequency island partitioning step of the flow must be recon-
sidered.

108

Bibliography

[1] H. Ali, L. M. Pinho, and B. Akesson. Critical-path-first based allocation of
real-time streaming applications on 2D mesh-type multi-cores. In Proc. Int’l
Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), 2013.

[2] S. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rab-
bah, and W. Thies. Language and compiler design for streaming applications.
Int’l Journal of Parallel Programming, 33(2/3):261–278, June 2005.

[3] M. Anis, M. Mahmoud, M. Elmasry, and S. Areibi. Dynamic and leak-
age power reduction in MTCMOS circuits using an automated e�cient gate
clustering technique. In Proc. Design Automation Conference (DAC), pages
480–485, 2002.

[4] How reusable IP helps reduce product design cycles.
http://www.eetimes.com/author.asp?section id=36&doc id=1319583,
2013.

[5] M. A. Bamakhrama, J. T. Zhai, H. Nikolov, and T. Stefanov. A methodology
for automated design of hard-real-time embedded streaming systems. In Proc.
Design, Automation and Test in Europe Conference and Exhibition (DATE),
pages 941–946, 2012.

[6] S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Pro-
cessing. PhD thesis, EECS Department, University of California, Berkeley,
1994.

[7] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded
software from synchronous dataflow specifications. Journal of VLSI Signal
Processing Systems (IJVSPA), 21:151–166, 1999.

[8] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das,
and D. Bull. Razor II: In situ error detection and correction for PVT and
SER tolerance. In Proc. Int’l Solid-State Circuits Conference (ISSCC), pages
400–622, 2008.

[9] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An e�cient and
complete approach for throughput-maximal SDF allocation and scheduling
on multi-core platforms. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 897–902, 2010.

[10] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini. Throughput constraint
for synchronous data flow graphs. In Proc. Int’l Conference on Integration of
AI and OR Techniques in Constraint Programming (CPAIOR), pages 26–40,
2009.

[11] S. Borkar. Designing reliable systems from unreliable components: The chal-
lenges of transistor variability and degradation. Proc. Microarchitecture (MI-
CRO), 25(6):10–16, Nov. 2005.

[12] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In Proc.
Design Automation Conference (DAC), pages 338–342, 2003.

[13] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency distribution for
gigascale integration. Journal of Solid-State Circuits (JSSC), 37(2):183–190,
Feb. 2002.

[14] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund. A comparison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing, 61:810–837, June 2001.

[15] T. Chen and S. Na↵ziger. Comparison of adaptive body bias (ABB) and
adaptive supply voltage (ASV) for improving delay and leakage under the
presence of process variation. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 11(5):888–899, 2003.

[16] H. Chon and T. Kim. Timing variation-aware task scheduling and binding
for MPSoC. In Proc. Design Automation Conference. Asia and South Pacific
(ASPDAC), pages 137–142, Jan. 2009.

110

[17] W. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proc. Design Automation Conference (DAC), pages 684–689,
2001.

[18] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Modeling static-order schedules in synchronous dataflow graphs. In Proc.
Design, Automation and Test in Europe Conference and Exhibition (DATE),
pages 775–780, 2012.

[19] A. Dasdan. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. Transactions on Design Automation of Electronic Systems
(TODAES), 9(4):385–418, Oct. 2004.

[20] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard,
J. Tschanz, V. Erraguntla, N. Borkar, V. De, and S. Borkar. Within-die
variation-aware dynamic-voltage-frequency-scaling with optimal core alloca-
tion and thread hopping for the 80-core TeraFLOPS processor. Journal of
Solid-State Circuits (JSSC), 46(1):184–193, 2011.

[21] S. Evain, J.-P. Diguet, and D. Houzet. NoC design flow for TDMA and QoS
management in a GALS context. Journal on Embedded Systems (EURASIP),
2006(1):4–4, Jan. 2006.

[22] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos. Modeling
within-die spatial correlation e↵ects for process-design co-optimization. In
Proc. Quality of Electronic Design (ISQED), pages 516–521, 2005.

[23] S. Garg and D. Marculescu. System-level throughput analysis for process
variation aware multiple voltage-frequency island designs. Transactions on
Design Automation of Electronic Systems (TODAES), 13(4):1–25, Oct. 2008.

[24] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij,
B. Theelen, and M. Mousavi. Throughput analysis of synchronous data flow
graphs. In Proc. Int’l Conference on Application of Concurrency to System
Design (ACSD), pages 25–36, june 2006.

[25] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. Beyranvand Nejad, A. Nelson,
and S. Sinha. Virtual execution platforms for mixed-time-criticality systems:
The CompSOC architecture and design flow. To appear in Special Interest
Group on Embedded Systems (SIGBED) Review, 2013.

[26] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:
Concepts, architectures, and implementations. Design & Test of Computers,
22(5):414–421, Sept. 2005.

111

[27] A. Hansson, M. Subburaman, and K. Goossens. Aelite: A flit-synchronous
network on chip with composable and predictable services. In Design, Au-
tomation Test in Europe Conference Exhibition, pages 250–255, 2009.

[28] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling
application-level performance guarantees in network-based systems on chip
by applying dataflow analysis. IET Computers & Digital, 3(5):398–412, 2009.

[29] C. Hernandez, A. Roca, F. Silla, J. Flich, and J. Duato. On the impact
of within-die process variation in GALS-based NoC performance. Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
31(2):294–307, 2012.

[30] L. Huang and Q. Xu. Performance yield-driven task allocation and scheduling
for MPSoCs under process variation. In Proc. Design Automation Conference
(DAC), pages 326–331, June 2010.

[31] W. Jang and D. Pan. A voltage-frequency island aware energy optimization
framework for networks-on-chip. Journal on Emerging and Selected Topics
in Circuits and Systems (JETCAS), 1(3):420–432, sept. 2011.

[32] A. Jantsch. Models of computation for networks on chip. In Int’l Conference
on Application of Concurrency to System Design (ACSD), pages 165–178,
2006.

[33] K. Jeong, A. Kahng, and K. Samadi. Impact of guardband reduction on
design outcomes: A quantitative approach. Transactions on Semiconductor
Manufacturing (SM), 22(4):552–565, 2009.

[34] R. Jordans, F. Siyoum, S. Stuijk, A. Kumar, and H. Corporaal. An auto-
mated flow to map throughput constrained applications to a MPSoC. In
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems (PPES), volume 18, pages 47–58, 2011.

[35] P. Kollig, C. Osborne, and T. Henriksson. Heterogeneous multi-core platform
for consumer multimedia applications. In Proc. Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 1254–1259, 2009.

[36] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[37] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. Transactions on Computers,
36(1):24–35, Jan. 1987.

[38] L.-F. Leung and C.-Y. Tsui. Energy-aware synthesis of networks-on-chip
implemented with voltage islands. In Proc. Design Automation Conference
(DAC), pages 128–131, june 2007.

112

[39] J. Liang, S. Swaminathan, and R. Tessier. aSOC: A scalable, single-chip com-
munications architecture. In Proc. Int’l Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 37–, 2000.

[40] S. Londono and J. de Gyvez. A better-than-worst-case circuit design method-
ology using timing-error speculation and frequency adaptation. In Proc. Int’l
SOC Conference (SoCC), pages 15–20, Sept. 2012.

[41] S. Majzoub, R. Saleh, and R. Ward. PVT variation impact on voltage island
formation in MPSoC design. In Proc. Quality of Electronic Design (ISQED),
pages 814 –819, march 2009.

[42] D. Marculescu and S. Garg. Process-driven variability analysis of single
and multiple voltage frequency island latency-constrained systems. Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
27(5):893–905, may 2008.

[43] M. Meijer and J. de Gyvez. Body-bias-driven design strategy for area- and
performance-e�cient CMOS circuits. Transactions on Very Large Scale In-
tegration (VLSI) Systems, 20(1):42–51, 2012.

[44] M. Meijer, J. de Gyvez, and R. Otten. On-chip digital power supply control
for system-on-chip applications. In Proc. Int’l Symposium on Low Power
Electronics and Design (ISLPED), pages 311 – 314, Aug. 2005.

[45] M. Meijer, B. Liu, R. Van Veen, and J. de Gyvez. Post-silicon tuning capa-
bilities of 45nm low-power CMOS digital circuits. In Symposium on VLSI
Circuits, pages 110–111, 2009.

[46] M. Meijer, F. Pessolano, and J. de Gyvez. Glitch-free discretely pro-
grammable clock generation on chip. In Proc. Int’l Symposium on Circuits
and Systems (ISCAS), volume 2, pages 1839 – 1842, May 2005.

[47] M. Meijer, F. Pessolano, and J. de Gyvez. Limits to performance spread
tuning using adaptive voltage and body biasing. In Proc. Int’l Symposium
on Circuits and Systems (ISCAS), pages 5–8 Vol. 1, 2005.

[48] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg, T. Olsson, P. Nils-
son, D. Lindqvist, and H. Tenhunen. Globally asynchronous locally syn-
chronous architecture for large high-performance ASICs. In Proc. Int’l Sym-
posium on Circuits and Systems (ISCAS), volume 2, pages 512–515 vol.2,
1999.

[49] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit. Platform 2012, a many-core computing ac-
celerator for embedded SoCs: performance evaluation of visual analytics ap-
plications. In Proc. Design Automation Conference (DAC), pages 1137–1142,
2012.

113

[50] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum
backbone - a communication protocol stack for networks on chip. In Proceed-
ings of the International Conference on VLSI Design (VLSID), pages 693–,
2004.

[51] M. Miranda, B. Dierickx, P. Zuber, P. Dobrovoln, and F. Kutscherauer.
Variability aware modeling of SoCs: From device variations to manufactured
system yield. In Proc. Quality of Electronic Design (ISQED), pages 547–553,
March 2009.

[52] D. Mirzoyan, B. Akesson, and K. Goossens. Process-variation aware mapping
of real-time streaming applications to MPSoCs for improved yield. In Proc.
Quality of Electronic Design (ISQED), pages 41–48, 2012.

[53] D. Mirzoyan, B. Akesson, and K. Goossens. Process-variation aware mapping
of best-e↵ort and real-time streaming applications to MPSoCs. To appear in
Transactions in Embedded Computing Systems (TECS), 2013.

[54] D. Mirzoyan, B. Akesson, S. Stuijk, and K. Goossens. Throughput analysis
and voltage-frequency island partitioning for streaming applications under
process variation. In Proc. Embedded Systems for Real-Time Multimedia
(ESTIMedia), 2013.

[55] M. Miyazaki, H. Mizuno, and K. Ishibashi. A delay distribution squeezing
scheme with speed-adaptive threshold-voltage CMOS (SA-Vt CMOS) for low
voltage LSls. In Proc. Int’l Symposium on Low Power Electronics and Design
(ISLPED), pages 48–53, 1998.

[56] G. Moore. Progress in digital integrated electronics. In Int’l Electron Devices
Meeting (IEDM), volume 21, pages 11–13, 1975.

[57] G. Moore. Cramming more components onto integrated circuits. Proceedings
of the IEEE, 86(1):82–85, 1998.

[58] O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time
applications. Journal on Advances in Signal Processing (EURASIP), June
2007.

[59] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent
hard-real-time jobs on a heterogeneous multiprocessor. In Proc. Int’l Con-
ference on Embedded software (EMSOFT), pages 57–66, 2007.

[60] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-
asynchronous locally-synchronous systems. In Proc. Int’l Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 52–59, 2000.

[61] S. Nassif. Design for variability in DSM technologies [deep submicron tech-
nologies]. In Proc. Quality of Electronic Design (ISQED), pages 451–454,
2000.

114

[62] U. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and man-
agement of voltage-frequency island partitioned networks-on-chip. Transac-
tions on Very Large Scale Integration (VLSI) Systems, 17(3):330–341, march
2009.

[63] H. Oh and S. Ha. Fractional rate dataflow model for e�cient code synthesis.
Journal of VLSI Signal Processing Systems, 37(1):41–51, May 2004.

[64] L.-T. Pang and B. Nikolic. Measurement and analysis of variability in 45nm
strained-Si CMOS technology. In Custom Integrated Circuits Conference
(CICC), pages 129–132, 2008.

[65] L.-T. Pang, K. Qian, C. J. Spanos, and B. Nikolic. Measurement and analysis
of variability in 45 nm strained-Si CMOS technology. Journal of Solid-State
Circuits, 44(8):2233–2243, 2009.

[66] J. L. Pino, E. A. Lee, and S. S. Bhattacharyya. A hierarchical multiprocessor
scheduling system for DSP applications. In Proc. of the Asilomar Conference
on Signals, Systems and Computers (ASILOMAR), pages 122–, 1995.

[67] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mes-
man. Task-level timing models for guaranteed performance in multiprocessor
networks-on-chip. In Proc. Int’l conference on Compilers, architecture and
synthesis for embedded systems (CASES), pages 63–72, 2003.

[68] A. Rylyakov, J. Tierno, G. English, M. Sperling, and D. Friedman. A wide
tuning range (1 GHz-to-15 GHz) fractional-N all-digital PLL in 45nm SOI.
In Custom Integrated Circuits Conference (CICC), pages 431–434, 2008.

[69] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,
P. Pande, C. Grecu, and A. Ivanov. System-on-chip: Reuse and integra-
tion. Proceedings of the IEEE, 94(6):1050–1069, 2006.

[70] M. Schoeberl, F. Brandner, J. Spars, and E. Kasapaki. A statically scheduled
time-division-multiplexed network-on-chip for real-time systems. In Proc.
Int’l Symposium on Networks on Chip (NOCS), pages 152–160, 2012.

[71] SDF3 example applications. www.es.ele.tue.nl/sdf3/download/examples.

[72] SDF3: SDF For Free. http://www.es.ele.tue.nl/sdf3/, 2009.

[73] A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal. CA-MPSoC:
An automated design flow for predictable multi-processor architectures for
multiple applications. Journal of Systems Architecture (JSA), 56(7):265–277,
July 2010.

[74] L. Singhal and E. Bozorgzadeh. Process variation aware system-level task
allocation using stochastic ordering of delay distributions. In Proc. Int’l
Conference on Computer Aided Design (ICCAD), pages 570–574, Nov. 2008.

115

[75] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling
and Synchronization. 1st edition, 2000.

[76] S. Sriram and E. A. Lee. Determining the order of processor transactions
in statically scheduled multiprocessors. Journal VLSI Signal Processing Sys-
tems, 15(3):207–220, Mar. 1997.

[77] R. Stefan, A. Molnos, and K. Goossens. dAElite: A TDM NoC supporting
QoS, multicast, and fast connection set-up. Transactions on Computers, 99,
2012.

[78] D. Stiliadis and A. Varma. Latency-rate servers: a general model for anal-
ysis of tra�c scheduling algorithms. Transactions on Networking (TON),
6(5):611–624, Oct. 1998.

[79] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor
resource allocation for throughput-constrained synchronous dataflow graphs.
In Proc. Design Automation Conference (DAC), pages 777–782, 2007.

[80] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-o↵s in bu↵er require-
ments and throughput constraints for synchronous dataflow graphs. In Proc.
Design Automation Conference (DAC), pages 899–904, 2006.

[81] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In Proc. Int’l
Conference on Application of Concurrency to System Design (ACSD), pages
276–278, 2006.

[82] S. Stuijk, M. Geilen, and T. Basten. Throughput-bu↵ering trade-o↵ explo-
ration for cyclo-static and synchronous dataflow graphs. Transactions on
Computers (TC), 57(10):1331–1345, 2008.

[83] M. B. Taylor, J. Kim, J. Miller, D. Wentzla↵, F. Ghodrat, B. Greenwald,
H. Ho↵man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.
The Raw microprocessor: A computational fabric for software circuits and
general-purpose programs. Micro, 22(2):25–35, Mar. 2002.

[84] W. Tong, O. Moreira, R. Nas, and K. van Berkel. Hard-real-time scheduling
on a weakly programmable multi-core processor with application to multi-
standard channel decoding. In Proc. Real Time and Embedded Technology
and Applications Symposium (RTAS), pages 151–160, 2012.

[85] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan,
and V. De. Adaptive body bias for reducing impacts of die-to-die and within-
die parameter variations on microprocessor frequency and leakage. Journal
Solid-State Circuits (JSSC), 37(11):1396–1402, Nov 2002.

116

[86] O. Unsal, J. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and O. Er-
gin. Impact of parameter variations on circuits and microarchitecture. Micro,
26(6):30–39, Nov. 2006.

[87] C. H. K. van Berkel. Multi-core for mobile phones. In Proc. Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), pages 1260–
1265, 2009.

[88] F. Wang, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan. Variation-
aware task allocation and scheduling for MPSoC. In Proc. Int’l Conference
on Computer Aided Design (ICCAD), pages 598 –603, Nov. 2007.

[89] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Hu↵mire, R. Kastner, F. T. Chong,
and T. Sherwood. SurfNoC: a low latency and provably non-interfering ap-
proach to secure networks-on-chip. SIGARCH Computer Architecture News,
41(3):583–594, June 2013.

[90] Tilera corporation. http://www.tilera.com/.

[91] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. E�cient computation of
bu↵er capacities for cyclo-static dataflow graphs. In Proc. Design Automation
Conference (DAC), pages 658–663, 2007.

[92] D. Wiklund and D. Liu. SoCBUS: Switched network on chip for hard real
time embedded systems. In Proc. Int’l Parallel and Distributed Processing
Symposium (IPDPS), page 8, 2003.

[93] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem overview of methods and survey of tools. Transactions on Embedded
Compuing Systems (TECS), 7(3):36:1–36:53, May 2008.

[94] N. Wingen. What if you could design tomorrow’s system today? In Proc.
Design, Automation and Test in Europe Conference and Exhibition (DATE),
pages 1–6, 2007.

[95] W. Wolf, A. Jerraya, and G. Martin. Multiprocessor system-on-chip (MP-
SoC) technology. Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), 27(10):1701–1713, 2008.

[96] W. Wu, N.-C. Lee, and G. Schuellein. Multi-phase buck converter design
with two-phase coupled inductors. In Applied Power Electronics Conference
and Exposition (APEC), page 6, March 2006.

117

118

A
Glossary

This chapter provides a guide to the abbreviations and the symbols used in this
thesis. Section A.1 contains the list of abbreviations, while the list of symbols are
given in Section A.2.

A.1 List of abbreviations

The abbreviations used in this thesis are listed below.

MPSoC Multi-processor system-on-chip
NoC Network on chip
TDM Time-division multiplexing
GALS Globally asynchronous, locally synchronous
VFI Voltage-frequency island
CGU Clock-generation unit
FIFO First-in-first-out
SDF Synchronous data-flow
HSDF Homogeneous synchronous data-flow
MCM Maximum cycle mean
PDF Probability density function
CDF Cumulative distribution function

A.2 List of symbols

Table A.1 contains most of the symbols used throughput this thesis. For each
symbol, a description and the page number in which the symbol is introduced are

given. The symbols are sorted in alphabetical order, where the Greek symbols
precede the Latin.

Table A.1: List of symbols.

Symbol Description Page

↵

d

Bu↵er space (in tokens) of a dependency edge d 23

� Maximum bandwidth (in bytes per cycle) of a con-
nection in an interconnect

13

�

rq

d

Bandwidth requirement (in bytes per cycle) of a de-
pendency edge d

23

�(ga, gp, b) Timing yield of a bound application graph for a
resource-aware application graph ga, a platform
graph gp and a binding b

36

�

r Mean-frequency reduction of a hardware resource r 15

⇣(ga, gp, b) Sum of throughput degradations of a bound appli-
cation graph for a resource-aware application graph
ga, a platform graph gp and a binding b

38

✓(x, µ,�) CDF of a normal random variable x with mean µ

and standard deviation �
15

✓

m

(gp, x,fi, f
0

) CDF of the minimum of the maximum supported
frequencies of hardware resources belonging to a VFI
fi in a platform graph gp for a random variable x with
respect to a global frequency value f

0

19

 Repetition vector of an SDF graph 22

µ

r Mean of a normal random variable f

r 17

µ

r

g

Mean of a normal random variable f

r

g

15

�

r Standard deviation of a normal random variable f

r 17

�

r

g

Standard deviation of a normal random variable f

r

g

15

�

r

l

Standard deviation of a normal random variable f

r

l

15

⌧(gb) Throughput of a bound application graph gb 30

⌧

avg

(ga, gp, b) Average throughput of a bound application graph
for a resource-aware application graph ga, a platform
graph gp and a binding b

35

�⌧
avg

(ga, gp, b) Average throughput degradation of a bound appli-
cation graph for a resource-aware application graph
ga, a platform graph gp and a binding b

38

�(x, µ,�) PDF of a normal random variable x with mean µ

and standard deviation �
15

120

�(x) CDF of the standard normal distribution 15

�(pe) VFI to which a processing element pe belongs 14

 (fi) Set of resources belonging to a VFI fi 14

 Number of hops of a connection in an interconnect 13

a Actor 21

A Set of actors 21

b Binding vector 25

B Set of all bindings 25

c(gp,fi, n) n equidistant clock-frequency levels provided to a
VFI fi in a platform graph gp

18

ca(a) Criticality of an actor a 43

ci(ga, gp,fi) Criticality of a VFI fi in a platform graph gp for a
resource-aware application graph ga

67

d Dependency edge 21

D Set of dependency edges 21

ec(a, pe) Execution time (in cycles) of an actor a on a pro-
cessing element pe

23

et(gp, a, pe) Execution time (in seconds) of an actor a on a pro-
cessing elements pe

26

fc Chip-frequency vector 18

FC Set of all chip-frequency vectors 18

f

r Normal random variable of the maximum supported
frequency of a hardware resource modeling both die-
to-die and within-die variations

17

f

r

g

Normal random variable of the maximum supported
frequency of a hardware resource modeling die-to-die
variation

15

f

r

l

Normal random variable of the maximum supported
frequency of a hardware resource modeling within-
die variation

15

fi Voltage-frequency island 14

FI Set of VFIs in a platform graph 14

ga Resource-aware application graph 23

gb Bound application graph 29

gp Platform graph 14

ni Network interface 13

NI Set of network interfaces in an interconnect 13

121

noc Interconnect 13

lk Link 13

LK Set of links in an interconnect 13

lpe(pe) Load of a processing element pe 43

MBE Exhaustive algorithm implementing the multiple-
bindings mapping approach

50

MBH Heuristic algorithm implementing the multiple-
bindings mapping approach

52

MFBE Mean-frequency based exhaustive mapping algo-
rithm

50

MFBH Mean-frequency based heuristic mapping algorithm 51

p(gp, fc, f
0

) Local probability of a chip-frequency vector fc in a
platform graph gp with respect to a global frequency
value f

0

21

pc(gp, fc) Probability of a chip-frequency vector fc in a plat-
form graph gp

21

pe Processing element 13

PE Set of processing elements in a platform graph 13

pf(gp, f i

clk

,fi, f
0

) Probability that a VFI fi in a platform graph gp is
operated at a clock-frequency f

i

clk

with respect to a
global frequency value f

0

20

r Hardware resource 13

R Set of hardware resources in a platform graph 13

rt Router 13

RT Set of routers in an interconnect 13

sdfg SDF graph 21

SBE Exhaustive algorithm implementing the single-
binding mapping approach

50

SBH Heuristic algorithm implementing the single-binding
mapping approach

52

sz
d

Token size (in bytes) 23

sz
fl

Flit size (in bytes) 13

sz
tb

TDM slot table size (in slots) 13

t

req

Throughput requirement of a resource-aware appli-
cation graph

23

122

B
Application SDF graphs

This chapter presents the SDF models of the H.263 decoder [82], H.263 encoder
[63], MP3 playback [91], Sample rate converter [7], Modem [7], MP3 decoder [82]
and synthetic applications [71]. For each SDF model, the (worst-case) execution
time (in cycles) and the size of data tokens (in bytes) communicated between
actors across dependency edges are reported. The (worst-case) execution times
of the actors in the H.263 decoder, H.263 encoder and MP3 decoder applications
are given for a processor architecture similar to ARM7. The size of data tokens
for the MP3 playback, Sample rate and Modem applications was not available
at the provided references. For these applications, a size of four bytes is used.
Similarly, no profiled or simulated data on execution times of actors for the Modem
application is available. For this application, arbitrary execution times are used.

H.263 decoder

Figure B.1 illustrates the SDF graph of the H.263 decoder application. The
(worst-case) execution time of the actors, together with the size of data tokens
on the dependency edges, is given in Table B.1.

a

1

a

2

a

3

a

4

594 1 1 1 1 594

1 1

1

1 1

1

1 1

1

Figure B.1: An SDF model of an H.263 decoder.

The throughput requirement used in the experimental sections throughout
this thesis is 858 iterations per second.

Table B.1: The execution time (in cycles) of actors and the size of data tokens (in bytes) sent
across the dependence edges for the H.263 decoder.

Actor Execution time Edge Token size

a1 (VLD) 26018 a1 self-edge 1024

a2 (IQ) 559 a4 self-edge 38016

a3 (IDCT) 486 Others 64

a4 (Motion comp.) 10958

H.263 encoder

The SDF graph of the H.263 encoder application is presented in Figure B.2. The
execution time of the actors and the size of data tokens are given in Table B.2.
The throughput requirement is set to 230 iterations per second.

a

1

a

2

a

3

a

5

a

4

99 1 1 99

1

1
199

1

1

1 1

1

1 1

11

Figure B.2: An SDF model of an H.263 encoder.

Table B.2: The execution time (in cycles) of actors and the size of data tokens (in bytes) sent
across the dependence edges for the H.263 encoder.

Actor Execution time Edge Token size

a1 (Motion est.) 382419 a3 self-edge 1024

a2 (MB enc.) 8409 a5 self-edge 38016

a3 (VLC) 26018 a5 to a1 38016

a4 (MB dec.) 6264 Others 384

a5 (Motion comp.) 11356

124

MP3 playback

Figure B.3 illustrates the SDF model of the MP3 playback application. Each
actor includes a self-edge with a single initial token, which are not shown in the
figure. The execution time (in cycles) of the actors a

1

, a
2

, a
3

and a

4

are equal to
7510, 10000, 22 and 22 cycles, respectively. The size of the data tokens is chosen
to be four bytes for all dependency edges. A requirement of 1227 iterations per
second is imposed on the throughput for this application.

a

1

a

2

a

3

a

4

1152 480 441 1 1 1
1 1

Figure B.3: An SDF model of an MP3 playback.

Sample rate converter

The SDF graph for the Sample rate converter application is given in Figure B.4.
The self-edges with a single initial token for all actors are not shown in the figure.
The execution times of the actors a

1

, a

2

, a

3

, a

4

, a

5

and a

6

are 11, 4, 6, 2, 9
12 cycles. The token size is chosen to be four bytes for all dependency edges.
The requirement on throughput is 140000 iterations per second, as used in the
experimental sections in this thesis.

a

1

a

2

a

3

a

4

a

5

a

6

1 1 2 3 2 7

8

7
51

Figure B.4: An SDF model of a Sample rate converter.

Modem

Figure B.5 shows the SDF graph of the modem application. Each actor has a self-
edge with a single initial token on it (not shown in the figure). The execution times
of the actors a

1

, a
5

and a

16

are 130, 7000 and 1200 cycles, respectively. The rest of
the actors take 1000 cycles to finish their execution. For all dependency edges (also
the self-edges), the size of data tokens is four bytes. The throughput requirement
used in the experimental section throughout the thesis is 12180 iterations per
second.

125

a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

9

a

10

a

11

a

12

a

13

a

14

a

15

a

16

1 1

1

1

1

1
1 1 1 1

1118

1222

2

4

2

2

2

2

2

2 2 2 1 1

1

2 2

2

2

1

1

1

Figure B.5: An SDF model of a Modem.

MP3 decoder

The model of the MP3 decoder application is illustrated in Figure B.6. Table B.3
contains the (worst-case) execution times (in cycles) of all actors and the size of
data tokens being communicated between actors across dependency edges. In all
the experiments throughout this thesis, a throughput requirement of 76 iterations
per second is used.

Table B.3: The execution time (in cycles) of actors and the size of data tokens (in bytes) sent
across the dependence edges for the MP3 decoder.

Actor Execution time Edge Token size

a1 (Hu↵man) 151977 a1 self-edge 1024

a2, a3 (Req.) 72695 a2, a3 self-edge 64

a3, a5 (Reorder) 34684 Others 576

a6 (Stereo) 53602

126

a7, a8 (Antialias) 409

a9, a10 (Hybrid synth.) 7414

a11, a12 (Freq. inv.) 4912

a13, a14 (Subb. inv.) 1865001

Continued from previous page

a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

9

a

10

a

11

a

12

a

13

a

14

2

1

2

1

1 1

1 1
1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1

1

1 1

1

1

1

1

1

Figure B.6: An SDF model of an MP3 decoder.

Synthetic

Figure B.7 illustrates the topology of the synthetic application. The execution
time of actors and the size of data tokens sent across the dependency edges are
given in Table B.4. The requirement on throughput for this application is set to
322 iterations per second.

Table B.4: The execution time (in cycles) of actors and the size of data tokens (in bytes) sent
across the dependence edges for the synthetic application.

Actor Execution time Actor Execution time Edge Token size

a1 62018 a10 78280 a12 to a13 20

a2 82208 a11 50228 a15 to a16 10

127

a3 62544 a12 61122 a11 to a12 100

a4 52720 a13 89112 a1 to a2 128

a5 72352 a14 35852 a7 to a8 8

a6 78244 a15 89012 a2 to a5 30

a7 85628 a16 89012 a6 to a7 40

a8 59422 a17 89012 a2 to a3 50

a9 82302 Others 4

Continued from previous page

a

1

a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

9

a

10

a

11

a

12

a

13

a

14

a

15

a

16

a

17

1 1 8 1 1 8

3

1

5 12 1 13 1 32

1

1

1

1

1

1
11

1

1
1 1 1 1 1 1

1

11

1

11

1

1

1

1

1

Figure B.7: An SDF model of a synthetic application.

128

C
About the author

Davit Mirzoyan was born in Yerevan, Armenia, in 1985. He acquired his B.Sc.
degree in cybernetics from State Engineering University of Armenia (SEUA), lo-
cated in Yerevan. He received his M.Sc. degree in Information and Communica-
tion Technologies from Royal Institute of Technology (KTH), Stockholm, Sweden.
His graduation project for the M.Sc. program, on the topic of fault-tolerant mem-
ories, was carried out in Ikerlan, a research center located in Arrasate, Spain. In
February 2010, Mr. Mirzoyan started his Ph.D. program in Computer Engineer-
ing at Delft University of Technology (TU Delft). His research interests include
process-variation-aware design, system-level design and performance analysis.

130

D
List of publications

Journal articles

• Process-Variation Aware Mapping of Best-E↵ort and Real-Time Stream-
ing Applications to MPSoCs. Davit Mirzoyan, Benny Akesson and Kees
Goossens. To appear in Transactions in Embedded Computing Systems
(TECS), 2013.

• Virtual Execution Platforms for Mixed-Time-Criticality Systems: The Comp-
SOC Architecture and Design Flow. Kees Goossens, Arnaldo Azevedo,
Karthik Chandrasekar, Manil Dev Gomony, Sven Goossens, Martijn Koedam,
Yonghui Li, Davit Mirzoyan, Anca Molnos, Ashkan Nejad Beyranvand, An-
drew Nelson and Shubhendu Sinha. To appear in Special Interest Group on
Embedded Systems (SIGBED) Review, 2013.

Conference and workshop papers

• Process-variation aware mapping of real-time streaming applications to MP-
SoCs for improved yield. Davit Mirzoyan, Benny Akesson and Kees Goossens.
In Proc. Quality Electronic Design (ISQED), 2012.

• Throughput Analysis and Voltage-Frequency Island Partitioning for Stream-
ing Applications under Process Variation. Davit Mirzoyan, Benny Akesson,
Sander Stuijk and Kees Goossens. In Proc. Embedded Systems for Real-
Time Multimedia (ESTIMedia), 2013.

• Impact of Process Variations on the Throughput of Real-Time Applications
in Multiprocessor Systems-on-Chip. Davit Mirzoyan, Benny Akesson and

Kees Goossens. Workshop on PROGram for Research on Embedded Systems
& Software (PROGRESS), 2010.

Posters

• Impact of Process Variation on QoS in SRT Applications. Davit Mir-
zoyan, Benny Akesson and Kees Goossens. Workshop on PROGram for
Research on Embedded Systems & Software (PROGRESS), 2011. (Best
poster award).

132

