Dowel type connections in laminated bamboo with multiple slotted-in steel plates

Annex C – Design of test pieces

Auteur, studentnr:	JJB Debije, 4309995
Datum:	06-02-2017
Bedrijf:	Technische Universiteit Delft
Adres:	Stevinweg 1
	2628 CN Delft
Afdeling:	Faculteit Civiele Techniek en Geowetenschappen
Opleiding:	Civiele Techniek
Hoofdprofiel:	Structural Engineering
Uitstroomprofiel:	Staal en houtconstructie
Begeleiders:	prof.dr.ir. J.W.G. Van de Kuilen
	ir. P.A. de Vries
	drs. W.F. Gard
	drs. W.N.J. Ursem
	ing. A. van der Vegte

The maximum resistance of the connection is calculated according to NEN-EN 1995-1-1+C1+A1=2001. The claculation rules for the resistance per shear plane per dowel are given in chapter 8.2. For a connection where a steel plate is slotted-in three different failure modes are considered (assuming the steel plate does not fail).

For Smooth dowels the withdrawal resistance $F_{ax,Rk}$ in these formulas is taken to be 0. The Eurocode accounts for an extra frictional resistance in these formulas (Pedersen, 1999). Pedersen does not take this into account and gives the following formulas to determine the resistance:

These formulas seem to determine a more exact resistance and will be used for determining the theoretical failure load in this research. The moment restistance for a dowel is (according to chapter 8.5 of EC5 (Bolts)):

 $M_{y,\text{Rk}} = 0.3 f_{u,k} d^{2.6}$ (8.30) waarin: $M_{y,\text{Rk}}$ is de karakteristieke waarde van het vloeimoment, in Nmm; $f_{u,k}$ is de karakteristieke treksterkte, in N/mm²; d is de boutdiameter, in mm.

The moment resistance from Eurocode 5 accounts for a reduction in capacity for large diameter dowels. The theoretical moment resistance (without any reductions) would be:

 $M_{\gamma} = 1/6 * f_{\gamma} * d^{3}$ $M_{\gamma} = 1/6 * 0.8 * f_{u} * d^{3}$ (Jorissen, 2005)

The embedment strength for a dowel is (according to chapter 8.5 (Bolts)):

 $f_{\rm h,0,k} = 0.082(1-0.01d)\rho_{\rm k}$

Considering the density of laminated bamboo, the embedment strenght for hardwood species as given by Ehlbeck and Werner in 1992 (Sandhaas, 2012) (Islamaj, 2009) may be more applicable. This formula considers the avarage density of the wood instead of the characteristic density.

(8.32)

 $f_{h,0} = 0.102(1-0.01d)\rho_{average}$

The used fastener spacings will be taken from Eurocode 5. These spacings are:

(3)	belaste randafstand
(4)	onbelaste randafstand

1 verbindingsmiddel vezelrichting

Figuur 8.7 — Tussen-, eind- en randafstanden a) tussenafstand evenwijdig aan de vezelrichting in een rij en loodrecht op de vezelrichting tussen rijen, b) rand- en eindafstanden

Tussen-, eind- randafstanden (zie figuur 8.7)	Hoek	Minimale tussen-, eind- en randafstanden
<i>a</i> ₁ (evenwijdig aan de vezelrichting)	$0^{\circ} \le \alpha \le 360^{\circ}$	$(3+2 \cos\alpha)d$
<i>a</i> ₂ (loodrecht op de vezelrichting)	$0^{\circ} \le \alpha \le 360^{\circ}$	3d
a _{3,t} (belast eind)	$-90^{\circ} \le \alpha \le 90^{\circ}$	max (7 <i>d</i> , 80 mm)
<i>a</i> _{3,c} (onbelast eind)	$90^{\circ} \le \alpha < 150^{\circ}$ $150^{\circ} \le \alpha < 210^{\circ}$ $210^{\circ} \le \alpha \le 270^{\circ}$	$\begin{array}{c} \max(a_{3,t} \mid \sin \alpha \mid) \ d; \ 3d) \\ & \ 3d \\ \max(a_{3,t} \mid \sin \alpha \mid) \ d; \ 3d) \end{array}$
$a_{4,t}$ (belaste rand)	0 [°] ≤ α ≤ 180 [°]	max([2 + 2 sinα) d; 3d)
$a_{4,c}$ (onbelaste rand)	$180^{\circ} \le \alpha \le 360^{\circ}$	3 <i>d</i>

Tabel 8.5 — Minimale tussen-, eind- en randafstanden voor stiften

For a connection using one bolt this leads to:

Dowel diameter
Loading angle to fibre:

Dowel 1:			
Diameter	Ø _{dowel,1}	12 mm	
Tensile strength	f _u	510 N/mm²	(according to specifications)
		612 N/mm²	(accounting for 20% higher strength than specified)
Yield stress	f _y	355 N/mm²	(according to specifications)
Shear resistance	F _{v,Rd}	27.7 kN	(NEN-en 1993-1-8 table 3.10)
Embedment capacity	$F_{b,Rd}$	6.4 kN/mm	(NEN-en 1993-1-8 table 3.10)
Moment capacity	My	97850.4147 Nmm	(Volgens EC5)
		102240 Nmm	(According to Meyer (Jorissen, 2005))
		141004.8 Nmm	(According to Meyer, with additional 20%)
Bamboo:			
Density	ρ_k	641 kg/m³	(Schikhofer, 2015)
	$\rho_{average}$	666 kg/m³	(Schikhofer, 2015)
Embedment strength	f _{h,0,k}	46.25456 N/mm²	(Volgens EC5)
	f _{h,0}	59.78016 N/mm²	(According to Ehlbeck and Werner)

The embedment strength f_h is defined as the maximum stress level at or before 15 mm displacement of the dowel in the timber. The following graph shows a typical load embedment diagram.

The embedment stress level is determined by measuring the force needed to displace the dowel 15 mm and dividing that force by the dowel diameter and the thickness of the timber member.

$$f_h = rac{F_{max}}{t * d_0}$$
 with: $t = member \ thickness$
 $d_0 = dowel \ diameter$

In deriving the resistance through Johansens formulas the Eurocode then assumes the timber (and the dowel) to be an ideal rigid-plastic material. This simplification makes little to no difference in the ultimate resistance of the connection but lets us use a simplified load-embedment diagram:

The embedment strength can now be applied at every displacement of the dowel. This means that f_h can be taken as a constant value regardless of the amount of displacement/rotation of the fastener. The correctness of such a simplification in bamboo connections will need to be studied by doing embedment tests.

To study the posibility of calculating laminated bamboo connections by means of Eurocode 5 and to verify that the calculated capacity corresponds to the actual capacity and that the behaviour of connections with slotted-in steel plates in laminated bamboo is as predicted by Eurocode 5, test pieces will be made using only one dowel, of which the dowel diameter and placement are kept constant, and a varying member thickness. The member thicknesses that shall be tested follow from the following calculation:

The thickness of the bamboo beam depends on the failure mode we want to observe (Murty, 2005):

Figure 13. EYM modes for a wood - steel plate - wood connection

(1)
(1)
(1)
(2)
$$F_y = \min \begin{cases} td_o f_k & \text{for } t < \sqrt{\frac{2M_y}{d_o f_k}} & \text{Mode I} \\ \left(\sqrt{2 + \frac{4M_y}{t^2 d_o f_k}} - 1\right) td_o f_k & \text{for } \sqrt{\frac{2M_y}{d_o f_k}} & \leq t < \sqrt{\frac{16M_y}{d_o f_k}} & \text{Mode II} \\ \sqrt{4M_y d_o f_k} & \text{for } t \ge \sqrt{\frac{16M_y}{d_o f_k}} & \text{Mode III} \end{cases}$$

According to EC5:

	t <	18.78 mm
18.78	≤t≥	53.11 mm
53.11	≤t	mm

Theoretical boundaries,

According to Ehlbe	eck and Wer	ner
	t <	16.88 mm
16.88	≤t≥	47.75 mm
47.75	≤t	mm
Theoretical bound According to Ehlbe	aries, eck and Wer	mer plus 20%
	t <	19.83 mm
19.83	≤t≤	56.08 mm
56.08	≤t	mm

For test piece design the theoretical value of the thicknesses will be used. Tests shall be conducted at thicknesses that are a multidude of 6mm. This in consideration of the production process that produces lamination strips of an average thickness of 6mm. With the calculated member thicknesses for each failure mode to occur the expectancy for the tested thicknesses will be:

Thickness 't'		expected failure mode:
12	mm	mode 1
36	mm	mode 2
72	mm	mode 3

For the variant with one slotted-in plate all the above member thicknesses will be tested. After that, a comparison can be made with the design rules from EC5. To observe the behaviour of connections with multiple slotted plates the member thicknesses of the middle and outer members shall be varied for a variant with 2 slotted-in plates and the occuring failure modes will be obbserved. The thickness of the middle member is kept constant at two different values (one thickness that ensures mode 1 to occur and one thickness for failure mode 3).

To account for (natural occurring) variance in material properties each test will be performed five times.

Connections will be made using one and two slotted-in steel plates. Steel grade:

355 N/mm²	yield
510 N/mm²	ultimate

The test setup will be as follows:

The expected failure mechanisms for the 2 slotted variants are as follows:

The codename for a variant has the following explenation:

variant 'n' plates - thickness t_1 , middle member thicnkess. thickness t_4

The theoretical maximum resistance $\boldsymbol{F}_{\boldsymbol{v},\boldsymbol{R}\boldsymbol{k}}$ is given in the following tables:

According to EC5:

|--|

	Slotted plates	Shear planes	Dowel 1 diameter	M _y	f _h	t	а	b
			[mm]	[Nmm]	[N/mm²]	[mm]	[mm]	[mm]
v1-12.12	1	2	12	97850	46.3	12	27	19
v1-36.36	1	2	12	97850	46.3	36	27	19
v1-72.72	1	2	12	97850	46.3	72	27	19

2 slotted-in plates

	Slotted plates	Shear planes	t ₁	t ₂	t ₃	t ₄ Lo	ad from t_1	Load from t_2
			[mm]	[mm]	[mm]	[mm]	[kN]	[kN]
v2-12.24.12	2	4	12	12	12	12	6.7	6.7
v2-36.24.36	2	4	36	12	12	36	11.9	6.7
v2-72.24.72	2	4	72	12	12	72	14.7	6.7
v2-12.144.12	2	4	12	72	72	12	6.7	14.7
v2-36.144.36	2	4	36	72	72	36	11.9	14.7
v2-72.144.72	2	4	72	72	72	72	14.7	14.7

Theoretical resistance (embedment according to Ehlbeck and Werner):

<u>1 slotted-in plate</u>

	Slotted plates	Shear planes	Dowel 1 diameter	My	f_h	t	а	b
			[mm]	[Nmm]	[N/mm²]	[mm]	[mm]	[mm]
v1-12.12	1	2	12	102240	59.8	12	24	17
v1-36.36	1	2	12	102240	59.8	36	24	17
v1-72.72	1	2	12	102240	59.8	72	24	17

2 slotted-in plates

	Slotted plates	Shear planes	t ₁	t ₂	t ₃	t ₄	Load from t_1	Load from t_2
			[mm]	[mm]	[mm]	[mm]	[kN]	[kN]
v2-12.24.12	2	4	12	12	12	12	8.6	8.6
v2-36.24.36	2	4	36	12	12	36	14.5	8.6
v2-72.24.72	2	4	72	12	12	72	17.1	8.6
v2-12.144.12	2	4	12	72	72	12	8.6	17.1
v2-36.144.36	2	4	36	72	72	36	14.5	17.1
v2-72.144.72	2	4	72	72	72	72	17.1	17.1

With an additional 20%:

1 slotted-in plate

	Slotted plates	Shear planes	Dowel 1 diameter	M _y	f _h	t	а	b
			[mm]	[Nmm]	[N/mm²]	[mm]	[mm]	[mm]
v1-12.12	1	2	12	141005	59.8	12	28	20
v1-36.36	1	2	12	141005	59.8	36	28	20
v1-72.72	1	2	12	141005	59.8	72	28	20

2 slotted-in plates

	Slotted plates	Shear planes	t ₁	t ₂	t ₃	t ₄	Load from t_1	Load from t_2
			[mm]	[mm]	[mm]	[mm]	[kN]	[kN]
v2-12.24.12	2	4	12	12	12	12	8.6	8.6
v2-36.24.36	2	4	36	12	12	36	15.9	8.6
v2-72.24.72	2	4	72	12	12	72	20.1	8.6
v2-12.144.12	2	4	12	72	72	12	8.6	20.1
v2-36.144.36	2	4	36	72	72	36	15.9	20.1
v2-72.144.72	2	4	72	72	72	72	20.1	20.1

Connection thickness	Applied slotted plate	Slotted plate thickness	Dowel embedment	Dowel shear	F _{v,Rk} Mode 3	F _{v,Rk} Mode 2	F _{v,Rk} Mode 1
[mm]	[mm]	[mm]	[o.k./n.o.k.]	[o.k./n.o.k.]	[kN]	[kN]	[kN]
32.00	8.00	6.40	o.k.	o.k.	29.5	21.7	13.3
80.00	8.00	6.40	o.k.	o.k.	29.5	23.8	40.0
152.00	8.00	6.40	o.k.	o.k.	29.5	36.9	79.9
			n.o.k.	o.k.			

Load from tail load from ta		Expected load	per slotted	Connection	-	
Loud Holling	2000 110111 14	plate 1	plate 2	UTICKTIC55		
[kN]	[kN]	[kN]	[kN]	[mm]	_	
6.7	6.7	13.3	13.3	64	-	
6.7	11.9	18.6	18.6	112		
6.7	14.7	21.4	21.4	184	_	
14.7	6.7	21.4	21.4	184	-	
14.7	11.9	26.6	26.6	232	Length dowel 1:	6720.00
14.7	14.7	29.5	29.5	304	Two dowels per test piece:	13440.00

Connection thickness	Applied slotted plate	Slotted plate thickness	Dowel embedment	Dowel shear	F _{v,Rk} Mode 3	F _{v,Rk} Mode 2	F _{v,Rk} Mode 1
[mm]	[mm]	[mm]	[o.k./n.o.k.]	[o.k./n.o.k.]	[kN]	[kN]	[kN]
32.00	8.00	6.40	o.k.	o.k.	34.3	24.8	17.2
80.00	8.00	6.40	o.k.	o.k.	34.3	29.0	51.7
152.00	8.00	6.88	o.k.	o.k.	34.3	46.8	103.3
			n.o.k.	o.k.			

		Expected load per slotted Connection				
Load from t_3	Load from t_4		plate	thickness		
		plate 1	plate 2			
[kN]	[kN]	[kN]	[kN]	[mm]		
8.6	8.6	17.2	17.2	64		
8.6	14.5	23.1	23.1	112		
8.6	17.1	25.7	25.7	184		
17.1	8.6	25.7	25.7	184		
17.1	14.5	31.6	31.6	232	Length dowel 1:	6720.00 mm
17.1	17.1	34.3	34.3	304	Two dowels per test piece:	13440.00 mm

F _{v,Rk} Mode 1	F _{v,Rk} Mode 2	F _{v,Rk} Mode 3	Dowel shear	Dowel embedment	Slotted plate thickness	Applied slotted plate	Connection thickness
[kN]	[kN]	[kN]	[o.k./n.o.k.]	[o.k./n.o.k.]	[mm]	[mm]	
17.2	29.8	40.2	o.k.	o.k.	6.80	8.00	32.00
51.7	31.7	40.2	o.k.	o.k.	6.80	8.00	80.00
103.3	48.2	40.2	o.k.	o.k.	7.45	8.00	152.00
			o.k.	n.o.k.			

Load from t ₃	Load from t_4	Expected load	per slotted plate	Connection thickness		
		plate 1	plate 2			
[kN]	[kN]	[kN]	[kN]	[mm]		
8.6	8.6	17.2	17.2	64		
8.6	15.9	24.5	24.5	112		
8.6	20.1	28.7	28.7	184		
20.1	8.6	28.7	28.7	184		
20.1	15.9	36.0	36.0	232	Length dowel 1:	6720.00 mn
20.1	20.1	40.2	40.2	304	Two dowels per test piece:	13440.00 mn

The test pieces will be attached to the testing machine by means of a dowelled connection and steel plates which can be inserted in the grooves of the machine. With dowel 1 being the fastener in the bamboo connection and dowel 2 the fastener for the testing equipment

Dowel 2			
Diameter	Ø _{dowel,2}	16 mm	
Tensile strength	f _u	1000 N/mm²	
Yield stress	f _y	900 N/mm²	
Shear resistance	F _{v,Rd}	96.5 kN	(NEN-en 1993-1-1 table 3.10)
Embedment capacity	F _{b,Rd}	21.6 kN/mm	(NEN-en 1993-1-1 table 3.10)

The width of the steel plate is determined by MAX(test piece thickness; 2.5* $\phi_{dowel,2}$) This is then rounded up to the nearest standard strip width: 80 mm

The minimum required plate thickness is the maximum of the following: The values given are for failure mode 3

	$\left(\frac{F_{v,Rk}}{\#_{plates}*f_y*w_{plate}} (gross section)\right)$	1.57 mm
	$\frac{F_{v,Rk}}{\#_{plates}*f_{u}*(w_{plate}-\emptyset_{dowel,2})} \text{ (net section)}$	1.23 mm
$t_{plate,min} = \langle$	$0.7 * \sqrt{\frac{F_{\nu,Rk}*\gamma_{M0}}{\#_{plates}*f_y}}$	7.45 mm
	<u>ø_{dowel,1}+1</u> (NEN 1993 tabe 3.9) 2.5	5.20 mm
	$\frac{\phi_{dowel,2}+1}{25}$	6.80 mm
		7.45 mm

The actual size and capacity of the slotted-in plates:

Embedment capacity	1.5*f _y *t*d _{1/} γ _{M0}	51.12 kN	
Net section	t*(b-d ₂ -1)*f _y	176.08 kN	
Plate capacity		51.12 kN	

The dimensions of the mounting plate shall be:

Through communication with another ongoing research at TUDelft is it decided that the mounting plates will be made as thick as possible. This way the plates can also be used for other research and be kept as applications for the testing equipment. The maximum possible thickness of the plates that fits into the test pieces of this research is equal to the thickness of the smallest lamella (24 mm).

t_{mountingplates,applied}:

12.00 mm

With this applied thickness the actual capacity of the mounting plate will be a minimum of the following:

Embedment capacity	$1.5^{f_{y}}t^{d}/\gamma_{M0}$	102.24 kN
Plate shear failure	2*h ₃ *t*f _y /SQRT(3)	68.87 kN
Net section dowel	t*(b-d ₂ -2)*f _y	110.76 kN
Net section plate	b ₂ *t*f _y	76.68 kN
Plate capacity		68.87 kN

Since always two mounting plates will be used per slotted-in plate, the calculated capacity is now about equal to the capacity of the testing apparatus (250 kN). In case of two slotted-in plates per connection, of course.

The testing equipment to be made is as follows:

Bamboo:

Slotted-in plates:

The calculated plate capacity is more than needed. As a result the plates can be reused. By reusing the plates only one set of slottedin plates will suffice. This results in a total of 4 plates (4 plates per variant of 2 slotted plates). A detailed drawing of the plates is added to this document.

Mounting plates:

The calculated capacity of the mounting plates is more than needed for the connection tests. As a result, the same mounting plates can be used for all tests. A total of 8 mounting plates will thus suffice (2 mounting plates per slotted-in plate and a maximum of 2 slotted-in plates per test connection). A detailed drawing of the necessary mounting plates is added to this document.

Dowel 1:

#	Ø	fy	fu	L _{min}	L _{practical}
	[mm]	[N/mm²]	[N/mm²]	[mm]	[mm]
10	12	355	510	32	50
10	12	355	510	80	100
10	12	355	510	152	200
10	12	355	510	64	100
10	12	355	510	112	150
10	12	355	510	184	200
10	12	355	510	184	200
10	12	355	510	232	250
10	12	355	510	304	350
				Total length:	16000 mm

Dowel 2:

The calculated capacity of the dowel exceeds the estimated capacity of the connection. This dowel is to be reused for every test in the same manner as the mounting plates. Two dowels are needed to attach a test piece to the testing apparatus.

#	Ø	fy	fu	L_{shaft}
	[mm]	[N/mm²]	[N/mm²]	[mm]
2	16	900	1000	184

Oplage: 8 stuks Staalgraad: S355 Plaatdikte: 12mm

Maatvoering in mm, tenzij anders vermeld

Afstudeeropdracht bamboe Mounting plate tekening

Door:	Jules Debije	Schaal:	1:1
In opdracht:	TUDelft	Papier:	A4
Datum:	04-04-2016	Blad:	1 van 1

