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Abstract

Multiscale computational homogenization is an efficient method to upscale the
microstructural behavior of micro-heterogeneous materials. In this method, a
representative volume element (RVE) is assigned to a macroscale material point
and the constitutive law for the macroscopic model at that point is obtained
by solving a boundary value problem on the RVE. Among the conventional
boundary conditions, the so-called strong periodic boundary conditions tend
to converge faster towards the actual microstructural response. Nonetheless,
applying strong periodic boundary conditions to a batch of 48 fiber-matrix RVEs
under uniaxial load with varying orientations introduces a dependency between
the average ultimate principal stress (1) and the orientation angle (6).

This treatise investigates the effects on this dependency by applying so-called
weak periodic boundary conditions instead. These boundary conditions soften
the strong requirement of periodicity of displacements at the RVE boundary by
coarsening the traction mesh and requiring periodicity to hold only in an average
sense over this coarser mesh. Three main questions are asked: Do weak peri-
odic boundary conditions alleviate the dependency between 1 and 07 Is this
dependency the result of RVEs prone to localization under shear? Do smaller
coarsening factors widen the range of 6 over which localization with a single
shear band is permissible? Overall, it is concluded that only the weakest form
of weak periodic boundary conditions reduces the dependency between &; and
0, which is indeed caused by RVEs that are prone to strain localization under
shear, particularly towards 8 = 45°. Increasing coarsening factors quickly in-
troduce stricter periodicity requirements, thus limiting the possibility of strain
localization with a single shear band at angles other than # = 45°. Recommen-
dations are provided to alleviate the dependency between &7 and 6 as well as
how to more realistically model the behavior of RVEs used in this research.
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Chapter 1

INTRODUCTION

1.1 Thesis Statement

The ultimate principal stress of equivalent representative volume elements due
to axial load under varying orientations should, on average, remain constant.
Notwithstanding, prescribing periodic boundary conditions introduces a depen-
dency between the ultimate principal stress and the orientation angle. This
dependency may be reduced by prescribing weak periodic boundary conditions.

1.2 Multiscale Computational Homogenization

The macroscale behavior of multiphase materials generally depends on the re-
sponse of its underlying heterogeneous microstructure (Karamnejad, 2016} p. 1,
Kouznetsova, Geers, and Brekelmans, 2010, p. 2). Modeling these hetero-
geneities directly at the macroscale may give accurate results but often requires
enormous computational efforts (Karamnejad, [2016, p. 1). Instead, multiscale
methods can be used to account for the underlying micro-heterogeneity in an
approximate fashion (Kouznetsova et al., |2010, p. 4). This is achieved via
so-called homogenization methods, which supplant the heterogeneous material
at the subscale by an equivalent homogeneous material (Sluys, 2017, p. 12).
Among these methods, computational homogenization is probably one of the
most accurate techniques to upscale the nonlinear behavior of heterogeneous
microstructures (Geers, Kouznetsova, and Brekelmans, 2010, p. 2175, Ohman,
Runesson, and Larsson, 2015, p. 1). In this method, a representative volume
element (RVE) is assigned to a macroscale material point and the constitutive
law for the macroscopic model at that point is obtained by solving a boundary
value problem (BVP) on the RVE (Karamnejad, [2016)).

Computational homogenization can be applied to materials whose subscale
properties are nonlinear, whereby it is necessary to solve a fully nested macroscale-
subscale BVP. This is referred to as multiscale computational homogenization
or FE? (Kouznetsova et al., 2010, p. 4, Ohman et al., 2015, p. 1). The basic

1



2 CHAPTER 1. INTRODUCTION

steps for multiscale computational homogenization are:
1. defining an appropriate size for each RVE,
2. formulating subscale boundary conditions, and

3. homogenizing the solution to the subscale BVP.

The first step requires choosing an appropriate scale (size). In general, an RVE
should be small enough to satisfy the principle of separation of scalesﬂ but large
enough to accurately represent the microstructure and its phenomena (Geers
et al., Coenen, Kouznetsova, and Geers, [2012). Typical subscales com-
prise the mesoscale (~ 1073m) and microscale (~ 10~%m); however, selecting
appropriate RVE sizes falls beyond the scope of this treatise.

The second step entails transferring the macroscale deformation gradient
onto the RVE via boundary conditions in exchange for a homogenized stress and
tangent stiffness operator in the third step (Geers et al., [2010). Three classical
options exist for defining boundary conditions (see Tabl. Among these,
periodic boundary conditions converge faster (with increasing RVE size) towards
the actual microstructural response (Svenning, Fagerstrom, and Larsson, .

1.3 Study on Periodic Boundary Conditions

Although periodic boundary conditions are typically confined to deformation-
driven procedures, the principal stress necessary to substantiate the thesis state-
ment should ideally be derived by prescribing a uniaxial stress on the RVEEI
Fortunately, strong periodic boundary conditions support the application of ex-
ternal forces on the RVE corners to represent stress (van der Meer, 2016). In
unpublished work by Van der Meer, uniaxial stress was applied to a sample
of 48 different fiber-matrix composite RVEs at 46 different angles between 0°
and 90° with respect to the orientation of the RVE boundaries. The ultimate
applied stress in simulations with elasto-plastic matrix was recorded to generate
the ultimate principal stress (o) vs. orientation angle (0) curves in Fig.

Load rotation: counter-clockwise
| - -l | | - | [ - | | | | I 11 | | | | I I -]
0 10 20 30 40 50 6i0) 70 80 90
fl

Figure 1.1: Ultimate principal stress vs. orientation angle, strong periodic
boundary conditions

IThe macroscale deformation gradient should essentially be constant over each RVE
2The correct uniaxial strain requires prior knowledge of the strain in the perpendicular
direction, which is not readily available with nonlinear heterogeneous materials.



1.3. STUDY ON PERIODIC BOUNDARY CONDITIONS 3

This experiment was performed for both a clockwise and counterclockwise
rotation of the load, resulting in different individual o1—6 curves but the same
curve of average ultimate principal stress (1) vs. 6. This ratifies the existence
of a dependency between &; and 6. Hereinafter, it is demonstrated that this
dependency is not derived from having a small sample size, but rather the result
of choosing RVEs that are prone to strain localization under shear. The effect
of the localized shear bands on o7 is discussed in detail in Chapter 6.

0.1 ; . 0.1 ; :

= 44°
a

=, = B

= =

= =

= =

[al) [u

100 120 140 100 120 140
Principal stress o Principal stress o)

Figure 1.2: Histograms of the ultimate principal stresses

Null hypothesis significance testing is used to verify whether or not the RVEs
tend to have — on average — a lower o when oriented at 44°F| Let ¥; and Y; be
random variables representing 1 at § = 0° and 6 = 44°, respectively. Fig. [[.2]
confirms that both variables can be well approximated by normal distributions:

Vi ~ N(u1, 07 /n1),
Yy ~ N(pz, 03 /n2).

Here, p; and o; are unknown population means and standard deviations and n;
is the sample size. The goal is to test whether changing 6 from 0° to 44° altered
the population mean. That is, do Y; and Y5 stem from the same population?
Can the difference in the sample means be attributed to the randomness of the
sample? These two questions are rephrased as the null and alternate hypothesis:

Ho :p11 = po,
Hy 1 # pa.

The assumption of normality of Y; and Y; sanctions the use of Welch’s t-test to
verify Hy (Dekking, Kraaikamp, Lopuhad, and Meester, p. 400). Using
this test, Hy is rejected in favor of H; at the a = 0.05 significance level with
a p-value of 7.9 - 10~'7. That is, the dependency between the ; and @ is most
likely not random. The statistical calculations are presented in Appendix A.

3The orientation angle was varied by 2° each time. Data is only available for 44° and 46°.



4 CHAPTER 1. INTRODUCTION

1.4 Research Purpose

As an alternative to strong periodic boundary conditions, Larsson, Runesson,
Saroukhani, and Vafadari (2011)) developed weak periodic boundary conditions,
with offer more flexibility regarding the deformation of the RVE boundary. The
objective of this treatise is to demonstrate whether enforcing weak periodic
boundary conditions instead of strong periodic boundary conditions does ame-
liorate the dependency between 61 and 6.

First, the formulation of the weak periodic boundary conditions in (Larsson
et al.,|2011)) is extended to allow corner forces that represent macroscopic stress
tensors (section 3.1). This extended model is implemented using the Jem and
Jive C++ libraries (Dynaflow Research Group, n.d.) in Section 3.2. The model
is validated via linear-elastic and materially-nonlinear examples in Chapter 4.
The thesis statement is then tested per the methodology in Chapter 5. Finally,
Chapter 6 discusses the results and the effects of localized shear bands on 7.

1.5 Notation

Tensors and tensor products are used throughout this treatise. Scalars and
scalar functions are denoted by lower-case italic letters such as a, b and n.
Vectors, except for ¢ and ¢, are denoted by lower-case bold letters such as n.
Matrices are denoted by upper-case bold letters such as A, B and ¥. The inner
(dot) product (including matrix multiplication) is defined as the contraction
over the last index of the first tensor and the first index of the last tensor, or

a'b:Zaibh (1.1)
A-b:Zaijbj, (1.2)
J

AB = Zaijbjk. (13)
J

For brevity, the dot is omitted when the product occurs between two matrices.
The double dot product is defined as the contraction over the two closest indices:

A:B= ZZaijbji. (14)
i J

Finally, the outer product (also referred to as the dyadic product) is defined as
a®b= aibj. (15)

All numerical examples in this treatise can be reproduced using a consistent set
of unitsEI Herein, forces are implicitly given in Newtons and distances in mm.

4That is, derived units use the the units of their base units. E.g. stress is given in N/mm?.



Chapter 2

BACKGROUND

Materially nonlinear finite element analyses are characterized by changing tan-
gent operators (Dy) due to microstructural phenomena such as steel yielding and
concrete cracking. Dy is evaluated numerically at so-called integration points
(IP) either via macroscopic modeling or multiscale modeling (Runesson and
Larsson, [2011; Sandstrom, Larsson, and Runesson, 2014} p. 2).

Table 2.1: FEM constitutive modeling. From (Runesson and Larsson, |2011))

Macroscopic modeling Multiscale modeling
Microstructure response modeled Microstructure modeled explicitly
implicitly via internal variables using representative volume elements
Calibration from macroscale expe- | Calibration from macroscale expe-
riments or subscale modeling riments or further subscale modeling

In macroscopic modeling, the effect of the microstructural behavior on Dy
is represented implicitly via internal variables (Runesson and Larsson, [2011)).
In multiscale modeling, Dy is determined by upscaling the response of the de-
forming microstructure via computational homogenization (Kouznetsova et al.,
2010, pp. 1-4; Sandstrom et al., 2014, p. 2). The microstructure around each
IP is modeled explicitly using RVEs and a local BVP is solved on each RVE
(Larsson et al., 2011} p. 12; Sandstrom et al., 2014, p. 2). The macroscale defor-
mation gradient (u® V) at each IP of the macroscale BVP is used to formulate
boundary conditions on its corresponding RVE (Kouznetsova et al., 2010} p. 7;
Geers et al., 2010, p. 2176; Coenen et al., [2012, p. 2). After solving the sub-
scale BVP, standard averaging equations yield the macroscopic stress tensor ()
and a static condensation process yields Dy (Geers et al., 2010, p. 2176). This
process is illustrated in Fig.

Common boundary conditions include prescribed displacements (Dirichlet),
prescribed boundary tractions (Neumann) and prescribed periodicity (strong
periodic) (Larsson et al., 2011}, p. 11; Coenen et al., 2012, p. 2). Dirichlet bound-
ary conditions impose boundary displacements which conform strictly to u® V,
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: u®V
MACRO

MICRO
Solving B.V.P.

Figure 2.1: Computational homogenization. From (Geers, Kouznetsova, and

Brekelmans, [2010} p. 2176)

resulting in an overstiff prediction of Dy. Conversely, Neumann boundary con-
ditions prescribe minimal kinematic boundary conditions, thus underestimating
D; (Coenen et al., p. 2). Strong periodic boundary conditions have shown
to provide a better estimate of the stiffness for both periodic and random mi-
crostructures (Larsson et al., p.- 11; Coenen et al., p. 2). Regardless,
both Dirichlet and strong periodic boundary conditions constrain (to varying
degrees) the strain percolation path (strain localization) at the boundary (Co-
enen et al., p. 2). Table summarizes the classical boundary conditions
for the subscale BVP.

Table 2.2: Classical boundary conditions. From (Coenen, Kouznetsova, and

Geers, 2012} p. 4)

BC type Effective stiffness | Strain percolation path
Dirichlet Overestimation Constrained at boundary

Strong periodic | Good estimate Only those respecting periodicity
Neumann Underestimation Sensitive to spurious localization

As an alternative, the weak periodic boundary conditions developed by
(Larsson et al., prescribe periodicity in a weak sense, thereby allowing
some non-periodic localization and improving the effective stiffness estimate
(Sandstrom et al., Svenning, Fagerstrom, and Larsson, . Section 2.1
formulates the macroscopic problem and coupling of scales. Section 2.2 presents
the subscale boundary value problem and the boundary conditions. Finally, Sec-
tion 2.3 elaborates the Galerkin approximations for the FEM implementation.
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2.1 Macroscale Boundary Value Problem

2.1.1 Quasistatic Stress Problem

The macroscale problem is described by point-wise equilibrium on the domain
), and corresponding Dirichlet and Neumann boundary conditions on 02 =T

-X.V=~finQ, (2.1)
u=u, onI'p, (2.2)
t=X-A=t,only\. (2.3)

Y is the first Piola-Kirchhoff stress (i.e. the transpose of the nominal stress), V is
the spatial gradient with respect to coordinates x in the reference configuration,
f is the vector of body forces (e.g., due to gravity) and n is a normal unit vector
describing I'y. The weak form of is given by: Find u € U(u,) that solves

/2:[5u®V]dQ:/f~§udQ+/ t, - dudl, Véu € U(0),
Q Q I'n (2.4)

U(u,) = {u € [H(Q)]4,u=u, on I'p}.

2.1.2 Macroscale-Subscale Transision

Separation of scales is now introduced. The local field around each IP is replaced
by a homogenized RVE occupying the subscale region (25 with boundary I'g
(Larsson et al., [2011}, p. 12). The scales are coupled via the following averaging
expressions (Larsson et al., 2011, p. 12; Kouznetsova et al., 2010, p. 12):

1
<y>|:| £ m yd§,
Dl “o (2.5)
(g & ol /v ydr.
O

The integrands in (2.4)) are homogenized at each RVE using ([2.5)), such that

/Q<z::[5u®v1>mdnz/ﬂ<f.5u>md9+/ ((ty-sw)gdl.  (2.6)

I':

The displacement field inside each RVE is given by (Larsson et al., 2011, p. 12):
u = uy + us, (2.7)

where uy; is the macroscale component and ug is the subscale fluctuation. First-
order homogenization implies a linear variation of uy; within each RVE:

uy=u+@eV) (x—-xX). (2.8)

The vector @ £ (u)( is equivalent to the macroscale displacement at X £ <X>|:|
Assume t, and f are smooth enough over the RVE domain to be replaced by

1Each RVE is conveniently centered around its IP. That is, X coincides with the IP location.
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t, = ((tp))q and f £ <f>D Per the Hill-Mandel macro-homogeneity condition
(Kouznetsova et al., |2010, p. 14), (2.6) is recast as: Find u € U(a,) that solves

/i;[aﬁ@@V]dQ:/?-éﬁdQJr/ t, - oudr, Véa € U(0),
Q Q I'n (2.9)

U(1,) = {u e [H'(Q)]%,u =10, on I'p},
with the homogenized stress tensor expressed as ¥ £ (¥)5 and 14, = (up)q.

The reader is referred to (Kouznetsova et al., 2010) for a thorough explanation
of multiscale homogenization and the coupling of scales.

2.2 Subscale Boundary Value Problem

2.2.1 Canonical Format of the RVE Problem

The subscale problem is also described by point-wise equilibrium, c.f. (2.1)).
However, both u and t are a priori unknowns (Larsson et al., [2011, p. 14).
Ergo, the BVP on each RVE is stated as follows: Find u and t that solves

f~5udQ+/ t-oudl. (2.10)
I'o

/ Y:[jueV]dQ=
Qg Qg

Recognizing that rigid-body-motion does not alter the stress resultant from the
subscale BVP, the displacement is split into a constant and a varying component:

u=1u+u withueR? v €Ug={uc[H Q)% uX) =0}. (2.11)

Equation (2.10) is not solvable without removing ua (Larsson et al., [2011}, p. 14).
Note that ' = (W ® V) - (x — X) + us. Setting u'(X) = 0 implies us(X) = 0,
which conveniently yields u(x) = upm(x) = u. The traction is similarly split:

t=t+t withtcR3 t' € Tg = {t € [Lo(To)]*" !, ((t))g=0}.  (2.12)

The ((t)) = 0 requirement implies self-equilibrating traction forces (Larsson
et al., 2011} p. 14). Substituting u = u+u’ into (2.10) yields (2.13)E| and (2.14):

/fdQ-5ﬁ+/ tdI'-éu =0, (2.13)
Qn I'p

/ 2:[5u’®V]dQ:/ f-6u’dQ+/ t-ou'dr. (2.14)
Qn Qn I'n

Expressing (2.13) as (f)5 - du+ [I'gl/ Qo] ({t))5 - 61 = 0 yields

Q0]

t£ <<t>>EI == |FD|

). (2.15)

2This holds true if we restrict to the situation when |Qg| — 0 and [T'g| — 0.
3The strain energy term vanishes because 6t @ V = 0.
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Substituting t = t + t’, with t defined in (2.15), into (2.14) yields
/ ¥ [fu'@V]dQ :/ f~5u'dQ+/ t’~5u/dI‘+fo/ su'dT. (2.16)
Qg Q0 I'g I'g
Similarly, t = t +t’ is substituted into (2.13) to derive the following expression:
/ f.6adQ+t- | dadl =0, véac R (2.17)
Qn I'g
By this token, (2.16) simplifies to: Find u’ € Ug and t’ € T that solves

/ I [5u/®V]dQ: t' - su'dT, Véu' € Upn. (2.18)
Qn

I'g

2.2.2 Classical Boundary Conditions

Solving requires the introduction of boundary conditions which respect
the Hill-Mandel condition and the averaging assumptions used to derive (2.9).
The boundary conditions introduced in Table do indeed satisfy these condi-
tions (see Kouznetsova et al., 2010, pp. 12-15).

xt y
g
Qp
X
(pper(x+)

I'

X-
(a) —-——Lg———— = (b)

Figure 2.2: RVE: (a) undeformed; (b) periodic displacements

The Dirichlet boundary conditions impose displacements on the boundary
of the RVE which conform strictly to the macroscopic displacement gradient:

u=(eV) (x—x),Vxon . (2.19)

The fluctuation term is not allowed to exist on the boundary: us = 0 on I'm.
In order to formulate strong periodic boundary conditions, I'y is split into an
image boundary (I'fj) and a mirror boundary (I'g), such that I'y = IUT'S (see
Fig. . The mapping @per : FE — I'g mirrors any x* € FE onto x~ € I'm.
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That is, X~ = @per(xT). Strong periodicity postulates a simultaneous variation
of u’ and t' which allows uy to exist on I'g (Kouznetsova et al., 2010} p. 11):

[u]og=@®V):[x—x]g, Vx on T'F, (2.20)

t/'(x) = —t/(¢per(x)), Vx on I'f, (2.21)

where [u']g £ u/(x) — u/(¢per(x)). Equation (2.19) implies [us]n = 0 on T'F,.
The macroscopic component, (a® V) - (x —X), is prescribed on I' in an average

sense due to the strong periodicity requirement of ug on I'g. Lastly, Neumann
boundary conditions enforce constant tractions on the RVE boundary given by

t' =% -nonlQ. (2.22)

Note that condition (2.22) is, in and of itself, insufficient to define and solve the
BVP, as is shown in Section 2.3.4.

2.2.3 Weak Periodic Boundary Conditions

Essentially, weak periodic boundary conditions present a variational (weak) form
of the periodicity constraint in (2.20]) (Larsson et al.,|2011} p. 15):

/ 6t [us]odl =0, Vot' € TH, (2.23)
r

+
0O

where TE is the trace of functions in T on the image boundary I‘E Thence,
all trial and test functions reside on FE. Using criterion 1D it follows that

/ t’-5u’dF:/
ro r
I

Using (2.24)), equation ([2.18)) is reformulated for weak micro-periodicity as: Find
u’ € Up and t’ € T for a given macroscopic strain (@t ® V) that solves

t' - ou'dTl + /+ t' (@per(x)) - 00’ (Pper(x)) AT =

+
O FD

t' - (6u’ — 0u' (pper(x)))dT = / t' - [ou']pdl. (2.24)

N
g

/ oF [5u'®V]dQ—/ ¢ [w]odT = 0, ¥ou' € Up,
+
“o = (2.25)
7/ 5t/~ﬂu/]]DdF:7/ (;t/'(ﬁ@V)'[[Xff(]]DdF, Vot' € Tq.
r+ +

O FD

Notice that (2.25)y, is a reformulation of (2.23). Hereinafter, the following change
in notation is adopted for the sake of brevity: u’ — u and t’ — t.

4Hereinafter, T, is simply referred to as Tp.
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2.3 Galerkin Approximations

Weak periodic boundary conditions serve as a transition between the strong
periodic and Neumann boundary conditions. As shown next, Dirichlet and
strong periodic boundary conditions possess the finest traction meshes (7) and
most restricted displacement fields (U") whereas Neumann boundary conditions
possess the coarsest 7" and least restricted UP (Svenning et al., 2016} p. 6).

2.3.1 Weak Periodic Boundary Conditions

The Galerkin approximation for the BVP with weak micro-periodicity follows:
Find u" € UE C Up and th € T}&, C Tp for a given strain u ® V that solves

/ E:[éuh®V]dQ—/ th . [ou]gdI =0, Vou" € UR,
+
“o = (2.26)
- 6th~[[uh]]DdI‘:—/ Sth- (@@ V) - [x —x]|gdl, Vét" € TR,
rh I

A mixed format is used for weak micro-periodicity. Its main features follow:

e The traction mesh 7™ should be more coarsely discretized than U™ on I'g
without voiding the LBB-condition (Svenning et al., 2016} p. 8).

e The tractions have no special regularity requirements: constant, linear or
higher-order basis functions can be chosen (Larsson et al., 2011} p. 17).

e Strictly periodic meshes — that is, nodal positions mirrored exactly from
FE to ' — may be used but are not required (Larsson et al.,|2011, p. 18).

e Condition (2.21)) is imposed via (2.24): self-equilibrating tractions do not
arise naturally if (2.20) is enforced weakly (Ohman et al., 2015, p. 8).

The last point is crucial: the system of equations that arises from discretizing

(2.26)) can only be assembled and solved if (2.24)) is used to formulate (2.26]),.
©.24)

That is, anti-periodicity of tractions ([2.21)) is imposed a priori via identity

Construction of the Traction Mesh

In this treatise, 7" is constructed for piecewise linear and continuous tractions
following the procedure in (Larsson et al., 2011, pp. 17-18). The standard
traction mesh is created by projecting all nodes on I'; and FE onto I‘E. Then,
TP is coarsened by removing nodes that are closer than a given tolerance to
other nodes until the desired dimension of Tl has been achieved (Fig. [2.3)).
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Figure 2.3: RVE: (a) standard traction mesh; (b) reduced traction mesh; (c)

Neumann traction mesh. From (Larsson, Runesson, Saroukhani, and Vafadari,

2011 p. 18)

2.3.2 Dirichlet Boundary Conditions
The Galerkin discretization for the BVP with Dirichlet boundary conditions
follows (Larsson et al., p. 17): Find u" € UB - UE for a given n® V that
solves
2 [su" @ V]dQ =0, Yéu" € UB(0),
Qg (2.27)
UB(u®V)={uclU},u=(a®V)- (x—x)onI'gl

Note that the traction space ’]I‘E is left unrestricted. On the other hand, UB
restricts displacement of the boundary nodes to (Kouznetsova et al., 2010} p. 16)

up; = (@@ V) - (xp; —X) fori =1,2,-- ,np, (2.28)

where p stands for prescribed and n,, is the total number of prescribed nodes.
The nonlinear system of equations from ([2.27)) is assembled and partitioned:

K fef = {0 (2.29)

where f; is the internal reaction force vector at the prescribed nodes. System
(2.29) can be solved using, for instance, displacement control Newton-Raphson.
Per (Kouznetsova et al., 2010, p. 19), the macroscopic stress tensor is given by

_ 1 B
s = mei(@(xi —x), (2.30)

where f; are the resulting external forces at the boundary nodes.
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2.3.3 Strong Periodic Boundary Conditions

The Galerkin discretization for the BVP with strong periodic boundary condi-
tions follows: Find u® € U3, C UY for a given G ® V that solves

/ ¥ [fu" ® V]dQ =0, You" € UE(0),
og (2.31)

Ug(ueV)={uc U, [ulp=(a®V)-[x—x]g on T}}.

The traction space T is left unrestricted. Additionally, Tf equals the trace of
UE, on I'5 and FE which means [ul]g € TP. Thus, is is possible to choose
6t = [ul]g € TR Then, the only solution to @b is [ul]g = 0 (Larsson et
al., 2011}, p. 18; Svenning et al., 2016} p. 6). Strong periodic boundary conditions
are enforced on strictly periodic meshes by treating two degrees of freedom
on opposing sides as a single degree of freedom, i.e. master-slave elimination
(Sandstrom et al., 2014, p. 2). Consider the RVE in Fig. [2.2(b). Let nodes 1,2
and 4 abide by Eq. (2.28). For the remaining nodes, q& is rewritten in a
format more suitable for FEM (Kouznetsova et al., |2010, p. 17). For 2D, the
RVE edges are renamed T, B, R and L (top, bottom, right and left) such that

ur = up + (l_l®V) . (X4 —Xl) =up +Up4 — Up1,
ug=uL+(@QV): (X2 —x1)=ur, +up2 —Up1, (2.32)
up; =(@®V)- (x; —x) fori=1,2,4.

Let u; be the independent (master) degrees of freedom and uq be the dependent
(slave) degrees of freedomﬂ Equations (2.31) and (2.32) are then recast as

[C:  Cd] {1‘;} —0 Y%, = —C; 'Oy (2.33)

Consider the system of equations with only the boundary degrees of freedom:

Kii Kid 5111 _ 6ri
i ot - ont =

Letting Cg; = —Cglci, (2.34) can be re-framed as
[Kii + KqCyq; + C;Kdi + CLKddCdi](Sui = {51‘1 + C;{lél‘d} (235)

That is, the dependent nodes have been eliminated from the system of equa-
tions. Per (Kouznetsova et al., 2010} pp. 19-20), the anti-periodic tractions arise
naturally from this formulation. Thus, the macroscopic stress tensor is simply

5oL > e (x—x), (2.36)

where f; are the reaction forces at the three prescribed corner nodes in Fig.
Instead of prescribing (u® V), it is possible to apply f; to represent . In other
words, periodic boundary conditions can be used in force-driven procedures.

5The standard traction mesh is applied to a strictly periodic mesh, thus T = ']I‘JDr = TIEI.

6The choice of u; is arbitrary, but it must include up.
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2.3.4 Neumann Boundary Conditions

The Galerkin discretization for the Neumann boundary conditions follows (Lars-
son et al., 2011, p. 17): Find u" € UP, and 3 € R3*3 given 1 ® V that solves

/ > [5uh®V}dQ—/ (2 -10) - [6ul]gdT =0, Yéu" € UL,
+
oo = (2.37)
f/ (0 -A) - [uP]gdl = =6 : [a®@ V], V6 € R3*3,
rh

Neumann boundary conditions constitute the weakest form of micro-periodicity:
T has a single element with constant traction in each RVE face (Fig C))
That is, ']I‘lg is restricted to constant tractions given by X-n (Larsson et al., 2011}
pp. 11-18; Svenning et al., 2016, p. 6). Also note that, opposite to the Dirichlet
boundary conditions, the displacement space UE is now left unrestricted.

i
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(a) ©)
Figure 2.4: (a) Particle-matrix composite. Macroscale shear deformation: (b)

weak periodic boundary conditions; (¢) Neumann boundary conditions (Larsson,
Runesson, Saroukhani, and Vafadari, 2011} p. 16)

Table [2.3] summarizes and compares the boundary conditions discussed herein.

Overall, weak periodic boundary conditions present a more general formulation
which fills the gap between strong periodic and Neumann boundary conditions.

Table 2.3: Comparison of classical and weak periodic boundary conditions

- s 1. Weak
Dirichlet Periodic cax Neumann
Periodic
Tracti . . tiall .
rac 10% unrestricted | unrestricted | P Y restricted
Space T restricted
Disp. . partially weakly .
Space UM restricted restricted restricted unrestricted
Traction projection standard coarser coarsest
Mesh 7" | UP onto I'g mesh mesh mesh




Chapter 3

IMPLEMENTATION

The Galerkin approximation of the weak form of the BVP - described by -
is solved by discretizing the domain and boundary (g and I'g) into finite-sized
elements with known test functions (du® and dt"). This involves the creation of
a displacement mesh and a traction mesh (4" and T") with shape functions for
each node. In Section 3.1, is discretized using these functions. Subsections
3.1.1 and 3.1.2 linearize these equations so they can be solved iteratively, e.g.
using Newton-Raphson methods. Subsequently, Section 3.2 describes the C++
implementation of these equations using the Jem and Jive libraries by (Dynaflow
Research Group, n.d.)).

3.1 FEM Discretization

First, the second order tensors in (2.26]), are rewritten as vectors using Voigt
notation:

/ e(0ul) - o(uM)dQ — th . [ou")odT =0, Véu" € UR, (3.1
Qg

+
g

where e(du") = fu" ® V and o(u®?) = . The finite-dimensional spaces of trial
solutions UE and ’]I‘E are constructed by limiting u" and t" to vary linearly over
each element in 4" and 7". This is achieved by introducing linearly independent
shape functions n;(x) and h;(x) for each node i in Y™ and j in 7. The shape
functions have a value of 1 at their corresponding node and 0 in all other nodes.
u" and t" are then described by linear combinations of the shape functions
times their corresponding discrete nodal values, or

"2 N-q, (3.2)
th 2 H.t, (3.3)

where N and H are the matrices of shape functions associated with &" and 77,
and 1 and t are vectors of nodal displacements and nodal tractions, respectively.

15
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The Bubnov-Galerkin approximation requires that the weight and trial functions
originate from the same finite-dimensional space (Wells, [2009, p. 32), hence

sul £ N .44, (3.4)
oth £ H - 6t.

The vector @ includes the boundary displacements G and G~ on FE and I'.
There are elements on the boundary of " with shape functions contained in
N+ and N~ that map said boundary displacements onto u* and u", thus

[u"][op=N*.a"-N"-a°,

3.6
[fu]g = N*.5a" — N~ -5a. (3.6)

Au contraire, t comprises only the nodal boundary tractions on I‘E Now, the
vector Q1 is mapped onto the strain vector € via the so-called B-matrix:
g(6u) £ B - da. (3.7)
Subsequently, the linear-elastic material stiffness matrix (D) maps ¢ into o, or
oc(u") £ DB -u (3.8)

The system of equations needs to be linearized to include material nonlinearities
in the form of tangent stiffness operatorSEI Substituting the preceding definitions
into (3.1)) yields the finite element discretization of the Galerkin approximation:

/ (B-(Sﬁ)-(DB-ﬁ)dQ—/ (Nt.6aF —N~.6a")-(H-t)dT = 0. (3.9)
Q0

i
I'g

Equation (3.9) is rendered into a format suitable for computer implementation:

S -Ky, -a—dat - K -t +0a Ky, -t =0, (3.10)
where

K. = / BTDBdQ},
LJon

K = N+THdF},
LJTf

K, = N—THdr}
LJTF

The global stiffness matrix K, is evaluated as usual. The matrices K, and K,
augment K, to form a so-called bordered stiffness matrix, Ko (See subsection

1The condition of anti-periodicity of tractions in 1} stipulates that t+ = —t—.
2Hereinafter, the tangent stiffness operators are denoted by D and map ¢ onto &.
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3.2.7). Equation represents the discretized version of the equilibrium
equation. Having added new degrees of freedom in the form of t, additional
equations are required to keep the linearized problem well-posed. These addi-
tional equations follow from the weak micro-periodicity requirement in (2.26)p:

—/F+ (Sth-[[uh]]gdrz—/F+ St (e V) - (xT —x7)dT, Voth € TR, (3.11)
m} O

Substituting the definitions (3.5) and (3.6) into (3.11]), the Galerkin form of the
weak micro-periodicity requirement is cast into the finite element discretization:

—/ (H-0t) - (Nt .at =N~ .a7)dl =
jpns
]
- / (H-0t)- (@@ V) (x" —x7)dIl. (3.12)
I
Equation (3.12)) is rendered into a format suitable for computer implementation:
—K{ cut+ K ca =1, (3.13)

where

K/, = [ H' N+ dr] K},
I

tu ut

K- — [ HTNdF} —K- ',
I

ffo=—[ H' - (a®@V) (xt—x7))dr.

ext —
+
I'g

The transpose of matrices K, and K, also augment K, to form K.

3.1.1 Nonlinear Solution With Prescribed Strain
For an iterative solution, equations (3.1)) and (3.11]) must be expressed as follows:

K, {i‘:} = £1550 — £ (0, §), (3.14)
where Ky is the bordered tangent stiffness matrix, fé;"tm is the vector of ex-
ternally applied forces at time t 4+ At and i, (0%, t*) is the vector of internal
(reaction) forces due to displacements and tractions evaluated at time ¢. The
solution increment vector is given by At = t'T4t — ¢ and Aa = att2t — o,
is obtained by letting t" — "+ At" and u® — u" + At®. Consider (3.1):

{ /QD (o) - o(Aut)dQ - /F+ At" - [su"] dF} _

{/sz-:(éuh)oa(uh)dﬂ/F

th - [ou]o dl“}, voul € UR.  (3.15)

+
0O
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Substituting definitions (3.4) through (3.8), the system (3.15)) is rendered into
the finite element discretization suitable for computer implementation:

{6ﬁ-Kuu~Aﬁ—5ﬁ+-Kjt-A£+5ﬁ~K;t-AE}:

—{513. BTa(ﬁ)dQ—5ﬁ+.K;-£+5ﬁ—-K;t-é}. (3.16)
Qg

The matrices K, and K, — given by (3.10) — augment K, to form K;. Like-
wise, the vectors -K, -t and K, - t are added to fi,;. Now, consider (3.11):

{—/F+ 6th-[[Auh]]DdF} =—/F+ ft" - (@@ V) - (xt —x7)dT

- { - | 5th - [uo dr}, voth € TR, (3.17)
m}

Substituting definitions (3.5) and (3.6), the system (3.17) is rendered into the
appropriate finite element discretization suitable for computer implementation:

{—K$'Aﬁ++KQJ~Au*} :fctxt—{—Kt*u~ﬁ++K’ .fr}. (3.18)

tu

The matrices K;7, and K;,, and the vector f!  are given by (3.13).

3.1.2 Nonlinear Solution with Prescribed Force

One goal of this treatise is to present a formulation in which it is possible
to prescribe forces at the corner nodes instead of a macroscopic strain tensor.
Assuming (u ® V) is imposed on the corner nodes as in (2.32)), £!,, reduces to

ff.=— [ H'.(af, —a,,)drl. (3.19)

ext — cor cor)
I

a,, is the displacement of a corner xJ,, on 'y and G, = u(¢per(x5,)) on I'5.

The micro-periodicity requirement in (3.11]) is modified per (3.19)) such that

- [ s todr s [ st @, - ag)dr =0 (320)
1—‘EI

or
+
1—‘IZI

The assumption that (@t ® V) is prescribed and enforced on @ gives rise to
reaction forces at the corners which adhere to (2.36) by enforcing (2.21). That
is, they are representative of the macroscopic stress. Instead of doing this, it is

possible to apply the reaction forces at the corners and solve for 4% iteratively.
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_ /\/\/_\‘\‘X\/\/ f‘l_\ FT Ly
o t(x,y) og
Ay »x Ay * X
b 'r
\/\/\/\/\/\ T —— (] ——
| Ax | h / | Ax | £,

(@) (b)

Figure 3.1: RVE: (a) anti-periodic tractions; (b) corner forces

Consider forces f; and f4 on nodes 2 and 4 in Fig. It is first proven that

/tdl“:fgand/ tdT = f,. (3.21)
FR FT

Per (Kouznetsova et al., [2010 p. 13), the macroscopic stress tensor is given by

Ax fFR tedy Ay [, txda
Az [ tydy Ay [ tyda

_ 1
3= — t(x—x)dl' = ——
(=x)dl =15

] . (3.22)
The macroscopic stress tensor also equals to (Kouznetsova et al., [2010, p. 21):

> L % L Az fe AyfxéL:l
= — fz® X; — X :|: . 323
jtal i:%A ( ) Qo [Azfye Ay fya ( )

Noting that Az # 0 and Ay # 0 and equating (3.22)) to (3.23]) results in

/ txdF:fx27 / tde:ny,
I'r T'r

/ tedD = fuu, / tydT = fou.
FT I-‘T

(3.24) is simplified to (3.21]), thereby completing the proofE| For brevity, f> and

f, are now denoted £ (which represents the sum of all corner forces on FE):

(3.24)

/ tdl = £ . (3.25)
I

+
0O

Equation |D makes reference to only the forces on I‘E. The reason is that G__,
is set to zero. Therefore, prescribing a force on that corner becomes redundant.

3The complete derivations required for the proof are relegated to Appendix B.
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All terms that need to be solved for are incorporated into the potential energy:

I(u", th) =

/ g-adQ—/ th-[[uh]]gdf—i—(/ thdl“—f;gr>~(ﬁ;gr—ﬁ;)r). (3.26)
Qg rf rt

O

The potential energy is minimized to derive the governing equations. This is
achieved by finding the variation of II and setting it equal to zero:

SH(ul, ", sul, 5th) =

/65~adQ— th~[[5uh]]|:|df—|—</ thdr—f;r).(éﬁ;r—éﬁm)
Qn rf r

0
— /+ St [uPodT + /+ sthdT - (af, —a,,)=0. (3.27)
FD FD

Equation (3.27)) is written in a format suitable for computer implementation:

cor *

ou-Ky, -aF oot KL - t+oak / HAT -t Foal, - £
rf

+5g.{¢Ki ot + [ HTAr-af }:o (3.28)

tu cor
+
FD

Since || must hold for all ja € UE and 0t € T}&,, then it can be split into

cor

5ﬁ-Kuu-ﬁ¢5ﬁi.Ki-ﬁiaﬁfm./ HAT -t Foal, -fX =0,
I'h

;Kﬁ;-ﬁii/ H'dI'-ai, =0. (3.29)

cor
+
'

When prescribing a force, ticor must be solved for iteratively. Therefore, (3.29))
is linearized by letting @&t = u+ Au, t =t + At and 0% = af + Aak :

cor cor cor”’
{6ﬁ-Kuu-AﬁﬂF6ﬁi-K§~Aﬁi6ﬁ§0r-/ HdF~AE}:i6ﬁ§)r-f;{)r
rf
—{5ﬁ-/ BTa(ﬁ)dQ:Fmi.Kft-fiaﬁggr./ Hdr-f,}. (3.30)
Q0 I
and

{:FKaAﬁii/ﬁ HTdr-Aﬁggr} = f{¢Kﬁl~ﬁij:/F+ HTdPﬁ;—;r}. (3.31)
O O

The matrices Kft and Ktiu are defined in (3.10)) and (3.13)), respectively. Note
that £, — given by (3.19) — is now included in fi,; because it is a function of
the displacements at the corner nodes if the strain (0 ® V) is not prescribed.
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3.2 Jem-Jive Implementation

3.2.1 General Remarks

The nomenclature is adapted for computer implementation. To start with,
corners 1, 2 and 4 are re-branded as corner-0, corner-x and corner-y. Similarly,
the coordinate axes and boundary faces are re-numbered according to Fig. [3.2]

face=3 ix=1

corner-y

corner-0

}/ corner-x

face =2
(b)

Figure 3.2: RVE: (a) mathematical notation; (b) FEM notation

The U mesh is generated using gmsh 3.0 (Geuzaine and Remacle, [2018) with
well defined boundary nodes. However, the center node X may not have been
specified. Thus, the current implementation has the following characteristics:

1. The RVE is centered around corner-0 instead of x. Le., u’(corner-0) = 0.
2. Consequently, uy; = u+(a®V)-(x—corner-0), and thus us(corner-0) = 0.

3. There is one vector per face containing the ® boundary node indices of
that face in ascending order of x- or y-coordinates.

4. Each vector of " node indices is stored in order of ascending face in a
vector array called bndNodes._.

5. There is one vector per ix containing the 7" node indices on the face
perpendicular to ix (also in ascending order of z- or y-coordinates).

6. Each vector of 7" node indices is stored in order of ascending ix in a
vector array called trNodes_.

The first two points entail a different removal of rigid body motion, which does
not alter the resulting stress distribution. On the other hand, fixing u(corner-0)
requires that the forcing vector prescribed by (3.19)) become
H " u(corner-z)dT on £ =1
foxe = — I T ( ) e (3.32)
fFT H ' u(corner-y)dT" on face =3
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3.2.2 Program Structure

The weak micro-periodicity requirement is implemented using the Jem and Jive
C++ libraries (Dynaflow Research Group, n.d.). Jem and Jive form a numerical
toolkit for solving partial differential equations. Jive, in particular, provides
many useful classes for building FEM-applications (such as classes for handling
node sets, element sets, degrees of freedom and constraints). Besides these
classes, Jive also provides an environment which divides programs into models
and modules. Models are classes that implement a given aspect of an application
(for example, defining loads, creating stiffness matrices or assigning constraints).
Modules are classes that implement the solution algorithms: they read inputs
and issue commands to the models in order to run the program. Decoupling
programs into models and modules which must conform to abstract model and
module classes facilitates the implementation and re-use of models and modules.

Module Class Definition

A module is an instance of a class derived from an abstract module class. This
template prescribes three public methods: init, run and shutdown. The first
two methods return an enum called Status with values: 0K, DONE or EXIT.

Namespace Virtual class Virtual methods Output
init(conf, . globdat)\ OK
Jive::app ——» Module=—» run(globdat)—————» enum Status: DONE
T shutdown (globdat) EXIT

Figure 3.3: Jive module class definition

Typical Jive-based FEM applications require a properties file containing the
parameters pertinent to the current analysis and the names of any other input
files required by the program (e.g. mesh, load and constraints). This input file
is first parsed by a Properties object called props. The modules can then be
initialized using props. Each module contains a name used to find its runtime
parameters in props. Modules read data from and write data to a previously
initialized Properties object named globdat, which contains global data such
as the model tree and the solution vector. Some typical Jive modules are:

e the InputModule, which constructs the mesh and stores it in globdat;
e the InitModule, which constructs a model tree and stores it in globdat;

e the LinsolveModule, which asks the model tree to assemble Kg and fiy¢,
runs a (specified) solver and stores the solution vector in globdat; and

e the OutputModule, which reads the solution vector and writes it to a file.

Another layer of abstraction is added by grouping a program’s modules in a
ChainModule, which is essentially a module that contains all necessary modules
as children in the necessary order of execution. The modules are executed by
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[InputModuleJ [InitModuleJ [LinsolveModule} [OutputModule]

ChainModule

VAN

Model

Globdat

Figure 3.4: Example module chain

Jive’s Application: :exec function, which calls the init, run and shutdown
methods of the ChainModule for as many times as needed to complete an anal-
ysis. In turn, the ChainModule calls the same methods from its children, dis-
carding those which are DONE. Application: :exec also handles output streams,

Figure 3.5: Application: :exec flowchart

memory errors and any other exceptions thrown during execution. The modules
issue commands to the models by calling a takeAction method implemented in
every model. The modules pass a string specifying the action and a Properties
object called params with the necessary parameters. Jive defines a collection
of standard actions used by the built-in Jive modules (Fig . Weak micro-
periodicity is integrated into a program that performs these same actions.

Model
Destruction

Model
Construction

INIT SHUTDOWN

l GET_EXT_VECTOR / T
ADVANCE. — ur ConsTRAINTS 7 GET-MATRIX.0 == COMMIT
I ! | I
1 1
1 1

Figure 3.6: Standard actions flowchart
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Model Class Definition

A model is an instance of a class derived from an abstract model class. Of
the following four public methods: constructor, configure, getConfig and
takeAction; at least the constructor and takeAction need to be implemented.

Namespace Vvirtual class Virtual methods output
Model(name, conf, props, globdat)
configure(props, globhdat)

jive::model ——»Model — getconfig(conf, globdat)

takeAction(action, params, globdat)— bool

Figure 3.7: Jive model class definition

Models implement algorithms for computing the external and internal force
vectors (foxy and fing), the stiffness matrix (Kp), and the constraints. When a
module calls a models’ takeAction method, the model executes the task and
updates the parameters (foxt, fint, ... ). If successful, takeAction returns True.

MatrixModel
MultiModel

( Fibers ) ( Matrix ) (PeriodicBCModel)

Figure 3.8: Example model tree

A single model need not perform all tasks. Instead, multiple models are usually
combined into a model tree. Consider, for example, the subscale model with
fibrous material surrounded by a matrix in Fig. a). Its model tree comprises:

e the MatrixModel located at the root, which acts as a node with a single
child and manages the MatrixBuilder object used to assemble Kjy;

e the MultiModel, which acts as a node with several child models — its
takeAction method simply passing any commands onto its children;

e the Fibers and Matrix models, which return an updated Ky and f;,; upon
receiving the GET_MATRIX_0 command from the MultiModel; and

e the PeriodicBCModel, which returns an updated Constraints object upon
receiving the GET_CONSTRAINTS command from the MultiModel.

This list (and thus Fig is not comprehensive. Additional models may be
required for applying external forces (foxt) or using solvers such as arc-length. In
fact, corner forces are applied to the RVE in Fig.[4.5| using the DispArclenModel.
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3.2.3 Weak Periodic Boundary Conditions Model

The weak periodic boundary conditions model (WeakPBCModel) is largely
based on the strong periodic boundary conditions model (PeriodicBCModel) im-
plemented by van der Meer (2016]). Thus, the WeakPBCModel is implemented
as a child of the PeriodicBCModel in order to access its member variables and
private methods. It implements the following two public methods:

e The constructor of the WeakPBCModel calls the PeriodicBCModel con-
structor and instantiates the member variables in subsection 3.2.4.

e takeAction specifies which private methods are called based on the action
issued by the ChainModule (and passed on by the parent model).

The following PeriodicBCModel private methods are called by takeAction:
e advance_ scales the imposedStrain_ when ADVANCE is issued.

e fixCorner._ fixes corner-0 when GET_CONSTRAINTS is issued.

e applyStrain_ imposes displacements on corner-z and corner-y (due to
imposedStrain_) when GET_CONSTRAINTS is issued.

e checkCommit_ checks and updates the solution when COMMIT is issued.
Additionally, the WeakPBCModel implements the following private methods:

e init_ initializes all variables in subsection 3.3.4 when INIT is issued. It
calls the following functions to initialize bndNodes_, dx0_ and trNodes_:
— sortBndNodes_ sorts all vectors in bndNodes_ by calling

* sortBndFace_ to sort each vector of node indices in bndNodes_
in order of ascending x- or y-coordinates;

— findSmallestElement_ loops through all vectors in bndNodes_ and
assigns the smallest d z and dy between each pair of nodes to dx0_;

— createTractionMesh_ maps all nodes in bndNodes_ onto I'Y, stores
their indices in trNodes_, sorts them and coarsens them by calling

% sortBndFace_ to sort each vector in trNodes_, and

* coarsenMesh_ to delete nodes from each vector in trNodes._.

e augmentMatrix_ performs the assembly procedure outlined in subsection
3.2.7 when GET_-MATRIX_0 or GET_INT_VECTOR is issued and calls

— getTractionMeshNodes_ to obtain the pair of nodes in trNodes_ that
corresponds to (encapsulates) the current IP on the boundary of U".
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3.2.4 Initialization

The model tree is constructed by the InitModule, which calls the constructor of
the model type specified in propsE| It then issues the INIT command to finish
initializing the (instance) member variables of each model in the tree. For the
PeriodicBCModel, these include:

e rank_: number of dimensions of the global topology
e nodes_: NodeSet for retrieving nodal coordinates
e dofs_: reference to the DofSpace object (table of degrees of freedom)
e cons_: reference to the Constraints object (table of constraints)
e dofTypes_: vector for retrieving dof indices from dofs_
e bndNodes_: array of vectors of 4" boundary node indices
e masters_: vector of corner node indices (corner-x and corner-y)
e ifixed_: index of corner-0
e imposedStrain_: vector of applied strain rate
e dx_: vector of RVE dimensions
The WeakPBCModel adds the following member variables to this list:
e nodes_: XNodeSet to create the traction mesh nodes’]
e bshape_: reference to BoundaryShape for calculating shape functions
e nIP_: number of integration points associated with bshape_
e nnod_: number of nodes associated with bshape_
e ndof_: number of dofs associated with bshape_
e localrank : number of dimensions of the local topology of bshape_
e trNodes_: array of vectors of 7" node indices
e box_: vector of specimen coordinates
e dx0_: vector of smallest element size along each axis
e cf_: coarsening factor

Most of these members are initialized by a private method called init_ imple-
mented in the WeakPBCModel, which calls subroutines for sorting the boundary
nodes (sortBndNodes_), finding the smallest element (findSmallestElement_)
and creating the traction mesh (createTractionMesh_).

4Each node of the model tree calls the constructor of its corresponding children.
5Extends the NodeSet nodes_ into a XNodeSet to enable the creation of new nodes.
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3.2.5 Sorting Boundary Nodes

27

The boundary nodes are sorted by sortBndNodes_ and sortBndFace_. The first
one passes on each vector in bndNodes_ — together with an index — to the latter.
In turn, sortBndFace_ uses bubble sort to re-arrange the given vector of node
indices in order of ascending z- or y-coordinates based on the given indexﬂ

( Start )

| face =10 |

| Map face onto ix: int ix = face/2

1

| Get correct index: index = (ix == 0?) 1:0 |

1

| sortBndFace_(bndNodes_[face], index)

1
|

face < 2xrank_

| Increment face [

Figure 3.9: sortBndNodes_()

( bndFace, index J

| in = 0 |

L m=-0 |

| c0 = coordinates of node bndFace [jn] |

1

| cl = coordinates of node bndFace [jn+1] |

cO[index] >
cl[index]?

| Swap bndFace [jn] and bndFace[jn+1] |
1

Increment jn
| Increment in [

1

jn

in < bndFace.size()

bndFace.size()-1-in

Figure 3.10: sortBndFace_(bndFace, index)

Sindex = 0 for a-coordinates and 1 for y-coordinates.
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3.2.6 Traction Mesh Creation

The traction mesh is constructed per the procedure outlined in (Larsson et al.,
2011, pp. 17-18). This procedure has the following steps:

1. findSmallestElement_loops through all vectors in bndNodes_ and assigns
the smallest (non-zero) dz and dy between each pair of nodes to dx0._.

2. createTractionMesh_ projects all nodes from bndNodes_ onto FE and
stores the indices of the new nodes in the corresponding vector in trNodes_.

3. It then sorts and coarsens (erases indices from) each vector in trNodes_
by calling sortBndFace_ (Fig. [3.10) and coarsenMesh_ (Fig. [3.13).

The first two steps are illustrated in Fig. and Fig. The last step can
be appreciated in Fig. and Fig.

( Start )
l

| face =0 |

| Map face onto ix: int ix = face/2 |

1

| Get correct index: index = (ix == 07) 1:0 |

1

in=20 |

| c0 = coordinates of bndNodes [face] [in] |

| c1 = coordinates of bndNodes [face] [in+1] |

| dx = cl[index] - cO[index] |

face < 2*rank_

dx <
dx0_[index]?

in K bndNodes_[face].size()-1

/de,[indeX] = dx/

1
—>| Increment in li
l
]

| Increment face [

Figure 3.11: findSmallestElement_()
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( Start )
1

| ix=0 |

29

| Nodes on I'5: inodes = bndFace [2+*ix]

¥

| Nodes on FE: jnodes = bndFace_[2*ix+1]

1

in=20 |

| coords = coordinates of inodes[in] |

N

| Map onto FE: coords[ix] = box_[2*ix+1] |
1

| Create new node at coords and get index |
1

| Append new node index to trNodes_[ix] |

1

| Increment in li

!
[ m0 ]

| coords = coordinates of jnodes[jn] |

1

| Create new node at coords and get index |

1

| Append new node index to trNodes_[ix] |

1

Increment jn li

1

| Get correct index: index = (ix == 07) 1:0

1

| sortBndFace_(trNodes_[ix], index)

1

| coarsenMesh_(trNodes_[ix], index)

1

| Add dofs to trNodes_[ix]

1
|

in

jn

inodes.size()

K jnodes.size()

ix < rank_

Increment ix [

Figure 3.12: createTractionMesh_()
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( trFace, index )

| dx = tolerance for removing nodes |

1

| cn = coordinates of trFace.back() |

1

in=20 |

| c0 = coordinates of trFace[in] |

1

| c1 = coordinates of trFace[in+1] |

[lc0o-c1]| <
min(dx,
dx_[index]?

| Delete trFace[in+1] |

!
| c1 = coordinates of trFace[in+1] I—
No in < trFace.end()-1
Yes
| Delete trFace[in+1:end-1]
( return )

—>| Increment in I

Figure 3.13: coarsenMesh_(trFace, index)

In Fig. dx is set to (dx0_[0] + dx0_[1] )/2/cf,E] Additionally, note that
the while loop not only checks whether ||cO-c1|| is less than dx but also whether
it is less than dx_[index] in case dx exceeds the RVE dimensions (dx_). The
latter if-statement checks if the distance between c1 and cn is less than dx. If
it is, the leftover nodes except the last one are deleted and the function ends[]

"Instead of an average, it is possible to set dx to dx0_[index]/cf_, but this is less robust.
8Deleting the nodes is not necessary. It suffices to simply remove the indices from trFace.
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3.2.7 Assembly Procedure

Lagrange multipliers are used to enforce the weak micro-periodicity constraint
on the finite element discretization of the equilibrium equation, such that
Au" and At® can be solved for simultaneously. The vectors t and ff, are
vertically appended to the solution vector i1 and the internal force vector fi,; by
a process called adjunction. Similarly, the matrices Kft and Kﬁl are augmented

to Ky to create Kg. This assembly procedure is illustrated in equation (3.33]):

O Aﬁint O
+ 42
Kuu :FK“t Aﬁi fQD BTO'd Q + :FKutt
+ [(HAT . + [ HATt
0 FKE + [ HTdF} 0 } At { FKLat+ [ HTdlak,
L o | rf
(3.33)

K, is assembled as usual by one or more SolidModels representing each of the
RVE materials (c.f. Fibers and Matrix in Fig. [3.8). For non-periodic meshes,
elements on 7" may not fully overlap the elements on the boundary of U":

Th et ot jofs, H,®)
x[0] x[1] x[0] x[1] K = Fw;, N, H()

| .
uh/\ = /-;\O T /‘> » idofs, w;,, Nj,
LipJt

Figure 3.14: Contribution of each IP towards K,

Therefore, the contributions to K= (3.10) and K T (13.13) are evaluated and

ut ut

added to K at each IP (instead of element) on the boundary of U" per |§|

Ko[idofs, jdofs] = Kg[idofs, jdofs] + Kiip,

LT (3.34)
Ko[jdofs, idofs] = Ko[jdofs, idofs] + K;, ,
where the contribution from each IP towards Ki is given by
K = Fw;, N H(¢). (3.35)

K;) corresponds to I'fj (faces 1 and 3) and K;,, to I'g (faces 0 and 2). idofs

and jdofs are the vectors of degrees of freedom associated with the current
elements in Y and T®, respectively. In turn, N;, and H(£) are the matrices

9The integration is done over the boundary of P because it has a finer mesh than 7P.

|
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of shape functions evaluated at each IP on the boundary of " and the local
coordinate ¢ of the corresponding element in 7". w;, is the Gaussian weight
times the jacobian at the same IP. The contributions to fi,; are added similarly:

fine[idofs] = fine[idofs] + K, - t[jdofs], (3.36)

fine[jdots] = fine[jdofs] + K7 - a[idots]. '

Thereafter, the contributions to [+ HAT and [+ H' dT are added to K per
O O

Ky[idofs, jdofs

[ | = Ko[idofs, jdofs] + w,;,H
Ko[jdofs, idofs] = K[jdofs, idofs] + w;,H (3.37)
Ko[kdofs, jdofs] = Kg[kdofs, jdofs] — w;,H;p,
Ko[jdofs, kdofs] = Ky[jdofs, kdofs] — w;,H

The integration is done over 7" because the integrand stems entirely from T".
Here, H;), is the matrix of shape functions at each IP of T and W;p Is its
corresponding integration weight. jdofs is the vectors of degrees of freedom
associated with the current element on 7" while idofs and kdofs correspond
to the corners of . The contributions to fi,; are added in a similar manner:

finc[idofs] = fiys[idofs] + wy, Hyy, - t[jdots],

fini[kdofs] = £,y [kdofs| — wy, Hyy, f[_] dofs], (3.38)
fint[jdofs] = fing[jdofs] £ wipH; cak

& . = u[idofs] and 1, = u[kdofs|. The last two equations from (3.37))
may be omitted when t_,, = At_,, = 0; however, it is sensible to keep all terms
from ([3.37) and (3.38]) to ensure consistency (correctness) between fi,; and K.

where 0}



Chapter 4

MODEL VALIDATION

The validity of the WeakPBCModel is corroborated by means of linear-elastic
and materially nonlinear analyses. Of these, the linear-elastic tests are exe-
cuted on an elastic material and a fiber-matrix composite, both in plane strain
condition with unit thickness. The nonlinear tests are also executed on the
fiber-matrix composite with elastic fibers but an elasto-plastic matrix instead.

4.1 Linear-Elastic Analyses

4.1.1 Linear-Elastic Material in Plane Strain Condition

The linear-elastic material is tested under axial and shear loading by means of
(a) prescribed strain and (b) applied load on the south-east corner of the mesh
(corner-x). The axial test results are compared to the expected analytical
results. Consider the compliance matrix in

Exx 1 1 —v —v Oxx
{€yy} =5 v 1 —v {O'yy}. (4.1)
Evz —-v —v 1 Oz

Letting €,, = oy, = 0, the following three equations are derived:

UXX VUZZ

xx — o 5 4.2
VOxx  VOyy

Sw=TTg T g (4.3)
0= —V?X + U;JZ vields Oy = VOyx. (4.4)
In turn, substituting (4.4]) into (4.3)) and (4.2) yields the following two results:

. E yvields  Oxx E
s1gMaxx = 1_ .2 XX ; = ﬁa (45>

2 2

V=V yields E&yy  —V —V
Eyy = I Oxx a = 1_ .2 . (46)

33
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Now, consider the RVE shown in Fig. The width and height are the same
(Az = Ay). The Young’s modulus is 910 and the Poisson’s ratio is 0.3. An

0.02 0.021
0.01 0.011
0.00- - | 0.001
0.00 0.01 0.02 0.00 0.01 0.02
(a) (b)
0.02 0.021
0.01 . | 0.0
0.00- - | 0.001
0.00 0.01 0.02 0.00 0.01 0.02
(c) (d)

Figure 4.1: Linear-elastic material. Traction mesh with cf_ = (a) 0.1; (b) 0.3;
(c) 0.6; (d) 1.0

axial test under plane strain condition yields the following effective stiffness:

OxxtA Et

(EA)plane = % — 6’;’; A;’ = 7= = 1o, (4.7)
The WeakPBCModel results are compared against the PeriodicBCModel
results via plots of stiffness vs. coarsening factors (cf_). The axial stiffness is
estimated as the horizontal force-to-displacement ratio at corner-z, in accor-
dance to . The shear stiffness is estimated as the vertical force at corner-x
divided by the total distance traversed by corner-x and corner-y. In turn,
cf_ sets the minimum element size for the traction mesh 7". Fig. shows
good agreement between the PeriodicBCModel and WeakPBCModel under pre-
scribed axial Strairﬂ and applied horizontal force on corner-z. Fig. shows

acceptable agreement for prescribed shear strain and applied vertical force.

!Note that eyy is prescribed per (4.6)) to ensure oyy = 0
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Figure 4.2: Linear-elastic: (a) axial strain = (0.1, —0.04286, 0.0); (b) horizontal

force on corner-x
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Figure 4.3: Linear-elastic: (a) shear strain = (0.0, 0.0, 0.1); (b) vertical force on

corner-x
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(c)

Figure 4.4: Deformation: (a) axial strain; (b) shear strain; (c) vertical force

Overall, there is satisfactory agreement between the WeakPBCModel and
the PeriodicBCModel under axial deformation (Fig. and shear deformation
(Fig. . Some values of cf_ give rise to small discrepancies between both
models, but in general the stiffness remains fairly constant. This is reflected in
the lack of strain localization in the deformed geometry (Fig. .
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4.1.2 Fiber-Matrix Composite

The fiber-matrix composite in Fig. [I.5] is also tested under axial and shear
loading by means of (a) prescribed strain and (b) applied load on corner-z. The
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Figure 4.5: Fiber-matrix composite. Traction mesh with cf_ = (a) 0.01592; (b)
0.3; (c) 0.6; (d) 1.0

matrix material has a Young’s modulus of 3760 and a Poisson’s ratio of 0.3. The
fibers have a Young’s modulus of 74000 and a Poisson’s ratio of 0.2. Fig. [£.0]
shows good agreement between the WeakPBCModel and the PeriodicBCModel
under prescribed axial strain and applied horizontal force on corner-z. Likewise,
Fig.[£7shows good agreement between the models under prescribed shear strain
and applied vertical force on corner-x. As expected, the Neumann traction
mesh (cf_ = 0.01592) produced the softest result. The results become stiffer
with finer traction meshes until cf_ = 0.3 is surpassed. The deformed geometries
are presented for these two coarsening factors: 0.01592 and 0.3. Non-periodic
deformation is barely visible with finer traction meshes, which supports the close
agreement between the WeakPBCModel and the PeriodicBCModel.




4.1. LINEAR-ELASTIC ANALYSES 37

101 % 101

,
)
o}
)
\
.
J_
1
r
L
1]
7
\l
!

[ i
[2\] L
T T

1

Stillness
Stillness

[
o
T
I

13k / Strong PBC Strong PBC
- Jln' — — —Weak PBC — — = Weak PBEC | A

} I I I I i I I I I

0 0.2 0.4 (.6 0.8 1 0 0.2 0.4 (.6 (.58 1
Coarsening factor Coarsening factor

(a) (b)

1
—
=

Figure 4.6: Fiber-matrix: (a) axial strain = (0.1, —0.03404, 0.0); (b) horizontal
force on corner-x

Here, the ey, component for the prescribed axial strain is not known a-priori
as with the linear-elastic material in plane strain condition. Instead, a horizontal
force was first applied on corner-z using the PeriodicBCModel. The vertical
deflection at corner-y was then used to derive the value needed for ey,.

- T — T = A N T A= FF o= = =
aT00F s 1 4700 ot
P I
g 630 F 1 |
S d £ a6oo b ]
E 4600 F |'.‘I 1 % ]
T az50F 4 {F r
o I Strong PBC 4500 0 ! Strong PBC |
4500 4 — — — Weak PBC i — — — Weak PBC
- _.l 1 1 1 1 E i 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Coarsening factor Coarsening factor
(a) (b)

Figure 4.7: Fiber-matrix: (a) shear strain = (0,0,0.1); (b) vertical force on
corner-x

These results show good agreement between the WeakPBCModel and Peri-
odicBCModel under axial deformation (Fig. and shear deformation (Fig.[4.7).
It is noted that the stiffness increases steeply at low coarsening factors but re-
mains fairly constant after cf_ = 0.3. Fig. and Fig. show that — at
any given cf_ — coarser U" yield less number of elements per face of 7T". Less
elements in 7P results in a weaker periodicity constraint and a lower stiffness.
Thus, a coarser 4" should produce a more gradual increase in the stiffness.
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(a) (b)

Figure 4.8: Deformation due to axial strain: (a) cf_ = 0.01592; (b) cf_ = 0.3

(a)
Figure 4.9: Deformation due to shear strain: (a) cf_ = 0.01592; (b) cf_ = 0.3

The low stiffnesses towards cf_ = 0.01592 agree with the non-periodic de-
formation in Fig. [4.6] and Fig.[£.7 Au contraire, the deformed geometry seems
to abide periodicity of displacements for coarsening factors higher than 0.3.

4.2 Materially Nonlinear Analyses

Consider the fiber-matrix composite in Fig. The matrix is now modeled
as an elastic-perfectly plastic material with non-associative flow rule based on
(Melro et. al, . Its Young’s modulus and Poisson’s ratio remain 3760 and
0.3. The plastic Poisson’s ratio and yield stress are 0.39 and 80. Setting the
same yield stress for tension and compression, the Von Mises yield surface is
recovered.
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4.2.1 Prescribed Strain

Instead of stiffness-coarsening plots, force-displacement curves are presented
to compare coarsening factors in the materially nonlinear analyses. The next
results were obtained using an AdaptiveStepModule and SkylineL U solver with
precision = 1-10~* and up to 20 iterations per step (maxlter = 20).
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Figure 4.11: Fiber-matrix composite with strain rate = (0.0,0.0,0.001)

These results show good agreement between the models under prescribed
axial strain (Fig. and prescribed shear strain (Fig. . As expected, the
coarser traction meshes produce the softest results. These become stiffer until
cf_ = 0.3 is surpassed, at which point there is very little difference between the
results from the WeakPBCModel and the PeriodicBCModel.
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Figure 4.12: Deformation due to axial strain: (a) cf_ = 0.01582; (b) cf_ = 0.3

Y (®)

Figure 4.13: Deformation due to shear strain: (a) cf_ = 0.01582; (b) cf_ = 0.3

The soft results for the Neumann traction mesh are in agreement with the
non-periodic strain localization in Fig. a) and Fig. a). On the other
hand, the deformed geometry seems to abide periodicity of displacements for
values of cf_ higher than 0.3, which substantiates the close agreement between
the WeakPBCModel and the PeriodicBCModel in the force-displacement plots.
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4.2.2 Prescribed Force

Here, 300 steps of size 0.1 were used in tandem with the FlexArclenModule and
SkylineLU solver (precision = 1-10~* and maxIter = 10). The results not only
resemble the prescribed strain results, but also agree with the PeriodicBCModel.
Again, the WeakPBCModel results become stiffer until cf_ = 0.3 is surpassed,
whereon they are almost indistinguishable from the PeriodicBCModel results.
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Figure 4.14: Fiber-matrix composite with horizontal force on corner-x
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Figure 4.15: Fiber-matrix composite with vertical force on corner-x

The deformed geometries show non-periodic strain localization for a coarsen-
ing factor of 0.01592 and almost purely periodic strain localization for coarsening
factors higher than 0.3. Again, this agrees with the force-displacement plots.
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@ (b)

Figure 4.16: Deformation due to horizontal force. (a) cf_ = 0.01582; (b) cf_ =
0.3

h (a) I A (®) !

Figure 4.17: Deformation due to vertical force. (a) cf_ = 0.01582; (b) cf_ =
0.3



Chapter 5

METHODOLOGY

The thesis statement is tested on a batch of fiber-matrix composite RVESE]
Uniaxial load is applied to each RVE at 46 different angles between 0° and 90°
to generate a curve of ultimate principal stress (o) vs. orientation angle (9).
The ultimate stresses are averaged to produce one characteristic 1,6 curve.
This process is executed with 10 coarsening factors (cf_) and 3 load steps (|f]),
which culminates in a total of 30 516 curves. Fig[5.I|summarizes this procedure.

I Select cf_ |

1
I Select |f| |

1
—  Select RVE |
i)

L o=0 |

| Analyze RVE |

1
[ 60=0+20 |—
1

/ Save 010 plot and data /

No
No No

Save 10 plot and data /

0 <90°

Last cf_? Last |f|?

Figure 5.1: Methodology

IMultiple RVEs are required to overcome bias from each individual geometry.

43
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5.1 Principal Stress vs. Orientation Angle

Unlike periodic boundary conditions, the weak periodic boundary conditions for-
mulated in (Larsson et al.,[2011]) can only be used in deformation-driven proce-
dures. Yet, to corroborate the thesis statement, one should prescribe a uniaxial
stress on each RVEE| The setup introduced in subsection 3.1.2 grants the ap-
plication of external forces on the RVE corners to represent stress. Hereinafter,
the process by which the load is rotated and the resulting principal stresses
are retrieved is delineated. The uniaxial load is applied along the x’-axis and
transformed into the RVE coordinates. The x’-axis rotates counter-clockwise.

Y Ty
Oy
/5A X' thy X'/
|
X o b /
Oyt 1
/ y
0
0
X fo 4 x
E~— o - L g 4 v
7 la,,‘ f;‘y

Figure 5.2: (a) Stress transformation; (b) corner forces

Consider the stress transformation in Fig,. The second order stress tensor
3 is transformed from local to global coordinates via 3 = I' T 2'T" or

e et ot | e it | Y

Oyx Oyy Oyx Oyy

Letting ¢ = cos(f) and s = sin(#), the local stress tensor X is expressed as

2 2 2 _ .2
> _ Ox €+ Oy s” — QUX%,:CS , Ox'x’CS —20y’y’cs —Zax’yv(c —s?)
Txx’CS — OyypCS + Oy (€ — 8°) Oxx'8® + Oy c® + 208
(5.2)
Rewriting the stress tensors in Voigt notation, the relation o = T, o’ ensues:

Oxx cos?(0) sin?(#) —2cos(f)sin(f) | (oxx
{ } = sin?(9) cos?(0) 2 cos(0) sin(0) {gy,y, } (5.3)
cos(f) sin() — cos(f)sin(f) cos?(6) — sin?()

Ox'y’

2The ratio between strain components does not remain constant for nonlinear materials.
3(5.1) is easily derived by taking equilibrium along the global = and y axes of Fig.
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The inverse transformation is obtained by substituting negative 6 into (5.3)):

Ox'x’ cos?(6) sin?(#) 2 cos(0) sin(0) Oxex
{oyvyv} = sin?() cos?(0) —2cos(f) sin(6) {O'yy}. (5.4)
—cos(0)sin(f) cos(#)sin(f) cos?(#) — sin?(6)

O'X)yv O—Xy

Uniaxial stress is obtained by substituting oy = oy = 0 into (5.3)) such that

T = O cO82(0) = XX 4 U’;’" cos(26),

2
Oyy = Oy 8in?(0) = 0,(2’)(7 — UX;(’ cos(26), (5.5)

Oxy = —Ox’x’ COS(Q) Sll’l(@) = _m

The macroscopic stress tensor is related to the corner forces via (3.23)), or

Oxx Oxy| _ 1 Aagfxx Axfxy
[ ] {Ayfyx Ayt (5.6)

190l
where fyx is the reaction force at corner-y due to the fixity along the z-axis.
At each angle 6, the uniaxial stress oy, is transformed into the corner forces.
The BVP is solved and the ultimate stresses are transformed back into o7.

Oyx Oyy

y Ay
O Oyy
Ay N T .
| In e ——
|14 |Lg
1 1
y y
0
Lo A e > -~ >
fy

(a) (b)

Figure 5.3: RVE: (a) corner forces; (b) resulting stresses

Letting |Qg| = AzAy and Az = Ay yields the equations through which the
uniaxial stress oyy is turned into the RVE corner forces:

frox = 030 co8?(0) Ay = <J);X7 + I coS(Q@)) Ay,
fos = s (0)A0 = (5 - T cos(29) ) Ax, (5.7

fry = T cos(0) sin(0) Ay = \/ fux fyy-
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The principal stress o7 is retrieved by transforming the corner forces back into
stresses in global coordinates via (5.6]) and into local coordinates via (5.4)), or

o1 = Jx cos?(6) + % sin?(0) + 2%‘; cos(0) sin(6). (5.8)

5.2 Localization Angle

A hypothesis was formulated in the introductory Chapter that the dependency
between o1 and € is not due to having a small sample size, but rather the result
of choosing RVEs that are prone to strain localization under shear. To test
this hypothesis, a method for estimating localization angles (¢1oc) is presented,
where ¢)oc is the smallest angle between a shear band and the x or y-axis

Black & White Image

RGB Image Blue Channel Image Labeled Regions

Figure 5.4: Method for obtaining the localization angle tested on rve35, 8 = 30°

The orientation angles of blobs in a processed image of an RVE are used as
ad-hoc estimates of the localization angles of shear bands. Using MATLAB’s
Image Processing Toolbox™, a gray-scale image is derived by extracting the
blue channel of an RGB image with yellow plastic zones. A threshold value of
70 produces a binary (black and white) image whose blobs accurately portray
the location of shear bands. 6 pixel long vertical and horizontal line structuring
elements erode the image in an attempt to segment touching blobs. The blobs
are labeled with various colors for verification. Blob orientations are given by the
first eigenvector of the inertia matrix of enclosing ellipses. The blobs’ orientation
angles (¢or € (—90°,90°)) are transformed into localization angles via

(bloc,i — {|¢or,i| ’ lf ‘¢0r,i| < 45 (59)

90° — |@or,i| , Otherwise.
¢ is estimated using a weighted average of the blobs’ localization angles:
Z Ai ¢10c7i
K3

S (5.10)

¢=

where A; and ¢10¢,; are the area and localization angle of each blob, respectively.

4¢ lies between 0° (vertical or horizontal localization) and 45° (diagonal localization).



Chapter 6

RESULTS

The coarsening factors (cf_) were selected based on two criteria: (1) account
for the variation in results between the cf_ = 0.01592 and cf_ = 0.3, and
(2) obtain different average number of elements on each face of T%. The first
criterion is satisfied by choosing factors that lay equidistant on a logarithmic
scale. This ensures a greater number of coarsening factors towards cf_ = 0.016.
The second criterion is satisfied by choosing only 10 factors. The resulting
number of elements on each face of 7" is varied enough to provide substantially
different results between one coarsening factor and the next. Fig. [6.1] shows the
average number of elements per cf_. The double logarithmic scale preserves the
quasi-linear relation between cf_ and the average number of elements.

100 ; - .

(0.630, 28.0)

(0.400, 20.3

(0.250, 13.9)
10 (0.160, 8.3)
(0.100, 6.0

(0.063, 3.8)

Ave, number of clements

(opre 10925 1 Ve” i
0.01 0.1 1.0
Coarsening factor e¢f_

Figure 6.1: Average number of elements vs. coarsening factors

Three load step sizes were chosen based on trial: |f| =1, |f| = 0.5 and |f| = 0.2.
These step sizes are larger than the one used in subsection 4.2.2: |f| = 0.1
— abandoned herein due to its high computational requirements. During the
validation of the WeakPBCModel, a rough guideline for choosing the maximum

47
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number of steps was developed (Table[6.1). The number of steps from Section 1.3
(400) was kept because it exceeds these recommended values. Additionally, a
DispArclenModel constrains corner-y along the z-axis and stops analyses if the
displacement exceeds 0.006, thereby limiting the step count to less than 400.

Table 6.1: Recommended number of steps per load step size
load step size [f| | 0.1 | 0.2 | 0.5 | 1.0
number of steps | 300 | 140 | 80 | 40

The thesis statement is tested on 38 out of the 48 RVEs used in Section 1.3
These RVEs possess the same properties as the fiber-matrix composite from
Section 4.2. Table summarizes relevant parameters from the properties file.

Table 6.2: Summary of model properties and module parameters

Thickness 1
Material Hooke
Fibers State ’ Plane strain
(SolidModel) Yqung S mod'ulus 74000
Poisson’s ratio 0.2
Shape Triangle3
Integration scheme Gaussl
Thickness 1
Material Melro
State Plane strain
Matrix YO}mg’s’ mod'ulus 3760
(SolidModel) Pmssgn S r.atlo . 0.3
Plastic Poisson’s ratio 0.39
Yield stress 80
Shape Triangle3
Integration scheme Gaussl
Initial displacement 0.0
Arclen Maximum displacement | 0.006
(DispArclenModel) | Constraints cornery (dx)
Load table load.data
Periodic Coarsening factor See Fig. m
(WeakPBCModel) Strain rate None
Stepper iolve.zr. fk}il(i)riiLU
recision .
(FlexArclenModule) Number of iterations 20

The applied macroscale uniaxial stress is scaled via oxx Ay = |f| and transformed
into corner forces per the procedure in Section 5.1. The forces are written to

112 rves were removed because they diverged before reaching the ultimate principal stress.
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load.data, which is used as input for the DispArclenModel. On the other hand,
each coarsening factor from Fig. [6.1] is explicitly specified in the properties file.

6.1 Principal Stress vs. Orientation Angle

The results of the procedure outlined in Fig. [5.1] are presented herein. Uniaxial
load was applied to each RVE at 46 different angles between 0° and 90° to gen-
erate curves of ultimate principal stress (o) vs. orientation angle (6). Fig.
shows how o1 and ¢ are retrieved. At each angle 0, uniaxial stress is transformed
into corner forces. The ultimate principal stress o; is the maximum principal
stress obtained from solving the BVP on the RVE. The localization angle ¢ is
estimated using an image of the RVE without deformation at the last load step.

150

@ = 15.96

o1 i
100

al) -

Principal Stress

0 0.1
Principal Strain

0.2
Deformed geometry Localization angle
Figure 6.2: Principal stress and localization angle of rvel, 6 = 24°

The ultimate principal stressesE| of each RVE were recorded to generate o1-6
curves as in Fig. [6.3] Then, the curves from all 38 RVEs were averaged to
produce a single characteristic d1-6 curve. This process was executed with the
10 chosen coarsening factors and 3 load steps, yielding a total of 30 51-8 curves.

140
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Figure 6.3: Principal stress vs. orientation angle of rvel (cf_ = 0.016)

Here, the results for the following coarsening factors are presented: 0.016
and 0.063. Fig. shows the 1-6 curves of all RVEs with cf_ = 0.016. For

2Hereinafter, the ultimate principal stress is simply called principal stress or o7.
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each load step, the average principal stress (1) is shown in red with error bars
representing the standard deviation (s,, ). Fig. compares these 61-0 curves:
w is the average of &1 and o is the average of s, along each curve. Manifestly,

results are insensitive to |f].

0 10 20 30 40 50

60 70 80

Figure 6.4: Principal stress vs. orientation angle (cf_ = 0.016)
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Figure 6.5: Average principal stress vs. orientation angle (cf_ = 0.016)

Fig. [6.6] shows the o1-6 curves of all RVEs with cf_ = 0.063 and Fig. [6.7] shows
the 71-0 curves per load step. Here, decreasing |f| displays a slight improvement
in convergence. This is evidenced by the increasing values of 4 and decreasing
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values of 0. Most coarsening factors exhibit a similar trend (c.f. Table [C.1]).
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Figure 6.7: Average principal stress vs. orientation angle (cf_ = 0.063)

The results for all remaining coarsening factors can be found in Appendix C,
with all values of 1 and o epitomized in Table Generally, reducing |f| and
increasing cf_ elevate the values of &1 by lowering the standard deviations and
by imposing stricter periodicity conditions. However, the increase due to the
former may not be substantial enough (compared to the increase due to cf_)
to justify the additional computational effort. Henceforth, only the results of
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analyses performed with |f| = 1 are shown. Fig. compares the 1-0 curves
per coarsening factor. In essence, it delivers the data in a condensed form.
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Figure 6.8: Average principal stress vs. orientation angle (|f| = 1.0)

Table [6.3] presents the maximum and minimum values of the average princi-
pal stresses 1. The PeriodicBC results are re-evaluated with only 38 RVEs for
a proper comparison. It is highlighted that decreasing cf_ reduces the differ-
ence between the maximum and minimum values of &1, thereby showing that
weakening the periodicity constraint reduces the dependency between &1 and 6.

Table 6.3: Average principal stress and standard deviation per coarsening factor

Coarsening Average Average _ . max (1)
factor (cf.) stress i std. dev. o maxon o — min(a)
0.016 111.73 4.06 114.69  105.55 9.14
0.025 111.35 4.92 114.58 105.26 9.32

0.040 108.68 7.17 113.67 101.31 12.36
0.063 111.77 6.16 116.58  104.33 12.25
0.100 114.85 5.46 118.48  107.45 11.03
0.160 114.98 5.97 118.64 107.53 11.11
0.250 116.72 5.54 120.50  109.16 11.34
0.400 117.42 5.25 121.39  109.52 11.87
0.630 117.76 5.00 121.86  109.52 12.34
1.000 117.57 5.54 121.85 109.38 12.47
PeriodicBC 118.44 4.53 122.78  109.79 12.99
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6.1.1 Statistical Analysis

The thesis statement is tested by analyzing the results per the procedure in
Appendix A. If the results with the lowest coarsening factor (Fig. gainsay
it, then tests with finer meshes are guaranteed the same negative outcome.
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Figure 6.9: Histograms and normal probability plots for cf_ = 0.016

Indeed, Welch’s ¢-test rejects the null hypothesis with p = 3.7 - 10719, That is,
weak periodic boundary conditions do not alleviate the dependency between &1
and 6 — not even in their weakest form. The following conclusions are drawn:

e It suffices to glance at the data to invalidate the thesis statement. This
is backed up by the statistic analysis, where the null hypothesis — that is,
Uoy (0 = 0°) = gy, (6 = 44°) — is rejected with p = 3.7 - 10710,

e Decreasing cf_ reduces the difference of the maximum and minimum val-
ues of the average ultimate principal stress 51 (See Table. [C.1]).

e Increasing cf_elevates the values of &1 throughout the range of 8, but more
so towards # = 0°, by imposing more exacting periodicity conditions.

e The WeakPBCModel is not as robust as the PeriodicBCModel, as evi-
denced by increased standard deviations towards cf_ = 1.0.
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6.2 Principal Stress vs. Localization Angle

In this section, it is verified whether the lower value of 1 at 6 = 44° is caused
by choosing RVEs prone to strain localization under shear. This hypothesis is
based on the observation that shear bands due to uniaxial stress at 6 = 45° tend
to respect periodicity of displacements. Fig. [6.10] schematizes this behavior.

Figure 6.10: Preferred localization modes at 6 = 45°

Here, preferred localization modes refers to those respecting periodicity. Clearly,
the shear bands in Fig.[6.10]may shift sideways facilitating the formation of these
preferred modes. Fig. furnishes a few examples of periodic deformations
(rvel3 and rve50) as well as non-periodic deformations: a vertical shear band
combined with multiple horizontal bands (rve35) and viceversa (rve44).

rvel3 rve50 rve35s rvedd
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Figure 6.11: Examples of localization modes at 8 = 44°

The non-periodic deformations from rve35 and rve44 may only occur with weak
periodic boundary conditions and a coarse traction mesh (cf_ = 0.016). These
deformations vanish when a standard mesh is used instead (cf- = 1.000).
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Likewise, Fig. shows the preferred localization modes at § = 0°. While
these shear bands may also shift sideways, the probability that the fibers are
favorably aligned is lower because two shear bands are required instead of one.

I»
»

»

Figure 6.12: Preferred localization modes at § = 0°

Fig. presents the RVEs whose deformations most closely resemble Fig.
rveb0 and rve28. In fact, non-periodic localization is more common. For in-
stance, rve42 displays an anti-periodic deformation that is an amalgam of both
localization modes from Fig.[6.12|and rve33 culminates with a single shear band.
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Figure 6.13: Examples of localization modes at § = 0°

At higher coarsening factors, the non-periodic deformations mutate into axial
deformations while periodic deformations are sometimes exacerbated (rve50).
Appendix D and E provide more deformation examples for all coarsening factors.
Based on these figures, the following inferences are made about the values of ¢:

e Angles near 0° indicate well-formed vertical or horizontal shear bands.
e Angles higher than 30° tend to indicate well-formed diagonal shear bands.
e Angles around 20° are usually associated with pure uniaxial tension.

From these inferences, it becomes clear that the hypothesis can be tested merely
by comparing o1 to ¢ at § = 0° and 6§ = 44°. The goal is to confirm whether
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values of ¢ close to 0° do indeed yield lower values of o1. This is achieved by
means of scatter plots and MATLAB’s corr function — whose output subsumes
the Pearson’s correlation coefficient (p) and its corresponding p—valueEl Fig. m
and Fig. [6.15] present the results for c£_ = 0.016 and cf_ = 0.063, respectively.
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Figure 6.14: Scatter plot of localization angle vs. principal stress (cf- = 0.016)
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Figure 6.15: Scatter plot of localization angle vs. principal stress (cf_ = 0.063)

At 0 = 44°, the null hypothesis (p = 0) is rejected in favor of the alternate
hypothesis (p # 0) with p < 0.05 in both occasions. That is, there is ample
evidence to ascertain that the preferred localization modes (¢ =~ 0°) yield lower
values of o1. Au contraire, the scatter plots at § = 0° are more haphazard with
less significant correlations, evidenced by lower values of p and higher p-values.
This means the preferred localization modes (¢ &~ 45°) occur less frequently and
may not yield lower values of 1. The same trends are observed in Fig. [6.16] and
Fig.[6.17] which present the results for cf_ = 0.016 and cf_ = 0.063, respectively.

3p < o = 0.05 disproves Hg : p = 0. That is, the correlation is statistically significant.
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Figure 6.16: Scatter plot of localization angle vs. principal stress (cf_ = 0.250)
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Figure 6.17: Scatter plot of localization angle vs. principal stress (cf_ = 1.000)

Appendix F presents plots for all 10 coarsening factors: Hy was rejected 8 times
at @ = 44°, validating the correlation. The following conclusions are gathered:

e The positive correlation between ¢ and o at 6 = 44° is highly significant,
meaning that the preferred localization modes lead to lower values of .

e The correlation between ¢ and ¢ at 8 = 0° is not significant, meaning the
preferred localization modes do not necessarily lead to lower values of .

e Overall, the lower values of 67 around 6 = 45° can be attributed to the
formation of localization bands under shear which respect periodicity.
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6.3 Localization Angle vs. Orientation Angle

As a final step, it is hypothesized that lowering cf_ widens the range of 6 around
45° over which localization with a single shear band is permissible (Fig. [6.18)).
Au contraire, increasing cf _ demands multiple shear bands to maintain periodic-
ity of displacements at 6 other than 45° due to stricter periodicity requirements.
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Figure 6.18: Localization modes: (a) weak periodicity; (b) strong periodicity

Fig. [6.18| suggests that ¢ is not likely to change regardless of coarsening factors.
In fact, the scatter plots in Appendix F contain measurements at additional
orientation angles near § = 45° which reveal that ¢ does not change much
(Fig.[6.19). Rather, lower values of cf_ increase the scatter and decrease 7.
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Figure 6.19: Localization angle vs. coarsening factor

Careful observation of the localization patterns of RVEs across all orientation
angles sheds some light: new shear bands only begin to form when there is a gap
between the fibers that is favorably aligned with respect to the orientation angle
— the difference of 6§ and ¢ is near 45°. The transition from old to new shear
bands is not gradual. Once the fibers are favorably aligned, the change is swift.
Otherwise, the current shear bands remain until new ones can form. Particularly
towards 6 = 0° and 6 = 90°, RVEs may exhibit complete plastification while
switching from one localization mode to the next. As a result of all this, changes
in ¢ over a small range of # may either be very abrupt or insignificant.
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Fig. [6.20] epitomizes this behavior. The load near § = 0° triggers shear
bands which yield a low value of o7. Increasing cf_ raises o; significantly due
to stricter periodicity conditions which deter anti-periodic localization in favor
of pure axial deformation. Towards 8 = 45°, the vertical shear bands respect
periodicity, leading to very low values of o1 regardless of the coarsening factor.
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Figure 6.20: Transition between shear bands (rvel)

Rve6 presents a single shear band near § = 0°, which resembles a preferred

localization mode with a missing shear band. This “semi-periodic” mode yields

a very low value of o;. Like rvel, increasing cf_ raises o7 due to stricter peri-

odicity conditions which preclude non-periodic localization. Rve22 in Appendix

G presents a similar localization mode, albeit with two shear bands (periodic).
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Figure 6.21: Transition between shear bands (rve6)
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Rvel3 presents diagonal shear bands (¢ ~ 45°) near § = 0° with low o1. Soon
after, the shear bands turn vertical (¢ ~ 0°) and o7 increases. o7 diminishes
as the fibers regain a favorable alignment, towards 6 = 45°. Just like rvel,
increasing cf_ elevates o1 towards 6 = 0° due to stricter periodicity conditions.
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Figure 6.22: Transition between shear bands (rvel3)

Rve4l presents a localization mode that best conforms to the hypothesis. The
shear band (¢ = 10°) around 6 = 32° is exemplary of Fig. a) and yields a
very low o1. Rve42 in Appendix G presents a similar trend around 6 = 8°.
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Figure 6.23: Transition between shear bands (rve4l)
It was expected to see more RVEs exhibit the hypothesized behavior. The

scarcity of RVEs with favorably aligned fibers leading to slightly diagonal shear
bands means that not much difference is observed between strong and weak pe-
riodicity, except at low coarsening factors, which allow non-periodic localization
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with low values of o throughout 6. The following conclusions are gathered:

e Very low cf_ allows non-periodic shear bands with low ¢y throughout 6.
However, single shear bands respecting periodicity tend to yield lower o;.

e Increasing cf_ raises o; towards 8 = 0° due to stricter periodicity, which
deters non-periodic localization in favor of pure axial deformation.

e New shear bands form only once the fibers are favorably aligned with
respect to the load orientation angle; that is, ¢ is at around 45° from 6.

e Increasing cf_ limits the range of ¢ over which localization with a single
shear band is permissible. Few RVEs’ fibers are aligned such that ¢ falls
within this narrower range.

Fig. is included herein for the sake of completeness: averaging all values of
¢ presents a bilinear relation between ¢ and 6.
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Figure 6.24: Localization angle vs. orientation angle

This figure shows that ¢ remains constant regardless of cf_; however, it
obfuscates the fact that each individual ¢ does not have a linear relation with
respect to 6. Rather, it stays “constant” over a range of 6 until a new shear band
develops. It is highlighted that ¢ remaining constant indicates that increasing
cf_simply raises the number of parallel shear bands needed to satisfy periodicity
of displacements. This may not be necessarily true towards # = 0° where the
angle ¢ does not accurately differentiate between diagonal shear bands and
complete plastification due to pure axial deformation.
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Chapter 7

CONCLUSIONS

7.1 Summary

The goal of this research work was to evaluate whether applying weak periodic
boundary conditions instead of strong periodic boundary conditions alleviates
the observed dependency between the average principal stress &1 and orientation
angle 0 of fiber-matrix composite RVEs under uniaxial loading. The goal was
achieved by implementing a modified weak periodic boundary conditions model,
which grants application of external forces to represent macroscale stresses; and
a methodology for the automated analysis of the localization angles. This model
was used to test the thesis statement on a batch of 38 RVEs at 46 angles between
0° and 90°, using 10 different coarsening factors and 3 load step sizes.

7.2 Conclusions

This treatise answers three main questions with regards to the effects of weak
periodic boundary conditions on the average principal stress due to axial load
under varying orientations. These questions, and their answers, follow.

7.2.1 Does weak micro-periodicity alleviate the dependency
between 7; and 07

The statistical analysis in Section 6.1 clearly shows that weak periodic boundary

conditions do not remove the dependency between &; and € — not even in their

weakest form. In fact, the hypothesis that 61 (¢ = 44°) and 61 (6 = 0°) come from

populations with equal means is disproved with a p-value as small as 3.7-1071°.

However, low coarsening factors do reduce the difference between max(d;) and
min(a1). The following trends are worth mentioning:

e Increasing cf_ elevates g1 due to stricter periodicity conditions.

e The increase in 1 due to lower |f| is not as substantial as due to cf_.
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e The WeakPBCModel is not as robust as the PeriodicBCModel.

7.2.2 Is this dependency the result of RVEs prone to lo-
calization under shear?

The fluctuation of 61 along 6 can be attributed to RVEs which are prone to
localization under shear. The statistical study in Section 6.2 provides ample
evidence of a high positive correlation between o; and the localization angle ¢
at 0 = 44°, meaning that values of ¢ near 0° (vertical or horizontal shear bands)
lead to lower principal stresses. Likewise, there is little evidence of a weaker
negative correlation between o1 and ¢ at 8§ = 0°, which indicates that diagonal
shear bands do occur but may not necessarily yield lower principal stresses.
Recapitulating:

e The positive correlation between ¢ and o at 6 = 44° is highly significant,
meaning that the preferred localization modes lead to lower values of .

e The correlation between ¢ and o at 8 = 0° is not significant, meaning the
preferred localization modes do not necessarily lead to lower values of .

e Overall, the lower values of 1 around # = 45° can be attributed to the
formation of localization bands under shear which respect periodicity.

7.2.3 Do smaller coarsening factors widen the range of ¢
over which localization with a single shear band is
permissible?

Unfortunately, the current sample did not provide enough evidence to support
the claim that lower values of cf_ widen the range of 6 over which localization
with a single shear band is permissible. In fact, this behavior was only observed
in a couple of RVEs, namely 41 and 42. The following conclusions are gathered:

e Very low cf_ allows non-periodic shear bands with low oy throughout 6.
However, single shear bands respecting periodicity tend to yield lower o7.

e Increasing cf_ raises o1 towards # = 0° due to stricter periodicity, which
deters non-periodic localization in favor of pure axial deformation.

e New shear bands form only once the fibers are favorably aligned with
respect to the load orientation angle; that is, ¢ is at around 45° from 6.

e Increasing cf_ limits the range of ¢ over which localization with a single
shear band is permissible. Few RVEs’ fibers are aligned such that ¢ falls
within this narrower range.

Overall, only very low coarsening factors widen the range of 8 over which lo-
calization with a single shear band is permissible. Small increases in cf_ vastly
reduce the range of ¢ which would result in a single shear band. Additionally,
the following remarks are made about the orientation angles:
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e ¢ does not seem to change regardless of cf_. This may indicate that
increasing cf_ simply raises the number of parallel shear bands needed to
satisfy periodicity of displacements.

e Nonetheless, ¢ does not accurately differentiate between diagonal shear
bands and complete plastification due to pure axial deformation.

7.3 Recommendations

This treatise studied the effect on 1 due to axial load with changing 6. Although
weak periodic boundary conditions are used within a deformation-driven pro-
cedure, providing a solution to the dependency between &, and € for the force-
driven procedure should also alleviate fluctuations in the conventional context.
Further research should aim to suppress them. Here are some suggestions:

e In this study, the preferred localization angles are a good estimate of ¢.
One solution may be to rotate the periodicity constraint such that it is
aligned with the localization angle as suggested by (Svenning et al.,2017)).

e In the deformation-driven procedure, it may be harder to estimate ¢. An-
other study could investigate ways of predicting the preferred localization
angles or ¢ based on the given macroscopic strain tensor (u ® V).

e Finally, it would be ideal to extend these concepts to three dimensions.
The major obstacle in the implementation is the traction mesh creation.
It might be useful to establish a minimum element area based on a coars-
ening factor. Additionally, one might use a regular mesh or other mesh
generation tools instead of mapping nodes from I'; and T'; onto T'f;.

The RVE sample in this study is susceptible to shear: the low values of o
due to shear failure may be attributed to the plastic behavior of the matrix.
Likewise, most RVEs precluded the formation of slightly diagonal shear bands.
Factors that might influence this include: RVE size, mesh size and fiber density.
Finally, the angle ¢ failed to clearly distinguish diagonal shear bands from pure
axial deformation. Therefore, the following recommendations are presented:

e Use softening to more accurately model the matrix material behavior.

e Perform a similar study with a larger sample of non-periodic RVEs.

Study the effect of RVE and mesh size on the formation of shear bands.

Study the effect of fiber density and size on the formation of shear bands.
e Improve ¢ to distinguish diagonal shear bands from uniaxial deformation.

It is hypothesized that softening might reverse the ¢; fluctuations: crack forma-
tion near 6 = 0° might yield lower o7 than non-periodic cracks near 6§ = 45°.
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Appendix A

Study on Periodic
Boundary Conditions

As described in section 1.3, uniaxial stress was applied to 48 different fiber-
matrix composite RVEs at 46 different angles between 0° and 90° to generate
the curves of principal stress (o7) vs. orientation angle (#) shown below.

Load rotation: clockwise

Load rotation: counter-clockwise

0 10 20 30 40 2l 60 70 30 90
)

Figure A.1: Principal stress vs. angle, strong periodic boundary conditions

This experiment was performed for both a clockwise and anticlockwise rotation
of the RVEs, resulting in different individual o1—6 curves but the same curve of

average principal stress (1) vs. 0 (Fig. .
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Figure A.2: Histograms and normal probability plots at # = 0 and 6 = 44°

Null hypothesis significance testing is used to verify whether or not the RVEs
tend to yield — on average — a lower principal stress when oriented at 44°.
Normality of the samples was tested via histograms and normal probability
plots. The histograms were built per the procedure in (Dekking et al., 2005
pp. 189-190). The number of bins is given by (Dekking et al., p. 211):

m =1+ 3.31log;,(n),

where n is the sample size. Despite showing good agreement, histograms may
spur undesired artifacts by discretizing the data into bins. Thus, normal proba-
bility plots were used in tandem. Let Y; and Y5 be random variables representing
o1 at @ = 0° and 6 = 44°, respectively. Fig. [[.2] and the central limit theorem
show that Y7 and Y, are well approximated by normal distributions:

Y/*1 ~ N(:Ula G%/nl)a
Ya ~ N(pz, 03 /n2).

Here, p; and o; are unknown population means ar_ld stanc_lard deviations and n;
are the sample sizes. The goal is to test whether Y7 and Y5 stem from the same
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population despite changing 0. In terms of the null and alternate hypothesis:

Ho :p11 = po.
Hy :p1 # pa.

The assumption of normality of Y7 and Y5 sanctions the use of Welch’s t-test
to verify Hy (Dekking et al., [2005, p. 400). Welch’s t-test is a modification of
the Student’s ¢-test to see if two sample means are significantly different. t¢-tests
typically test whether a sample mean deviates from some previously specified
value. Instead, Welch’s t-test introduces a Studentized difference of means:

V) —Ys
T=—1"—-2_
2 2
51, %

ni o N

where s; and n; are the samples’ standard deviations and sizes. T follows a
Student t-distribution with pu = dﬂ and number of degrees of freedom given by

5 5.2
df = _281 + 82)_2 )
51 53

711—1 n2—1

where 5 = s%/n; and 32 = s3/ny. The value of T realized from the current
sample is called the t-statistic and is used to decide whether to reject Hy. It is

y1— Y2
t= 2
2 2
51, %
ni1 no

where g1 = 1(0 = 0°) and g2 = 71(0 = 44°). If Hy is true, then the probability
of getting a value at least as extremeﬂ as the t-statistic is given by the p-value:

p=P(T <|t]) + P(T > [t]) = 2P(T < |¢]),

which is tantamount to the probability of falling outside of the 100 - (1 — p)%
confidence interval for the mean of T'. Setting the so-called significance level at
a conservative value of & = 0.05, the aforementioned calculations are performed:

. 123.0 — 110.2 — 1114,

[5.42 . 5.82
48 1 48
(0.60 +0.71)2
0.602  0.712
- + -
48 —1  48—1
p=2P(T < |t|))=79-10""".

df = =934,

The p-value is much lower than the significance level: p < «. Therefore, Hy is
rejected in favor of H; at the oo = 0.05 significance level with p = 7.9 - 1071,

IThe random variable T assumes that Hp is true, thus p = 0.
2Extreme means far from what would be expected if Hg is true.
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Appendix B

Proof: Prescribed Force

As stated in subsection 3.1.2, the derivations required to prove (3.21)) are present
here. Consider forces fs and f; on nodes 2 and 4 in Fig. Equation ([3.21)) is

/tdl“:fgand/ tdl = f,. (B.1)
I'r

It
Per (Kouznetsova et al., 2010, p. 13), the macroscopic stress tensor is given by

— 1
s— L [ tex-x)dr (B.2)
Q0] Jry

(B.2) is rewritten per the criterion of anti-periodicity of tractions in (2.21]) as

2= ([ tooRaT s [ o) @ () - 0)aT)

I'g
1

= — t® X — er (X dF
|QD| FE ( (lDP ())

Substituting the dimensions shown in Fig. into the aforementioned yields
- 1 t Az t 0
=LAt (0o L o))

[¥a] ( re Uy 0 rr Uy Ay

1 A:chRthy AyfFTtxdx
Q0] AfoR tydy AyfFT tydx

The macroscopic stress tensor also equals to (Kouznetsova et al., [2010, p. 21):

_ 1 B
z:mlz f; ® (x; — X). (B.4)

i=1,2,4

(0]



76 APPENDIX B. PROOF: PRESCRIBED FORCE

Again, substituting the dimensions from Fig. into (B.4) results in

B E(CH ELE R4 B el RV s L oty

— 1 |:_a(fx1 + fx2 + fx4) + A$fx2 _b(fxl + fx2 + fx4) + AyfxéL:|
Q0| |—a(fyr + fy2 + fya) + Az fio =b(fy1 + fy2 + fya) + Ay fya
Equilibrium shows that fxi1 + fx2 + fxa = 0 and fy1 + fy2 + fya = 0. Thus
S 1 Az fo Ayfx4:|
Y=—— B.5
10| {Agcfy? Ay fya (B:3)

Noting that Az # 0 and Ay # 0 and equating (B.3]) to (B.5]) results in

/txdrzfxz, /tydrzfyz,
T'r T'r ’

/ tedD = fuu, / tydT = fy4.
FT l—‘T

is simplified to (3.21)), thereby completing the proof. For brevity, fo and

£, are now denoted £ (which represents the sum of all corner forces on I'"):

(B.6)

/ tdT = £, (B.7)
T

+
O
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APPENDIX C. RESULTS: PRINCIPAL STRESSES
1'1“ L T T T T T T T T | T T T T | T T T T T T T T T T T T T T T T T T T T T T T T ]
120
S 100 |- — T
F £l=1.0 ]
so -
C i i i i | i i i i | i i i i | i i i i | i i i i | i i i i | i i i i I i i i i I i i i ]

140 . .

|l|||] L1

0 10 20 30 40

al)

il 70 80

Figure C.1: Principal stress vs. orientation angle (cf_ = 0.016)
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Figure C.2: Average principal stress vs. orientation angle (cf_ = 0.016)
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Figure C.3: Principal stress vs. orientation angle (cf_ = 0.025)
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Figure C.4: Average principal stress vs. orientation angle (cf_ = 0.025)
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Figure C.6: Average principal stress vs. orientation angle (cf_ = 0.040)
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Figure C.8: Average principal stress vs. orientation angle (cf_ = 0.063)
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Figure C.9: Principal stress vs. orientation angle (cf_ = 0.100)
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Figure C.10: Average principal stress vs. orientation angle (cf_ = 0.100)



Figure C.11: Principal stress vs. orientation angle (cf_ = 0.160)
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Figure C.12: Average principal stress vs. orientation angle (cf_ = 0.160)
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Figure C.14: Average principal stress vs. orientation angle (cf_ = 0.250)
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Figure C.15: Principal stress vs. orientation angle (cf_ = 0.400)
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Figure C.16: Average principal stress vs. orientation angle (cf_ = 0.400)
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Figure C.17: Principal stress vs. orientation angle (cf_ = 0.630)

120 F i"""‘%dl | l | B 3
s [ \\ -
i \ |fl=1.0, p =117.76, = = 5.00
I ———|fl=05, p =117.84, + =483
D T T S S S s I\ﬂ\_&_ﬁ.-’f/l _____ If|]=02, p=11787 « = 487
0 10 20 30 40 a0 6il) 70 80 90
Gl

Figure C.18: Average principal stress vs. orientation angle (cf_ = 0.630)
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Figure C.19: Principal stress vs. orientation angle (cf_ = 1.000)
ll)(] %\?;;;;Lkl‘ LI | L | LU | L | LU | T |-_‘|5:|‘,L‘=I,‘I*‘"-“-=T‘-|‘l_—_4_4_e
< S
C R ]
115 L ]
L fl=10, p=11757, o =554
C J——-Im=054=11769, 5 =531
110 T T T T T T S Wl S .-vf _____ Ifl=02 »=117.76, o =5.26
0 10 20 30 10 50 60 70 50 90
f

Figure C.20: Average principal stress vs. orientation angle (cf_ = 1.000)



88

105 |

100 L

Figure C.21:
125
120 £

115 [

1

105 F

100 £

115

110

110 |

APPENDIX C. RESULTS: PRINCIPAL STRESSES
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(If] = 1.0)

cf_= 0.016,
cf_=0.025,
cf_= 0.040,
cf_= 0.063,
cf_ = 0.100,
cf_= 0.160,
cf_= 0.250,
cf_= 0.400,
cf_ = 0630,
cf_=1.000,

p=11169, +=4.14
p=111.42 + =490
p=109.48, « =6.70
p=112.39, s =5.04
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M= 117.15, # =5.31
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strong PBC, p = 118.44, « = 4.53

Figure C.22: Average principal stress vs. orientation angle
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Figure C.23: Average principal stress vs. orientation angle (|f| = 0.2)
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Table C.1: Average principal stress and standard deviation per coarsening factor

Coarsening | Elements Load | Average Average max(d1)
factor (cf.) | per 7" face | size |f| | stress yu | std. dev. o | —min(5y)
1.0 111.73 4.06 9.14
0.016 1.0 0.5 111.69 4.14 9.14
0.2 111.68 4.16 9.14
1.0 111.35 4.92 9.32
0.025 1.1 0.5 111.42 4.90 9.20
0.2 111.50 4.88 9.21
1.0 108.68 7.17 12.36
0.040 2.2 0.5 109.48 6.70 12.30
0.2 109.95 6.61 12.51
1.0 111.77 6.16 12.25
0.063 3.8 0.5 112.39 5.94 11.82
0.2 112.86 5.89 11.69
1.0 114.85 5.46 11.03
0.100 6.0 0.5 115.19 5.45 11.51
0.2 115.39 5.45 11.63
1.0 114.98 5.97 11.11
0.160 9.3 0.5 115.56 5.74 11.28
0.2 116.09 5.73 11.57
1.0 116.72 5.54 11.34
0.250 13.9 0.5 117.15 5.31 11.73
0.2 117.42 5.30 11.85
1.0 117.42 5.25 11.87
0.400 20.3 0.5 117.63 5.34 12.19
0.2 117.73 4.88 12.18
1.0 117.76 5.00 12.34
0.630 28.0 0.5 117.84 4.83 12.50
0.2 117.87 4.87 12.20
1.0 117.57 5.54 12.47
1.000 38.1 0.5 117.69 5.31 12.51
0.2 117.76 5.26 12.59
PeriodicBC N/A 1.0 118.44 4.53 12.99
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Appendix D

Localization Modes at 0 = (¢

91



92 APPENDIX D. LOCALIZATION MODES AT 6 = 0°

rve5 rve23 rve37 rve50
Angle = 17.8 Angle = 35.7 Angle = 35.0 Angle = 23.0

rve2 rvel?7 rve20 rve28
Angle = 30.7 Angle = 32.6 Angle = 9.0 Angle = 9.0

rvel2 rve30 rved2
Angle = 39.8 Angle = 39.8 Angle = 33.1
‘ -
rve7 rvels8 rve33 rved43
Angle = 39.7 Angle = 11.0 Angle = 32.8 Angle = 34.9

Figure D.1: Examples of localization modes at § = 0° (cf_ = 0.016)
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rve5 rve23 rve37 rve50
Angle = 17.8 Angle = 36.0 Angle = 34.8 Angle = 22.5

rve2 rvel?7 rve20 rve28
Angle = 30.3 Angle = 32.7 Angle = 35.9 Angle = 34.1

rvel rvel2 rve30
Angle = 33.0 Angle = 38.7 Angle = 38.3 Angle = 33.0
[ T ﬂ
rve?7 rvels rve33 rved3
Angle = 41.4 Angle = 39.9 Angle = 32.2 Angle = 34.9

S

Figure D.2: Examples of localization modes at § = 0° (cf_ = 0.025)



94

rveS
Angle = 12.6

rve2

Angle = 41.0

rvel
Angle = 37.6

APPENDIX D.

rve23
Angle = 22.2

[ 9

rvel?7

Angle = 37.7

[

rvel2
Angle = 34.0

rve7

Angle = 41.4

rvel8

Angle = 35.4

—

LOCALIZATION MODES AT 6 = 0°
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rve33
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Figure D.3: Examples of localization modes at § = 0° (cf_ = 0.040)
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rve37 rve50
Angle = 38.7 Angle = 28.5

|
rve20 rve28
Angle = 22.9 Angle = 25.2
rve30 rved42
Angle = 38.2 Angle = 22.0

rve33 rved3
Angle = 29.7 Angle = 38.7

Figure D.4: Examples of localization modes at § = 0° (cf_ = 0.063)



96 APPENDIX D. LOCALIZATION MODES AT 6 = 0°

rveS rve23 rve37 rve50
Angle = 27.4 Angle = 19.6 Angle = 36.7 Angle = 40.3
1 ; 0,
rve2 rvel? rve20 rve28
Angle = 16.9 Angle = 36.0 Angle = 24.8 Angle = 37.9

B 1

r
rvel rvel2 rve30 rve42
Angle = 24.5 Angle = 35.9 Angle = 28.1 Angle = 32.7
¥
rve7 rvel8 rve33 rved3
Angle = 39.6 Angle = 32.4 Angle = 37.2 Angle = 41.0
T |
L.
<s
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A S

Figure D.5: Examples of localization modes at § = 0° (cf_ = 0.100)
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Figure D.6: Examples of localization modes at § = 0° (cf_ = 0.160)



98 APPENDIX D. LOCALIZATION MODES AT 6 = 0°

rveS rve23 rve37 rve50
Angle = 18.2 Angle = 29.0 Angle = 11.0 Angle = 39.2
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rve2 rvel? rve20 rve28
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Figure D.7: Examples of localization modes at § = 0° (cf_ = 0.250)
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Figure D.8: Examples of localization modes at § = 0° (cf_ = 0.400)
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Figure D.9: Examples of localization modes at 8§ = 0° (cf_ = 0.630)
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Figure D.10: Examples of localization modes at § = 0° (cf_ = 1.000)



102 APPENDIX D. LOCALIZATION MODES AT 6 = 0°
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Figure D.11: Examples of localization modes at § = 0° (strong PBC)
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104 APPENDIX E. LOCALIZATION MODES AT 0 = 44°

rve2 rvel3 rvel8 rve3é
Angle = 6.6 Angle = 0.6 Angle = 11.1 Angle = G 6

rve2l rve2d4 rve28 rve50
Angle = 2.4 Angle = 5.2 Angle = 0.8 Angle = 9.8

rve9 rve3s rved46 rved47
Angle = 5.4 Angle = 13.5 Angle = 12.0 Angle = 21.2
rve3l rve39
Angle = 4.2

Ange?ﬂi Angle = 12.9 Angle = 1.9

Figure E.1: Examples of localization modes at 6§ = 44° (cf£_ = 0.016)
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Figure E.2: Examples of localization modes at 6 = 44° (cf_ = 0.025)



106 APPENDIX E. LOCALIZATION MODES AT 0 = 44°

rve2 rvel3 rvel8 rve3é
Angle = 8.7 Angle = 7.5 Angle = 0.1 Angle = 7.2

rve2l rve2d4 rve28 rve50
Angle = 16.9 Angle = 8.8 Angle = 0.9 Angle = 4.7
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Angle = 6.3 Angle = 23.3 Angle = 25.59 Angle = 2.8
rve3l rve38 rve39 rvedd
Angle = 7.7 Angle = 9.8 Angle = 4.2 Angle = 7.5

Figure E.3: Examples of localization modes at 6 = 44° (cf_ = 0.040)
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rve3l rve38 rve39 rvedd
Angle = 2.9 Angle = 3.7 Angle = 11.3 Angle = 6.9

Figure E.4: Examples of localization modes at 6§ = 44° (cf_ = 0.063)



108 APPENDIX E. LOCALIZATION MODES AT 0 = 44°
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Figure E.5: Examples of localization modes at 6 = 44° (c£_ = 0.100)



rve2
Angle = 4.6

rve2l

Angle = 1.8

rve9
Angle = 2.6

rve3l

Angle = 4.2

rvel3
Angle = 0.6

rve2d

Angle = 8.4

rvels
Angle =53

=

rve28
Angle = 1.8

rve35s rve46
Angle = 15.6 Angle = 12.9

rve38 rve39
Angle = 5.0 Angle = 14.7

rve36
Angle = 0.6

rve50

rve47
Angle = 5.7

rvedd
Angle = 2.4

Figure E.6: Examples of localization modes at 6§ = 44° (cf_ = 0.160)



110 APPENDIX E. LOCALIZATION MODES AT 0 = 44°
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Figure E.7: Examples of localization modes at 6 = 44° (cf_ = 0.250)
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Figure E.8: Examples of localization modes at § = 44° (cf_ = 0.400)



112 APPENDIX E. LOCALIZATION MODES AT 0 = 44°
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Figure E.9: Examples of localization modes at 6§ = 44° (cf_ = 0.630)
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Figure E.10: Examples of localization modes at 6 = 44° (cf_ = 1.000)
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Figure E.11: Examples of localization modes at § = 44° (strong PBC)
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Figure F.1: Scatterplot of localization angle vs. principal stress (cf_ = 0.016)
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Figure F.2: Scatterplot of localization angle vs. principal stress (cf_ = 0.025)
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Figure F.3: Scatterplot of localization angle vs. principal stress (cf_ = 0.040)
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Figure F.4: Scatterplot of localization angle vs. principal stress (cf_ = 0.063)
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Figure F.5: Scatterplot of localization angle vs. principal stress (cf_ = 0.100)
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Figure F.6: Scatterplot of localization angle vs. principal stress (cf_ = 0.160)
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Figure F.7: Scatterplot of localization angle vs. principal stress (cf_ = 0.250)
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Figure F.8: Scatterplot of localization angle vs. principal stress (cf_ = 0.400)
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Figure F.9: Scatterplot of localization angle vs. principal stress (cf_ = 0.630)
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Figure F.10: Scatterplot of localization angle vs. principal stress (cf_ = 0.1000)



APPENDIX F. RESULTS: SCATTER PLOTS

126
= (.05
4
A
140
© 130t
%
2 120
=
£ 110
=]
F 100}
1 S N — :
0 10 20 30 400 0.05 0.1
Localization angle ¢  Proh. p
= #=30°
2 $=15.1°
E Sg = 7.0°
- o = 117
: Sg, =39
$
Eof
=
a 110
=
£ 100}
b :
0 10 20 30 400 0.05 0.1
Localization angle ¢  Prob. p
. o= a0
,_GC 4 @l — 8.21'1
£ 55 = 6.2°
- o1 = 111
s Sy = 5.5 |
$
g
=
E
=
=
0 10 20 30 400 0.05 0.1
Localization angle ¢  Proh. p

=005 # = 20
g ¢ =23.3°
E S¢ — 5.8(1
—_ (e8] =I 120‘
: Fg, = 38
5
2
=
R=
=]
F 100}
90 . - -
0 10 400 0.05 01
Localization angle ¢ Prob. p
g"& —_— a
© 0,05 {o=34
& ¢ =119°
£ 50 = 6.6°
140 .
—_ C_T] = 115
© 130 Sq =46 |
$
B0}
=
= 110
=
£ 100}
90 . . .
0 10 400 0.05 0.1
Localization angle ¢ Prob. p
. o1
= | ¢=6.7°
£ $4=5.3°
~ oy = 110
s S0y = 58 |
g
&
=
=
=
H
0 10 400 0.05 0.1
Localization angle ¢ Prob. p

Figure F.11: Scatterplot of localization angle vs. principal stress (strong PBC)
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Figure G.2: Transition between shear bands (rve6)
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Figure G.5: Transition between shear bands (rve22)
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Figure G.8: Transition between shear bands (rve39)
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Figure G.11: Transition between shear bands (rve50)
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