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Abstract

Multiscale computational homogenization is an efficient method to upscale the
microstructural behavior of micro-heterogeneous materials. In this method, a
representative volume element (RVE) is assigned to a macroscale material point
and the constitutive law for the macroscopic model at that point is obtained
by solving a boundary value problem on the RVE. Among the conventional
boundary conditions, the so-called strong periodic boundary conditions tend
to converge faster towards the actual microstructural response. Nonetheless,
applying strong periodic boundary conditions to a batch of 48 fiber-matrix RVEs
under uniaxial load with varying orientations introduces a dependency between
the average ultimate principal stress (σ̄1) and the orientation angle (θ).

This treatise investigates the effects on this dependency by applying so-called
weak periodic boundary conditions instead. These boundary conditions soften
the strong requirement of periodicity of displacements at the RVE boundary by
coarsening the traction mesh and requiring periodicity to hold only in an average
sense over this coarser mesh. Three main questions are asked: Do weak peri-
odic boundary conditions alleviate the dependency between σ̄1 and θ? Is this
dependency the result of RVEs prone to localization under shear? Do smaller
coarsening factors widen the range of θ over which localization with a single
shear band is permissible? Overall, it is concluded that only the weakest form
of weak periodic boundary conditions reduces the dependency between σ̄1 and
θ, which is indeed caused by RVEs that are prone to strain localization under
shear, particularly towards θ = 45o. Increasing coarsening factors quickly in-
troduce stricter periodicity requirements, thus limiting the possibility of strain
localization with a single shear band at angles other than θ = 45o. Recommen-
dations are provided to alleviate the dependency between σ̄1 and θ as well as
how to more realistically model the behavior of RVEs used in this research.
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Chapter 1

INTRODUCTION

1.1 Thesis Statement

The ultimate principal stress of equivalent representative volume elements due
to axial load under varying orientations should, on average, remain constant.
Notwithstanding, prescribing periodic boundary conditions introduces a depen-
dency between the ultimate principal stress and the orientation angle. This
dependency may be reduced by prescribing weak periodic boundary conditions.

1.2 Multiscale Computational Homogenization

The macroscale behavior of multiphase materials generally depends on the re-
sponse of its underlying heterogeneous microstructure (Karamnejad, 2016, p. 1,
Kouznetsova, Geers, and Brekelmans, 2010, p. 2). Modeling these hetero-
geneities directly at the macroscale may give accurate results but often requires
enormous computational efforts (Karamnejad, 2016, p. 1). Instead, multiscale
methods can be used to account for the underlying micro-heterogeneity in an
approximate fashion (Kouznetsova et al., 2010, p. 4). This is achieved via
so-called homogenization methods, which supplant the heterogeneous material
at the subscale by an equivalent homogeneous material (Sluys, 2017, p. 12).
Among these methods, computational homogenization is probably one of the
most accurate techniques to upscale the nonlinear behavior of heterogeneous
microstructures (Geers, Kouznetsova, and Brekelmans, 2010, p. 2175, Öhman,
Runesson, and Larsson, 2015, p. 1). In this method, a representative volume
element (RVE) is assigned to a macroscale material point and the constitutive
law for the macroscopic model at that point is obtained by solving a boundary
value problem (BVP) on the RVE (Karamnejad, 2016).

Computational homogenization can be applied to materials whose subscale
properties are nonlinear, whereby it is necessary to solve a fully nested macroscale-
subscale BVP. This is referred to as multiscale computational homogenization
or FE2 (Kouznetsova et al., 2010, p. 4, Öhman et al., 2015, p. 1). The basic
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2 CHAPTER 1. INTRODUCTION

steps for multiscale computational homogenization are:

1. defining an appropriate size for each RVE,

2. formulating subscale boundary conditions, and

3. homogenizing the solution to the subscale BVP.

The first step requires choosing an appropriate scale (size). In general, an RVE
should be small enough to satisfy the principle of separation of scales1 but large
enough to accurately represent the microstructure and its phenomena (Geers
et al., 2010, Coenen, Kouznetsova, and Geers, 2012). Typical subscales com-
prise the mesoscale (∼ 10−3m) and microscale (∼ 10−6m); however, selecting
appropriate RVE sizes falls beyond the scope of this treatise.

The second step entails transferring the macroscale deformation gradient
onto the RVE via boundary conditions in exchange for a homogenized stress and
tangent stiffness operator in the third step (Geers et al., 2010). Three classical
options exist for defining boundary conditions (see Table 2.2). Among these,
periodic boundary conditions converge faster (with increasing RVE size) towards
the actual microstructural response (Svenning, Fagerström, and Larsson, 2017).

1.3 Study on Periodic Boundary Conditions

Although periodic boundary conditions are typically confined to deformation-
driven procedures, the principal stress necessary to substantiate the thesis state-
ment should ideally be derived by prescribing a uniaxial stress on the RVE.2

Fortunately, strong periodic boundary conditions support the application of ex-
ternal forces on the RVE corners to represent stress (van der Meer, 2016). In
unpublished work by Van der Meer, uniaxial stress was applied to a sample
of 48 different fiber-matrix composite RVEs at 46 different angles between 0o

and 90o with respect to the orientation of the RVE boundaries. The ultimate
applied stress in simulations with elasto-plastic matrix was recorded to generate
the ultimate principal stress (σ1) vs. orientation angle (θ) curves in Fig. 1.1.

Figure 1.1: Ultimate principal stress vs. orientation angle, strong periodic
boundary conditions

1The macroscale deformation gradient should essentially be constant over each RVE
2The correct uniaxial strain requires prior knowledge of the strain in the perpendicular

direction, which is not readily available with nonlinear heterogeneous materials.



1.3. STUDY ON PERIODIC BOUNDARY CONDITIONS 3

This experiment was performed for both a clockwise and counterclockwise
rotation of the load, resulting in different individual σ1–θ curves but the same
curve of average ultimate principal stress (σ̄1) vs. θ. This ratifies the existence
of a dependency between σ̄1 and θ. Hereinafter, it is demonstrated that this
dependency is not derived from having a small sample size, but rather the result
of choosing RVEs that are prone to strain localization under shear. The effect
of the localized shear bands on σ1 is discussed in detail in Chapter 6.

Figure 1.2: Histograms of the ultimate principal stresses

Null hypothesis significance testing is used to verify whether or not the RVEs
tend to have – on average – a lower σ1 when oriented at 44o.3 Let Ȳ1 and Ȳ2 be
random variables representing σ̄1 at θ = 0o and θ = 44o, respectively. Fig. 1.2
confirms that both variables can be well approximated by normal distributions:

Ȳ1 ∼ N(µ1, σ
2
1/n1),

Ȳ2 ∼ N(µ2, σ
2
2/n2).

Here, µi and σi are unknown population means and standard deviations and ni
is the sample size. The goal is to test whether changing θ from 0o to 44o altered
the population mean. That is, do Ȳ1 and Ȳ2 stem from the same population?
Can the difference in the sample means be attributed to the randomness of the
sample? These two questions are rephrased as the null and alternate hypothesis:

H0 :µ1 = µ2,

H1 :µ1 6= µ2.

The assumption of normality of Ȳ1 and Ȳ2 sanctions the use of Welch’s t-test to
verify H0 (Dekking, Kraaikamp, Lopuhaä, and Meester, 2005, p. 400). Using
this test, H0 is rejected in favor of H1 at the α = 0.05 significance level with
a p-value of 7.9 · 10−17. That is, the dependency between the σ̄1 and θ is most
likely not random. The statistical calculations are presented in Appendix A.

3The orientation angle was varied by 2o each time. Data is only available for 44o and 46o.
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1.4 Research Purpose

As an alternative to strong periodic boundary conditions, Larsson, Runesson,
Saroukhani, and Vafadari (2011) developed weak periodic boundary conditions,
with offer more flexibility regarding the deformation of the RVE boundary. The
objective of this treatise is to demonstrate whether enforcing weak periodic
boundary conditions instead of strong periodic boundary conditions does ame-
liorate the dependency between σ̄1 and θ.

First, the formulation of the weak periodic boundary conditions in (Larsson
et al., 2011) is extended to allow corner forces that represent macroscopic stress
tensors (section 3.1). This extended model is implemented using the Jem and
Jive C++ libraries (Dynaflow Research Group, n.d.) in Section 3.2. The model
is validated via linear-elastic and materially-nonlinear examples in Chapter 4.
The thesis statement is then tested per the methodology in Chapter 5. Finally,
Chapter 6 discusses the results and the effects of localized shear bands on σ̄1.

1.5 Notation

Tensors and tensor products are used throughout this treatise. Scalars and
scalar functions are denoted by lower-case italic letters such as a, b and n.
Vectors, except for σ and ε, are denoted by lower-case bold letters such as n.
Matrices are denoted by upper-case bold letters such as A, B and Σ. The inner
(dot) product (including matrix multiplication) is defined as the contraction
over the last index of the first tensor and the first index of the last tensor, or

a · b =
∑
i

aibi, (1.1)

A · b =
∑
j

aijbj , (1.2)

AB =
∑
j

aijbjk. (1.3)

For brevity, the dot is omitted when the product occurs between two matrices.
The double dot product is defined as the contraction over the two closest indices:

A : B =
∑
i

∑
j

aijbji. (1.4)

Finally, the outer product (also referred to as the dyadic product) is defined as

a⊗ b = aibj . (1.5)

All numerical examples in this treatise can be reproduced using a consistent set
of units.4 Herein, forces are implicitly given in Newtons and distances in mm.

4That is, derived units use the the units of their base units. E.g. stress is given in N/mm2.



Chapter 2

BACKGROUND

Materially nonlinear finite element analyses are characterized by changing tan-
gent operators (Dt) due to microstructural phenomena such as steel yielding and
concrete cracking. Dt is evaluated numerically at so-called integration points
(IP) either via macroscopic modeling or multiscale modeling (Runesson and
Larsson, 2011; Sandström, Larsson, and Runesson, 2014, p. 2).

Table 2.1: FEM constitutive modeling. From (Runesson and Larsson, 2011)
Macroscopic modeling Multiscale modeling
Microstructure response modeled Microstructure modeled explicitly
implicitly via internal variables using representative volume elements
Calibration from macroscale expe- Calibration from macroscale expe-
riments or subscale modeling riments or further subscale modeling

In macroscopic modeling, the effect of the microstructural behavior on Dt

is represented implicitly via internal variables (Runesson and Larsson, 2011).
In multiscale modeling, Dt is determined by upscaling the response of the de-
forming microstructure via computational homogenization (Kouznetsova et al.,
2010, pp. 1-4; Sandström et al., 2014, p. 2). The microstructure around each
IP is modeled explicitly using RVEs and a local BVP is solved on each RVE
(Larsson et al., 2011, p. 12; Sandström et al., 2014, p. 2). The macroscale defor-
mation gradient (u⊗∇) at each IP of the macroscale BVP is used to formulate
boundary conditions on its corresponding RVE (Kouznetsova et al., 2010, p. 7;
Geers et al., 2010, p. 2176; Coenen et al., 2012, p. 2). After solving the sub-
scale BVP, standard averaging equations yield the macroscopic stress tensor (Σ̄)
and a static condensation process yields Dt (Geers et al., 2010, p. 2176). This
process is illustrated in Fig. 2.1.

Common boundary conditions include prescribed displacements (Dirichlet),
prescribed boundary tractions (Neumann) and prescribed periodicity (strong
periodic) (Larsson et al., 2011, p. 11; Coenen et al., 2012, p. 2). Dirichlet bound-
ary conditions impose boundary displacements which conform strictly to u⊗∇,

5
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Figure 2.1: Computational homogenization. From (Geers, Kouznetsova, and
Brekelmans, 2010, p. 2176)

resulting in an overstiff prediction of Dt. Conversely, Neumann boundary con-
ditions prescribe minimal kinematic boundary conditions, thus underestimating
Dt (Coenen et al., 2012, p. 2). Strong periodic boundary conditions have shown
to provide a better estimate of the stiffness for both periodic and random mi-
crostructures (Larsson et al., 2011, p. 11; Coenen et al., 2012, p. 2). Regardless,
both Dirichlet and strong periodic boundary conditions constrain (to varying
degrees) the strain percolation path (strain localization) at the boundary (Co-
enen et al., 2012, p. 2). Table 2.2 summarizes the classical boundary conditions
for the subscale BVP.

Table 2.2: Classical boundary conditions. From (Coenen, Kouznetsova, and
Geers, 2012, p. 4)

BC type Effective stiffness Strain percolation path
Dirichlet Overestimation Constrained at boundary
Strong periodic Good estimate Only those respecting periodicity
Neumann Underestimation Sensitive to spurious localization

As an alternative, the weak periodic boundary conditions developed by
(Larsson et al., 2011) prescribe periodicity in a weak sense, thereby allowing
some non-periodic localization and improving the effective stiffness estimate
(Sandström et al., 2014, Svenning, Fagerström, and Larsson, 2016). Section 2.1
formulates the macroscopic problem and coupling of scales. Section 2.2 presents
the subscale boundary value problem and the boundary conditions. Finally, Sec-
tion 2.3 elaborates the Galerkin approximations for the FEM implementation.
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2.1 Macroscale Boundary Value Problem

2.1.1 Quasistatic Stress Problem

The macroscale problem is described by point-wise equilibrium on the domain
Ω, and corresponding Dirichlet and Neumann boundary conditions on ∂Ω ≡ Γ:

−Σ · ∇ = f in Ω, (2.1)

u = up on ΓD, (2.2)

t , Σ · n̂ = tp on ΓN. (2.3)

Σ is the first Piola-Kirchhoff stress (i.e. the transpose of the nominal stress),∇ is
the spatial gradient with respect to coordinates x in the reference configuration,
f is the vector of body forces (e.g., due to gravity) and n̂ is a normal unit vector
describing ΓN. The weak form of (2.1) is given by: Find u ∈ U(up) that solves∫

Ω

Σ : [δu⊗∇] d Ω =

∫
Ω

f · δu d Ω +

∫
ΓN

tp · δu d Γ, ∀δu ∈ U(0),

U(up) = {u ∈ [H(Ω)]d,u = up on ΓD}.
(2.4)

2.1.2 Macroscale-Subscale Transision

Separation of scales is now introduced. The local field around each IP is replaced
by a homogenized RVE occupying the subscale region Ω� with boundary Γ�

(Larsson et al., 2011, p. 12). The scales are coupled via the following averaging
expressions (Larsson et al., 2011, p. 12; Kouznetsova et al., 2010, p. 12):

〈y〉� ,
1

|Ω�|

∫
Ω�

y d Ω,

〈〈y〉〉� ,
1

|Γ�|

∫
Γ�

y d Γ.

(2.5)

The integrands in (2.4) are homogenized at each RVE using (2.5), such that∫
Ω

〈Σ : [δu⊗∇]〉� d Ω =

∫
Ω

〈f · δu〉� d Ω +

∫
ΓN

〈〈tp · δu〉〉� d Γ. (2.6)

The displacement field inside each RVE is given by (Larsson et al., 2011, p. 12):

u = uM + us, (2.7)

where uM is the macroscale component and us is the subscale fluctuation. First-
order homogenization implies a linear variation of uM within each RVE:

uM = ū + (ū⊗∇) · (x− x̄). (2.8)

The vector ū , 〈u〉� is equivalent to the macroscale displacement at x̄ , 〈x〉�.1

Assume tp and f are smooth enough over the RVE domain to be replaced by

1Each RVE is conveniently centered around its IP. That is, x̄ coincides with the IP location.
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t̄p , 〈〈tp〉〉� and f̄ , 〈f〉�.2 Per the Hill-Mandel macro-homogeneity condition
(Kouznetsova et al., 2010, p. 14), (2.6) is recast as: Find ū ∈ Ū(ūp) that solves∫

Ω

Σ̄ : [δū⊗∇] d Ω =

∫
Ω

f̄ · δū d Ω +

∫
ΓN

t̄p · δū d Γ, ∀δū ∈ Ū(0),

Ū(ūp) = {u ∈ [H1(Ω)]d,u = ūp on ΓD},
(2.9)

with the homogenized stress tensor expressed as Σ̄ , 〈Σ〉� and ūp , 〈up〉�.
The reader is referred to (Kouznetsova et al., 2010) for a thorough explanation
of multiscale homogenization and the coupling of scales.

2.2 Subscale Boundary Value Problem

2.2.1 Canonical Format of the RVE Problem

The subscale problem is also described by point-wise equilibrium, c.f. (2.1).
However, both u and t are a priori unknowns (Larsson et al., 2011, p. 14).
Ergo, the BVP on each RVE is stated as follows: Find u and t that solves∫

Ω�

Σ : [δu⊗∇] d Ω =

∫
Ω�

f · δu d Ω +

∫
Γ�

t · δu d Γ. (2.10)

Recognizing that rigid-body-motion does not alter the stress resultant from the
subscale BVP, the displacement is split into a constant and a varying component:

u = ū + u′ with ū ∈ R3, u′ ∈ U� = {u ∈ [H1(Ω�)]d, u(x̄) = 0}. (2.11)

Equation (2.10) is not solvable without removing ū (Larsson et al., 2011, p. 14).
Note that u′ = (ū ⊗ ∇) · (x − x̄) + us. Setting u′(x̄) = 0 implies us(x̄) = 0,
which conveniently yields u(x̄) = uM(x̄) = ū. The traction is similarly split:

t = t̄ + t′ with t̄ ∈ R3, t′ ∈ T� = {t ∈ [L2(Γ�)]d−1, 〈〈t〉〉� = 0}. (2.12)

The 〈〈t〉〉� = 0 requirement implies self-equilibrating traction forces (Larsson
et al., 2011, p. 14). Substituting u = ū+u′ into (2.10) yields (2.13)3 and (2.14):∫

Ω�

f d Ω · δū +

∫
Γ�

t d Γ · δū = 0, (2.13)∫
Ω�

Σ : [δu′ ⊗∇] d Ω =

∫
Ω�

f · δu′ d Ω +

∫
Γ�

t · δu′ d Γ. (2.14)

Expressing (2.13) as 〈f〉� · δū + |Γ�| / |Ω�| 〈〈t〉〉� · δū = 0 yields

t̄ , 〈〈t〉〉� = −|Ω�|
|Γ�|

〈f〉� . (2.15)

2This holds true if we restrict to the situation when |Ω�| → 0 and |Γ�| → 0.
3The strain energy term vanishes because δū⊗∇ = 0.
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Substituting t = t̄ + t′, with t̄ defined in (2.15), into (2.14) yields∫
Ω�

Σ : [δu′⊗∇] d Ω =

∫
Ω�

f · δu′ d Ω +

∫
Γ�

t′ · δu′ d Γ + t̄ ·
∫

Γ�

δu′ d Γ. (2.16)

Similarly, t = t̄ + t′ is substituted into (2.13) to derive the following expression:∫
Ω�

f · δa d Ω + t̄ ·
∫

Γ�

δa d Γ = 0, ∀δa ∈ R3. (2.17)

By this token, (2.16) simplifies to: Find u′ ∈ U� and t′ ∈ T� that solves∫
Ω�

Σ : [δu′ ⊗∇] d Ω =

∫
Γ�

t′ · δu′ d Γ, ∀δu′ ∈ U�. (2.18)

2.2.2 Classical Boundary Conditions

Solving (2.18) requires the introduction of boundary conditions which respect
the Hill-Mandel condition and the averaging assumptions used to derive (2.9).
The boundary conditions introduced in Table 2.2 do indeed satisfy these condi-
tions (see Kouznetsova et al., 2010, pp. 12-15).

Figure 2.2: RVE: (a) undeformed; (b) periodic displacements

The Dirichlet boundary conditions impose displacements on the boundary
of the RVE which conform strictly to the macroscopic displacement gradient:

u′ = (ū⊗∇) · (x− x̄), ∀x on Γ�. (2.19)

The fluctuation term is not allowed to exist on the boundary: us = 0 on Γ�.
In order to formulate strong periodic boundary conditions, Γ� is split into an
image boundary (Γ+

�) and a mirror boundary (Γ−�), such that Γ� = Γ+
�∪Γ−� (see

Fig. 2.2). The mapping ϕper : Γ+
� → Γ−� mirrors any x+ ∈ Γ+

� onto x− ∈ Γ−�.



10 CHAPTER 2. BACKGROUND

That is, x− = ϕper(x
+). Strong periodicity postulates a simultaneous variation

of u′ and t′ which allows us to exist on Γ� (Kouznetsova et al., 2010, p. 11):

Ju′K� = (ū⊗∇) · Jx− x̄K�, ∀x on Γ+
�, (2.20)

t′(x) = −t′(ϕper(x)), ∀x on Γ+
�, (2.21)

where Ju′K� , u′(x) − u′(ϕper(x)). Equation (2.19) implies JusK� = 0 on Γ+
�.

The macroscopic component, (ū⊗∇) ·(x− x̄), is prescribed on Γ� in an average
sense due to the strong periodicity requirement of us on Γ�. Lastly, Neumann
boundary conditions enforce constant tractions on the RVE boundary given by

t′ = Σ̄ · n̂ on Γ�. (2.22)

Note that condition (2.22) is, in and of itself, insufficient to define and solve the
BVP, as is shown in Section 2.3.4.

2.2.3 Weak Periodic Boundary Conditions

Essentially, weak periodic boundary conditions present a variational (weak) form
of the periodicity constraint in (2.20) (Larsson et al., 2011, p. 15):∫

Γ+

�

δt′ · JusK� d Γ = 0, ∀δt′ ∈ T+
�, (2.23)

where T+
� is the trace of functions in T� on the image boundary Γ+

�.4 Thence,
all trial and test functions reside on Γ+

�. Using criterion (2.21), it follows that∫
Γ�

t′ · δu′ d Γ =

∫
Γ+

�

t′ · δu′ d Γ +

∫
Γ+

�

t′(ϕper(x)) · δu′(ϕper(x)) d Γ =∫
Γ+

�

t′ · (δu′ − δu′(ϕper(x))) d Γ =

∫
Γ+

�

t′ · Jδu′K� d Γ. (2.24)

Using (2.24), equation (2.18) is reformulated for weak micro-periodicity as: Find
u′ ∈ U� and t′ ∈ T� for a given macroscopic strain (ū⊗∇) that solves∫

Ω�

Σ : [δu′ ⊗∇] d Ω−
∫

Γ+

�

t′ · Jδu′K� d Γ = 0, ∀δu′ ∈ U�,

−
∫

Γ+

�

δt′ · Ju′K� d Γ = −
∫

Γ+

�

δt′ · (ū⊗∇) · Jx− x̄K� d Γ, ∀δt′ ∈ T�.

(2.25)

Notice that (2.25)b is a reformulation of (2.23). Hereinafter, the following change
in notation is adopted for the sake of brevity: u′ → u and t′ → t.

4Hereinafter, T+
� is simply referred to as T�.
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2.3 Galerkin Approximations

Weak periodic boundary conditions serve as a transition between the strong
periodic and Neumann boundary conditions. As shown next, Dirichlet and
strong periodic boundary conditions possess the finest traction meshes (T h) and
most restricted displacement fields (Uh) whereas Neumann boundary conditions
possess the coarsest T h and least restricted Uh (Svenning et al., 2016, p. 6).

2.3.1 Weak Periodic Boundary Conditions

The Galerkin approximation for the BVP with weak micro-periodicity follows:
Find uh ∈ Uh

� ⊂ U� and th ∈ Th
� ⊂ T� for a given strain ū⊗∇ that solves∫

Ω�

Σ : [δuh ⊗∇] d Ω−
∫

Γ+

�

th · JδuhK� d Γ = 0, ∀δuh ∈ Uh
�,

−
∫

Γ+

�

δth · JuhK� d Γ = −
∫

Γ+

�

δth · (ū⊗∇) · Jx− x̄K� d Γ, ∀δth ∈ Th
�.

(2.26)

A mixed format is used for weak micro-periodicity. Its main features follow:

• The traction mesh T h should be more coarsely discretized than Uh on Γ�

without voiding the LBB-condition (Svenning et al., 2016, p. 8).

• The tractions have no special regularity requirements: constant, linear or
higher-order basis functions can be chosen (Larsson et al., 2011, p. 17).

• Strictly periodic meshes – that is, nodal positions mirrored exactly from
Γ+
� to Γ−� – may be used but are not required (Larsson et al., 2011, p. 18).

• Condition (2.21) is imposed via (2.24): self-equilibrating tractions do not
arise naturally if (2.20) is enforced weakly (Öhman et al., 2015, p. 8).

The last point is crucial: the system of equations that arises from discretizing
(2.26) can only be assembled and solved if (2.24) is used to formulate (2.26)a.
That is, anti-periodicity of tractions (2.21) is imposed a priori via identity (2.24).

Construction of the Traction Mesh

In this treatise, T h is constructed for piecewise linear and continuous tractions
following the procedure in (Larsson et al., 2011, pp. 17–18). The standard
traction mesh is created by projecting all nodes on Γ−� and Γ+

� onto Γ+
�. Then,

T h is coarsened by removing nodes that are closer than a given tolerance to
other nodes until the desired dimension of Th

� has been achieved (Fig. 2.3).
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Figure 2.3: RVE: (a) standard traction mesh; (b) reduced traction mesh; (c)
Neumann traction mesh. From (Larsson, Runesson, Saroukhani, and Vafadari,
2011, p. 18)

2.3.2 Dirichlet Boundary Conditions

The Galerkin discretization for the BVP with Dirichlet boundary conditions
follows (Larsson et al., 2011, p. 17): Find uh ∈ UD

� ⊂ Uh
� for a given ū⊗∇ that

solves ∫
Ω�

Σ : [δuh ⊗∇] d Ω = 0, ∀δuh ∈ UD
�(0),

UD
�(ū⊗∇) = {u ∈ Uh

�, u = (ū⊗∇) · (x− x̄) on Γ�}.
(2.27)

Note that the traction space Th
� is left unrestricted. On the other hand, UD

�
restricts displacement of the boundary nodes to (Kouznetsova et al., 2010, p. 16)

up,i = (ū⊗∇) · (xp,i − x̄) for i = 1, 2, · · · , np, (2.28)

where p stands for prescribed and np is the total number of prescribed nodes.
The nonlinear system of equations from (2.27) is assembled and partitioned:[

Kff Kfp

Kpf Kpp

]{
uf

up

}
=

{
0
−fi

}
, (2.29)

where fi is the internal reaction force vector at the prescribed nodes. System
(2.29) can be solved using, for instance, displacement control Newton-Raphson.
Per (Kouznetsova et al., 2010, p. 19), the macroscopic stress tensor is given by

Σ̄ =
1

|Ω�|

np∑
i=1

fi ⊗ (xi − x̄), (2.30)

where fi are the resulting external forces at the boundary nodes.
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2.3.3 Strong Periodic Boundary Conditions

The Galerkin discretization for the BVP with strong periodic boundary condi-
tions follows: Find uh ∈ US

� ⊂ Uh
� for a given ū⊗∇ that solves∫

Ω�

Σ : [δuh ⊗∇] d Ω = 0, ∀δuh ∈ US
�(0),

US
�(ū⊗∇) = {u ∈ Uh

�, JuK� = (ū⊗∇) · Jx− x̄K� on Γ+
�}.

(2.31)

The traction space Th
� is left unrestricted. Additionally, Th

� equals the trace of
Uh

� on Γ−� and Γ+
�,5 which means Juh

s K� ∈ Th
�. Thus, is is possible to choose

δt = Juh
s K� ∈ Th

�. Then, the only solution to (2.26)b is Juh
s K� = 0 (Larsson et

al., 2011, p. 18; Svenning et al., 2016, p. 6). Strong periodic boundary conditions
are enforced on strictly periodic meshes by treating two degrees of freedom
on opposing sides as a single degree of freedom, i.e. master-slave elimination
(Sandström et al., 2014, p. 2). Consider the RVE in Fig. 2.2(b). Let nodes 1,2
and 4 abide by Eq. (2.28). For the remaining nodes, (2.20) is rewritten in a
format more suitable for FEM (Kouznetsova et al., 2010, p. 17). For 2D, the
RVE edges are renamed T, B, R and L (top, bottom, right and left) such that

uT = uB + (ū⊗∇) · (x4 − x1) = uB + up,4 − up,1,

uR = uL + (ū⊗∇) · (x2 − x1) = uL + up,2 − up,1,

up,i = (ū⊗∇) · (xi − x̄) for i = 1, 2, 4.

(2.32)

Let ui be the independent (master) degrees of freedom and ud be the dependent
(slave) degrees of freedom.6 Equations (2.31) and (2.32) are then recast as[

Ci Cd

]{ui

ud

}
= 0

yields−−−−→ ud = −C−1
d Ciui (2.33)

Consider the system of equations with only the boundary degrees of freedom:[
Kii Kid

Kdi Kdd

]{
δui

δud

}
=

{
δri

δrd

}
. (2.34)

Letting Cdi = −C−1
d Ci, (2.34) can be re-framed as

[Kii + KidCdi + C>diKdi + C>diKddCdi]δui = {δri + C>diδrd} (2.35)

That is, the dependent nodes have been eliminated from the system of equa-
tions. Per (Kouznetsova et al., 2010, pp. 19–20), the anti-periodic tractions arise
naturally from this formulation. Thus, the macroscopic stress tensor is simply

Σ̄ =
1

|Ω�|
∑

i=1,2,4

fi ⊗ (xi − x̄), (2.36)

where fi are the reaction forces at the three prescribed corner nodes in Fig. 2.2.
Instead of prescribing (ū⊗∇), it is possible to apply fi to represent Σ̄. In other
words, periodic boundary conditions can be used in force-driven procedures.

5The standard traction mesh is applied to a strictly periodic mesh, thus T−
� = T+

� = Th
�.

6The choice of ui is arbitrary, but it must include up.
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2.3.4 Neumann Boundary Conditions

The Galerkin discretization for the Neumann boundary conditions follows (Lars-
son et al., 2011, p. 17): Find uh ∈ Uh

� and Σ̄ ∈ R3×3 given ū⊗∇ that solves∫
Ω�

Σ : [δuh ⊗∇] d Ω−
∫

Γ+

�

(Σ̄ · n̂) · JδuhK� d Γ = 0, ∀δuh ∈ Uh
�,

−
∫

Γ+

�

(δΣ̄ · n̂) · JuhK� d Γ = −δΣ̄ : [ū⊗∇], ∀δΣ̄ ∈ R3×3.

(2.37)

Neumann boundary conditions constitute the weakest form of micro-periodicity:
T h has a single element with constant traction in each RVE face (Fig 2.4(c)).
That is, TN

� is restricted to constant tractions given by Σ̄·n̂ (Larsson et al., 2011,
pp. 11–18; Svenning et al., 2016, p. 6). Also note that, opposite to the Dirichlet
boundary conditions, the displacement space Uh

� is now left unrestricted.

Figure 2.4: (a) Particle-matrix composite. Macroscale shear deformation: (b)
weak periodic boundary conditions; (c) Neumann boundary conditions (Larsson,
Runesson, Saroukhani, and Vafadari, 2011, p. 16)

Table 2.3 summarizes and compares the boundary conditions discussed herein.
Overall, weak periodic boundary conditions present a more general formulation
which fills the gap between strong periodic and Neumann boundary conditions.

Table 2.3: Comparison of classical and weak periodic boundary conditions

Dirichlet Periodic
Weak

Periodic
Neumann

Traction
Space Th unrestricted unrestricted

partially
restricted

restricted

Disp.
Space Uh restricted

partially
restricted

weakly
restricted

unrestricted

Traction
Mesh T h

projection
Uh onto Γ�

standard
mesh

coarser
mesh

coarsest
mesh



Chapter 3

IMPLEMENTATION

The Galerkin approximation of the weak form of the BVP - described by (2.26) -
is solved by discretizing the domain and boundary (Ω� and Γ�) into finite-sized
elements with known test functions (δuh and δth). This involves the creation of
a displacement mesh and a traction mesh (Uh and T h) with shape functions for
each node. In Section 3.1, (2.26) is discretized using these functions. Subsections
3.1.1 and 3.1.2 linearize these equations so they can be solved iteratively, e.g.
using Newton-Raphson methods. Subsequently, Section 3.2 describes the C++
implementation of these equations using the Jem and Jive libraries by (Dynaflow
Research Group, n.d.).

3.1 FEM Discretization

First, the second order tensors in (2.26)a are rewritten as vectors using Voigt
notation:∫

Ω�

ε(δuh) · σ(uh) d Ω−
∫

Γ+

�

th · JδuhK� d Γ = 0, ∀δuh ∈ Uh
�, (3.1)

where ε(δuh) ≡ δuh ⊗∇ and σ(uh) ≡ Σ. The finite-dimensional spaces of trial
solutions Uh

� and Th
� are constructed by limiting uh and th to vary linearly over

each element in Uh and T h. This is achieved by introducing linearly independent
shape functions ni(x) and hj(x) for each node i in Uh and j in T h. The shape
functions have a value of 1 at their corresponding node and 0 in all other nodes.
uh and th are then described by linear combinations of the shape functions
times their corresponding discrete nodal values, or

uh , N · û, (3.2)

th , H · t̂, (3.3)

where N and H are the matrices of shape functions associated with Uh and T h,
and û and t̂ are vectors of nodal displacements and nodal tractions, respectively.

15
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The Bubnov-Galerkin approximation requires that the weight and trial functions
originate from the same finite-dimensional space (Wells, 2009, p. 32), hence

δuh , N · δû, (3.4)

δth , H · δt̂. (3.5)

The vector û includes the boundary displacements û+ and û− on Γ+
� and Γ−�.

There are elements on the boundary of Uh with shape functions contained in
N+ and N− that map said boundary displacements onto uh+ and uh-, thus

JuhK� = N+ · û+ −N− · û−,
JδuhK� = N+ · δû+ −N− · δû−.

(3.6)

Au contraire, t̂ comprises only the nodal boundary tractions on Γ+
�.1 Now, the

vector û is mapped onto the strain vector ε via the so-called B-matrix:

ε(δuh) , B · δû. (3.7)

Subsequently, the linear-elastic material stiffness matrix (D) maps ε into σ, or

σ(uh) , DB · û. (3.8)

The system of equations needs to be linearized to include material nonlinearities
in the form of tangent stiffness operators.2 Substituting the preceding definitions
into (3.1) yields the finite element discretization of the Galerkin approximation:∫

Ω�

(B · δû) · (DB · û) d Ω−
∫

Γ+

�

(N+ · δû+ −N− · δû−) · (H · t̂) d Γ = 0. (3.9)

Equation (3.9) is rendered into a format suitable for computer implementation:

δû ·Kuu · û− δû+ ·K+
ut · t̂ + δû− ·K−ut · t̂ = 0, (3.10)

where

Kuu =

[ ∫
Ω�

B>DB d Ω

]
,

K+
ut =

[ ∫
Γ+

�

N+>H d Γ

]
,

K−ut =

[ ∫
Γ+

�

N−
>

H d Γ

]
.

The global stiffness matrix Kuu is evaluated as usual. The matrices K+
ut and K−ut

augment Kuu to form a so-called bordered stiffness matrix, K0 (See subsection

1The condition of anti-periodicity of tractions in (2.21) stipulates that t+ = −t−.
2Hereinafter, the tangent stiffness operators are denoted by D and map ε̇ onto σ̇.
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3.2.7). Equation (3.10) represents the discretized version of the equilibrium
equation. Having added new degrees of freedom in the form of t̂, additional
equations are required to keep the linearized problem well-posed. These addi-
tional equations follow from the weak micro-periodicity requirement in (2.26)b:

−
∫

Γ+

�

δth · JuhK� d Γ = −
∫

Γ+

�

δth · (ū⊗∇) · (x+ − x−) d Γ, ∀δth ∈ Th
�. (3.11)

Substituting the definitions (3.5) and (3.6) into (3.11), the Galerkin form of the
weak micro-periodicity requirement is cast into the finite element discretization:

−
∫

Γ+

�

(H · δt̂) · (N+ · û+ −N− · û−) d Γ =

−
∫

Γ+

�

(H · δt̂) · (ū⊗∇) · (x+ − x−) d Γ. (3.12)

Equation (3.12) is rendered into a format suitable for computer implementation:

−K+
tu · û+ + K−tu · û− = f t

ext, (3.13)

where

K+
tu =

[ ∫
Γ+

�

H>N+ d Γ

]
= K+

ut
>
,

K−tu =

[ ∫
Γ+

�

H>N− d Γ

]
= K−ut

>
,

f t
ext = −

∫
Γ+

�

H> · ((ū⊗∇) · (x+ − x−)) d Γ.

The transpose of matrices K+
ut and K−ut also augment Kuu to form K0.

3.1.1 Nonlinear Solution With Prescribed Strain

For an iterative solution, equations (3.1) and (3.11) must be expressed as follows:

K0

{
∆û

∆t̂

}
= f t+∆t

ext − fint(û
t, t̂t), (3.14)

where K0 is the bordered tangent stiffness matrix, f t+∆t
ext is the vector of ex-

ternally applied forces at time t + ∆t and fint(û
t, t̂t) is the vector of internal

(reaction) forces due to displacements and tractions evaluated at time t. The
solution increment vector is given by ∆t̂ = t̂t+∆t − t̂t and ∆û = ût+∆t − ût.
(3.14) is obtained by letting th → th +∆th and uh → uh +∆th. Consider (3.1):{∫

Ω�

ε(δuh) · σ(∆uh) d Ω−
∫

Γ+

�

∆th · JδuhK� d Γ

}
=

−
{∫

Ω�

ε(δuh) · σ(uh) d Ω−
∫

Γ+

�

th · JδuhK� d Γ

}
, ∀δuh ∈ Uh

�. (3.15)
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Substituting definitions (3.4) through (3.8), the system (3.15) is rendered into
the finite element discretization suitable for computer implementation:

{
δû ·Kuu ·∆û− δû+ ·K+

ut ·∆t̂ + δû− ·K−ut ·∆t̂

}
=

−
{
δû ·

∫
Ω�

B>σ(û) d Ω− δû+ ·K+
ut · t̂ + δû− ·K−ut · t̂

}
. (3.16)

The matrices K+
ut and K−ut – given by (3.10) – augment Kuu to form K0. Like-

wise, the vectors -K+
ut · t̂ and K−ut · t̂ are added to fint. Now, consider (3.11):

{
−
∫

Γ+

�

δth · J∆uhK� d Γ

}
= −

∫
Γ+

�

δth · (ū⊗∇) · (x+ − x−) d Γ

−
{
−
∫

Γ+

�

δth · JuhK� d Γ

}
, ∀δth ∈ Th

�. (3.17)

Substituting definitions (3.5) and (3.6), the system (3.17) is rendered into the
appropriate finite element discretization suitable for computer implementation:{

−K+
tu ·∆û+ + K−tu ·∆û−

}
= f t

ext −
{
−K+

tu · û+ + K−tu · û−
}
. (3.18)

The matrices K+
tu and K−tu and the vector f t

ext are given by (3.13).

3.1.2 Nonlinear Solution with Prescribed Force

One goal of this treatise is to present a formulation in which it is possible
to prescribe forces at the corner nodes instead of a macroscopic strain tensor.
Assuming (ū⊗∇) is imposed on the corner nodes as in (2.32), f t

ext reduces to

f t
ext = −

∫
Γ+

�

H> · (û+
cor − û−cor) d Γ. (3.19)

û+
cor is the displacement of a corner x+

cor on Γ+
� and û−cor = u(ϕper(x

+
cor)) on Γ−�.

The micro-periodicity requirement in (3.11) is modified per (3.19) such that

−
∫

Γ+

�

δth · JuhK� d Γ +

∫
Γ+

�

δth · (û+
cor − û−cor) d Γ = 0. (3.20)

The assumption that (ū ⊗ ∇) is prescribed and enforced on û±cor gives rise to
reaction forces at the corners which adhere to (2.36) by enforcing (2.21). That
is, they are representative of the macroscopic stress. Instead of doing this, it is
possible to apply the reaction forces at the corners and solve for û±cor iteratively.
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Figure 3.1: RVE: (a) anti-periodic tractions; (b) corner forces

Consider forces f2 and f4 on nodes 2 and 4 in Fig. 3.1. It is first proven that∫
ΓR

t d Γ = f2 and

∫
ΓT

t d Γ = f4. (3.21)

Per (Kouznetsova et al., 2010, p. 13), the macroscopic stress tensor is given by

Σ̄ =
1

|Ω�|

∫
Γ�

t⊗ (x− x̄) d Γ =
1

|Ω�|

[
∆x
∫

ΓR
tx d y ∆y

∫
ΓT
tx dx

∆x
∫

ΓR
ty d y ∆y

∫
ΓT
ty dx

]
. (3.22)

The macroscopic stress tensor also equals to (Kouznetsova et al., 2010, p. 21):

Σ̄ =
1

|Ω�|
∑

i=1,2,4

fi ⊗ (xi − x̄) =
1

|Ω�|

[
∆xfx2 ∆yfx4

∆xfy2 ∆yfy4

]
. (3.23)

Noting that ∆x 6= 0 and ∆y 6= 0 and equating (3.22) to (3.23) results in∫
ΓR

tx d Γ = fx2,

∫
ΓR

ty d Γ = fy2,∫
ΓT

tx d Γ = fx4,

∫
ΓT

ty d Γ = fy4.

(3.24)

(3.24) is simplified to (3.21), thereby completing the proof.3 For brevity, f2 and
f4 are now denoted f+

cor (which represents the sum of all corner forces on Γ+
�):∫

Γ+

�

t d Γ = f+
cor. (3.25)

Equation (3.25) makes reference to only the forces on Γ+
�. The reason is that û−cor

is set to zero. Therefore, prescribing a force on that corner becomes redundant.

3The complete derivations required for the proof are relegated to Appendix B.
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All terms that need to be solved for are incorporated into the potential energy:

Π(uh, th) =∫
Ω�

ε · σ d Ω−
∫

Γ+

�

th · JuhK� d Γ +

(∫
Γ+

�

th d Γ− f+
cor

)
· (û+

cor − û−cor). (3.26)

The potential energy is minimized to derive the governing equations. This is
achieved by finding the variation of Π and setting it equal to zero:

δΠ(uh, th, δuh, δth) =∫
Ω�

δε · σ d Ω−
∫

Γ+

�

th · JδuhK� d Γ +

(∫
Γ+

�

th d Γ− f+
cor

)
· (δû+

cor − δû−cor)

−
∫

Γ+

�

δth · JuhK� d Γ +

∫
Γ+

�

δth d Γ · (û+
cor − û−cor) = 0. (3.27)

Equation (3.27) is written in a format suitable for computer implementation:

δû ·Kuu · û∓ δû± ·K±ut · t̂± δû±cor ·
∫

Γ+

�

H d Γ · t̂∓ δû±cor · f+
cor

+ δt̂ ·
{
∓K±tu · û± ±

∫
Γ+

�

H> d Γ · û±cor

}
= 0 (3.28)

Since (3.28) must hold for all δû ∈ Uh
� and δt̂ ∈ Th

�, then it can be split into

δû ·Kuu · û∓ δû± ·K±ut · t̂± δû±cor ·
∫

Γ+

�

H d Γ · t̂∓ δû+
cor · f±cor = 0,

∓K±tu · û± ±
∫

Γ+

�

H> d Γ · û±cor = 0. (3.29)

When prescribing a force, ûcor must be solved for iteratively. Therefore, (3.29)
is linearized by letting û = u + ∆u, t = t + ∆t and û±cor = û±cor + ∆û±cor:{

δû ·Kuu ·∆û∓ δû± ·K±ut ·∆t̂± δû±cor ·
∫

Γ+

�

H d Γ ·∆t̂
}

= ±δû±cor · f+
cor

−
{
δû ·

∫
Ω�

B>σ(û) d Ω∓ δû± ·K±ut · t̂± δû±cor ·
∫

Γ+

�

H d Γ · t̂
}
. (3.30)

and{
∓K±tu ·∆û±±

∫
Γ+

�

H> d Γ·∆û±cor

}
= −

{
∓K±tu ·û±±

∫
Γ+

�

H> d Γ·û±cor

}
. (3.31)

The matrices K±ut and K±tu are defined in (3.10) and (3.13), respectively. Note
that f t

ext – given by (3.19) – is now included in fint because it is a function of
the displacements at the corner nodes if the strain (ū⊗∇) is not prescribed.
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3.2 Jem-Jive Implementation

3.2.1 General Remarks

The nomenclature is adapted for computer implementation. To start with,
corners 1, 2 and 4 are re-branded as corner-0, corner-x and corner-y. Similarly,
the coordinate axes and boundary faces are re-numbered according to Fig. 3.2.

Figure 3.2: RVE: (a) mathematical notation; (b) FEM notation

The Uh mesh is generated using gmsh 3.0 (Geuzaine and Remacle, 2018) with
well defined boundary nodes. However, the center node x̄ may not have been
specified. Thus, the current implementation has the following characteristics:

1. The RVE is centered around corner-0 instead of x̄. I.e., u′(corner-0) = 0.

2. Consequently, uM = ū+(ū⊗∇)·(x−corner-0), and thus us(corner-0) = 0.

3. There is one vector per face containing the Uh boundary node indices of
that face in ascending order of x- or y-coordinates.

4. Each vector of Uh node indices is stored in order of ascending face in a
vector array called bndNodes .

5. There is one vector per ix containing the T h node indices on the face
perpendicular to ix (also in ascending order of x- or y-coordinates).

6. Each vector of T h node indices is stored in order of ascending ix in a
vector array called trNodes .

The first two points entail a different removal of rigid body motion, which does
not alter the resulting stress distribution. On the other hand, fixing u(corner-0)
requires that the forcing vector prescribed by (3.19) become

f t
ext = −

{∫
ΓR

H>u(corner-x) d Γ on face = 1∫
ΓT

H>u(corner-y) d Γ on face = 3
. (3.32)
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3.2.2 Program Structure

The weak micro-periodicity requirement is implemented using the Jem and Jive
C++ libraries (Dynaflow Research Group, n.d.). Jem and Jive form a numerical
toolkit for solving partial differential equations. Jive, in particular, provides
many useful classes for building FEM-applications (such as classes for handling
node sets, element sets, degrees of freedom and constraints). Besides these
classes, Jive also provides an environment which divides programs into models
and modules. Models are classes that implement a given aspect of an application
(for example, defining loads, creating stiffness matrices or assigning constraints).
Modules are classes that implement the solution algorithms: they read inputs
and issue commands to the models in order to run the program. Decoupling
programs into models and modules which must conform to abstract model and
module classes facilitates the implementation and re-use of models and modules.

Module Class Definition

A module is an instance of a class derived from an abstract module class. This
template prescribes three public methods: init, run and shutdown. The first
two methods return an enum called Status with values: OK, DONE or EXIT.

Figure 3.3: Jive module class definition

Typical Jive-based FEM applications require a properties file containing the
parameters pertinent to the current analysis and the names of any other input
files required by the program (e.g. mesh, load and constraints). This input file
is first parsed by a Properties object called props. The modules can then be
initialized using props. Each module contains a name used to find its runtime
parameters in props. Modules read data from and write data to a previously
initialized Properties object named globdat, which contains global data such
as the model tree and the solution vector. Some typical Jive modules are:

• the InputModule, which constructs the mesh and stores it in globdat;

• the InitModule, which constructs a model tree and stores it in globdat;

• the LinsolveModule, which asks the model tree to assemble K0 and fint,
runs a (specified) solver and stores the solution vector in globdat; and

• the OutputModule, which reads the solution vector and writes it to a file.

Another layer of abstraction is added by grouping a program’s modules in a
ChainModule, which is essentially a module that contains all necessary modules
as children in the necessary order of execution. The modules are executed by
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Figure 3.4: Example module chain

Jive’s Application::exec function, which calls the init, run and shutdown

methods of the ChainModule for as many times as needed to complete an anal-
ysis. In turn, the ChainModule calls the same methods from its children, dis-
carding those which are DONE. Application::exec also handles output streams,

init run EXIT? shutdown
Yes

No

Figure 3.5: Application::exec flowchart

memory errors and any other exceptions thrown during execution. The modules
issue commands to the models by calling a takeAction method implemented in
every model. The modules pass a string specifying the action and a Properties
object called params with the necessary parameters. Jive defines a collection
of standard actions used by the built-in Jive modules (Fig 3.6). Weak micro-
periodicity is integrated into a program that performs these same actions.

Model
Construction

INIT

ADVANCE
GET EXT VECTOR
GET CONSTRAINTS

GET MATRIX 0 COMMIT

SHUTDOWN

Model
Destruction

Figure 3.6: Standard actions flowchart
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Model Class Definition

A model is an instance of a class derived from an abstract model class. Of
the following four public methods: constructor, configure, getConfig and
takeAction; at least the constructor and takeAction need to be implemented.

Figure 3.7: Jive model class definition

Models implement algorithms for computing the external and internal force
vectors (fext and fint), the stiffness matrix (K0), and the constraints. When a
module calls a models’ takeAction method, the model executes the task and
updates the parameters (fext, fint, . . . ). If successful, takeAction returns True.

MatrixModel

MultiModel

MatrixFibers PeriodicBCModel

Figure 3.8: Example model tree

A single model need not perform all tasks. Instead, multiple models are usually
combined into a model tree. Consider, for example, the subscale model with
fibrous material surrounded by a matrix in Fig. 2.4(a). Its model tree comprises:

• the MatrixModel located at the root, which acts as a node with a single
child and manages the MatrixBuilder object used to assemble K0;

• the MultiModel, which acts as a node with several child models – its
takeAction method simply passing any commands onto its children;

• the Fibers and Matrix models, which return an updated K0 and fint upon
receiving the GET MATRIX 0 command from the MultiModel; and

• the PeriodicBCModel, which returns an updated Constraints object upon
receiving the GET CONSTRAINTS command from the MultiModel.

This list (and thus Fig 3.8) is not comprehensive. Additional models may be
required for applying external forces (fext) or using solvers such as arc-length. In
fact, corner forces are applied to the RVE in Fig. 4.5 using the DispArclenModel.
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3.2.3 Weak Periodic Boundary Conditions Model

The weak periodic boundary conditions model (WeakPBCModel) is largely
based on the strong periodic boundary conditions model (PeriodicBCModel) im-
plemented by van der Meer (2016). Thus, the WeakPBCModel is implemented
as a child of the PeriodicBCModel in order to access its member variables and
private methods. It implements the following two public methods:

• The constructor of the WeakPBCModel calls the PeriodicBCModel con-
structor and instantiates the member variables in subsection 3.2.4.

• takeAction specifies which private methods are called based on the action
issued by the ChainModule (and passed on by the parent model).

The following PeriodicBCModel private methods are called by takeAction:

• advance scales the imposedStrain when ADVANCE is issued.

• fixCorner fixes corner-0 when GET CONSTRAINTS is issued.

• applyStrain imposes displacements on corner-x and corner-y (due to
imposedStrain ) when GET CONSTRAINTS is issued.

• checkCommit checks and updates the solution when COMMIT is issued.

Additionally, the WeakPBCModel implements the following private methods:

• init initializes all variables in subsection 3.3.4 when INIT is issued. It
calls the following functions to initialize bndNodes , dx0 and trNodes :

– sortBndNodes sorts all vectors in bndNodes by calling

∗ sortBndFace to sort each vector of node indices in bndNodes

in order of ascending x- or y-coordinates;

– findSmallestElement loops through all vectors in bndNodes and
assigns the smallest dx and d y between each pair of nodes to dx0 ;

– createTractionMesh maps all nodes in bndNodes onto Γ+
�, stores

their indices in trNodes , sorts them and coarsens them by calling

∗ sortBndFace to sort each vector in trNodes , and

∗ coarsenMesh to delete nodes from each vector in trNodes .

• augmentMatrix performs the assembly procedure outlined in subsection
3.2.7 when GET MATRIX 0 or GET INT VECTOR is issued and calls

– getTractionMeshNodes to obtain the pair of nodes in trNodes that
corresponds to (encapsulates) the current IP on the boundary of Uh.
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3.2.4 Initialization

The model tree is constructed by the InitModule, which calls the constructor of
the model type specified in props.4 It then issues the INIT command to finish
initializing the (instance) member variables of each model in the tree. For the
PeriodicBCModel, these include:

• rank : number of dimensions of the global topology

• nodes : NodeSet for retrieving nodal coordinates

• dofs : reference to the DofSpace object (table of degrees of freedom)

• cons : reference to the Constraints object (table of constraints)

• dofTypes : vector for retrieving dof indices from dofs

• bndNodes : array of vectors of Uh boundary node indices

• masters : vector of corner node indices (corner-x and corner-y)

• ifixed : index of corner-0

• imposedStrain : vector of applied strain rate

• dx : vector of RVE dimensions

The WeakPBCModel adds the following member variables to this list:

• nodes : XNodeSet to create the traction mesh nodes5

• bshape : reference to BoundaryShape for calculating shape functions

• nIP : number of integration points associated with bshape

• nnod : number of nodes associated with bshape

• ndof : number of dofs associated with bshape

• localrank : number of dimensions of the local topology of bshape

• trNodes : array of vectors of T h node indices

• box : vector of specimen coordinates

• dx0 : vector of smallest element size along each axis

• cf : coarsening factor

Most of these members are initialized by a private method called init imple-
mented in the WeakPBCModel, which calls subroutines for sorting the boundary
nodes (sortBndNodes ), finding the smallest element (findSmallestElement )
and creating the traction mesh (createTractionMesh ).

4Each node of the model tree calls the constructor of its corresponding children.
5Extends the NodeSet nodes into a XNodeSet to enable the creation of new nodes.
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3.2.5 Sorting Boundary Nodes

The boundary nodes are sorted by sortBndNodes and sortBndFace . The first
one passes on each vector in bndNodes – together with an index – to the latter.
In turn, sortBndFace uses bubble sort to re-arrange the given vector of node
indices in order of ascending x- or y-coordinates based on the given index.6

Start

face = 0

Map face onto ix: int ix = face/2

Get correct index: index = (ix == 0?) 1:0

sortBndFace (bndNodes [face], index)

Increment face

face < 2*rank

Figure 3.9: sortBndNodes ()

bndFace, index

in = 0

jn = 0

c0 = coordinates of node bndFace[jn]

c1 = coordinates of node bndFace[jn+1]

c0[index] >

c1[index]?

Swap bndFace[jn] and bndFace[jn+1]

Increment jn

Increment in

Yes

No

jn < bndFace.size()-1-in

in < bndFace.size()

Figure 3.10: sortBndFace (bndFace, index)

6index = 0 for x-coordinates and 1 for y-coordinates.
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3.2.6 Traction Mesh Creation

The traction mesh is constructed per the procedure outlined in (Larsson et al.,
2011, pp. 17–18). This procedure has the following steps:

1. findSmallestElement loops through all vectors in bndNodes and assigns
the smallest (non-zero) dx and d y between each pair of nodes to dx0 .

2. createTractionMesh projects all nodes from bndNodes onto Γ+
� and

stores the indices of the new nodes in the corresponding vector in trNodes .

3. It then sorts and coarsens (erases indices from) each vector in trNodes

by calling sortBndFace (Fig. 3.10) and coarsenMesh (Fig. 3.13).

The first two steps are illustrated in Fig. 3.11 and Fig. 3.12. The last step can
be appreciated in Fig. 3.10 and Fig. 3.13.

Start

face = 0

Map face onto ix: int ix = face/2

Get correct index: index = (ix == 0?) 1:0

in = 0

c0 = coordinates of bndNodes[face][in]

c1 = coordinates of bndNodes[face][in+1]

dx = c1[index] - c0[index]

dx <

dx0 [index]?

dx0 [index] = dx

Increment in

Increment face

Yes

No

in < bndNodes [face].size()-1

face < 2*rank

Figure 3.11: findSmallestElement ()
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Start

ix = 0

Nodes on Γ−�: inodes = bndFace [2*ix]

Nodes on Γ+
�: jnodes = bndFace [2*ix+1]

in = 0

coords = coordinates of inodes[in]

Map onto Γ+
�: coords[ix] = box [2*ix+1]

Create new node at coords and get index

Append new node index to trNodes [ix]

Increment in

jn = 0

coords = coordinates of jnodes[jn]

Create new node at coords and get index

Append new node index to trNodes [ix]

Increment jn

Get correct index: index = (ix == 0?) 1:0

sortBndFace (trNodes [ix], index)

coarsenMesh (trNodes [ix], index)

Add dofs to trNodes [ix]

Increment ix

in < inodes.size()

jn < jnodes.size()

ix < rank

Figure 3.12: createTractionMesh ()
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trFace, index

dx = tolerance for removing nodes

cn = coordinates of trFace.back()

in = 0

c0 = coordinates of trFace[in]

c1 = coordinates of trFace[in+1]

‖c0-c1‖ <
min(dx,

dx [index]?

Delete trFace[in+1]

c1 = coordinates of trFace[in+1]

‖cn-c1‖ <
dx?

Delete trFace[in+1:end-1]

return

Increment in

Yes

No

Yes

No
in < trFace.end()-1

Figure 3.13: coarsenMesh (trFace, index)

In Fig. 3.13, dx is set to (dx0 [0] + dx0 [1])/2/cf .7 Additionally, note that
the while loop not only checks whether ‖c0-c1‖ is less than dx but also whether
it is less than dx [index] in case dx exceeds the RVE dimensions (dx ). The
latter if-statement checks if the distance between c1 and cn is less than dx. If
it is, the leftover nodes except the last one are deleted and the function ends.8

7Instead of an average, it is possible to set dx to dx0 [index]/cf , but this is less robust.
8Deleting the nodes is not necessary. It suffices to simply remove the indices from trFace.
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3.2.7 Assembly Procedure

Lagrange multipliers are used to enforce the weak micro-periodicity constraint
(3.31) on the finite element discretization of the equilibrium equation, such that
∆uh and ∆th can be solved for simultaneously. The vectors t̂ and f t

int are
vertically appended to the solution vector û and the internal force vector fint by
a process called adjunction. Similarly, the matrices K±ut and K±tu are augmented
to Kuu to create K0. This assembly procedure is illustrated in equation (3.33):


Kuu





0

∓K±ut

±
∫

Γ+

�

H d Γ


0 ∓K±tu ±

∫
Γ+

�

H> d Γ

[
0

]





∆ûint

∆û±

∆û±cor

∆t̂



= −




∫

Ω�
B>σ d Ω


+



0

∓K±utt̂

±
∫

Γ+

�

H d Γt̂

 ∓K+
tuû± ±

∫
Γ+

�

H> d Γû±cor




(3.33)

Kuu is assembled as usual by one or more SolidModels representing each of the
RVE materials (c.f. Fibers and Matrix in Fig. 3.8). For non-periodic meshes,
elements on T h may not fully overlap the elements on the boundary of Uh:

Figure 3.14: Contribution of each IP towards K±ut

Therefore, the contributions to K±ut (3.10) and K±ut
>

(3.13) are evaluated and
added to K0 at each IP (instead of element) on the boundary of Uh per 9

K0[idofs, jdofs] = K0[idofs, jdofs] + K±ip,

K0[jdofs, idofs] = K0[jdofs, idofs] + K±ip
>
,

(3.34)

where the contribution from each IP towards K±ut is given by

K±ip = ∓wipN
>
ipH(ξ). (3.35)

K+
ip corresponds to Γ+

� (faces 1 and 3) and K−ip, to Γ−� (faces 0 and 2). idofs

and jdofs are the vectors of degrees of freedom associated with the current
elements in Uh and T h, respectively. In turn, Nip and H(ξ) are the matrices

9The integration is done over the boundary of Uh because it has a finer mesh than T h.
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of shape functions evaluated at each IP on the boundary of Uh and the local
coordinate ξ of the corresponding element in T h. wip is the Gaussian weight
times the jacobian at the same IP. The contributions to fint are added similarly:

fint[idofs] = fint[idofs] + K±ip · t̂[jdofs],

fint[jdofs] = fint[jdofs] + K±ip
> · û[idofs].

(3.36)

Thereafter, the contributions to
∫

Γ+

�
H d Γ and

∫
Γ+

�
H> d Γ are added to K0 per

K0[idofs, jdofs] = K0[idofs, jdofs] + wipHip.

K0[jdofs, idofs] = K0[jdofs, idofs] + wipH
>
ip,

K0[kdofs, jdofs] = K0[kdofs, jdofs]−wipHip,

K0[jdofs, kdofs] = K0[jdofs, kdofs]−wipH
>
ip.

(3.37)

The integration is done over T h because the integrand stems entirely from Th.
Here, Hip is the matrix of shape functions at each IP of T h and wip is its
corresponding integration weight. jdofs is the vectors of degrees of freedom
associated with the current element on T h while idofs and kdofs correspond
to the corners of Uh. The contributions to fint are added in a similar manner:

fint[idofs] = fint[idofs] + wipHip · t̂[jdofs],

fint[kdofs] = fint[kdofs]−wipHip · t̂[jdofs],

fint[jdofs] = fint[jdofs]±wipH
>
ip · û±cor,

(3.38)

where û+
cor = û[idofs] and û−cor = û[kdofs]. The last two equations from (3.37)

may be omitted when û−cor = ∆û−cor = 0; however, it is sensible to keep all terms
from (3.37) and (3.38) to ensure consistency (correctness) between fint and K0.
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MODEL VALIDATION

The validity of the WeakPBCModel is corroborated by means of linear-elastic
and materially nonlinear analyses. Of these, the linear-elastic tests are exe-
cuted on an elastic material and a fiber-matrix composite, both in plane strain
condition with unit thickness. The nonlinear tests are also executed on the
fiber-matrix composite with elastic fibers but an elasto-plastic matrix instead.

4.1 Linear-Elastic Analyses

4.1.1 Linear-Elastic Material in Plane Strain Condition

The linear-elastic material is tested under axial and shear loading by means of
(a) prescribed strain and (b) applied load on the south-east corner of the mesh
(corner-x). The axial test results are compared to the expected analytical
results. Consider the compliance matrix in 4.1:{εxx

εyy

εzz

}
=

1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

{σxx

σyy

σzz

}
. (4.1)

Letting εzz = σyy = 0, the following three equations are derived:

εxx =
σxx

E
− νσzz

E
, (4.2)

εyy = −νσxx

E
− νσzz

E
, (4.3)

0 = −νσxx

E
+
σzz

E

yields−−−−→ σzz = νσxx. (4.4)

In turn, substituting (4.4) into (4.3) and (4.2) yields the following two results:

sigmaxx =
E

1− ν2
εxx

yields−−−−→ σxx

εxx
=

E

1− ν2
, (4.5)

εyy =
−ν − ν2

E
σxx

yields−−−−→ εyy

εxx
=
−ν − ν2

1− ν2
. (4.6)
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Now, consider the RVE shown in Fig. 4.1. The width and height are the same
(∆x = ∆y). The Young’s modulus is 910 and the Poisson’s ratio is 0.3. An

Figure 4.1: Linear-elastic material. Traction mesh with cf = (a) 0.1; (b) 0.3;
(c) 0.6; (d) 1.0

axial test under plane strain condition yields the following effective stiffness:

(EA)plane =
f

u
=
σxxt∆y

εxx∆x
=

Et

1− ν2
= 1000. (4.7)

The WeakPBCModel results are compared against the PeriodicBCModel
results via plots of stiffness vs. coarsening factors (cf ). The axial stiffness is
estimated as the horizontal force-to-displacement ratio at corner-x, in accor-
dance to (4.7). The shear stiffness is estimated as the vertical force at corner-x
divided by the total distance traversed by corner-x and corner-y. In turn,
cf sets the minimum element size for the traction mesh T h. Fig. 4.2 shows
good agreement between the PeriodicBCModel and WeakPBCModel under pre-
scribed axial strain1 and applied horizontal force on corner-x. Fig. 4.3 shows
acceptable agreement for prescribed shear strain and applied vertical force.

1Note that εyy is prescribed per (4.6) to ensure σyy = 0
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Figure 4.2: Linear-elastic: (a) axial strain = 〈0.1,−0.04286, 0.0〉; (b) horizontal
force on corner-x

Figure 4.3: Linear-elastic: (a) shear strain = 〈0.0, 0.0, 0.1〉; (b) vertical force on
corner-x

Figure 4.4: Deformation: (a) axial strain; (b) shear strain; (c) vertical force

Overall, there is satisfactory agreement between the WeakPBCModel and
the PeriodicBCModel under axial deformation (Fig. 4.2) and shear deformation
(Fig. 4.3). Some values of cf give rise to small discrepancies between both
models, but in general the stiffness remains fairly constant. This is reflected in
the lack of strain localization in the deformed geometry (Fig. 4.4).
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4.1.2 Fiber-Matrix Composite

The fiber-matrix composite in Fig. 4.5 is also tested under axial and shear
loading by means of (a) prescribed strain and (b) applied load on corner-x. The

Figure 4.5: Fiber-matrix composite. Traction mesh with cf = (a) 0.01592; (b)
0.3; (c) 0.6; (d) 1.0

matrix material has a Young’s modulus of 3760 and a Poisson’s ratio of 0.3. The
fibers have a Young’s modulus of 74000 and a Poisson’s ratio of 0.2. Fig. 4.6
shows good agreement between the WeakPBCModel and the PeriodicBCModel
under prescribed axial strain and applied horizontal force on corner-x. Likewise,
Fig. 4.7 shows good agreement between the models under prescribed shear strain
and applied vertical force on corner-x. As expected, the Neumann traction
mesh (cf = 0.01592) produced the softest result. The results become stiffer
with finer traction meshes until cf = 0.3 is surpassed. The deformed geometries
are presented for these two coarsening factors: 0.01592 and 0.3. Non-periodic
deformation is barely visible with finer traction meshes, which supports the close
agreement between the WeakPBCModel and the PeriodicBCModel.



4.1. LINEAR-ELASTIC ANALYSES 37

Figure 4.6: Fiber-matrix: (a) axial strain = 〈0.1,−0.03404, 0.0〉; (b) horizontal
force on corner-x

Here, the εyy component for the prescribed axial strain is not known a-priori
as with the linear-elastic material in plane strain condition. Instead, a horizontal
force was first applied on corner-x using the PeriodicBCModel. The vertical
deflection at corner-y was then used to derive the value needed for εyy.

Figure 4.7: Fiber-matrix: (a) shear strain = 〈0, 0, 0.1〉; (b) vertical force on
corner-x

These results show good agreement between the WeakPBCModel and Peri-
odicBCModel under axial deformation (Fig. 4.6) and shear deformation (Fig. 4.7).
It is noted that the stiffness increases steeply at low coarsening factors but re-
mains fairly constant after cf = 0.3. Fig. 4.1 and Fig. 4.5 show that – at
any given cf – coarser Uh yield less number of elements per face of T h. Less
elements in T h results in a weaker periodicity constraint and a lower stiffness.
Thus, a coarser Uh should produce a more gradual increase in the stiffness.
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Figure 4.8: Deformation due to axial strain: (a) cf = 0.01592; (b) cf = 0.3

Figure 4.9: Deformation due to shear strain: (a) cf = 0.01592; (b) cf = 0.3

The low stiffnesses towards cf = 0.01592 agree with the non-periodic de-
formation in Fig. 4.6 and Fig. 4.7. Au contraire, the deformed geometry seems
to abide periodicity of displacements for coarsening factors higher than 0.3.

4.2 Materially Nonlinear Analyses

Consider the fiber-matrix composite in Fig. 4.5. The matrix is now modeled
as an elastic-perfectly plastic material with non-associative flow rule based on
(Melro et. al, 2013). Its Young’s modulus and Poisson’s ratio remain 3760 and
0.3. The plastic Poisson’s ratio and yield stress are 0.39 and 80. Setting the
same yield stress for tension and compression, the Von Mises yield surface is
recovered.
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4.2.1 Prescribed Strain

Instead of stiffness-coarsening plots, force-displacement curves are presented
to compare coarsening factors in the materially nonlinear analyses. The next
results were obtained using an AdaptiveStepModule and SkylineLU solver with
precision = 1 · 10−4 and up to 20 iterations per step (maxIter = 20).

Figure 4.10: Fiber-matrix composite with strain rate = 〈0.001,−0.000429, 0.0〉

Figure 4.11: Fiber-matrix composite with strain rate = 〈0.0, 0.0, 0.001〉

These results show good agreement between the models under prescribed
axial strain (Fig. 4.10) and prescribed shear strain (Fig. 4.11). As expected, the
coarser traction meshes produce the softest results. These become stiffer until
cf = 0.3 is surpassed, at which point there is very little difference between the
results from the WeakPBCModel and the PeriodicBCModel.
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Figure 4.12: Deformation due to axial strain: (a) cf = 0.01582; (b) cf = 0.3

Figure 4.13: Deformation due to shear strain: (a) cf = 0.01582; (b) cf = 0.3

The soft results for the Neumann traction mesh are in agreement with the
non-periodic strain localization in Fig. 4.12(a) and Fig. 4.13(a). On the other
hand, the deformed geometry seems to abide periodicity of displacements for
values of cf higher than 0.3, which substantiates the close agreement between
the WeakPBCModel and the PeriodicBCModel in the force-displacement plots.
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4.2.2 Prescribed Force

Here, 300 steps of size 0.1 were used in tandem with the FlexArclenModule and
SkylineLU solver (precision = 1 · 10−4 and maxIter = 10). The results not only
resemble the prescribed strain results, but also agree with the PeriodicBCModel.
Again, the WeakPBCModel results become stiffer until cf = 0.3 is surpassed,
whereon they are almost indistinguishable from the PeriodicBCModel results.

Figure 4.14: Fiber-matrix composite with horizontal force on corner-x

Figure 4.15: Fiber-matrix composite with vertical force on corner-x

The deformed geometries show non-periodic strain localization for a coarsen-
ing factor of 0.01592 and almost purely periodic strain localization for coarsening
factors higher than 0.3. Again, this agrees with the force-displacement plots.
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Figure 4.16: Deformation due to horizontal force. (a) cf = 0.01582; (b) cf =
0.3

Figure 4.17: Deformation due to vertical force. (a) cf = 0.01582; (b) cf =
0.3
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METHODOLOGY

The thesis statement is tested on a batch of fiber-matrix composite RVEs.1

Uniaxial load is applied to each RVE at 46 different angles between 0o and 90o

to generate a curve of ultimate principal stress (σ1) vs. orientation angle (θ).
The ultimate stresses are averaged to produce one characteristic σ̄1–θ curve.
This process is executed with 10 coarsening factors (cf ) and 3 load steps (|f |),
which culminates in a total of 30 σ̄1–θ curves. Fig 5.1 summarizes this procedure.

Select cf

Select |f |

Select RVE

θ = 0o

Analyze RVE

θ = θ + 2o

Save σ1–θ plot and data

Last RVE?

Save σ̄1–θ plot and dataLast |f |?Last cf ?

θ ≤ 90o

No

Yes

No

Yes

No

Figure 5.1: Methodology

1Multiple RVEs are required to overcome bias from each individual geometry.
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5.1 Principal Stress vs. Orientation Angle

Unlike periodic boundary conditions, the weak periodic boundary conditions for-
mulated in (Larsson et al., 2011) can only be used in deformation-driven proce-
dures. Yet, to corroborate the thesis statement, one should prescribe a uniaxial
stress on each RVE.2 The setup introduced in subsection 3.1.2 grants the ap-
plication of external forces on the RVE corners to represent stress. Hereinafter,
the process by which the load is rotated and the resulting principal stresses
are retrieved is delineated. The uniaxial load is applied along the x′-axis and
transformed into the RVE coordinates. The x′-axis rotates counter-clockwise.

Figure 5.2: (a) Stress transformation; (b) corner forces

Consider the stress transformation in Fig. 5.2. The second order stress tensor
Σ′ is transformed from local to global coordinates via Σ = Γ>Σ′Γ or 3[

σxx σxy

σyx σyy

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
σx’x’ σx’y’

σy’x’ σy’y’

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (5.1)

Letting c = cos(θ) and s = sin(θ), the local stress tensor Σ is expressed as

Σ =

[
σx’x’c

2 + σy’y’s
2 − 2σx’y’cs σx’x’cs− σy’y’cs+ σx’y’(c

2 − s2)
σx’x’cs− σy’y’cs+ σx’y’(c

2 − s2) σx’x’s
2 + σy’y’c

2 + 2σx’y’cs

]
.

(5.2)
Rewriting the stress tensors in Voigt notation, the relation σ = T−1

σ σ′ ensues:{σxx

σyy

σxy

}
=

 cos2(θ) sin2(θ) −2 cos(θ) sin(θ)
sin2(θ) cos2(θ) 2 cos(θ) sin(θ)

cos(θ) sin(θ) − cos(θ) sin(θ) cos2(θ)− sin2(θ)

{σx’x’

σy’y’

σx’y’

}
. (5.3)

2The ratio between strain components does not remain constant for nonlinear materials.
3(5.1) is easily derived by taking equilibrium along the global x and y axes of Fig. 5.2.
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The inverse transformation is obtained by substituting negative θ into (5.3):{
σx’x’

σy’y’

σx’y’

}
=

 cos2(θ) sin2(θ) 2 cos(θ) sin(θ)
sin2(θ) cos2(θ) −2 cos(θ) sin(θ)

− cos(θ) sin(θ) cos(θ) sin(θ) cos2(θ)− sin2(θ)

{σxx

σyy

σxy

}
. (5.4)

Uniaxial stress is obtained by substituting σy’y’ = σx’y’ = 0 into (5.3) such that

σxx = σx’x’ cos2(θ) =
σx’x’

2
+
σx’x’

2
cos(2θ),

σyy = σx’x’ sin2(θ) =
σx’x’

2
− σx’x’

2
cos(2θ),

σxy = −σx’x’ cos(θ) sin(θ) = −√σxxσyy.

(5.5)

The macroscopic stress tensor is related to the corner forces via (3.23), or[
σxx σxy

σyx σyy

]
=

1

|Ω�|

[
∆xfxx ∆xfxy

∆yfyx ∆yfyy

]
, (5.6)

where fyx is the reaction force at corner-y due to the fixity along the x-axis.
At each angle θ, the uniaxial stress σx’x’ is transformed into the corner forces.
The BVP is solved and the ultimate stresses are transformed back into σ1.

Figure 5.3: RVE: (a) corner forces; (b) resulting stresses

Letting |Ω�| = ∆x∆y and ∆x = ∆y yields the equations through which the
uniaxial stress σx’x’ is turned into the RVE corner forces:

fxx = σx’x’ cos2(θ)∆y =

(
σx’x’

2
+
σx’x’

2
cos(2θ)

)
∆y,

fyy = σx’x’ sin2(θ)∆x =

(
σx’x’

2
− σx’x’

2
cos(2θ)

)
∆x,

fxy = σx’x’ cos(θ) sin(θ)∆y =
√
fxxfyy.

(5.7)
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The principal stress σ1 is retrieved by transforming the corner forces back into
stresses in global coordinates via (5.6) and into local coordinates via (5.4), or

σ1 =
fxx

∆y
cos2(θ) +

fyy

∆x
sin2(θ) + 2

fxy

∆y
cos(θ) sin(θ). (5.8)

5.2 Localization Angle

A hypothesis was formulated in the introductory Chapter that the dependency
between σ1 and θ is not due to having a small sample size, but rather the result
of choosing RVEs that are prone to strain localization under shear. To test
this hypothesis, a method for estimating localization angles (φloc) is presented,
where φloc is the smallest angle between a shear band and the x or y-axis.4

Figure 5.4: Method for obtaining the localization angle tested on rve35, θ = 30o

The orientation angles of blobs in a processed image of an RVE are used as
ad-hoc estimates of the localization angles of shear bands. Using MATLAB’s
Image Processing ToolboxTM, a gray-scale image is derived by extracting the
blue channel of an RGB image with yellow plastic zones. A threshold value of
70 produces a binary (black and white) image whose blobs accurately portray
the location of shear bands. 6 pixel long vertical and horizontal line structuring
elements erode the image in an attempt to segment touching blobs. The blobs
are labeled with various colors for verification. Blob orientations are given by the
first eigenvector of the inertia matrix of enclosing ellipses. The blobs’ orientation
angles (φor ∈ (−90o, 90o)) are transformed into localization angles via

φloc,i =

{
|φor,i| , if |φor,i| < 45o

90o − |φor,i| , otherwise.
(5.9)

φ is estimated using a weighted average of the blobs’ localization angles:

φ =

∑
i

Aiφloc,i∑
i

Ai
, (5.10)

where Ai and φloc,i are the area and localization angle of each blob, respectively.

4φ lies between 0o (vertical or horizontal localization) and 45o (diagonal localization).
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RESULTS

The coarsening factors (cf ) were selected based on two criteria: (1) account
for the variation in results between the cf = 0.01592 and cf = 0.3, and
(2) obtain different average number of elements on each face of T h. The first
criterion is satisfied by choosing factors that lay equidistant on a logarithmic
scale. This ensures a greater number of coarsening factors towards cf = 0.016.
The second criterion is satisfied by choosing only 10 factors. The resulting
number of elements on each face of T h is varied enough to provide substantially
different results between one coarsening factor and the next. Fig. 6.1 shows the
average number of elements per cf . The double logarithmic scale preserves the
quasi-linear relation between cf and the average number of elements.

Figure 6.1: Average number of elements vs. coarsening factors

Three load step sizes were chosen based on trial: |f | = 1, |f | = 0.5 and |f | = 0.2.
These step sizes are larger than the one used in subsection 4.2.2: |f | = 0.1
– abandoned herein due to its high computational requirements. During the
validation of the WeakPBCModel, a rough guideline for choosing the maximum
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number of steps was developed (Table 6.1). The number of steps from Section 1.3
(400) was kept because it exceeds these recommended values. Additionally, a
DispArclenModel constrains corner-y along the x-axis and stops analyses if the
displacement exceeds 0.006, thereby limiting the step count to less than 400.

Table 6.1: Recommended number of steps per load step size
load step size |f | 0.1 0.2 0.5 1.0
number of steps 300 140 80 40

The thesis statement is tested on 38 out of the 48 RVEs used in Section 1.31.
These RVEs possess the same properties as the fiber-matrix composite from
Section 4.2. Table 6.2 summarizes relevant parameters from the properties file.

Table 6.2: Summary of model properties and module parameters

Fibers
(SolidModel)

Thickness 1
Material Hooke
State Plane strain
Young’s modulus 74000
Poisson’s ratio 0.2
Shape Triangle3
Integration scheme Gauss1

Matrix
(SolidModel)

Thickness 1
Material Melro
State Plane strain
Young’s modulus 3760
Poisson’s ratio 0.3
Plastic Poisson’s ratio 0.39
Yield stress 80
Shape Triangle3
Integration scheme Gauss1

Arclen
(DispArclenModel)

Initial displacement 0.0
Maximum displacement 0.006
Constraints cornery (dx)
Load table load.data

Periodic
(WeakPBCModel)

Coarsening factor See Fig. 6.1
Strain rate None

Stepper
(FlexArclenModule)

Solver SkylineLU
Precision 1 · 10−3

Number of iterations 20

The applied macroscale uniaxial stress is scaled via σxx∆y = |f | and transformed
into corner forces per the procedure in Section 5.1. The forces are written to

112 rves were removed because they diverged before reaching the ultimate principal stress.
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load.data, which is used as input for the DispArclenModel. On the other hand,
each coarsening factor from Fig. 6.1 is explicitly specified in the properties file.

6.1 Principal Stress vs. Orientation Angle

The results of the procedure outlined in Fig. 5.1 are presented herein. Uniaxial
load was applied to each RVE at 46 different angles between 0o and 90o to gen-
erate curves of ultimate principal stress (σ1) vs. orientation angle (θ). Fig. 6.2
shows how σ1 and φ are retrieved. At each angle θ, uniaxial stress is transformed
into corner forces. The ultimate principal stress σ1 is the maximum principal
stress obtained from solving the BVP on the RVE. The localization angle φ is
estimated using an image of the RVE without deformation at the last load step.

Figure 6.2: Principal stress and localization angle of rve1, θ = 24o

The ultimate principal stresses2 of each RVE were recorded to generate σ1-θ
curves as in Fig. 6.3. Then, the curves from all 38 RVEs were averaged to
produce a single characteristic σ̄1-θ curve. This process was executed with the
10 chosen coarsening factors and 3 load steps, yielding a total of 30 σ̄1-θ curves.

Figure 6.3: Principal stress vs. orientation angle of rve1 (cf = 0.016)

Here, the results for the following coarsening factors are presented: 0.016
and 0.063. Fig. 6.4 shows the σ1-θ curves of all RVEs with cf = 0.016. For

2Hereinafter, the ultimate principal stress is simply called principal stress or σ1.
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each load step, the average principal stress (σ̄1) is shown in red with error bars
representing the standard deviation (sσ1). Fig. 6.5 compares these σ̄1-θ curves:
µ is the average of σ̄1 and σ is the average of sσ1

along each curve. Manifestly,
results are insensitive to |f |.

Figure 6.4: Principal stress vs. orientation angle (cf = 0.016)

Figure 6.5: Average principal stress vs. orientation angle (cf = 0.016)

Fig. 6.6 shows the σ1-θ curves of all RVEs with cf = 0.063 and Fig. 6.7 shows
the σ̄1-θ curves per load step. Here, decreasing |f | displays a slight improvement
in convergence. This is evidenced by the increasing values of µ and decreasing
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values of σ. Most coarsening factors exhibit a similar trend (c.f. Table C.1).

Figure 6.6: Principal stress vs. orientation angle (cf = 0.063)

Figure 6.7: Average principal stress vs. orientation angle (cf = 0.063)

The results for all remaining coarsening factors can be found in Appendix C,
with all values of µ and σ epitomized in Table C.1. Generally, reducing |f | and
increasing cf elevate the values of σ̄1 by lowering the standard deviations and
by imposing stricter periodicity conditions. However, the increase due to the
former may not be substantial enough (compared to the increase due to cf )
to justify the additional computational effort. Henceforth, only the results of
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analyses performed with |f | = 1 are shown. Fig. 6.8 compares the σ̄1-θ curves
per coarsening factor. In essence, it delivers the data in a condensed form.

Figure 6.8: Average principal stress vs. orientation angle (|f | = 1.0)

Table 6.3 presents the maximum and minimum values of the average princi-
pal stresses σ̄1. The PeriodicBC results are re-evaluated with only 38 RVEs for
a proper comparison. It is highlighted that decreasing cf reduces the differ-
ence between the maximum and minimum values of σ̄1, thereby showing that
weakening the periodicity constraint reduces the dependency between σ̄1 and θ.

Table 6.3: Average principal stress and standard deviation per coarsening factor
Coarsening
factor (cf )

Average
stress µ

Average
std. dev. σ

max σ̄1 min σ̄1
max(σ̄1)
−min(σ̄1)

0.016 111.73 4.06 114.69 105.55 9.14
0.025 111.35 4.92 114.58 105.26 9.32
0.040 108.68 7.17 113.67 101.31 12.36
0.063 111.77 6.16 116.58 104.33 12.25
0.100 114.85 5.46 118.48 107.45 11.03
0.160 114.98 5.97 118.64 107.53 11.11
0.250 116.72 5.54 120.50 109.16 11.34
0.400 117.42 5.25 121.39 109.52 11.87
0.630 117.76 5.00 121.86 109.52 12.34
1.000 117.57 5.54 121.85 109.38 12.47

PeriodicBC 118.44 4.53 122.78 109.79 12.99
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6.1.1 Statistical Analysis

The thesis statement is tested by analyzing the results per the procedure in
Appendix A. If the results with the lowest coarsening factor (Fig. 6.9) gainsay
it, then tests with finer meshes are guaranteed the same negative outcome.

Figure 6.9: Histograms and normal probability plots for cf = 0.016

Indeed, Welch’s t-test rejects the null hypothesis with p = 3.7 · 10−10. That is,
weak periodic boundary conditions do not alleviate the dependency between σ̄1

and θ – not even in their weakest form. The following conclusions are drawn:

• It suffices to glance at the data to invalidate the thesis statement. This
is backed up by the statistic analysis, where the null hypothesis – that is,
µσ1(θ = 0o) = µσ1(θ = 44o) – is rejected with p = 3.7 · 10−10.

• Decreasing cf reduces the difference of the maximum and minimum val-
ues of the average ultimate principal stress σ̄1 (See Table. C.1).

• Increasing cf elevates the values of σ̄1 throughout the range of θ, but more
so towards θ = 0o, by imposing more exacting periodicity conditions.

• The WeakPBCModel is not as robust as the PeriodicBCModel, as evi-
denced by increased standard deviations towards cf = 1.0.
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6.2 Principal Stress vs. Localization Angle

In this section, it is verified whether the lower value of σ̄1 at θ = 44o is caused
by choosing RVEs prone to strain localization under shear. This hypothesis is
based on the observation that shear bands due to uniaxial stress at θ = 45o tend
to respect periodicity of displacements. Fig. 6.10 schematizes this behavior.

Figure 6.10: Preferred localization modes at θ = 45o

Here, preferred localization modes refers to those respecting periodicity. Clearly,
the shear bands in Fig. 6.10 may shift sideways facilitating the formation of these
preferred modes. Fig. 6.11 furnishes a few examples of periodic deformations
(rve13 and rve50) as well as non-periodic deformations: a vertical shear band
combined with multiple horizontal bands (rve35) and viceversa (rve44).

Figure 6.11: Examples of localization modes at θ = 44o

The non-periodic deformations from rve35 and rve44 may only occur with weak
periodic boundary conditions and a coarse traction mesh (cf = 0.016). These
deformations vanish when a standard mesh is used instead (cf = 1.000).
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Likewise, Fig. 6.12 shows the preferred localization modes at θ = 0o. While
these shear bands may also shift sideways, the probability that the fibers are
favorably aligned is lower because two shear bands are required instead of one.

Figure 6.12: Preferred localization modes at θ = 0o

Fig. 6.13 presents the RVEs whose deformations most closely resemble Fig. 6.12:
rve50 and rve28. In fact, non-periodic localization is more common. For in-
stance, rve42 displays an anti-periodic deformation that is an amalgam of both
localization modes from Fig. 6.12 and rve33 culminates with a single shear band.

Figure 6.13: Examples of localization modes at θ = 0o

At higher coarsening factors, the non-periodic deformations mutate into axial
deformations while periodic deformations are sometimes exacerbated (rve50).
Appendix D and E provide more deformation examples for all coarsening factors.
Based on these figures, the following inferences are made about the values of φ:

• Angles near 0o indicate well-formed vertical or horizontal shear bands.

• Angles higher than 30o tend to indicate well-formed diagonal shear bands.

• Angles around 20o are usually associated with pure uniaxial tension.

From these inferences, it becomes clear that the hypothesis can be tested merely
by comparing σ1 to φ at θ = 0o and θ = 44o. The goal is to confirm whether
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values of φ close to 0o do indeed yield lower values of σ1. This is achieved by
means of scatter plots and MATLAB’s corr function – whose output subsumes
the Pearson’s correlation coefficient (ρ) and its corresponding p-value.3 Fig. 6.14
and Fig. 6.15 present the results for cf = 0.016 and cf = 0.063, respectively.

Figure 6.14: Scatter plot of localization angle vs. principal stress (cf = 0.016)

Figure 6.15: Scatter plot of localization angle vs. principal stress (cf = 0.063)

At θ = 44o, the null hypothesis (ρ = 0) is rejected in favor of the alternate
hypothesis (ρ 6= 0) with p ≤ 0.05 in both occasions. That is, there is ample
evidence to ascertain that the preferred localization modes (φ ≈ 0o) yield lower
values of σ1. Au contraire, the scatter plots at θ = 0o are more haphazard with
less significant correlations, evidenced by lower values of ρ and higher p-values.
This means the preferred localization modes (φ ≈ 45o) occur less frequently and
may not yield lower values of σ1. The same trends are observed in Fig. 6.16 and
Fig. 6.17, which present the results for cf = 0.016 and cf = 0.063, respectively.

3p < α = 0.05 disproves H0 : ρ = 0. That is, the correlation is statistically significant.
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Figure 6.16: Scatter plot of localization angle vs. principal stress (cf = 0.250)

Figure 6.17: Scatter plot of localization angle vs. principal stress (cf = 1.000)

Appendix F presents plots for all 10 coarsening factors: H0 was rejected 8 times
at θ = 44o, validating the correlation. The following conclusions are gathered:

• The positive correlation between φ and σ at θ = 44o is highly significant,
meaning that the preferred localization modes lead to lower values of σ1.

• The correlation between φ and σ at θ = 0o is not significant, meaning the
preferred localization modes do not necessarily lead to lower values of σ1.

• Overall, the lower values of σ̄1 around θ = 45o can be attributed to the
formation of localization bands under shear which respect periodicity.
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6.3 Localization Angle vs. Orientation Angle

As a final step, it is hypothesized that lowering cf widens the range of θ around
45o over which localization with a single shear band is permissible (Fig. 6.18).
Au contraire, increasing cf demands multiple shear bands to maintain periodic-
ity of displacements at θ other than 45o due to stricter periodicity requirements.

Figure 6.18: Localization modes: (a) weak periodicity; (b) strong periodicity

Fig. 6.18 suggests that φ is not likely to change regardless of coarsening factors.
In fact, the scatter plots in Appendix F contain measurements at additional
orientation angles near θ = 45o which reveal that φ̄ does not change much
(Fig. 6.19). Rather, lower values of cf increase the scatter and decrease σ̄1.

Figure 6.19: Localization angle vs. coarsening factor

Careful observation of the localization patterns of RVEs across all orientation
angles sheds some light: new shear bands only begin to form when there is a gap
between the fibers that is favorably aligned with respect to the orientation angle
– the difference of θ and φ is near 45o. The transition from old to new shear
bands is not gradual. Once the fibers are favorably aligned, the change is swift.
Otherwise, the current shear bands remain until new ones can form. Particularly
towards θ = 0o and θ = 90o, RVEs may exhibit complete plastification while
switching from one localization mode to the next. As a result of all this, changes
in φ over a small range of θ may either be very abrupt or insignificant.
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Fig. 6.20 epitomizes this behavior. The load near θ = 0o triggers shear
bands which yield a low value of σ1. Increasing cf raises σ1 significantly due
to stricter periodicity conditions which deter anti-periodic localization in favor
of pure axial deformation. Towards θ = 45o, the vertical shear bands respect
periodicity, leading to very low values of σ1 regardless of the coarsening factor.

Figure 6.20: Transition between shear bands (rve1)

Rve6 presents a single shear band near θ = 0o, which resembles a preferred
localization mode with a missing shear band. This “semi-periodic” mode yields
a very low value of σ1. Like rve1, increasing cf raises σ1 due to stricter peri-
odicity conditions which preclude non-periodic localization. Rve22 in Appendix
G presents a similar localization mode, albeit with two shear bands (periodic).

Figure 6.21: Transition between shear bands (rve6)
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Rve13 presents diagonal shear bands (φ ≈ 45o) near θ = 0o with low σ1. Soon
after, the shear bands turn vertical (φ ≈ 0o) and σ1 increases. σ1 diminishes
as the fibers regain a favorable alignment, towards θ = 45o. Just like rve1,
increasing cf elevates σ1 towards θ = 0o due to stricter periodicity conditions.

Figure 6.22: Transition between shear bands (rve13)

Rve41 presents a localization mode that best conforms to the hypothesis. The
shear band (φ ≈ 10o) around θ = 32o is exemplary of Fig. 6.18(a) and yields a
very low σ1. Rve42 in Appendix G presents a similar trend around θ = 8o.

Figure 6.23: Transition between shear bands (rve41)

It was expected to see more RVEs exhibit the hypothesized behavior. The
scarcity of RVEs with favorably aligned fibers leading to slightly diagonal shear
bands means that not much difference is observed between strong and weak pe-
riodicity, except at low coarsening factors, which allow non-periodic localization
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with low values of σ1 throughout θ. The following conclusions are gathered:

• Very low cf allows non-periodic shear bands with low σ1 throughout θ.
However, single shear bands respecting periodicity tend to yield lower σ1.

• Increasing cf raises σ1 towards θ = 0o due to stricter periodicity, which
deters non-periodic localization in favor of pure axial deformation.

• New shear bands form only once the fibers are favorably aligned with
respect to the load orientation angle; that is, φ is at around 45o from θ.

• Increasing cf limits the range of φ over which localization with a single
shear band is permissible. Few RVEs’ fibers are aligned such that φ falls
within this narrower range.

Fig. 6.24 is included herein for the sake of completeness: averaging all values of
φ presents a bilinear relation between φ̄ and θ.

Figure 6.24: Localization angle vs. orientation angle

This figure shows that φ remains constant regardless of cf ; however, it
obfuscates the fact that each individual φ does not have a linear relation with
respect to θ. Rather, it stays “constant” over a range of θ until a new shear band
develops. It is highlighted that φ remaining constant indicates that increasing
cf simply raises the number of parallel shear bands needed to satisfy periodicity
of displacements. This may not be necessarily true towards θ = 0o where the
angle φ does not accurately differentiate between diagonal shear bands and
complete plastification due to pure axial deformation.
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Chapter 7

CONCLUSIONS

7.1 Summary

The goal of this research work was to evaluate whether applying weak periodic
boundary conditions instead of strong periodic boundary conditions alleviates
the observed dependency between the average principal stress σ̄1 and orientation
angle θ of fiber-matrix composite RVEs under uniaxial loading. The goal was
achieved by implementing a modified weak periodic boundary conditions model,
which grants application of external forces to represent macroscale stresses; and
a methodology for the automated analysis of the localization angles. This model
was used to test the thesis statement on a batch of 38 RVEs at 46 angles between
0o and 90o, using 10 different coarsening factors and 3 load step sizes.

7.2 Conclusions

This treatise answers three main questions with regards to the effects of weak
periodic boundary conditions on the average principal stress due to axial load
under varying orientations. These questions, and their answers, follow.

7.2.1 Does weak micro-periodicity alleviate the dependency
between σ̄1 and θ?

The statistical analysis in Section 6.1 clearly shows that weak periodic boundary
conditions do not remove the dependency between σ̄1 and θ – not even in their
weakest form. In fact, the hypothesis that σ̄1(θ = 44o) and σ̄1(θ = 0o) come from
populations with equal means is disproved with a p-value as small as 3.7 ·10−10.
However, low coarsening factors do reduce the difference between max(σ̄1) and
min(σ̄1). The following trends are worth mentioning:

• Increasing cf elevates σ̄1 due to stricter periodicity conditions.

• The increase in σ̄1 due to lower |f | is not as substantial as due to cf .
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• The WeakPBCModel is not as robust as the PeriodicBCModel.

7.2.2 Is this dependency the result of RVEs prone to lo-
calization under shear?

The fluctuation of σ̄1 along θ can be attributed to RVEs which are prone to
localization under shear. The statistical study in Section 6.2 provides ample
evidence of a high positive correlation between σ1 and the localization angle φ
at θ = 44o, meaning that values of φ near 0o (vertical or horizontal shear bands)
lead to lower principal stresses. Likewise, there is little evidence of a weaker
negative correlation between σ1 and φ at θ = 0o, which indicates that diagonal
shear bands do occur but may not necessarily yield lower principal stresses.
Recapitulating:

• The positive correlation between φ and σ at θ = 44o is highly significant,
meaning that the preferred localization modes lead to lower values of σ1.

• The correlation between φ and σ at θ = 0o is not significant, meaning the
preferred localization modes do not necessarily lead to lower values of σ1.

• Overall, the lower values of σ̄1 around θ = 45o can be attributed to the
formation of localization bands under shear which respect periodicity.

7.2.3 Do smaller coarsening factors widen the range of θ
over which localization with a single shear band is
permissible?

Unfortunately, the current sample did not provide enough evidence to support
the claim that lower values of cf widen the range of θ over which localization
with a single shear band is permissible. In fact, this behavior was only observed
in a couple of RVEs, namely 41 and 42. The following conclusions are gathered:

• Very low cf allows non-periodic shear bands with low σ1 throughout θ.
However, single shear bands respecting periodicity tend to yield lower σ1.

• Increasing cf raises σ1 towards θ = 0o due to stricter periodicity, which
deters non-periodic localization in favor of pure axial deformation.

• New shear bands form only once the fibers are favorably aligned with
respect to the load orientation angle; that is, φ is at around 45o from θ.

• Increasing cf limits the range of φ over which localization with a single
shear band is permissible. Few RVEs’ fibers are aligned such that φ falls
within this narrower range.

Overall, only very low coarsening factors widen the range of θ over which lo-
calization with a single shear band is permissible. Small increases in cf vastly
reduce the range of φ which would result in a single shear band. Additionally,
the following remarks are made about the orientation angles:
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• φ does not seem to change regardless of cf . This may indicate that
increasing cf simply raises the number of parallel shear bands needed to
satisfy periodicity of displacements.

• Nonetheless, φ does not accurately differentiate between diagonal shear
bands and complete plastification due to pure axial deformation.

7.3 Recommendations

This treatise studied the effect on σ̄1 due to axial load with changing θ. Although
weak periodic boundary conditions are used within a deformation-driven pro-
cedure, providing a solution to the dependency between σ̄1 and θ for the force-
driven procedure should also alleviate fluctuations in the conventional context.
Further research should aim to suppress them. Here are some suggestions:

• In this study, the preferred localization angles are a good estimate of φ.
One solution may be to rotate the periodicity constraint such that it is
aligned with the localization angle as suggested by (Svenning et al., 2017).

• In the deformation-driven procedure, it may be harder to estimate φ. An-
other study could investigate ways of predicting the preferred localization
angles or φ based on the given macroscopic strain tensor (ū⊗∇).

• Finally, it would be ideal to extend these concepts to three dimensions.
The major obstacle in the implementation is the traction mesh creation.
It might be useful to establish a minimum element area based on a coars-
ening factor. Additionally, one might use a regular mesh or other mesh
generation tools instead of mapping nodes from Γ−� and Γ+

� onto Γ+
�.

The RVE sample in this study is susceptible to shear: the low values of σ1

due to shear failure may be attributed to the plastic behavior of the matrix.
Likewise, most RVEs precluded the formation of slightly diagonal shear bands.
Factors that might influence this include: RVE size, mesh size and fiber density.
Finally, the angle φ failed to clearly distinguish diagonal shear bands from pure
axial deformation. Therefore, the following recommendations are presented:

• Use softening to more accurately model the matrix material behavior.

• Perform a similar study with a larger sample of non-periodic RVEs.

• Study the effect of RVE and mesh size on the formation of shear bands.

• Study the effect of fiber density and size on the formation of shear bands.

• Improve φ to distinguish diagonal shear bands from uniaxial deformation.

It is hypothesized that softening might reverse the σ̄1 fluctuations: crack forma-
tion near θ = 0o might yield lower σ1 than non-periodic cracks near θ = 45o.
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Appendix A

Study on Periodic
Boundary Conditions

As described in section 1.3, uniaxial stress was applied to 48 different fiber-
matrix composite RVEs at 46 different angles between 0o and 90o to generate
the curves of principal stress (σ1) vs. orientation angle (θ) shown below.

Figure A.1: Principal stress vs. angle, strong periodic boundary conditions

This experiment was performed for both a clockwise and anticlockwise rotation
of the RVEs, resulting in different individual σ1–θ curves but the same curve of
average principal stress (σ̄1) vs. θ (Fig. A.1).
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Figure A.2: Histograms and normal probability plots at θ = 0 and θ = 44o

Null hypothesis significance testing is used to verify whether or not the RVEs
tend to yield – on average – a lower principal stress when oriented at 44o.
Normality of the samples was tested via histograms and normal probability
plots. The histograms were built per the procedure in (Dekking et al., 2005,
pp. 189-190). The number of bins is given by (Dekking et al., 2005, p. 211):

m = 1 + 3.3 log10(n),

where n is the sample size. Despite showing good agreement, histograms may
spur undesired artifacts by discretizing the data into bins. Thus, normal proba-
bility plots were used in tandem. Let Ȳ1 and Ȳ2 be random variables representing
σ̄1 at θ = 0o and θ = 44o, respectively. Fig. 1.2 and the central limit theorem
show that Ȳ1 and Ȳ2 are well approximated by normal distributions:

Ȳ1 ∼ N(µ1, σ
2
1/n1),

Ȳ2 ∼ N(µ2, σ
2
2/n2).

Here, µi and σi are unknown population means and standard deviations and ni
are the sample sizes. The goal is to test whether Ȳ1 and Ȳ2 stem from the same
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population despite changing θ. In terms of the null and alternate hypothesis:

H0 :µ1 = µ2.

H1 :µ1 6= µ2.

The assumption of normality of Ȳ1 and Ȳ2 sanctions the use of Welch’s t-test
to verify H0 (Dekking et al., 2005, p. 400). Welch’s t-test is a modification of
the Student’s t-test to see if two sample means are significantly different. t-tests
typically test whether a sample mean deviates from some previously specified
value. Instead, Welch’s t-test introduces a Studentized difference of means:

T =
Ȳ1 − Ȳ2√
s2

1

n1
+
s2

2

n2

,

where si and ni are the samples’ standard deviations and sizes. T follows a
Student t-distribution with µ = 01. and number of degrees of freedom given by

d.f. =
(s̄1 + s̄2)2

s̄2
1

n1 − 1
+

s̄2
2

n2 − 1

,

where s̄1 = s2
1/n1 and s̄2 = s2

2/n2. The value of T realized from the current
sample is called the t-statistic and is used to decide whether to reject H0. It is

t =
ȳ1 − ȳ2√
s2

1

n1
+
s2

2

n2

,

where ȳ1 = σ̄1(θ = 0o) and ȳ2 = σ̄1(θ = 44o). If H0 is true, then the probability
of getting a value at least as extreme2 as the t-statistic is given by the p-value:

p = P(T < |t|) + P(T > |t|) = 2P(T < |t|),

which is tantamount to the probability of falling outside of the 100 · (1 − p)%
confidence interval for the mean of T . Setting the so-called significance level at
a conservative value of α = 0.05, the aforementioned calculations are performed:

t =
123.0− 110.2√

5.42

48
+

5.82

48

= 11.14,

d.f. =
(0.60 + 0.71)2

0.602

48− 1
+

0.712

48− 1

= 93.4,

p = 2P(T < |t|) = 7.9 · 10−17.

The p-value is much lower than the significance level: p� α. Therefore, H0 is
rejected in favor of H1 at the α = 0.05 significance level with p = 7.9 · 10−19.

1The random variable T assumes that H0 is true, thus µ = 0.
2Extreme means far from what would be expected if H0 is true.
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Appendix B

Proof: Prescribed Force

As stated in subsection 3.1.2, the derivations required to prove (3.21) are present
here. Consider forces f2 and f4 on nodes 2 and 4 in Fig. 3.1. Equation (3.21) is∫

ΓR

t d Γ = f2 and

∫
ΓT

t d Γ = f4. (B.1)

Per (Kouznetsova et al., 2010, p. 13), the macroscopic stress tensor is given by

Σ̄ =
1

|Ω�|

∫
Γ�

t⊗ (x− x̄) d Γ (B.2)

(B.2) is rewritten per the criterion of anti-periodicity of tractions in (2.21) as

Σ̄ =
1

|Ω�|

(∫
Γ+

�

t⊗ (x− x̄) d Γ +

∫
Γ+

�

t(ϕper(x))⊗ (ϕper(x)− x̄) d Γ

)
=

1

|Ω�|

∫
Γ+

�

t⊗ (x− ϕper(x)) d Γ.

Substituting the dimensions shown in Fig. 3.1 into the aforementioned yields

Σ̄ =
1

|Ω�|

(∫
ΓR

{
tx
ty

}
⊗
{

∆x
0

}
d y +

∫
ΓT

{
tx
ty

}
⊗
{

0
∆y

}
dx

)
=

1

|Ω�|

[
∆x
∫

ΓR
tx d y ∆y

∫
ΓT
tx dx

∆x
∫

ΓR
ty d y ∆y

∫
ΓT
ty dx

] (B.3)

The macroscopic stress tensor also equals to (Kouznetsova et al., 2010, p. 21):

Σ̄ =
1

|Ω�|
∑

i=1,2,4

fi ⊗ (xi − x̄). (B.4)
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Again, substituting the dimensions from Fig. 3.1 into (B.4) results in

Σ̄ =
1

|Ω�|

({
fx1

fy1

}
⊗
{
−a
−b

}
+

{
fx2

f2y

}
⊗
{

∆x− a
−b

}
+

{
fx4

fy4

}
⊗
{
−a

∆y − b

})

=
1

|Ω�|

[
−a(fx1 + fx2 + fx4) + ∆xfx2 −b(fx1 + fx2 + fx4) + ∆yfx4

−a(fy1 + fy2 + fy4) + ∆xfy2 −b(fy1 + fy2 + fy4) + ∆yfy4

]
Equilibrium shows that fx1 + fx2 + fx4 = 0 and fy1 + fy2 + fy4 = 0. Thus

Σ̄ =
1

|Ω�|

[
∆xfx2 ∆yfx4

∆xfy2 ∆yfy4

]
(B.5)

Noting that ∆x 6= 0 and ∆y 6= 0 and equating (B.3) to (B.5) results in∫
ΓR

tx d Γ = fx2,

∫
ΓR

ty d Γ = fy2,∫
ΓT

tx d Γ = fx4,

∫
ΓT

ty d Γ = fy4.

(B.6)

(B.6) is simplified to (3.21), thereby completing the proof. For brevity, f2 and
f4 are now denoted f+

cor (which represents the sum of all corner forces on Γ+):∫
Γ+

�

t d Γ = f+
cor (B.7)
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Figure C.1: Principal stress vs. orientation angle (cf = 0.016)

Figure C.2: Average principal stress vs. orientation angle (cf = 0.016)
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Figure C.3: Principal stress vs. orientation angle (cf = 0.025)

Figure C.4: Average principal stress vs. orientation angle (cf = 0.025)
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Figure C.5: Principal stress vs. orientation angle (cf = 0.040)

Figure C.6: Average principal stress vs. orientation angle (cf = 0.040)
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Figure C.7: Principal stress vs. orientation angle (cf = 0.063)

Figure C.8: Average principal stress vs. orientation angle (cf = 0.063)
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Figure C.9: Principal stress vs. orientation angle (cf = 0.100)

Figure C.10: Average principal stress vs. orientation angle (cf = 0.100)
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Figure C.11: Principal stress vs. orientation angle (cf = 0.160)

Figure C.12: Average principal stress vs. orientation angle (cf = 0.160)
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Figure C.13: Principal stress vs. orientation angle (cf = 0.250)

Figure C.14: Average principal stress vs. orientation angle (cf = 0.250)
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Figure C.15: Principal stress vs. orientation angle (cf = 0.400)

Figure C.16: Average principal stress vs. orientation angle (cf = 0.400)
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Figure C.17: Principal stress vs. orientation angle (cf = 0.630)

Figure C.18: Average principal stress vs. orientation angle (cf = 0.630)



87

Figure C.19: Principal stress vs. orientation angle (cf = 1.000)

Figure C.20: Average principal stress vs. orientation angle (cf = 1.000)
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Figure C.21: Average principal stress vs. orientation angle (|f | = 1.0)

Figure C.22: Average principal stress vs. orientation angle (|f | = 0.5)

Figure C.23: Average principal stress vs. orientation angle (|f | = 0.2)
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Table C.1: Average principal stress and standard deviation per coarsening factor
Coarsening Elements Load Average Average max(σ̄1)
factor (cf ) per T h face size |f | stress µ std. dev. σ −min(σ̄1)

1.0 111.73 4.06 9.14
0.016 1.0 0.5 111.69 4.14 9.14

0.2 111.68 4.16 9.14
1.0 111.35 4.92 9.32

0.025 1.1 0.5 111.42 4.90 9.20
0.2 111.50 4.88 9.21
1.0 108.68 7.17 12.36

0.040 2.2 0.5 109.48 6.70 12.30
0.2 109.95 6.61 12.51
1.0 111.77 6.16 12.25

0.063 3.8 0.5 112.39 5.94 11.82
0.2 112.86 5.89 11.69
1.0 114.85 5.46 11.03

0.100 6.0 0.5 115.19 5.45 11.51
0.2 115.39 5.45 11.63
1.0 114.98 5.97 11.11

0.160 9.3 0.5 115.56 5.74 11.28
0.2 116.09 5.73 11.57
1.0 116.72 5.54 11.34

0.250 13.9 0.5 117.15 5.31 11.73
0.2 117.42 5.30 11.85
1.0 117.42 5.25 11.87

0.400 20.3 0.5 117.63 5.34 12.19
0.2 117.73 4.88 12.18
1.0 117.76 5.00 12.34

0.630 28.0 0.5 117.84 4.83 12.50
0.2 117.87 4.87 12.20
1.0 117.57 5.54 12.47

1.000 38.1 0.5 117.69 5.31 12.51
0.2 117.76 5.26 12.59

PeriodicBC N/A 1.0 118.44 4.53 12.99
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Figure D.1: Examples of localization modes at θ = 0o (cf = 0.016)
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Figure D.2: Examples of localization modes at θ = 0o (cf = 0.025)
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Figure D.3: Examples of localization modes at θ = 0o (cf = 0.040)
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Figure D.4: Examples of localization modes at θ = 0o (cf = 0.063)
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Figure D.5: Examples of localization modes at θ = 0o (cf = 0.100)
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Figure D.6: Examples of localization modes at θ = 0o (cf = 0.160)
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Figure D.7: Examples of localization modes at θ = 0o (cf = 0.250)
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Figure D.8: Examples of localization modes at θ = 0o (cf = 0.400)
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Figure D.9: Examples of localization modes at θ = 0o (cf = 0.630)
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Figure D.10: Examples of localization modes at θ = 0o (cf = 1.000)
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Figure D.11: Examples of localization modes at θ = 0o (strong PBC)
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Figure E.1: Examples of localization modes at θ = 44o (cf = 0.016)
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Figure E.2: Examples of localization modes at θ = 44o (cf = 0.025)
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Figure E.3: Examples of localization modes at θ = 44o (cf = 0.040)
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Figure E.4: Examples of localization modes at θ = 44o (cf = 0.063)
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Figure E.5: Examples of localization modes at θ = 44o (cf = 0.100)
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Figure E.6: Examples of localization modes at θ = 44o (cf = 0.160)
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Figure E.7: Examples of localization modes at θ = 44o (cf = 0.250)
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Figure E.8: Examples of localization modes at θ = 44o (cf = 0.400)
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Figure E.9: Examples of localization modes at θ = 44o (cf = 0.630)
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Figure E.10: Examples of localization modes at θ = 44o (cf = 1.000)
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Figure E.11: Examples of localization modes at θ = 44o (strong PBC)
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Figure F.1: Scatterplot of localization angle vs. principal stress (cf = 0.016)
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Figure F.2: Scatterplot of localization angle vs. principal stress (cf = 0.025)
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Figure F.3: Scatterplot of localization angle vs. principal stress (cf = 0.040)
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Figure F.4: Scatterplot of localization angle vs. principal stress (cf = 0.063)
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Figure F.5: Scatterplot of localization angle vs. principal stress (cf = 0.100)
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Figure F.6: Scatterplot of localization angle vs. principal stress (cf = 0.160)
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Figure F.7: Scatterplot of localization angle vs. principal stress (cf = 0.250)
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Figure F.8: Scatterplot of localization angle vs. principal stress (cf = 0.400)
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Figure F.9: Scatterplot of localization angle vs. principal stress (cf = 0.630)
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Figure F.10: Scatterplot of localization angle vs. principal stress (cf = 0.1000)
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Figure F.11: Scatterplot of localization angle vs. principal stress (strong PBC)
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Figure G.1: Transition between shear bands (rve1)

Figure G.2: Transition between shear bands (rve6)
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Figure G.3: Transition between shear bands (rve7)

Figure G.4: Transition between shear bands (rve13)

Figure G.5: Transition between shear bands (rve22)
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Figure G.6: Transition between shear bands (rve30)

Figure G.7: Transition between shear bands (rve38)

Figure G.8: Transition between shear bands (rve39)
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Figure G.9: Transition between shear bands (rve41)

Figure G.10: Transition between shear bands (rve42)

Figure G.11: Transition between shear bands (rve50)
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