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Abstract We developed and applied a novel numer-
ical scheme for a gravimetric forward modelling of
the Earth’s crustal density structures based entirely
on methods for a spherical analysis and synthe-
sis of the gravitational field. This numerical scheme
utilises expressions for the gravitational potentials
and their radial derivatives generated by the ho-
mogeneous or laterally varying mass density layers
with a variable height/depth and thickness given in
terms of spherical harmonics. We used these ex-
pressions to compute globally the complete crust-
corrected Earth’s gravity field and its contribution
generated by the Earth’s crust. The gravimetric for-
ward modelling of large known mass density struc-
tures within the Earth’s crust is realised by using
global models of the Earth’s gravity field (EGM2008),
topography/bathymetry (DTM2006.0), continental ice-
thickness (ICE-5G), and crustal density structures
(CRUST2.0). The crust-corrected gravity field is
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obtained after modelling and subtracting the gravi-
tational contribution of the Earth’s crust from the
EGM2008 gravity data. These refined gravity data
mainly comprise information on the Moho interface
and mantle lithosphere. Numerical results also reveal
that the gravitational contribution of the Earth’s crust
varies globally from 1,843 to 12,010 mGal. This grav-
itational signal is strongly correlated with the crustal
thickness with its maxima in mountainous regions
(Himalayas, Tibetan Plateau and Andes) with the pres-
ence of large isostatic compensation. The correspond-
ing minima over the open oceans are due to the thin
and heavier oceanic crust.

Keywords Crust · Forward modelling · Gravity field ·
Spectral representation · Synthetic model of the Earth

1 Introduction

Various methods have been developed and applied
to compute topographic gravity corrections. Study-
ing the global long-wavelength Earth’s gravity field,
the spectral representation of Newton’s integral is
typically utilised in deriving expressions for the for-
ward modelling of the topography-generated gravita-
tional field. Sünkel [50] derived spectral expressions for
computing the topographic and topographic–isostatic
potentials by means of spherical height functions.
Grafarend and Engels [14] and Grafarend et al. [15]
formulated expressions for an evaluation of the grav-
itational potential generated by topographic–isostatic
masses. Alternative expressions for the topographic
potential and its radial derivative were formulated in
Vaníček et al. [70]. Sjöberg and Nahavandchi [42],
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Tsoulis [63], Sjöberg [43], Novák [29], Novák et al.
[30], Tsoulis [64], Sjöberg [45], Heck [16], Tenzer [51],
Sjöberg [47] and Novák [33] derived various expres-
sions for computing parameters of the topography-
generated gravitational field by using methods for
a spherical harmonic analysis and synthesis. Wild
and Heck [71] introduced expressions for topographic
effects on satellite gradiometry. Makhloof [25] derived
expressions for computing topographic–isostatic effects
on airborne and spaceborne gravimetry, and gradiome-
try data. Alternative expressions for computing topo-
graphic effects in spaceborne gravimetry and gra-
diometry applications were formulated by Novák and
Grafarend [32] and Eshagh and Sjöberg [7, 8]. Novák
and Grafarend [31] derived the topographic potential
and its radial derivative using the ellipsoidal represen-
tation of Newton’s integral.

Sjöberg [39, 40] and Sjöberg and Nahavandchi [42]
defined atmospheric effects on the gravity and the
geoid using the spherical harmonic analysis. This con-
cept was further developed in Sjöberg [41, 45] and
Sjöberg and Nahavandchi [44]. In these studies, geom-
etry of the lower atmospheric bound is described
by spectral coefficients of a global elevation model.
Ramillien [37] applied a similar concept to compute
the atmosphere-generated gravitational attraction.
Nahavandchi [28] computed the direct atmospheric
gravity effect on a regular grid at the Earth’s surface
over the territory of Iran including offshore areas. He
combined the local and global topographic information
using detailed digital terrain models and global eleva-
tion model coefficients. Sjöberg [46] derived expres-
sions in the spectral representation for the atmospheric
potential and its radial derivative considering the ellip-
soidal layering of the Earth’s atmosphere. Atmospheric
effects in satellite geodesy applications were discussed
by Novák and Grafarend [32] and Eshagh and Sjöberg
[8]. Novák and Grafarend [32] proposed a method
for computing the gravitational effect of atmospheric
masses on spaceborne data based on the spherical
harmonic approach with a numerical study in North
America. Eshagh and Sjöberg [8] applied an alternative
spherical approach to compute the atmospheric effect
on satellite gravity gradiometry data over Fennoscan-
dia. Tenzer el al. [55] applied the analytical continu-
ation approach in deriving expressions for modelling
the atmospheric gravity corrections in a form of the
spherical height functions.

Tenzer et al. [52–54, 57] computed globally bathy-
metric stripping corrections to gravity field parame-
ters using a spherical harmonic approach. In all these
studies, a constant value of the seawater density was
adopted. Novák [32] computed globally the gravita-

tional potential generated by the ocean saltwater den-
sity with a high-degree spectral resolution. Tenzer
et al. [59, 60] facilitated a depth-dependent seawater
density model in deriving expressions for computing
the bathymetric stripping gravity corrections in order to
reduce large errors otherwise presented in results when
using only a constant seawater density. These expres-
sions utilise the spherical bathymetric functions for the
spectral definition of the bathymetry-generated gravity
field. The expressions for computing the ice density
contrast stripping corrections to gravity data given in
terms of spherical harmonics were derived in Tenzer et
al. [58]. The convergence and optimal truncation of the
binomial series associated with spherical harmonic rep-
resentation of the gravity field were studied in detail,
for instance, by Rummel et al. [38], Sun and Sjöberg
[49], and Novák [34].

In geophysical studies investigating the lithosphere
structure, the gravitational effect of the known sub-
surface mass density distribution is modelled and sub-
sequently removed from observed gravity in order to
reveal the remaining gravitational signal of the un-
known (and sought) anomalous subsurface density dis-
tribution or the density interface (cf., e.g., [20–23]).
Studies of the global crustal model CRUST2.0 can
be found in Tsoulis [65, 66], Tsoulis and Venesis [67]
and Tsoulis et al. [68]. The gravimetric methods for
recovery of the Moho density interface were devel-
oped and applied, for instance, by Arabelos et al.
[1], Sjöberg [48], and Eshagh et al. [9]. Tenzer et al.
[52–54] combined various methods for the gravimetric
forward modelling of known anomalous density struc-
tures within the Earth’s crust based on the spectral
harmonic representation (of topographic and bathy-
metric stripping gravity corrections) and using the an-
alytical integration approach, which utilise the spatial
representation of Newton’s integral (for computing the
ice, sediments, and crust components stripping gravity
corrections).

In this study, we describe all the Earth’s crust den-
sity structures uniformly by means of spherical func-
tions which define the lower and upper bounds of
homogeneous or laterally varying crustal components
mass density layers with a variable height/depth and
thickness. The corresponding gravitational field quan-
tities describing the Earth’s inner structure down to
the Moho density interface are then defined based
entirely on methods for a spherical harmonic analysis
and synthesis of gravity field (Section 2). The currently
available data of the mass density structure within
the Earth’s crust are then used to compute globally
the gravity field parameters generated by the Earth’s
crust. These results are presented and discussed in
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numerical examples (Section 3). Expectations for a
further improvement of synthetic models which de-
scribe the Earth’s gravity field are finally indicated
(Section 4). We note that a discussion on isostatic
models is out of the scope of this study.

2 Spherical harmonic representation
of the crust-corrected gravity field

A determination of the refined gravity field generated
by the regularised Earth without its crust can numer-
ically be realised by the gravitational forward mod-
elling of the inhomogeneous crust density structures.
Alternatively, it can be done in a two-step numerical
scheme consisting of the gravimetric forward modelling
of inhomogeneous crust density contrast structures and
of the consequent gravimetric forward modelling of a
homogeneous crust. The refined gravity field obtained
after applying the gravimetric crust density contrast
stripping corrections to observed gravity represents the
consolidated crust-stripped gravity field generated by
the regularised Earth with the homogeneous crust of
adopted reference (constant) density (cf. [54]). The
refined gravity field of the regularised Earth without
its crust (i.e., the crust-corrected Earth’s gravity field)
is then obtained after subtracting the gravitational field
generated by a homogeneous crust. In our numerical
studies, the gravimetric forward modelling of the ho-
mogeneous crust is done individually for topography
(i.e., application of the topographic correction) and for
remaining homogeneous crust beneath the geoid, both
having a constant reference crust density. This numer-
ical scheme is followed in deriving spectral expressions
for computing the crust-corrected gravity field.

In the following, parameters describing the dis-
turbing and anomalous Earth’s gravity field are used.
Among them the most important one is the disturbing
gravity potential T defined as a difference of the ac-
tual and reference (or normal) gravity potentials (e.g.
Heiskanen and Moritz, [17], Sections 2–13). Outside
the Earth’s masses (satisfying Laplace’s differential
equation), this potential is represented at the position
(r,�) through the spherical harmonic series (e.g. [17],
pp. 85–86)

T (r, �)

= GM
R

n̄∑

n=0

(
R
r

)n+1 n∑

m=−n

Tn,mYn,m (�), ∀ r ≥ R,

(1)

GM = 3,986,005 × 108 m3/s2 is the geocentric gravita-
tional constant and the mean Earth’s radius R=6,371×
103 m approximates geocentric radii of the geoid.
Yn,m are the surface spherical harmonic functions of
degree n and order m, Tn,m are respective spherical
harmonic coefficients and n is their maximum avail-
able degree (the series is generally infinite). The 3-D
position is defined in geocentric spherical coordinates
(r, �); where r is the geocentric radius and the pair
� = (φ, λ) denotes the geocentric direction with spher-
ical latitude φ and longitude λ. The coefficients Tn,m

are derived from the coefficients of global geopotential
model (GGM) by subtracting the spherical harmonic
coefficients of the normal gravity field ([17], p. 88).
Finally, the general condition of r ≥ R applies through-
out the article without being explicitly repeated in each
relevant equation. The gravity disturbance δg reads in
the spherical approximation as ([62], p. 271)

δg (r, �) = −∂T (r, �)

∂r

= GM
R2

n̄∑

n=0

(
R
r

)n+2

(n + 1)

n∑

m=−n

Tn,mYn,m (�).

(2)

The gravity anomaly �g is defined through the funda-
mental gravimetric formula ([62], p. 271)

�g (r, �) = δg (r, �) − 2
r

T (r, �)

= GM
R2

n̄∑

n=0

(
R
r

)n+2

(n − 1)

n∑

m=−n

Tn,mYn,m (�).

(3)

The term 2r−1T in Eq. 3 is the so-called secondary indi-
rect ef fect. The parameters T, �g and δg will be reduced
for gravitational effects of selected known Earth’s mass
components.

The consolidated crust-stripped disturbing gravity po-
tential Tc is computed from the disturbing gravity po-
tential T by using the following expression

Tc (r, �) = T (r, �) − Vt (r, �) + Vb (r, �)

+Vi (r, �) + Vs (r, �) + Vc (r, �) , (4)

where Vt, Vb , Vi, Vs and Vc are, respectively, gravi-
tational potentials generated by topography and den-
sity contrasts due to ocean water, ice, sediments and
remaining anomalous density structures within the
Earth’s crust. These potentials are discussed in this
section as well as their vertical gradients (correspond-
ing gravitational attractions) denoted hereto as gt, gb ,
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Table 1 Statistics of
the topographic and
crust-stripping corrections
to gravity disturbances

Corrections to Min [mGal] Max [mGal] Mean [mGal] STD [mGal]
gravity disturbances

Topographic −659 −19 −70 98
Bathymetric 127 650 330 159
Ice 3 314 21 56
Sediment 14 125 35 20
Upper crust −122 9 −38 35
Middle crust −250 −68 −117 44
Lower crust −529 −118 −185 66

gi, gs and gc, respectively. By analogy with Eq. 4, the
consolidated crust-stripped gravity disturbance δgc is de-
fined as

δgc (r, �) = δg (r, �) − gt (r, �) + gb (r, �)

+ gi (r, �) + gs (r, �) + gc (r, �) . (5)

In Eqs. 4 and 5, the consolidated crust-stripped gravity
field parameters Tcand δgc are obtained from the cor-
responding disturbing gravity field parameters T and
δg after subtracting the gravitational contribution of
topographic masses and after a subsequent application
of stripping corrections due to anomalous density struc-
tures within the Earth’s crust. The computation of the
consolidated crust-stripped gravity anomaly �gc from
the consolidated crust-stripped gravity disturbance δgc

is done by applying the secondary indirect topographic
and crust density contrast effects, see Eq. 3,

�gc (r, �) = δgc (r, �)

−2
r

[
T (r, �) − Vt (r, �) + Vb (r, �)

+ Vi (r, �) + Vs (r, �) + Vc (r, �)
]

.

(6)

[There is also the atmospheric effect to be considered.
However, Tenzer et al. [55] demonstrated that the
atmospheric correction to gravity disturbances varies
between −0.18 and 0.03 mGal, and the complete
atmospheric correction to gravity anomalies varies
from 1.13 to 1.76 mGal. These values are very small

compared to the topographic and crust-stripping grav-
ity corrections (see Tables 1 and 2 in Section 3), thus,
the atmospheric effects are not considered in the con-
text of this study.]

In this paragraph, reduction and stripping correc-
tions applied in Eqs. 4–6 are defined in a general way.
The approach originates in spatial (integral) formula-
tion of the Newtonian potential that is generated by
masses bounded by two closed 2-D surfaces, e.g., the
internal or lower surface rl(�) and the external or upper
surface ru(�). The mass density distribution within the
layer is then either constant or laterally varying. For
laterally varying density ρ, the general potential can be
written as

V (r, �) = G
∫∫

	

ρ
(
�′)

ru(�′)∫

rl(�′)

L−1 (
r, �, r′, �′) dr′ d�′.

(7)

	 is the full solid angle, and L is the Euclidean distance.
The two bounding surfaces can be represented by the
following series expansion (rl is defined relatively to
the reference sphere of radius R through Hl and ru

through Hu)

r (�) = R + H (�) = R +
n̄∑

n=0

n∑

m=−n

Hn,mYn,m(�), (8)

where the height function H defines the bounding sur-
faces external to the reference sphere. In case of the

Table 2 Statistics of
the topographic and
crust-stripping corrections
to gravity anomalies

Corrections to Min [mGal] Max [mGal] Mean [mGal] STD [mGal]
gravity anomalies

Topographic −414 138 42 72
Bathymetric −595 −132 −374 99
Ice −53 210 −1 36
Sediment −65 41 −34 15
Upper crust −37 80 30 24
Middle crust 10 165 110 28
Lower crust −50 262 182 41
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internal surface, the depth function D will be used. De-
veloping the inverse distance function L−1 into a series
of spherical harmonics ([17], Sections 1–15) and solving
the innermost integral in Eq. 7 yield the potential in
the form

V (r, �) = 4πGR2
n̄∑

n=0

(
R
r

)n+1 1
2n + 1

n∑

m=−n

Vn,mYn,m (�).

(9)

Coefficients Vn,m are defined as follows [31]

Vn,m =
∞∑

k=0

(
n + 2

k

)
(−1)k

k + 1
Fn,m

u (k+1) − Fn,m
l (k+1)

Rk+1 . (10)

Coefficients Fu
n,m and their powers can be computed

by the spherical analysis (Fl
n,m are defined respectively

for Hl)

Fu(k+1)
n,m =

∫∫

	

ρ
(
�′) [

Hu (
�′)]k+1Yn,m

∗ (
�′) d�′, (11)

with the complex conjugates of spherical harmonic
functions Yn,m

∗. Using the geocentric gravitational con-
stant of the homogeneous spherical Earth with density
ρearth = 5, 500 kg/m3, i.e.,

GM = 4π

3
ρearth G R3, (12)

the potential in Eq. 9 is rewritten in a manner consistent
with Eq. 1

V (r, �) = GM
R

n̄∑

n=0

(
R
r

)n+1 n∑

m=−n

Vn,mYn,m (�), (13)

with coefficients Vn,m defined as

Vn,m = 3
2n+1

× 1
ρearth

∞∑

k=0

(
n+2

k

)
(−1)k

k+1
Fu

n,m
(k+1)−Fl

n,m
(k+1)

Rk+1 .

(14)

The method is described in all details in [31]. The
density function can also vary radially (only bathym-
etry in this study) which results in more complicated
expressions than given in Eq. 14. On the other hand,
if a constant density is considered (e.g. topography)
then Eq. 11 concerns only height or depth functions.
Corrections to gravity disturbances can be then derived
by applying Eq. 2, corrections to gravity anomalies by
applying Eq. 3.

The reduction and stripping corrections due to par-
ticular masses can be computed if geometry of their
bounding surfaces is known as well as their mass den-
sity distribution. Starting with topography, we consider
solid masses outside the geoid. In spherical approxi-
mation, the lower bounding surface is the geocentric
reference sphere, the upper bounding surface is the sur-
face of the Earth represented relatively to the reference
sphere by topographical height function Htu (positive
over continents, zero over oceans). The average density
of the upper continental crust 2,670 kg/m3 (cf. [18]) is
adopted as the mean topographical mass is adopted as
the mean topographical mass density ρt. Coefficients of
the read, see [33],

Vn,m
t = 3

2n + 1
ρt

ρearth

∞∑

k=0

(
n + 2

k

)
(−1)k

k + 1
Ftu (k+1)

n,m

Rk+1 , (15)

Coefficients Ftu
n,m are derived by the spherical analy-

sis of the height function Htu (and its powers) ob-
tained from the global elevation model (GEM), see
Eq. 11. Topography represents the external boundary;
coefficients Ftl

n,m for the internal boundary are equal
to zero since the spherical approximation of the geoid
is used.

Tenzer et al. [59, 60] derived spectral expressions for
computing the bathymetry-generated gravitational po-
tential Vb and attraction gb . Geometrically, sea water
masses are bounded by the reference sphere of radius
R and the ocean bottom described relatively to the
reference sphere by the depth function Dbl. In this
case a depth-dependent density model must be con-
sidered [12]

ρw
(
Dbl) = ρw

0 + β

2∑

i=1

aiρ
w

(
Dbl) . (16)

Respective coefficients are given as follows [59]

Vb
n,m = 3

2n + 1
�ρw

0

ρearth

∞∑

k=0

(
n + 2

k

)
(−1)k

Rk+1

×
[

Fbl (k+1)
n,m

k + 1
− a1β

�ρw
0

Fbl (k+2)
n,m

k + 2

− a2β

�ρw
0

Fbl (k+3)
n,m

k + 3

]
. (17)

Coefficients Fbl
n,m are derived by applying a spherical

analysis of the depth function Dbl (and its powers) from
the global bathymetric model (GBM) which describes
geometry of the ocean bottom relief (lower bounding
surface), see Eq. 11. There are no coefficients for the
upper bounding surface since the spherical approxi-
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mation of the sea level is used. The nominal value
of the ocean density contrast �ρw

0 is defined as a
difference between reference values of the crust density
ρcrust and the mean surface seawater density ρw

0 in
Eq. 16, i.e., �ρw

0 = ρcrust − ρw
0 . The value of the surface

seawater density ρw
0 = 1, 027.91 kg/m3 is used as the

reference seawater density. For the adopted value of
the reference crust density ρcrust of 2,670 kg/m3, the
reference ocean density contrast (at zero depth) equals
�ρw

0 = 1, 642.09 kg/m3. The parameters of the depth-
dependent density term in Eq. 16 are given by the
following values (Tenzer et al. [60]: β = 0.00637 kg/m3,
a1 = 0.7595 m−1 and a2 = −4.3984 × 10−6 m−2. These
values were estimated from the oceanographic data of
the World Ocean Atlas 2009 (provided by NOAA’s Na-
tional Oceanographic Data Center; [2, 10, 11, 19, 24])
and the World Ocean Circulation Experiment 2004
(provided by the German Federal Maritime and Hy-
drographic Agency; Gouretski and Koltermann [13]).

With reference to Tenzer et al. [58], we consider
spectral expressions for computing the gravitational
potential Vi and attraction gi generated by the ice
density contrast. In this study, we consider continen-
tal ice masses distributed over topography. Required
coefficients Vi

n,m read

Vi
n,m = 3

2n + 1
�ρice

ρearth

(
Ftu

n,m − Fil
n,m

)
. (18)

The ice density contrast �ρice is defined as the
difference between the reference density values of the
crust ρcrust and glacial ice ρice, i.e., �ρice

0 = ρcrust − ρice.
For the adopted values of the reference crust density
2,670 kg/m3 and the density of glacial ice 917 kg/m3

(cf. [5]) the ice density contrast equals 1,753 kg/m3.
The density volume of the polar ice sheet is enclosed
between the upper and lower ice bounds. The upper ice
bound is identical with the upper topographic bound
over areas of the polar ice sheet. Coefficients Ftu

n,m =
Fiu

n,m in Eq. 18 associated with topography are defined
in Eq. 15. Numerical coefficients Fil

n,m describing the
lower ice bound read

Fil
n,m =

∞∑

k=0

(
n + 2

k

)
(−1)k

k + 1
�H(k+1)

n,m

Rk+1 , (19)

where �H(k+1)
n,m are global ice model (GIM) coefficients

of degree n and order m generated from global eleva-
tion and ice-thickness data (cf. [58])

�H(k+1)
n,m =

∫∫

	

[
Ht (�′) − Hi (�′)]k+1

Y∗
n,m

(
�′) d�′.

(20)

We further consider the gravitational potential Vs and
attraction gs generated by the sediment density contrast.
Required coefficients Vs

n,m are computed using the fol-
lowing expressions

Vs
n,m = 3

2n+1

× 1
ρearth

n+2∑

k=0

(
n+2

k

)
(−1)k

k+1
Fsl

n,m
(k+1)−Fn,m

su(k+1)

Rk+1 ,

(21)

with Fsl
n,m and Fsu

n,m defined as

Fsl(k+1)
n,m =

∫∫

	

�ρs (
�′) [

Hsl (�′)]k+1
Y∗

n,m

(
�′) d�′,

Fsu(k+1)
n,m =

∫∫

	

�ρs (
�′) [

Hsu (
�′)]k+1

Y∗
n,m

(
�′) d�′.

(22)

The laterally varying sediment density contrast �ρs in
Eq. 22 is defined as the difference between the refer-
ence density of the Earth’s crust ρcrust and the laterally
varying sediment density ρs, i.e.

�ρs (
�′) = ρcrust

−ρs (
�′) ,

[
R − Dsu (

�′) ≥ r′ ≥ R

−Dsl (�′) : �′ ∈ 	
]

, (23)

where Dsu and Dsl are the depths (reckoned relative
to the sphere of radius R) of the upper and lower
bounds of the sediment layer, respectively. The expres-
sions for the laterally varying sediment density contrast
layer utilise the functions Fsl and Fsu which combine
the information on geometry of the volumetric sedi-
ment layer and its lateral density distribution. Their
coefficients are evaluated by using a global sediment
model (GSM) according to Eq. 22.

By analogy with Eqs. 21–23, we define the gravi-
tational potential Vc and attraction gc generated by
the consolidated (crystalline) crust density. Coefficients
Vc

n,m are given by

Vc
n,m = 3

2n+1

× 1
ρearth

n+2∑

k=0

(
n+2

k

)
(−1)k

k+1
Fcl (k+1)

n,m − Fcu (k+1)
n,m

Rk+1 ,

(24)
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where Fcl
n,m and Fcu

n,m are given by

Fcl(k+1)
n,m =

∫∫

	

�ρc (
�′) [

Hcl (�′)]k+1
Y∗

n,m

(
�′) d�′,

Fcu(k+1)
n,m =

∫∫

	

�ρc (
�′) [

Hcu (
�′)]k+1Y∗

n,m

(
�′) d�′.

(25)

The laterally varying crust density contrast �ρc in
Eq. 25 is defined as the difference between the refer-
ence density of the Earth’s crust ρcrust and the laterally
varying crust density ρc, i.e.

�ρc (
�′) = ρcrust

−ρc (
�′) ,

[
R − Dcu (

�′) ≥ r′ ≥ R

−Dcl (�′) : �′ ∈ 	
]

, (26)

where Dcu and Dcl are the depths (reckoned relative to
the sphere of radius R) of the upper and lower bounds
of the crust layer, respectively. The expressions for
the laterally varying crust density contrast layer utilise
the functions Fcl and Fcu which combine the geometry
of the volumetric crust layer and its lateral density
distribution. Their coefficients are computed from the
global crust model (GCM) coefficients. Known vertical
crustal density changes can be modelled using more
volumetric crust layers, each having a specific lateral
density distribution with varying depth and thickness.
This is discussed in Section 3.

The expressions for computing the gravity field pa-
rameters, see Eqs. 1–3, and the gravitational field pa-
rameters generated by the topography, bathymetry,
and ice, sediments, and consolidated crust compo-
nents density contrasts, see Eqs. 15–26, are derived
in terms of spherical harmonics utilising GGM, GEM,
GBM, GIM, GSM, and GCM coefficients. Substitut-
ing these expressions to Eq. 4, we obtain the consoli-
dated crust-stripped disturbing potential Tc in the fol-
lowing form

Tc (r, �) = GM
R

n∑

n=0

n∑

m=−n

(
R
r

)n+1

Tc
n,mYn,m (�), (27)

where

Tc
n,m = Tn,m − Vt

n,m + Vb
n,m + Vi

n,m + Vs
n,m + Vc

n,m,

(28)

Similarly, this substitution to Eqs. 5 and 6 yields

δgc (r, �)= GM
R2

n∑

n=0

(
R
r

)n+2

(n+1)

n∑

m=−n

Tc
n,mYn,m (�),

�gc (r, �)= GM
R2

n∑

n=0

(
R
r

)n+2

(n−1)

n∑

m=−n

Tc
n,mYn,m (�).

(29)

Finally, the gravitational contribution generated by the
homogeneous crust (inside the geoid) of the constant
reference density ρcrust is subtracted from gravity field.
This final step is again defined in the spectral repre-
sentation. The upper bound of the homogeneous crust
density layer is then given by the geoid surface while
the lower bound is identical with the (model) Moho
density interface. The gravitational potential Vcrust and
attraction gcrust generated by the homogeneous crust of
the reference crust density ρcrust (inside the geoid) are

Vcrust (r, �) = GM
R

n̄∑

n=0

(
R
r

)n+1 n∑

m=−n

Vcrust
n,m Yn,m (�),

(30)

and

gcrust (r, �)= GM
R2

n̄∑

n=0

(
R
r

)n+2

(n+1)

n∑

m=−n

Vcrust
n,m Yn,m (�).

(31)

The numerical coefficients Vcrust
n,m in Eqs. 30 and 31 are

given by

Vcrust
n,m = 3

2n+1
ρcrust

ρearth

n+2∑

k=0

(
n+2

k

)
(−1)k

k+1
F M (k+1)

n,m −Fg (k+1)
n,m

Rk+1 ,

(32)

Coefficients Fg
n,m are generated from the numerical

coefficients Tn,m of the disturbing gravity potential us-
ing the following formula (e.g. [59])

Fg
n,m = Tn,m

γ0
, (33)

where γ 0 is normal gravity at the surface of the refer-
ence ellipsoidal GRS-80 [27]. Coefficients of the spher-
ical Moho-depth function F M

n,m can be derived by the
spherical analysis, see Eq. 11, of the depth of the
Moho density interface with respect to the geoid that
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is derived from the global Moho model (GMM). In
spherical approximation, the geocentric radius of the
geoid is approximated by R. Hence, Fg

n,m
∼= 0 and Vcrust

n,m
become

Vcrust
n,m

∼= 3
2n + 1

ρcrust

ρearth
F M

n,m. (34)

The crust-corrected disturbing gravity potential T M is
calculated by the expression

T M (r, �) = Tc (r, �) − Vcrust

= GM
R

n̄∑

n=0

(
R
r

)n+1 n∑

m=−n

(
Tc

n,m−Vcrust
n,m

)
Yn,m (�) .

(35)

The crust-corrected gravity disturbance δgM is then
given by

δgM (r, �) = δgc (r, �) − gcrust

= GM
R

n̄∑

n=0

(
R
r

)n+2

(n + 1)

n∑

m=−n

× (
Tc

n,m − Vcrust
n,m

)
Yn,m (�), (36)

and the crust-corrected gravity anomaly �gM reads

�gM (r, �) = δgM (r, �) − 2
r

T M (r, �)

= GM
R

n̄∑

n=0

(
R
r

)n+2

(n − 1)

n∑

m=−n

× (
Tc

n,m − Vcrust
n,m

)
Yn,m (�). (37)

3 Numerical examples

The expressions defined in Section 2 were utilised
to compute the consolidated crust-stripped gravity
field. We computed and subsequently applied the
topographic and crust-stripping corrections to gravity
data (gravity disturbances and gravity anomalies). The

applied gravimetric stripping corrections account for
the gravitational contributions of density contrasts due
to the ocean (bathymetry), ice, (soft and hard) sed-
iments, and (upper, middle, and lower) crustal com-
ponents. The computation of refined gravity data was
done using the geopotential coefficients taken from
EGM2008, the global topography/bathymetry model
DTM2006.0, the global continental ice-thickness data
ICE-5G and the global crustal model CRUST2.0. All
computations were conducted globally on an equiangu-
lar 1 arc-deg geographical grid at the Earth’s surface.
The statistics of the topographic and crust-stripping
corrections are summarized in Tables 1 and 2. Com-
plete corrections to gravity anomalies comprise the
combined contribution of the direct and secondary
indirect effects [52, 53, 69]. Statistics of the step-
wise consolidated crust-stripped gravity data are sum-
marized in Tables 3 and 4. The global corrections
and the global gravity data were computed from
the GGM, GEM, GBM and GIM coefficients with
the spectral resolution complete to degree and or-
der 180 of spherical harmonics. The GSM and GCM
coefficients up to spherical harmonic degree and or-
der 90 were used for a computation of the sedi-
ment and consolidate crust-stripping gravity correc-
tions due to a 2 arc-deg spatial resolution of the
CRUST2.0 global crustal model. CRUST2.0 [4], which
is an upgrade of CRUST5.1 [26], contains informa-
tion on the crustal thickness and the subsurface spatial
distribution and density of the following global com-
ponents: ice; ocean; soft and hard sediments; upper,
middle, and lower (consolidated) crust. The use of the
ICE-5G ice-thickness and DTM2006.0 bathymetry data
instead of using the equiangular 2 arc-deg CRUST2.0
ice-thickness and bathymetry data improved signi-
ficantly the accuracy of computed bathymetric and
ice stripping gravity corrections. Further improve-
ment in terms of the accuracy and resolution can
be achieved once a more accurate global crustal (or
lithospheric) model of a higher resolution becomes
available.

Table 3 Statistics of the
step-wise consolidated
crust-stripped gravity
disturbances

Gravity Min [mGal] Max [mGal] Mean [mGal] STD [mGal]
disturbances

EGM2008 −303 293 −1 29
Topographic −655 276 −70 106
Bathymetric −516 727 261 230
Ice −516 732 283 200
Sediment −498 760 320 196
Upper crust −546 767 283 228
Middle crust −795 663 167 269
Lower crust −1, 315 506 20 330



Comput Geosci (2012) 16:193–207 201

Table 4 Statistics of the
step-wise consolidated
crust-stripped gravity
anomalies

Gravity Min [mGal] Max [mGal] Mean [mGal] STD [mGal]
anomalies

EGM2008 −282 287 −0.5 24
Topographic −382 341 41 73
Bathymetric −805 −2 −331 146
Ice −813 −10 −332 125
Sediment −867 −46 −365 126
Upper crust −825 5 −336 147
Middle crust −802 154 −228 171
Lower crust −851 391 −43 209

The GGM coefficients taken from the EGM2008
[35] complete to the spherical harmonic degree 180
were used to compute the gravity field quantities ac-
cording to Eqs. 2 and 3. The coefficients En,m of the
global topographic/bathymetric model DTM2006.0 and
the coefficients Nn,m of the global geoid model were
used to generate the GEM coefficients Htu

n,m

Htu
n,m = En,m − Nn,m. (38)

The DTM2006.0 coefficients En,m describe the global
geometry of the topographic heights above mean sea
level (MSL) which are reckoned positive, and the
bathymetric depths below MSL which are reckoned
negative. The global topographic/bathymetric model
DTM2006.0 was released together with EGM2008
by the U.S. National Geospatial-Intelligence Agency
EGM development team. The geoid coefficients Nn,m

were generated from the numerical coefficients Tn,m

of the disturbing potential (derived from EGM2008)
according to Eq. 33. The GEM coefficients complete
to degree and order 180 were then used to com-
pute the topographic corrections to gravity data. The
coefficients En,m and Nn,m were further used to gener-
ate the GBM coefficients Dbl

n,m according to the follow-
ing expression

Dbl
n,m = Nn,m − En,m. (39)

The GBM coefficients complete to degree and order
180 were used to compute the bathymetric stripping
gravity corrections according to Eq. 17 formulated
for a depth-dependent seawater density distribution
model defined by the parameters �ρw

0 , β, a1, and a2 in
Eq. 16. The equiangular 10 arc-min mean topographic
heights computed by spatial averaging of the equian-
gular 30 arc-sec global elevation data from GTOPO30
(provided by the US Geological Survey’s EROS Data
Center) and the equiangular 10 arc-min continental ice-
thickness data from ICE-5G made available by Peltier
[36] were used to generate the GIM coefficients. The

GEM and GIM coefficients complete to a spherical
harmonic degree and order 180 were then used to
compute the ice density contrast stripping corrections
to gravity data. The equiangular 2 arc-deg global data of
the soft and hard sediment thickness and density from
CRUST2.0 were used to compute globally the sedi-
ments density contrast stripping corrections to gravity
data. This was done according to Eq. 21 formulated sep-
arately for the soft and hard sediments. The CRUST2.0
model consists of soft and hard sediment model compo-
nents with the lateral density structure. The CRUST2.0
soft sediments vary in density from 1,700 to 2,300 kg/m3

and reach a maximum thickness of about 2 km, while
the CRUST2.0 hard sediments vary between 2,300 and
2,600 kg/m3 and become up to 18 km thick at places.
The sediment density contrast was taken relative to the
reference crustal density of 2,670 kg/m3. The soft and
hard sediment components and their density variability
reflect to a certain degree the increasing density of
sediments with depth due to compaction. In regional
studies, a more accurate dependence of sediment den-
sity on depth may be adopted for sedimentary basins
(cf. e.g., [3]). The equiangular 2 arc-deg global density
and thickness data of the consolidated (upper, middle,
and lower) crust components from CRUST2.0 were
used to compute the crust density contrast stripping
gravity corrections relative to the reference crustal
density of 2,670 kg/m3. The consolidated crust-stripped
gravity data are shown in Fig. 1. The consolidated crust-
stripped gravity disturbances vary globally from −1,315
to 506 mGal. The range of the corresponding gravity
anomalies is between -851 and 391 mGal. Tenzer et
al. [61] used these refined gravity and (CRUST2.0)
crust-thickness data to estimate the global average
value of the crust–mantle density contrast and the cor-
responding global average density of the upper-most
mantle. They have shown that the average values of
the global upper-most mantle and of the crust–mantle
density contrast are about 3,155 kg/m3 and 485 kg/m3,
respectively. Tenzer et al. [56] demonstrated that the
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Fig. 1 The consolidated crust-stripped a gravity disturbances and b gravity anomalies computed globally on the equiangular 1 arc-deg
grid at the Earth’s surface
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a

b

Fig. 2 The complete crust-corrected a gravity disturbances and b gravity anomalies computed globally on equiangular 1 arc-deg grid
at the Earth’s surface
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consolidated crust-stripped gravity data have the high-
est correlation with the Moho density interface among
all refined gravity data obtained after applying the
topographic and crust density contrast stripping cor-
rections (summarized in Tables 3 and 4). The absolute
correlation between the crust-thickness and refined
gravity data reached 0.96 for the consolidated crust-
stripping gravity disturbances. Therefore, these refined
gravity data should be the most suitable gravity data
type for the recovery of the Moho density interface.
However, such a gravimetric refinement of the Moho
interface would translate also the signal of the topo-
graphic and crustal model uncertainties and the signal
coming from the mantle lithosphere and deeper mantle
into false information on the Moho density interface.
The presence of the gravity signal due to the anomalous
density structures within the Earth’s mantle is typically
suppressed by removing a long-wavelength part of the
gravity signal. Nonetheless, the complete separation of
these gravity sources is questionable due to the fact
that there is hardly any unique distinction between the
long-wavelength gravity signal from the mantle and the
expected higher-frequency signal from the Moho geom-

etry. The Moho refinement based purely on gravimetric
methods without incorporating additional geophysical
or geoscientific constraints is thus restricted due to the
gravimetric signal superposition.

The equiangular 2 arc-deg global data of CRUST2.0
Moho depths we used to generate the GMM
coefficients according to Eq. 24. The GMM coefficients
were then used to compute the gravitational field gen-
erated by the homogeneous crust (beneath the geoid
surface) of the reference density ρcrust = 2,670 kg/m3

with a spectral resolution complete to a spherical har-
monic degree 90. The subtraction of this gravitational
field from the consolidated crust-stripped gravity data
yields the final complete crust-corrected gravity field.
The results are shown in Fig. 2. The crust-corrected
gravity disturbances are everywhere negative and vary
globally from −12,010 to −1,902 mGal with the mean of
−4,265 mGal, and the standard deviation is 1,089 mGal.
The corresponding crust-corrected gravity anomalies
are within −1,339 and 6,372 mGal with the mean of
3,960 mGal, and the standard deviation is 1,391 mGal.

The global maps of the complete crust-corrected
gravity field in Fig. 2 revealed the geometry of the

Fig. 3 The gravitational contribution of the whole Earth’s crust computed globally on an equiangular 1 arc-deg grid at the Earth’s
surface
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Moho density interface and major features of the
anomalous density structures within the Earth’s mantle.
Whereas the signature of the mantle density structure
is more likely prevailing at long frequencies, the high-
frequency gravity signal is dominated by the Moho
geometry. However, the signal due to the deviations of
the CRUST2.0 model from the real crust is also pre-
sented. We expect that the strongest long-wavelength
part of the complete crust-corrected gravity signal is
due to the thickness and density of the lithosphere, over
which a weaker signal from the sub-lithospheric mantle
is superposed. As seen in Fig. 2, the absolute maxima
of the crust-corrected gravity disturbances are situated
over continental regions and the corresponding min-
ima over oceanic regions. The convergent ocean-to-
continent tectonic plate boundaries and the collision
zones of continental tectonic plates represent the re-
gions with the largest gravity signal spatial variations.
The features of mid-ocean ridges and other tectonic
plate boundaries clearly visible in Fig. 1 are much less
pronounced in Fig. 2. This is due to the fact that the
complete crust-corrected gravity data shown in Fig. 2
have a much large range of values than the correspond-
ing consolidated crust-stripped gravity data shown
in Fig. 1.

The gravitational contribution of the whole Earth’s
crust is shown in Fig. 3. It varies globally between
1,843 and 12,010 mGal with the mean of 4,267 mGal,
and the standard deviation is 2,089 mGal. This grav-
ity field was obtained as the difference between the
observed (EGM2008) and crust-corrected gravity data.
Since the EGM2008 gravity data computed with a
spectral resolution complete to the spherical harmonic
degree 180 are mostly within a relatively small inter-
val of ±300 mGal (cf. Table 3), the global as well as
regional features of the gravitational field generated
by the whole crust are very similar to the features of
the complete crust-corrected gravity field. The max-
ima of these gravity differences thus correspond with
the largest crustal thickness in mountainous regions
with the presence of isostatic compensation. The cor-
responding minima are over the oceanic regions with a
typically thin and heavier oceanic crust (compared to
continental crust).

4 Summary and concluding remarks

We have formulated the spectral representation of
gravity field generated by the Earth’s crust density
structures. This spectral representation utilise various
types of spherical functions which describe individ-
ually the observed gravity field (GGM coefficients)

and the gravitational field due to topography (GEM
coefficients), bathymetry (GBM coefficients), ice den-
sity contrast (GIM and GEM coefficients), sediments
density contrast (GSM coefficients), and crustal com-
ponents density contrast (GCM coefficients). In addi-
tion, the gravitational field of the whole homogeneous
crust was defined in terms of the GMM coefficients
which describe the Moho geometry.

Methods for a spherical harmonic analysis and syn-
thesis of gravity field based on the expressions given
in Section 2 were applied in Section 3 to compute
the complete crust-corrected gravity data and to esti-
mate the gravitational contribution of the Earth’s crust.
The separation of the Earth’s crust gravitational field
from the sub-Moho gravity sources was done by sub-
tracting the complete crust-corrected gravity field from
the EGM2008 gravity data. The results revealed that
the gravitational contribution generated by the Earth’s
crust (shown in Fig. 3) varies from 1,843 to 12,010 mGal.
The complete crust-corrected gravity disturbances
(shown in Fig. 2 a) are everywhere negative and vary
within −12,010 and −1,902 mGal. The similar range of
these two gravity field quantities (as well as their similar
spatial distribution) was explained by the fact that the
EGM2008 gravity disturbances are distributed mainly
within a relatively small interval of ±300 mGal. The
comparison of the crust-stripped and crust-corrected
gravity data types (shown in Figs. 1 and 2) exhib-
ited different patterns. Whereas the complete crust-
corrected gravity data have a much more enhanced
long-wavelength gravity signal of the lithosphere man-
tle, the high-frequency gravity signal of more shallow
crustal structures and of the Moho geometry is more
pronounced in the consolidated crust-stripped grav-
ity data.

The description of the Earth’s crust based on the
stratigraphic layering with a variable height/depth,
thickness, and lateral density distribution provides
a more realistic and detailed representation of the
Earth’s crustal structure than, for instance, by the
spherical homogenous layers used in the Preliminary
Reference Earth Model (PREM; cf. [6]). We thus ex-
pect that a more realistic model of the Earth’s in-
ner structure can be compiled (and used in various
geoscience applications) once lithospheric and deep-
mantle models become available.
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