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Layman’s Abstract

No flat map can perfectly represent the Earth. Some shapes, sizes, or distances always end up a stretched
or distorted. This study set out to improve how we measure these imperfections, using improved distortion
numbers and more data, over 10 million points, to get accurate results. It builds on earlier work but replaces
some of the old methods’ biases to create a fairer, more precise method of scoring maps.

With this new method, the Winkel Tripel projection was identified as the overall best-performing projec-
tion for general-purpose use.

The research also explored whether the robustness of coastlines (measured with so called, fractal dimen-
sion) could help measure distortion. It turns out that this isn’t a suitable method to compare maps globally,
but it did lead to a new insight. For maps that are intended to accurately image coastlines as accurately as
possible, like for navigation, the Azimuthal Equidistant projection was the best fit.

In short, this study gives map-makers better tools for picking the right kind of map, depending on what
property they want to preserve, whether that is on the whole globe or just the coastlines.
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Abstract

This research presents a comprehensive re-evaluation and improvement of map projection distortion analy-
sis, building upon the foundational framework of Goldberg and Gott. The fundamental challenge in cartog-
raphy lies in representing the Earth’s spherical surface on a flat plane, called map projection, a process that
inevitably introduces distortions in area, shape, or distance. This study aims to refine the quantification of
these distortions by employing an improved distance metric that accurately measures projected geodesics,
utilising high-precision numerical methods with over 10 million sample points to minimise error, and intro-
ducing an unbiased total distortion score that eliminates the arbitrary normalisation of previous methods.
The results identify the Winkel Tripel projection as the best-performing overall map based on the improved,
unbiased total distortion score.

Furthermore, this work critically investigates the viability of using the fractal dimension of coastlines as a
novel distortion metric, leading to a shift in analysis towards evaluating distortions specifically along coastal
geometries. However, theoretical computations using fractal dimension show that it is unsuitable as a global
distortion metric due to its invariance under the bi-Lipschitz transformations that define many map pro-
jections. By establishing a normalisation approach based on coastline arc length, this study provides a ro-
bust and resolution-independent framework for tailored cartographic evaluation. The findings underscore
the sensitivity of distortion scores to globe orientation and establish a foundational methodology for future
property-specific distortion analyses, ensuring a more reliable and application-focused approach to selecting
map projections than previously done. For the specific application of representing coastlines with minimal
distortion, the Azimuthal Equidistant projection is found to be the most fitting.
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1
Introduction

The fundamental challenge of cartography: how to represent the spherical surface of the Earth on a plane.
For millennia, map-makers, mathematicians, and navigators have grappled with this problem, as any at-
tempt to unwrap a sphere onto a flat surface inevitably introduces distortions. This inherent geometric lim-
itation, first rigorously proven by Carl Friedrich Gauss in his famous Theorema Egregium, establishes that
no map projection can perfectly preserve all metric properties of the globe—namely area, shape, and dis-
tance—simultaneously [2]. Consequently, every map is a compromise, a careful balance of trade-offs de-
signed to suit a specific purpose, whether for navigation, land administration, or thematic representation
[17].

Ancient cartographers like Claudius Ptolemy in the 2nd century AD developed some of the earliest sys-
tematic projections, see Figure 1.2, laying a foundation that would influence map-making for over a thou-
sand years. The Age of Discovery dramatically amplified the need for accurate navigational charts, leading to
the development of one of the most famous and influential projections in history: the Mercator projection of
1569, Figure 1.1a. By preserving angles locally, Mercator’s map allowed sailors to plot courses as straight lines,
a revolutionary tool for maritime navigation. However, this convenience came at the cost of extreme area dis-
tortion, famously exaggerating the size of landmasses near the poles, such as Greenland, see Figure 1.3. This
trade-off exemplifies the core dilemma of map projections: optimising one property often requires sacrific-
ing another. Over the centuries, hundreds of other projections have been developed, from the equal-area
projections of Lambert and Gall-Peters to compromise projections like the Winkel Tripel (Figure 1.1b), which
attempts to minimise all types of distortion rather than eliminating one completely.

(a) Image by Strebe, licensed under CC BY-SA 4.0 via Wikimedia Commons. (b) Image by Strebe, released into the public domain (CC0) via Wikimedia
Commons.

Figure 1.1: (a) Mercator Projection, (b) Winkel Tripel Projection

1.1. Quantifying Distortion: The Goldberg-Gott Framework
While the existence of distortion is a long-established fact, creating a systematic and objective method to
quantify and compare it across different projections is a more recent endeavour. A significant modern ad-
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1.1. Quantifying Distortion: The Goldberg-Gott Framework 2

Figure 1.2: Ptomely’s map. Image by Francesco di Antonio del Chierico, licensed under CC BY-SA 3.0 via Wikimedia Commons.

vancement in this field came from David Goldberg and J. Richard Gott, who proposed a comprehensive
framework for scoring map projections based on six distinct types of distortion [3]. Their work provided a
robust methodology for moving beyond qualitative assessments to a rigorous, quantitative comparison of
map quality. The six distortions they classified are:

1. Area measures how the projection stretches or shrinks the size of regions compared to their actual size
on the globe. Equal-area projections eliminate this distortion entirely.

2. Isotropy (Angle/Shape) quantifies the distortion of shapes and angles. Conformal (or orthomorphic)
projections, like the Mercator, preserve angles locally, resulting in no isotropy distortion.

3. Flexion measures the curvature or bending of what are originally defined as straight lines. On the globe,
the shortest path between two points is called a geodesic, but this path often appears curved when
projected onto a map.

4. Skewness relates to the change in scale along a geodesic. Even if a geodesic is projected as a straight
line, the scale might not be constant along its length.

5. Distance captures errors in the measurement of distances between points. While some projections
(Azimuthal Equidistant) can preserve true distances from a central point, no projection can preserve
all distances correctly.

6. Boundary Cut accounts for the interruptions or cuts necessary to project the globe onto the desired
map. These cuts create artificial boundaries, such as the eastern and western edges of a standard world
map, separating points that are neighbours on the globe.

By measuring these six numbers across the entire surface of a map, Goldberg and Gott were able to assign a
single total distortion score to any projection, providing a powerful tool for ranking and identifying the best
possible map of the Earth.[4]

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/w/index.php?curid=193697
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Figure 1.3: Area Distortion on the Mercator Projection

1.2. Goals and Contributions of This Study
This research builds directly upon the foundational work of Goldberg and Gott, aiming to refine their method-
ology, enhance the precision of their measurements, and extend the analysis to new domains. The primary
goal of this study is to conduct a more accurate and unbiased evaluation of map projections, leveraging com-
putational power and improved distortion metrics. The key contributions of this report are fourfold.

First, we employ an improved distance measure. The original definition of distance distortion can be
ambiguous, particularly for points near a boundary cut. Our methodology utilises an improved calculation
that correctly measures the path of the projected geodesic, providing a more faithful assessment of distance
errors.

Second, we achieve a higher level of computational precision. By optimising the underlying code and
sampling a vastly larger number of data points across the globe (over 10 million), we reduce numerical errors
significantly, calculating distortion values with an accuracy of up to three decimal places—and even five for
area and isotropy—far exceeding previous studies.

Third, we propose and implement a more objective total distortion score. The original Goldberg-Gott
score was normalised to the distortions of the Equirectangular projection, an arbitrary choice that can bias
the final rankings. Our approach removes this dependency, resulting in a more stable and unbiased evalua-
tion framework.

Finally, we explore and critique the potential of a new distortion metric based on the fractal dimension
of coastlines, a concept recently proposed in the literature [10]. While our theoretical analysis demonstrates
that fractal dimension is invariant under most projections and thus unsuitable as a global distortion met-
ric, this investigation leads to a crucial shift in focus: from analysing distortion across the entire globe to
analysing it specifically along coastlines. Since coastlines are often the primary or sole feature of interest
in many maps, evaluating distortions along these complex geometries offers a more practical and relevant
measure of a map’s utility for specific applications.

1.3. Overview of Chapters
This report is structured to guide the reader from the theoretical foundations of map projections to the pre-
sentation and discussion of our novel findings.

• Chapter 2 provides a detailed mathematical definition of the six fundamental distortion measures, de-
riving the formulas used for their calculation and explaining the construction of a total distortion score.

• Chapter 3 presents the results of our high-precision distortion analysis for a wide range of common
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map projections. It compares the rankings generated by our unbiased scoring system with those from
methods dependent on normalisation.

• Chapter 4 introduces the concept of fractal geometry and investigates whether the fractal dimension of
coastlines can serve as a seventh distortion metric. After demonstrating its theoretical limitations, the
chapter pivots to justifying the analysis of the original distortion metrics specifically along coastlines.

• Chapter 5 details the results of our coastline-specific distortion analysis, presenting findings at low,
intermediate, and high resolutions to examine the impact of data granularity.

• Chapter 6 discusses the broader implications of our findings, addressing limitations such as sensitivity
to globe orientation and the Richardson effect, and identifies key opportunities for future research.

• Chapter 7 concludes the report, summarising our primary contributions and identifying the best-
performing projections for both general-purpose use and the specific task of coastline representation
based on our enhanced methodology.

• Chapter 8 serves as an appendix, containing supplementary figures, plots, and references to the com-
putational code used in this study.

Through this comprehensive analysis, this study seeks to advance the science of cartographic evaluation,
offering a more precise, reliable, and application-focused framework for choosing the best map projection
for the task at hand.



2
Distortions in Map Projections

This chapter defines six distinct distortion measures. From the introduction it has become clear what defines
a map projection, but a mathematical definition is essential before we can proceed to the distortions.

Definition 2.1 (Map Projection). A map projection is a function that transforms points from a sphere (S2)
onto a plane (R2). Formally, it is a map

T :S2 →R2,

where S2 ⊂R3 is the 2-dimensional sphere embedded in 3-dimensional Euclidean space.
To practically define such a transformation, we first describe points on the sphere using spherical coordi-

nates:

• Latitude φ, where φ ∈ [−π
2 , π2

]
.

• Longitude λ, where λ ∈ [−π,π).

These spherical coordinates are related to the 3-dimensional Cartesian coordinates (X ,Y , Z ) of a point on a
sphere of radius R by the following equations:

r⃗ (λ,φ,R) =


X = R cos(φ)cos(λ)

Y = R cos(φ)sin(λ)

Z = R sin(φ)

(2.1)

where we take R = 1, because we will work on the unit sphere. A map projection can then be expressed as a
function that maps the spherical coordinates directly to 2-dimensional planar coordinates (x, y):

(x, y) = T (λ,φ)

For example, the Equirectangular projection is one of the simplest projections, defined by the linear mapping:

T (λ,φ) = (
x(λ,φ), y(λ,φ)

)= (λ,φ)

This projection directly uses the longitude as the x-coordinate and the latitude as the y-coordinate.

2.1. Area and Isotropy
Area distortion measures how the size of a region on the map differs from its actual size on the globe. Isotropy
distortion, on the other hand, captures deviations in angles or shapes. As Gauss proved, no map projection
can preserve both area and angle simultaneously [2]. However, it is possible to construct projections that
preserve one of these properties individually. Such projections are known as equal-area (area-preserving)
and conformal (angle- or shape-preserving) projections. These properties become more intuitive when visu-
alised.

5
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2.1.1. Visualising Area and Isotropy
In order to visualise the effect of different map projections onto a plane, the reference point is to project equal
sized infinitesimal disks on the globe and mapping them with a function T :S2 →R2 onto the plane. The area
and angle of the projected circles, reveal which parts of the map are distorted the most or least. In Figure 2.1
the equal sized disks on the globe can be seen and in Figure 2.2 we see them after being mapped onto the
plane. For example, in Figure 2.2a, each circle remains perfectly round, showing the absence of isotropy

Figure 2.1: A collection of evenly sized disks on the globe. Image by Stefan Kühn, licensed under CC BY-SA 3.0 via Wikimedia Commons.

distortion. However, the disks differ in area, which indicates some distortion in the Mercator projection. A
mathematically more interesting map is the Bonne projection, as seen in Figure 2.2b, which is neither con-
formal nor equal-area, but it tries to find some kind of balance.

(a) Image by Justin Kunimune, licensed under CC BY-SA 4.0 via Wiki-
media Commons.

(b) Image by Justin Kunimune, released into the public domain (CC0)
via Wikimedia Commons.

Figure 2.2: Visual comparison of distortion between the Mercator projection (a) and the Bonne projection (b).

2.1.2. Quantifying Area and Isotropy
A visual analysis can help identify which parts of the map cause the most distortion, but capturing the exact
deviations requires a calculation of the distortion values. Consider a map projection T : (λ,φ) → (x(λ,φ), y(λ,φ))

https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/w/index.php?curid=24620
https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/w/index.php?curid=66467567
https://commons.wikimedia.org/w/index.php?curid=66467567
https://commons.wikimedia.org/w/index.php?curid=83402134
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with corresponding transformation matrix for infinitesimal displacement (dλ,dφ)

TM =


∂x

∂λ

1

cos(φ)

∂x

∂φ
∂y

∂λ

1

cos(φ)

∂y

∂φ

 . (2.2)

The singular values a,b > 0 of TM measure locally the area

A = ln(a ·b) (2.3)

and isotropy

I = ln

(
a

b

)
. (2.4)

We briefly derive the corresponding transformation matrix below. Let dr⃗ denote the infinitesimal dis-
placement vector in Cartesian coordinates, with r⃗ from Equation 2.1,R = 1. Then,

dr⃗ = ∂⃗r

∂λ
dλ+ ∂⃗r

∂φ
dφ (2.5)

The arc length element in spherical coordinates is equal to

d s2 = ∥dr⃗∥2 = cos2φdλ2 +dφ2, (2.6)

so the infinitesimal displacement vector on the globe is

ds =
[

cosφdλ
dφ

]
. (2.7)

Let T (λ,φ) = (x(λ,φ), y(λ,φ)) denote the map projection. The Jacobian matrix of the projection is

J =


∂x

∂λ

∂x

∂φ
∂y

∂λ

∂y

∂φ

 . (2.8)

The distances on the sphere and the distances on the plane are related by the Jacobian matrix, or[
d x
d y

]
= J

[
dλ
dφ

]
. (2.9)

To convert from spherical to Cartesian coordinates, we define the displacement vector

[
d sλ
d sφ

]
=

[
cosφ ·dλ

dφ

]
⇒

[
dλ
dφ

]
=

 1

cosφ
0

0 1

[
d sλ
d sφ

]
. (2.10)

Tissot’s Indicatrix relates how distances on the sphere change when mapped to a planer surface. So we want
to find a transformation matrix that satisfies [

d x
d y

]
= TM

[
d sλ
d sφ

]
. (2.11)

By 2.9 and 2.10:

TM =


∂x

∂λ

∂x

∂φ
∂y

∂λ

∂y

∂φ


 1

cosφ
0

0 1

 . (2.12)

Thus, the full transformation matrix is as given in Equation 2.2.



2.1. Area and Isotropy 8

Figure 2.3: Tissot’s indicatrices of an infinitesimal ellipse. A disk seen in Figure 2.2 corresponds with this ellipse.

While the use of singular value decomposition to determine a and b is a more recent method [8, 9], the
original concept dates back to Tissot [18]. For this reason, a and b are commonly referred to as Tissot’s in-
dicatrices. These values correspond to the semi-axes of an infinitesimal ellipse. More precisely, a represents
the semi-major axis and b the semi-minor axis, as illustrated in Figure 2.3. This ellipse corresponds to the
ellipses from Figure 2.2.

Returning to the calculation, instead of following the whole process of singular value decomposition,
we can use some handful expressions that simplify the calculation of the singular values [13]. From linear
algebra, we have

a ·b =
√

det(T ⊤
M TM ) =

√
det(TM )det(TM ) = |det(TM )|, (2.13)

a2 +b2 = Trace(T ⊤
M TM ), (2.14)

Now, we can express a and b in terms of the trace and determinant. The first step is to substitute

b = |det(TM )|
a

into 2.14. An equation in terms of a follows, which we have to simplify

a2 +
( |det(TM )|

a

)2

= Trace(T ⊤
M TM ) ⇐⇒

a4 + (|det(TM )|)2 −a2 ·Trace(T ⊤
M TM )

a2 = 0 =⇒
a4 + (|det(TM )|)2 −a2 ·Trace(T ⊤

M TM ) = 0.

Let t = a2,

t 2 + (|det(TM )|)2 − t ·Trace(T ⊤
M TM ) = 0. =⇒

t =
Trace(T ⊤

M TM )±
√

Trace(T ⊤
M TM )2 −|2 ·det(TM )|2

2
=⇒

a2 =
Trace(T ⊤

M TM )±
√

Trace(T ⊤
M TM )2 −|2 ·det(TM )|2

2
=⇒

a =±

√√√√Trace(T ⊤
M TM )±

√
Trace(T ⊤

M TM )2 −|2 ·det(TM )|2
2

.
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Since a > 0, we will have

a =

√√√√Trace(T ⊤
M TM )+

√
Trace(T ⊤

M TM )2 −|2 ·det(TM )|2
2

=⇒

a =

√
Trace(T ⊤

M TM )+
√

Trace(T ⊤
M TM )2 −|2 ·det(TM )|2

p
2

=⇒

a =
1p
2

p
c2 +2cd +d 2

p
2

,

where

c =
√

Trace(T ⊤
M TM )+2 · |det(TM )|,

d =
√

Trace(T ⊤
M TM )−2 · |det(TM )|.

Now

a =
p

c2 +2cd +d 2

p
2
p

2
=⇒

a =
√

(c +d)2

2
=⇒

a = c +d

2
.

When applying the same method for b, the following final expressions are found

a =
√

Trace(T ⊤
M TM )+2|det(TM )|+

√
Trace(T ⊤

M TM )−2|det(TM )|
2

, (2.15)

b =
√

Trace(T ⊤
M TM )+2|det(TM )|−

√
Trace(T ⊤

M TM )−2|det(TM )|
2

. (2.16)

2.1.3. Worked Example: Mercator Projection
Let us demonstrate this method using the Mercator projection from Figure 2.2a. The transformation formula
T :S2 →R2 is given by:

T (λ,φ) = (λ, ln(tan
π

4
+ φ

2
)). (2.17)

Then, the matrix TM becomes:

TM =


1

cosφ
0

0
1

cosφ

 .

Since a and b are determined locally, we now choose a point on the globe to evaluate, say (0, π3 ). We find a = 2
and b = 2, which gives A = ln(4) ≈ 1.39 and I = ln(1) = 0. In, for example, point (0,0), we find both A and I to
be 0. Sampling across the whole globe will give an image like Figure 2.4 for the area distortion. The isotropy
heat map is not given, because I = 0 on the whole domain. We can do the same evaluation for the Bonne
Projection, see Figure 2.5. For more analysed map projections, see Appendix A
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Figure 2.4: Heat map of area distortion on the Mercator projection. Red indicates high distortion in the respective region. Therefore, the
most area distortion is obtained near the poles. Isotropy was left out for the Mercator projection, because it is equal to 0 across the whole
map. Figures made with Appendix E code heatmapping.py.

(a) (b)

Figure 2.5: Heat maps of area (a) and isotropy (b) distortion on the Bonne projection. The Bonne projection shows most distortion near
the boundary of its heart-shaped projected image.

2.2. Flexion and Skewness
Unlike area and isotropy, the flexion and skewness relates to the curvature of the Earth, and the embedding
of the latter onto different map projections. A common notion from differential geometry is the concept of
geodesic. In the context of the unit sphere embedded in R3 (or spheroid), the definition is given as follows.

Definition 2.2 (Geodesic). A geodesic is defined as the path of shortest distance between any two points on
the surface of a spheroid [6]. In general, the geodesics on the sphere are great circles: intersections of the
sphere with the planes through the origin. A geodesic from point pi to point p j , γ(i , j ), can be parametrised
by:

γ(i , j )(s) = pi cos s +bj sin s (2.18)

where

• pi: the starting point in Cartesian coordinates;

• bj =
pj − (pi ·pj)pi∥∥pj − (pi ·pj)pi

∥∥ : the unit vector orthogonal to pi pointing in the direction of pj;

• s ∈ [0,θ], with θ = arccos(pi ·pj): the spherical distance (central angle) between the two points pi and
pj. The parameter s represents the arc length along the geodesic from pi to pj.
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Figure 2.6: : A visual representation of a geodesic on a sphere, with the red line representing the geodesic from point A to point B [14].

The flexion (F) distortion measures the change in direction of a geodesic mapped from the globe onto the
plane and the skewness (S) measures the change of velocity across this geodesic. The best way to visualise
this, is to imagine yourself walking on the globe in a perfect straight line with constant speed. Now, if you
would walk the same path on the map and it would still be a straight line, then the flexion in that direction is
equal to zero. If you would walk the path with the same speed, then there is no skewness distortion.

What may have become clear from this visualisation is that both the velocity and the acceleration vectors
are required to compute the flexion and skewness. Goldberg and Gott were the first to derive expressions for
these quantities. However, this research employs novel and simplified methods [7, 13]. We begin by introduc-
ing the mathematical definitions of flexion and skewness, followed by an explanation of how each component
is determined. Flexion is defined as

F = 1

2π

∫ 2π

0

∥a⃗⊥∥
∥v⃗∥ dα (2.19)

and skewness as

S = 1

2π

∫ 2π

0

∥a⃗∥∥
∥v⃗∥ dα, (2.20)

The terms are defined as follows:

• v⃗ : the velocity vector tangent to the geodesic;

• a⃗∥ =
a⃗ · v⃗

v⃗ · v⃗
;

• a⃗⊥ = a⃗ − a⃗∥;

• α: the angle representing the direction of the geodesic.

Notice how the direction of acceleration reflects the difference between flexion and skewness. This direc-
tion is determined by the geodesic, but we want to calculate the distortions locally. Therefore, we integrate
over an angle α in the equation, representing the direction of the geodesic. Now, a⃗⊥ is the acceleration or-
thogonal to v⃗ and a⃗∥ the acceleration parallel to v⃗ . Flexion and skewness can also be expressed directly in
terms of the velocity v⃗ , its perpendicular direction v⃗⊥, and the acceleration a⃗, as follows

F = 1

2π

∫ 2π

0

|a⃗ · v⃗⊥|
∥v⃗∥2 dα, (2.21)

S = 1

2π

∫ 2π

0

|a⃗ · v⃗ |
∥v⃗∥2 dα. (2.22)
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Finally, we express the velocity v⃗ and acceleration a⃗ vectors as

v⃗ =
[

ẋ
ẏ

]
= Ju, (2.23)

a⃗ =
[

ẍ
ÿ

]
= J w +

[
u⊤Hx u
u⊤Hy u

]
, (2.24)

where

u =
cosα

cosφ
sinα

 , J =


∂x

∂λ

∂x

∂φ
∂y

∂λ

∂y

∂φ

 , Hx =


∂2x

∂λ2

∂2x

∂λ∂φ
∂2x

∂φ∂λ

∂2x

∂φ2

 , Hy =


∂2 y

∂λ2

∂2 y

∂λ∂φ
∂2 y

∂φ∂λ

∂2 y

∂φ2

 , w =
 tanφsin2α

cosφ
− tanφcos2α

 .

Here, J is the Jacobian matrix of the map projection, and Hx and Hy are the Hessian matrices of x and y ,
respectively. The vectors u and w represent the direction and directional change of geodesic motion in geo-
graphic coordinates. Their forms are adopted from earlier derivations in [7, 13].

2.2.1. Worked Example: Mercator Projection
For consistency, we will work with the Mercator projection again. We start by computing the Jacobian and
Hessian matrices.

J =
1 0

0
1

cosφ

 , Hx =
[

0 0
0 0

]
, Hy =

0 0

0
tanφ

cosφ


This allows for v⃗ , v⃗⊥ and a⃗.

v⃗ = Ju =


cosα

cosφ
sinα

cosφ

 , v⃗⊥ =


sinα

cosφ

−cosα

cosφ

 ,

a⃗ = J w +
[

u⊤Hx u
u⊤Hy u

]
=


tanφsin2α

cosφ

− tanφcos2α

cosφ

+
 0

tanφsin2α

cosφ

=


tanφsin2α

cosφ

− tanφcos2α

cosφ

 .

Having all the terms, we can substitute them into the definitions of flexion and skewness, resulting in:

F = 1

2π

2π∫
0

|a⃗ · v⃗⊥|
∥v⃗∥2 dα

= 1

2π

2π∫
0

|cosα tanφ|/cos2φ

1/cos2φ
dα

= 1

2π

2π∫
0

|cosα tanφ|dα

= 1

2π
· | tanφ|

2π∫
0

|cosα|dα

= 1

2π
·4 · | tanφ|

= 2

π
· | tanφ|.
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and

S = 1

2π

2π∫
0

|a⃗ · v⃗ |
∥v⃗∥2 dα

= 1

2π

2π∫
0

|sinα tanφ|/cos2φ

1/cos2φ
dα

= 1

2π

2π∫
0

|sinα tanφ|dα

= 1

2π
· | tanφ|

2π∫
0

|sinα|dα

= 1

2π
·4 · | tanφ|

= 2

π
· | tanφ|.

Observe how in the case of the Mercator projection, flexion and skewness are both equal and independent
of the longitude (λ). By generating the same heat maps as in Section 2.1.3, the overall distortion patterns
across the map become apparent, see Figure 2.7. For more analysed map projections, see Appendix A A visual

(a) (b)

Figure 2.7: Heat maps of flexion (a) and skewness (b) distortion on the Mercator projection. Figures were made with Appendix E code
heatmapping.py.

comparison was also conducted for the Bonne projection, as shown in Figure 2.8. The heatmaps are very
similar to the heatmaps of area and isotropy. That is, the distortion of the Mercator projection is symmetric
with respect to the x-axis and both maps indicate the most distortion near the poles.
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(a) (b)

Figure 2.8: Heat maps of flexion (a) and skewness (b) distortion on the Bonne projection.

2.3. Distance
A natural consequence of defining geodesics is using their original lengths on the sphere, and their length
after projection, as a measure of distortion. To compute this distance distortion number, we define the great
circle distance first as follows.

Definition 2.3 (great circle distance). The great circle distance d is the length of the geodesic connecting two
points (1 and 2) on the surface of a sphere. By the spherical coordinates:

Point 1: p1 = (cosφ1 cosλ1,cosφ1 sinλ1, sinφ1),

Point 2: p2 = (cosφ2 cosλ2,cosφ2 sinλ2, sinφ2)

The distance along the surface of the sphere between p1 and p2 is given by the central angle ∆θ between
them. This angle can be computed using the inner product of the corresponding unit vectors on the sphere:

cos(∆θ) =p1 ·p2 (2.25)

cos(∆θ) =cosφ1 cosλ1 cosφ2 cosλ2 +
cosφ1 sinλ1 cosφ2 sinλ2 +
sinφ1 sinφ2

cos∆θ =sinφ1 sinφ2 +cosφ1 cosφ2(cosλ1 cosλ2 + sinλ1 sinλ2)

∆θ =arccos(sinφ1 sinφ2 +cosφ1 cosφ2 cos∆λ). (2.26)

For general spheres of radius R, d = R∆θ, but since we consider the unit sphere, R = 1, so the great circle
distance (d) is d =∆θ.

Originally Goldberg and Gott defined the distance function as

ln

(
di j ,map

di j ,globe

)
.

Here, di j ,map is the distance between points i and j projected onto the plane and di j ,globe is the great circle
distance between points i and j . However, this definition does not take into account two crucial features: (i)
the Earth is a sphere, so we can travel two ways (in the direction of the shortest path or the π radians in the
other direction) and (ii) the geodesic between any two points on the surface of the globe is not necessarily a
straight line on the map. For an illustration of these problems, see Figures 2.9 and 2.10. For more analysed
map projections, see Appendix B
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Figure 2.9: The Equirectangular projection with the distance measure defined by Goldberg and Gott (red) and what it should be (blue).
Figure made with Appendix E code distortions.py.

To cover these two problems, we need to project the shortest path between the two points on the globe
(the geodesic) onto the plane and measure the length of this mapped path. Basically, we need to measure the
blue line instead of the red line from Figures 2.9 and 2.10. Mathematically this can be expressed as

D = ln

(
ℓ(T (γi , j ))

ℓ(γi , j )

)
, (2.27)

where:

• γ(i , j ): the geodesic between two points i and j on the unit sphere;

• T (γ(i , j )): the projected image of the geodesic on the plane under the map projection T ;

• ℓ(·): arc length (i.e., the length of a curve).

It remains to be proven whether the improved distance measure is invariant under uniform scaling of the
map. This property is desirable, as a lack of scale invariance would unjustly favour smaller maps over larger
ones in distortion assessments.

Proof. We start by scaling both the map projection transformation functions by a constant factor k > 0.{
x(λ,φ) → x̂(λ,φ) = k · x(λ,φ)

y(λ,φ) → ŷ(λ,φ) = k · y(λ,φ)

Take a geodesic γ(i , j ) on the unit sphere from point (λi ,φi ) to point (λ j ,φ j ) By the definition of great-circle
distance (Definition 2.3), the length of the scaled geodesic is

ℓ(γ(i , j )) =∆θ = arccos(sinφi sinφ j +cosφi cosφ j cos∆λ).

The length of the projected image of the geodesic on the plane under the map projection T (λ,φ) = (x(λ,φ), y(λ,φ))
can be computed using the arc length formula. Let γ(i , j )(s) = (λ(s),φ(s)) parametrise the geodesic by arc
length s on the sphere. Then the length of the projected geodesic is

ℓ(T (γ(i , j ))) =
∫ s2

s1

√(
d

d s
x(λ(s),φ(s))

)2

+
(

d

d s
y(λ(s),φ(s))

)2

d s.
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(a) (b)

(c) (d)

Figure 2.10: Different projections: Mercator (a), Bonne (b), Wiechel (c) and Azimuthal Euidistant (North Polar Aspect) (d), projecting the
distance measure defined by Goldberg and Gott (red) and what it should be (blue). Five random paired points were sampled and their
respective distances were plotted by Appendix E code distortions.py.
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Subsequently, we take T̂ (λ,φ) = (x̂(λ,φ), ŷ(λ,φ)) to project the geodesic and compute its length:

ℓ(T̂ (γ(i , j ))) =
∫ s2

s1

√(
d

d s
x̂(λ(s),φ(s))

)2

+
(

d

d s
ŷ(λ(s),φ(s))

)2

d s

=
∫ s2

s1

√(
d

d s
k · x(λ(s),φ(s))

)2

+
(

d

d s
k · y(λ(s),φ(s))

)2

d s

=
∫ s2

s1

√
k2 ·

(
d

d s
x(λ(s),φ(s))

)2

+k2 ·
(

d

d s
y(λ(s),φ(s))

)2

d s

=
∫ s2

s1

√
k2 ·

[(
d

d s
x(λ(s),φ(s))

)2

+
(

d

d s
y(λ(s),φ(s))

)2]
d s

= k ·
∫ s2

s1

√(
d

d s
x(λ(s),φ(s))

)2

+
(

d

d s
y(λ(s),φ(s))

)2

d s

= k ·ℓ(T (γ(i , j ))).

Finally, we use the definition of the improved distance measure (Equation 2.27) to determine whether it
is invariant under uniform scaling.

D̂ = ln

(
ℓ(T̂ (γ(i , j )))

ℓ(γ(i , j ))

)
= ln

(
k ·ℓ(T (γ(i , j )))

ℓ(γ(i , j ))

)
= lnk + ln

(
ℓ(T (γ(i , j )))

ℓ(γ(i , j ))

)
= lnk +D.

Hence, the measure is dependent on scaling, which is not desired, as it would unfairly penalise larger maps.
A solution to this issue will be presented in Section 2.5.

2.3.1. Worked Example: Distortion in the Equirectangular Projection
Let us show how this distance measure works in practice, but this time on the Equirectangular projection
projection (the map from Figure 2.9). The transformation formula T :S2 →R2 is given by

T (λ,φ) = (x(λ,φ), y(λ,φ)) = (λ,φ). (2.28)

We first calculate the length of the projected geodesic (ℓ(T (γi , j ))). For that, a parametrisation γ(i , j )(s) =
(λ(s),φ(s)) will be derived. Recall Definition 2.2, the parametrisation of a geodesic on the unit sphere from
point pi to point pj in Cartesian coordinates is given by

γ(i , j )(s) = pi cos s +b j sin s. (2.29)

With

pi = (X ,Y , Z ) = (cos(φi )cos(λi ),cos(φi )sin(λi ),sin(φi )) and pj = (cos(φ j )cos(λ j ),cos(φ j )sin(λ j ),sin(φ j )).

Now, we choose two points to evaluate, for example: the north pole ((λi ,φi ) = (0, π2 ))

pi = (0,0,1)

and the point at π
4 latitude on the prime meridian ((λ j ,φ j ) = (0, π4 ))

pj =
(p

2

2
,0,

p
2

2

)
.

The angle between them is

θ = arccos(pi ·pj) = arccos

(p
2

2

)
= π

4
.

The vector b j is

b j =
pj − (pi ·pj)pi

∥pj − (pi ·pj)pi∥
=

(p
2

2 ,0,
p

2
2

)
−

p
2

2 (0,0,1)∥∥∥(p
2

2 ,0,0
)∥∥∥ = (1,0,0).
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Therefore, the parametrisation is

γ(i , j )(s) = pi cos s +b j sin s = (0,0,1)cos s + (1,0,0)sin s = (sin s,0,cos s),

with
s ∈ [0,π/4].

Because our definition of ℓ(T (γ(i , j ))) requires the parametrisation to be in spherical coordinates, we need
to convert γ(s) back to spherical coordinates. From γ(s), we identify

X (s) = sin s, Y (s) = 0, Z (s) = cos s.

Thus,
φ(s) = arcsin(z(s)) = arcsin(cos s),

and since y(s) = 0 and x(s) > 0 for s ∈ (0,π/4],
λ(s) = 0.

Hence the spherical coordinate parametrisation is

γ(i , j )(s) = (λ(s),φ(s)) = (0,arcsin(cos s)), s ∈ [0,π/4].

Now, we can compute its length when mapped by the Equirectangular projection:

ℓ(T (γ(i , j ))) =
∫ s2

s1

√(
d

d s
x(λ(s),φ(s))

)2

+
(

d

d s
y(λ(s),φ(s))

)2

d s

=
∫ π

4

0

√(
d

d s
λ(s)

)2

+
(

d

d s
φ(s)

)2

d s

=
∫ π

4

0

√(
d

d s
arcsin(cos s))

)2

d s

=
∫ π

4

0

∣∣∣∣ d

d s
arcsin(cos s))

∣∣∣∣d s

=
∣∣∣∣∣
∫ π

4

0

d

d s
arcsin(cos s))d s

∣∣∣∣∣
=

∣∣∣[arcsin(cos s))]
π
4
0

∣∣∣
= π

4
.

Next, we compute the great circle distance from pi to p j :

ℓ(γ(i , j )) = arccos(sinφi sinφ j +cosφi cosφ j cos∆λ) = π

4
.

Finally,

D = ln

(
ℓ(T (γ(i , j )))

ℓ(γ(i , j ))

)
= ln

( π
4
π
4

)
= 0.

The distortion in this example is zero, because we took two points along the prime meridian. For almost any
other pair of points, the distortion is not zero.

2.4. Boundary Cut
The boundary cut distortion measures the part of the boundary that needed to be cut in order to create the
map and is given by:

B = Length of the cut on the map

4π
. (2.30)

The length of the cut on the map for most mappings are straightforward, because they belong to one of the
following categories.
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Figure 2.11: Nicolosi Globular Projection. An example of a projection split into two hemispheres. The boundary cut of such a projection
equals B = 0.5. Image by Strebe, licensed under CC BY-SA 4.0 via Wikimedia Commons.

1. Non-interrupted projections, like the Azimuthal Equidistant from Figure 2.10d. Their boundary cut is
as the name suggests B = 0.

2. Projections with a cut of length π on the globe, like the Mercator projection from Figure 2.2a or the
Equirectangular projection from Figure 2.9. These are the most common map projections and have
boundary cut B = 1

4 .

3. Projections with a cut of length 2π on the globe. These are the map projections that are split into two
hemispheres, like the Nicolosi globular projection from Figure 2.11 and the boundary cut is B = 1/2.

However, there are a few maps, like the Boggs eumorphic, Fuller, Dymaxion, Waterman butterfly and HEALPix
projection, that have multiple boundary cuts and are harder to determine.

2.5. From Local to Global Distortion
So far, distortions have only been defined locally. To compute a global distortion measure, one typically av-
erages or takes the root mean square (RMS) of multiple local measurements. For the most precise global
evaluation, this requires integrating the distortion function over the entire globe. However, due to the com-
plexity of most map projection formulas, such integrals are generally evaluated numerically. Goldberg and
Gott approached this by sampling random coordinates and computing either the mean or RMS of the dis-
tortion values, depending on the metric. This method is, in principle, equivalent to performing a numerical
integration. The RMS is defined as follows.

Definition 2.4 (Root Mean Square (RMS)). The Root Mean Square is a measure of the magnitude of a varying
quantity, defined as follows in different contexts:

• Finite set of values: For a discrete set of n values x1, x2, . . . , xn , the RMS is

RMS(x1, x2, . . . , xn) =
√

1

n

n∑
i=1

x2
i =

√
〈x2〉. (2.31)

with 〈x2〉 depicting the mathematical mean of x2.

• Continuous function over an interval: For a continuous function f (x) on the interval [a,b], the RMS
is

RMS[ f ] =
√

1

b −a

∫ b

a
f (x)2 d x. (2.32)

• Function over the globe: For a distortion measure G(λ,φ) (except for distance and boundary cut) de-
fined over longitude λ ∈ [−π,π) and latitude φ ∈ [−π

2 , π2
]
, the RMS over the sphere is

RMS[G] =
√√√√ 1

4π

∫ π

−π

∫ π
2

− π
2

G(λ,φ)2 cosφdφdλ. (2.33)

Here, the factor cos(φ) is the Jacobian determinant and accounts for the varying surface area at different
latitudes in spherical coordinates.

https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/w/index.php?curid=72772906
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In summary, the global distortion metrics become:

AG = RMS(Ai −〈Ai 〉) = RMS(ln(ai bi )−〈ln(ai bi )〉), (2.34)

IG = RMS(Ii ) = RMS

(
ln

(
ai

bi

))
, (2.35)

FG = 〈|Fi |〉 =
〈∫ 2π

0

∥a⃗i⊥|
∥v⃗i∥

dα

〉
, (2.36)

SG = 〈|Si |〉 =
〈∫ 2π

0

|a⃗i∥ · v̂i |
∥v⃗i∥

dα

〉
, (2.37)

DG = RMS
(
Di , j −〈Di , j 〉

)= RMS

(
ln

(
ℓ(T (γi , j ))

ℓ(γi , j )

)
−

〈
ln

(
ℓ(T (γi , j ))

ℓ(γi , j )

)〉)
, (2.38)

B = LB

4π
. (2.39)

Here 〈·〉 denotes the mathematical mean. In these definitions, i denotes the position where each distortion is
locally computed. In addition, the distance metric contains an index (i , j ), which indicates the geodesic from
point pi to p j . Notice how the global area and distance distortions include the extra terms −〈Ai 〉 and −〈Di , j 〉.
This was added to make the global measure invariant under scaling. The other distortions already satisfy this
requirement [13].

2.6. Calculating a Total Distortion Score
To combine these distortions into one value, Goldberg and Gott weighted every distortion with normalisation
constants. In the article the distortion values of the Equirectangular projection were chosen as weights. This
gives the following equation:

Total Distortion =
(

A

NA

)2

+
(

I

NI

)2

+
(

F

NF

)2

+
(

S

NS

)2

+
(

D

ND

)2

+
(

B

NB

)2

(2.40)

Here, NA is the area distortion of the Equirectangular projection and similarly for the other normalisation
constants. The choice to normalise with this projection seems rather obscure. It may therefore not be a
reliable method to combine the distortions and ultimately pointing out the optimum map. In fact, one will
see in Section 3.3, Table 3.2 how different mappings turn out to be preferable if we change the normalising
constants. Consequently, just basing the optimum map on Equation 2.40 is not sufficient. We propose a
better, unbiased, measure

Total Distortion = A2 + I 2 +F 2 +S2 +D2 +B 2. (2.41)

This will be used to determine the total distortion in the next chapters.



3
Map Analysis

In this chapter, the distortions defined in Section 2.5 are calculated for a range of existing map projections.
The aim is to improve upon the measurements previously carried out by Goldberg and Gott, using the im-
proved distance measure and evaluating more coordinates (λi ,φi ). These refinements may ultimately lead to
the new optimal map projection.

3.1. Data Points
Most global distortions of map projections are difficult to determine analytically. As a result, the global dis-
tortion values were computed numerically, which requires sampling data points (λ,φ) over the sphere. The
longitude λ is sampled uniformly over the interval [−π,π). However, latitudeφ can not be sampled uniformly
over [−π

2 , π2 ]. Recall the expression for the differential area element in spherical coordinates:

d A = d X ·dY = cosφ ·dλ ·dφ.

This shows that sampling uniformly inφwould result in a higher density of points near the poles on the map.
To achieve a uniform distribution of points, one must account for the cosφ term.

Using a slightly informal notation,

d A = cosφ ·dφ ·dλ= d(sinφ) ·dλ.

This suggests a simple sampling strategy: instead of samplingφ directly, sample a uniform variable u ∈ [−1,1]
and set φ= arcsin(u). This ensures that the sampled points are uniformly distributed over the surface of the
globe.

3.2. Error Analysis
When using numerical methods, it is important to be aware of potential deviations from the true solution. To
address this, an error analysis was conducted prior to calculating the distortions.

In general, increasing the number of samples improves accuracy but also demands more computational
power. Goldberg and Gott evaluated 30,000 samples, which was sufficient to reduce the error to two signi-
fant digits. By optimising the code and switching from Python to the faster programming language C, the
calculation time of 10,000,000 samples was brought to less than a minute. Thereby, creating the possibility of
reducing the error even further to three significant digits. As shown in Figure 3.1a, using approximately 106

data points was sufficient to achieve the desired accuracy. Some projections required more data points, while
others required fewer. For the error analysis of the remaining projections, see Appendix C.

21
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(a) (b)

Figure 3.1: Error Analysis of the Area, Isotropy, Flexion, Skewness and Distance Distortions for the Azimuthal Equidistant (North Polar
Aspect) projection (a) and Equirectangular Projection (b). On the x-axis the number of samples are presented, and on the y-axis the
error is depicted (both logarithmically scaled). Figures made with Appendix E code plot_error.py.

Of all the different distortions we researched, flexion and skewness took the longest to compute, because
every coordinate need to be evaluated in multiple directions/angles α. Likewise, the distance measure is
computationally intensive, because between each coordinate pair (λi ,φi ), (λ j ,φ j ) we need to interpolate
along the geodesic. Now, if we leave the interpolation out and only look at the area and isotropy distortions,
the following error can be attained:

Figure 3.2: Error Analysis of only Area and Isotropy Distortion for the Equirectangular Projection. On the x-axis the number of samples
are presented, and on the y-axis the error is depicted (both logarithmically scaled). Figure made with Appendix E code plot_error.py.

Our computations of the area and isotropy can be done up to the fifth significant digit. However, this
analysis was only performed for illustration of the potential accuracy. The code is available for those who are
interested in calculating distortions with this precision.
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3.3. Distortion Results
With the precision of our distortion calculations now established, the following results emerge, where T rep-
resents the total distortion value defined in Equation 2.41, calculated by Appendix E code c_distortions.py.

Projection AG IG FG SG DG B T

Mercator 0.843 0 0.636 0.634 0.673 0.25 2.033
Equirectangular 0.421 0.521 0.636 0.631 0.686 0.25 1.784
Lambert Cylindrical Equal-Area 0 1.037 0.635 0.81 0.691 0.25 2.675
Behrmann 0 0.903 0.696 0.768 0.646 0.25 2.370
Gall-Peters 0 0.847 0.77 0.737 0.587 0.25 2.261
Sinusoidal 0 0.943 0.856 0.708 0.560 0.25 2.499
Hammer 0 0.823 0.829 0.481 0.529 0.25 1.939
Aitoff 0.129 0.702 0.788 0.421 0.547 0.25 1.669
Winkel Tripel 0.23 0.494 0.741 0.375 0.559 0.25 1.362
Stereographic (North Polar) 2 0 1 1 1.110 0 7.233
Azimuthal Equidistant (North Polar) 0.596 0.866 1 0.583 0.488 0 2.683
Lambert Azimuthal Equal-Area (North Polar) 0 1.414 1 0.644 0.427 0 3.597
Miller Cylindrical 0.624 0.261 0.638 0.632 0.667 0.25 1.772
Cassini 0.42 0.52 0.636 0.631 0.671 0.25 1.762
Central Cylindrical 1.264 0.521 0.676 1.171 0.944 0.25 4.651
Collignon 0 1.469 0.695 0.979 0.706 0.25 4.160
Lambert Conic 1.562 0 0.814 0.807 0.904 0.25 4.633
Bonne 0.252 1.246 0.997 0.792 0.467 0.25 3.518
Wiechel 0 1.533 1.231 0.751 0.451 0 4.633
Winkel II 0.29 0.549 0.724 0.513 0.608 0.25 1.605
Equidistant Conic 0.595 0.607 0.829 0.589 0.585 0.25 2,161
Spilhaus Stereographic 2 0 1 1 1.113 0 7.239

Table 3.1: Distortion values for multiple projections, with AG , IG ,FG ,SG ,DG and B the global distortion symbols for area, isotropy, flex-
ion, skewness, distance and boundary cut respectively
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3.4. Effect of Normalisation on Distortion Rankings
As already mentioned in Section 2.6, different mappings come out on top if the normalising constants are
varied in Equation 2.40. The following table demonstrates this.

Projection Normalised to:
Equi. Aitoff Winkel Miller Cassini Central Bonne Winkel II Equi. Conic

Mercator 7.983 48.139 19.476 5.843 8.045 3.131 15.315 12.975 5.964
Equirectangular 6.000 16.671 10.532 8.486 6.053 3.814 7.162 7.564 5.192
Lambert Cylindrical Equal-Area 8.623 9.131 12.333 20.492 8.683 6.858 5.334 9.123 8.974
Behrmann 7.571 8.158 10.751 16.574 7.622 5.962 4.866 8.000 7.532
Gall-Peters 7.207 7.629 9.984 15.123 7.250 5.723 4.506 7.509 6.911
Sinusoidal 8.013 7.861 10.544 17.813 8.055 6.597 4.546 8.101 7.715
Hammer 6.372 5.724 7.568 13.840 6.408 5.482 3.781 6.196 5.538
Aitoff 5.526 6.000 6.681 10.918 5.562 4.649 3.858 5.500 4.567
Winkel Tripel 4.574 7.398 6.000 7.122 4.609 3.587 4.202 4.868 3.475
Stereographic 30.176 251.745 88.486 18.002 30.399 6.804 71.241 56.607 30.444
Azimuthal Equidistant 8.600 27.193 14.788 15.764 8.643 5.689 8.717 10.556 8.165
Lambert Azimuthal Equal-Area 11.268 8.618 13.547 33.256 11.314 10.062 3.793 10.612 12.588
Miller Cylindrical 6.405 28.935 13.644 6.000 6.458 3.176 10.263 9.355 5.043
Cassini 5.949 16.552 10.448 8.424 6.000 3.787 7.057 7.497 5.112
Central Cylindrical 17.485 109.014 45.746 15.646 17.616 6.000 33.067 29.393 17.270
Collignon 13.611 13.229 19.129 37.383 13.688 11.265 6.687 14.071 15.785
Lambert Conic 19.778 155.090 55.570 12.359 19.921 5.368 44.871 35.961 16.719
Bonne 11.575 13.836 15.530 28.456 11.619 9.637 6.000 11.776 11.872
Wiechel 14.254 11.072 17.051 40.091 14.306 12.614 4.871 13.382 16.818
Winkel II 5.328 10.230 7.831 8.417 5.369 3.917 5.160 6.000 4.390
Equidistant Conic 7.653 27.219 14.011 10.647 7.700 4.721 9.623 9.986 6.000
Spilhaus Stereographic 30.187 251.764 88.503 18.015 30.412 6.810 71.267 56.622 30.477

Table 3.2: Total distortion values normalised to different projections using Equation 2.40 to depict its bias ness.



4
Fractals And Coastline Distortions

This chapter explores the potential of introducing the fractal dimension of coastlines as a seventh distortion
measure. In addition, it examines the motivation for assessing distortions specifically along coastlines of the
continents on Earth, as well as the anticipated impact of fractal dimensionality on these distortion metrics.
To provide the necessary foundation, the concept of fractal dimension will first be introduced.

4.1. Fractal Dimension Basics
A line is one-dimensional, a square is two-dimensional, and a cube is three-dimensional. These are the most
familiar examples when we think about dimensions. However, fractal geometry shows that not all shapes
have whole-number dimensions. This idea stems from how dimension is defined, particularly in terms of
how an object scales. Consider the following examples to illustrate this concept.

1. A line (with length 1) can be broken up into two smaller lines. Each of which is a perfect copy of the
original, scaled down by a half.

Figure 4.1: Scaling Factor 1
2 and Mass Scaling Factor 1

2 for a Line.

2. A square (with width 1) can be broken up into four smaller squares. Each of which is a perfect copy of
the original, scaled down by a half.

25
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Figure 4.2: Scaling Factor 1
2 and Mass Scaling Factor 1

4 for a Square.

3. A cube (with width 1) can be broken up into eight smaller cubes. Each of which is a perfect copy of the
original, scaled down by a half.

Figure 4.3: Scaling Factor 1
2 and Mass Scaling Factor 1

8 for a Cube.

These three shapes can be split into smaller copies of themselves and are therefore what is called self-similar.
Each copy was scaled down by a half, but if we measure the length, area and volume: the smaller line becomes
half the length of the original line; the smaller square one quarter the area of the original square and the
smaller cube one eighth the volume of the original cube.

To generalise the concept of scaling, we will refer to quantities such as length, area, and volume collec-
tively as mass or measure. The fractal dimension characterises how this mass changes as a shape is scaled. In
the previous examples, we considered self-similar shapes, as they provide a clear and intuitive illustration of
how the measure scales with size. The following relations between the scaling factor 1

2 and the mass scaling
factor could therefore easily be attained.

1. Line: mass scaling factor = 1
2 .

2. Square: mass scaling factor = 1
4 = ( 1

2 )2.

3. Cube: mass scaling factor = 1
8 = ( 1

2 )3

These expressions show that the mass scaling factor can be written as a power of the scaling factor 1
2 , where

the exponent corresponds to the dimension of the shape. In general, for self-similar shapes, their dimension
δ satisfies

mass scaling factor = (scaling factor)δ, (4.1)

which results in the following expression for δ

δ= logσ(µ) = ln(µ)

ln(σ)
, (4.2)

where µ is the mass scaling factor and σ the scaling factor.
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Now, let us consider another self-similar shape, the Sierpiński triangle, see Figure 4.4a. Unlike the previ-
ous examples, we will see that the Sierpiński triangle has a non-integer dimension and is therefore a fractal.
The Sierpiński triangle can be broken up into three smaller triangles. Each of which is a perfect copy of the
original, scaled down by a half. Its mass is scaled down by a third. Therefore, the fractal dimension is equal to
the number δ that satisfies 1

3 = ( 1
2 )δ. Using expression 4.2,

δ=
ln

1

3

ln
1

2

= ln1− ln3

ln1− ln2
= ln3

ln2
≈ 1.585.

So, in fractal geometry, the Sierpiński triangle is a 1.585-dimensional shape. For an illustration, see Figure 4.4.

(a) Image by Marco Polo, released into the public
domain (CC0) via Wikimedia Commons

(b) (c)

Figure 4.4: Illustration of the Scaling Factor and Mass Scaling Factor of the Sierpiński Triangle. The Sierpiński triangle (a), scaling factor
σ= 1

2 (b) and mass scaling factor µ= 1
3

Let us examine one more shape, the von Koch curve, which has a different scaling factor than a half. The
von Koch curve can be broken up into four smaller curves. Each of which is a perfect copy of the original,
scaled down by a third. Its mass is scaled down by a fourth. Therefore, the fractal dimension is equal to the
number δ that satisfies 1

4 = ( 1
3 )δ. Using expression 4.2

δ= ln1/4

ln1/3
≈ 1.262.

So, in fractal geometry, the von Koch curve is a 1.262-dimensional shape. For an illustration, see Figure 4.5.
The shapes discussed so far are great for an intuitive understanding of fractal dimension, as their scaling

and mass scaling factors are straightforward to determine. Howeve, we want to extend this to more complex
or irregular shapes. To analyse such cases, we require a more general method for calculating the fractal di-
mension. The Hausdorff measure is widely regarded as the most formal definition of fractal dimension, but
more challenging to compute [5]. The box-counting method is more straightforward and is a method that
estimates the dimension numerically.

4.1.1. Box-counting Method
Since the box-counting method is the fundamental used method for the approach used in Section 4.2, a short
explanation will be given. To illustrate the limitations of our earlier method, consider the example of a circle.
We know that scaling a circle by a factor of two increases its area by a factor of four, because of the properties
of a disk. However, unlike self-similar shapes, it is not possible to construct the larger circle by assembling
four exact copies of the original, see Figure 4.6. As a result, we can not directly verify whether the mass scaling
factor is indeed four, and the previous approach to determine dimension breaks down in this case.

We will now approach this problem using the box-counting method. This involves overlaying a grid of
boxes on the plane and counting how many boxes intersect the circle, as in Figure 4.7. Next, we scale the
system by a factor of two and count again how many boxes are required to cover the circle. The ratio of the
number of boxes at different scales approximates the mass scaling factor, which we again use in Equation 4.2.

https://commons.wikimedia.org/w/index.php?curid=8862246
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Figure 4.5: Illustration of the Scaling Factor σ= 1
3 and Mass Scaling Factor µ= 1

4 of the Von Koch Curve
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Figure 4.6: Illustration of fitting four scaled down Circles into the Original Circle, Showing the Limitations of Method 4.2.

In Figure 4.7. after one iteration, we estimate the dimension of a circle, δ = 1.292, which is not close to
actual dimension δ= 2 of a circle, but as the size of the shape increases (more iterations of the box-counting
method), this value converges to the true fractal dimension. Alternatively, and more practically, one can fix
the shape and instead scale down the box size, which is the standard approach in box-counting. In this case,
the theoretical box-counting dimension is defined as:

δbox = lim
ϵ→0

ln N

ln1/ϵ
, (4.3)

where N denotes the boxes needed to cover the shape and ϵ is the side-length of the boxes [19].
In practice, we can not make the box size infinitely small. Instead, we compute the number of boxes N

required to cover the shape at several finite scales ϵ, and plot ln(1/ϵ) against ln N . A linear regression is then
performed on this log-log plot, and the slope of the resulting line provides an estimate of the box-counting
dimension.

(a) (b)

Figure 4.7: Illustration of Box-Counting Method. In Figure (a) 32 boxes cover the circle with radius 1. Then, the circle is scaled by a

factor 2, resulting in a circle with radius 2, figure (b). Now, 88 boxes cover the circle, resulting in a Mass Scaling Factor µ = 88

36
= 2.44.

Completing the calculation of the fractal dimension, we find δ= ln2.44

ln2
= 1.29.
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4.2. Can Fractal Dimension Serve as a New Distortion Metric?
So far, self-similar shapes with integer and non-integer dimensions (fractals) and non-self-similar shapes are
covered. The French mathematician Mandelbrot described coastlines as not perfect self-similarity exhibiting
shapes, but he found non-integer dimension in coastlines [11, 12]. Therefore it is not an exact fractal, but
a real-world fractal: zooming in reveals more detail, without a clear resolution limit. When evaluating real-
world fractals we can consider the fractal dimension as a measure of robustness in the shape or figure.

Consequently, one may expect this robustness to differ for distinct map projections. Although counter-
intuitive for the shapes discussed in Section 4.1, if this holds for coastlines, we construct a new distortion
measure. Recently, the fractal dimensions of different stretches of coastline before and after projection using
the divide-and-conquer algorithm (implementation of box-counting) and image processing were computed
[10], see Table 4.1. However, these results are not sufficient to conclude if there is indeed a difference in fractal

Region Fractal Dimension
Mercator Equirectangular

Northern Norway: High Latitude, Horizontal Coastline 1.5361 1.4748
Southwestern Greenland: Medium-High Latitude, Vertical Coastline 1.5832 1.5917
Northeastern Greenland: High Latitude, Vertical Coastline 1.4847 1.6140
Northern Tip of the Antarctic Peninsula: Medium-High Latitude, Mixed Coastline 1.5362 1.5240
Southwestern Antarctic Peninsula: High Latitude, Mixed Coastline 1.3558 1.4055

Table 4.1: Fractal dimensions of Different Stretches of Coastline after projected by the Mercator and Equirectangular Projections [10].

dimension along the entire coastline between the Mercator and Equirectangular projection. Furthermore,
the accuracy of the implemented box-counting method depends on the resolution of the image. Properties
such as the plotted line-width of the coastline also influence the outcome. So, before introducing the fractal
dimension of coastlines as new distortion measure, we need to verify the results for the complete coastline.

4.2.1. Improved Method: Dot-Based Box Counting
As mentioned in Section 4.1 we will use a method similar to the box-counting method. It is an effective ap-
proach to compute the box-counting dimension based on the mathematical definition and intervals [19].
In particular, this method improves accuracy by eliminating any dependence on pixel resolution or image
quality. Instead, it uses dots. Dots are described by the creators of the algorithm as individual points that
are mathematically generated to represent a fractal object. Unlike pixels, which are tied to image resolution
and screen quality, dots are derived from precise mathematical definitions such as explicit equations (e.g.,
y = x, y = x2). The density and accuracy of the representation improve as the spacing between dots becomes
smaller. With this method, the fractal is displayed using dots rather than pixels. As a result, traditional de-
tection boxes based on pixel grids or matrix structures are no longer applicable. Instead, a mathematical
criterion is employed to determine which sets of points from the fractal fall within each detection box. The
whole domain of the fractal will be split uniformly into subintervals with side length ϵ̂. In order to judge
whether at least one point falls in the detected interval, an inequality that serves as the inclusion criterion for
each box is formalised

mϵ̂≤ xi < (m +1)ϵ̂, nϵ̂≤ yi < (n +1)ϵ̂, m,n ∈Z, m,n ∈Z, 0 ≤ m,n ≤
( ι
ϵ̂
−1

)
, (4.4)

where

• xi , yi : coordinates of a point on the fractal;

• ϵ̂: side length of each detection box;

• m,n: integer indices of the detection box in the horizontal and vertical directions, respectively;

• ι: side length of the entire domain in which the fractal is contained (e.g., ι= 1024);

•
( ι
ϵ̂
−1

)
: maximum number of boxes (per axis) that fit in the domain.

Having established the methodology, the next step is to assess whether the results presented in Table 4.1
also hold for the entire coastline of all continents. To this end, one of the most accurate coastline datasets

https://www.soest.hawaii.edu/pwessel/gshhg/
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Projection Fractal Dimension Standard Error of Regression (SE) Confidence Interval (±1 SE)

Mercator 1.27616 0.01148 [1.2647, 1.2876]
Equirectangular 1.25638 0.00600 [1.2504, 1.2624]
Bonne 1.24646 0.00577 [1.2407, 1.2522]
Sinusoidal 1.25391 0.00583 [1.2481, 1.2597]
Wiechel 1.23020 0.00737 [1.2228, 1.2376]

Table 4.2: Fractal Dimension of the Entire Coastline for Various Mappings using the Improved Box-Counting, with Interval Size ϵ̂ ∈
[2−4,2−5, . . . ,2−14] and ι= 1. Calculated by Appendix E code FractalDimension.py.

available was used, and various map projections were applied to determine the (xi , yi ) coordinates. The re-
sulting estimated fractal dimensions are shown in Table 4.2. While the confidence intervals suggest that the
fractal dimensions vary between projections, these intervals are based solely on the standard error of the re-
gression fit and do not account for potential numerical errors in the box-counting process. Consequently,
although there are differences between projections, the relatively small variations and the uncertainty in-
volved make it difficult to draw definitive conclusions about their statistical significance.

4.2.2. Verification with Hausdorff Dimension
To get a clearer and more reliable understanding, we now turn to a mathematical definition of fractal dimen-
sion that doesn’t rely on approximations or sampling. This brings us to the Hausdorff dimension. The formal
definition is given below [1, 16].

Definition 4.1 (Hausdorff dimension). Let X be a metric space. If S ⊂ X and δ ∈ [0,∞), then we let

Hδ
η (S) = inf

{ ∞∑
i=1

(diam(Ui ))δ : S ⊆
∞⋃

i=1
Ui , diam(Ui ) < η

}
. (4.5)

Here, diam(Ui ) = sup{∥x−y∥ : x, y ∈Ui }. Moreover, the infimum is taken over all countable covers U of S. The
Hausdorff δ-dimensional outer measure is defined as

H δ(S) = lim
η→0

Hδ
η (S). (4.6)

Finally, the Hausdorff dimension is given by

dimH (S) = inf
{
δ≥ 0 : H δ(S) = 0

}
. (4.7)

Because this measure will only be used as a tool to determine if the results from Table 4.1 and Table 4.2
are accurate, its full derivation will not be included. In particular, we want to show whether the Hausdorff
dimension is preserved under the different map projections. This approach provides a practical check on
the validity of the results in Table 4.1 and Table 4.2, without requiring a full measurement of the Hausdorff
measure itself. The goal is to prove if dimH (SE ) = dimH (SM ), where SE ⊂ R2 is the image of the coastline in
Equirectangular projection, and SM ⊂R2 the image of the coastline under the Mercator projection.

Proof. Let SE ⊂ R2 be the image of the coastline in Equirectangular projection, and let SM ⊂ R2 be the image
of the same coastline under the Mercator projection. Since R2 is a metric space and SE and SM inherit the
metric, they are metric spaces themselves. As mentioned, the goal is to show that dimH (SE ) = dimH (SM ).

To do this, it suffices to show that the map F : SE → SM that converts Equirectangular coordinates into
Mercator coordinates is bi-Lipschitz on the relevant domain.

We define the transformation F = TM ◦T −1
E :

F (x, y) =
(
x, lntan

(π
4
+ y

2

))
,

where TM and TE are the transformation formulas of the Mercator and Equirectangular projections, respec-
tively.

Claim: We now claim that F is bi-Lipschitz on any compact subset D ⊂ SE ⊂ T −1
E ([−π,π)× (−π

2 , π2 )), to
avoid singularities near the poles.
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Figure 4.8: Illustration of the Hausdroff Definition by Covering the Coast of Great Britain with Sets Ui . Image by Prokofiev, licensed under
CC BY-SA 4.0 via Wikimedia Commons.

Since SE is not defined near the poles, D ⊆ SE . By bi-Lipschitz, there exist constants c,C > 0 such that for
all x̂1, x̂2 = (x1, yz ), (x2, y2) ∈ D :

c ∥x̂1 − x̂2∥ ≤ ∥F (x1)−F (x2∥ ≤C ∥x̂1 − x̂2∥.

Now, suppose H δ(SE ) = 0. Then for any η1 > 0, there is a cover
⋃∞

i=1 Ui of SE with diam(Ui ) < η such that:

∞∑
i=1

diam(Ui )δ < η1.

Since F is bi-Lipschitz on D ⊆ SE , we have:

diam(F (Ui )) ≤C ·diam(Ui ).

So,
∞∑

i=1
diam(F (Ui ))δ ≤Cδ ·

∞∑
i=1

diam(Ui )δ <Cδ ·η1.

Since δ ∈ [0,∞), H δ(F (SE )) = 0. The reverse inequality follows by using the inverse map F−1, which is Lips-
chitz (similar to bi-Lipschitz, but only the upper bound holds), so:

H δ(S) = 0 ⇐⇒ H δ(F (SE )) = 0 =⇒ dimH (SE ) = dimH (F (SE )) = dimH (SM ).

Proof of claim: We now formalise the earlier claim that the Mercator transformation

F (x, y) =
(
x, lntan

(π
4
+ y

2

))
is bi-Lipschitz on compact subsets of the Equirectangular domain that are bounded away from the poles.

Let f (y) = lntan
(
π
4 + y

2

)
. The function f is strictly increasing on (−π

2 , π2 ) because it is the composition of
increasing functions. Therefore, F (x, y) = (x, f (y)) is injective on any domain D = [a,b]× [c,d ] ⊂ [−π,π)×
(−π

2 , π2 ).
Step 1: Lipschitz continuity of F . Since F is separable in x and y , we analyse the Lipschitz property of

each component.

https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/w/index.php?curid=12042048
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Clearly, x 7→ x is Lipschitz with constant 1. We now analyse f (y). We compute its derivative:

f ′(y) = 1

cos y

On a compact interval [c,d ] ⊂ (−π
2 , π2 ), this derivative is strictly positive and bounded: there exist constants

0 < m ≤ f ′(y) ≤ M <∞. By the Mean Value Theorem, this implies f is Lipschitz continuous with constant M .
Therefore, for all (x1, y1), (x2, y2) ∈ D ,

∥F (x1, y1)−F (x2, y2)∥ ≤
√

1+M 2 · ∥(x1, y1)− (x2, y2)∥,

so F is Lipschitz on D .
Step 2: Lipschitz continuity of F−1. Since f is strictly increasing and differentiable with derivative bounded

below by m > 0 on the domain, it is invertible, and its inverse function f −1 is differentiable as well. The deriva-
tive of the inverse satisfies: (

f −1)′ (y) = 1

f ′ ( f −1(y)
) ≤ 1

m
.

Therefore, by the Mean Value Theorem, f −1 is Lipschitz continuous with Lipschitz constant 1
m , and

F−1(x, y) = (
x, f −1(y)

)
is Lipschitz on F (D) with constant

√
1+ (1/m)2.

The above proof shows that the Hausdorff (fractal) dimension is invariant under bi-Lipschitz transforma-
tions. Since projections such as the Mercator and Equirectangular maps are bi-Lipschitz (excluding singu-
larities at the poles), the fractal dimension of the coastline should theoretically remain unchanged—both lo-
cally and globally—under these mappings. This theoretical invariance, however, contradicts the differences
observed in Table 4.1, suggesting that the differences in measured fractal dimensions are likely artifacts of
sampling or numerical methods rather than true geometric distortions. Consequently, introducing fractal di-
mension as a seventh distortion measure appears unjustified, as it does not reflect true geometric distortion
introduced by the projection.

4.3. Measuring Distortions Along Coastlines
Although having established that fractal dimension can not meaningfully capture distortion, the coastline
itself remains a valuable object of analysis. In many cartographic contexts, such as thematic maps focused on
maritime navigation, coastal ecology, or geopolitical boundaries, the map content is essentially limited to the
coastline. In such cases, the distortion metrics computed over entire landmasses or oceans as in Chapter 3,
become less relevant. Instead, it is more appropriate to evaluate these standard distortions specifically along
the coastline itself. By restricting our attention to the coastline geometry, we obtain distortion measures that
more directly reflect the primary or only feature of interest.

For this purpose, we will reuse the distortion definitions introduced in Chapter 2, but omit the distance
distortion, as it measures on the surface rather than the coastline. Since, we are evaluating coastlines now, this
measure along the surface is not meaningful any more. Furthermore, the definition of the boundary cut re-
quires modification, as the length of the cut on the globe does not correspond directly to the cut length along
the coastline. A more appropriate approach might be to count the number of locations where the coastline
is intersected by the cut. However, this measure is also unsuitable, since for most cylindrical projections the
count would be three, a relatively large value that would disproportionately dominate the overall distortion
metrics. Additionally, small shifts in the coastline can cause large fluctuations in this value. For these reasons,
the boundary cut distortion was omitted from the coastline analysis. All other distortions are still meaningful
along the coastline geometry and will be evaluated.

4.3.1. Richardson Effect
To properly interpret the distortion values, we will first examine how these distortions are expected to behave
in theory. This provides a mathematical and geometric basis for the results, helping to distinguish genuine
projection effects from artifacts caused by resolution or sampling.
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First described by Richardson [15], the Richardson effect describes the observation that the measured
length of an irregular boundary, such as a coastline, increases as the scale of measurement becomes finer [11].
More formally, if L(ε) denotes the measured length of the coastline when using measuring steps of size ε, then

L(ε) ∼ ε1−δ,

where δ is the fractal dimension of the coastline. For idealised smooth curves, δ = 1, and the length is inde-
pendent of scale. For coastlines and other fractal-like structures, however, we found δ > 1, so the measured
length increases as ε→ 0. This relation implies that distortion metrics computed along coastlines can vary
significantly depending on the resolution of the dataset used: higher-resolution datasets reveal more geo-
metric detail and thus exhibit greater sensitivity to distortions. As a result, some pieces of coastline in a dense
dataset, might disproportionately dominate the overall distortion metrics.

To further complement this analysis, heatmaps are generated, depicting localised fractal dimensions
along the coastline. These visualisations help identify which geographic regions have the greatest geomet-
ric irregularity and contribute the most to the overall distortion measure. From Figure 4.9, it is evident that
the Nordic regions, particularly the Canadian Arctic, exhibit the highest local fractal dimensions, indicating
geometric complexity. Additionally, the coastline of Antarctica also displays significant irregularity. Some re-
gions register fractal dimensions below one; these values are likely artifacts resulting from sparse data or the
absence of coastline in those areas. A similar analysis can be performed at different region sizes, as shown

(a) (b)

Figure 4.9: Local determined fractal dimension of the Mercator (a) and Bonne (b) projections in 64 regions. Figures made with Ap-
pendix E code Fractal_Dimension_Plot.py

in Figure 4.10. This reveals that the southern tip of South America exhibits a highly fractal coastline, and
Indonesia also contributes significantly due to its dense, intricate island structures. For more analysed map
projections, see Appendix D.

4.3.2. Normalising to the Arc Length
We have shown that by the Richardson effect, highly fractal pieces of coastline can disproportionally influence
the total distortion. Yet we still prefer high resolution for its greater accuracy. To balance these needs, we need
to normalise each local distortion. In Section 2.5 we defined the global distortion as either an average or a
root-mean-square of local distortions. This method will still be applied to find the distortion along the entire
coastline, but each local measurement will be weighted to its corresponding arc length. The arc length is
computed using the midpoint rule, as the points in the coastline datasets are irregularly spaced and are not
uniformly divided along the curve. Consequently, the distortion along the entire coastline is given by the
following revised formulation of the root mean square.

Definition 4.2 (Root Mean Square Along the Coastline (RMSc ) with Midpoint Measure). The Root Mean
Square (RMS) of a distortion D , defined along a coastline with length L, is computed using a weighted av-
erage that reflects the geometric distribution of the coastline points. Given discrete samples {xi }n

i=1 ordered
along the coastline and corresponding distortion values {Di }n

i=1, the RMS with a midpoint-based weight is
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defined as:

RMSc (D1, . . . ,Dn) =
√

1

L

n∑
i=1

D2
i · (midpoint distance) (4.8)

=
√√√√ 1

L

[
n−1∑
i=2

D2
i ·

∥xi−1 −xi∥+∥xi −xi+1∥
2

+D2
1 · ∥x1 −x2∥+D2

n · ∥xn−1 −xn∥
]

.

Here, the segment lengths act as weights to approximate integration over arc length. The endpoints D1 and
Dn are treated separately because they lack neighbours, unlike the interior points.

Although the expression may look like it could be written more generally, this form is necessary to account
for the structure of the coastline data that will be used. It guarantees that the global distortion is weighted
by the actual physical distance along the coastline, as opposed to a simple unweighted average over sampled
points.

Finally, the coastline data at different three levels of resolution: low, intermediate and high, will be em-
ployed. This allows us to examine how strong the resolution influences the distortion metrics along coast-
lines. The data was downloaded from the Global Self-consistent, Hierarchical, High-resolution Geography
Database (same as was used for the fractal dimension computations). See Table 4.3 for an overview of the
data. One can check that the Richardson relation holds within the error marge of the fractal dimension.

Resolution Number of Points Length (km) Step-size ε (m) Estimated Fractal Dimension (±1 SE)

Low 314,514 1,194,015 3796 [1.220, 1.252]
Intermediate 1,514,70 1,500,390 990 [1.229, 1.254]
High 9,516,273 1,666,095 72 [1.250, 1.262]

Table 4.3: Coastline-Data Overview.

While we have established that fractal dimension itself does not qualify as a standalone distortion metric,
its spatial patterns inform our understanding of projection behavior along coastlines. In the next chapter,
we build on this foundation by presenting the distortion values computed for coastlines at varying levels of
resolution.

https://www.soest.hawaii.edu/pwessel/gshhg/
https://www.soest.hawaii.edu/pwessel/gshhg/
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(a) (b)

(c)

Figure 4.10: Local determined Fractal Dimension of the Mercator Projection in Different Region Sizes: 4 Regions (a), 16 Regions (b), 256
Regions (c).



5
Coastline Distortion Results

5.1. Low Resolution
As mentioned, the data used in this study was obtained from the Global Self-consistent, Hierarchical, High-
resolution Geography Database. It is important to note that the dataset referred to as low resolution in our
analysis corresponds to what GSHHG labels as intermediate precision. This naming may be misleading, as
it does not represent the intermediate resolution in our study. That is, because GSHHG’s highest-resolution
data is labeled as full precision and not as high precision. The following distortion results were computed by
Appendix E code coastline_distortions.py.

Projection Area Isotropy Flexion Skewness Total

Azimuthal Equidistant (North Polar) 0.471 0.590 0.622 0.257 1.023
Cassini 0.394 0.487 0.608 0.568 1.084
Equidistant Conic 0.471 0.494 0.695 0.456 1.156
Winkel Tripel 0.250 0.509 0.943 0.418 1.385
Lambert Azimuthal Equal-Area (North Polar) 0 0.954 0.644 0.311 1.421
Aitoff 0.106 0.743 0.890 0.483 1.588
Winkel II 0.311 0.599 0.950 0.605 1.723
Lambert Conic 1.107 0 0.511 0.506 1.742
Bonne 0.176 0.959 0.768 0.494 1.785
Hammer 0. 0.869 0.927 0.551 1.918
Miller Cylindrical 0.709 0.316 0.895 0.832 2.095
Equirectangular 0.469 0.672 0.874 0.899 2.243
Wiechel 0 1.070 0.970 0.418 2.261
Mercator 0.939 0 0.867 0.859 2.371
Sinusoidal 0 0.972 0.983 0.808 2.563
Stereographic (North Polar) 1.541 0 0.567 0.563 3.012
Gall-Peters 0 0.977 1.042 1.010 3.060
Collignon 0 1.253 0.888 0.946 3.253
Behrmann 0 1.156 0.909 1.116 3.408
Lambert Cylindrical Equal-Area 0 1.344 0.812 1.206 3.919
Spilhaus Stereographic 1.579 0 1.104 1.103 4.930
Central Cylindrical 1.408 0.672 0.896 1.441 5.316

Table 5.1: Distortion Results of the Low Resolution Data normalised with respect to the Arc Length using Definition 4.2.

37
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5.2. Intermediate Resolution
The intermediate resolution dataset corresponds to what GSHHG labels as high precision. Using this dataset,
the following distortion results were computed.

Projection Area Isotropy Flexion Skewness Total

Azimuthal Equidistant (North Polar) 0.464 0.580 0.613 0.249 0.991
Cassini 0.395 0.488 0.607 0.564 1.081
Equidistant Conic 0.464 0.490 0.682 0.448 1.121
Winkel Tripel 0.247 0.502 0.934 0.408 1.351
Lambert Azimuthal Equal-Area (North Polar) 0 0.938 0.636 0.304 1.376
Aitoff 0.106 0.735 0.878 0.472 1.546
Winkel II 0.306 0.592 0.940 0.591 1.678
Lambert Conic 1.092 0 0.499 0.494 1.686
Bonne 0.174 0.940 0.752 0.481 1.711
Hammer 0 0.860 0.916 0.539 1.868
Miller Cylindrical 0.699 0.311 0.889 0.821 2.050
Equirectangular 0.463 0.665 0.871 0.883 2.194
Wiechel 0 1.055 0.963 0.410 2.208
Mercator 0.925 0 0.859 0.852 2.320
Sinusoidal 0 0.963 0.968 0.792 2.491
Stereographic (North Polar) 1.520 0 0.558 0.553 2.927
Gall-Peters 0 0.962 1.044 0.990 2.995
Collignon 0 1.239 0.876 0.928 3.163
Behrmann 0 1.141 0.912 1.097 3.335
Lambert Cylindrical Equal-Area 0 1.329 0.815 1.187 3.840
Spilhaus Stereographic 1.571 0 1.106 1.105 4.913
Central Cylindrical 1.388 0.665 0.884 1.422 5.172

Table 5.2: Distortion Results of the Intermediate Resolution Data normalised with respect to the Arc Length using Definition 4.2.
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5.3. High Resolution
The high resolution dataset corresponds to what GSHHG labels as full precision. Using this dataset, the fol-
lowing distortion results were computed.

Projection Area Isotropy Flexion Skewness Total

Azimuthal Equidistant (North Polar) 0.474 0.591 0.620 0.258 1.025
Cassini 0.393 0.485 0.604 0.557 1.065
Equidistant Conic 0.474 0.498 0.683 0.454 1.145
Winkel Tripel 0.244 0.499 0.932 0.403 1.340
Lambert Azimuthal Equal-Area (North Polar) 0 0.956 0.641 0.313 1.423
Aitoff 0.105 0.732 0.875 0.467 1.532
Winkel II 0.303 0.590 0.939 0.585 1.662
Bonne 0.178 0.941 0.750 0.485 1.715
Lambert Conic 1.121 0 0.504 0.500 1.762
Hammer 0 0.856 0.912 0.534 1.850
Miller Cylindrical 0.693 0.309 0.889 0.818 2.035
Equirectangular 0.458 0.662 0.872 0.878 2.181
Wiechel 0 1.071 0.969 0.421 2.263
Mercator 0.917 0 0.858 0.851 2.300
Sinusoidal 0 0.959 0.963 0.785 2.464
Gall-Peters 0 0.954 1.049 0.983 2.976
Stereographic (North Polar) 1.554 0 0.567 0.562 3.051
Collignon 0 1.245 0.870 0.928 3.167
Behrmann 0 1.134 0.917 1.090 3.316
Lambert Cylindrical Equal-Area 0 1.324 0.819 1.181 3.821
Spilhaus Stereographic 1.573 0 1.104 1.103 4.910
Central Cylindrical 1.375 0.662 0.880 1.416 5.108

Table 5.3: Distortion Results of the high Resolution Data normalised with respect to the Arc Length using Definition 4.2.
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Discussion

6.1. Distance Measures
This study introduces several improvements and critical assessments of existing distortion metrics used in
evaluating map projections. Specifically, an improved distance measure was employed, which took points
near the boundary cut into account and the fact that the projected geodesic does not necessarily become a
straight line on the map. Map projections such as the gnomonic, orthographic, or Nicolosi globular projec-
tion (Figure 2.7), especially those divided into hemispheres, could potentially achieve interresting scores in
distance evaluations. Though not analyzed within this research, future studies could greatly benefit from a
deeper exploration of these projections, which might offer significant insights into optimal projection choices.

6.2. Revisiting Normalisation Methods
The original total distortion metric, which normalised results based on the Equirectangular projection, ap-
peared arbitrary and biased. To address this, the current research introduced a more unbiased total distortion
measure, independent of such normalisation. Unlike the previous approach (Table 3.2), which varied signif-
icantly based on the chosen reference map, the newly proposed measure consistently evaluates distortion,
providing stable rankings and thus enhancing reliability.

6.3. Computational Precision and Accuracy
The enhanced computational methods significantly increased accuracy and reduced numerical errors, achiev-
ing distortion measurements precise up to three decimal places. Specifically, area and isotropy measures
reached accuracies up to five decimal places. Although such extreme precision was illustrated rather than
systematically applied across all projections, future research could explore whether employing such high lev-
els of accuracy might identify different optimal projections or reveal previously undetected subtle variations
in projection quality.

6.4. Fractal Dimension as a Distortion Metric
A refined dot-based box-counting method for fractal dimension calculation was implemented, significantly
reducing, but not entirely eliminating, limitations inherent in previous pixel-based methods. Although fractal
dimension itself was ultimately found insufficient as a distortion measure in itself due to its invariance under
bi-Lipschitz transformations (excluding singularities near poles), it remains valuable for localised analyses of
coastal geometry, providing insights into coastal complexity.

6.5. Theoretical Insights and Limitations
The preservation of fractal dimension under map projections was theoretically proven, highlighting previous
inconsistencies reported in Table 4.1 as artifacts arising from numerical methods rather than true geometri-
cal distortion. However, this theoretical invariance is contingent upon avoiding singularities, specifically at
the poles. Future researchers should be cautious about this limitation when employing coastline data, es-
pecially if data points near polar regions are included, as it might yield misleading conclusions about fractal

40



6.6. Importance of Proper Normalisation 41

dimensions. However, in this study, we successfully circumvented issues at the poles because our data did
not include points defined exactly at these singularities, allowing for robust theoretical analyses and reliable
results.

6.6. Importance of Proper Normalisation
Normalisation with respect to coastline arc-length was executed to ensure accurate comparison across pro-
jections. However, due to time constraints, normalisation was uniformly based on the Equirectangular pro-
jection rather than individually tailored. Future work should aim to normalise each projection individually
based on its own coastline, which could lead to more precise and meaningful comparative analyses.

6.7. Sensitivity to Globe Orientation
The high performance of the Cassini projection underscores the problem of orientation sensitivity clearly;
despite essentially being identical to the Equirectangular projection (involving a rotation of the globe before
applying the same transformation) it scores remarkably well, whereas the Equirectangular projection itself
does not. This observation indicates potential improvements if other projections were similarly rotated or
adjusted before projection. Thus, the current optimal projection (Azimuthal Equidistant) might be surpassed
by other configurations not yet explored, highlighting the importance of considering geographic orientation
in future research.

Figure 6.1: Cassini Projection. Image by Strebe, licensed under CC BY-SA 4.0 via Wikimedia Commons.

6.8. Opportunities for Further Research
Future research could significantly extend this work by analysing additional resolution levels from databases
such as GSHHG. Moreover, this research emphasises a fundamental conceptual shift: the importance of eval-
uating map projections based explicitly on the geographic properties they represent. For instance, a map de-
signed solely to depict Dutch states should primarily evaluate distortion effects within the Netherlands, ren-
dering distortions of states in Belgium irrelevant. Similarly, a map emphasising political boundaries should
specifically assess distortions along those boundaries rather than irrelevant geographic features. This per-
spective introduces a generalised and adaptable method that can evaluate any map projection based on its
intended purpose and specific content. Such an approach allows cartographers and researchers to conduct
property-specific distortion analyses, tailoring evaluations precisely to the needs of the intended audience or
application.

Furthermore, projections with multiple boundary cuts represents an important avenue for future explo-
ration. Projections such as the Boggs eumorphic, Fuller, Dymaxion, Waterman butterfly, and HEALPix pos-

https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/w/index.php?curid=16116389
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sess complex boundary cuts, making them difficult to evaluate using traditional distortion measures. During
this research, attempts were made to analyse the HEALPix projection using numerical distortion estimation.
These initial results showed great potential and even outperformed the Winkel Tripel projection. However,
due to limitations in reliability and reproducibility, these findings were not included in the final results. Over-
coming these computational challenges could significantly broaden the practical applicability and effective-
ness of distortion analysis, and improve maps.



7
Conclusion

The findings of this research significantly improved distortion analysis of map projections previously intro-
duced by Goldberg and Gott, refining it into a more reliable and unbiased measure. By implementing this
improved methodology, the Winkel Tripel projection was identified as the overall best-performing projection
for general-purpose use.

A central part of this study involved a critical examination of the potential for the fractal dimension of
coastlines to serve as a new distortion metric. The research concludes through theoretical analysis that fractal
dimension is unsuitable as a global distortion metric since it is invariance under the bi-Lipschitz transforma-
tions that define many map projections. However, the investigation affirmed its utility for localised geometric
analysis.

This inquiry led to a shift in focus: evaluating distortions specifically along coastal features. The study in-
troduces a novel normalisation approach that uses coastline arc length, establishing a robust framework for
evaluating projections tailored to coastal representation. This coastline-specific analysis, conducted at mul-
tiple resolutions, revealed that the Azimuthal Equidistant projection is the most effective for this particular
application.

Furthermore, the results underscore the sensitivity of distortion scores to the orientation of the globe,
indicating that performance can be optimised through rotational adjustments. Ultimately, this study pro-
vides a foundational methodology for future, property-specific distortion analyses, offering a more precise
and application-focused approach to selecting map projections.
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A
Heatmaps

A.1. Aitoff

Figure A.1: Aitoff projection – Area, Isotropy, Flexion, Skewness
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A.2. Azimuthal Equidistant (North Polar) 46

A.2. Azimuthal Equidistant (North Polar)

Figure A.2: Azimuthal Equidistant (North Polar) projection – Area, Isotropy, Flexion, Skewness
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A.3. Behrmann

Figure A.3: Behrmann projection – Area, Isotropy, Flexion, Skewness
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A.4. Cassini

Figure A.4: Cassini projection – Area, Isotropy, Flexion, Skewness



A.5. Central Cylindrical 49

A.5. Central Cylindrical

Figure A.5: Central Cylindrical projection – Area, Isotropy, Flexion, Skewness
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A.6. Collignon

Figure A.6: Collignon projection – Area, Isotropy, Flexion, Skewness
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A.7. Equidistant Conic

Figure A.7: Equidistant Conic projection – Area, Isotropy, Flexion, Skewness
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A.8. Equirectangular

Figure A.8: Equirectangular projection – Area, Isotropy, Flexion, Skewness
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A.9. Gall-Peters

Figure A.9: Gall-Peters projection – Area, Isotropy, Flexion, Skewness
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A.10. Hammer

Figure A.10: Hammer projection – Area, Isotropy, Flexion, Skewness
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A.11. Lambert Azimuthal Equal-Area (North Polar)

Figure A.11: Lambert Azimuthal Equal-Area (North Polar) projection – Area, Isotropy, Flexion, Skewness
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A.12. Lambert Conic

Figure A.12: Lambert Conic projection – Area, Isotropy, Flexion, Skewness
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A.13. Lambert Cylindrical Equal-Area

Figure A.13: Lambert Cylindrical Equal-Area projection – Area, Isotropy, Flexion, Skewness
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A.14. Miller Cylindrical

Figure A.14: Miller Cylindrical projection – Area, Isotropy, Flexion, Skewness
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A.15. Sinusoidal

Figure A.15: Sinusoidal projection – Area, Isotropy, Flexion, Skewness
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A.16. Stereographic (North Polar)

Figure A.16: Stereographic (North Polar) projection – Area, Isotropy, Flexion, Skewness
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A.17. Wiechel

Figure A.17: Wiechel projection – Area, Isotropy, Flexion, Skewness
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A.18. Winkel II

Figure A.18: Winkel II projection – Area, Isotropy, Flexion, Skewness
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A.19. Winkel Tripel

Figure A.19: Winkel Tripel projection – Area, Isotropy, Flexion, Skewness



B
Distance Plots

B.1. Aitoff

Figure B.1: Aitoff
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B.2. Behrmann 65

B.2. Behrmann

Figure B.2: Behrmann

B.3. Cassini

Figure B.3: Cassini
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B.4. Central Cylindrical

Figure B.4: Central Cylindrical

B.5. Collignon

Figure B.5: Collignon
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B.6. Equidistant Conic

Figure B.6: Equidistant Conic

B.7. Equirectangular

Figure B.7: Equirectangular
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B.8. Gall-Peters

Figure B.8: Gall-Peters

B.9. Hammer

Figure B.9: Hammer
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B.10. Lambert Azimuthal Equal-Area (North Polar)

Figure B.10: Lambert Azimuthal Equal-Area (North Polar)

B.11. Lambert Conic

Figure B.11: Lambert Conic
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B.12. Lambert Cylindrical Equal-Area

Figure B.12: Lambert Cylindrical Equal-Area

B.13. Miller Cylindrical

Figure B.13: Miller Cylindrical
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B.14. Sinusoidal

Figure B.14: Sinusoidal

B.15. Spilhaus Stereographic

Figure B.15: Spilhaus Stereographic
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B.16. Stereographic (North Polar)

Figure B.16: Stereographic (North Polar)

B.17. Winkel II

Figure B.17: Winkel II
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B.18. Winkel Tripel

Figure B.18: Winkel Tripel



C
Error Plots

C.1. Aitoff

Figure C.1: Aitoff
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C.2. Behrmann 75

C.2. Behrmann

Figure C.2: Behrmann

C.3. Bonne

Figure C.3: Bonne
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C.4. Cassini

Figure C.4: Cassini

C.5. Central Cylindrical

Figure C.5: Central Cylindrical
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C.6. Collignon

Figure C.6: Collignon

C.7. Equidistant Conic

Figure C.7: Equidistant Conic



C.8. Gall-Peters 78

C.8. Gall-Peters

Figure C.8: Gall-Peters

C.9. Hammer

Figure C.9: Hammer
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C.10. Lambert Azimuthal Equal-Area (North Polar)

Figure C.10: Lambert Azimuthal Equal-Area (North Polar)

C.11. Lambert Conic

Figure C.11: Lambert Conic
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C.12. Lambert Cylindrical Equal-Area

Figure C.12: Lambert Cylindrical Equal-Area

C.13. Mercator

Figure C.13: Mercator



C.14. Miller Cylindrical 81

C.14. Miller Cylindrical

Figure C.14: Miller Cylindrical

C.15. Sinusoidal

Figure C.15: Sinusoidal
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C.16. Spilhaus Stereographic

Figure C.16: Spilhaus Stereographic

C.17. Stereographic (North Polar)

Figure C.17: Stereographic (North Polar)
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C.18. Wiechel

Figure C.18: Wiechel

C.19. Winkel II

Figure C.19: Winkel II
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C.20. Winkel Tripel

Figure C.20: Winkel Tripel
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Fractal Dimension Plots

D.1. Aitoff

Figure D.1: Aitoff
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D.2. Azimuthal Equidistant (North Polar)

Figure D.2: Azimuthal Equidistant (North Polar)

D.3. Behrmann

Figure D.3: Behrmann
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D.4. Bonne

Figure D.4: Bonne
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D.5. Cassini

Figure D.5: Cassini



D.6. Central Cylindrical 89

D.6. Central Cylindrical

Figure D.6: Central Cylindrical
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D.7. Collignon

Figure D.7: Collignon

D.8. Equidistant Conic

Figure D.8: Equidistant Conic
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D.9. Equirectangular

Figure D.9: Equirectangular

D.10. Gall-Peters

Figure D.10: Gall-Peters
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D.11. Hammer

Figure D.11: Hammer

D.12. Lambert Azimuthal Equal-Area (North Polar)

Figure D.12: Lambert Azimuthal Equal-Area (North Polar)
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D.13. Lambert Cylindrical Equal-Area

Figure D.13: Lambert Cylindrical Equal-Area

D.14. Miller Cylindrical

Figure D.14: Miller Cylindrical
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D.15. Sinusoidal

Figure D.15: Sinusoidal

D.16. Wiechel

Figure D.16: Wiechel
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D.17. Winkel II

Figure D.17: Winkel II

D.18. Winkel Tripel

Figure D.18: Winkel Tripel



E
Code

distortions.py
# distortions.py
# NOT C ENCODED DISTORTIONS (SLOWER, BUT MORE INTERPRETABLE CALCULATION)
import sympy as sp
import numpy as np
import pandas as pd
from tabulate import tabulate
from map_projections import projection_formulas
import time
import matplotlib.pyplot as plt
import geopandas as gpd

# define variables
lam, phi, alpha = sp.symbols('lam phi alpha')

def plot_projected_coastlines(projection, x_func, y_func, lam_vals, phi_vals, shapefile_path):
x_expr = sp.lambdify((lam, phi), x_func, 'numpy')
y_expr = sp.lambdify((lam, phi), y_func, 'numpy')
gdf = gpd.read_file(shapefile_path)
#gdf = shapefile_path

plt.figure()
fig, ax = plt.subplots()

for geom in gdf.geometry:
if geom.geom_type == 'LineString':

lon, lat = geom.xy
lon = np.array(lon)
lat = np.array(lat)

lam_rad = np.clip(np.radians(lon), -np.pi, np.pi)
phi_rad = np.clip(np.radians(lat), -np.pi/2+0.001, np.pi/2-0.001)

x = x_expr(lam_rad, phi_rad)
y = y_expr(lam_rad, phi_rad)

plt.plot(x, y, color='black', linewidth=0.3)

for lam1, phi1 in zip(lam_vals, phi_vals):
lam_add = np.random.uniform(0*np.pi, np.pi)
phi_add = np.random.uniform(0 * np.pi, 0.5 * np.pi)

96



97

# lam_add and phi_add for plot
#lam_add = 0 #np.pi * np.array([0,0,0,0,0,0,0])
#phi_add = 1/2*np.pi-0.01 #np.pi * np.array([1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2])

# New point
lam2 = (lam1 + lam_add)
phi2 = (phi1 + phi_add)

# Interpolate great circle
lam_gc, phi_gc = mapping.interpolate_gc(lam1, phi1, lam2, phi2, n=100)

# Convert to x, y
x_gc = mapping.x_func(lam_gc, phi_gc)
y_gc = mapping.y_func(lam_gc, phi_gc)

# Fix antimeridian crossing by inserting NaNs where needed
x_fixed = [x_gc[0]]
y_fixed = [y_gc[0]]

for i in range(1, len(x_gc)):
# Check for discontinuity in longitude (wrap around)
if abs(lam_gc[i] - lam_gc[i - 1]) > np.pi:

x_fixed.append(np.nan)
y_fixed.append(np.nan)

x_fixed.append(x_gc[i])
y_fixed.append(y_gc[i])

# Plot
ax.plot(x_fixed, y_fixed, color='blue', linewidth=.9)

x1 = x_expr(lam1, phi1)
y1 = y_expr(lam1, phi1)
x2 = x_expr(lam2, phi2)
y2 = y_expr(lam2, phi2)

ax.plot([x1,x2],[y1,y2], color = 'red', linewidth = 0.9)

ax.set_axis_off()
plt.axis('equal')
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
plt.savefig(f"Distance_Plots/{projection}.png", dpi=300, bbox_inches='tight',

pad_inches=0),→
plt.close()

def rms(array):
return np.linalg.norm(array) / np.sqrt(array.size)

class distortions:
def __init__(self, x, y):

# Define symbolic variables
self.lam = lam
self.phi = phi
self.alpha = alpha
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# Define transformation formulas
self.x = x
self.y = y

self.x_func = sp.lambdify((lam, phi), self.x, 'numpy')
self.y_func = sp.lambdify((lam, phi), self.y, 'numpy')

# Define K matrix
self.K = sp.Matrix([[sp.cos(self.phi)**-1, 0],

[0, 1]])

# Define M matrix
self.M = sp.Matrix([self.x, self.y])

# Define the vector of variables
self.vars = sp.Matrix([self.lam, self.phi])

# Calculate Jacobion
self.J = self.M.jacobian(self.vars)

# Calculate transformation matrix T and convert to function for faster calculations
#self.T = sp.lambdify((self.lam, self.phi), self.J * self.K, 'numpy')

# Compute symbolic expression first
T_sym = (self.J * self.K).tolist() # Convert to list of expressions

# Lambdify each element to create a fully vectorized 2×2 function
self.T_funcs = [[sp.lambdify((lam, phi), T_sym[i][j], 'numpy')
for j in range(2)] for i in range(2)]

# Hessian for x and y
self.Hx = sp.hessian(x, (self.lam, self.phi))

self.Hy = sp.hessian(y, (self.lam, self.phi))

# Define w
self.w = self.K * sp.Matrix([sp.tan(self.phi)*sp.sin(2*self.alpha),
sp.tan(self.phi)*(-(sp.cos(self.alpha)**2))])

# Compute u and v vectors
self.u = self.K * sp.Matrix([sp.cos(self.alpha), sp.sin(self.alpha)])

# Compute v and v_ort vectors
self.v = self.J * self.u

self.v_ort = sp.Matrix([0, 0])
self.v_ort[0] = -self.v[1]
self.v_ort[1] = self.v[0]

# Compute a vector
#self.a = self.J * self.w + sp.Matrix([self.u.T*self.Hx*self.u,

self.u.T*self.Hy*self.u]),→

ux = (self.u.T * self.Hx * self.u)[0]
uy = (self.u.T * self.Hy * self.u)[0]
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self.a = self.J * self.w + sp.Matrix([ux, uy])

def singularities(self, lam_vals, phi_vals):
# 1) Evaluate the four T-matrix components: each comes back shape (N,)
T_00 = self.T_funcs[0][0](lam_vals, phi_vals)
T_01 = self.T_funcs[0][1](lam_vals, phi_vals)
T_10 = self.T_funcs[1][0](lam_vals, phi_vals)
T_11 = self.T_funcs[1][1](lam_vals, phi_vals)

# 2) Force them all to shape (N,) (in case some returned scalars)
T_00, T_01, T_10, T_11 = np.broadcast_arrays(T_00, T_01, T_10, T_11)
N = T_00.shape[0]

# 3) Build (N,2,2) T_all
T_all = np.empty((N, 2, 2))
T_all[:,0,0] = T_00
T_all[:,0,1] = T_01
T_all[:,1,0] = T_10
T_all[:,1,1] = T_11

# 4) Batch-compute TTT, trace, det
TtT = np.einsum('nij,nkj->nik', T_all, T_all)
trace_T = np.trace(TtT, axis1=1, axis2=2)
det_T = np.linalg.det(T_all)

abs_det = np.abs(det_T)
left = np.sqrt(trace_T + 2 * abs_det)
right = np.sqrt(np.maximum(trace_T - 2 * abs_det, 0))

a = (left + right) / 2
b = (left - right) / 2
return a, b

def area_and_isotropy(self, lam_vals, phi_vals):
a, b = self.singularities(lam_vals, phi_vals)
A = np.std(np.log(a*b))
I = rms(np.log(a/b))
return A, I

def flexion_and_skewness(self, lam_vals, phi_vals, alpha_vals):
# 1) create your lambdified scalar functions once
v_x = sp.lambdify((lam, phi, alpha), self.v[0], 'numpy')
v_y = sp.lambdify((lam, phi, alpha), self.v[1], 'numpy')
v_ort_x = sp.lambdify((lam, phi, alpha), self.v_ort[0], 'numpy')
v_ort_y = sp.lambdify((lam, phi, alpha), self.v_ort[1], 'numpy')
a_x = sp.lambdify((lam, phi, alpha), self.a[0], 'numpy')
a_y = sp.lambdify((lam, phi, alpha), self.a[1], 'numpy')

# 2) build our grid:
# lam_vals, phi_vals are shape (N,)
# alpha_vals is shape (M,)
lam_grid = lam_vals[:, None] # shape (N,1)
phi_grid = phi_vals[:, None] # shape (N,1)
alpha_grid = alpha_vals[None, :] # shape (1,M)
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# 3) evaluate all at once:
Vx = v_x(lam_grid, phi_grid, alpha_grid) # (N,M)
Vy = v_y(lam_grid, phi_grid, alpha_grid)
Vortx = v_ort_x(lam_grid, phi_grid, alpha_grid)
Vorty = v_ort_y(lam_grid, phi_grid, alpha_grid)
Ax = a_x(lam_grid, phi_grid, alpha_grid)
Ay = a_y(lam_grid, phi_grid, alpha_grid)

# Broadcast all six to the same shape (N,M):
Vx, Vy, Vortx, Vorty, Ax, Ay = np.broadcast_arrays(

Vx, Vy, Vortx, Vorty, Ax, Ay
)

# Then stack:
Vf = np.stack((Vx, Vy), axis=-1)
Vortf = np.stack((Vortx, Vorty), axis=-1)
Af = np.stack((Ax, Ay), axis=-1)

# 4) stack into shape (N,M,2)
Vf = np.stack((Vx, Vy), axis=-1)
Vortf = np.stack((Vortx, Vorty), axis=-1)
Af = np.stack((Ax, Ay), axis=-1)

# 5) dot products along the last axis:
v_dot_a = np.sum(Vf * Af, axis=-1) # (N,M)
v_ort_dot_a = np.sum(Vortf * Af, axis=-1)
v_dot_v = np.sum(Vf * Vf, axis=-1)

# 6) safe division and final f, s arrays:
denom = np.maximum(v_dot_v, 1e-12)
f_vals = np.abs(v_ort_dot_a) / denom
s_vals = np.abs(v_dot_a) / denom

# 7) single mean
return f_vals, s_vals

def interpolate_gc(self, lam1, phi1, lam2, phi2, n=100):
# Returns n points interpolated along great-circle path
# All angles in radians
import numpy as np

# Convert to 3D unit vectors
def sph2cart(lam, phi):

return np.array([np.cos(phi)*np.cos(lam),
np.cos(phi)*np.sin(lam),
np.sin(phi)])

a = sph2cart(lam1, phi1)
b = sph2cart(lam2, phi2)

# Determine angle between a and b
omega = np.arccos(np.clip(np.dot(a, b), -1.0, 1.0))
if np.isclose(omega, 0): # Very close points are handled here

return np.tile([[lam1], [phi1]], (1, n))

sin_omega = np.sin(omega)
t = np.linspace(0, 1, n)
sin_omega = np.sin(omega)
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# Create points along the great circle
points = ((np.sin((1 - t) * omega)[None, :] * a[:, None] +

np.sin(t * omega)[None, :] * b[:, None]) / sin_omega)

# Convert back to lat/lon
lam_gc = np.arctan2(points[1], points[0])
phi_gc = np.arcsin(points[2])
return lam_gc, phi_gc

def distance(self, lam_vals, phi_vals, interpolate_steps):
# Shifted arrays
lam1, lam2 = lam_vals[:-1], lam_vals[1:]
phi1, phi2 = phi_vals[:-1], phi_vals[1:]

# 3D unit vectors on the globe (vectorized)
x1 = np.array([np.cos(phi1) * np.cos(lam1),

np.cos(phi1) * np.sin(lam1),
np.sin(phi1)])

x2 = np.array([np.cos(phi2) * np.cos(lam2),
np.cos(phi2) * np.sin(lam2),
np.sin(phi2)])

# Dot product and globe distance
dot = np.sum(x1 * x2, axis=0)
dot = np.clip(dot, -1.0, 1.0) # Prevent numerical domain error
dist_globe = np.arccos(dot)

# Improved method
dist_map_list = []
for lam1, lam2, phi1, phi2 in zip(lam_vals[:-1],
lam_vals[1:], phi_vals[:-1], phi_vals[1:]):

lam_gc, phi_gc = self.interpolate_gc(lam1, phi1, lam2, phi2, n=interpolate_steps)
# n=10000 for 10e-3 error
x_gc = self.x_func(lam_gc, phi_gc)
y_gc = self.y_func(lam_gc, phi_gc)

dx = np.diff(x_gc)
dy = np.diff(y_gc)
dist_map = np.sum(np.sqrt(dx**2 + dy**2))
dist_map_list.append(dist_map)

# Ratio and filtering
dist_map_array = np.array(dist_map_list)
dist = dist_map_array / dist_globe
valid = np.isfinite(dist) & (dist > 0)
log_dist = np.log(dist[valid])
return np.std(log_dist) # std to make invariant under scaling

if __name__ == "__main__":
start_time = time.time()
# Sampling of points on the globe
lam_vals = np.random.uniform(-np.pi, np.pi, 100_000)
phi_vals = np.arcsin(np.random.uniform(-0.9999999, 0.9999999, 100_000))
# To prevent division by zero
alpha_vals = np.linspace(0, 2*np.pi, 500)

# CHOOSE PROJECTION
projection = "Equirectangular"
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x_expr, y_expr = projection_formulas[projection] # Dictionary with projection formulas

mapping = distortions(x_expr, y_expr)

a, i = mapping.area_and_isotropy(lam_vals, phi_vals)
f, s = mapping.flexion_and_skewness(lam_vals, phi_vals, alpha_vals)
d = mapping.distance(lam_vals, phi_vals, 10000)

df = pd.DataFrame({
"Area": [round(a,4)],
"Isotropy": [round(i,4)],
"Flexion": [round(f.mean(),4)],
"Skewness": [round(s.mean(),4)],
"Distance": [round(d,5)]

}).T.reset_index()

df.columns = ['Distortion', 'Value']

print(tabulate(df, headers = 'keys', tablefmt = 'presto'))
print("--- %s seconds ---" % (time.time() - start_time))

# Plotting of distances
# SET YOUR OWN PATH
# (this example uses natural earth data 10m, because it has smooth coastline)
coastline_data_10 = "OWN/PATH"

plot_projected_coastlines(
projection,
x_expr, y_expr,
lam_vals, phi_vals,
coastline_data_10)
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setup.py
# setup.py
# THIS FILE TRANSFORMS distortions_cython.pyx TO A C ENCODED FILE
# ONE NEEDS TO DOWNLOAD IBM'S SOFTWARE TO TRANSFROM PYTHON/CYTHON TO C

from setuptools import setup, Extension
from Cython.Build import cythonize
import numpy

# Define the extension module
extensions = [

Extension(
"distortions_cython", # Name of the resulting module
["distortions_cython.pyx"],
include_dirs=[numpy.get_include()],
# Optional: Add extra compile arguments for optimization if needed
# extra_compile_args=["-O3", "-march=native"],

)
]

setup(
ext_modules=cythonize(extensions, compiler_directives={'language_level': "3"}),

)
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distortions_cython.pyx
# distortions_cython.pyx
# distortions.py FILE IN CYTHON LANGUAGE TO CONVERT TO C
# distorsions_cython.pyx
# cython: language_level=3
# cython: cdivision=True
# cython: boundscheck=True
# cython: wraparound=True

import sympy as sp
import numpy as np
cimport numpy as np # For C-level NumPy API
cimport cython

# It's important to initialize NumPy C API
np.import_array()

# Define symbolic variables that MUST be used when creating expressions for this class
lam_sym, phi_sym, alpha_sym = sp.symbols('lam phi alpha')

def rms_py(np.ndarray[np.double_t, ndim=1] array):
if array.size == 0:

return 0.0
return np.linalg.norm(array) / np.sqrt(array.size)

cdef class DistortionsCython:
# --- Sympy symbolic variables ---
cdef object lam
cdef object phi
cdef object alpha

# --- Transformation formulas (Sympy expressions) ---
cdef object x_expr
cdef object y_expr

# --- Lambdified functions (Python callables) ---
cdef object x_func_callable
cdef object y_func_callable

# --- Matrices (Sympy Matrix objects) ---
cdef object K_matrix
cdef object M_matrix
cdef object vars_matrix
cdef object J_matrix
cdef list T_funcs_list # List of lists of Python callables

cdef object Hx_matrix
cdef object Hy_matrix
cdef object w_vector
cdef object u_vector
cdef object v_vector
cdef object v_ort_vector
cdef object a_vector

# Lambdified scalar functions for flexion/skewness
cdef object v_x_callable
cdef object v_y_callable
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cdef object v_ort_x_callable
cdef object v_ort_y_callable
cdef object a_x_callable
cdef object a_y_callable

def __init__(self, object x_expr_in, object y_expr_in):
# Use the symbolic variables defined at the module level of this .pyx file
self.lam = lam_sym
self.phi = phi_sym
self.alpha = alpha_sym

# Ensure x_expr_in and y_expr_in are defined using lam_sym, phi_sym from this module
self.x_expr = x_expr_in
self.y_expr = y_expr_in

self.x_func_callable = sp.lambdify((self.lam, self.phi), self.x_expr, 'numpy')
self.y_func_callable = sp.lambdify((self.lam, self.phi), self.y_expr, 'numpy')

self.K_matrix = sp.Matrix([[sp.cos(self.phi)**-1, 0],
[0, 1]])

self.M_matrix = sp.Matrix([self.x_expr, self.y_expr])
self.vars_matrix = sp.Matrix([self.lam, self.phi])
self.J_matrix = self.M_matrix.jacobian(self.vars_matrix)

T_sym_expr = (self.J_matrix * self.K_matrix)
# Lambdify requires a list of expressions if the matrix contains them
T_sym_list = T_sym_expr.tolist()

self.T_funcs_list = [[sp.lambdify((self.lam, self.phi), T_sym_list[i][j], 'numpy') for
j in range(2)] for i in range(2)],→

self.Hx_matrix = sp.hessian(self.x_expr, (self.lam, self.phi))
self.Hy_matrix = sp.hessian(self.y_expr, (self.lam, self.phi))

self.w_vector = self.K_matrix * sp.Matrix([sp.tan(self.phi)*sp.sin(2*self.alpha),

sp.tan(self.phi)*(-(sp.cos(self.alpha)**2))]),→
self.u_vector = self.K_matrix * sp.Matrix([sp.cos(self.alpha), sp.sin(self.alpha)])
self.v_vector = self.J_matrix * self.u_vector

self.v_ort_vector = sp.Matrix([0, 0]) # Create as Sympy Matrix
self.v_ort_vector[0] = -self.v_vector[1]
self.v_ort_vector[1] = self.v_vector[0]

# Ensure u_vector.T * Hx_matrix * u_vector results in a scalar expression for Matrix
constructor,→

ux_expr_scalar = (self.u_vector.T * self.Hx_matrix * self.u_vector)[0,0]
uy_expr_scalar = (self.u_vector.T * self.Hy_matrix * self.u_vector)[0,0]
self.a_vector = self.J_matrix * self.w_vector + sp.Matrix([ux_expr_scalar,

uy_expr_scalar]),→

self.v_x_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.v_vector[0], 'numpy'),→

self.v_y_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.v_vector[1], 'numpy'),→

self.v_ort_x_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.v_ort_vector[0], 'numpy'),→

self.v_ort_y_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.v_ort_vector[1], 'numpy'),→

self.a_x_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.a_vector[0], 'numpy'),→
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self.a_y_callable = sp.lambdify((self.lam, self.phi, self.alpha),
self.a_vector[1], 'numpy'),→

cpdef tuple singularities(self,
np.ndarray[np.double_t, ndim=1] lam_vals,
np.ndarray[np.double_t, ndim=1] phi_vals):

cdef Py_ssize_t N = lam_vals.shape[0] # N is the length of the input 1D arrays
if N == 0: # Handle empty inputs

return np.array([], dtype=np.double), np.array([], dtype=np.double)

# 1. Evaluate the lambdified functions.
# Results can be 1D arrays (if expr was non-constant) or Python scalars/0-D NumPy

arrays (if expr was constant).,→
_T00_eval = self.T_funcs_list[0][0](lam_vals, phi_vals)
_T01_eval = self.T_funcs_list[0][1](lam_vals, phi_vals)
_T10_eval = self.T_funcs_list[1][0](lam_vals, phi_vals)
_T11_eval = self.T_funcs_list[1][1](lam_vals, phi_vals)

# 2. Convert all evaluated components to NumPy arrays. This is crucial.
# If _Tij_eval is a Python scalar (e.g., 0 from a constant expression),
# np.array() will make it a 0-D NumPy array.
# If _Tij_eval is already a NumPy array (0-D or 1-D from a non-constant

expression),,→
# this ensures it's a base ndarray of the correct dtype.
_T00_np_raw = np.array(_T00_eval, dtype=np.double)
_T01_np_raw = np.array(_T01_eval, dtype=np.double) # If _T01_eval was 0, _T01_np_raw

is now array(0.0) (0-D),→
_T10_np_raw = np.array(_T10_eval, dtype=np.double)
_T11_np_raw = np.array(_T11_eval, dtype=np.double)

# 3. Broadcast these NumPy arrays together.
# If `lam_vals` was 1D (length N) and at least one of the `_Tij_np_raw` arrays
# is also 1D (length N) (e.g., from a non-constant symbolic expression like

sec(phi)),,→
# while others are 0-D (scalars), `np.broadcast_arrays` will promote all scalars
# to 1D arrays of length N.
# The result, `_b_arrays_list`, will be a list of 1-D NumPy arrays.
_b_arrays_list = np.broadcast_arrays(_T00_np_raw, _T01_np_raw, _T10_np_raw,

_T11_np_raw),→

# 4. Now, assign to cdef typed 1-D arrays.
# The elements of _b_arrays_list are guaranteed to be at least 1-D if N > 0
# and broadcasting occurred as expected.
cdef np.ndarray[np.double_t, ndim=1] T_00 = _b_arrays_list[0]
cdef np.ndarray[np.double_t, ndim=1] T_01 = _b_arrays_list[1] # This should now

receive a 1-D array,→
cdef np.ndarray[np.double_t, ndim=1] T_10 = _b_arrays_list[2]
cdef np.ndarray[np.double_t, ndim=1] T_11 = _b_arrays_list[3]

# Robustness check: In an edge case where N=1 (input arrays have one element) AND
# ALL symbolic T_ij components were constants (e.g., T-matrix is identity

[[1,0],[0,1]]),,→
# then all _Tij_np_raw would be 0-D. In this *specific* scenario,
# np.broadcast_arrays(0D,0D,0D,0D) returns a list of 0-D arrays.
# The cdef typing above would then fail. So, we must handle this.
if N > 0 and T_00.ndim == 0:

# This implies all T_ij were constants, and np.broadcast_arrays returned 0-D
arrays.,→
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# We need to manually expand them to 1-D arrays of length N.
T_00 = np.full(N, T_00.item(), dtype=np.double) # .item() extracts scalar from 0-D

array,→
T_01 = np.full(N, T_01.item(), dtype=np.double)
T_10 = np.full(N, T_10.item(), dtype=np.double)
T_11 = np.full(N, T_11.item(), dtype=np.double)
# After this, T_00, T_01, T_10, T_11 are guaranteed to be 1-D.

# Now, T_00, T_01, T_10, T_11 are definitely 1D arrays of length N.
# (The original N came from lam_vals.shape[0])

cdef np.ndarray[np.double_t, ndim=3] T_all = np.empty((N, 2, 2), dtype=np.double)
T_all[:,0,0] = T_00
T_all[:,0,1] = T_01
T_all[:,1,0] = T_10
T_all[:,1,1] = T_11

# Batch-compute TTT, trace, det using NumPy (already optimized)
cdef np.ndarray[np.double_t, ndim=3] TtT = np.einsum('nij,nkj->nik', T_all, T_all)
cdef np.ndarray[np.double_t, ndim=1] trace_T = np.trace(TtT, axis1=1, axis2=2)
cdef np.ndarray[np.double_t, ndim=1] det_T = np.linalg.det(T_all)

cdef np.ndarray[np.double_t, ndim=1] abs_det = np.abs(det_T)
cdef np.ndarray[np.double_t, ndim=1] left_sqrt_arg = trace_T + 2 * abs_det
# Ensure non-negative for sqrt, though theoretically trace_T + 2*|det_T| should be >=0
np.maximum(left_sqrt_arg, 0, out=left_sqrt_arg)
cdef np.ndarray[np.double_t, ndim=1] left = np.sqrt(left_sqrt_arg)

cdef np.ndarray[np.double_t, ndim=1] right_sqrt_arg = trace_T - 2 * abs_det
# Ensure non-negative argument for sqrt by clipping
np.maximum(right_sqrt_arg, 0, out=right_sqrt_arg)
cdef np.ndarray[np.double_t, ndim=1] right = np.sqrt(right_sqrt_arg)

cdef np.ndarray[np.double_t, ndim=1] a_val = (left + right) / 2.0
cdef np.ndarray[np.double_t, ndim=1] b_val = (left - right) / 2.0
return a_val, b_val

cpdef tuple area_and_isotropy(self,
np.ndarray[np.double_t, ndim=1] lam_vals,
np.ndarray[np.double_t, ndim=1] phi_vals):

a, b = self.singularities(lam_vals, phi_vals)
cdef np.ndarray[np.double_t, ndim=1] a_arr = np.asarray(a, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=1] b_arr = np.asarray(b, dtype=np.double)

if a_arr.size == 0 or b_arr.size == 0:
return 0.0, 0.0

cdef np.ndarray[np.double_t, ndim=1] ab_product = a_arr * b_arr
# Filter out non-positive values for log
cdef np.ndarray[np.double_t, ndim=1] ab_positive = ab_product[ab_product > 1e-12]
cdef double A_val = np.std(np.log(ab_positive)) if ab_positive.size > 0 else 0.0

cdef np.ndarray[np.double_t, ndim=1] a_over_b_ratio = np.zeros_like(a_arr)
# Create mask for b_arr > 1e-12 to avoid division by zero and log issues
cdef np.ndarray[np.uint8_t, ndim=1] mask_b_ok = (b_arr > 1e-12) & (a_arr > 1e-12) #

ensure a is also positive for a/b > 0,→

if np.any(mask_b_ok):
a_over_b_ratio[mask_b_ok] = a_arr[mask_b_ok] / b_arr[mask_b_ok]
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cdef np.ndarray[np.double_t, ndim=1] a_over_b_positive = a_over_b_ratio[a_over_b_ratio
> 1e-12],→

cdef double I_val = rms_py(np.log(a_over_b_positive)) if a_over_b_positive.size > 0
else 0.0,→

return A_val, I_val

cpdef tuple flexion_and_skewness(self,
np.ndarray[np.double_t, ndim=1] lam_vals,
np.ndarray[np.double_t, ndim=1] phi_vals,
np.ndarray[np.double_t, ndim=1] alpha_vals):

cdef np.ndarray[np.double_t, ndim=2] lam_grid = lam_vals[:, np.newaxis]
cdef np.ndarray[np.double_t, ndim=2] phi_grid = phi_vals[:, np.newaxis]
cdef np.ndarray[np.double_t, ndim=2] alpha_grid = alpha_vals[np.newaxis, :]

Vx_arr = self.v_x_callable(lam_grid, phi_grid, alpha_grid)
Vy_arr = self.v_y_callable(lam_grid, phi_grid, alpha_grid)
Vortx_arr = self.v_ort_x_callable(lam_grid, phi_grid, alpha_grid)
Vorty_arr = self.v_ort_y_callable(lam_grid, phi_grid, alpha_grid)
Ax_arr = self.a_x_callable(lam_grid, phi_grid, alpha_grid)
Ay_arr = self.a_y_callable(lam_grid, phi_grid, alpha_grid)

cdef np.ndarray[np.double_t, ndim=2] Vx = np.asarray(Vx_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=2] Vy = np.asarray(Vy_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=2] Vortx = np.asarray(Vortx_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=2] Vorty = np.asarray(Vorty_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=2] Ax = np.asarray(Ax_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=2] Ay = np.asarray(Ay_arr, dtype=np.double)

Vx, Vy, Vortx, Vorty, Ax, Ay = np.broadcast_arrays(Vx, Vy, Vortx, Vorty, Ax, Ay)
if Vx.size == 0: # Handle empty inputs after broadcasting

return np.array([], dtype=np.double), np.array([], dtype=np.double)

cdef np.ndarray[np.double_t, ndim=3] Vf = np.stack((Vx, Vy), axis=-1)
cdef np.ndarray[np.double_t, ndim=3] Vortf = np.stack((Vortx, Vorty), axis=-1)
cdef np.ndarray[np.double_t, ndim=3] Af = np.stack((Ax, Ay), axis=-1)

cdef np.ndarray[np.double_t, ndim=2] v_dot_a = np.sum(Vf * Af, axis=-1)
cdef np.ndarray[np.double_t, ndim=2] v_ort_dot_a = np.sum(Vortf * Af, axis=-1)
cdef np.ndarray[np.double_t, ndim=2] v_dot_v = np.sum(Vf * Vf, axis=-1)

cdef np.ndarray[np.double_t, ndim=2] denom = np.maximum(v_dot_v, 1e-12)
cdef np.ndarray[np.double_t, ndim=2] f_vals = np.abs(v_ort_dot_a) / denom
cdef np.ndarray[np.double_t, ndim=2] s_vals = np.abs(v_dot_a) / denom

return f_vals, s_vals

cpdef np.ndarray[np.double_t, ndim=1] distance(self,
np.ndarray[np.double_t, ndim=1] lam_vals,
np.ndarray[np.double_t, ndim=1] phi_vals):

if lam_vals.size < 2:
return np.array([], dtype=np.double)

cdef np.ndarray[np.double_t, ndim=1] lam1 = lam_vals[:-1]
cdef np.ndarray[np.double_t, ndim=1] lam2 = lam_vals[1:]
cdef np.ndarray[np.double_t, ndim=1] phi1 = phi_vals[:-1]
cdef np.ndarray[np.double_t, ndim=1] phi2 = phi_vals[1:]

cdef np.ndarray[np.double_t, ndim=2] x1_coords = np.array([np.cos(phi1) *
np.cos(lam1),,→
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np.cos(phi1) *
np.sin(lam1),,→

np.sin(phi1)])
cdef np.ndarray[np.double_t, ndim=2] x2_coords = np.array([np.cos(phi2) *

np.cos(lam2),,→
np.cos(phi2) *

np.sin(lam2),,→
np.sin(phi2)])

cdef np.ndarray[np.double_t, ndim=1] dot_product = np.sum(x1_coords * x2_coords,
axis=0),→

dot_product = np.clip(dot_product, -1.0, 1.0)
cdef np.ndarray[np.double_t, ndim=1] dist_globe = np.arccos(dot_product)

x1m_arr = self.x_func_callable(lam1, phi1)
y1m_arr = self.y_func_callable(lam1, phi1)
x2m_arr = self.x_func_callable(lam2, phi2)
y2m_arr = self.y_func_callable(lam2, phi2)

cdef np.ndarray[np.double_t, ndim=1] x1m = np.asarray(x1m_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=1] y1m = np.asarray(y1m_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=1] x2m = np.asarray(x2m_arr, dtype=np.double)
cdef np.ndarray[np.double_t, ndim=1] y2m = np.asarray(y2m_arr, dtype=np.double)

cdef np.ndarray[np.double_t, ndim=1] dist_map = np.sqrt((x2m - x1m)**2 + (y2m -
y1m)**2),→

cdef np.ndarray[np.double_t, ndim=1] dist_ratio = np.zeros_like(dist_map,
dtype=np.double),→

# Create a boolean mask for where dist_globe is acceptably large
cdef np.ndarray[np.uint8_t, ndim=1] mask_globe_nonzero = (dist_globe > 1e-12)

dist_ratio[mask_globe_nonzero] = dist_map[mask_globe_nonzero] /
dist_globe[mask_globe_nonzero],→

# Filter for valid ratios before log
cdef np.ndarray[np.uint8_t, ndim=1] valid_mask_bool = np.isfinite(dist_ratio) &

(dist_ratio > 1e-12),→
cdef np.ndarray[np.double_t, ndim=1] log_dist_valid =

np.log(dist_ratio[valid_mask_bool]),→

if log_dist_valid.size == 0:
return np.array([], dtype=np.double)

return log_dist_valid - np.mean(log_dist_valid)

cpdef double boundary_cut(self): # Original returns int, matching here.
B = 0.25
return B
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c_distortions.py
# c_distortions

# THIS CODE USES THE DISTORTION FUNCTIONS FROM THE CYTHON FILE
import numpy as np
import pandas as pd
from map_projections import projection_formulas
from tabulate import tabulate
import time
import distortions_cython

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

def rms(array): # Original rms
return np.linalg.norm(array) / np.sqrt(array.size)

if __name__ == "__main__":
start_time = time.time()

# Choose projection
projection = "Equirectangular"
x_expr, y_expr = projection_formulas[projection]

# Generate sample data
N_points = 10**8
lam_vals = np.random.uniform(-np.pi, np.pi, N_points)
phi_vals = np.arcsin(np.random.uniform(-0.9999999, 0.9999999, N_points))
alpha_vals = np.linspace(0, 2*np.pi, 360)

mapping = distortions_cython.DistortionsCython(x_expr,y_expr)

a_parts = []
i_parts = []
f_parts = []
s_parts = []
d_parts = []

batch_size = 100000

for j in range(0, N_points, batch_size):
a, i = mapping.area_and_isotropy(

lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size])

f, s = mapping.flexion_and_skewness(
lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size],
alpha_vals)

d = mapping.distance(
lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size])

a_parts.append(a)
i_parts.append(i)
f_parts.append(f)
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s_parts.append(s)
d_parts.append(d)

a_cy = np.mean(a_parts)
i_cy = np.mean(i_parts)
f_cy = np.concatenate(f_parts)
s_cy = np.concatenate(s_parts)
d_cy = np.concatenate(d_parts)

df_cy = pd.DataFrame({
"Area": [round(a_cy,5)],
"Isotropy": [round(i_cy,5)],
"Flexion": [round(np.mean(f_cy),5)],
"Skewness": [round(np.mean(s_cy),5)],
"Distance": [round(rms(d_cy),5)],
"Boundary Cut": [mapping.boundary_cut()] # Example

}).T.reset_index()

df_cy.columns = ['Distortion', 'Value']

print(tabulate(df_cy, headers = 'keys', tablefmt = 'presto'))

print("--- Cython version took %s seconds ---" % (time.time() - start_time))
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heatmapping.py
# heatmapping.py
# MAKES THE HEATMAPS
from matplotlib.colors import LogNorm
from map_projections import projection_formulas
from mpl_toolkits.axes_grid1 import make_axes_locatable
import distortions_cython
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import geopandas as gpd

def rms(array):
return np.linalg.norm(array) / np.sqrt(array.size)

#lam, phi, alpha = sp.symbols('lam phi alpha')

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

num_points = 1000
lam_vals = np.linspace(-np.pi, np.pi, num_points)
phi_vals = np.arcsin(np.linspace(-0.9999, 0.9999, num_points))
#phi_vals = np.linspace(-np.pi/2 + 0.0001, np.pi/2 - 0.0001, num_points)
alpha_vals = np.linspace(0, 2 * np.pi, 50)

Lam, Phi = np.meshgrid(lam_vals, phi_vals)
L_flat = Lam.ravel()
P_flat = Phi.ravel()

def plot_coastlines(x_func, y_func):
# Load the coastline shapefile
gdf = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/ne_10m_coastline.shp") # <- adjust path,→

for geom in gdf.geometry:
if geom.geom_type == 'LineString':

lon, lat = geom.xy
lon = np.array(lon)
lat = np.array(lat)

elif geom.geom_type == 'MultiLineString':
for line in geom:

lon, lat = line.xy
lon = np.array(lon)
lat = np.array(lat)
phi = np.radians(lat)
lam = np.radians(lon)
x = x_func(lam, phi)
y = y_func(lam, phi)
plt.plot(x, y, color='black', linewidth=0.5)

continue
else:

continue

phi = np.radians(lat)
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lam = np.radians(lon)

lam = np.clip(np.radians(lon), -np.pi, np.pi)
phi = np.clip(np.radians(lat), -np.pi/2+0.1, np.pi/2-0.1)

x = x_func(lam, phi)
y = y_func(lam, phi)

plt.plot(x, y, color='black', linewidth=0.5)

def plot_heatmap(name : str, distortion : str, use_log : bool = False):
x_expr, y_expr = projection_formulas[name]
mapping = distortions_cython.DistortionsCython(x_expr, y_expr)

if distortion == 'area':
a, b = mapping.singularities(L_flat, P_flat)
label = "Area Distortion"
A_flat = np.log(a*b)
values = A_flat.reshape(num_points, num_points)

elif distortion == 'isotropy':
a, b = mapping.singularities(L_flat, P_flat)
label = "Isotropy Distortion"
I_flat = np.log(a/b)
values = I_flat.reshape(num_points, num_points)

elif distortion == 'flexion':
F_flat, S_flat = mapping.flexion_and_skewness(L_flat, P_flat, alpha_vals)
label = "Flexion Distortion"
F_mean = F_flat.mean(axis=1) # mean of alphas
values = F_mean.reshape(num_points, num_points)

elif distortion == 'skewness':
F_flat, S_flat = mapping.flexion_and_skewness(L_flat, P_flat, alpha_vals)
label = "Skewness Distortion"
S_mean = S_flat.mean(axis=1) # mean of alphas
values = S_mean.reshape(num_points, num_points)

else:
print("Not one of the distortions")
return # Exit early if distortion type is invalid

x_func = sp.lambdify((lam, phi), x_expr, 'numpy')
y_func = sp.lambdify((lam, phi), y_expr, 'numpy')

X = x_func(Lam, Phi)
Y = y_func(Lam, Phi)

X_min = np.min(X)
X_max = np.max(X)
Y_min = np.min(Y)
Y_max = np.max(Y)

scale_norm = LogNorm(vmin=max(values.min(), 1e-3), vmax=values.max()) if use_log else None

fig, ax = plt.subplots(dpi=300)
pcm = ax.pcolormesh(X, Y, values, shading='auto', cmap='coolwarm', norm=scale_norm)
plot_coastlines(x_func, y_func)

# Create colorbar axis that matches height of the plot
divider = make_axes_locatable(ax)
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cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = fig.colorbar(pcm, cax=cax, label=label)

# Rest of the plot (meridians, parallels, formatting)
num_lines = 13
meridians = np.linspace(-np.pi, np.pi, num_lines)
parallels = np.arcsin(np.linspace(-0.99, 0.99, 7))

for lon in meridians:
phi_line = np.arcsin(np.linspace(-0.99, 0.99, 500))
lam_line = np.full_like(phi_line, lon)
x_vals = x_func(lam_line, phi_line)
y_vals = y_func(lam_line, phi_line)
ax.plot(x_vals, y_vals, color='white', linestyle='-', linewidth=0.5)

for lat in parallels:
lam_line = np.linspace(-np.pi, np.pi, 500)
phi_line = np.full_like(lam_line, lat)
x_vals = x_func(lam_line, phi_line)
y_vals = y_func(lam_line, phi_line)
ax.plot(x_vals, y_vals, color='white', linestyle='-', linewidth=0.5)

for spine in ax.spines.values():
spine.set_visible(False)

ax.axis('equal')
ax.set_xlim(X_min, X_max)
ax.set_ylim(Y_min, Y_max)
ax.set_title(f'{name} {distortion} Heatmap')
ax.tick_params(length=0)
ax.axis('off')

plt.tight_layout()
#plt.savefig(f"Heatmaps/{name}_{distortion}.png")
plt.show()

if __name__ == "__main__":
proj_name = "Wiechel"
plot_heatmap(proj_name, 'area', True)
plot_heatmap(proj_name, 'isotropy', True)
plot_heatmap(proj_name, 'flexion', True)
plot_heatmap(proj_name, 'skewness', True)
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plot_error
# plot_error.py
# FIND NUMERICAL ERROR
from map_projections import projection_formulas
import distortions_cython
import numpy as np
import matplotlib.pyplot as plt

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

# Sampling functions
def sample_lam(N):

return np.random.uniform(-np.pi, np.pi, N)
def sample_phi(N):

# uniform in sin phi
return np.arcsin(np.random.uniform(-0.99999999, 0.99999999, N))

def sample_alp(M):
return np.linspace(0, 2 * np.pi, M)

def rms(array):
return np.linalg.norm(array) / np.sqrt(array.size)

def batching(mapping, lam_vals, phi_vals, alpha_vals):
a_parts = []
i_parts = []
f_parts = []
s_parts = []
d_parts = []

N_points = len(lam_vals)

batch_size = 100_000

for j in range(0, N_points, batch_size):
a, i = mapping.area_and_isotropy(

lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size])

f, s = mapping.flexion_and_skewness(
lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size],
alpha_vals)

d = mapping.distance(
lam_vals[j:j+batch_size],
phi_vals[j:j+batch_size])

a_parts.append(a)
i_parts.append(i)
f_parts.append(f)
s_parts.append(s)
d_parts.append(d)

a_cy = np.mean(a_parts)
i_cy = np.mean(i_parts)
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f_cy = np.concatenate(f_parts)
s_cy = np.concatenate(s_parts)
d_cy = np.concatenate(d_parts)
return a_cy, i_cy, np.mean(f_cy), np.mean(s_cy), rms(d_cy)

# Convergence test & plotting
def plot_error_lam_phi(x_expr, y_expr, title):

mapping = distortions_cython.DistortionsCython(x_expr, y_expr)

# reference with a large N
N_ref = 10**8
lam_ref = sample_lam(N_ref)
phi_ref = sample_phi(N_ref)
alpha_vals = sample_alp(10)

A_ref, I_ref, F_ref, S_ref, D_ref = batching(mapping, lam_ref, phi_ref, alpha_vals)

# sample sizes (log-spaced)
Ns = np.unique(np.logspace(2, 6, 5, dtype=int)) # 10^2 to 10^6
A_err = []
I_err = []
F_err = []
S_err = []
D_err = []

for N in Ns:
lam_s = sample_lam(N)
phi_s = sample_phi(N)

A, I, F, S, D = batching(mapping, lam_s, phi_s, alpha_vals)

A_err.append(abs(A - A_ref))
I_err.append(abs(I - I_ref))
F_err.append(abs(F.mean() - F_ref))
S_err.append(abs(S.mean() - S_ref))
D_err.append(abs(D - D_ref))

# plot
plt.loglog(Ns, A_err, '-o', label='Area Error')
plt.loglog(Ns, I_err, '-o', label='Isotropy Error')
plt.loglog(Ns, F_err, '-o', label='Flexion Error')
plt.loglog(Ns, S_err, '-o', label='Skewness Error')
plt.loglog(Ns, D_err, '-o', label='Distance Error')
plt.xlabel('Number of Samples (lam and phi)')
plt.ylabel('Absolute Error')
plt.title(f'Convergence for {title}')
plt.grid(True, which='both', ls='--', alpha=0.5)
plt.legend()
plt.tight_layout()
plt.show()

plt.figure(figsize=(8,6))
name ='Equirectangular'
x_expr, y_expr = projection_formulas[name]

plot_error_lam_phi(x_expr, y_expr, name)
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get_extracted_coastline_latlon.py
# get_extracted_coastline_latlon.py
# EXTRACTS GEOPANDAS DATA AND CONVERTS TO ARRAYS OF LAMBDA AND PHI VALUES
import numpy as np
import os
import pandas as pd
import geopandas as gpd
import distortions_cython

coastline_data_10 = gpd.read_file("SET/PATH/ne_10m_coastline.shp")
coastline_data_110 = gpd.read_file("SET/PATH/ne_110m_coastline.shp")

#high
coastline_f_l1 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_f_l5 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L5.shp") # Antarctica ice-front

coastline,→
# Combine into one GeoDataFrame
coastline_f = gpd.GeoDataFrame(pd.concat([coastline_f_l1, coastline_f_l5], ignore_index=True),

crs="EPSG:4326"),→

#medium
coastline_h_l1 = gpd.read_file("SET/PATH/GSHHS_shp/h/GSHHS_h_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_h_l5 = gpd.read_file(SET/PATH/GSHHS_shp/h/GSHHS_h_L5.shp")
coastline_h = gpd.GeoDataFrame(pd.concat([coastline_h_l1, coastline_h_l5], ignore_index=True),

crs="EPSG:4326"),→

#low
coastline_i_l1 = gpd.read_file("SET/PATH/GSHHS_shp/i/GSHHS_i_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_i_l5 = gpd.read_file("SET/PATH/GSHHS_shp/i/GSHHS_i_L5.shp")
coastline_i = gpd.GeoDataFrame(pd.concat([coastline_i_l1, coastline_i_l5], ignore_index=True),

crs="EPSG:4326"),→

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

# Coastline sample data
def extract_coastline_latlon(data):

"""
Extracts coastline coordinates from a GeoDataFrame, ensuring the output array
length is perfectly synchronized with the midpoint distance calculation.

- For open LineStrings, it extracts all points.
- For closed shapes (LineStrings, Polygon exteriors/interiors), it extracts

only the unique points, discarding the duplicate closing coordinate.
- It correctly handles single and multi-part geometries (MultiLineString, MultiPolygon).
"""
gdf = data
all_lons = []
all_lats = []

for geom in gdf.geometry:
if geom is None or geom.is_empty:

continue

# --- Handle LineString and MultiLineString ---
if geom.geom_type in ('LineString', 'MultiLineString'):



118

# Treat a single LineString as a list containing one item for consistent
processing,→

lines = list(geom.geoms) if geom.geom_type == 'MultiLineString' else [geom]
for line in lines:

lon, lat = line.xy
# A line needs at least 2 points to have a distance/weight
if len(lon) < 2:

continue

# Check if the line is closed
if (lon[0], lat[0]) == (lon[-1], lat[-1]):

# For closed lines, weights are based on unique points. Drop the duplicate
endpoint.,→

all_lons.extend(lon[:-1])
clipped_lat = np.clip(lat, -89.9, 89.9)
all_lats.extend(clipped_lat[:-1])

else:
# For open lines, a weight is calculated for each point. Keep all points.
all_lons.extend(lon)
clipped_lat = np.clip(lat, -89.9, 89.9)
all_lats.extend(clipped_lat)

# --- Handle Polygon and MultiPolygon ---
elif geom.geom_type in ('Polygon', 'MultiPolygon'):

# Treat a single Polygon as a list containing one item for consistent processing
polygons = list(geom.geoms) if geom.geom_type == 'MultiPolygon' else [geom]
for poly in polygons:

# Process the exterior boundary and all interior boundaries (holes)
rings = [poly.exterior] + list(poly.interiors)
for ring in rings:

lon, lat = ring.xy
# A valid ring needs at least 4 points (e.g., A-B-C-A)
if len(lon) < 4:

continue
clipped_lat = np.clip(lat, -89.9, 89.9)
# All polygon rings are closed. Drop the duplicate endpoint.
all_lons.extend(lon[:-1])
all_lats.extend(clipped_lat[:-1])

lams = np.radians(np.array(all_lons))
phis = np.radians(np.array(all_lats))

return lams, phis

def get_extracted_coastline_10():
if os.path.exists("lam_10.npy") and os.path.exists("phi_10.npy"):

return np.load("lam_10.npy"), np.load("phi_10.npy")
else:

lam, phi = extract_coastline_latlon(coastline_data_10)
np.save("lam_10.npy", lam)
np.save("phi_10.npy", phi)
return lam, phi

def get_extracted_coastline_110():
if os.path.exists("lam_110.npy") and os.path.exists("phi_110.npy"):

return np.load("lam_110.npy"), np.load("phi_110.npy")
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else:
lam, phi = extract_coastline_latlon(coastline_data_110)
np.save("lam_110.npy", lam)
np.save("phi_110.npy", phi)
return lam, phi

def get_extracted_coastline_high():
if os.path.exists("lam_.npy") and os.path.exists("phi_.npy"):

return np.load("lam_h.npy"), np.load("phi_h.npy")
else:

lam, phi = extract_coastline_latlon(coastline_f)
np.save("lam_h.npy", lam)
np.save("phi_h.npy", phi)
return lam, phi

def get_extracted_coastline_medium():
if os.path.exists("lam_.npy") and os.path.exists("phi_.npy"):

return np.load("lam_m.npy"), np.load("phi_m.npy")
else:

lam, phi = extract_coastline_latlon(coastline_h)
np.save("lam_m.npy", lam)
np.save("phi_m.npy", phi)
return lam, phi

def get_extracted_coastline_low():
if os.path.exists("lam_.npy") and os.path.exists("phi_.npy"):

return np.load("lam_l.npy"), np.load("phi_l.npy")
else:

lam, phi = extract_coastline_latlon(coastline_i)
np.save("lam_l.npy", lam)
np.save("phi_l.npy", phi)
return lam, phi
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FractalDimension.py
# FractalDimension.py
# COMPUTES FRACTAL DIMENSION
import numpy as np
import sympy as sp
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
import geopandas as gpd
from map_projections import projection_formulas

# SET YOU OWN PATH TO DOWNLOADED COASTLINE DATA
coastline_data_10 = gpd.read_file("SET/PATH/ne_10m_coastline.shp")
coastline_data_110 = gpd.read_file("SET/PATH/ne_110m_coastline.shp")

#high
coastline_f_l1 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_f_l5 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L5.shp") # Antarctica ice-front

coastline,→
# Combine into one GeoDataFrame
coastline_f = gpd.GeoDataFrame(pd.concat([coastline_f_l1, coastline_f_l5], ignore_index=True),

crs="EPSG:4326"),→

#medium
coastline_h_l1 = gpd.read_file("SET/PATH/GSHHS_shp/h/GSHHS_h_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_h_l5 = gpd.read_file(SET/PATH/GSHHS_shp/h/GSHHS_h_L5.shp")
coastline_h = gpd.GeoDataFrame(pd.concat([coastline_h_l1, coastline_h_l5], ignore_index=True),

crs="EPSG:4326"),→

#low
coastline_i_l1 = gpd.read_file("SET/PATH/GSHHS_shp/i/GSHHS_i_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_i_l5 = gpd.read_file("SET/PATH/GSHHS_shp/i/GSHHS_i_L5.shp")
coastline_i = gpd.GeoDataFrame(pd.concat([coastline_i_l1, coastline_i_l5], ignore_index=True),

crs="EPSG:4326"),→

lam, phi = sp.symbols('lam phi')

def extract_coastline_latlon(data):
gdf = data
projection = "Equirectangular"
x_func, y_func = projection_formulas[projection]
x_expr = sp.lambdify((lam, phi), x_func, 'numpy')
y_expr = sp.lambdify((lam, phi), y_func, 'numpy')
all_lons = []
all_lats = []

for geom in gdf.geometry:
if geom.geom_type == 'LineString':

lon, lat = geom.xy
all_lons.extend(lon)
all_lats.extend(lat)

elif geom.geom_type == 'MultiLineString':
for line in geom:

lon, lat = line.xy
all_lons.extend(lon)
all_lats.extend(lat)
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elif geom.geom_type == 'Polygon':
coords = np.array(geom.exterior.coords)
lon = coords[:,0]
lat = coords[:,1]

lat = np.clip(lat, -89.99, 89.99)

all_lons.extend(lon)
all_lats.extend(lat)

elif geom.geom_type == 'MultiPolygon':
for poly in geom.geoms:

rings = [poly.exterior] + list(poly.interiors)
for ring in rings:

lon, lat = ring.xy
all_lons.extend(lon)
all_lats.extend(lat)

lams = np.radians(np.array(all_lons), dtype=np.float64)
phis = np.radians(np.array(all_lats), dtype=np.float64)

x = x_expr(lams, phis)
y = y_expr(lams, phis)

return x, y

def box_count(points, epsilons):
counts = []
for eps in epsilons:

boxes = set()
for x, y in points:

ix = int(x / eps)
iy = int(y / eps)
boxes.add((ix, iy))

counts.append(len(boxes))
return counts

data = coastline_f
# coastline
x, y = extract_coastline_latlon(data)
x = x - np.min(x)
y = y - np.min(y)
x = x / np.max(abs(x))
y = y / np.max(abs(y))
points = np.column_stack((x,y))

epsilons = [2**(-i) for i in range(4, 15)] # Smaller boxes for finer resolution
counts = box_count(points, epsilons)

log_eps = np.log2(1 / np.array(epsilons, dtype=np.float64))
log_counts = np.log2(np.array(counts, dtype=np.float64))
slope, intercept, r_value, p_value, std_err = linregress(log_eps, log_counts)

plt.figure(figsize=(8, 6))
plt.plot(log_eps, log_counts, 'o-', label=f"Dimension approx {slope:.6f}")
#plt.plot(s,t, color = "red")
plt.xlabel("log(1/epsilon)")
plt.ylabel("log(N(epsilon))")
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plt.title("Box-Counting Dimension")
plt.legend()
plt.grid(True, alpha=0.2)
plt.tight_layout()
plt.show()

# Print final dimension result
print(f"Estimated Dimension: {slope:.6f}")
print(f"Standard Error: {std_err:.6f}")
print(f"R-squared: {r_value**2:.4f}")
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Fractal_Dimension_Plot.py
# Fractal_Dimension_Plot.py
# COMPUTES AND VISUALISES LOCAL FRACTAL DIMENSION
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import sympy as sp
from scipy.stats import linregress # For calculating the slope
from map_projections import projection_formulas

# --- Define Sympy symbols for projection formulas ---
lam, phi = sp.symbols('lam phi')

# SET YOU OWN PATH
coastline_l1 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L1.shp") # Global coastlines

excluding Antarctica,→
coastline_l5 = gpd.read_file("SET/PATH/GSHHS_shp/f/GSHHS_f_L5.shp") # Antarctica ice-front

coastline,→

# Combine into one GeoDataFrame
coastline_data = gpd.GeoDataFrame(pd.concat([coastline_l1, coastline_l5], ignore_index=True),

crs="EPSG:4326"),→

# --- Box_count function (remains largely the same) ---
def box_count_analysis(points, epsilons_list):

counts = []
if not points:

return [0] * len(epsilons_list)
for eps in epsilons_list:

if eps <= 0:
counts.append(0)
continue

boxes = set()
for p_x, p_y in points:

if np.isnan(p_x) or np.isnan(p_y):
continue

ix = int(p_x / eps)
iy = int(p_y / eps)
boxes.add((ix, iy))

counts.append(len(boxes))
return counts

# --- Define Epsilon values for Box Counting (for NORMALIZED [0,1] space) ---
EPSILONS_FOR_BOXCOUNT = np.array([2**(-i) for i in range(4, 15)], dtype=np.float64)
LOG_INV_EPSILONS = np.log2(1.0 / EPSILONS_FOR_BOXCOUNT) # Precompute log(1/eps)

def calculate_cell_slope(normalized_points_in_cell):
"""
Calculates the slope of log_counts vs log(1/eps) for the given normalized points.
"""
if not normalized_points_in_cell or len(normalized_points_in_cell) < 10: # <--- Increase

threshold from 2 to 10,→
return 0.0 # or np.nan if you want to skip them entirely

counts = box_count_analysis(normalized_points_in_cell, EPSILONS_FOR_BOXCOUNT)
counts_arr = np.array(counts, dtype=np.float64)

valid_mask = counts_arr > 0
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if np.sum(valid_mask) < 2:
return 0.0 # again, use np.nan if you prefer to ignore in plot

log_counts_valid = np.log2(counts_arr[valid_mask])
log_inv_eps_valid = LOG_INV_EPSILONS[valid_mask]

if len(log_counts_valid) < 2 or np.all(log_inv_eps_valid == log_inv_eps_valid[0]):
return 0.0

try:
slope, *_ = linregress(log_inv_eps_valid, log_counts_valid)
return slope

except ValueError:
return 0.0

# --- Function to extract raw coastline data (in radians) ---
def extract_raw_coastline_latlon(coastline_data):

gdf = coastline_data
all_lons_deg, all_lats_deg = [], []
for geom in gdf.geometry:

if geom is None or geom.is_empty: continue
if geom.geom_type == 'LineString':

lon, lat = geom.xy
all_lons_deg.extend(lon); all_lats_deg.extend(lat)
all_lons_deg.append(np.nan); all_lats_deg.append(np.nan)

elif geom.geom_type == 'MultiLineString':
for line in geom.geoms:

if line is None or line.is_empty: continue
lon, lat = line.xy
all_lons_deg.extend(lon); all_lats_deg.extend(lat)
all_lons_deg.append(np.nan); all_lats_deg.append(np.nan)

elif geom.geom_type == 'Polygon':
coords = np.array(geom.exterior.coords)
lon = coords[:,0]
lat = coords[:,1]

lat = np.clip(lat, -89.99, 89.99)

all_lons_deg.extend(lon); all_lats_deg.extend(lat)
all_lons_deg.append(np.nan); all_lats_deg.append(np.nan)

elif geom.geom_type == 'MultiPolygon':
for poly in geom.geoms:

rings = [poly.exterior] + list(poly.interiors)
for ring in rings:

lon, lat = ring.xy
all_lons_deg.extend(lon); all_lats_deg.extend(lat)
all_lons_deg.append(np.nan); all_lats_deg.append(np.nan)

return np.radians(np.array(all_lons_deg)), np.radians(np.array(all_lats_deg))

# FOR-LOOP OVER ALL MAP PROJECTIONS IN DICTIONARY
for proj_name, (x_expr, y_expr) in list(projection_formulas.items())[22:]:

print(f"Processing: {proj_name}")
# --- CHOOSE THE PROJECTION FOR THE ENTIRE MAP ---
CHOSEN_PROJECTION = "Azimuthal Equidistant (North Polar)"
if CHOSEN_PROJECTION not in projection_formulas:

raise ValueError(f"Projection '{CHOSEN_PROJECTION}' not defined in
projection_formulas."),→

x_formula_sym, y_formula_sym = projection_formulas[CHOSEN_PROJECTION]
x_func = sp.lambdify((lam, phi), x_formula_sym, 'numpy')
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y_func = sp.lambdify((lam, phi), y_formula_sym, 'numpy')
try:

print("Loading and preparing all coastline data globally...")
try:

coastline_lon_rad_ALL, coastline_lat_rad_ALL =
extract_raw_coastline_latlon(coastline_data),→

print(f"Successfully loaded
{len(coastline_lon_rad_ALL[~np.isnan(coastline_lon_rad_ALL)])} raw coastline
coordinate pairs.")

,→
,→

except FileNotFoundError:
print(f"ERROR: Coastline file not found at {coastline_data}. Using dummy data.")
# Dummy data covering a small area for better testing of normalization
lon_segment = np.linspace(-0.5, -0.4, 100)
lat_segment = np.linspace(0.5, 0.6, 100)
coastline_lon_rad_ALL = np.concatenate([lon_segment, [np.nan], lon_segment +

0.05]),→
coastline_lat_rad_ALL = np.concatenate([lat_segment, [np.nan], lat_segment +

0.05]),→

# Filter out NaNs used as separators, for processing
valid_indices_ALL = ~np.isnan(coastline_lon_rad_ALL)
lon_rad_proc = coastline_lon_rad_ALL[valid_indices_ALL]
lat_rad_proc = coastline_lat_rad_ALL[valid_indices_ALL]

if len(lon_rad_proc) == 0:
print("No valid coastline data points found after filtering NaNs. Exiting.")
exit()

# Project all valid points
x_proj_ALL = x_func(lon_rad_proc, lat_rad_proc)
y_proj_ALL = y_func(lon_rad_proc, lat_rad_proc)

# Filter out any NaNs/Infs that might result from projection (e.g., Mercator poles)
finite_proj_mask = np.isfinite(x_proj_ALL) & np.isfinite(y_proj_ALL)
x_proj_finite = x_proj_ALL[finite_proj_mask]
y_proj_finite = y_proj_ALL[finite_proj_mask]
# Important: Keep the original lat/lon for these finite points for later cell

assignment,→
lon_rad_finite = lon_rad_proc[finite_proj_mask]
lat_rad_finite = lat_rad_proc[finite_proj_mask]

if len(x_proj_finite) == 0:
print("No valid coastline data points after projection and finite filtering.

Exiting."),→
exit()

# Global normalization of these finite projected points
x_min_global = np.min(x_proj_finite)
y_min_global = np.min(y_proj_finite)

x_shifted_global = x_proj_finite - x_min_global
y_shifted_global = y_proj_finite - y_min_global

max_x_shifted = np.max(x_shifted_global)
max_y_shifted = np.max(y_shifted_global)

if max_x_shifted == 0: # All x projected points were the same
x_norm_global = np.zeros_like(x_shifted_global)

else:
x_norm_global = x_shifted_global / max_x_shifted
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if max_y_shifted == 0: # All y projected points were the same
y_norm_global = np.zeros_like(y_shifted_global)

else:
y_norm_global = y_shifted_global / max_y_shifted

print(f"Global normalisation complete. {len(x_norm_global)} points available for cell
analysis."),→

# Now, (lon_rad_finite, lat_rad_finite) correspond to (x_norm_global, y_norm_global)

# --- Setup for plotting grid ---
fig, ax = plt.subplots(figsize=(12, 9), dpi = 300)
ax.set_aspect('equal')
ax.set_facecolor('aliceblue')

num_lines = 13
meridians_plot = np.linspace(-np.pi, np.pi, num_lines)
max_lat_rad = np.deg2rad(85.05)
parallels_plot = np.arcsin(np.linspace(-np.sin(max_lat_rad), np.sin(max_lat_rad),

num_lines)),→

# --- Plotting meridians and parallels ---
print("Plotting graticules...")
line_style_args = {'color': 'dimgray', 'linestyle': ':', 'linewidth': 0.8, 'alpha':

0.7},→
for lon_val in meridians_plot:

phi_line = np.linspace(parallels_plot[0], parallels_plot[-1], 200)
ax.plot(x_func(np.full_like(phi_line, lon_val), phi_line),

y_func(np.full_like(phi_line, lon_val), phi_line), **line_style_args),→
for lat_val in parallels_plot:

lam_line = np.linspace(-np.pi, np.pi, 200)
ax.plot(x_func(lam_line, np.full_like(lam_line, lat_val)), y_func(lam_line,

np.full_like(lam_line, lat_val)), **line_style_args),→

# --- Calculating slope for each cell ---
cell_meridians = meridians_plot
cell_parallels = parallels_plot
cell_values_slope = np.full((len(cell_parallels) - 1, len(cell_meridians) - 1),

np.nan),→

print(f"Calculating slopes for {cell_values_slope.size} cells...")
for i in range(len(cell_parallels) - 1):

lat_bottom, lat_top = cell_parallels[i], cell_parallels[i+1]
for j in range(len(cell_meridians) - 1):

lon_left, lon_right = cell_meridians[j], cell_meridians[j+1]

# Identify which of the *globally processed* points fall into this geographic
cell,→

mask_in_cell = (
(lon_rad_finite >= lon_left) & (lon_rad_finite < lon_right) &
(lat_rad_finite >= lat_bottom) & (lat_rad_finite < lat_top)

)

# Get the globally normalized coordinates for these points
x_points_for_cell_norm = x_norm_global[mask_in_cell]
y_points_for_cell_norm = y_norm_global[mask_in_cell]

normalized_points_in_cell = list(zip(x_points_for_cell_norm,
y_points_for_cell_norm)),→

slope_for_cell = calculate_cell_slope(normalized_points_in_cell)
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cell_values_slope[i, j] = slope_for_cell

# --- Plotting the cell slope values using pcolormesh ---
X_pcolormesh_corners, Y_pcolormesh_corners = np.meshgrid(cell_meridians,

cell_parallels),→
X_pcolormesh_transformed = x_func(X_pcolormesh_corners, Y_pcolormesh_corners)
Y_pcolormesh_transformed = y_func(X_pcolormesh_corners, Y_pcolormesh_corners)

if np.any(np.isnan(X_pcolormesh_transformed)) or
np.any(np.isnan(Y_pcolormesh_transformed)):,→
print("Warning: NaN values found in transformed pcolormesh corners for

graticules."),→

if np.nansum(np.isfinite(cell_values_slope)) > 0: # Check if there are any valid
slopes,→
print("Plotting cell slope values with pcolormesh...")
min_slope, max_slope = np.nanmin(cell_values_slope), np.nanmax(cell_values_slope)

cmap = plt.cm.coolwarm # Example colormap for slopes (diverging might be good)
cmap.set_bad(color='lightgrey', alpha=0.4)

# Handle normalization for color scale carefully, especially if range is small or
all NaNs,→

if np.isnan(min_slope) or np.isnan(max_slope) or min_slope == max_slope:
norm = plt.Normalize(vmin= (min_slope - 0.1) if not np.isnan(min_slope) else

0,,→
vmax= (max_slope + 0.1) if not np.isnan(max_slope) else

1) # Default range,→
if not np.isnan(min_slope) and min_slope == max_slope:

norm = plt.Normalize(vmin=min_slope - 0.1, vmax=max_slope + 0.1) # Center
single value,→

else:
norm = plt.Normalize(vmin=min_slope, vmax=max_slope)

quadmesh = ax.pcolormesh(
X_pcolormesh_transformed, Y_pcolormesh_transformed, cell_values_slope,
cmap=cmap, norm=norm,
alpha=0.75, shading='flat'

)
if not (np.isnan(min_slope) or np.isnan(max_slope)):

cb = fig.colorbar(quadmesh, ax=ax, label="Slope (Box-Counting Dimension)",
orientation="vertical", shrink=0.7),→

if min_slope == max_slope: cb.set_ticks([min_slope])
else:

print("Skipping colorbar as min/max of slope values are NaN or no data.")
else:

print("No valid slope values to plot with pcolormesh or all slopes are NaN.")

# --- Transform and plot the actual coastline data (using original projection, not
normalization) ---,→

print("Transforming and plotting coastlines...")
x_coast_transformed = x_func(coastline_lon_rad_ALL, coastline_lat_rad_ALL) # Use ALL

version with NaNs,→
y_coast_transformed = y_func(coastline_lon_rad_ALL, coastline_lat_rad_ALL)
ax.plot(x_coast_transformed, y_coast_transformed, color='black', linewidth=0.9,

label="Coastline"),→

# --- Final plot adjustments ---
ax.set_title(f"Map {CHOSEN_PROJECTION} with Box-Counting Dimension (Slope)")
valid_x_graticule = X_pcolormesh_transformed[~np.isnan(X_pcolormesh_transformed)]
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valid_y_graticule = Y_pcolormesh_transformed[~np.isnan(Y_pcolormesh_transformed)]
if len(valid_x_graticule) > 0 and len(valid_y_graticule) > 0:

ax.set_xlim(np.min(valid_x_graticule), np.max(valid_x_graticule))
y_min_plot = np.percentile(valid_y_graticule, 0.5) if len(valid_y_graticule) > 1

else np.min(valid_y_graticule),→
y_max_plot = np.percentile(valid_y_graticule, 99.5) if len(valid_y_graticule) > 1

else np.max(valid_y_graticule),→
if y_min_plot < y_max_plot: ax.set_ylim(y_min_plot, y_max_plot)
else: ax.set_ylim(np.min(valid_y_graticule), np.max(valid_y_graticule))

plt.xlabel("Projected X-coordinate")
plt.ylabel("Projected Y-coordinate")
plt.grid(True, linestyle='--', alpha=0.2)
plt.tight_layout()
#plt.show()
plt.savefig(f"Fractal_Plots/{CHOSEN_PROJECTION}.png")
plt.close()

except Exception as e:
print(f"Failed for {proj_name}: {e}")
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calc_midpoint_distances.py
# calc_midpoint_distances.py
# CALCULATES THE DISTANCES BETWEEN POINTS FROM THE COASTLINE DATA USING THE MIDPOINT RULE
# TO NORMALISE THE DISTORTION MEASURES ALONG THE ENTIRE COASTLINE
import numpy as np
import os
import pandas as pd
import geopandas as gpd
from pyproj import Geod
import distortions_cython

# SET YOU OWN PATH TO DOWNLOADED COASTLINE DATA
coastline_data_10 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/ne_10m_coastline.shp"),→
coastline_data_110 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/ne_110m_coastline.shp"),→

#best
coastline_f_l1 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/f/GSHHS_f_L1.shp") # Global coastlines excluding
Antarctica

,→
,→
coastline_f_l5 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/f/GSHHS_f_L5.shp") # Antarctica ice-front
coastline

,→
,→
# Combine into one GeoDataFrame
coastline_f = gpd.GeoDataFrame(pd.concat([coastline_f_l1, coastline_f_l5], ignore_index=True),

crs="EPSG:4326"),→

#medium
coastline_h_l1 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/h/GSHHS_h_L1.shp") # Global coastlines excluding
Antarctica

,→
,→
coastline_h_l5 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/h/GSHHS_h_L5.shp"),→
coastline_h = gpd.GeoDataFrame(pd.concat([coastline_h_l1, coastline_h_l5], ignore_index=True),

crs="EPSG:4326"),→

#low
coastline_i_l1 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/i/GSHHS_i_L1.shp") # Global coastlines excluding
Antarctica

,→
,→
coastline_i_l5 = gpd.read_file("C:/Users/daanb/OneDrive - Delft University of

Technology/BEP/coastline_data/GSHHS_shp/i/GSHHS_i_L5.shp"),→
coastline_i = gpd.GeoDataFrame(pd.concat([coastline_i_l1, coastline_i_l5], ignore_index=True),

crs="EPSG:4326"),→

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

geod = Geod(ellps="WGS84") #best current model of calculatin distances, but maybe a perfect
sphere is better,→

# It is important to check which linestrings are closed such that we don't ignore coastlines
# Therefore a if statement for lon[0] == lon[-1] is applied
# These non closed pieces are harder to evaluate because of the midpoint rule
# At the endpoints midrule distance = distance to next/previous point
# Also very important!! Positions of distances must stay the same
# Say we have distances (closed) = [3, 4, 5], then a -> b = 3, b -> c = 4, c -> a = 5
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# So when determining midpoint, we must get [4, 3.5, 4.5] since the coordinates must stay on
same indices,→

# See it as: we went from right point rule to midpoint rule. Therefore % (modulo) is important
def calc_midpoint_dist_coastline(data):

"""
Calculates the midpoint distance for coastline segments from a GeoDataFrame.

This function is extended to handle LineString, Polygon, and MultiPolygon geometries.
- For LineStrings, it differentiates between closed and open shapes.
- For Polygons, it treats the exterior and any interior rings as closed coastlines.
- For MultiPolygons, it processes each component polygon individually.

Args:
data (gpd.GeoDataFrame): A GeoDataFrame containing coastline geometries.

Returns:
np.array: A NumPy array of all calculated midpoint distances.

"""
gdf = data
midpoint_distances = []

for geom in gdf.geometry:
# Skip empty or invalid geometries
if geom is None or geom.is_empty:

continue

geom_midpoints = []

# --- Handle LineString Geometries ---
if geom.geom_type == 'LineString':

distances = []
lon, lat = geom.xy

# Calculate segment distances
for i in range(1, len(lon)):

lon1, lat1, lon2, lat2 = lon[i-1], lat[i-1], lon[i], lat[i]
dist = geod.inv(lon1, lat1, lon2, lat2)[2]
distances.append(dist)

if not distances:
continue

# Check if the LineString is closed
if (lon[0], lat[0]) == (lon[-1], lat[-1]):

# Apply midpoint rule with circular indexing for closed lines
geom_midpoints = [(distances[(j-1) % len(distances)] + distances[j]) / 2 for j

in range(len(distances))],→
else:

# Apply midpoint rule for open lines, preserving endpoints
midpoints = [distances[0]]
for k in range(1, len(distances)):

mid = (distances[k-1] + distances[k]) / 2
midpoints.append(mid)

midpoints.append(distances[-1])
geom_midpoints = midpoints

# --- Handle Polygon Geometries (NEW) ---
elif geom.geom_type == 'Polygon':

# Process the exterior boundary as a closed ring
rings = [geom.exterior] + list(geom.interiors)
for ring in rings:
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distances = []
lon, lat = ring.xy
for i in range(1, len(lon)):

lon1, lat1, lon2, lat2 = lon[i-1], lat[i-1], lon[i], lat[i]
dist = geod.inv(lon1, lat1, lon2, lat2)[2]
distances.append(dist)

if not distances:
continue

# Apply midpoint rule with circular indexing
midpoints = [(distances[(j-1) % len(distances)] + distances[j]) / 2 for j in

range(len(distances))],→
geom_midpoints.extend(midpoints)

# --- Handle MultiPolygon Geometries (NEW) ---
elif geom.geom_type == 'MultiPolygon':

for poly in geom.geoms:
rings = [poly.exterior] + list(poly.interiors)
for ring in rings:

distances = []
lon, lat = ring.xy
for i in range(1, len(lon)):

lon1, lat1, lon2, lat2 = lon[i-1], lat[i-1], lon[i], lat[i]
dist = geod.inv(lon1, lat1, lon2, lat2)[2]
distances.append(dist)

if not distances:
continue

# Apply midpoint rule with circular indexing
midpoints = [(distances[(j-1) % len(distances)] + distances[j]) / 2 for j

in range(len(distances))],→
geom_midpoints.extend(midpoints)

midpoint_distances.extend(geom_midpoints)

return np.array(midpoint_distances)

#dist_10 = calc_midpoint_dist_coastline(coastline_data_10)
#dist_110 = calc_midpoint_dist_coastline(coastline_data_110)
#dist_best = calc_midpoint_dist_coastline(coastline_data_best)

def get_dist_10():
if os.path.exists("dist_10.npy"):

return np.load("dist_10.npy")
else:

data = coastline_data_10
dist = calc_midpoint_dist_coastline(data)
np.save("dist_10.npy", dist)
return dist

def get_dist_110():
if os.path.exists("dist_110.npy"):

return np.load("dist_110.npy")
else:

data = coastline_data_110
dist = calc_midpoint_dist_coastline(data)
np.save("dist_110.npy", dist)
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return dist

def get_dist_high():
if os.path.exists("dist_h.npy"):

return np.load("dist_h.npy")
else:

data = coastline_f
dist = calc_midpoint_dist_coastline(data)
np.save("dist_h.npy", dist)
return dist

def get_dist_medium():
if os.path.exists("dist_m.npy"):

return np.load("dist_m.npy")
else:

data = coastline_h
dist = calc_midpoint_dist_coastline(data)
np.save("dist_m.npy", dist)
return dist

def get_dist_low():
if os.path.exists("dist_l.npy"):

return np.load("dist_l.npy")
else:

data = coastline_i
dist = calc_midpoint_dist_coastline(data)
np.save("dist_l.npy", dist)
return dist
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coastline_distortions.py
# coastline_distortions.py
# COMPUTES THE DISTORTION ALONG THE ENTIRE COASTLINE
import numpy as np
import pandas as pd
from map_projections import projection_formulas
# IMPORT MIDPOINT DISTANCES AND COASTLINE DATA
from calc_midpoint_distances import get_dist_10, get_dist_110, get_dist_high, get_dist_medium,

get_dist_low,→
from get_extracted_coastline_latlon import get_extracted_coastline_10,

get_extracted_coastline_110,
get_extracted_coastline_high,get_extracted_coastline_medium,get_extracted_coastline_low

,→
,→
from tabulate import tabulate
import distortions_cython

lam = distortions_cython.lam_sym
phi = distortions_cython.phi_sym
alpha = distortions_cython.alpha_sym

def rms(array): # Original rms
return np.linalg.norm(array) / np.sqrt(array.size)

def evaluate_projection(projection_name, lam_vals, phi_vals, dist, alpha_vals=np.linspace(0,
2*np.pi, 180)):,→
x_expr, y_expr = projection_formulas[projection_name]
mapping = distortions_cython.DistortionsCython(x_expr, y_expr)

N_points = len(lam_vals)
batch_size = 100000

a_parts = []
i_parts = []
f_parts = []
s_parts = []

for j in range(0, N_points, batch_size):
a, b = mapping.singularities(lam_vals[j:j+batch_size], phi_vals[j:j+batch_size])
f, s = mapping.flexion_and_skewness(lam_vals[j:j+batch_size],

phi_vals[j:j+batch_size], alpha_vals),→

eps = 1e-12
safe_a = np.clip(a, eps, None)
safe_b = np.clip(b, eps, None)

a_parts.extend(np.log(safe_a * safe_b))
i_parts.extend(np.log(safe_a / safe_b))
f_parts.extend(f.mean(axis=1))
s_parts.extend(s.mean(axis=1))

a_arr = np.array(a_parts)
i_arr = np.array(i_parts)
f_arr = np.array(f_parts)
s_arr = np.array(s_parts)

a_arr = np.nan_to_num(a_arr, nan=0.0, posinf=0.0, neginf=0.0)
i_arr = np.nan_to_num(i_arr, nan=0.0, posinf=0.0, neginf=0.0)
f_arr = np.nan_to_num(f_arr, nan=0.0, posinf=0.0, neginf=0.0)
s_arr = np.nan_to_num(s_arr, nan=0.0, posinf=0.0, neginf=0.0)
dist = np.nan_to_num(dist, nan=0.0, posinf=0.0, neginf=0.0)
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dist = np.array(dist)
dist[dist > 10000] = 0

A_mean = sum(a_arr * dist) / sum(dist)
A = np.sqrt(sum((a_arr - A_mean)**2 * dist) / sum(dist))
I = np.sqrt(sum(i_arr**2 * dist) / sum(dist))
F = sum(f_arr * dist) / sum(dist)
S = sum(s_arr * dist) / sum(dist)
total = A**2 + I**2 + F**2 + S**2

return {
"Projection": projection_name,
"Area": round(A, 3),
"Isotropy": round(I, 3),
"Flexion": round(F, 3),
"Skewness": round(S, 3),
"Total": round(total, 3)

}

# CHOOSE LOW, MEDIUM OR HIGH RESOLUTION DATA
lam_vals, phi_vals = get_extracted_coastline_low()
dist = get_dist_low()

results = []

for proj_name in list(projection_formulas.keys())[20:]:
print(f"Processing: {proj_name}")
try:

metrics = evaluate_projection(proj_name, lam_vals, phi_vals, dist)
results.append(metrics)

except Exception as e:
print(f"Failed for {proj_name}: {e}")

df = pd.DataFrame(results)
df_sorted = df.sort_values("Total")

df_sorted.to_latex("projection_results.tex", index=False, escape=False)
df_sorted.to_excel("projection_results.xlsx", index=False)
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