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SUMMARY

Full-waveform inversion attempts to estimate a high-resolution
model of the Earth by inverting all the seismic data. This
procedure fails if the Earthmodel contains high-contrast bodies
such as salt and if sufficiently low frequencies are absent from
the data. Salt bodies are important for hydrocarbon exploration
because oil or gas reservoirs are often located on their sides or
underneath. We represent the shape of the salt body with a
level set, constructed from radial basis functions to keep its
dimensionality low. We have shown earlier that the salt body
can be completely recovered if the sediment structure is already
known. In this paper, we propose a strategy to simultaneously
reconstruct the sediment and the salt. The sediment is implicitly
represented by a bilinear interpolation kernel with a small
number of variables. An alternating minimization technique
solves the resulting optimization problem. The results on a
synthetic model using Gauss-Newton approximation of the
Hessian shows the feasibility of the approach.

INTRODUCTION

Full-waveform inversion (FWI) has become a popular
technique to produce high-resolution maps of the subsurface
velocity and density from the available seismic data. In its
classic form, the method obtains a model by iteratively fitting
modeled to observed data in a least-squares sense. Because
the underlying minimization problem is highly nonlinear and
seismic data typically lack sufficiently low frequencies, a good
initial guess of the model is required to avoid convergence to
the nearest local minimum, which generally does not represent
the ground truth (Virieux and Operto, 2009). The problem
becomes worse in the presence of salt bodies, which are of
particular interest to the oil industry because hydrocarbon
reservoir are often located nearby or underneath. Often,
conventional FWI reconstructs the top of the salt but fails to
obtain its interior, its bottom, and everything underneath.

A level set can help to regularize the problem. Santosa (1996)
introduced the method to geometric inverse problems. It
implicitly defines the shape of the salt as the level set or zero
contour of a smooth function. The conventional method deals
with the level-set evolution through the Hamilton-Jacobi
equation, also known as the level-set equation. This approach
suffers from steepening and flattening of the level set during
iterations. The classic solution, re-initialization of the level
set, solves the issue but is computationally intensive. Dahlke
et al. (2015), Lewis et al. (2012) and Guo and de Hoop (2013)
successfully applied the method in combination with
full-waveform inversion.

Previously, we presented a robust implementation that

dynamically adapts the width of the level-set boundary to
obtain faster convergence (Kadu et al., 2016). This approach
implicitly avoids flattening and steepening of level-set
function near boundary by adjusting the width according to an
approximate level-set gradient. We assumed, however, a
known background sediment model. In the present paper, we
propose a joint-inversion approach and try to reconstruct the
background and salt geometry simultaneously.

THEORY

The FWI problem in its classic least-squares formulation
(Tarantola, 1984) reads

min
m

{
1
2 ‖F (m) − d‖22

}
,

where F models the scalar Helmholtz equation, m defines the
subsurface model, for instance, P-wave velocity or density or
both, and d represents the data.

It is natural to separate the model into salt and sediment with
constant and known salt velocity, m1 and sediment model m0:

m(x) = {1 − a(x)}m0(x) + a(x)m1, (1)

where a is an indicator function that separates the salt from the
sediment. Solving for a(x) is an NP-hard problem because of
its discrete nature (Del Lungo and Nivat, 1999). A level-set
function, φ : R2 → R, will simplify the problem:

a(x) =



1, φ(x) ≥ 0;
0, φ(x) < 0.

Mathematically, we represent an indicator function with the
Heaviside function, i.e., a(x) = h(φ(x)). Now, the problem is
to find a function φ(x) that represents the true salt geometry.

Parametric Level-Set Method

Kadu et al. (2016) chose a representation of the level-set
function by a linear combination of finite
compactly-supported radial basis functions (RBFs):

φ(x) =
ns∑
j=1

α jψ(‖x − χ j ‖2).

Its discrete version is represented by a RBF Kernel Matrix, B,
with entries bi j = [ψ(‖xi − χ j ‖2)], where {xi }ni=1 represents
the model grid points. The RBF nodes { χ j }

ns

j=1 are placed
on an equidistant model grid. The RBF amplitudes {α j }

ns

j=1
control the level set. Typically, we use a sufficiently smooth
Wendland RBF of the form

ψ(r) = (1 − r)8+(32r3 + 25r2 + 8r + 1).
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Figure 1: Heaviside and corresponding Dirac-Delta functions
(dashed) with a width of 0.5.

The Parametric Level-Set Full-Waveform Inversion (PLS-FWI)
for fixed m0 and m1 becomes

min
α∈Rns

{
f (α) = 1

2 ‖F (α) − d‖22
}
.

The gradient and Gauss-Newton Hessian for this problem are

gα = AT DT
α J∗ (F (α) − d) ,

Hα = AT DT
α J∗JDα A,

where J is the Jacobian of the forward modeling operator F.
The diagonal matrix Dα denotes the element-wise
multiplication of the difference between the salt and sediment
velocity with the Dirac-Delta function:

Dα = diag((m1 − m0) � h′ε (Aα)),

where hε (·) is an approximation of the Heaviside function with
width ε . It is important to note that the level-set sensitivities
depend on two main factors: (1) the difference between the
salt and sediment velocity and (2) the approximation of the
Heaviside function.

We use a compact approximation of the Heaviside function,
plotted in Figure 1. This formulation provides a constant region
of sensitivity around the level-set boundary. This allows level-
set parameters to take large steps as the FWI gradient (i.e.,
J∗(F (α) − d)) are extrapolated by a constant factor. Due to its
compactness, only neighboring RBFs are updated, providing
less artifacts in the reconstruction.

The width of the Heaviside depends on the level-set boundary
and the spatial gradient of the level-set function. Because
this gradient is expensive to compute, we approximate it using
the lower and upper bounds of level-set function. Hence, the
Heaviside width is given by:

ε = κ∆x
(
max(φ) −min(φ)

∆x

)
= κ [max(Aα) −min(Aα)]

(2)

We refer the reader to (Kadu et al., 2017) for more details.

Bilinear Interpolation
Wecan impose smoothness constraints on the sediment velocity
by means of bilinear interpolation from a model on a coarser
mesh:

m0(x) = mmin
0 +

nb∑
j=1

β j l j (x − χ̃ j ).

Here, mmin
0 denotes the water velocity, l j (·) represents a

piecewise linear basis function at node χ̃ j and β j denotes its
corresponding weight. The latter term can be captured using a
bilinear interpolation kernel B when the model is discretized
on a grid.

For fixed m1 and φ(x) in equation (1), the optimization problem
becomes

min
β∈Rnb

f (β) = 1
2 ‖F (β) − d‖2.

The gradient and Gauss-Newton Hessian are given by

gβ = BT J∗ (F (β) − d) ,

Hβ = BT J∗JB.
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Figure 2: An example of bilinear interpolation. The less nodes,
from (a) to (d), the smoother the representation of the model.

Joint reconstruction
The model is now represented in terms of α and β as:

m = {1 − h(Aα)} � (mmin
0 + Bβ) + h(Aα)m1. (3)

With prior information about the salt velocity m1 and water
velocity mmin

0 , the minimization problem becomes

min
α,β

{
f (α, β) = 1

2 ‖F (α, β) − d‖22
}
,

such that βmin ≤ β ≤ βmax.

We use an alternating minimization strategy, splitting the
optimization procedure in two parts, namely minimization
over the level-set parameters α and minimization over the
background parameters β. We alternately update the level set
and the background in a multi-scale fashion. Algorithm 1
presents the basic algorithm, whereas Figure 3 outlines the
multi-scale work-flow.
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Algorithm 1 Basic Joint Reconstruction Algorithm

Require: d - data for frequency batch I f , F - operator
m1,mmin

0 , βmin, βmax - model prior information
A, B - Kernel matrices, α0, β0 - initial values

Ensure: {αfinal, βfinal}, m - final model
1: for i = 1 to InnerItermax do
2: for j = 1 to J do
3: β( j+1) = β( j ) +

(
Hβ

(
α(i−1), β( j )

))−1
gβ

(
α(i−1), β( j )

)
4: end for
5: β(i) = β(J )

6: for k = 1 to K do
7: α(k+1) = α(k ) +

(
Hα

(
α(k ), β(i)

))−1
gα

(
α(k ), β(i)

)
8: end for
9: α(i) = α(K )

10: end for
11: compute m from equation (3).

In step 3, we use an interior-point method that incorporates
bounds constraints on the parameters β and in step 7, a simple
Newton method. In both these steps, the descent direction is
calculated by a truncated conjugate-gradient method.

Figure 3: Multiscale Joint Reconstruction Algorithm

Bounds on sediment parameter
To avoid the delineation of salt in the sediment, it is important
to put bounds on sediment velocity. Figure 4 shows an example.
We allow for smooth updates of the level set near the top region
of the salt by constraining the sediment velocity to an upper
bound close to true velocity. As noticed in the FWI results, the
region just below the top part demands very lowvelocities. This
can also happenwith the proposed approach andwill slow down
the reconstruction procedure. To accelerate the convergence,
we impose an appropriate lower bound as a function of depth.

EXAMPLES

To demonstrate the capabilities of the proposed method, we
present numerical experiments on a synthetic model with
acoustic data. Figure 5 shows a model 10 km long and 3 km
deep, discretized with a 50-m grid spacing. The sediment is a
staircase in depth below a 300-m water layer with velocities
between 1500 and 4000m/s. The salt body, embedded in the
sediment, has its top at 200m below the water bottom with a
constant velocity of 4500m/s. Sources were placed 10m deep

Figure 4: Bounds on the sediment velocity

and 200m apart. The source is a Ricker wavelet with a 15-Hz
peak frequency and zero time lag. The data were acquired
with receivers placed 50m apart starting at a smallest offset of
100m up to a largest of 4 km. To avoid a full inverse crime, a
different finite-difference code generated the data for a model
discretized with a much finer grid spacing of 50/8m. The
amplitude of the source wavelet is estimated for each
frequency at every step (Pratt, 1999).

0 2 4 6 8 10

x [km]

0

1

2

3

z
 [

k
m

]

2000

3000

4000

Figure 5: True velocity (in m/s) of synthetic model .

For the classic full-waveform inversion, we apply a spectral
projected gradient method with bounds constraints (Schmidt
et al., 2009) on the velocity. For the initial model, we take a
linear velocity profile with depth. The inversion is performed
in a multi-scale fashion over the frequency range 2.5–4.5Hz
with 200 iterations for each frequency batch and a total of 3
passes (Esser et al., 2015) over the frequency range. Figure 6
displays the results. The top of the salt near the water bottom
has been reconstructed reasonably well, but not the salt body
below. The sediment structure at larger depths is also lost.
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Figure 6: Classic Full-Waveform Inversion results

The parametric level-set parameters α are initialized as shown
in Figure 7. All negative RBFs have a value of −1 and all
positive of +1. We place 25(z) × 20(x) nodes over the model
grid for the background. The background parameters β are
initialized with a smooth linear trend in depth. We incorporate
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prior information about the water bottom, at z = 350m, in the
initial model.
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Figure 7: Initial model with velocities in m/s. The level set is
initialized around the top of the salt. Positive RBFs are denoted
by red pluses and negative by dots.

The optimization over β is performed with the interior-point
method (fmincon in MATLAB®). We restrict ourselves to
J = 10 iterations in algorithm 1. We apply the minFunc
(Schmidt, 2012) code inMATLAB® to optimize overα, limited
to K = 20 iterations. In both these steps, the step direction is
calculated by at most 10 iterations of the conjugate gradient
method. A total of 4 passes are made over the frequency range,
along with 2 inner iterations for each frequency batch. In
total, we perform about 960 iterations. The Heaviside width
parameter (κ) is initialized with 0.05 and reduced by 20% after
each frequency pass to produce sharp boundaries for the salt.
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Figure 8: Model obtained by the joint reconstruction approach.
Corresponding positive (pluses) and negative (dots) RBFs.

Figure 8 shows the model obtained with the proposed method.
The salt is reconstructed accurately at its top and sides. The
sediment structure is reconstructed well down to a depth of
1.5 km as shown in Figure 10. Figure 9 illustrates the need for
multiple passes over the frequency range. Figure 11 shows that
the method manages to fit the data for the lower frequencies but
not for the higher.
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Figure 9: Reconstructed model after the 1st (a), 2nd (b) and 3rd

(c) frequency pass.

CONCLUSIONS

We have proposed a joint reconstruction approach for salt
delineation in seismic full-waveform inversion. Our approach
is based on the idea of separating the model into salt and
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Figure 10: Velocity profile at x = 2 km (a), x = 5 km (b), and
x = 8 km (c). The blue line denotes the reconstructed velocity,
the red dotted line denotes the true velocity, while the yellow
dash-dotted line represents the initial velocity.
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Figure 11: Normalized data misfit (only real part) for final
reconstructed model at (a) 2.5 Hz, (b) 3.5 Hz, and (c) 4.5 Hz.
We normalized the differences by the maximum value of the
true data per frequency.

sediment. The salt geometry is defined with a level set
represented by radial basis functions. The sediment, in turn, is
represented by piecewise linear functions on a small number
of nodes. This low-dimensional formulation of the model
imposes smoothness on the sediment and on the salt
geometries. The proposed compact approximation of the
Heaviside function leads to faster convergence and produces
no artifacts. We apply an alternating minimization strategy to
optimize over the two different parameters. Results on a
synthetic acoustic example demonstrates the method’s
capability. The proposed method accurately predicts the salt
geometry where the conventional full-waveform inversion
fails.
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