
 
 

Delft University of Technology

Performance evaluation of constraint-based path selection algorithms

Kuipers, F.A.; Korkmaz, T.; Krunz, M.; Van Mieghem, P.F.A.

DOI
10.1109/MNET.2004.1337731
Publication date
2004
Document Version
Accepted author manuscript
Published in
IEEE Network: the magazine of global internetworking

Citation (APA)
Kuipers, F. A., Korkmaz, T., Krunz, M., & Van Mieghem, P. F. A. (2004). Performance evaluation of
constraint-based path selection algorithms. IEEE Network: the magazine of global internetworking, 18(5),
16-23. https://doi.org/10.1109/MNET.2004.1337731

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MNET.2004.1337731
https://doi.org/10.1109/MNET.2004.1337731


Performance Evaluation of Constraint-Based Path Selection

Algorithms

F.A. Kuipers∗, T. Korkmaz, M. Krunz and P. Van Mieghem

October 14, 2003

Abstract

Constraint-based path selection is an invaluable part of a full-ßedged Quality of Service (QoS)

architecture. Internet Service Providers want to be able to select paths for QoS ßows that will
optimize network utilization and satisfy user requirements and as such increase revenues. Unfortu-
nately, Þnding a path based on multiple constraints is known to be an NP-complete problem. Hence,
accurate constraint-based path selection algorithms with a fast running time are scarce. Numerous
heuristics and a few exact QoS algorithms have been proposed. In this paper we compare the lion�s
share of these algorithms. We focus on restricted shortest path algorithms and multi-constrained
path algorithms. The performance evaluation of these two classes of algorithms is presented based
on complexity analysis and simulation results and may shed some light on the difficult task of
selecting the proper algorithm for a QoS-capable network.

1 Introduction

There is a continuous demand for a mission-critical Internet that can provide various levels of quality-

of-service (QoS) guarantees and/or differentiations to voice, video and data applications in a uniÞed

manner. Realizing the potential beneÞts of being able to use the Internet as a uniÞed transport

technology, the research community and industry have been paying signiÞcant attention to enabling

QoS-based networking in the Internet. Users require tailor-made services with high QoS and reliabil-

ity, which a best-effort paradigm cannot provide. Internet service providers on the other hand seek

a more commercial Internet, which enables them to provide differentiated services, optimize network

throughput and possibly increase proÞt. To accommodate the need for QoS, the research commu-

nity has proposed a variety of QoS-capable frameworks (e.g., IntServ, DiffServ, MPLS) [17]. Since

these frameworks largely rely on the underlying routing table, one of the key issues in QoS-proÞcient

architectures is how to determine efficient paths that can satisfy the QoS requirements of multime-

dia applications. This problem is commonly known as constraint-based path selection and has been

shown to be NP-complete. Accordingly, the research community has proposed many heuristics and

only a few exact algorithms. In this paper we provide a descriptive overview of these algorithms and

focus on their performance evaluation using extensive simulations. To the best of our knowledge, no
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comparative study has been conducted before, except for the limited simulation studies in the original

papers describing these algorithms.

Before giving the formal deÞnition of the problem, we describe the notation that is used throughout

this paper. Let G(N,E) denote a network topology, where N is the set of nodes and E is the set

of links. With a slight abuse of notation, we also use N and E to denote the number of nodes

and the number of links, respectively. The source and destination nodes are denoted by s and d.

P denotes a path between s and d and h reßects the hopcount of a path. The number of QoS

measures (e.g., delay, hopcount) is denoted by m. Each link is characterized by an m-dimensional

link weight vector, consisting of m non-negative QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as
components. QoS measures can be roughly classiÞed into additive1 (e.g., delay) and non-additive (e.g.,

available bandwidth). In case of an additive measure, the weight of a path is equal to the sum of the

corresponding weights of the links along that path. For a non-additive measure, the weight of a path

is the minimum (or maximum) link weight along that path. The QoS constraints are denoted by Li,

i = 1, ...,m. In general, constraints on non-additive measures can be dealt with by pruning from the

graph all links (and possibly disconnected nodes) that do not satisfy the requested QoS constraint. For

our performance evaluation, we only considered the more difficult additive measures. Furthermore,

the compared algorithms assume that the network-state information (i.e., link weights) is accurately

maintained at every node via QoS-aware networking protocols. All algorithms that are evaluated in

this paper were designed to solve (an instance of) the multi-constrained path selection problem:

DeÞnition 1 Multi-Constrained Path (MCP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is associated with m additive weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,

i = 1, ...,m, the problem is to Þnd a path P from s to d such that: wi(P )
def
=

P
(u,v)∈P

wi(u, v) ≤ Li for
i = 1, ...,m.

A path obeying the above condition is said to be feasible. Note that there may be multiple feasible

paths between s and d. A modiÞed (and more difficult) instance of the MCP problem is to retrieve the

shortest path among the set of feasible paths. This problem is known as the multi-constrained optimal

path (MCOP) problem and is attained by adding a second condition on the path P in DeÞnition 1:

l(P ) ≤ l(Q) for any feasible path Q between s and d, where l(.) is a path length function. A solution to
the MCOP problem is also a solution to the MCP problem, but not necessarily vice versa. Considerable

work in the literature has focused on a special case of the MCOP problem known as the restricted

shortest path (RSP) problem, where the goal is to Þnd the least-cost path among those that satisfy

only one constraint denoted by ∆, which bounds the permissible delay of a path. The MCP problem

and its variants are known to be NP-complete [3].

In this paper, we compare the lion�s share of QoS algorithms based on extensive simulations. We

consider (a) how often the algorithms determine feasible paths and (b) how much complexity the

algorithms involve. Complexity refers to the intrinsic minimum amount of resources needed to solve a

problem or execute an algorithm. Complexity can be divided into computational-time complexity and

space complexity. Here, we focus on the computational-time complexity. We consider both the worst-

case complexity and the empirical execution times. Table 1 (Section 4) summarizes the worst-case

1Multiplicative measures can be transformed into additive measures by taking their logarithm.
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time and space complexities of all considered algorithms. All algorithms have been implemented with

the same data structure, namely Fibonacci heaps. The simulations presented in this paper consisted

of creating a Waxman topology or a square lattice, through which the algorithms computed an RSP or

MCP path. Waxman graphs belong to the class of random graphs, where the probability of existence

of a link between two nodes decays as an exponential function with the geographic distance between

those two nodes. Waxman graphs are often chosen as topologies resembling communication networks

and they are easy to generate, allowing us to evaluate a large number of topologies. This last property

is crucial in an extensive algorithmic study, where it is necessary to evaluate many scenarios in order to

be able to draw conÞdent conclusions. We have chosen the Waxman parameters such that the longest

minimum hopcount between two nodes in a 100-node graph is around 7. The class of lattices was

chosen to reßect a hard topology class, as motivated in [12]. All simulations consisted of generating

104 topologies, leading to an accuracy of roughly two digits.

The remainder of this paper is organized as follows. In Section 2, we consider the RSP problem,

present the algorithms that target this problem, evaluate their performance using simulations, and

provide conclusions. Section 3 adopts the same approach for the MCP problem. Section 4 concludes

with a summary and discussion.

2 RSP Algorithms

In this section, we Þrst describe the most important RSP algorithms. We refer, for a more in-depth

discussion, to [11] and the references therein. After our description of the RSP algorithms, we present

the simulation results followed by conclusions.

2.1 Description of RSP Algorithms

Exact Algorithms: An exact solution to the RSP problem is proposed by Widyono and called

Constrained Bellman-Ford (CBF) [18]. CBF maintains a list of paths from s to every other

node ordered in increasing cost and decreasing delay. CBF selects a node whose list contains a

path that satisÞes the delay constraint ∆ and that has the minimum cost. CBF then explores

the neighbors of this node using a breadth-Þrst search, and (if necessary) adds new paths to

the list maintained at each neighbor. This process continues as long as ∆ is satisÞed and there

exists a path to be explored.

2-Optimal Approximation: One general approach in dealing with NP-complete problems is to look
for an approximation algorithm with a polynomial time complexity. An algorithm is said to be

2-optimal, if it returns a path with a cost at most (1+2) times the cost of the optimal path, where

2 > 0. Approximation algorithms perform better in minimizing the cost of a returned feasible

path as 2 goes to zero. However, a small value for 2 leads to a large complexity, which is a function

of 1) . To represent the class of 2-optimal approximation algorithms, we have implemented Hassin�s

algorithm [5].

Backward-Forward Heuristic: The backward-forward heuristic (BFH) Þrst determines the least-
delay path (LDP) and the least-cost path (LCP) from every node u to d [14]. BFH then starts
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from s and explores the graph by concatenating two segments: (1) the so-far explored path from

s to an intermediate node u, and (2) the LCP or the LDP from node u to d. BFH simply uses

Dijkstra�s algorithm with the following modiÞcation in the relaxation procedure: a link (u, v) is

relaxed if it reduces the total cost from s to v, while its approximated end-to-end delay obeys

the delay constraint.

Lagrangian-based Linear Composition: The Lagrangian-based linear composition algorithm com-
bines the delay and cost of each link to a link weight w(u, v) = αd(u, v) + βc(u, v) and Þnds the

shortest path with respect to (w.r.t.) w(u, v). α, β are the multipliers and a key issue is how to

determine appropriate values for α, β. This can be done by iteratively Þnding the shortest path

w.r.t. the linear combination and adjusting the multipliers� values in the direction of the optimal

solution [8]. Several reÞnements have been proposed to the basic Lagrangian-based composition

approach. For example, one can use the k-shortest path algorithm2 to close the gap between the

optimal solution and the returned path. We have used the approach of Juttner et al. [8].

Hybrid Algorithms: Hybrid algorithms use combinations of the aforementioned approaches. One
such heuristic called DCCR has been provided in [4]. DCCR tries to solve the RSP problem

through the minimization of a nonlinear length function and using a k-shortest path algorithm.

In order to improve the performance with small values of k, the search space is reduced us-

ing a Lagrangian-based algorithm (with y iterations) before applying DCCR. This Þnal hybrid

algorithm is called SSR+DCCR.

2.2 Performance Evaluation of RSP Algorithms

In this subsection, we compare the RSP algorithms via simulations. We have simulated with Waxman

graphs and lattices. In each Waxman graph, the delay and cost of every link (u, v) were independent

uniformly distributed random variables in the range [1, 100]. In the class of lattices, the delay and

the cost of every link (u, v) were negatively correlated : the delay was chosen uniformly from the range

[1, 100] and the corresponding cost was set to 101 minus the delay. In each simulation we generated

104 graphs and selected node 1 and node N as the source and destination node. For the lattices this

corresponded to a source in the upper left corner and a destination in the lower right corner, leading

to the largest minimum hopcount.

We selected the delay constraint ∆ as follows: we computed the least-delay path (LDP) and the

least-cost path (LCP) between the source and the destination using Dijkstra�s algorithm. If the delay

constraint ∆ < d(LDP), then there is no feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we wanted to compare the algorithms under the

more difficult cases where d(LDP) < ∆ < d(LCP). To investigate how the different values of the delay

constraint affect the performance of the compared algorithms, we selected per graph Þve different

monotonically increasing values for ∆ in the range (d(LDP), d(LCP)), as follows:

∆(x) = d(LDP) +
x

5
(d(LCP)− d(LDP)), x = 1, 2, 3, 4, 5. (1)

2A k-shortest path algorithm does not stop when the destination has been reached for the Þrst time, but continues

until it has been reached through k different paths succeeding each other in length.
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All considered RSP algorithms were capable of Þnding a feasible path that satisÞed the given delay

constraint ∆. Therefore, the challenging part of the RSP problem is not to Þnd a feasible path, but the

ability of the algorithm to minimize the cost of a selected feasible path. We compared the algorithms

based on how inefficient they are in minimizing the cost of a returned feasible path, when compared

to the exact algorithm (CBF) that Þnds a feasible path with the minimum cost. The inefficiency of

an algorithm A is deÞned as

inefficiencyA
def
=
c(A)− c(CBF )

c(CBF )

where c(·) is the average cost of the feasible paths that are returned by an algorithm. We also stored the
execution time of the compared algorithms. To make the results machine independent, the execution

times were normalized by the execution time of Dijkstra�s algorithm (LDP).

Simulation results have indicated that for the considered graphs the execution times of the 2-

optimal approximation algorithms (even when 2 = 1) were much larger than those of the other com-

pared algorithms. Therefore, we excluded the 2-approximations from our plots. We compared the

following algorithms: the exact CBF, the least delay path (LDP), Lagrangian-based Linear Composi-

tion (LLC), Backward-forward heuristic (BFH), DCCR with k = 2 and k = 5 (where k refers to the

maximum number of paths that can be stored at a node), and SSR+DCCR with k = 5. Since the

mutual difference between the algorithms (in terms of inefficiency and execution time) was similar for

different x in ∆(x), we have only reported the average of the inefficiency and the execution time of

the algorithms3.

The results as a function of the number of nodes N are shown in Figure 1. In all cases, the basic

LDP algorithm had the highest inefficiency and the lowest execution time. With a slight increase in

execution time, BFH gives a signiÞcantly lower inefficiency than the LDP algorithm. Actually, BFH

also has a lower inefficiency (even in less computational time) than LLC and DCCR with k = 2.

Since the inefficiency of DCCR and SSR+DCCR is controlled by the value of k, they can give a lower

inefficiency if k increases. However, this will result in a longer execution time. Moreover, in some

cases (e.g., the lattices with negatively correlated link delay and cost), no signiÞcant improvement can

be obtained with the small values of k (e.g., k ≤ 5). In this case initially many subpaths with small
cost and high delay will be stored. These subpaths are likely to lead to infeasible paths. Only if k is

high enough, the paths with higher cost and lower delay will be stored, which may lead to the optimal

solution. The BFH concept is more valuable in this scenario, because it foresees whether a path may

be able to improve the cost or obey the constraint.

2.3 RSP Conclusions

Our conclusions for the restricted shortest path problem are conÞned to the considered classes of graphs

with speciÞed link weight distribution.

The simulation results indicated that a lower inefficiency is generally only obtained at the expense

of increased execution time. Therefore, a hybrid algorithm similar to SSR+DCCR seems to be a

3Although not plotted here, the inefficiency of all algorithms except for SSR+DCCR increases as ∆ increases. As ∆

increases, more paths with small cost become feasible and the search space becomes larger. Since most algorithms do

not reduce their search space, the chance of Þnding an optimal path is often decreased as ∆ increases. SSR+DCCR can

sometimes circumvent this situation by reducing the search space at the cost of increasing the execution time.
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Figure 1: Scaling of the performance measures with N . The inefficiency and normalized CPU time

for the class of Waxman graphs (above) and for the class of square lattices (below).

good solution for the RSP problem. The main advantage of a hybrid algorithm would be to initially

determine a good path with a small execution time (e.g., by using BFH) and to improve the inefficiency

with a k-shortest path approach while controlling the complexity with the value of k. As a result,

we conclude that (rather than a single algorithm) a combination of key concepts (e.g., a nonlinear

length function, search space reduction, tunable accuracy through a k-shortest path algorithm and

backward-forward search) leads to efficient algorithms for the RSP problem.

3 MCP Algorithms

In this section, Þrst the MCP algorithms that we have considered are described. A more in-depth

discussion of these algorithms can be found in [11], [15] and the references therein. Subsequently, we

present the simulation results and conclusions.

3.1 Description of MCP Algorithms

Jaffe�s Approximation: Jaffe [7] proposed to use a linear combination of the link weights: w(u, v) =Pm
i=1 diwi(u, v), where di are positive multipliers and to Þnd the path which minimizes this

conjoint weight. By choosing di = 1
Li
, the largest volume inside the constraints volume is

scanned, before a possibly infeasible path can be selected.

Iwata�s Fallback Algorithm: Iwata et al. [6] proposed a heuristic that Þrst computes one (or more)
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shortest path(s) based on one QoS measure and then checks if all the constraints are met. If this

is not the case, the procedure is repeated with another measure until a feasible path is found

or all QoS measures are examined. In our simulations we only considered one shortest path per

QoS measure.

SAMCRA and TAMCRA: SAMCRA [16] is the exact successor of TAMCRA [2]. TAMCRA and
SAMCRA incorporate three fundamental concepts: (1) a nonlinear measure for the path length

l(P ) = maxj=1,...m

³
wj(P )
Lj

´
, (2) a k-shortest path approach. If k is unrestricted, all paths between

source and destination are returned, ordered in length. And, (3) the principle of non-dominated

paths4 to reduce the search-space. SAMCRA includes a fourth �look-ahead� concept. Similar

to BFH, the look-ahead concept precomputes one or multiple shortest path trees rooted at the

destination and then uses this information to reduce the search-space. In TAMCRA k is Þxed

(giving it a polynomial complexity), but with SAMCRA this k can grow exponentially in the

worst case. For the simulations with TAMCRA we chose k = 2. A better performance can be

achieved when k is increased.

Chen�s Approximate Algorithms: Chen and Nahrstedt [1] provided two heuristics for the MCP
problem: EDSP based on Dijkstra and EBF based on Bellman-Ford. First MCP is simpliÞed by

scaling downm−1 (real) link weights. The user has to providem−1 values for xi, i = 1, ...,m−1,
that are used as scaling factors. The algorithms then adopt a dynamic programming approach

to return a path that minimizes the Þrst (real) weight provided that the other m − 1 (scaled
down integer) weights are within the constraints. We have chosen to implement the EBF version

for our simulations. Unfortunately, to achieve a good performance, high xi�s are needed, which

makes this approach computationally intensive for practical purposes.

Randomized Algorithm: Korkmaz and Krunz [9] have proposed a randomized heuristic for the
MCP problem, that uses the concept of look-ahead. Based on look-ahead information, the

randomized heuristic randomly selects nodes that are likely to lead to a feasible path. Under the

same network conditions, multiple executions of the randomized algorithm may return different

paths between the same source and destination pair. For the simulations we only executed one

iteration of the randomized heuristic.

H_MCOP: Korkmaz and Krunz [10] also provided a heuristic called H_MCOP. This heuristic tries
to Þnd a path within the constraints by using the nonlinear path length function of TAMCRA and

the concept of look-ahead. In addition, H_MCOP tries to simultaneously minimize the weight

of a single �cost� measure along the path. H_MCOP uses two modiÞed Dijkstra executions.

Limited Path Heuristic: Yuan [19] presented two heuristics for the MCP problem. The Þrst �lim-
ited granularity� heuristic resembles the algorithm from Chen and Nahrstedt [1]. We have there-

fore only considered the second �limited path� heuristic (LPH). LPH is an extended Bellman-

Ford algorithm that uses concepts (2) and (3) of TAMCRA. Conform the queue-size allocated

for TAMCRA, we used k = 2 for LPH.

4A path P is dominated by a path Q if wi(Q) ≤ wi(P ), for i = 1, ...m, with at least one inequality sign.
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A*Prune: Liu and Ramakrishnan proposed A*Prune [13] and considered the problem of Þnding

not only one but K shortest paths satisfying the constraints. For the simulations we took

K = 1. A*Prune uses the concept of look-ahead and then starts extracting/pruning nodes in

a Dijkstra-like fashion until K feasible paths are found. A*Prune uses Jaffe�s length function³
l(P ) =

Pm
i=1

wi(P )
Li

´
on the predicted (look-ahead) end-to-end path weights.

3.2 Performance Evaluation of MCP Algorithms

In this subsection we will present and discuss the simulation results for the MCP problem. For the

Waxman graphs and lattices, the weights of a link were assigned independent uniformly distributed

random variables in the range (0, 1]. For the lattices, we also considered two negatively correlated

QoS measures, for which the link weights were assigned as follows: w1 was uniformly distributed in

the range (0, 1] and w2 = 1− w1.
The choice of the constraints is important, because it determines how many (if any) feasible paths

exist. We adopted two sets of constraints, namely strict and loose constraints. We have omitted the

results for loose constraints, because under loose constraints all MCP algorithms obtained a (near)

optimal success rate in a low execution time. For MCOP algorithms, loose constraints increase the

number of feasible paths and hence the search space. This makes it difficult to Þnd the optimal path.

Fortunately, MCOP algorithms can be easily adapted to solve only MCP, by stopping as soon as a

feasible path is reached. The set of strict constraints was chosen as follows:

Li = wi(P ), i = 1, ...,m

where P is the path for which maxj=1,...m (wj(P )) is minimum. In this case only one feasible path

is present in the graph and hence MCP ≡ MCOP. This also allows us to fairly compare MCP and

MCOP algorithms.

During all simulations we stored the success rate and the normalized execution time. The success

rate of an algorithm is deÞned as the number of times that an algorithm returned a feasible path

divided by the total number of iterations. The normalized execution time of an algorithm is deÞned

as the execution time of the algorithm (over all iterations) divided by the execution time of Dijkstra�s

algorithm.

Our simulations revealed that the Bellman-Ford-based algorithms (Chen�s algorithm and the Lim-

ited Path Heuristic) required signiÞcantly more execution time than their Dijkstra-based counterparts.

We therefore omitted them from the results presented in this paper.

Figure 2 gives the success rate and normalized execution time for the class of Waxman graphs

and lattices (with negatively correlated link weights), with m = 2 under strict constraints. The exact

algorithms SAMCRA and A*Prune always give success rate = 1. The difference in the success rate of

the heuristics under strict constraints is signiÞcant. Jaffe�s algorithm and Iwata�s algorithm perform

signiÞcantly worse than the others. In the class of two-dimensional lattices this difference disappears

as the success rates of all heuristics tend to zero as N increases, even for fairly small N .

Figure 2 also displays the normalized execution time that the algorithms used to obtain the cor-

responding success rate. For the class of Waxman graphs, the execution time of the exact algorithm

SAMCRA does not deviate much from the polynomial time heuristics. In fact all algorithms display a
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Figure 2: For m = 2 and under straict constraints, the success rate (left) and normalized execution

time (right) for the class of Waxman graphs (above) and lattices (below) as a function of the number

of nodes.

polynomial execution time. For the class of lattices, the execution times of the exact algorithms grow

exponentially, which is the price paid for exactness in hard topologies. SAMCRA and A*Prune use

different length functions. The choice of a proper length function is very important, which opens the

question of what is the best length function?

We have also simulated the performance of the algorithms as a function of the number of constraints

m (m = 2, 4, 6 and 8) under independent uniformly distributed link weights. The results for the class

of Waxman graphs (N = 100) and Lattices (N = 49) are plotted in Figure 3. We can see that the

algorithms display a similar ranking in success rate as in Figure 2. Some algorithms display a linear

increase in execution time. All these algorithms have an initialization phase in which they execute the

Dijkstra algorithm m times. Finally, we can observe that if m grows, A*Prune slightly outperforms

SAMCRA. This can be attributed to the non-dominance principle, which looses in strength ifm grows.

However, the time needed to check for non-dominance, is only manifested in a small difference between

the execution times of SAMCRA and A*Prune.

3.3 MCP Conclusions

We will present our conclusions for the considered classes of graphs, namely the Waxman graphs and

the square lattices. The simulation results indicated that SAMCRA-like algorithms performed best

at an acceptable computational cost, which can be attributed to the following features:
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Figure 3: The success rate and normalized execution time as a function of m, under strict constraints.

The results above are for Waxman graphs, with N = 100 and below for the lattices with N = 49. In

both classes of graphs the link weights were independent uniformly distributed random variables.

1. Dijkstra-based search with a nonlinear length function

A nonlinear length function is a prerequisite for exactness. When the link weights are positively

correlated, a linear approach may give a high success rate in Þnding feasible paths, but under

different circumstances the returned path may signiÞcantly violate the constraints. However,

the choice of the best length function is not trivial.

Our simulations indicated that, even on sparse graphs, Dijkstra-like search runs signiÞcantly

faster than a Bellman-Ford-like search.

2. Search-space reduction

Reducing the search-space is always desirable, because this reduces the execution time of an

algorithm. The non-dominance principle is a very strong search-space reducing technique, es-

pecially when the number of constraints m is small. When m grows the look-ahead concept

together with the constraint values provide a better search-space reduction.

3. Tunable accuracy through a k-shortest path functionality

Routing with multiple constraints and a nonlinear length function may require that multiple

paths be stored at a node, necessitating a k-shortest path approach. By tuning the value of k,

a good balance between success rate and computational complexity may be reached.

4. Look-ahead functionality
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The look-ahead concept is based on information from path trees rooted at the destination, which

are computed in polynomial time. These path trees are used to reduce the search-space and to

facilitate the search for a feasible path. In the latter functionality a predicted end-to-end path

length may lead the search sooner in the correct direction, thereby saving in execution time.

The exactness of the TAMCRA-like algorithms depends on the value of k. If k is not restricted,

then both MCP and MCOP problems can be solved exactly, as done by SAMCRA. Although k is

not restricted in SAMCRA, simulations on Waxman graphs with independent uniformly distributed

random link weights show that the execution time of this exact algorithm increases linearly with the

number of nodes, providing a scalable solution to the MC(O)P problem. Simulation results also show

that TAMCRA-like heuristics with small values of k render near-exact solutions. The results for the

class of two-dimensional lattices with negatively correlated link weights are completely different. In

such hard topologies, the heuristics are useless whereas the exact algorithms display an exponential

execution time. We believe that the best approach for such (unrealistic) graphs is via a hybrid

algorithm that uses a good heuristic to make intelligent choices on which path to follow, combined

with an exact SAMCRA-like algorithm that incorporates all the four above-mentioned concepts. If

a solution to MCP suffices, then this algorithm should be stopped as soon as a feasible path is

encountered.

4 Summary and Discussion

Several researchers investigated the constraint-based path selection problem and proposed various al-

gorithms, mostly heuristics. This paper has evaluated these algorithms as proposed for the restricted

shortest path and multi-constrained (optimal) path problems, via simulations in the class of Wax-

man graphs and the much harder class of two-dimensional lattices. Table 1 displays the worst-case

complexities of the algorithms evaluated in this paper.

Algorithm time space

CBF O(eαN) O(eαN)

LDP O(N logN +E) O(N)

BFH O(N logN +E) O(N)

LLC O(E2 log2(E)) O(N)

SSR+DCCR O(yE logN + kE log(kN) + k2E) O(kN)

Jaffe�s algorithm O(N logN +mE) O(N)

Iwata�s algorithm O(mN logN +mE) O(N)

SAMCRA, TAMCRA O(kN log(kN) + k2mE) O(kmN)

EBF O(x2 · · · xmNE) O(x2 · · · xmN)
Randomized algorithm O(mN logN +mE) O(mN)

H_MCOP O(N logN +mE) O(mN)

A*Prune O(N !(m+N +N logN)) O(mN !)

Table 1: Worst-case time and space complexity of the considered QoS path selection algorithms.
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The simulation results show that the worst-case complexities of Table 1 should be interpreted

with care. For instance, the real execution time of H_MCOP will always be longer than that of

Jaffe�s algorithm under the same conditions, since H_MCOP executes the Dijkstra�s algorithm twice.

In general, the simulation results indicate that SAMCRA-like algorithms that use a k-shortest path

algorithm with a nonlinear length function while eliminating paths via the non-dominance and look-

ahead concepts, give the better performance for the considered problems (RSP, MCP, MCOP). The

performance and complexity of these algorithms is easily adjusted by controlling the value of k. When

k is not restricted, the SAMCRA-like algorithms lead to exact solutions. In the class of Waxman or

random graphs with uniformly distributed link weights, simulation results suggest that the execution

times of such exact algorithms increase linearly with the number of nodes. The exponential increase

in execution time is only observed in the class of two-dimensional lattices. Heuristics perform poorly

in such topologies, whereas exactness comes at a high price in complexity. In our simulations the

polynomial-time 2-approximation schemes displayed an extensive execution time and were therefore

omitted from the plots. More research is necessary to indicate whether these algorithms might provide

a good alternative for exact algorithms in large and hard topologies.
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