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A B S T R A C T

One way to stimulate a more circular economy, is to explore opportunities
for urban mining. This thesis explores a new method to assess the quantity
of underground electricity cables which could one day become available for
urban mining. This research answers the question: ”To what extent can
topological networks be used to localize and quantify underground metal
cables in order to assess the quantity of an underground urban mine?” Three
case study areas in Amsterdam have been selected to exemplify the method.

The Dutch National Road Network has been used as a topological skele-
ton to approximate the electrical network. Three different methods were
used to connect buildings and transformers to this network. The ’Connect
to Closest Point’ method, connects every point to the closest point on the
street network. The ’Connect to Closest Junction Vertex’ method connects
every point to the closest junction vertex of the street network, which is di-
vided into segments with maximum length of 75 meters. The ’Iteratively
Connect to the Closest Junction Vertex’ method iteratively connects every
point to the closest junction vertex, within a threshold, until all nodes are
connected to the street network.

By evaluating the edge betweenness [Girvan and Newman, 2002] for every
edge in the topological networks, cable current and thickness could be deter-
mined and the urban mine was quantified in terms of electrical cables. The
’Connect to Closest Junction Vertex’ method showed to be most accurate,
with up to 88% accuracy in Geuzenveld. Although this method is suitable
for finding a minimum quantity of an underground urban mine, locational
accuracy is too low to pinpoint the exact location of underground cables.
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1 I N T R O D U C T I O N

If we keep up the current resource usage and waste production, the Earth
will not be the planet she is today. Fossil fuels and other resources are
depleting rapidly and more and more waste is produced every year. Our
economy is based on a linear process in which we take resources from the
Earth, make a product out of it and dispose of the product once the product
has reached its end-of-life [Webster and Johnson, 2009]. A shift towards a
circular economy in which waste is reduced, products are reused and recycled
into new products or materials (3R principle) is necessary.

A step towards such a circular economy is the Waste Management Directive
2008/98/EC [EC, 2008], published by the European Committee, which sets
concrete goals to improve the efficiency in waste management in the Euro-
pean Union. The directive aims at decreasing packaging and landfill waste
and promotes the reuse of municipal waste. In September 2016, the Dutch
government released a note that by the year 2050, the Dutch economy will
have made the transition towards a circular economy [Rijksoverheid, 2016].

On a more local level, the municipality of Amsterdam is progressively stim-
ulating local circular economies. Some districts in Amsterdam built in the
1950’s or earlier, contain valuable resources that might become (partly) avail-
able for reuse or recycling when these building have to be demolished or
redeveloped. But before one is able to efficiently extract resources from the
urban environment, so called ’Urban Mining’, prospecting of such an urban
mine is necessary.

1.1 social relevance

Underground urban infrastructure can be seen as an Urban Mine [Zhu, 2014;
Brunner and Rechberger, 2004], a reserve that contains high amounts of
valuable resources, hidden within the urban landscape. Urban mining is
the process of extraction of resources from the urban environment for reuse
or recycling Brunner and Rechberger [2004]. A problem that arises with ur-
ban mines is the lack of quantitative and qualitative data of the recyclable
resources. Additionally, it is often unclear what exactly happens during
the construction and demolition processes [Scheuer et al., 2003] and data is
therefore very hard to obtain.

Furthermore, urban infrastructures such as (waste) water distribution sys-
tems, power supply grids, gas pipes and telecommunication cables, which
were once part of the above-ground urban landscape are now buried un-
derground [Kaika and Swyngedouw, 2000]. Such urban infrastructures can
lose their function once an area is redeveloped. More often than not, un-
derground infrastructures are not recovered by network operators or waste

3



4 introduction

management companies due to high costs. This results in underground
waste accumulating over time, resulting in high amounts of wasted under-
ground resources. These wasted resources have been termed hibernating
stocks [Bergbäck and Lohm, 1997], due to their inoperable nature.

Wallsten et al. [2013] conducted a study on prospecting urban mines in Swe-
den and found that these resources can be spatially located by performing
Material Flow Analysis (MFA), investigating the history of infrastructural
systems and using current geographical data. The highest quantity of recy-
clable metal was found to be Iron, followed by copper. Given the increasing
price for copper, prospecting the underground urban mine in terms of cop-
per in electrical cables would be very useful. This research was conducted in
Sweden, but it shows how many recyclable underground resources could be
available. This might also be the case for the Netherlands, especially given
the fact that the Netherlands is a very densely populated country, contain-
ing maybe even more recyclable copper per square kilometre.

In the Netherlands, management of the underground infrastructures is mon-
itored by the Dutch Cadastre. On a national level, the Kabels en Leidingen
Informatie Centrum (KLIC) requires every network operator to register their
underground infrastructure. This results in a vast database with the under-
ground infrastructure of the Netherlands. Every excavation work is regis-
tered to prevent damages to the infrastructure. On a more local level, some
municipalities have additional information on underground infrastructure
and require network operators to register their cables also with the munici-
pality. However, contact with the municipality of Amsterdam revealed that
they have a high demand for a dataset on underground (electricity) cables,
since they have not implemented such a database.

1.2 scientific relevance

As [van der Voet and Huele, 2016, p. 4] already put it: ”the urban mine
will have to be prospected as to viability and value. Only then will we be able to
include urban mines in our planning for the future materials supply of societies.”
In most cases, being able to prospect depends on data availability. In the
Netherlands, almost all data is available, but when this is not the case, data
collection is necessary. Jeong and Abraham [2004] developed a decision sup-
port tool to be able to determine which techniques are most appropriate for
data collection in a certain case study area, but the result always remains a
combination of techniques that will be utilized. Furthermore, most existing
techniques for underground localization rely on someone to be at a physical
location to determine the location of electrical cables and thus the quantity.
In the literature there are so far no methods for assessing the location of
cables with high accuracy and therefore the quantity without going out into
the field. It seems a method is needed for assessing the quantity of an ur-
ban mine from other input data, that will result in a location and quantity
of underground infrastructure on a more detailed scale.

In Amsterdam, the Prospecting the Urban Mine of Amsterdam (PUMA) project,
conducted by Leiden University, Waag Society and the Amsterdam Institute
for Advanced Metropolitan Solutions (AMS) [van der Voet and Huele, 2016],
focussed on prospecting the above-ground urban mine of Amsterdam, but
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omitted the underground urban mine. A ground truth check was performed
by Metabolic [Blok and Roemers, 2016] to determine whether the predicted
quantity of the urban mine was realistic.

Although underground localization techniques, such as electromagnetic line
locators, Ground Penetrating Radar (GPR) and metal detectors exist, they are
often expensive or labour-intensive, since they rely on different technolo-
gies that can only detect a specific set of materials. Furthermore, automated
methods for assessing the quantity of urban mines do not exist yet. An au-
tomated method that uses (geographical) data as input could limit costs to
a minimum.

1.3 problem statement

An automated localization technique could make use of the principle of
network analysis. In network analysis, a topological network consists of ver-
tices and edges. Objects can be seen as vertices and the relations between
objects are modelled as edges. In such a way, the underground infrastruc-
ture can be modelled from a design perspective. If all electrical connections
(e.g. to buildings) are considered as vertices and the cables connecting them
as edges, with a weight equal to the distance between vertices, it is possible
to model the location and quantity of a electrical network as the minimum
length of cables needed to connect all vertices and therefore assess the (min-
imum) metal cable quantity of the underground urban mine.

When it is unclear if a certain area contains underground infrastructure,
underground localization techniques are used to localize the underground
cables. There are numerous techniques available to do this, but not one
technique is capable of localization of all underground infrastructure, since
they rely on different technologies that can only detect a specific set of ma-
terials. Additionally, most of these techniques require technicians to be at
the physical location of the expected underground infrastructure. A method
that would be able to estimate or measure the quantity of an underground
urban mine directly, without having to go to a location, is desired.

In the Netherlands, such localization techniques are used rarely, since most
of the underground infrastructure is already localized when they are regis-
tered. However, this might not be the case in other countries and to be able
to assess the quantity of urban mines, knowing the location of underground
infrastructure is essential. Building on the PUMA project at the AMS and the
demand from the Amsterdam municipality for data on underground infras-
tructure, there is a need for a method to automatically assess the resource
quantity of underground urban mines. By approximating the location of
cables using a topological skeleton, it is possible to provide an estimation
of the minimum amount of cables, where they are located and how much
metal they contain.



6 introduction

1.4 relation to msc geomatics programme

In this research, the Geomatics courses on Python, Geographical Informa-
tion System (GIS), Databases and Datasets and Quality (GEO3001, GEO1002,
GEO1006, GEO1008) proved very useful. Topics of network analysis and
the implementation in Python, as well as topology and data management
are all part of this thesis and the knowledge that was acquired during these
course was put into practise.

This research shows the possibilities for network analysis on a sustainable
topic such as Underground Urban Mining (UUM). This resulted in a method-
ology that showed to what extent the underground urban mine of Amster-
dam could be quantified using the Nationaal WegenBestand (National Road
Network) (NWB) as a topological skeleton. In relation to the Datasets and
Quality course, this methodology showed how different datasets yield differ-
ent and sometimes inaccurate results. The iterative process of experimenting
with different datasets, in order to find the most appropriate combination
of datasets was an extensive part of the methodology. The final datasets
and methods resulted in a better result on quantitative level, but a high
locational accuracy could not be achieved.



2 T H E O R E T I C A L B A C KG R O U N D

This study focusses on estimating the location and quantity of an electric-
ity network with the use of network analysis to determine the minimum
amount of underground metal cables that might one day become available
for urban mining. Therefore, this research is situated between the topics of
UUM and electrical network design. Graph theory is often used as a method
to optimize electrical networks and is therefore an essential part of the the-
oretical background. The resulting grey area in Figure 2.1 represents the
area of research for this thesis. It is important to understand Underground
Urban Mining methods, as well as knowing where cables are laid in the
ground and how to determine the quantity of these cables to be able to
make correct assumptions for the used methods. Additionally, topic of stor-
ing embedded graphs and validation techniques will be discussed in this
chapter.

Underground 

Urban Mining

Electrical 

Network

Design

Graph

Theory

Designing spatial 

distribution networks

Figure 2.1: Situation of this research in existing literature.

2.1 underground urban mining

Traditional waste management is a rather linear process of extraction, pro-
duction, use and disposal. In a circular economy, the process shifts towards
a cycle, in which products are recycled and reused. Currently, only 6% of
the global processed materials is being recycled and contributes to a circu-
lar economy. Among the limitations to achieve a more circular economy is
the fact that a very large part of the material stock is accumulated as in-use
stock [Haas et al., 2015]. Urban mining research focusses on overcoming this
barrier. This section discusses the body of literature on Urban Mining and
in particular UUM, aimed at the urban mining of underground resources,
such as infrastructure.
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8 theoretical background

Zhu [2014], discusses the concept of Urban Mining, reusing and recycling
resources which are dispersed among urban infrastructure, buildings, con-
sumer products and waste. These resources could be reclaimed if the exact
location data is available. Based on [Brunner and Rechberger, 2004], urban
mining is defined in this thesis as the process of extraction of resources
from the urban environment for reuse or recycling. For UUM this is limited
to the extraction of underground resources, such as infrastructure cables
and pipes. There are a multitude of terms used in the literature for such
disused underground resources, e.g.: [Bergbäck and Lohm, 1997] discusses
the concept of ’hibernating stock’, resources that were once part of the in-
use stock but have been disconnected but are not yet disposed of. Other
underground infrastructure papers use the word ’urks’, an abbreviation of
the Swedish word ”urkopplad”, which means disconnected [Wallsten and
Krook, 2016].

2.1.1 Motivation for Underground Urban Mining

The challenge of UUM is to prospect the underground urban mine to increase
certainty about the availability of underground resources. As with raw ex-
traction of materials in natural mines, economic feasibility is an important
motive for UUM. Krook et al. [2015] defined four factors that influence the
(economic) feasibility of cable extraction:

1. Extraction technology, the technology with which the cable is extracted;

2. Geographical location, the urban environment, e.g. city center;

3. Recovery type, indicating if the cable is recovered in an joint operation
or just for that particular cable extraction;

4. Surface material, the material on top of the cable, e.g. cobblestone,
asphalt.

They found that the highest costs of recovery comes from excavation, which
depends mostly on the location and replacement of the surface material.
These problems can be overcome with the use of new technologies such as
Kabel-X, but that particular technology has the limitation that it is only pos-
sible for plastic insulated cables. However, plastic insulated cables are the
new standard, thus it might be an application in the (near) future. Access to
a technology such as Kabel-X, which uses a machine that pulls the core of a
cable out and replaces it with a new core, could make underground mining
more appealing and economically feasible.

Furthermore, Krook et al. [2011] conducted a study in Sweden and found
that cables often end up in hibernation because cables cannot be replaced
at once, since end-users would then be disconnected. The economic con-
ditions to extract a cable are influenced by the material price (copper or
aluminium) and the fee for the processing of the material. The revenue of
the sold copper should outweigh the costs for processing (and transporta-
tion). Unfortunately, the copper content is often too low, which means it is
not very likely that single cable extraction can be executed with economic
benefits [Krook et al., 2011].
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2.1.2 Methods for Underground Urban Mining

Since Urban Mining is a term from the MFA field, numerous studies con-
ducting urban mining research use a form of MFA to assess an underground
urban mine (see Wallsten [2015]; van der Voet and Huele [2016]). Other
studies have included GIS in their research, but even though there have been
a multitude of studies combining MFA research and GIS data (Tanikawa and
Hashimoto [2009]; Wallsten et al. [2013]; Zhu [2014]), these studies still in-
volve aggregated data and have a low level of detail. Another study in
Sweden achieved a higher level of detail by using actual (geographical) data
of cable networks to find the out-of-use cables and perform GIS operations
to estimate the copper and aluminium content of the cables on a street scale
[Wallsten et al., 2015].

Although these studies are very informative and provide interesting insights
in the field of UUM, there are always some uncertainties in these studies.
For example, Wallsten et al. [2013] make use of GIS data, but unfortunately
data is not always available. Similar problems occur for digitized maps, a
big dependency in this study. Not only does the digitization process bring
various uncertainties and inaccuracies, sometimes these historic maps are
unavailable or incomplete, let alone out of date. Even when a higher level
of detail is used, as described in Wallsten et al. [2015], where each cable is in-
dividually assessed, the study still relies on available data. Their study also
showed that with combined maintenance and recovery, there are possibili-
ties for economical benefits and with the use of more advanced extraction
techniques such as Kabel-X, the benefits could be even higher. Additionally,
they recommend that additional ground truth checks using underground
localization techniques could provide extra certainty.

The study by Wallsten et al. [2013] highlights the opportunities for combined
recovery and maintenance of underground infrastructure, which limits the
costs of recovery to a minimum. Additionally, they point out that the un-
derground network is greatly influenced by the urban environment, such as
buildings. But they also emphasize that their study cannot be generalized
for other cities, since cities are often too unique. Nevertheless, there are
similarities between the Swedish city Norrköping and Amsterdam, e.g the
DC-system for trams, which is present in the both cities. Such similarities
can help to build political recognition to do a similar study in another city.

Wallsten and Krook [2016] carried out a study to investigate how and where
political decision makers should intervene to stimulate recovery from un-
derground infrastructure. From multiple interviews with respondents, they
could classify five interpretations of urks. Each different interpretation has
different aspects and problems that should be resolved to stimulate resource
recovery. Such a classification of urks can help build political recognition
and stimulate resource recovery. One particular interesting interpretation of
urks is that of a mineral resource deposit. Usually the costs of recovery are
much higher than the revenue from recycling, which makes it uninteresting
to recover. However, in the case of redevelopment of an area, recovery of
urks might be feasible, because that site is excavated anyway, e.g. for sani-
tation purposes, which lowers the overall costs [Wallsten and Krook, 2016].

Furthermore, in both Swedish and Dutch law, anything that the owner can-
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not or does not want to use anymore is regarded as waste and should there-
fore be disposed of. Although there are differences in opinion whether this
should be the case for urks, this could be one of the reasons why urks are
often said to be a reserve or spare part, just to avoid the responsibility of
disposing it [Wallsten and Krook, 2016].

2.1.3 Conclusions

When investigating underground urban mines, one of the biggest issues is
data on the urban mine. Ideally, network operators have a well-maintained
database on all the cables in a their service area. However, sometimes the ca-
bles that are not in use anymore have just been removed from the database,
but not from the soil. In better situations, network operators can update the
cable by saying it is out of use, but unfortunately this is not always what
happens in reality. In many studies, there is a big dependence on data, but
what if that data is sparse or unavailable?

From the small body of literature on UUM that is available, it can be stated
that the field of research is still developing and prospecting an underground
urban mine is necessary to increase certainty regarding available resources.
Special attention should be paid to situations in which data is limited or not
available.

2.2 electrical network design

In UUM, all materials used in the urban environment are considered to be
resources that could once become available for recovery. Even the parts
of an underground infrastructure network that are currently in use, could
once become obsolete, for example if technology advances and electricity is
generated locally or if data can be transferred wireless. Another motive for
extracting all resources from the urban environment, is raw material short-
age, such as during war periods [Klinglmair and Fellner, 2010]. In these
situations, it might be necessary to extract copper from electrical networks
for military use (ammunition). Estimating the amount of copper in electrical
networks requires knowledge of the electrical network.

There are two types of electricity networks: Direct Current (DC) and Alternating
Current (AC) networks. Hammerstrom [2007] discuss the (dis)advantages of
both systems and provides a model to compare the two systems. One par-
ticular reason why AC currently predominates the distribution networks, is
its ability to easily transform high voltages to lower voltages and vice versa.
This is possible since a higher voltage allows a lower current through a cable,
while maintaining the same power output. In DC networks, this is currently
not yet as efficiently possible as with AC networks. Due to the simple trans-
formation of AC power into lower voltages, the distribution network has an
inherent hierarchical nature.

This hierarchical structure consists in the Netherlands of approximately
three levels: High Voltage (HV), Medium Voltage (MV) and Low Voltage
(LV). In this research only distribution networks in neighbourhoods and dis-
tricts are considered, therefore HV networks are not discussed in this thesis.
In the Netherlands, the Dutch Power organization promotes innovative so-



2.2 electrical network design 11

lutions to present-day challenges to cope with an increasing demand for
energy as well as the need to decrease emissions and contribute to a circular
economy [Dutch Power, 2017].

2.2.1 Dutch electricity networks

As a work of reference to describe the electrical network in the Netherlands,
Phase To Phase, a company specialized in informatics for network com-
pany operators, has written a book in cooperation with network operator
Alliander, that summarizes current knowledge and use cases for the Dutch
electricity networks [Van Oirsouw and Cobben, 2011]. Particularly interest-
ing for this research are the topics on Medium and Low Voltage networks
and the design of appropriate cables. The majority of information in this
subsection is acquired from that book.

History

Due to governmental pressure, the many electricity companies that existed
before 1985 in the Netherlands, have been merged into four main electricity
companies, each providing one or more provinces with electricity. There is
one national network operator responsible for the upkeep of the power net-
work of 110 kV and higher, which is also called the connecting and transport
network. The other, regional network operators are responsible for regional
(25 - 50 kV) and local distribution of electricity. The latter is subdivided in
MV networks of 20 - 10 kV and LV networks of 400 V.

Figure 2.2: Hierarchy in electricity networks

Hierarchy

An abstraction of the hierarchical nature of the electrical system is depicted
in Figure 2.2. To connect the hierarchical levels, transformers can scale down
the voltage that is needed in the network. At the lowest level, so-called ’net-
stations’ provide consumers with electricity in a distribution network. In
such a distribution network, the network follows a tree-like structure, so



12 theoretical background

that every netstation supplies electricity to an amount of households. Usu-
ally, the amount of households connected to a netstation is between 50 and
250, while there can be 250 - 500 netstations connected to a MV/LV trans-
former. This illustrates that the LV distribution network largely determines
the density of the total network.

Because of the hierarchical nature of the electricity grid, there are standard
cables connecting the different levels. Although there are a multitude of
different types of cables, the MV cables are usually constructed with three
veins from either copper or aluminium. The arrangement and thickness
of the cable conductor section is determined by the function of the cable,
where transport cables are often three single vein cables while distribution
cables are usually cables with three veins.

Cable design & composition

Distribution cables in MV networks contain conductors with a cross-section
area between 16 and 240 mm2, whereas transport cables contain conduc-
tors of 240 up to 630 mm2. In LV networks there is a distinction between
connecting cables, connecting buildings to the network, and main cables.
Connecting cables consist of three conductor veins between 6 and 16 mm2,
main cables are similar to MV distribution cables.

Of all LV cables in the Netherlands, approximately 40% use a copper con-
ductor and Gepantserd Papier Lood Kabel (Paper Insulated Lead Covered
Cable (GPLK) insulation, the other 60% use an newer Cross-Linked PolyEthy-
lene (XLPE) insulation. Assuming that XLPE insulated cables are 50/50 di-
vided between copper and Aluminum, 70% of all cables consist of copper
conductors, while 30% consist of aluminium conductors. However, cables
with an aluminium conductors also contain a copper shielding and occasion-
ally an auxiliary copper wire between 2.5 and 6 mm2. There are mainly two
specific implemented cables in the Netherlands: GPLK or sometimes called
Paper Insulated, Lead Covered (PILC) cable and XLPE cables.

Figure 2.3: Geographical spread of netstations and service areas [Van Oirsouw and

Cobben, 2011].

Design aspects

When designing an electricity network, the main design factor is the power
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exchange in a certain geographic service area. This power exchange hap-
pens mostly on the LV distribution networks. The amount and capacity of
netstations that are required in a LV network is driven by the number of
connected households in a particular service area, shown as a voronoi dia-
gram in Figure 2.3.

Within a distribution network, the maximum amount of connected house-
holds depends on the current flowing through a cable. Figure 2.4 shows the
maximum current through different types of cable, copper or aluminium.
The current supposed to be flowing through any cable can be calculated
using Ohm’s Law and the Strand-Axelsson formula, taking into account
the stochastic behaviour of household power demand [Axelsson and Strand,
1975]. For a single household, the maximum power demand can be calcu-
lated using:

Pmax,1 = k1 · E + k2 ·
√

E (2.1)

and for multiple households:

Pmax,n = n · k1 · E + 3 · k2 ·
√

n · E

3
(2.2)

Where:
Pmax,1 = Maximum power demand for one household
Pmax,n = Maximum power demand for n households
E = Yearly energy demand for one household.
n = number of households

Factors k1 and k2 are coefficients derived from experiments, specific to a
type of household. These factors are derived from the application Gaia1, a
product by Phase2Phase2. The 3 is used to indicate a single phase (230 V)
connection to the household, so that load can be distributed over 3 phases.
With Pmax it is possible using Ohm’s Law, to find the maximum current
through a cable:

I =
Pmax

230
· m (2.3)

The factor m is used to indicate a margin that is used to oversize cables to
be on the safe side. From interviews with Alliander it was found that cables
are using approximately 70% of their capacity, therefore this research uses
a margin of 100/70. Figure 2.4 matches a resulting current I to a cable type,
which can be used in the final quantification.

Simultaneity

Another factor that is important here, is the simultaneity. This factor de-
creases by a larger amount of connected households, indicating that not
all power exchange happens at the same moment. The Strand-Axelsson
formula takes this simultaneity into account in the calculation of power con-
sumption.

Legislation

Although the electricity system is very complicated, there is little legislation
on where underground cables should be placed. NEN 7171-1, [Nederlands
Normalisatie Instituut, 2009] provides legislation on the depth of cables and

1 https://phasetophase.nl/vision-lv-network-design.html

2 https://phasetophase.nl/

https://phasetophase.nl/vision-lv-network-design.html
https://phasetophase.nl/
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Figure 2.4: Cable cross section area (in mm2) per cable type [van der Eerden, 2017].

distance between other cables, but no exact location in the public space.
However, it does provide an ideal profile of a street and its subsurface in-
frastructure, but since the public space is very irregular, such an ideal profile
can not always be followed.

The COB (Centre for Building Underground) published a book aimed to
provide insights in the underground infrastructure in the Netherlands [Tase-
laar, 2009]. Although it does not provide extra rules or legislation, it is a
good practical overview of guidelines as well as an overview of the current
underground infrastructure. There is a special emphasis on the informa-
tion supply such as KLIC and its importance for accurate and efficient asset
management.

2.2.2 Network layout design

[Van Der Sluis, 2001, p. xi] describes the electrical power system as ”one
of the most complex systems ever built and managed by engineers”. Given
that the electricity must be supplied through cables, the layout design of
the network of cables and transformers is inherently also complex. Even
though the system is complex, there are often many different alternatives for
installing a LV network, since the costs for excavation are often the largest
expenses [Willis, 2004]. This has also been concluded in studies by Wall-
sten et al. [2013, 2015]; Krook et al. [2011, 2015]. This results in fluctuating
network layouts, while costs stay roughly the same. This subsection will
elaborate on the automatic generation of various layout designs and opti-
mization of such methods, for LV networks.

Layout design methods

Table 24.1 in Chapter 24 of [Willis, 2004] provides an overview of various de-
cision support tools that can assist network planners in finding an optimal
design layout for feeder networks. Feeder networks are similar to the MV
networks in the Netherlands, and supply neighbourhoods with electricity
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that can be further distributed through LV distribution. As [Willis, 2004]
acknowledges, the idea of optimization is simple, while its mathematics are
often very complex. Most of these algorithms use a form of graph network
analysis to find solutions to layout planning problems.

In [Adams and Laughton, 1974], a linear programming method is proposed
to optimally plan a LV network. Using an algorithm including graph net-
work analysis, an optimal solution was found for a housing layout, taking
into account power loads as well as costs. However, the proposed layout is
optimal in network space, but the spatial location of the houses is not taken
into account. This could result in sub-optimal solutions when put into prac-
tice. Although this solution might be sub-optimal, it shows that there are
interesting ways to use graph networks to approximate the reality of the
complex electrical networks. Likewise, power network optimization stud-
ies such as Parada et al. [2004]; Adams and Laughton [1974]; Mı́guez et al.
[2002]; Oliveira et al. [1995]; Ramirez-Rosado and Bernal-Agustin [1998] also
make use of graph network analysis to arrive at optimal network layouts.
Unfortunately, neither of the methods in these studies are applied in prac-
tice. Therefore, starting from reality and arguing backwards to derive at a
location is not possible.

Approximate reality

As the examples given above show, graph network analysis can be used
as a methods for planning the layout of a network. In a similar manner,
one could try to estimate the location of metal cables from such a design
perspective. Since most metal cables are used for electricity and data trans-
mission, finding the metal cables can be translated to a design process for
finding an optimal power network design. If one could estimate the location
of electricity cables and if it is known how many end-users are connected to
that cable, the thickness of that cable could be calculated using the Strand-
Axelsson formula and Figure 2.4.

Such an estimation of a electrical network can be given by using an Steiner
Minimal Tree approach. A Steiner Minimal Tree is a graph G in which the
total length of the edges is minimized [Kou et al., 1981]. Unlike a Minimum
Spanning Tree, a Steiner tree can add extra nodes to the graph in order to
optimize, i.e. minimize, the final result. Using this graph and public space
as an constraint, it might be possible to derive minimum quantity of metal
cables available for recycling.

Other than Steiner Trees, methods like Medial Axis Transformations [Lee,
1982], Straight Skeletons or Segmented Voronoi can also approximate the
location of cables in the public space.

2.2.3 Conclusion

Many different aspects influence the design, operation and maintenance of
the electrical network. From an urban mining perspective, it is essential
to understand how the system is built, what its hierarchical nature means
and what possible design problems could arise, since they all influence the
cable quantity and location. Currently, no method exists to estimate location
and quantity with graph network analysis. By approximating the electrical
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network with a topological skeleton, the urban mine could be quantified.
However, a topological skeleton would decrease locational accuracy.

2.3 validation

The predicted model of the electrical network should be validated in order
to assess the meaning of this research. Validation of both the location and
quantity is needed, but it is important to note that if the location is validated
to be correct to a certain degree, the quantity will probably also be closer
to the quantity in reality, since the quantity depends on the location of the
cables.

Thacker et al. [2004] explains the concept of validation and verification as
the process in which one is able to quantify the confidence that the pre-
dicted model represents reality. They also mention the use of an accuracy
requirement, a requirement that indicates when a model is a good enough
representation of reality to fit its intended use. For example, in the case of
localization of cables it could be that the accuracy requirement is: the pre-
dicted cables should be within one meter with 95% confidence. This confidence
can be given by finding the standard deviation between the predicted cable
and the real cable, assuming the data is normally distributed.

The location of the cable can also be validated by determining the percent-
age of predicted cables within a certain distance of the real cable. By using
different sizes for the buffer, it is possible to talk about the validity of the
location in terms of: 50% of the predicted cables are within one meter of the real
cable.

The quantification validation is, unlike the location, more a process of com-
paring the predicted quantitative values with the real quantity, determining
their differences and examining the cause of differences, possible by looking
at possible errors in the data.

2.4 storing methods

The final results of the predicted cables and total mass should be stored in
such a way, that reuse and visualization is possible. When storing spatial
data, there are a number of factors that should be taken into consideration,
including topology and indexing. [van Oosterom, 2017c] discusses Spatial
Access Methods such as clustering and indexing, to increase performance
of queries. By using a spatial index in a database that contains spatial data,
performance can be increased, since the search for the specific object is short-
ened. This could be very useful if the results from this research turn out to
be very large in size, or if the methodology is scaled up to the level of one
or more cities.

Modelling a topological struture is essential for large databases with many
adjacent objects. When a certain dataset contains many polygons with over-
lapping boundaries, the topology should be extracted from the geometry.
With the topology, the boundary of a polygon is only stored once and
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overlapping polygons use the same boundary. Furthermore, van Oosterom
[2017a] explains that topology is essential if spatial queries are needed. In
this research, it would be interesting to visualize the paths from every trans-
former to a building. Such a query could be facilitated by using a topological
data structure.
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R E S E A R C H A P P R OA C H A N D

M E T H O D S

3.1 research question

This thesis is guided by the following research question:

To what extent can topological networks be used for localization of underground
metal cables in order to assess the quantity of an underground urban mine?

The objective of this research is to provide one comprehensible method that
can assess the quantity of an underground urban mine in terms of metal
cables. The following sub questions for this research are relevant:

1. What data on underground infrastructure is already available?

2. Is graph theory fit to approximate an electrical network from a design
perspective?

3. What input data and methods are necessary for creating a topological
network?

4. How can the resulting location and quantities be validated?

5. What is the most efficient way to store the resulting data?

The question numbers correspond to parts of the methodology flowchart in
Figure 3.1.

3.1.1 Scope of research

This thesis aims at locating cables in underground infrastructure, specifi-
cally focussing on electrical cables in the LV networks. Cables that are stud-
ied, are cables in the underground public space and cables from buildings to
the network. Since electricity cables usually consist of copper or aluminium
veins, those are the materials that will be considered. However, since it is
nearly impossible or very improbable to automatically estimate whether a
cable consists of copper or aluminium veins, a ratio is used to indicate the
total metal content. Additionally, only cables for residential use are consid-
ered, because industrial cable can require a higher voltage or current and
will therefore be more irregularly connected to the network.

This thesis will not focus on the quality of the cables, since this would re-
quire to actually examine the metal cables and thus digging up the cables.
The economic aspects, i.e. the feasibility of the actual process of recovering
the cables, will not be evaluated. However, the economic motives that indi-
cate which conditions are necessary to facilitate underground urban mining
have been discussed in Chapter 2. Since the PUMA project [van der Voet and
Huele, 2016] already covered the above-ground urban mine, cables located
in buildings will not be considered. Furthermore, cables supplying train
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and tram tracks with power are not considered, since these cables use DC

electricity and their thickness is calculated differently.

3.2 methodology

Figure 3.1 shows the structure of this thesis and how each of the research
sub questions was answered. Each phase, shown in a grey area in the figure,
is explained in more detail in this section.
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Figure 3.1: Methodology.

Phase 0: Preparation

The preparation specified what the research problem at hand was, as well
as the goals and research questions that were answered. With the research
problem, several case study areas could be identified, on which the chosen
methodology could be carried out as an example. The case study areas for
this research were chosen based on two criteria: First, the case study area
is located within the Amsterdam Metropolitan Area, to fit the objectives of
the AMS. Second, the buildings are built in the 1950’s or 1960’s, since these
buildings might soon become available for redevelopment or demolishing.

The main research question provided a guideline to identify appropriate lit-
erature. This research’s literature study covered the topics of underground
urban mining, electrical network design and graph theory.
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Phase 1: Data Assessment & Selection

Two data assessments have been carried out in this research. First, an as-
sessment was necessary to verify if and where validation data was available.
Validation data, with information on the actual location and quantity of un-
derground metal cables, was essential to determine to what extent the used
method was appropriate to locate and quantify underground urban mines
and to verify if a dataset yielded proper results. This assessment consisted
of interviews with municipalities and network operators, as well as an on-
line search for open data. Four parties have been contacted for validation
data: 1) the municipality of Amsterdam; 2) the municipality of Rotterdam,
3) the Dutch cadastre and; 4) network operator Alliander.

The second assessment was necessary to find different datasets that could
be used as input to create a topological skeleton. Three types of input data
were needed: 1) street geometries, 2) building polygons and 3) transformer
house locations. In an iterative process, multiple datasets have been experi-
mented with, until the most appropriate combination of datasets had been
found. In the iterative process to find the final datasets, first each dataset
was cleaned and filtered. Second, all building points were added to the
building polygons, Third, a topological skeleton was estimated from the in-
put data. And fourth, the results were visualized and verified. Finally, if
the results were not satisfactory, a new dataset was chosen and the process
repeated. This process is also depicted in Figure 3.2.

building transformer building point cable

1

building

footprints

2

building 

address points

3

street skeleton

4

estimated

electrical network

Figure 3.2: Approach to construct geometric skeleton

In order to clean the data, the data was first clipped to the case study ar-
eas. Secondly, only buildings with residential function were kept. Finally,
attributes that were redundant for this research were removed for faster pro-
cessing. The final data was transformed into classes for optimal handling.

In the iterative process of generation of a geometric skeleton, verification
of the location and determining the fitness for use of the used dataset, each
dataset was subjected to two operations to build a geometric skeleton, finally
resulting in a cable connecting buildings and transformers. The two oper-
ations consist of 1) the selection of the closest street for any building and
2) the creation of the geometry representing the cable between the closest
transformer and the building. The generation of this geometry is dependent
on the type of input geometry that was used, e.g. for a building represented
by lines, the street façade can be offset to generate a cable.

The location of this cable and its geometry was then visualised on a map
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that also displays water and buildings. In the iterative process of gener-
ating a geometric skeleton, spatial challenges occurred that increased the
complexity of the methodology. Three cases were defined indicating the de-
gree of accuracy. Cases where a cable was placed correctly between street
and building, with some margin, were defined as workable cases. Solvable
cases involved cables that are not always placed correctly between street
and building, and require extra data or operations to correct this. Unsolvable
cases are the cables that are not at all located between building and street
and involved cables with one or more intersections with other buildings or
water.

Workable cables, but difficult to
create full network.

Solvable cases, cables are 
incorrect, but this could be
solved with extra data.

Unsolvable cases, in these
cases it was unknown how 
the spatial layout of cables
could be modelled.

Figure 3.3: Three defined cases in previous methods

Table 3.1 shows an overview of the datasets that have been experimented
with, in chronological order. These datasets were selected based on three
criteria: 1) the dataset contains geometry of streets, buildings or transform-
ers, 2) the dataset is complete and uniform for all case study areas, and 3) it
is possible to determine the closest street for every building.

Table 3.1: Used datasets in chronological order.

Subject Source Use

Buildings Plot boundaries Offset street side façade for cable
Streets BGT Polygons without names

Buildings BAG Building polygons with address and building point
Streets BGT Street polygons without street names

Buildings BAG Building polygons with address and building point
Streets BGT + NWB Join BGT (no street names) with NWB (with names)

Buildings BAG Building polygons with address and building point
Topology NWB Use topology of NWB to approximate location

For the final methodology, the Basisregistratie Adressen en Gebouwen (Build-
ing and Address Database) (BAG) and NWB were combined with the trans-
former datasets from Alliander as the final data. This combination of datasets
has the advantage over previously tried methods of having a more or less
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complete geometric network that can be translated to a topological network
with trivial methods. Although the use of the NWB does decrease accuracy
of the location of cables, since it simplifies cables as the centreline of the
roads, but it does increase the overall accuracy of the quantification, result-
ing in a closer to optimal solution. All other methods and datasets yielded
incomplete networks or only parts of a network, meaning decent network
analysis could not be carried out.

Phase 2: Methods and Analysis

The NWB is a geometric model which is topologically consistent. But before
the network is transformed into a graph data model, the NWB lines had to be
connected to the buildings, in order to find shortest paths from buildings to
transformers. This process included three different methods of connecting,
each of the three methods with its own characteristics, affecting the cable
length, as well as the performance and complexity of the network.

(a) (b) (c)

Figure 3.4: Three different connecting methods (a) Connect to Closest Point (b) Con-

nect to Closest Junction Vertex (c) Iteratively Connect to the Closest Junc-

tion Vertex.

These three methods are processed individually, yielding slightly different
results in terms of topology, number of vertices and edges and edge length.
(1) The first method, ’Connect to Closest Point’, connects every point to the
closest point on the street network. (2) The second method, ’Connect to Clos-
est Junction Vertex’ connects every point to the closest junction vertex of the
street network, which is divided into segments with maximum length of
75 meters. (3) The third method, ’Iteratively Connect to the Closest Junction
Vertex’ iteratively connects every point to the closest junction vertex, within
a threshold, until all nodes are connected to the street network. Figure 3.4
shows the three different methods for connecting points to a network that
have been used and compared in this thesis.

Constructing a topological model from this network was done using a li-
brary in QGIS that simplifies the network into edges and vertices, where
each edge represents the relationship between its start and endpoint. The
indices of vertices are added to the attributes of the shapefile of the NWB,
where each edge has a start and end attribute, referring to the start and
endpoint. Subsequently, this shapefile is read in the NetworkX library for
Python to create a graph data model, consisting of an adjacency list. The
process is visualised in Figure 3.5 and Table 3.2.

With a topological network in place, the total amount of metal content in
the electricity network can be found by 1) finding the amount of buildings
connected to one transformer and 2) determining the betweenness for each
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Figure 3.5: Lines and points to vertices and edges

in a topological network.

edge start end

A 1 2

B 2 3

C 3 4

D 4 5

E 2 6

F 6 7

G 7 8

H 8 9

I 7 10

Table 3.2: Relations between

edges and vertices

as visualized in

Figure 3.5.

edge (cable), to be able to 3) evaluate the thickness and therefore the quan-
tity using statistical methods.

1. Finding the closest transformer for all buildings
For every building, it was found which transformer was closest in the net-
work. The path from each building to the closest transformer represents the
cable providing the building with electricity. This path was then used to
determine the total cable use for every cable. To ensure the paths were the
actual shortest paths, a plugin for QGIS was written to visualise these paths.

Figure 3.6: Shortest paths from a selection of buildings to the closest transformer.

2. Determining edge betweenness
With the shortest path from every building to a transformer, it was possible
to determine the edge betweenness [Girvan and Newman, 2002], e.g. the
number of households that use the same (part of a) cable. Taking into ac-
count the number of households was very important, since one building can
contain several households and each household uses a set amount of power.
The cable use was evaluated by finding the number of times an edge (part
of a cable) appeared in the path from every building to a transformer.

3. Evaluating thickness & quantity
With the cable use, the thickness could be approximated, resulting in a ca-
ble cross-section area. By multiplying the area with the material density and
length, the total mass per cable was calculated. The sum of the masses for
all cables resulted in a total mass, quantifying the underground urban mine.
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Phase 3: Finalization

The final phase of this methodology included validation and storing of the
results. The first two steps to determine to what extent this methodology
answers the research question, is to validate the location and the quantity.
Location was validated by comparing the results with the validation data
acquired in Phase 1, while the mass was validated by comparing the quan-
tification of the validation data with the quantification of the generated data.
It is important to note here that validation of the location was an important
way in this research to verify if the used method could be used in the net-
work analysis.

When a final result had been achieved, the data had to be stored. For three
relatively small case study areas in Amsterdam, shapefiles suffice in terms
of performance in both Python and QGIS. However, if this methodology
were to be scaled up to the level of one or more cities, a spatial database is
needed to cope with the vast amounts of data.

Two steps were taken to determine the manner of storage: First, literature
study was conducted to find appropriate ways of storing both location and
quantity. Second, the data was stored in such a way that visualization after-
wards was possible. To achieve this, an approach has been found that stores
the full calculation of the quantity in an attribute, to be able to extract extra
information as well, instead of only a number.

3.3 tools and code

The source code for this project was programmed in Python and addi-
tional libraries, with the help of QGIS. For visualizing shortest paths in
QGIS, a plugin was built. All code and scripts are available on Github:
https://github.com/MatthijsBon/undergroundLocalization and https:

//github.com/MatthijsBon/PathVisualizer

https://github.com/MatthijsBon/undergroundLocalization
https://github.com/MatthijsBon/PathVisualizer
https://github.com/MatthijsBon/PathVisualizer
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DATA A C Q U I S I T I O N A N D

A S S E S S M E N T

The first step in assessing to what extent quantification of underground ur-
ban mines in terms of metal cables is possible, it is essential to know which
data to use. Input data for every case study area is necessary to exemplify
the methodology. Validation data is essential to determine the degree of ac-
curacy with which the used methodology approximates reality. This chapter
elaborates on the results of acquisition of validation data at different parties
as well as an assessment of the available sources that can be used as input
data.

Two municipalities, the Dutch cadastre, and network operator Alliander
have been contacted to request data for validation. Moreover, if there is
no data available, it is useful to know whether there is a demand for such
data.

Case Study Areas

To exemplify the methods in this research, three case study areas in the re-
gion of Amsterdam have been selected. These three areas have an average
building age of 60-70 years in common, meaning the buildings and their
surroundings might soon become available for redevelopment or demoli-
tion and thus provide opportunities for urban mining. The three case study
areas that have been selected are:

1. Slotervaart

2. Geuzenveld

3. Indische Buurt

Figure 4.1 shows the case study areas in the context of Amsterdam. These
three neighbourhoods were built around 1950 and consist of mostly residen-
tial buildings. Other building functions, such as offices, retail and industrial
use are filtered out, resulting in 2438, 2085 and 1140 buildings for Sloter-
vaart, Geuzenveld and Indische Buurt respectively. Only residential build-
ings are kept, since other functions might use different cable connections,
possibly to the MV network, which cannot be generalised. The difference
in size and building layout could potentially influence the results and are
therefore variable among the different case study areas.

4.1 data for validation

Four parties have been contacted to determine the availability of data on
underground metal cables: 1) the municipality of Amsterdam; 2) the mu-
nicipality of Rotterdam, 3) the Dutch cadastre and; 4) network operator
Alliander. The municipality of Amsterdam replied quickly, but does not
possess datasets on underground infrastructure. Unlike Amsterdam, the
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Figure 4.1: Case study areas in the context of Amsterdam

municipality of Rotterdam does keep their own database on underground
infrastructure. But since this research is focussed on the region of Ams-
terdam, data from Rotterdam is kept as backup only. The Dutch cadastre
has data on underground infrastructure available for sale. Finally, Alliander
does not share their (sensitive) data as open data, but they provided datasets
for validation, as well as point data on transformers.

At the municipality of Amsterdam, the data lab is in possession of various
datasets with geo-information1, such as traffic, bicycle routes and more. Un-
fortunately, there is no data available on underground infrastructure. How-
ever, they are very interested in such a dataset, since that would contribute
to the ambition of being a progressive municipality and the national goal to
have a full circular economy in the Netherlands by 2050. However, for this
thesis they could not provide a dataset to validate the methodology.

The Dutch cadastre obligates every network operator to submit their data
to the cadastre for their KLIC database. This database is consulted whenever
a KLIC alert is made. With every (mechanical) excavation in The Nether-
lands such an alert is needed, to make sure no underground infrastructure
is damaged. Such a KLIC alert could provide the validation data necessary
for this research, however, such an alert is quite expensive and only covers
up to 500 square meter.

Although Alliander does not make their data available to the public, they
did provide datasets for the specific case study areas for validation purposes
as well as locations of transformers in the LV networks. Additionally, they
provided a table to use that maps currents through a cable (Inom) to a certain
cable type and cross-section area. This table is used in Chapter 6.

1 https://data.amsterdam.nl/

https://data.amsterdam.nl/
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4.2 data for quantification

Before starting with programming, it is necessary to determine what data
is available, publicly online or at other locations, to use as input data. Since
this thesis was an iterative process, a multitude of sources have been used.
Table 4.1 shows an overview of the reviewed datasets and its purposes and
results. The next sections will elaborate further on each dataset and espe-
cially on the final dataset.

Table 4.1: Used datasets and working status

Source Subject Geometry Status

BAG Buildings Polygon Working, improvements possible
Cadastre Plots MultiLineString Insufficient
BGT Buildings Polygon Insufficient

Streets MultiPolygon Working, improvements needed
Water MultiPolygon Working

NWB Streets MultiLineString Working
Alliander Transformers Point Working

Buildings

Three different sources were tried as dataset for buildings, the BAG, the
Basisregistratie Grootschalige Topografie (Large Scale Topographic Database)
(BGT) and the Dutch cadastral building plots. Both BAG and BGT should be
actual and up-to-date and therefore contain the same information. However,
the BAG buildings were easily downloadable from the ESRI ArcGis Online
website, whereas the BGT only provided partial downloads in Web Feature
Service (WFS) format, up to 1000 features. The BAG contains both building
polygons as well as address points and information on the use, such as func-
tion and number of households.

The third source for buildings was the Dutch cadastral building plots. While
polygons are a logic choice for a building, it might be useful to know the
boundary of the area around it as well, given that private property cannot
be used for public cables. By offsetting the property boundary closest to
the street, a line could be created, representing the skeleton of the cable.
However, these property boundaries are represented using polylines and
are topologically inconsistent or incorrect, with overlapping lines and odd
segmentations. Offsetting the boundaries resulted in very irregular cables,
making this method not sufficient enough to use (Figure 4.2).

Figure 4.2: Example of offsetting of property boundaries.
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Streets

Two sources were experimented with for the street data. First, the BGT poly-
gons were used. This method seemed to work and yield sufficient results,
although there were some improvements needed that could further increase
the performance. First of all, the street polygons are a planar partition of
multiple types of roads. This meant that one street could be made up of mul-
tiple polygons, which caused problem in finding closest streets and adding
street names to the polygons.

The NWB represents all the road in the Netherlands as lines. Since these
lines do contain street names, a spatial join of the NWB with the BGT streets
could have improved the BGT streets. However, due to subdivisions of BGT
streets and slightly mismatching geometry (Figure 4.3), this did not increase
the performance, and was therefore disregarded. But the NWB alone did pro-
vide a good topological network. This topological network was less accurate
than manual generation of a topological skeleton in terms of location, but
more accurate in terms of quantity.

Figure 4.3: Example of a geometry mismatch between NWB (red lines) and BGT

streets (grey polygons).

Transformers

Alliander provided point data of the transformers in the LV network. These
transformers transform 10kV electricity to 400V electricity. Each transformer
can serve up to approximately 500 households within a 500 meter radius.
Dutch electricity regulations allow a maximum voltage drop of only a few
percent. Since the voltage drop is linked to the cable length, the maximum
length of a cable in LV networks is approximately 500 meters.

Other

Other used datasets include the BGT water polygons as well as the BGT
’kast’ points. These points represent transformer boxes that divide electric-
ity, internet or telecom cables directly to the houses. In other parts of the
Netherlands, these points contain useful attributes, indicating the specific
type of box. However, since the BGT is not fully finished, the lack of at-
tribute information of points in the region of Amsterdam did not allow for
distinction of different types of boxes.

4.2.1 Data pre-processing

After selecting the final dataset, the NWB and BAG for topological network
and buildings respectively, the second step of the methodology is to clean
and filter the datasets to make them ready for use. The NWB is a relatively
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clean and ready-to-go dataset, but the BAG contains all the buildings, ad-
dresses and Verblijfsobject(en) (Stay Object(s)) (VBO) in the Netherlands in
three separate sources. Figure 4.4 shows the relation between the three dif-
ferent shapefiles before transformation, filtering and cleaning.

pandID
year of construction
...

vboID
function
...

addressID
vboID
address

Figure 4.4: Relation between stay objects (VBO, blue), address points (red) and build-

ings (pand, grey).

The transformation workflow is visualized in Figure 4.5. This transforma-
tion was needed in order to correctly attach building functions and ad-
dresses from point data to the buildings. First, all data is clipped to the
case study areas and stay objects are filtered on residential function.

BAG

building address
stay

objects

�lter

join

join

clip

rename attribute

result

Figure 4.5: Workflow to transform the BAG data.
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Second, the buildings are joined with the stay objects with the use of a
relational table that comes with the BAG. Every building has one or more re-
lated stay object, with accompanying attributes such as function, and main
address ID. In case of a multitude of stay objects, the main address ID is
found for every stay object and the address with the highest occurrence is
joined with the building. This way, a building is joined with a residential
stay object and the joined address is most likely the street that connects
that building. The attribute ’matched records’ from the join shows the to-
tal number of residential stay objects in that building, which is renamed to
’stayobjects’.

Finally, the addresses are clipped to the remaining buildings. The result,
after removal of unnecessary attributes, is a shapefile containing building
polygons with the number of stay objects, which represents the number of
households. In previous iterations of the methodology, more attributes were
kept, which were needed in order to group buildings. This was not neces-
sary anymore when using the NWB, since that dataset already contained the
topological network.

The next step of pre-processing, is to find the appropriate building point
for each building polygon. This building point is an essential part of the
algorithm, since its location affects the closest street and the length of the
connection cable. When looking at the BAG, it was noted that often, the
address points would lie close to the entrance of a building, when verified
in Google Maps. This would seem logical, since that is where the distribu-
tion board is usually located. With this assumption in mind, it would make
sense to choose the address points within a building that is closest to the
boundary of the polygon. That way, if there would be more address points
within a building, the one most likely to be the distribution board would be
chosen. Using the distribution board as a building point also made sense
from an urban mining perspective, since that is the location in a building
where the building is connected to the power network, thus being an accu-
rate position for the cable connection point.

It is possible for more than one address point to exist in the same build-
ing, e.g. 24 A or B, or even multiple numbers in cases of large apartment
buildings. In such cases it is often hard to determine which point exactly
is closest to the distribution board. Since Dutch law requires a distribution
board to be within one meter range of the entrance, it was chosen to find the
closest point to the boundary of the polygon and use that as the building
point. Although there is no way in the BAG to extract entrances, this method
would often find the point of, or close to, the distribution board, although
some exceptions may occur.

One could argue that for a building point, the centroid of a building could
be used. However, this has two flaws. First, some ’U’ or ’O’-shaped build-
ings would have a centroid outside the polygon of the building. Second, in
many single family houses, there is only one building point and it is often
placed near the entrance, indicating that it might be put there on purpose.
In that case, using the centroid would decrease the accuracy when connect-
ing the building to the network. Figure 4.6 shows the situation before and
after the transformation.
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Before
- Multiple stay objects / functions
- Two adresses

After
- One stay object / function
- One addres

Figure 4.6: A building before and after transformation.

The building point, with an attribute indicating the number of households,
is then exported to a new shapefile and ready to be connected to the NWB

network. The next chapter elaborates further on the connection of the trans-
formers and buildings to the network of the NWB.





5
G E N E R AT I N G A TO P O LO G I C A L

N E T W O R K

The pre-processed data can be used to generate three topological networks,
one for each method. A topological network is a representation of vertices
and edges where the relations between vertices are most important. By as-
signing an identifier to a point and using lines as the relation between point
A and B, a structure can be created like in Table 5.1. This can be done for
every single part of the network, resulting in a topological network that can
be translated into a graph data model. Figure 5.1 shows an example of a set
of lines and points and how that data can be transformed into a topological
network.

1 2

3

4 5

6

7 8 9

10

A
B

C D

E

F

G H

I

Figure 5.1: Lines and points to vertices and edges

in a topological network.

edge start end

A 1 2

B 2 3

C 3 4

D 4 5

E 2 6

F 6 7

G 7 8

H 8 9

I 7 10

Table 5.1: Relations between

edges and vertices

as visualised in

Figure 5.1.

As mentioned in the previous chapter, before the final dataset was chosen
to be the NWB, a topological network had to be created from scratch. The
workflow that was followed is shown in Figure 5.2, and shows the steps to
get from building and street data to a topological skeleton that can be trans-
formed into a topological network similarly as the final method. First, build-
ings are grouped together to ensure optimal feature handling in Python
scripts, as well as improve the accuracy with which the closest street is
found. Then, the closest street is found, from which a cable point can be
created. This cable point represents the junction where the connection cable
to the building would be attached. Subsequently, all cable points can be
combined to represent one cable. Finally, all cables connected together form
the topological skeleton to be used in network analysis.

Unfortunately, combining cable points into a cable and then connecting mul-
tiple cables to create a topological skeleton did not yield results sufficient
enough to approximate reality in terms of quantity as well as location.

35
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Streets Buildings

Grouping

Closest Street

Cable points

Cables

Figure 5.2: Previous workflow from buildings and streets to topological skeleton.

5.1 connecting to topological network

The NWB is already topologically ready to be transformed into a topological
network, but the buildings and transformers still have to be connected to
this network. There are different ways to connect buildings to a network
and each method affects the cable length, as well as the performance and
complexity of the network. 1) The first method, ’Connect to Closest Point’,
connects every point to the closest point on the street network. 2) The sec-
ond method, ’Connect to Closest Junction Vertex’ connects every point to the
closest junction vertex of the street network, which is divided into segments
with maximum length of 75 meters. 3) The third method, ’Iteratively Connect
to the Closest Junction Vertex’ iteratively connects every point to the closest
junction vertex, within a threshold, until all nodes are connected to the street
network. This GRASS GIS algorithm creates extra vertices if necessary, sim-
ilar to a Steiner Tree, to minimize total edge length. Figure 5.3 shows the
three different methods for connecting points to a network that have been
used and compared in this thesis. Henceforth the names for the three meth-
ods will be shortened in tables by ’Closest Point’, ’Closest Junction’ and
’Iterative Closest Junction’.

(a) (b) (c)

Figure 5.3: Different connecting methods. (a) ’Connect to Closest Point’ (b) ’Connect

to Closest Junction Vertex’ (c) ’Iteratively Connect to the Closest Junction

Vertex’.

For the ’Connect to Closest Point’ and ’Iteratively Connect to the Closest
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Junction Vertex’ method, the workflow was very similar. First, the NWB was
connected with the buildings and transformers, using a GRASS algorithm
for the ’Iteratively Connect to the Closest Junction Vertex’ method and the
QGIS plugin ’Networks’ for the ’Connect to Closest Point’ method. For the
’Connect to Closest Junction Vertex’ method, the geometry of the connec-
tions were created in Python and exported to Well-Known Text (WKT) in
order to be loaded into QGIS. These geometries were then merged with the
NWB. Second, a graph was constructed, again using the ’Networks’ plugin.
For all methods, a spatial join of the network of points and the transformers
and buildings made sure that each point in the network could be given a
specific type, either ’road’, ’building’ or ’transformer’. Figure 5.4 shows the
generic process of connecting buildings and transformers.

Figure 5.4: Steps to connect buildings and transformers to the NWB, resulting in a

connected network with three types: road points, buildings and trans-

former.

The NWB only contains the road network lines. Therefore, each line that is
added to the network in each of the three different methods, has to be cor-
rect, meaning a shortest path from one point to another should really be the
shortest path. Even the smallest error in the process of connecting buildings
and transformers can mean a partially disconnected network. Figure 5.5
shows why correct topology is important and what happens if the network
is ’broken’.

T

B

1 2

34

T

B

1 2

34

Figure 5.5: Correct path (green) and wrong path (red) due to points not snapped

together at 3, from a building B to a transformer T.
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On all three methods a series of transformations was performed, to decrease
the change of such errors. The networks were cleaned of topological errors
using GRASS. The first step was to break all lines at intersection points.
Secondly, all endpoints were snapped together if the points were within a
threshold of 0.1 meter. These two steps were particularly important in the
’Connect to Closest Junction Vertex’ method, since the connections to the
vertices were made in a Python script, not directly in QGIS, which caused
minor differences because of rounding errors. Additionally, to ensure that
the resulting network in each of the networks was correct, a small plug-in,
that could quickly visualize one or more paths, was built for QGIS. By visu-
alizing a path in the network, it was easy to see whether or not the chosen
path was indeed the shortest path. This made it a useful tool for detecting
errors.

When buildings and transformers have been connected to the network, the
three different methods can be compared in terms of cable length and num-
ber of vertices. Table 5.2 shows an overview of the three methods and their
statistics.

Table 5.2: Statistical comparison of the three connecting methods

Closest Point vertices Total edge length (m) Average edge length (m)

Geuzenveld 4409 59165.47 12.79

Slotervaart 5278 81960.25 14.58

Indische buurt 2415 26016.75 10.43

Closest Junction vertices Total edge length (m) Average edge length (m)

Geuzenveld 2774 72247.88 24.95

Slotervaart 3520 98393.17 26.62

Indische buurt 1455 34503 22.59

Iterative Closest Junction vertices Total edge length (m) Average edge length (m)

Geuzenveld 3634 46936.02 10.25

Slotervaart 4410 69828.31 12.55

Indische buurt 2022 22268.04 8.95

The statistics show that the ’Connect to Closest Point’ method is in general
the average method, except for amount of vertices, which is approximately
1.2 times larger than the the ’Iteratively Connect to the Closest Junction
Vertex’ method and 1.5 times larger than the ’Connect to Closest Junction
Vertex’ method. More vertices increases complexity of the graph and there-
fore require more computing power, resulting in longer processing times.
The ’Iteratively Connect to the Closest Junction Vertex’ method does indeed
minimize total and average edge length, while keeping the number of ver-
tices lower than the ’Connect to Closest Point’ method. The ’Connect to
Closest Junction Vertex’ method has the largest total edge length, but the
lowest amount of vertices. This will increase performance, but might result
in longer edges than in reality, therefore probably decreasing the resem-
blance with reality. Figure 5.6 shows the three different networks as the
result of the three different connecting methods.

As the statistics of the three methods showed, the three resulting networks
are all slightly different. In terms of topology, the ’Iteratively Connect to the
Closest Junction Vertex’ method and ’Connect to Closest Junction Vertex’
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(a)

(b)

(c)

Figure 5.6: (a) Connect to Closest Point (b) Connect to Closest Junction Vertex (c)

Iteratively Connect to the Closest Junction Vertex.

method look very similar, although the ’Iteratively Connect to the Closest
Junction Vertex’ method adds an extra vertex to connect multiple buildings
to whereas the ’Connect to Closest Junction Vertex’ method uses an existing
vertex to connect buildings to. Looking at reality, the ’Connect to Closest
Point’ method seems to approximate reality more accurate than other meth-
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ods. In reality, all buildings are individually connected to the main network,
while the ’Iteratively Connect to the Closest Junction Vertex’ method con-
nects other buildings through one additional vertex.

The next chapter will focus on finding shortest paths from every building
to the closest transformer and the quantification of the urban mine. This
process is greatly affected by the number of vertices in the network. All
three methods will be discussed and their final results will be compared
and validated.



6 N E T W O R K A N A LY S I S

A graph data model consists of a matrix or list, indicating the adjacency of
nodes. The topological network that has been created from the NWB and
buildings and transformers can be translated in a graph data model. First,
the NWB containing lines, buildings and transformers, is read and the infor-
mation, for example ”edge 1 connects vertex A to vertex B”, is used as a
guide to construct the graph data model from the points. This model can
then be used to perform analysis, such as shortest paths.

There are four analysis computations that have to be conducted to anal-
yse the location and quantity of the underground infrastructure. The first
step in the analysis process, is to find shortest paths in the network, from ev-
ery building to every transformer. The closest transformer will most likely
be the supplier of electricity to that building, since it is optimal to mini-
mize cable length. Second, each edge in the network will be assigned an
attribute that stores the use of that particular edge. For example, consider
the situation in Figure 6.1. Transformer T supplies a number of buildings
with electricity. Vertices 2 and 4 are large ’junctions’ that supply 50 and
100 households respectively. This means that the electricity assumed to be
running through edge A would be half the size of the electricity running
through edge C. Additionally, the electricity running through edge B would
be the total sum of the electricity running through A and C.

T

a

b

c

1

2 3 4

60

4050

Figure 6.1: Example of amount of electricity assumed to be running through edges

(cables).

The third step is calculating the maximum current through a cable. Since
every building consists of one or more households and each household uses
an amount of power, the load of every household can be computed. Using
Ohm’s Law (P = V ∗ I), it is possible to compute the current through a LV
cable if the power is known. Finally, the fourth step matches a current to a
cable type which is the final requirement to calculate the amount of metal
in a cable.

41
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6.1 shortest paths

Once the graph data model is in place, each building has to be connected
to the closest transformer. In graph theory, two main types of shortest path
problems can be identified: (1) Single source shortest path problems and
(2) All pairs shortest path problems. Finding the shortest path from every
building to every transformer (which is necessary to determine which is
closest) seems like an all pairs shortest path problem. However, there is no
need for shortest paths between buildings or between transformers. There-
fore, the problem can be considered a multitude of single source shortest
path problems. Single source shortest path problem are often solved with
Dijkstra’s Algorithm [Dijkstra, 1959].

Single-source shortest path

All-pairs shortest path

Figure 6.2: Difference between types of shortest paths.

The shortest path from any building to a transformer is found by iterating
over all buildings within the graph and finding the shortest path to every
transformer using Dijkstra’s Algorithm. Then, the path to the transformer
which is closest is saved as the ’supply path’ for that particular building. All
paths are stored and used in the next step in the analysis process.

Finding the shortest paths from every building to every transformer is a
computationally expensive process and network of Slotervaart with more
than 5000 vertices, this process can take up to one hour with the current
methods. Chapter 8 discusses this challenge, particularly if the networks
are scaled up to the size of cities or provinces.

6.2 calculating edge betweenness

The path from every building to the closest transformer is used to deter-
mine how many times a certain edge is used. This is often referred to in
graph theory as edge betweenness centrality. The edge betweenness central-
ity indicates how often an edge appears in shortest paths within a network
[Girvan and Newman, 2002]. Every building consists of one or more house-
holds that requires a certain amount of electricity. Since the current through
a cable affects the thickness of that cable, it is necessary to know how much
current exactly is supposedly running through a cable. Or, from a design
perspective, what is the maximum current running through a cable?
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First all routes are divided into edges, where each edge is a pair of subse-
quent vertices in the route. For example: the shortest path from vertex 20 to
vertex 65 is given by: 20, 23, 34, 65. Now each pair of subsequent vertices is
added to a list of edges, such that edgelist = [(20, 23), (23, 34), (34, 65)]. This
process is repeated for every building, and stored in a dictionary keyed by
building-id. Algorithm 6.1 shows the process that uses this list of edges to
calculate the number of households for every edge.

Algorithm 6.1: Workflow for calculating edge betweenness

Input: List of edges edgelist
Output: D: Dictionary {edge: households}

1 D = empty dictionary {}
2 for bldID, edges in edgelist do

3 for edge in edges do

4 if edge not in D then

5 add (edge: bld.households) to D

6 else

7 add bld.households to edge.value

8 return D

With the households attribute, the currents can now be calculated using
Ohm’s Law and the Strand-Axelsson formula, taking into account the stochas-
tic behaviour of household power demand [Axelsson and Strand, 1975]. For
a single household, the maximum power demand can be calculated using

Pmax,1 = k1 · E + k2 ·
√

E (6.1)

and for multiple households as

Pmax,n = n · k1 · E + 3 · k2 ·
√

n · E

3
(6.2)

where:
Pmax,1 = Maximum power demand for one household,
Pmax,n = Maximum power demand for n households,
E = Yearly energy demand for one household and
n = number of households.

Factors k1 and k2 are coefficients derived from experiments, specific to a
type of household. These factors are derived from the application Gaia,
produced by Phase2Phase1. The factor 3 is used to indicate a single phase
connection to the household, so that load can be distributed over 3 phases.
With Pmax it is possible using Ohm’s Law, to find the maximum current
through a cable with

I =
Pmax

230
· m (6.3)

The factor m is used to indicate a margin that is used to oversize cables to
be on the safe side. From interviews with Alliander it was found that cables
are using approximately 70% of their capacity, therefore this research uses
a margin of 100/70. Figure 6.3 matches a resulting current I to a cable type,
which is used in the final quantification.

1 https://phasetophase.nl/vision-lv-network-design.html

https://phasetophase.nl/vision-lv-network-design.html
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Figure 6.3: Cable cross section area (in mm2) per cable type [van der Eerden, 2017].

6.3 quantification

The quantification combines the cable type derived from Figure 6.3, the
density of the material and the cable length from the length of the geometry
of each edge in the network. To quantify the network, the thickness values
have to be multiplied with the length and the density of the metal in order
to calculate the amount of metal in the network. Table 6.1 shows the metal
densities for copper and aluminium in gram per cubic centimetre.

Table 6.1: Densities for copper and aluminium.

Material Density

copper 8.96 g/cm3

aluminium 2.70 g/cm3

The total mass is calculated by summing the weight of every edge using:

n

∑
1

M =
n

∑
1

ln · An · dn (6.4)

with:
M = Total mass (kg),
ln = length of edge n (cm),
An = cross section area of edge n (cm2) and
d = density of the edge n material (g/cm3).

Since cables are made out of either copper or aluminium, there is still an
uncertainty about the real quantity of metal in underground infrastructure.
From literature [Van Oirsouw and Cobben, 2011], it was found that approx-
imately 70% of cables are made out of copper, and 30% out of aluminium.
This margin is applied, resulting in the final quantification of the under-
ground urban mines of Geuzenveld, Slotervaart and Indische Buurt, shown
in Table 6.2.
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Table 6.2: Final results of quantification.

Geuzenveld
Iterative Closest

Junction
Closest Point Closest Junction

Calculated cable length 36.078,6 (m) 49.824,8 (m) 60.685,6 (m)
Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 14.147,0 2.816,6 16.766,9 3.351,5 19.557,6 3.961,4

Indische Buurt

Calculated cable length 19.082,2 (m) 23.377,7 (m) 30.253,0 (m)
Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 9.910,2 1.898,2 10.681,6 2.064,6 13.153,1 2.581,2

Slotervaart

Calculated cable length 46.795,2 (m) 60.450,7 (m) 74.060,5 (m)
Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 15.625,1 3.074,5 18.061,8 3.568,6 21.386,7 4.219,8

Although this table shows no baseline to compare the results to, comparing
the three different methods and three different case study areas gives valu-
able insights. Because of the larger area, it is no surprise that Slotervaart has
the longest cable length in all three methods. However, in terms of quantity,
the difference is smaller. To better investigate these results, Table 6.3 shows
the relative differences in mass between methods and case study areas.

Table 6.3: Comparison of results between case study areas and methods

This table shows the mass of the case study area and method on the left,
divided by the case study area and method at the top. This reveals which
method resulted in the highest quantity, per case study area, but also in
comparison with the other case study areas.
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In all case study areas, the ’Connect to Closest Junction Vertex’ method
achieved highest quantities, while the ’Iteratively Connect to the Closest
Junction Vertex’ method got the lowest quantity. When looking at the topo-
logical network and its resemblance to reality, this is a counter intuitive re-
sult, since the ’Connect to Closest Junction Vertex’ method is not at all close
to reality. However, the total cable length does increase by connecting to
the closest vertex and by connecting to the closest vertex in the network the
result is more cable length with more thickness. This is further explained in
Figure 6.4.

building (current = 0.5)

transformer

0,25 0,75 1,25 1,75 2,25 2,75 3,25 3,75

0,25 2,25 3,75

Figure 6.4: Difference in cable length and thickness between ’Connect to Closest

Point’ (top) and ’Connect to Closest Junction Vertex’ (bottom) methods.

Considering seven buildings with each a (fictional) current of 0.5, a seg-

ment of a network and a transformer, cable current and therefore thick-

ness is higher with each added building.

In the ’Connect to Closest Point’ method this results in shorter cables with
each a lower current, whereas the ’Connect to Closest Junction Vertex’ method
yields longer cables with higher currents and therefore a higher metal quan-
tity.
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To determine whether the results presented in Chapter 6 are true, valida-
tion of the results is necessary. With the use of network data from network
operator Alliander, the location and quantity of the created cables can be
compared with the location of their cables.

In this chapter, validation is conducted in three steps. First, the location
of the cables will be examined and compared with the location of the real
cables. Second, the quantity of the cables will be compared to the quantity
of cables according to the data from Alliander. In the final step, both re-
sults are discussed and the cause of differences and errors in the validation
process are examined.

7.1 validation of location

Using the NWB causes a systematic error regarding accuracy of the location,
since the design of the methodology neglects the fact that cables are usually
placed near a street, not in the center of the street, like the NWB is mod-
elled. But to be able to generate a topological network that could be used
to quantify the underground urban mine, accuracy had to be traded in for
precision. Therefore, this section will elaborate only on the location of the
cables and its impact on the quantification. Table 7.1 provides an overview
of the computed and actual cable lengths.

Table 7.1: Overview of cable lengths (in meter) in the three case study areas

Geuzenveld Computed length Real length %

Closest Junction 72.247,9 73.876,7 97,8%
Closest Point 59.165,5 73.876,7 80,1%
Iterative Closest Junction 46.936,0 73.876,7 63,5%

Indische buurt Computed length Real length %

Closest Junction 34.503,0 58.028,2 59,5%
Closest Point 26.016,8 58.028,2 44,8%
Iterative Closest Junction 22.268,0 58.028,2 38,4%

Slotervaart Computed length Real length %

Closest Junction 98.393,2 107.375,7 91,6%
Closest Point 81.960,3 107.375,7 76,3%
Iterative Closest Junction 69.828,3 107.375,7 65,0%

Looking at this information, the ’Connect to Closest Junction Vertex’ method
seems to closely resemble reality in terms of cable length. As the ’Connect to
Closest Junction Vertex’ method connects buildings to the closest vertex in
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the network, with a maximum distance of 75 meter, this adds a lot of edge
length to the network. Moreover, as explained in Figure 6.4, this method
results in thicker segments of cables between vertices.

7.2 validation of quantity

While exact validation of the location does not provide new insights, the
systematic error is clearly recognisable when the quantity is validated. The
dataset from Alliander contains an attribute indicating the specific type of
cable that was placed, which is exploited to calculate the thickness of the
cable and the metal content. Multiplying the thickness for every individual
cable by its length and the material density yields the final quantity per ca-
ble and a total quantity per case study area. Table 7.2 shows the computed
metal content and the metal content from validation data in the three case
study areas.

Table 7.2: Final results of quantification.

Geuzenveld
Iterative Clos-

est Junction
Closest Point Closest Junction

Calculated cable length 36.078,6 (m) 49.824,8 (m) 60.685,6 (m)
Real cable length 73.813,4 (m) 73.813,4 (m) 73.813,4 (m)

Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 14.147,0 2.816,6 16.766,9 3.351,5 19.557,6 3.961,4
Metal mass in reality 44.013,1 13.262,9 44.013,1 13.262,9 44.013,1 13.262,9
Adjusted metal mass 28.294,0 5.633,3 33.533,7 6.703,0 39.115,2 7.922,7

Indische Buurt

Calculated cable length 19.082,2 (m) 23.377,7 (m) 30.253,0 (m)
Real cable length 57.792,4 (m) 57.792,4 (m) 57.792,4 (m)

Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 9.910,2 1.898,2 10.681,6 2.064,6 13.153,1 2.581,2
Metal mass in reality 44.449,7 13.394,4 44.449,7 13.394,4 44.449,7 13.394,4
Adjusted metal mass 19.820,3 3.796,4 21.363,3 4.129,1 26.306,3 5.162,4

Slotervaart

Calculated cable length 46.795,2 (m) 60.450,7 (m) 74.060,5 (m)
Real cable length 107.282,4 (m) 107.282,4 (m) 107.282,4 (m)

Cu (kg) Al (kg) Cu (kg) Al (kg) Cu (kg) Al (kg)

Metal mass from algorithm 15.625,1 3.074,5 18.061,8 3.568,6 21.386,7 4.219,8
Metal mass in reality 84.255,3 25.389,4 84.255,3 25.389,4 84.255,3 25.389,4
Adjusted metal mass 31.250,2 6.149,0 36.123,6 7.137,3 42.773,4 8.439,5

The quantification in Table 7.2 clearly shows a difference between the cal-
culated quantity and the quantity from validation data. First to notice is
the large difference between the cable length from validation data and the
calculated edge length, for the Indische Buurt this factor even goes up to
three. This difference can be explained by visualizing the paths (in red)
from buildings to transformers, as shown in Figure 7.1. The figure shows
that although all buildings are connected to a transformer, not all edges in
the network are utilised. This could be due to the fact that for this thesis,
only residential buildings are used in the calculation. A longer total cable
length does not necessarily mean a higher quantity, since the spatial distri-
bution of buildings is also very important.

Furthermore, the NWB is a simplification of the electrical network, meaning
that only one single edge is considered per street, while in reality there are
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Figure 7.1: Visualisation of paths from buildings to each closest transformer.

at least two. By considering only a single edge, the quantification is always
going to be less than reality. Too compensate for this difference and to give a
more accurate estimation of the metal content in an area, the quantification
result is doubled. This results in the ’Adjusted metal mass’ in Table 7.2.

With this adjusted quantity, the ’Connect to Closest Junction Vertex’ method
yields the highest quantity and is therefore closest to reality. This indi-
cates that although the topology of the ’Connect to Closest Junction Vertex’
method seems counter-intuitive to reality, it does provide a more realistic
estimation of the metal mass in an area, as it outperforms other methods.

7.3 discussion

One explanation for the discrepancy between the adjusted quantity and
quantity from validation is that cables in reality are largely oversized. To
compensate for the over sizing of cables, a margin of 100/70 is applied, but
in reality over sizing might actually be more, not only to be on the safe side
from a design perspective, but also from a economic perspective, since it
is cheaper to anticipate growth and therefore a larger power consumption
than to replace a cable that is already underground.

Another explanation could be that the topological model of the NWB is over-
simplified. By using the NWB as topological skeleton, the underground elec-
tricity network is simplified. Figure 7.2 shows the cables from validation
data and the NWB for a small area in Geuzenveld. Notice how the NWB is
not completely geometrically accurate with the road in the streets in the
background layer. It also shows cables on either side of the road, whereas
the NWB is simplified using a single line.

Lastly, Figure 7.2 shows that there are multiple cables leading out from a
transformer, while the quantification in this research only takes into account
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Figure 7.2: Visualisation of validation data (red lines), NWB (black lines), buildings

(red points), transformers (blue points) and background layer.

one single three-phase cable per edge of the network. This simplification
could decrease total quantity and therefore accuracy.

Table 7.3: Total quantity of copper and aluminium per case study area

Geuzenveld Computed metal mass Real metal mass Accuracy

Cu (kg) Al (kg) Cu (kg) Al (kg) Cu Al

Closest Junction 39.115,20 7.922,75 44.013,09 13.262,87 88,9% 59,7%
Closest Point 33.533,73 6.702,95 44.013,09 13.262,87 76,2% 50,5%
Iterative Closest Junction 28.294,03 5.633,29 44.013,09 13.262,87 64,3% 42,5%

Indische buurt Cu (kg) Al (kg) Cu (kg) Al (kg) Cu Al

Closest Junction 26.306,27 5.162,36 44.449,66 13.394,43 59,2% 38,5%
Closest Point 21.363,26 4.129,12 44.449,66 13.394,43 48,1% 30,8%
Iterative Closest Junction 19.820,31 3.796,40 44.449,66 13.394,43 44,6% 28,3%

Slotervaart Cu (kg) Al (kg) Cu (kg) Al (kg) Cu Al

Closest Junction 42.773,36 8.439,52 84.255,30 25.389,43 50,8% 33,2%
Closest Point 36.123,55 7.137,28 84.255,30 25.389,43 42,9% 28,1%
Iterative Closest Junction 31.250,22 6.149,05 84.255,30 25.389,43 37,1% 24,2%

Further investigation of the accuracy of the three methods in three case
study areas is shown in Table 7.3. Highest accuracies are achieved in case
study area Geuzenveld, with up to 88% and 59% accuracy for copper and
aluminium respectively with the ’Connect to Closest Junction Vertex’ method.

(a) (b) (c)

Figure 7.3: Spatial distributions for (a) Indische Buurt (b) Slotervaart (c) Geuzen-

veld.

Slotervaart performed less with every method, but this can be explained by
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the much larger area and spatial distribution of buildings in that area. As
pointed out before, more cable length does not necessarily mean a higher
mass, since some cables segments might not be part of shortest paths be-
tween transformers and buildings. Furthermore, the spatial distribution of
buildings in Slotervaart is much less dense than that of the Indische Bu-
urt and although the spatial distribution is similar to that of Geuzenveld,
Slotervaart has longer edges on average and is less densely populated than
Geuzenveld.





8 DATA M A N A G E M E N T

Just as important as creating a topological network and performing analysis
on it is the management of the data. Storing is important since it allows
other users to examine the results as well as provide a basis from which
further research or visualization can continue. If storing of spatial data is
not properly thought through, access can be limited.

Currently, the size of the data processed and produced in this research is
relatively small. Three case study areas and three methods with a total of
almost 30.000 nodes and approximately 500 km of line data is still not com-
parable to the size of the data if the whole city of Amsterdam was processed,
let alone multiple cities. The current datasets are stored in shapefiles and
can easily be read in any GIS. However, if the research is scaled up to the
city of Amsterdam, the network for one single method becomes too vast
to handle in shapefiles. This chapter shows why a spatial database could
overcome this barrier and what such a database would look like.

8.1 spatial databases

In a spatial database such as PostGIS, an extension to the PostgreSQL database,
geographic objects can be stored and spatial queries can be run in Structured
Query Language (SQL). By using a spatial database for this research, the user
can:

• Store buildings, transformers and the NWB as spatial objects.

• Index the database with spatial indices to increase performance.

• Access relational queries specifically designed for spatial objects (dis-
tance, topological relations, etc.)

• Use spatial operations (length/area, intersection matrices, buffers, etc.)

Using a relational database without the spatial possibilities as mentioned
above, limits performance, since normal indices are optimized for spatial
data. Normally, indices use some kind of linear search, such as sorting, to
quickly find the object to be found. However, spatial objects are not so easily
linearly sorted. Spatial indices use the location to index an object, such as a
quadtree or other space filling curves. Such a spatial index usually divides
the database space into smaller partitions. Figure 8.1 shows a quadtree for
indexing spatial objects.

The subdivision of space is necessary and very useful in many stages of
this research, especially if research covers a whole city. By using Python
and shapefiles to connect the buildings and transformers to the network,
the process would be very slow for a city. However, by subdividing the
data into smaller ’tiles’, one does not have to search the full dataset for the
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Figure 8.1: Quadtree for two spatial objects.

Connect to Closest Junction Vertex or edge, but only the closest within the
bounds of the particular tile. This decreases the search area and increases
performance. This also applies to finding shortest paths from buildings to
transformers. Figure 8.2 shows how subdividing the data into tiles could
increase the performance in finding the closest transformer.

Figure 8.2: Decreased search area when using subdivided data.

Finding shortest paths in a spatial database such as the PostGIS extension
for PostgreSQL, can be done by using the pgrouting extension. With this
extension it is possible to find single source shortest paths, for example Di-
jkstra’s algorithm, as well as multiple source shortest paths, such as the
Floyd-Warshall algorithm. This way, all nodes with type building (red) can
be selected and the shortest path to all nodes with type transformer (blue)
can be found. By making use of a spatial index such as an quadtree, only
part of the data has to be searched.

While indexing increases performance by knowing where to find the data
at hand, clustering methods make sure that similar data values are stored
close to each other. This means that spatial objects close to each other in
space, can be stored close to each other on disk. By doing so, access times
can be decreased and queries can be optimized. Clustering methods often
use so-called space filling curves as in Figure 8.3 to store geometries close
to each other.
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Figure 8.3: Different space filling curves [van Oosterom, 2017b].

8.2 data storage

A spatial database is not only useful when accessing and processing data,
but even more so for storing results and to provide a easy access method
for other purposes, such as visualization. When all processing is done in
PostGIS, the final result can be a table containing the quantification, as well
as the topological network. The topological network is made up of a table
with all edges, the relation between nodes, and the nodes themselves. Table
8.1 shows the table of edges in the network. Each edge has a start and end
value, that refers to a node in the nodes table.

Table 8.1: Resulting table of edges with the quantification result and the edges as

spatial objects.

id start end length cableStr geometry

1 1 3 27,8 4x150-Cu-PILC LINESTRING(...)
2 2 3 37,7 4x50-Al-PILC LINESTRING(...)
3 3 4 42,0 4x95-Cu-XLPE LINESTRING(...)
4 3 5 47,0 4x120-Al-XLPE LINESTRING(...)

The quantity of a cable can be directly attached as an attribute of every cable,
but for reasons such as visualization it would be interesting to have as much
information on a cable as possible, such as cable type and length. This in-
formation can be stored in the database together with every edge. The two
necessary attributes to visualize the thickness are: the cable length and the
cable type, which consists of: 1) material, 2) cross section area, 3) number of
veins, and; 4) insulation type. These four main parts that the cable type con-
sists of can be stored in a similar way as the validation data from Alliander
is stored.

By using a string with the specification of the type, values for each of these
four attributes can be easily retrieved by splitting the string at the delim-
iters ’x’ or ’-’. Important to note here is the fact that it is currently unknown
whether a cable contains aluminium or copper veins. This can be solved
by adding a second string attribute containing the specification of the cable
for the other metal. The metal ratio of copper and aluminium of 70 / 30%
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can be taken into account when the total quantity is calculated. Similarly,
the current methodology only takes into account PILC insulated cables, but
other types can be added. The type specification string could be represented
as follows:

AxB − C − D

With:

A Number of veins

B Cross section area in mm2

C Material

D Insulation type (PILC or XLPE)

Example:

4x150 − Cu − PILC
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F U T U R E R E S E A R C H A N D

C O N C L U S I O N S

This thesis explored the possibilities of increasing certainty about the loca-
tion and quantity of the underground urban mine with the use of topolog-
ical networks. From the literature on UUM and electrical networks, it has
become clear that a more precise and accurate method is needed to fill the
gap of information about the location and quantity of underground urban
mines.

Although increasing certainty ultimately results in knowing the total mass
of the underground urban mine, a minimum quantity could be very useful
as well. In this research, a multitude of datasets have been used to generate
a topological skeleton in order to perform network analysis. Ultimately, the
NWB was chosen to provide the topological network from which a quantifica-
tion could be carried out. This chapter will further elaborate on the answers
to the research questions, as well as critically review the used methods and
provide recommendations for future research.

9.1 conclusions

This thesis aimed to answer the main research question:

To what extent can topological networks be used for localization of underground
metal cables in order to assess the quantity of an underground urban mine?

In Chapter 5, it was shown how the NWB was used to provide the topo-
logical skeleton that can facilitate network analysis. Important to note is
the fact that by using the NWB, location accuracy is traded in for precision.
Although manual generation of topological skeletons could yield networks
with higher accuracy, a full topological network could not be constructed,
therefore limiting the overall value of such a method. But by using the NWB,
it is possible to generate a topological skeleton and quantify that network,
providing a minimum bound of the metal quantity. By using the NWB and
the BAG as input data, this method can be transferred to any other city in
the Netherlands quite easily. However, transformer point data is essential
for this method and should be obtained from a network operator or other
source.

Quantification of the underground urban mine was carried out, starting with
the topological network from the NWB and adding buildings and transform-
ers, using three different connecting methods. In terms of metal content,
the quantification matched to reality for up to 88% in Geuzenveld for the
’Connect to Closest Junction Vertex’ method. As the method is an estimation
of the quantity in reality, an approximation with up to 88% accuracy is very
good. Furthermore, any amount lower than the actual quantity would be
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valuable, as long as the quantification does not overshoot the real quantity.
If recovery might be feasible based on a minimum quantity, it probably will
be feasible if there is more metal to be recovered.

Looking at the three different methods that were used in this methodology
to quantify the underground urban mines, it becomes clear that the ’Con-
nect to Closest Junction Vertex’ method did yield the highest quantity in all
three case study areas. Since none of the methods resulted in an overshoot
of quantity, all methods performed well enough to estimate a minimum
quantity, with the ’Connect to Closest Junction Vertex’ method being the
most accurate.

To exemplify the possible income gains if the underground electrical ca-
bles in the underground urban mine of Geuzenveld would be recovered,
the total recovery yield, based on this quantification method would be ap-
proximately € 145.000 at the price of € 3,50 / kg and € 0,80 / kg for recycled
copper and aluminium respectively. But since there is more metal actually
available, the actual yield would be approximately € 164.000, meaning al-
most € 20.000 more than calculated. This is not even taking into account
cables that are not registered by network operators, tram lines and public
lighting.

A final conclusion can be drawn that the current methodology does provide
a new way to approximate the minimum quantity of metals in electricity ca-
bles in the low voltage networks. However, this methodology is not suitable
for finding the exact spot to start digging, because locational accuracy is too
low. For the Amsterdam municipality and maybe even the Netherlands, this
means there is a lot to gain in terms of recoverable metals, if certain areas
are being redeveloped and new networks have to be laid. And if the future
becomes more and more wireless, it might be even possible to recover more
cables when areas are redeveloped, contributing to a more sustainable and
more circular future.

9.1.1 Sub-questions

The other research questions in addition to the main question were:

1. What data on underground infrastructure is already available?
It turned out that although network operators have a database containing
every cable in their possession, municipalities have little or no clue about
what is underneath their feet. The KLIC has this data and sells it whenever
excavation work is conducted, but for other purposes, such as urban mining,
this data is very expensive. The municipality of Rotterdam can be set as an
example for other municipalities, because of their own initiative to create a
database with all underground infrastructure.

2. Is graph theory fit to approximate an electrical network from a design perspec-
tive?
From the literature review in Chapter 2 it was found that graph theory has
been used to optimally model electrical networks. This design perspective
showed that there are uses for graph theory in finding optimal networks
and could therefore be used to find the minimum length of cables needed
to connect buildings in a network. Modelling the cable network in geomet-
ric space had not been done before and this thesis showed that it is possible,
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although manual generation of the topological network is difficult.

3. What input data and methods are necessary for creating a topological network?
From the experiments with a multitude of datasets it was found that man-
ually generating topological skeletons is a arduous process, no matter the
input data. But with a topological skeleton to start from, such as the NWB,
the results resemble reality more closely and quantification of underground
urban mines becomes possible, although there is a trade-off between loca-
tion accuracy and quantification accuracy. From the assessment of valida-
tion data, it was found that Alliander does not provide the data on their
network as open data, given the sensitive nature of the electrical networks,
whereas Enexis, another network operator, does share their data. Fortu-
nately, Alliander shared their data for this research. Without it, network
analysis would not have been possible.

Furthermore, the method proposed in this thesis was a result of an itera-
tive search for the most suitable combination of datasets and accompanying
methods. Various datasets and methods have been experimented with and
this resulted in the final datasets and method presented in this thesis. Al-
though the NWB provides very good results and accuracy while not overes-
timating the quantity, better datasets could improve this method even more.
This is discussed in more detail in section 9.2.

4. How can the resulting location and quantities be validated?
The validation process of the location of previous methods showed that the
location of cables can be predicted relatively well, given that the spatial dis-
tribution of buildings is not too complex. In complex spatial distributions
the location of cables is simply too difficult to predict with an automated
algorithm. However, when using the NWB as topological skeleton, locational
accuracy is decreased in order to increase quantitative accuracy, resulting in
a systematic error between reality and computed cable location. This sys-
tematic error continues to influence the quantity, as validation of the quan-
tity showed. By comparing computed metal contents with the validation
data, the accuracy of the quantification could be determined. Furthermore,
by using three different methods for connecting buildings and transformers
to the NWB skeleton, validation could be compared across three methods,
which showed that the ’Connect to Closest Junction Vertex’ method outper-
formed the others.

5. How can challenges in data management be overcome if the research is scaled
up?
The current datasets can be stored without problems in separate shapefiles.
However, if this research were to be scaled up to the size of a city, use of
a spatial database is advised, because the data would become too vast to
handle in shapefiles and process in Python with the current methods. By
using spatial databases with spatial indices and clustering methods, data
can be accessed more easily and processing would not take up as much
time as current methods. Furthermore, by storing the quantity not as a
number for every edge but as a string, showing the full quantification, the
results can be used in further research and visualization is possible.
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9.2 discussion

As was expected, not all approaches in this research are without failure.
An assessment of the methods and results is necessary to determine the
contribution to the particular research field. This section first discusses the
used data and its limitations and then continues with possible flaws in the
used methods.

9.2.1 Review of datasets

Some of the problems that occur in this research are due to the limitations
of the used datasets. Other problems that are initially not due to the data,
could be solved by using different datasets. This subsection discusses the
limitations and possibilities of the datasets that have been or could have
been used.

Buildings The BAG contains all the buildings in the Netherlands. It functions
properly and has the required information for the particular use in
this research. However, when there is more than one address point
assigned to a building, these points are distributed randomly. This
makes distinction of the building point closest to the boundary an er-
roneous process. It would be very useful if the BAG included a build-
ing point for every building that was at the location of the distribution
board, maybe through cooperation with network operators.

Streets The NWB provides the street data in this research. The streets are al-
ready topologically consistent and ready to use as topological network.
However, as the dataset does correctly represent the streets, in this re-
search, a more accurate location for the cables is necessary. Therefore,
this dataset is only useful to a certain extent. Furthermore, there is a
slight mismatch between BGT geometry and NWB geometry. The latter
is not always at the same location, or within the geometry of the BGT,
making it unfit to spatially join with the BGT to add street names to
polygons.

Transformers The methods in this research are very dependent of location data of
transformers. For this research, Alliander was able to provide the
location of these transformers, but without these, network analysis is
not possible.

9.2.2 Critical review of used methods

The NWB as a topological network to perform network analysis on is a func-
tional method for extracting quantities of underground urban mines. Nev-
ertheless, there are imperfections that could be improved upon to increase
accuracy. The most important imperfection is the fact that the NWB is a sim-
plification of the electrical network. Only the center lines of the road are con-
sidered, while most electrical cables are located on both sides of the street.
This design flaw results in less edges to quantify and less accurate results.
Currently, this flaw is compensated by doubling the quantified amount, but
a better solution would be to adjust the network to closer resemble reality.

Furthermore, the three different methods that are used to connect build-
ings and transformers to the network are topologically slightly different
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and leave the methodology prone to errors. Although the maximum error
in the ’Connect to Closest Junction Vertex’ network is 75 meter due to its
subdivision of edges into segments of 75 meters, the other two methods can
contain errors not so easily quantifiable.

Figure 9.1: Possible performance increase for ’Connect to Closest Point’ method.

Currently, the ’Connect to Closest Point’ method, adds a new node for every
building or transformer that has to be connected. By comparing the three
methods, it was immediately clear that the ’Connect to Closest Point’ had
the most vertices in all methods. This flaw could be overcome if a vertex is
only added if there are no other vertices within a certain threshold, similar
to Figure 9.1.

Although the ’Iteratively Connect to the Closest Junction Vertex’ method
seems to be a well-designed method and presents in both cable length as
well as quantity a good result, the topology of the method is sometimes in-
correct. Figure 9.2 shows how a row of houses could be connected using the
’Iteratively Connect to the Closest Junction Vertex’ method. In this method,
one vertex represents a hub, connecting other buildings. Even though this
was how electricity was divided in history, this is not the case anymore,
since each building should be separately connected to the LV network.

Figure 9.2: Errors in topology with ’Iteratively Connect to the Closest Junction Ver-

tex’ method.

Additionally, the quantity of metal is divided into kilograms copper and
kilograms aluminium by using the ratio in which they are distributed in the
environment according to the literature. This approach was necessary, since
it is nearly impossible or very improbable to automatically estimate whether
a cable consists of copper or aluminium veins. Therefore, the distinction was
not made in this particular thesis, but it does decrease the certainty with re-
gards to the quantity of metal.
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Over-sizing of cables could be another explanation for the difference be-
tween computed and actual metal mass. From an interview with the com-
pany Phase2Phase it was found that usually standard cables are used when
a new cable is to be laid, whether there is one or ten buildings to be con-
nected, as long as there is sufficient capacity. Often, this results in cables
with lots of overcapacity. This overcapacity is useful when an area is rede-
veloped and more buildings are connected to the grid. The philosophy is
that paying once for a bigger cable is economically better than paying costs
for excavation twice, since these costs are the conclusive factors. But this
over-sizing of cables makes realistic modelling of the underground urban
mine much more difficult.

Performance-wise, the analysis process of finding all shortest paths from
buildings to transformers take a lot of processing time. A large case study
area such as Slotervaart, with more than 5000 nodes, can take up to an
hour to find all shortest paths. Although the three different methods each
slightly vary in processing time due to different amounts of nodes, there
is a lot of processing time to be gained if this process could be optimized.
Performance increases could start by using a spatial database as discussed
in Chapter 8, even for the case study areas.

9.3 future research and recommendations

As the previous section has shown, there are flaws to overcome and im-
provements to be made to get better results. Therefore, recommendations
for future research are made to improve this research.

• The location of cables could be improved by adapting the NWB with
edges, generated by offsetting lines from the original lines. These lines
could still be topologically consistent, while being more true to the lo-
cation of the actual cables. Alternatively, one could use not the NWB,
but the centrelines of roads and/or pavements to build a topological
skeleton and use that skeleton to offset to construct a more realistic net-
work. Additionally, the ’Connect to Closest Junction Vertex’ method is
now divided into segments of 75 meters. Further research could inves-
tigate whether a different segment length could positively influence
the accuracy.

• Public lighting is not taken into account in the current research, al-
though a large part of the cable network exist of cable that connect
public lighting fixtures to the electrical network. In terms of UUM,
it would be very interesting to be able to add these cables to the to-
tal sum of cables. Lighting fixtures are included in the BGT dataset,
therefore only a connection from these points have to be made to the
constructed topological network.

• Public trams are also supplied with electricity, although it uses DC

instead of AC. But because of their function, locating the cables would
be much easier. The BGT might be able to distinguish roads with tram
lines that can be used. Otherwise external sources will have to be
found. Furthermore, the constant power requirement of trams allows
for generalization of cables into one thickness, making complicated
quantification calculation unnecessary.
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• Other materials such as metal pipes for gas and optical fibres could
be included in the Underground Urban Mining process, since these
cables are usually located close to electrical cables.

In addition to these recommendations for future research into this topic,
there might be possibilities in cooperation of BAG and network operators.
Network operators know the location of distribution boards in buildings,
because that is where their cable ends, and if they could share this infor-
mation with the BAG, the data of address points could be enriched with
information on the location of distribution board and entrances. However,
it might not be economically interesting enough to make this connection.

As pointed out in the discussion of used methods, this methodology has
showed that accurate locations cannot be achieved. If not quantification but
locating underground cables is the main goal, other methods might prove
more useful. However, these methods are often time and cost ineffective.
But in the near future, self driving cars or possibly robot could overcome
this barrier. By fitting a self driving car with a GPR, accurately mapping the
underground infrastructure could become a closer reality.

Furthermore, as visualization was left out of the scope of this research, there
might be opportunities for visualization of supply paths for each building.
The QGIS plugin that was built to ensure correct paths from buildings to
transformers could be updated to further investigate the data from a pure
visualization perspective.

9.4 reflection

In the Geomatics programme at the TU Delft, five aspects of data are dis-
cussed: 1) Data Acquisition, 2) Data Storage, 3) Data Analysis, 4) Data Vi-
sualization and 5) Data Quality. Initially, all five aspects where part of this
research, but due to time limitations, the visualization of the results was
chosen as a topic for further research and left out for this research.

Combining datasets such as BAG and BGT is both part of Data Acquisition as
Data Quality, since both datasets have to work together in order to generate
results, although they do not work as good together as was desired. Fur-
thermore, Chapter 7 ensures that the results are validated as part of Data
Quality. Similarly, the Data Storage is discussed in Chapter 8.

Furthermore, the problems that arise in Chapters 4, 5 and 6 and the so-
lutions to the problems, show the Data Analysis process. Topics such as
Network Analysis, Computational Geometry and Topology have been han-
dled in the courses on GIS and 3D Modelling (GEO1002 and GEO1004) in
the Geomatics Programme. Moreover, the topic of Electrical Network De-
sign as an application field to the above-mentioned topics turned out to be
very challenging and interesting. I think that I can successfully conclude the
MSc Geomatics with this thesis, having deployed several skills in all of the
above aspects of Geomatics. I was most intrigued by the vast complexity of
the electrical network and it even motivated me to apply for a traineeship
at Alliander.
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