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Abstract

Recently, interest in the use of deep learning technology for RF applications has increased. However, many of
these studies are focused on developing deep learning models for a particular RF application. Therefore this
master thesis focuses on the implementation of these kinds of deep learning models by using FPGAs such
that these deep learning models can be used in an FPGA-based Software Defined Radio.

In this master thesis, a custom FPGA accelerator is designed for CNN models using reusable and config-
urable building blocks. The accelerator employs a streaming architecture and is fully pipelined, such that it
accepts new input data every clock cycle. A key design aspect is that all building blocks in the accelerator are
designed to be able to work on a portion of its input data. The implication is that the building blocks can
produce an output as soon as enough input data is available. As a result, the work that the building blocks
have to perform is spread out over time and the memory required for storing data is also reduced. Moreover,
the precision of the fixed point parameters and operations is configurable. Therefore there is no limitation of
only specifically supporting binary or ternary operations.

This accelerator has been tested for the automatic modulation classification problem. The result is an
accelerator that can process real-time data at 600MHz and consume fewer FPGA resources than other similar
initiatives. In a direct comparison with hls4ml, the designed custom accelerator achieves 2.4 times higher
throughput and 2.3 times lower latency for the identical CNN, while also achieving the same accuracy and
significantly lower resource utilization. In addition, the custom accelerator is compared to a ternary neural
network FPGA accelerator for modulation classification as proposed by Tridgell et al. The custom accelerator
uses 3.3 times fewer LUTs, 9 times fewer FFs, 4 times fewer DSPs, and uses no BRAM, while the accelerator
proposed by Tridgell et al. uses 48.5% of the available BRAM in an RFSoC FPGA.

Hans den Boer
Den Haag, July 2021
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Glossary

Deep Learning

II

IP core

IQ

Machine learning at the edge

Glossary

Deep Learning is a machine learning method
based on utilizing Artificial Neural Networks.

In hardware design, Initiation Interval (II) is the
delay between successive initiations of a function
or a loop. For example, a function with an II of
1, means that there is a delay of 1 clock cycle be-
tween each initiation of the function.

Semiconductor intellectual property core is a
reusable unit of logic or data that is the intellec-
tual property of one party. IP cores can be used as
building blocks in ASICs and FPGAs.

In-phase component (I) and quadrature compo-
nent (Q) are used for most modern RF signal gen-
eration, modulation and demodulation.

Machine learning and especially deep learning al-
gorithms are often computationally intensive and
therefore these algorithms commonly run on pow-
erful CPU/GPU platforms. However there is a
trend to bring these algorithms, albeit in areduced
form, to edge devices. Where edge devices can be a
device that is ‘close‘ to the source of the data, such
as a (handheld) communication device.
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Introduction

1.1. Context of Assignment

Whilst the economic importance of ‘being‘ connected seems to increase without bounds, the expectations
of wireless mobile communication technologies seem to increase as well. As a result, the availability of fre-
quency spectrum that can be used for such technologies has become quite an expensive commodity as well.
Large corporations are willing to invest a great deal of money to obtain the license to be the sole user of parts
of the frequency spectrum. The economically beneficial implications of a highly connected society, as well
as the economic interests of the corporations that facilitate this mobile communication infrastructure, have
given rise to a political lobby that aims to free up increasingly more parts of the frequency band for auction-
ing, thus pushing away the current users of such bands.

In practice, however, large parts of the frequency spectrum remain relatively underused despite this de-
mand for more spectrum. One of the reasons for this is due to the rather static spectrum management that
is currently employed in most communication protocols. The concept of Cognitive Radio (CR), which was
first proposed in 1998 by Joseph Mitlola III [1], [2], aims to increase the spectrum efficiency by using a dy-
namic spectrum management approach. Cognitive radios are typically radios which are capable of sensing
their electromagnetic environment and can subsequently select unused parts of the spectrum (in frequency
and/or time) for their own transmissions, possibly using transmission parameters (such as the waveform)
which fit the selected transmission opportunity. As such the cognitive radio does not only need to be aware
of other radio signals, but it also needs to be capable of recognizing those signals for which they are the in-
tended receiver (in an uncoordinated fashion).

Even though the concept of cognitive radio is quite old, it has proven difficult to develop a fully cognitive
radio system. One of the most important limitations is the required processing power to achieve the level
of spectrum awareness that is required, in real-time. Recently, however, the concept of cognitive radio has
received a renewed interest with the advent of deep learning (DL) technology. Deep learning is a subclass of
artificial intelligence (AI) and is a rapidly developing research field. In deep learning, models based on neural
networks are trained, such that they can infer something about unseen data.

In general, the use of deep learning for communication networks is still quite new. Currently, several
companies have started to focus on the use of deep learning for improving communication technologies
[3], [4], and also in scientific literature a number of papers have been published in this particular sub-field.
Despite the newness, the first results are promising and show the potential that deep learning can offer in the
(near) future.

Still, the availability of deep learning technology is not sufficient. Because an important aspect of these
studies into deep learning for radio systems is that it must be applicable in practice. Most radio systems rely
on Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) for process-
ing. Most deep learning models however run on CPU or GPU platforms, which are typically not desired for
digital signal processing, either because of the sequential instruction nature or their power requirements.
Therefore, it is useful to execute deep learning models on these communication systems as well.

There are other domains where deep learning is already being applied much more in practice. In partic-
ular, the vision/imaging domain is a major stimulant for the development and applicability of deep learning
models. A good example of this domain is autonomous cars, in which artificial intelligence enables a car to
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be aware of its surroundings and determine appropriate actions.

Recently, hardware is available to bring Al capabilities to edge devices. These devices are primarily de-
signed for image processing applications and are generally not designed for RF radio systems in mind. There
are several differences between applications for the RF domain and the imaging domain. One such differ-
ence is the possible data rates. To illustrate this difference, a comparison between RF and imaging domain is
made for realistic systems. Full HD Cameras (resolution of 1920 x 1080) with a frame rate of 60 FPS, produce
more than 124 million pixels per second. Although for autonomous cars the frame rate of cameras may be
lower depending on the function of a camera on a car [5]. These data rates can be lower than the data rate
of communication systems. Recently, Xilinx released RFSoC wherein an RF transceiver is integrated with an
FPGA in a single chip [6]. Depending on the RFSoC type, a maximum data rate of 5 Giga samples per second
of IQ data is possible for 8 channels. These data rates completely surpass the data rates in the vision domain.
Even a simple RF transceiver such as the the AD9361 chip from Analog Devices, has a maximum sample rate
of 61.44 Mega samples per second of IQ data. A high data rate may be a requirement for a deep learning based
RF application.

As indicated earlier, the use of deep learning for RF applications requires a means of integrating these
models into communication systems. The assignment of this work is therefore to investigate the possibilities
for integrated deep learning models on FPGA platforms, such that they can operate as part of the signal pro-
cessing chain in a software defined radios (SDR). This master thesis project is therefore aimed at facilitating
further research into the use of RF deep learning in communications systems.

1.2. About TNO

This Master thesis project is commissioned by TNO! (Netherlands Organisation for Applied Scientific Re-
search). The TNO'’s Electronic Defence department is investigating the use of deep learning for various com-
munication applications. Figure 1.1 provides an overview of how the process of this research is structured.

RF Application Deep Leamning
(use case) approach Qut of scope

RF use case development

Deep Learning
Model
Development

Ready for
nplementatiop

N Qut of scope

Implement on
FPGA?

FPGA
implementation

Implementation phase

Figure 1.1: Process of RF deep learning research at TNO.

There are three main aspects of the deep learning research performed at TNO. Firstly, there is an RF appli-
cation for which it needs to be determined whether a deep learning approach is suitable. Secondly, if opted
for a deep learning approach, one or more deep learning models are developed. These models must be suit-
able for implementation. Finally, in the implementation phase, the implementation platform is determined.

Ihttps://www.tno.nl/en/
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The implementation platform could be a CPU or GPU platform, but in this master thesis, we specifically focus
on an FPGA based implementation.

It is important to note that these three aspects are not independent of each other and are not necessarily
followed consecutively. For example, the knowledge building for the FPGA implementation can influence
how to train a deep learning model and how feasible an RF use case is with current capabilities. Limitations
with respect to implementing deep learning models on the FPGA can also limit the possibilities in the 'RF
Deep Learning development’ phase for use-cases where the FPGA is essential. Therefore it is of importance
that an implementation strategy will minimize any limitations in this phase. So far, TNO’s research has mainly
focused on the first two aspects. And the research in this master thesis is aimed at the implementation phase,
to make deep learning technology practically applicable in communication systems.

1.3. Problem statement

In Section 1.1 we explained that the implementation of RF deep learning models on the FPGA can form a
requirement for cognitive radio technology. Moreover, the FPGA implementation may have to deal with a
very high data rate. Cognitive radio itself is a complex and comprehensive subject, and therefore this master
thesis will focus on a subpart of cognitive radio, namely the modulation classification use case. Modulation
classification is essential to carry out multiple cognitive radio techniques, such as dynamic spectrum access
[7]. TNO is already investigating the modulation classification use case, and both academic and industry are
also researching this specific topic. For this use case it is desirable to run deep learning models on the FPGA.
The problem statement can be formulated from this:

How can FPGAs be efficiently utilized to implement deep learning models for modulation classifica-
tion in a Software Defined Radio (SDR)?

This problem statement can be divided into sub research questions. The list below contains sub research
questions which provides the skeleton to answer the main research question:

1. What do deep learning models for modulation classification looks like?
* What are the requirements for these models?
2. What existing solutions are there for deep learning acceleration using FPGAs?

¢ Are these solutions sufficiently suitable and compatible with RF deep learning applications? If
not, can modifications be made?

* What characteristics do these existing solutions have?

¢ Are these solutions open-source, such that modifications can be made?
3. What requirements are there for FPGA deep learning acceleration?
¢ Are there specific characteristics that are important for RF applications?

4. How can FPGAs be used in a broader context within RF applications than just modulation classifica-
tion?
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1.4. Project goals & Methodology

The goal of this thesis is to present an implementation method for deploying RF deep learning models to an
FPGA for use in software defined radio systems. To achieve this goal, several sub-goals are defined.

Goal 1: Research deep learning models for modulation classification The first goal is to get insight into RF
deep learning models. In this case, specifically the modulation classification use case is being investigated.
As explained in the previous section, modulation classification is a good use case to look at as it has already
been published in the academic literature.

Goal 2: Evaluate feasibility of currently available solutions There are already available solutions for FPGA
deep learning acceleration. The various solutions need to be explored to assess whether they are suitable for
RF deep learning applications. A specific aspect that is important, is the extent to which these solutions are
applicable in software defined radios. To assess this, certain requirements that may be important for certain
RF applications must be taken into account, such as throughput requirements. The modulation classifica-
tion use case is not specific for high throughput, because the throughput requirements depend on the type
of signal. Therefore, this use case can be used to investigate different solutions, which may be suitable for
different applications.

Goal 3: Develop implementation method Based on the results of goal 2, the design of an implementation
method can be made. If existing solutions prove to be sufficiently suitable for FPGA deep learning acceler-
ation used for applications within the RF domain, then the implementation method will be based on these
existing solutions. In the other case, a custom accelerator must be developed.

The design is not specifically intended for the modulation classification use case. This application is used
only because this is a clear example application for the RF domain where comparisons are possible. Cognitive
radio has many more aspects where deep learning can represent an important role. That is why it is useful to
this into account.

Goal 4: Evaluate the implementation method Based on the modulation classification use case, the imple-
mentation will be evaluated. Comparisons with existing solutions can be made.

Goal 5: Develop a demonstration of a modulation classifier The main goal of this research is to make
deep learning applicable for communication applications. It is useful to actually demonstrate the modula-
tion classification use case in which a deep learning classifier runs on an FPGA based software defined radio
platform.

1.5. Overview of the thesis
This thesis is organized as follows:

¢ Chapter 2: Background
This chapter describes the background of the three main aspects of this thesis. Firstly, the software
defined radio concept is introduced, and the role of FPGAs in software defined radios is discussed. Sec-
ondly, the required background knowledge for neural networks is explained, especially of importance
are the discussed building blocks that are present in common neural networks. Finally, the relevant
related work is discussed in deep learning for RF applications as well as FPGA acceleration of neural
networks.

¢ Chapter 3: Preliminary Experiments
In this chapter two different tools (Vitis Al and hls4ml) for neural network FPGA acceleration are tested
for applicability for RF applications. These are reviewed in-depth, such as their architecture and their
throughput capabilities. The conclusion of this chapter is whether these tools provides a suitable basis
for FPGA acceleration of RF deep learning or if it is necessary to develop a custom FPGA acceleration
tool.
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¢ Chapter 4: Implementation
This chapter discusses the development of a custom deep learning FPGA accelerator. Firstly, the design
goals for this implementation are summarised. Subsequently, the actual design is discussed.

¢ Chapter 5: Evaluation
The developed custom deep learning FPGA accelerator is tested with deep learning models for modu-
lation classification use case. Subsequently, the results of this custom FPGA accelerator are discussed,
and the custom accelerator is compared with already existing solutions.

¢ Chapter 6: Demonstration
This chapter demonstrates a working modulation classifier deployed to an FPGA in a software defined
radio system.

¢ Chapter 7: Conclusions
Finally, this last chapter contains the conclusions of the entire thesis. Furthermore, the contributions
made in this master thesis are summarized and recommendations for further work are given.






Background

This chapter aims to provide a basic background with respect to the research field connected to this thesis.
Here we distinguish four main research fields: Software Defined Radio (SDR), Neural Networks, Modulation
Classification and Field-Programmable Gate Array (FPGA). The latter having a specific focus on the imple-
mentation aspects of Deep Learning (DL) models.

This chapter is structured as follows. The first Section 2.1 explains the Software Defined Radio concept.
Subsequently, Section 2.2 provides the necessary background on neural networks. Thereafter, Section 2.3
explains the concept of modulation use case and discusses the related work on this topic. Finally, Section 2.4
provides background on FPGA deep learning acceleration and also discusses related work.

2.1. Software Defined Radio
2.1.1. Concept

The concept of SDR aims to implement radio transceiver systems in which as much of the signal process-
ing is handled in the digital domain (digital signal processing (DSP)) and, consequently, with a minimum of
radio frequency (RF) hardware components. Contrary to the ‘classical‘ radio concept where all signal pro-
cessing is handled in RF components (such as filter structures) the SDR concept provides a re-programmable
radio system. The result is a highly flexible radio transceiver which can change its transmission and receiver
parameters through a simple software update (or reconfiguration of FPGA).

Note, however, that the actual amount of flexibility still depends on the actual hardware used for the
transceiver. For example, while ASICs can be used to handle (parts of) the processing in a very efficient
way they often offer a much lower degree of re-programmability. As a more flexible alternative DSP micro-
processors can be used, which implement specific DSP functions in a very efficient way and offer more re-
programmability than ASICs.

On the other hand the hardware must also be capable of performing the actual DSP within the time re-
strictions of the actual radio application. CPUs for example, which arguably offer the highest degree of re-
programmability, are typically very inefficient in handling most DSP functions.

FPGA technology seems to offer the middle ground when it comes to both re-programmability and DSP
capabilities. Due to it’s inherent ability to handle parallel processing of data especially well, but compared
to CPU processing it offers limited reconfigurability during run-time. It is therefore not surprising that FPGA
technology can already be found in many telecommunication systems such that mobile network base transceiver
stations (BTS).

2.1.2. Developments

The concept of SDR has gained a lot of popularity in recent years. Especially, developments in the RF in-
tegrated circuits (RFIC) and FPGAs resulted in SDR systems, which are available for both professional and
hobbyist applications. A good overview of these developments of SDR concepts are given in [8]. From this
reference three SDR concepts are displayed in Figure 2.1.
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¢ The first SDR type is the baseband SDR, which is the oldest category. This type of SDR is tuned on a
certain carrier frequency and subsequently samples the analog data to digital samples using an analog-
to-digital-converter (ADC) with a relatively low sample rate (up to a few MS/s). This type of receiver is
typically used to receive a single signal with limited bandwidth. As can be seen from the figure this type
of SDR still uses considerable amount of RF components. Currently, baseband SDRs are commercially
available for under 20 euros, for example in the form of an RTL-SDR [9] (a Digital Video Broadcast -
Terrestial (DVB-T) receiver that can also output raw output from the ADC).

¢ The next SDR type is called the intermediate frequency (IF) SDR. Compared to the baseband SDR, ana-
log to digital conversion takes place at the intermediate frequency level using an ADC with a higher
sample rate (few tens to hundreds of MS/s). In these kind of SDRs further mixing and decimation takes
place in the digital domain. As a result these types of receivers are capable of simultaneously receiv-
ing multiple signals within the same band, faster (digital) frequency re-tuning (no oscillator so no lock
time) or other applications such as wideband spectrum monitoring. This type of SDRs are commer-
cially available at manufactures such as Ettus Research, Analog Devices and some smaller manufactur-
ers. Depending on RF specifications (such as tuning range, number of transmit and receive channels,
bit depth and sampling rate) these devices can cost anywhere from a few hundred to thousands of
euros.

* The last SDR type is the zero-IF SDR. This type of SDR has a minimal amount of RF components and
almost all signal processing is performed in the digital domain. The ADC typically has a sample rate
in the order of a few gigasamples per second. Some examples are currently available, but are mainly
intended for R&D work. One such example is the Xilinx Zynq UltraScale+ RFSoC in the price range from
about 10 to 20 thousand euros.

Where most IF SDR equipment still mainly relies on the CPU for processing (the SDR ‘hardware’ only
samples the data and transmits it to a general purpose computer using a USB or Ethernet cable) there is a
trend towards implementing more of the DSP functions on the FPGA. The reason for this trend is logical:
while having an ADC with a higher sampling rate is beneficial for the re-programmability and use of the SDR
platform, it has the downside that more samples per second also means a greater amount of data that needs
to be processed. Furthermore, the CPU is not the most scalable platform to implement DSP functions on,
hence the utilization of FPGAs for implementing these DSP functions.

As aresult new initiatives are being offered to facilitate DSP processing on the FPGA. Ettus Research offers
the RF Network on a Chip (RFNoC) framework [10], [11] that is compatible with their newer SDR platforms,
whereas Xilinx offers the Vitis framework [12] aimed towards offloading certain functions from the CPU to
the FPGA. As an alternative one can also simply implement the DSP processing directly in the FPGA logic. In
the end however, all solutions require the DSP processes to be implemented in some hardware description
language (HDL), either directly or using a high level synthesis (HLS) solution.
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2.2. Neural networks
This section gives a brief overview of various types of neural networks. For a more extensive reference of
neural networks refer to [13].

Deep learning is a type of machine learning based on artificial neural networks (ANN). Although the name
suggest otherwise, artificial neural network are developed with no or loose connections to neuroscience, ac-
cording to G. Indiveri et al [14]. Still, ANNs and biological neural networks are similar in that they learn from
data (or experience) and can use it to make predictions.

Machine Learning

“IJ”E:;[E‘ Eifrzt;irgn Classifier QOutput

‘ f/\\ ff\l . gignalI pnt'-fer |
T —> . Mzr:qgﬁt”“ — Modulation type
\\/’ « i
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IQ Data
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P £y
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Feature Extraction + Classification Qutput
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Figure 2.2: Illustration of difference between machine learning and deep learning.

—» Modulation type

The difference between machine learning and deep learning is illustrated in Figure 2.2. In machine learn-
ing features are extracted from raw input data, and these features are used in a classifier to make predictions,
also called inference. Examples of features in the case of modulation classification prediction are statistical
properties, such as moment and cumulants, and instantaneous properties such as signal power [15]. In ma-
chine learning it can be difficult to know what features should be extracted [13]. Deep learning attempts to
solve this issue by combining the feature extraction and classifier into one model such that the model learns
the features autonomously from the training dataset. The implication is that the dataset has a major influence
on the quality of the deep learning model.

The next sections will cover the basics of neural networks, such as the training and inference of deep
learning models. Furthermore, a number of different artificial neural networks are discussed: feedforward
neural networks, convolutional neural networks (CNN), residual neural networks (ResNet), recurrent neural
networks (RNN) and quantized neural networks (QNN). Finally, an overview of common building blocks in
neural networks is given.

2.2.1. Basics

A basic neural network is depicted in Figure 2.3. This network is called a feed-forward connected neural
network (FFNN) or multilayer perceptron (MLP). It is called a feed-forward network, because information
flows only in one direction. In this example there are 4 input nodes, 2 hidden layers with each 3 nodes, and
1 output node. The input nodes are simply the input data, for an image this can be the pixel values and for
RF data this can be IQ data samples from an ADC. The hidden layers and the output layer are known as fully-
connected or dense layers. In a fully connected layer, each node receives the output of all the nodes in the
preceding layer. Each node has a set of weights which are multiplied with the inputs to that node. The result
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is accumulated and a bias is added, this result is passed to the activation function of the node. An activation
function is often used to add non-linearity to the node, otherwise the neural network cannot learn non-linear
functions. A summary of common activation functions is provided in Section 2.2.6. Through multiple hidden
layers, the input values are transformed to form an output (or multiple outputs).

Input
Layer

Output
Layer

Cutput

Figure 2.3: Example of a feedforward neural network.

A labeled dataset is used by the neural network in the training phase to learn the parameters, such as the
weights and biases. For example, in a dataset for modulation classification, each example contains a label
with the modulation type of that particular example. This use of a labeled dataset to construct machine/deep
learning model is called supervised learning.

Training a neural network consist of two steps, a forward propagation and a backward propagation. In
the forward propagation, the examples from the training dataset are fed to the network. The output of the
network is compared to the labels using a loss function. The goal of training is to minimize the loss function.
During backward propagation the network is traversed from output to input and the parameters are updated.
Training a neural network is done by alternating the forward propagation and backward propagation. The
goal of the training of the model is to make predictions about unseen data, in other words data that is not
part of the training dataset. Therefore it is important that the model generalizes enough. It is called overfitting
when a model only makes correct predictions about the data that is used for the training of the model. It is
important that the dataset captures enough of target distribution. In the case of modulation classification
RF signals can have the same modulation but different signal to noise ratios (SNR). Therefore, to train a deep
learning model to correctly classify the modulation of signals, the dataset should have examples of RF signals
with different SNRs. Otherwise, the situation may arise that the model can only properly classify signals with
a specific SNR.

Training of deep learning is typically done on computer systems with CPUs and GPUs. Especially the
backward propagation is costly in terms of memory. Deep learning acceleration on FPGAs is typically only
for the forward propagation, such that the inference is done on FPGAs, but training of the model is done on
CPU/GPU systems.

2.2.2. Convolutional Neural Networks
The most basic neural network consisting of only fully connected layers is already described in the previous
section. Another common neural network type is a convolutional neural network (CNN). Convolutional neu-
ral networks are used extensively for computer vision tasks. In computer vision the input data are often 2D
signals, such as images and video frames. For time series data such as RF signals, the data are often 1D.
Abasic CNN is depicted in Figure 2.4. This figure shows that CNNs can be divided into a feature extraction
part and a classification part. The feature extraction is done through convolution layers. The classification is
often done by one or multiple fully connected layers which are discussed in Section 2.2.1. It should be noted
that the fully connected network also extracts features from the input, but in a CNN the separation between
feature extraction and classification parts is more evident.
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The 1D convolutional operation in CNNs is shown in Figure 2.5(a). This figure shows a kernel, which
contains trainable parameters, that slides over the 1D input samples and performs the convolution operation.
This figure also shows that for a kernel size of 3 and a input length of 6 samples, the output length will be 4.
This is called the border effect, therefore often padding is added, such that the input and output length are
equal, which is shown in Figure 2.5(b). Many neural network libraries actually implement a cross-correlation
function, instead of the convolution operation [13]. But this is not a problem, because the difference between
convolution and cross-correlation is simply flipping the kernel (weights) [13].

Fully
Connected

Convolution

Input
-

Classification

Feature Extraction

Figure 2.4: Schematic diagram of a basic convolutional neural network (CNN). Diagram from [16].
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(a) No padding (b) Including padding

Figure 2.5: Schematic illustration of 1D convolution operation.

In order to detect numerous features, multiple filters are often applied in a convolutional layer. This is
depicted in Figure 2.6. The input of the convolutional layer consists of one or more channels with each the
same length. The number of channels is defined by the amount of output channels from the preceding layer,
or in the case of the first convolutional layer the number of channels is simply the amount of channels of the
input. For example for RF data, this is often I and Q data, thus the input consist of two channels. All the filters
are applied to the input channels, and the output of the convolutional layer is often commonly called feature
maps. The number of channels in the output is equal to the amount of filters, and if padding is used then the
output length is equal to the input length.

A CNN commonly consist of several subsequent layers to form a deep neural network. Apart from the
convolutional layer other layers such as pooling layers are also included in a CNN. These other types of layers
are further explained in Section 2.2.6.
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Figure 2.6: Illustration of the 1D convolution layer in a neural network. A convolution layer usually contains several filters, that are
applied to the input channels, to determine the output.

2.2.3. Residual Neural Networks
A problem with deep neural networks is that they can be difficult to train. There are two main reasons for this
difficulty, the vanishing/exploding gradient problem and the accuracy saturation problem.

* The vanishing/exploding gradient problem can be encountered during training of neural networks. It
arises because during the backpropagation the gradients can be become vanishingly small or explod-
ing to large values. Consequently, the weights cannot update to a new value, which may result in that
the training of a neural network improves the model very slowly or not at all. The vanishing/exploding
problem can largely be addressed by the correct selection of the activation function and the initializa-
tion scheme of the weights [17].

» The accuracy saturation problem occurs when increasing the depth of a neural network does not in-
crease the accuracy, but instead the accuracy of the neural network saturates or even deteriorates. This
makes it more difficult to train deep networks.

To address both problems residual learning is proposed [18] as a means to ease the training of deep learn-
ing models. A shortcut connection (also known as skip connection) is added to the network, such that layers
can be skipped. An example of this principle is illustrated in Figure 2.7. In this case the shortcut connection
performs the identity function, and the result of the stacked layers are added to this identity function. The
identity function does not add extra parameters. The idea behind this shortcut connection is that it allows
input data in the network to skip some layers, such that the input of a certain layer is not directly originat-
ing from its preceding layer, but instead may originate from a layer several layers preceding it. Since the
published paper from 2015, Residual neural networks (also called ResNet) are used extensively to construct
increasingly deeper convolutional neural networks. A ResNet based on the ideas from [18] won the ImageNet
competition in 2015.
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identity

Figure 2.7: Building block for residual learning. Figure from (18]

2.2.4. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of neural networks commonly used in applications where data
is sequential [13]. Examples of typical applications are speech-to-text and machine translation where an
input sentence in a certain language is translated to a different language. In Figure 2.8 a comparison between
a standard RNN and a feed-forward connected neural network (FFNN) is shown. The difference between a
FFNN and a RNN is that a RNN has a feedback connection or loop in its hidden unit(s). In this way RNN shares
parameters across several time steps. In a RNN the same input may produce different outputs depending on
its preceding inputs, while a FFNN does not have this dependency.

A problem with standard RNNs is the gradient vanishing/exploding problem. To address this problem
gated RNNs are introduced. These models contain long short-term memory (LSTM) units or gated recurrent
units (GRU), and the idea is to create paths through time that have derivatives that neither vanish nor explode,
according to [13].

Recurrent Neural Network Feed-Forward Neural Network

Input Hidden Input Hidden
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Figure 2.8: Comparison between a Recurrent Neural Network (RNN) and a Feed-Forward Neural Network (FFNN)
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Figure 2.9: Standard Recurrent Neural Network and unfolded RNN.




2.2. Neural networks 15

2.2.5. Quantized Neural Networks
Neural networks are typically trained with single or double precision floating-point format. However, devices
like FPGAs are not efficiently able to do floating-point calculations. To efficiently deploy neural networks
to edge devices, such as microprocessors and FPGAs, the parameters and weights are commonly quantized.
Such a network, called Quantized Neural Network (QNN), reduces the computational complexity and mem-
ory requirements, but could lead to a decrease in accuracy. It should be noted that a QNN is not a neural
network architecture or topology, but rather the quantization of existing neural networks, such as CNNs.
There are different possible strategies and variants of QNNs. In post-training quantization the neural net-
work is trained with floating point precision, and after training the parameters and weights are quantized. A
possible advantage of this method is that training phase does not change, and makes it possible to optimize
the model before making the model suitable for deploying in edge devices. Although, a close collaboration
between training of the deep learning model and the implementation could also result in a better design.
Floating point numbers have a much greater dynamic range than fixed point numbers. As a consequence of
training a floating point model, the quantization of learned parameters and operations could be unsuitable
or inefficient for the target implementation platform. Also, the weights and output values of different layers
in the network could require different datatypes for various layers, which the hardware platform may not (ef-
ficiently) support. Instead of post-training quantization of a floating point model, a QNN can also be directly
trained using quantized parameters. This is sometimes called quantization-aware training.

Binary/ternary Neural Networks An extreme case of a QNN is using ternary or binary weights, also known
as TWN and BNN respectively. For a ternary neural networks, the weights are -1, 0 or 1, and for binary the
weights are either -1/0 or 1. The main use of such networks is for FPGA acceleration. According to [19], the
primary advantages of BNN over higher precision QNNs are efficient operations, normally the convolution
operation requires a K (or K x K for 2D) element multiply-accumulate operation, but in BNN this can be
implemented as a bitwise XNOR between two K bit vectors and a bitcount. A second advantage of binarizing
weights and feature maps is the greatly reduced memory size. Existing accelerators are typically constrained
in performance by a combination of on-chip storage space and off-chip memory bandwidth [19].

2.2.6. Building blocks
In the previous sections FFNNs, CNNs, ResNets and RNNs have been discussed. This section provides a
overview of the common building blocks presented in these networks.

Fully Connected Layer A fully connected layer, also known as a dense layer. All the input nodes in a
fully connected layer have a connection to its output nodes. The output of a fully connected layer is the result
of the multiply and accumulate operation of all the input nodes and the corresponding weights, thus each
output node depends on all the inputs nodes. A fully connected layer can be used to construct a feed-forward
neural network. Also, one or more fully connected layers are commonly included in a CNN as the last layers
to perform classifications based on the extracted features by the convolution layers.

Convolutional Layer A convolutional layer applies filters (also called kernels) to the input of the layer.
The output of this layer is commonly called feature maps, since the convolutional layer is often included to
detect features in the input. The filter size determine the amount of input values that are involved in the
calculation of a output. In Section 2.2.2 a more thorough explanation of the convolutional layer is presented.

Pooling layer A pooling layer produces a summary of a number of inputs. For example, max pooling
selects the max value within a defined range of inputs. Pooling layers are often used after a convolutional
layer, such that further operations are performed with a summarised features, rather than the exact position
of features. This principle is called invariance, because it makes the model more robust against small trans-
lations to the input. Besides max pooling, average pooling is also a popular pooling method. The outputs of
average pooling are simply composed of the average of a number of nearby inputs.

Activation Function The activation function is a function at the output for a node, it is also known as a
transfer function. The most basic activation function is the linear activation function, given by

f=x (Eq. 2.1)
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with x is the input of the activation function and f(x) the output of the node. Thus a linear activation func-
tion, simply passes its input to the output. Activation functions are often used to add non linearity to a node,
such that the model can have nonlinear relations. A few examples of non linear activation functions:

¢ Sigmoid and tanh
The sigmoid function or logistic function usually used in neural networks is given by:

fx)=

Eq.2.2
1+e™* (Eq )
The tanh function is given by:

f(x) =tanh(x) (Eq. 2.3)

The range of the sigmoid is between (0, 1), which makes it useful for a probability output. The range of
the tanh function is between (-1, 1). A problem with the sigmoid and tanh function is that the outputs
saturate for negative input values to -1 or 0 respectively and saturate to 1 for positive input values. The
consequence of this saturation is that in deep neural networks it is difficult to know what direction the
parameters should change in order to optimize the cost function [20]. This problem is known as the
vanishing gradient problem [20]. Since a trend in deep learning is to increase the depth of the network,
sigmoid and tanh activation are not used in deep neural networks.

e RelLU
The Rectified Linear Activation Unit (ReLU) activation function is a popular activation function, it sim-
ply clips all the negative values to zero, according to formula 2.4.

f(x) = max(0, x) (Eq. 2.4)

The non linearity is accomplished by mapping all negative values to zero. The function is linear for
positive values, which makes the optimization for. A limitation of ReLU, is that it a node becomes
insensitive for weight updates, since the output of ReLU is zero for negative input values. This problem
is called dying ReL.U.

¢ RelU variants
There are many variants of the ReLU that attempt to solve the problems with ReLU activation. The
Leaky ReLU (LReLU), introduced in 2013, contains the identity function for positive values. Unlike
ReLU negative values don’'t map to zero, but LReLU introduces a negative slope to map negative values.
As aresult, LReLU keeps the weight update alive during the entire propagation process [20].

x ifx>0
flx)= i (Eq. 2.5)
ax ifx<0

The Scaled Exponential Linear Unit (SELU) is another variant. The formula is given by equation 2.6.

X ifx>0

Eq. 2.6
ale*-1)) ifx=<0 (Eq. 2.6)

f(X)=/1{

Where 1 and «a are fixed parameters, meaning they are not changed during training. When 1 is 1 the ac-
tivation function is called Exponential Linear Unit (ELU). Like ReLU activation it alleviates the vanish-
ing gradient problem by using the identity function for positive values. The main advantage of (S)ELU
over ReLU is that it improves the learning characteristics [20]. A disadvantage of (S)ELU is the compu-
tational complexity because of the exponential operation.

¢ Softmax
The softmax function is often used as the activation function of the output nodes, to normalize the
output of a network to a probability distribution over predicted output classes whose sums adds up to
1. The softmax function is given by equation 2.7. Where z; is an element of the input vector z.

f(z)i=z,f;

. (Eq. 2.7)
j=1¢”
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Dropout Dropout is a technique for addressing overfitting [21]. The idea of dropout is to randomly set
nodes values to zero during training, and thus ‘dropped’. A node is dropped with a probability of 1 — pyeep,
where pyeep is the probability that the node is present. During inference, the node remains always active, and
the weights are multiplied by pyeep.

2.3. Modulation Classification

Modulation classification is the recognition of the modulation type of a particular signal. Examples of differ-
ent modulation types are: On-Off Keying (OOK), Phase-Shift Keying (PSK) and Quadrature Amplitude Modu-
lation (QAM). A modulation classifier can also be a sub-part within a broader function, an example of this is
shown in Figure 2.10. In this case the RF spectrum consist of many different signals, and from this spectrum
a single signal is filtered, before being presented as input to the classifier. This illustrates that many use cases
within the RF domain require different functions to fullfill that use case. This is certainly the case with cogni-
tive radio. Consequently, many of these functions have to run on a software defined radio platform. Hence,
many of these functions will be implemented on an FPGA. Therefore, it is useful to run a deep learning model,
for example for modulation classification, on the FPGA, because many of other functions are also performed

' NNIAN
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Figure 2.10: Example how modulation classification fits within a broader function.

2.3.1. Related Work

As described in Chapter 1, deep learning is a very popular field, in both academic and industry. Deep learning
specifically for RF is relatively new. In 2017 one of the first papers related to deep learning for the physical
layer was was published by O’Shea et al [22]. This paper gained academic interest and kicked off more re-
search on deep learning for RF applications and, in particular modulation classification. In 2018 O’Shea et
al published a paper [23] where they described the generation of a synthetic dataset containing labeled sam-
ples of 24 different analog and digital modulation types. This dataset is called DeepSig: RadioML (version
2018.01A). They trained 3 models using this dataset, a non deep learning model using XGBoost, a convolu-
tional neural network and a residual neural network. The residual neural network performs best. The CNN
has 257k trainable parameters, while the ResNet has 236k trainable parameters. In this paper the models
are also tested with over-the-air data. The over-the-air dataset is generated by two SDRs, a transmitter and
a receiver. The training and evaluation of the models with the over-the-air data are not done real-time, but
afterwards on a GPU. Since the original paper by O’Shea et al, more research is done to the neural networks
used for modulation classification. Some of these studies are listed below.

MCNet, Huynh-The et al [24] This paper proposes a cost-efficient convolutional neural network (CNN) for
modulation classification. The accuracy is significantly higher than the CNN and residual neural network
from [23]. For instance, the accuracy of MCNet is an improvement of 12.4% relative to the residual network
[23] at a Signal to Noise ratio (SNR) of +10dB. Moreover, the amount of trainable parameters in MCNet is 142k,
which is a reduction of approximately 40% compared to residual network from [23].
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Automatic Modulation Classification using Recurrent Neural Networks [25] This paper states that CNN
based models mainly considers the spatial correlation characteristics of RF signals rather than time domain
related characteristics. Therefore, this article considers recurrent neural networks based on gated recurrent
units (GRU) for modulation classification. The proposed model has approximately 38k parameters, and the
accuracy at high SNR regime is 91%. Which is slightly less than [24]. However, the dataset used for the evalua-
tion of the proposed model, is an older version of the DeepSig dataset, namely version 2016.10a. This version
of this dataset contains 11 modulation types and an input vector size of 128 IQ samples. Hence, the results of
this research cannot be compared fairly to the results from [23], [24]. Nevertheless, this research shows that
RNNs could be a viable alternative to CNN based models for modulation classification.

Gated Recurrent Unit Neural Networks for Automatic Modulation Classification with Resource-Constrained
End-Devices [7] This paper focuses on adapting the proposed GRU based RNN from [25], to obtain a net-
work that is more suitable for resource-constrained end-devices. This paper focuses on the memory footprint
of the model, which is largely determined by the number of parameters in the network.The adapted network
has less parameters, namely approximately 18.4k, while the accuracy is limited by a few percent.

Deep Learning Models for Wireless Signal Classification with Distributed Low-Cost Spectrum Sensors [26]
This paper demonstrates that simple LSTM models can achieve good accuracy on the DeepSig dataset, if the
input data is formatted as amplitude and phase (polar coordinates) instead of directly feeding the model with
1Q samples.

Robust Deep Radio Frequency Spectrum Learning for Future Wireless Communication Systems [27] This
research explores "how to develop robust deep learning models that generalizes well on unseen data for dif-
ferent wireless communication scenarios in practice using RF data" [27]. They specifically evaluate the effect
of SNR in the development of an RF deep learning model. An example of this effect of SNR on the deep learn-
ing model, can be seen in Figure 2.11. This figure shows that the model that is specifically trained for signals
with an SNR of 0dB or 10dB is not well suited for signals with different SNR. Therefore, a deep learning model
trained with a fixed SNR level cannot be used in many practical scenarios.

In this work deep learning models based on CNNs are used. They compare CNNs and RNNs with compa-
rable accuracy, and came to the conclusion that the training time for CNNs is considerable shorter.
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Figure 2.11: Accuracy versus SNR of two DL models trained on dataset with different SNRs (0dB or 10 dB). Figure from [27]

2.3.2. Main findings

Based on the related research discussed in this thesis, it can be stated that modulation classification using
deep learning techniques is still in early research phase, compared to more well developed deep learning
research areas such as image classification. Several, different neural networks such as convolutional neural
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networks and recurrent neural networks are being investigated. Both CNNs and RNNs show promising re-
sults, and there does not seem to be a clear trade-off yet as to whether RNNs or CNNs are more suitable for
modulation classification, and what the consequences are of one network over the other. CNNs seems to be
used more often for modulation classification, and also may be easier to train. Therefore, this thesis will focus
on CNNs from now on.

2.4. FPGA Deep Learning Acceleration
Acceleration of deep learning algorithms on FPGAs is gaining a lot of attention in both academic community
and industry. Different strategies and frameworks exist for deploying deep learning models to an FPGA. In
this section different papers and frameworks are discussed.

A good overview of different CNN-to-FPGA toolflows is given by I. Verieris et al [28]. These tools can be
taxomized in two main catagories: streaming architecture and single computation engines. In Figure 2.12 the
two categories are depicted.
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(a) Example of a streaming architecture accelerator

(b) Example of a single computation engine accelerator

Figure 2.12: Two different FPGA CNN accelerator architectures, as described by I. Verieris et al [28]. Figures are from [28]

Streaming Architectures Typically consist of one distinct hardware block for each layer of the target CNN,
where each block is optimized separately to exploit the parallelism in its layer. The data is streamed through
the architecture and as a result this design exploits parallelism between layers by means of pipelining. The
downside of a streaming architecture is that the hardware is not generic, meaning that the hardware is dif-
ferent for each neural network. An advantage is that the hardware can be specifically optimized for a certain
neural network and use case.

Single Computation Engines This design favours flexibility over customization. The control of hardware
and scheduling of operations is performed by software. A neural network is broken down into instructions,
which can be executed by the computation engine. The fixed architectural template can be scaled to the
target FPGA and CNN. The advantage of this design approach is that the architecture is not specific to a
certain CNN, which means that the hardware does not have to change for a different network. If the com-
putation engine supports all the operations of a certain CNN, the computation engine can execute the CNN.
The downside of this design strategy is that the one-size-fits-all approach can lead to a high variability in the
achieved performance accross CNNs with different workloads characteristics [28].

2.4.1. Comparison of toolflows

The compared CNN-to-FPGA toolflows by I. Venieris et al [28] are depicted in Table 2.1. Most of the tools are
not publicly available for use (open source or commercial). Only DeepBurning, Haddoc2, DNNWEAVER and
FINN are open source projects. Next these tools are summarized.
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¢ DeepBurning[29]

DeepBurning is an end-to-end deep learning acceleration tool. It consist of a library of building blocks
which implement certain common neural network operations. Dependent on the neural network and
user constraints, DeepBurning generates a custom accelerator, based on a streaming architecture. A
fully expanded neural network might not be possible, because of FPGA resource constraints or user
specified area constraints. DeepBurning enables spatial and temporal folding, in order to compress the
neural network into hardware. At the moment DeepBurning is not completely publicly available. Only
a few pre-build examples are available. Furthermore, it is no longer actively maintained (last Github
activity in 2019).

¢ Haddoc2(30]

Haddoc? is similar to DeepBurning, in that the tool generates a streaming architecture accelerator.
Each layer in the target CNN is mapped to a hardware stage, in which each processing entity gets private
resources, in order to maximize parallelism. Therefore, Haddoc2 does not require external memory.
Haddoc2 does not support time sharing of resources in order to limit the amount of resources that are
used. Furthermore, the neural network size that can be accelerated using Haddoc2 is limited, because
Haddoc2 does not support partial unrolling [28]. Haddoc2 is not actively maintained anymore (last
Github activity in 2018).

e DNNWEAVER [31]
DNNWeaver is based on the computation unit architecture. Therefore, DNNWeaver translates a high-
level neural network to its Instruction Set Architecture (ISA). The accelerator is based on parametrised
architectural template, such that it can matched to the target neural network and FPGA. DNNWeaver is
not actively maintained anymore (last Github activity in 2019).

¢ FINN(32], [33]
generates a data-driven streaming architecture accelerator. It is mainly targeted at very low precision
quantized neural networks, such as binary neural networks (BNN). FINN expresses the BNN compute
operations as matrix-vector operations followed by thresholding. The Matrix-Vector-Threshold Unit
(MVTU) forms the computational core of accelerator. FINN is actively maintained by Xilinx Labs.

All these tools are targeted at the computer vision domain. This is evidenced by the fact that the opera-
tions are only available or optimized for 2D data. From the tools tabulated in Table 2.1, FINN the only tool
that is publicly available for use and is still actively maintained.

Tooflow name Publicly available for use

fpgaConvNet  No
DeepBurning  Yes (https://labfor.github.io/)

Angel-Eye No

ALAMO No

Haddoc2 Yes (https://github.com/DreamIP/haddoc2)
DNNWEAVER  Yes (http://dnnweaver.org)

Caffeine No

AutoCodeGen No

FINN Yes (https://xilinx.github.io/finn/)

FP-DNN No

Snowflake No

SysArrayAccel No
FFTCodeGen No

Table 2.1: Evaluated toolflows in [28]

In addition to the discussed tools in Table 2.1, there are more existing tools and demonstrations of Deep
learning acceleration on FPGA, such as Vitis Al and hls4ml.
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Vitis AI Vitis Al is generic tool for Al inference, specifically for Xilinx hardware platforms. Unlike FINN
which is an experimental framework from Xilinx Research Labs, Vitis Al is an official Xilinx product. Vitis Al
is meant to be a generic tool, such that the barrier to use FPGAs for deep learning acceleration is lowered.

Vitis Al is based on a computation unit architecture, therefore the neural network is translated to instruc-
tions which can be executed on the computation unit. In Vitis Al this computation unit is called the Deep
Learning Processing Unit (DPU). This DPU can be tailored to different applications and FPGAs. Like the al-
ready discussed tools, Vitis Al is fully focused on the vision domain.

Hls4ml Hls4ml [34] is developed for high throughput and low latency requirements. The motivation for the
development of hls4ml stems from the high data rate involved in the CERN Large Hadron Collider (LHC) for
proton-proton collisions. Collisions occur every 25ns and the particle detectors around the LHC ring produce
tens of terabtyes of data every second [35]. The trigger to decide whether a discrete collision should be kept
for further analysis or discarded has strict latency requirements because of the high data rate. The decisions
taken by the trigger are based on deep learning. The accelerator as generated by the hls4ml framework is
based on the streaming architecture.

2.4.2. Main findings toolflows
Of all the toolflows discussed in the previous section, only three tools are still actively maintained and publicly
available for use. These tools are Vitis AI, hls4ml and FINN.

As explained in Chapter 1 restrictions in the implementation of DL models for FPGA deployment have
influence on the RF use case development and DL model development. FINN is mainly targeted at very low
precision neural networks, such as binarized neural networks. Therefore, this aspect of FINN is a restriction,
which is not desirable in this master thesis project.

Vitis Al and hls4ml appear to be promising tools for deploying CNNs to FPGAs. In Chapter 3, both Vitis Al
and hls4ml will be tested to assess their suitability for RF deep learing.

2.4.3. Related work
The amount of demonstrations of modulation classification on FPGA based SDR is very limited. In this sec-
tion two demonstrations are discussed.

Real-time Automatic Modulation Classification using RFSoC This paper [36] specifically focuses on the
real-time aspect of implementing deep learning models using FPGA based radio platforms. The authors train
a ternary-weights convolutional neural network that is capable of producing high speed real-time classifica-
tions on the signal modulation classification use case. An overview of the FPGA implementation is shown in
Figure 2.13.

The 1Q samples produced by the RF ADC are directed to the scheduler. The scheduler sends two sets of
1Q samples to the CNN accelerator, and the scheduler also receives the predictions upon completion. The IQ
sample rate is 500 MHz, and the CNN processes 2 sets of IQ samples with a clock rate of 250 MHz. The pre-
diction is completes when 1024 IQ samples have been provided, after which the next prediction immediately
starts. Therefore, the throughputis 488k (50%\;1 f £) classifications per second, and the latency is approximately
2000 clock cycles at 250 MHz, thus 8 pus.

This paper clearly explains that throughput and latency are two important aspects of a real-time modu-
lation classifier. Therefore, in this master thesis, emphasis is placed on the throughput and latency as such
aspects that are essential to an FPGA-based deep learning solution for RF applications. A major drawback of
the solution presented in [36] is that only ternary weights are supported. This already constitutes a limitation
when developing the RF use case and training deep learning models, and as discussed in Chapter 1, such
limitations are undesirable in the context of this master thesis.
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Figure 2.13: Block schematic of FPGA CNN accelerator integrated on FPGA based SDR. Figure from [36].

Implementation of Deep learning-Based Automatic Modulation Classifier on FPGA SDR Platform

This

paper [37] demonstrates the implementation of a modulation classifier (in this paper called Automatic Mod-
ulation Recognition) running on an FPGA based software defined radio system. The authors implement a
convolutional autoencoder (CAE) neural network using Vivado HLS. This IP is integrated in an RFNoC block,
as shown Figure 2.14. RFNoC enables a modular design, in which functions can be implemented as an RFNoC
block. These blocks are connected to a crossbar, so that data can be exchanged between the blocks. RFNoC
also enables data to be passed between the FPGA and CPU. GNUradio is used to run the application. In Figure

2.15 the GNUradio flow diagram is shown.
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Figure 2.14: Data flow of RFNoC based modulation classification application. RFNoC enables blocks to exchange data between each
other by means of a crossbar. In this figure the radio core and the automatic modulation recognition (AMR) are two RFNoC blocks.

Figure from [37].
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Figure 2.15: GNU radio flow diagram of automatic modulation recognition. The RFNoC blocks can be connected together in order to

create an RF application. Figure from [37].
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2.5. Conclusion

Existing deep learning models are often based on Convolutional Neural Networks (CNN) or Recurrent Neural
Networks (RNN). Both models achieve promising results and there is still no clear consensus as to which
models are best suited for modulation classification. However, convolutional neural networks are used more
often and may be easier to train. In this thesis CNNs are used for the modulation classification use case.

A reasonable amount of research has already been done into the use of FPGAs for deep learning accel-
eration, but many of these studies are fully focused on vision tasks. Therefore it is useful to test some of
these solutions for RF deep learning applications. There are mainly two different FPGA architectures for deep
learning acceleration.

¢ Streaming architecture in which the data samples are ‘streamed’ through the neural network. The ac-
celerator is specific to a particular network. This means that the accelerator has to change to run a
different network.

* Computation unit architecture which executes instructions. The resulting accelerator does not have to
change for different networks, as long as these networks can be converted to compatible instructions.

In the next chapter hls4ml and Vitis Al are evaluated whether they are suitable for RF deep learning. Both
hls4ml and Vitis Al are publicly available for use, and also actively maintained. A number of aspects are of par-
ticular importance for FPGA based DL acceleration for RF applications. First, the latency and throughput are
important because of the communication context. Second, the use of FPGA resources determines whether
one or more neural networks can be deployed on an FPGA to run in coexistence with other DSP functions in
an FPGA-based SDR.






Preliminary Experiments

In the previous chapter two fundamental different FPGA deep learning accelerator architectures were re-
viewed. Furthermore, several tools were discussed. In this chapter, a more in depth review is performed of
two promising tools, Vitis Al [38] and hls4ml [39]. In order to investigate whether these tools are suitable for
deploying deep learning models for use in the RF domain on an FPGA, models trained on the DeepSig dataset
are used for evaluation.

This chapter is structured as follows. Section 3.1 discusses the Vitis Al tool such as the workflow of using
this tool. Subsequently, Section 3.2 discusses the hls4ml tool and evaluation of the this tool.

3.1. Vitis Al

The development environment for deploying deep learning models to an FPGA using Vitis Al is depicted in
Figure 3.1(a). The first step in the development flow is to train a deep learning model using one of the most
common frameworks. There are a number of ready-made models available. The next step is to quantize
this floating point model, using the Vitis Al quantizer. Vitis Al uses INT8 datatypes for the quantize step.
Subsequently, this quantized model can be compiled into instructions for the Deep Learning Processing Unit
(DPU). Next, this model can be deployed to an FPGA, Figure 3.1(b) shows this process. First of all, the DPU
IP should be implemented on the hardware platform. The drivers and APIs are all implemented on the host
CPU. The API contains a number of C++/Python functions to execute the compiled deep learning model on
the DPU.
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(b) Vitis AI development flow. Figure from [41]
(a) The Vitis Al stack. Figure form [40].

Figure 3.1

3.1.1. Evaluation
To evaluate the suitability of Vitis Al for RF applications, a ResNet model, based on the model proposed by
O’shea in 2018 [23], will be deployed to an FPGA using Vitis Al. The Xilinx ZCU104 evaluation board is used to
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perform these experiments. Because DPU in Vitis Al is based on the computation unit architecture, the FPGA
only has to be configured once using a bitstream. Vitis Al provides board images in which the FPGA is already
configured, and also the complete software stack for the ARM processor is pre-installed. In this case version
v2020.1-v1.2.0 is used.

The ResNet model developed for RF data uses 1D operations. Since Vitis Al has been developed for vision
applications, Vitis Al is currently only supporting 2D operations. Therefore, this ResNet model has been
converted to a 2D model. Running this model using Vitis Al results in approximately 2k classifications per
second. Since the deep learning model uses 1024 samples for a prediction, a maximum continuous sample
rate of 2 mega samples per second (MSPS) would be sustainable in a real-time application. It depends on the
context of a certain use case whether this is sufficient. In any case, there are numerous applications within
the RF domain that require a higher throughput. Another smaller CNN with approximately 10k parameters
is tested and achieves a throughput of approximately 4k classifications per second. These results from Vitis
Al show a consequence of a computational unit architecture, namely being able to support a wide variety of
different neural networks, but the achieved performance varies between networks. The experiments indicate
that Vitis Al would be mainly useful in applications that require a large neural network, such as ResNet, and
where very low latency and/or high throughput is not required. Moreover, Vitis Al is not well suitable for RF
data, since Vitis Al uses 8 bit numbers. RF ADCs are often have a resolution of 12 to 16 bit. During these tests, it
was observed that the accuracy of a quantized model is significantly lower (a drop of approximately 30%) than
the floating point model. This result shows that Vitis Al is currently not suitable for RF deep learning, however
given the rapid developments, Vitis Al could become a suitable means for deploying RF deep learning models
to an FPGA.

Figure 3.2 shows an example system using Vitis Al In this case images from a camera are processed by the
FPGA, and send to memory by a DMA controller. The data to the DPU is controlled by a CPU, and thus data
cannot be feed directly to the DPU. This is a limitation of Vitis Al, and deep learning accelerators based on a
computation unit architecture. In an RF application it might be beneficial to being able to directly feed data
to a neural network IP, as is possible with a streaming architecture.

It is concluded that Vitis Al does not provide a fully adequate tool for modulation classification (and RF
applications in general). In particular, the throughput and latency are limited and the 8-bit data type also
forms a limitation, as RF ADCs are often 12 bits or more. However, Vitis Al can be used to accelerator large
neural networks as demonstrated in this section with a ResNet model. Therefore Vitis Al can be useful in
applications where large neural networks are used and which do not require a high throughput or low latency.
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Figure 3.2: Example system with Vitis AL Figure from [41]
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3.2. hls4ml

The workflow of hls4ml is depicted in Figure 3.3. First, a model is trained in one of the most common frame-
works. This can be a floating point model, but also a quantized model using the fixed point datatype. After
this step, the model can be translated into an HLS project that can be synthesized and implemented to run
on an FPGA [34]. The HLS project can be configured, such as the precision of the fixed point data types in
various layers of the implemented model.
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tune configuration
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Figure 3.3: Hls4ml development flow. Figure from [34]

3.2.1. Evaluation

HIs4ml uses Vivado HLS to compile and synthesize the HLS code. An attempt has been made to test hls4ml
with a CNN, the model used is shown in Table 3.1. This neural network is very small, since it contains only
1692 trainable parameters. However, even such a small network cannot be successfully synthesized using a
generated HLS project by hls4ml. This is due to the way hls4ml is designed.

Layer Output Shape Parameters
Conv 1d (1024 4] 28

Max Pooling 1d  [256 4]

Conv 1d [256 4] 52

Max Pooling 1d  [64 4]

Conv 1d (64 4] 52

Max Pooling 1d  [16 4]

Dense 24 1560

Table 3.1: Small CNN to test hls4ml. This network consist of 1692 trainable parameters in total.

Listing 3.1: hls4ml top function

void hls4ml_top_function(input_t input[1024x2], result_t output[24])

Listing 3.1 shows the top function of the hls4ml HLS project. All the inputs are passed at once to this top
function, in this case the input size is 2048 samples (1024 I and Q samples). The top function is pipelined
by default, therefore all the layers in the neural network are pipelined. Consequently, all the loops in the
design are automatically unrolled. Since, all the input samples are processed at once, a for-loop iterates over
all these input samples to perform the convolution operation. Hence, unrolling all the for-loops results in an
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enormous amount of hardware, which causes Vivado HLS to throw an error. Nevertheless, the fully pipelined
accelerator as generated by hls4ml, achieves a high throughput and low latency for smaller networks. For
example, suppose the hls4ml top function as depicted in 3.1 can accept a new set of inputs every clock cycle,
then the throughput is simply equal to the clock frequency the accelerator is running on.

Another limitation of the generated HLS project by hls4ml, is that each layer in the neural network starts
sequentially, such that a layer starts executing whenever its previous layer is finished processing all its inputs.
The implication is that all the outputs of every layer must be stored, which can use significant memory. To
give an example, the first convolution layer from Table 3.1 has 4 filters and 1024 input samples for 2 channels
(IQ data). This results in an output shape 1024 by 4, thus in total 4096 values. This can grow even larger if
more filters are applied.

In order to make the design successfully synthesize for the model shown in Table 3.1, all the pipeline
pragmas as well as most of the partitioning pragmas are removed. This results in an expected throughput
in the order of 250 classifications per second. Although the throughput could be increased a bit further by
optimizing, it is still a factor 8 lower compared to the throughput of the much larger ResNet model using Vitis
Al However, the fully pipelined streaming design as generated by hls4ml still has potential advantages over
Vitis AI, which are summarised below.

¢ Potentially high throughput and low latency, but this requires the design to be actually synthesizable
and also that the design fits on an FPGA in terms of resources.

* Possible to feed data from an ADC into an FPGA and then directly into the CNN accelerator. As can
be seen in Figure 3.2, with Vitis Al data can be pre-processed in the FPGA, but afterwards the data is
moved to memory by a DMA controller.

» Hls4ml is open source, thus it is possible to make changes to hls4ml and use it as a base for further
development. While Vitis Al is not open source and is meant to be a tool which just works and does not
allow much design exploration.

Like Vitis Al, hls4ml also does not provide a fully adequate tool for modulation classification (and RF
applications in general). The main shortcoming of hls4ml is that it is only suitable for very small neural
networks which are not sufficiently capable of modulation classification.

Based on the experiments performed in this chapter it is decided that a custom accelerator will be de-
signed. This custom accelerator should be able to reach a high throughput and low latency, and also be
suitable for reasonable sized neural networks capable of modulation classification.

3.3. Conclusion
In this preliminary experiments chapter, two FGPA deep learning accelerators are evaluated for their suit-
ability for RF deep learning. Firstly, Vitis Al is tested and secondly hls4ml is tested. Vitis Al is based on a
computation unit architecture, and hls4ml is based on a streaming architecture. The preliminary tests show
that Vitis Al can be useful for TNO in certain cases. These are cases where large neural networks are required
and a high throughput/low latency is not a requirement. It is important to mention that vitis Al currently only
supports 8-bit data input. This forms a limitation for RF deep learning, since RF ADCs are often 12 to 16 bit.
Perhaps this will change in the future, because of the rapid developments in FPGA deep learning accelerators.
Tests with hls4ml proves that hls4ml can only be used for very small networks, because of this limitation
hls4ml is not useful for TNO. However, its fully pipelined streaming architecture still has advantages, such
as a high throughput and low latency. Therefore, a custom CNN FPGA accelerator will be developed based
on such a streaming architecture. This accelerator should support larger networks than hls4ml currently
supports, and provide a high throughput and low latency accelerator.



Implementation

The previous chapters showed that there are various developments ongoing regarding FPGA deep learning
acceleration. However, the related research and preliminary experiments have shown that these existing so-
lutions are not fully adequate for FPGA RF deep learning acceleration.

Examples of shortcomings are that certain developments are specifically targeted at the vision domain
and are, therefore, not optimized for the RF domain. In this master thesis project we designed an imple-
mentation for an FPGA deep learning accelerator, which specifically takes RF applications into account. This
implementation should facilitate users to implement deep learning technology in software defined radio sys-
tems. And as a result, enable users to do applied research in deep learning for RF use cases.

This chapter is structured as follows. Section 4.1 presents the main design goals of the implementation.
Section 4.2 describes the process to deploy a neural network to an FPGA. Section 4.3 describes the actual
implementation of the accelerator. Section 4.4 provides the conclusion of this chapter.

4.1. Main design goals and specifications

The first step in designing a custom solution is to determine the main design goals and specifications. These
design goals are motivated by the performed experiments in Chapter 3 and also from the workflow presented
in Chapter 1.

Streaming architecture As described in the preliminary experiments section, it is beneficial to have an
accelerator based on a streaming architecture when the use case requires high throughput. This is because
a streaming architecture can be made specifically for a particular network and optimizations are possible to
meet specific requirements such as throughput and latency. Another advantage of a streaming architecture
is that this architecture does not necessarily require control. This means that the input values of the neural
network can directly be presented to an FPGA IP containing the neural network accelerator and the FPGA
IP produces an output. This may be advantageous when several pre-and post-processing operations are be
required. These operations may be directly related to deep learning, such as the normalization of input values
coming from an ADC. In addition, other operations not directly related to deep learning may be needed, such
as a channelizer. A channelizer can be used to split the RF spectrum into different bands, such that these
bands, which can contain different signals, can be processed separately. By performing all the operations on
the FPGA it is possible to design a high throughput accelerator that directly accepts data from an RF ADC,
and also pre-and post-processing functions can be directly connected to the FPGA accelerator IP.

In the case of a computation unit architecture, the neural network is implemented by executing a series of
instructions. This architecture requires control in the form of scheduling of instructions and data movement.
This control is often implemented in CPUs instead of FPGA. In conclusion, an streaming architecture allows
for an FPGA only implementation.

Process CNN on a sample-by-sample basis In order meet the high throughput and low latency requirement
and simultaneously low resources, it is essential to process a CNN on a sample-by-sample basis. A streaming
architecture allows for the design of an accelerator where each layer in the CNN can start execution with only
a portion of all the input data. In this master thesis, this principle is called processing on a sample-by-sample
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basis. In standard CPU or GPU implementations, the neural network is executed in a sequential way. The
subsequent layer only executes when all the outputs are available from the current layer. CPUs/GPUs often
execute a neural network by processing a large number of batches at once. In an FPGA design where process-
ing is done on a sample-by-sample basis, each layer can start executing as soon as there is data available. The
design philosophy behind this is to spread the work over time as much as possible.

Furthermore, by only storing the minimum values in the neural network that are needed for the current
operation, the memory requirements are drastically reduced. This is beneficial for FPGAs since they are lim-
ited by on-chip memory and off-chip memory is slow compared to on-chip memory. A convolutional layer
produces feature maps as output. The amount of maps produced by a convolutional layer is equal to the
number of kernels/filters in that layer. And the size is equal to the input size. In the modulation classification
use case, the input to the first convolutional layer has a length of 1024 samples per feature map. The required
storage space in FPGAs to store the complete feature maps is significant. This also scales with larger networks
with more filters per layer or more layers.

The design must be fully pipelined, such that each clock cycle a new input sample is accepted by the
FPGA accelerator. This allows an RF ADC to directly interface with the FPGA accelerator and achieve high
throughput and low latency.

Implement generic building blocks of common operations in CNNs CNNs consist of a number of building
blocks. The most common building blocks are described in Section 2.2.6. The principle of the building blocks
is that it is easy to construct a CNN simply by configuring the building blocks and connecting them. In order
to construct a basic CNN, the design should support the following building blocks:

¢ 1D Convolution Layer
¢ 1D Pooling Layer

¢ Dense Layer

¢ Activation Function

These building blocks are not made specifically for a certain arithmetic precision but instead use fixed
point datatype with variable width. This allows the user to choose the precision of the weights and operations.
As aresult, a trade-off can be made between, for example, resources and accuracy. While binary and ternary
neural networks show promising results in research, the limitation of the specific targeting of BNN/TNN is
not desired in this master’s thesis. Still, the specific support for BNN and TNN can be added at a later stage.
It should be noted that fixed point operations naturally support operations with binary or ternary numbers,
but are not optimized for this.

Implement using HLS Hardware designs are traditionally described using a hardware description language
(HDL), such as VHDL and Verilog. High level Synthesis (HLS) tools increase the abstraction level, which can
reduce the development time. Also, making changes in the HLS code is generally easier, for example chaining
the degree of parallelism or memory access patterns, can be controlled in Vivado HLS through pragmas. Also,
Vivado HLS enables a user to specify a target clock frequency, such that Vivado HLS can automatically insert
registers to shorten the critical path. Although the design is primarily aimed at achieving high throughput,
HLS also allows for rapid design changes to meet other specifications. As a result, the use of HLS in the work-
flow makes it possible to tailor the design specifically to certain specifications depending on the requirements
of the RF use case or deep learning models. Still, it remains a great effort to truly optimize Vivado HLS code
in order to obtain a good design.

4.2. Workflow of implementing neural networks on an FPGA

As described in paragraph 1.2, the workflow of the application of deep learning technology is divided into
three aspects which are listed below.

¢ RF use case development
¢ Deep learning development

e Implementation
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The scope of this thesis is mainly the implementation aspect of the deep learning, but as already men-
tioned in Section 1.2 these three aspects are not independent of each other. This dependence is also appar-
ent from the workflow of deploying neural networks on an FPGA as depicted in Figure 4.1. The training of
a neural network and the implementation of the neural network on an FPGA are part of the same workflow.
Thus, these two aspects should be compatible with each other.
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Figure 4.1: High level overview, mapping NN to FPGA

The first step in this workflow is to train the neural network, this can be done on a regular desktop system.
As described in Section 4.1 the implementation will support QNN with fixed point datatypes. Qkeras [35]
is an extension to Keras [42] to enable quantization aware training of neural networks. A nice property of
QKeras is that the various building blocks are a drop in replacement for the floating point building blocks in
Keras. This makes it easy to do a direct comparison between the floating point model and fixed point model.
Training and evaluation of the model can be done entirely on CPU/GPU platforms. If the model proves to be
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sufficiently suitable, the next step is to implement the model on an FPGA.

The Qkeras model is converted to the designed streaming architecture accelerator. In this thesis the pro-
cess of converting the model to an HLS description is not yet automated. Therefore, the neural network is
built manually using the HLS building blocks designed in this master thesis. All the learned parameters, the
weights and biases, are automatically converted to a C++ header file which can be inserted in the HLS project.

The data types should also be correctly chosen. The amount of bits for the weights and biases are simply
the same as the QKeras model. The number of bits used for the operations can be chosen for each layer.
Section 5 elaborates further on the process of selecting this number of bits. Next, the HLS implementation
can be simulated using the Vivado HLS C++ simulator. By using the same dataset for both the QKeras model
and the FPGA accelerator implementation can be compared. It could be that the QKeras model is used as a
reference and that the implementation should get exactly the same results. But it may also be the case that
the number of bits are chosen to make a trade off between resources and accuracy (or other classification
evaluation metrics). Next, the design can be synthesized using Vivado HLS. Finally, the IP can be integrated
in a Vivado project, and after synthesizing and implementation, the resulting bitstream can be used to deploy
the accelerator to an FPGA.

4.3. HLS implementation of building blocks

In this section the HLS neural network building blocks are designed. These building blocks are used to con-
struct neural networks by connecting the building blocks together and configure each building block.

4.3.1. 1D Convolution

The 1D convolution operation has been discussed in Section 2.2.2. In that section the direct convolution
method is discussed. This method is based on a sliding window, in which multiple filters slide over the input
data and at each slide position the multiply-and-accumulate(MACC) operation is performed between the
input data values and the corresponding filter values. Apart from the direct convolution, other techniques for
calculating convolution are for example FFT based or matrix multiplication. These alternative methods, are
mainly targeted at HPC systems with large amount of memory and bandwidth [43], [44] available. Therefore,
in this implementation the direct convolution method is used.

Listing 4.1: 1D convolution operation pseudo code

for (1=0; l<input length; 1++){
for (n=0; n<number of filters; n++){
for (k=0; k<number of input_channels; k++){
for m=0; nxfilter size; m++){
output[1][n] = output[l][n] + input_sample[l+m][k] = filter [k][n][m]

In code listing 4.1 pseudo code of the 1D direct convolution operation is shown. The range of the 4 nested
for loops follows from Figure 2.6 from Section 2.2.2. The notation is as follows: L is equal to the length of the
input to the convolution layer; N is equal to the number of filters; K is equal to the number of input channels
and M is equal to the filter/kernel size. The filters slide over the input sequence, and every output value only
depends on the input values that overlap with the position of the filters. This means that the outer for-loop
can be omitted, and the input values can be provided one by one to the convolution layer. For each output
value, M input samples have to be stored. The design of this is shown in Figure 4.2.
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Figure 4.2: 1D convolution operation, streaming architecture

The input values are stored in K FIFO buffers, with each a size equal to the filter size (M). As a result,
every time a new input (with K channels) arrives in the FIFO buffer, a single output value can be calculated.
And this output value can be directly passed to the next layer. This principle is programmed in HLS C++
code, a simplified version is shown in listing 4.2. This function receives a single input value, the weights
and bias; and produces a single output. The FIFO bulffer is declared at line 8 as a static type, because the
buffer should retain the values after the function is completed. The convld_operation function performs the
actual convolution operation, which is shown in listing 4.3. The multiplication and accumulation is split into
two separate nested loops, as during tests it was found out that Vivado HLS can optimize this design more.
Another point of attention is the implementation of the padding. Instead of augmenting the input dataset
with padding values, the implementation checks whether the current sample value is at the beginning (left)
or end (right) of the input sequence. If so, the FIFO buffers contain input samples from different ‘frames".
Where a frame is a sequence of input values that belong together, just like in an image all the pixels belong to
1 frame.
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Listing 4.2: 1D convolution streaming pseudo code

void convld_streaming(din_T (&in)[input_chan],

dout_T (&out)[num_filters],
ConvlD_weight_t (&filter)[filt_width][input_chan][num_filters],
ConvlD_bias_t (&bias)[num_filters],

static din_T fifo_buffer [input_chan][filt_width] = {0};
acc_T acc[num_filters];

for (int i=0; i<num_filters; i++){
acc[i] = bias[i];

}

fifo_buf(fifo_buffer, in);
convld_operation (fifo_buffer, acc, filter);
write_output(acc, out);

Listing 4.3: Convolution operation

void convld_operation(din_T fifo_buffer [input_chan][filt_width],

acc_T acc[num_filters],
ConvlD_weight_t (&filter)[filt_width][input_chan][num_filters])

mult_T mult[num_filters][input_chan][filt_width];

for (int n=0; n<num_filters; n++){ //for all filters
for (int k=0; k < input_chan; k++){ //for all input channels
for (int m=0; nxfilt_width; m++){ //length of the filter

if (padding left side of input sequence){
mult[n][k][m] = 0;
}
else if (padding right side of input sequence){
mult[n][k][m] = 0;

}
else{
mult[n][k][m] = fifo_buffer[k][m] * filter m][k][n];
}
}
}
}

for (int n=0; n<num_filters; n++){ //for all filters
for (int k=0; k < input_chan; k++){ //for all input channels
for (int m=0; nxfilt_width; m++){ //length of the filter
acc[n] += mult[n][k][m];

}
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4.3.2. 1D Pooling

The pooling operation is used to reduce the input dimensions. In the same way as the convolution layer, a
FIFO buffer is used to store all the samples that are needed to produce a single output, as shown in Figure 4.3.
In this case, the FIFO buffer size is equal to the pool size (P). An output is produced every time the FIFO buffer
receives P samples, so that the FIFO buffer is completely refreshed with new data. Therefore, the pooling
layer performs downsampling. Consequently, the throughput drops by a factor of m. Depending on the
pooling type, in this implementation the max value can be selected from the FIFO buffer, or the average value
of all the values in the FIFO buffer is calculated.

FIFO buffer, size equal to pool size (P)

Fy
v

M M-1 foesfsspesasnnnas 1 0
Mumber of input channels
(K)

Cutput, data rate reduction 1/P

Figure 4.3: 1D pooling operation, streaming architecture

4.3.3. Activation Function

The activation function does not need FIFO buffers, because the output only depends on a single input, as
shown in Figure 4.4. A ReLU activation function, can be easily be implemented as shown in listing 4.4. The
ReLU activation function can be formulated by f(x) = max(0, x), therefore negative values are clipped to zero,
and positive values are not modified.

Input

Activation Function

Qutput

Figure 4.4: Activation function, streaming architecture
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Listing 4.4: ReLU activation function pseudo code

for (int i=0; i<Number of filters; i++){
input = in[i];

if (input < 0){

out[i] = O0;
}
else{
out[i] = input;
}
}
4.3.4. Dense Layer

In a dense (fully-connected) layer every output node produced by the dense layer is dependent on all the in-
puts to that layer. Therefore, the complete output is only valid after all the inputs nodes have been processed.
As depicted in Figure 4.5 the output of the convolution layer is the input to the dense layer. Often the output
of the convolution layer is converted from multidimensional (multiple channels) vector to a one-dimensional
vector (nodes). In deep learning terminology this is called to ‘flatten‘ the input.

The subsequent dense layer receives a single output of the preceding convolution layer. Thus dense layer
receives only part of all the hidden nodes. Figure 4.6 shows how each part of the input is processed. Hence,
every time a series of inputs are provided to the dense layer all the nodes are multiplied with the correspond-
ing weights and accumulated in the output.

Complete
output of

convolution
layer Hidden Nodes
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Dense Layer
Qutput
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Figure 4.5: The output of a convolution layer is flatten before feeding into a dense layer.
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Figure 4.6: Dense operation, streaming architecture

4.3.5. Connecting multiple layers

A neural network can be constructed with the building blocks developed in this master thesis project. Figure
4.7 shows the connection of a convolutions layer to an activation layer, and the connection of the activation
layer to the pooling layer. There is only 1 input sample (both I & Q data) provided to the first layer each
initiation of the HLS neural network implementation. In this way not all the layers are active each initiation.
In a fully pipelined design it is possible to accept a new IQ sample each clock cycle, this means to have an
initiation interval (II) of 1. And an II of 2, means that only a new IQ sample can be provided to the design
every two clock cycles. Therefore, the initiation interval directly influences the throughput, in classifications
per second. This relation is given in equation 4.1.

clock frequency
II-inputlength

Throughput = (Eq.4.1)

Each pooling operation reduces the data rate in the neural network by W. Figure 4.8 illustrates this
principle for a simple neural network. This simple neural network contains 3 pooling layers with a pooling
size of 2, such that they reduce the data rate by a factor of 2. In this figure it is indicated when a certain layer
has produced an output. The first pooling layer produces an output every 2 samples, because this pooling
layer needs two samples to calculate a summary value, such as the maximum or average. Likewise, the third
pooling layer produces an output every 8 input samples. In this figure the neural network processes 8 samples
in total, such that the dense layer produces an output after 8 samples. In the case that the neural network
processes more than 8 samples, for example 16 samples, then the output of the dense layer would be ready
after 16 samples.

CNNs can contain multiple dense layers, the first dense layer often receives its inputs from a pooling
layer. The implemented pooling layer provides part of the output in a fixed interval (due to the throughput
reduction), thus the output the pooling layer is spread over a number of clock cycles. Therefore, this first
dense layer can simply directly use the output from the pooling layer, as illustrated in Figure 4.9. Furthermore,
this figure shows the insertion of a buffer between two dense layers. This is such that the second dense layer
processes its input sequentially, or in other words the output of the first dense layer is spread over multiple
initiation intervals. Otherwise, the second the dense layer receives all of its inputs at once, and the processing
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of this second dense layer would not be spread over a number of clock cycles. This is only possible if the data
rate of the output of the first dense layer is low enough, such that the second dense layer is finished, before a
new output is produced by the first dense layer.

1D Convolution Layer Activation Layer 1D Pooling Layer

| & Output Output Output

s ? ] > = I | —
amp 93_‘ |:| » Cg;:?;gig?‘n Activation fho » | Pooling
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Figure 4.7
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Figure 4.8: Output ready
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Figure 4.9: Inserting a buffer between multiple Dense layers

4.4. Conclusion

This chapter describes the implementation of a convolutional neural network FPGA accelerator with a stream-
ing architecture. The most common building blocks of a 1D CNN are implemented: 1D convolution layer,
activation function, pooling layer and a dense layer. These building blocks are designed using Vivado HLS. To
construct a neural network, these building blocks can be configured and connected to each other. All build-
ing blocks use fixed point numbers, and the precision of every building block can be configured individually.
The quantized neural network itself can be trained using the QKeras framework. Subsequently, this model
can be converted to an FPGA accelerator using the developed HLS building blocks. This conversion is not yet
done automatically, by means of a tool, instead the building blocks are manually configured and connected
in order to construct the network.

The most important aspect of the accelerator is that each building block is not executed sequentially
with all its inputs available, but instead each building block processes part of the whole input as soon as it
is available. Therefore, the convolutional and pooling layer contains FIFO buffers to buffer all the necessary
inputs in order to calculate a single output. Furthermore, the accelerator directly accepts samples from an
ADC.



Evaluation & Results

In Chapter 4, the design and implementation of a custom CNN FPGA accelerator was described. This chap-
ter covers the evaluation and results of this accelerator. The advantages and disadvantages/limitations are
discussed. Furthermore, the results of the custom accelerator are compared with already existing solutions.
In Chapter 3, hls4ml is evaluated and during this master thesis project a new version of hls4ml was released.
This version is suitable for larger CNN networks, therefore we compare this new version of hls4ml with the
results from this master thesis.

This chapter is structured as follows. Section 5.1 presents the metrics used for the evaluation. Section 5.2
describes the test setup and the two CNN models used for evaluation. Section 5.3 describes the process of
constructing the HLS implementation of the CNN models, of which an important part is the determination
of the required precision of the fixed point parameters and operations. Section 5.4 discusses the results of
various FPGA implementations of the two CNN models. In Section 5.5 the process of deployment of the
FPGA CNN accelerator is described. Sections 5.6 and 5.7 compare the custom accelerator with other existing
solutions. Finally, Section 5.8 provides the conclusion to this chapter.

5.1. Metrics

The custom implementation is quantitatively evaluated according to the following metrics:

Throughput & Latency Throughput is measured in terms of classifications per second. In Chapter 4 the
equation for calculating throughput is given by Equation 4.1. The clock frequency and the initiation interval
(IT) determine the data rate that the accelerator can process (data rate = %ﬁ’quency). The custom acceler-
ator is designed to achieve an II of 1. Therefore, in order to determine the maximum data rate the accelerator
can accept, the maximum clock frequency of the custom accelerator will be investigated.

The number of samples that the neural network uses to make predictions, is a value that is chosen during
the training of the deep learning model. This evaluation uses an input sequence of 1024 1Q samples. This
amount is common for deep learning modulation classification.

Latency is the time between the moment the FPGA accelerator receives its inputs and when the classifi-
cation output is available. Like throughput, latency of the custom accelerator depends on the input length.

Resources The amount of FPGA resources that are utilized, there are four main resources present in most
FPGAs: LUTs, FFs, BRAM and DSPs. It is important that the number of resources does not get too close to the
maximum resources of FPGA, as this makes placement and routing more difficult. Moreover, this affects the
maximum achievable clock frequency.

Accuracy The accuracy of the neural network model implemented on the FPGA. Models are often trained
on desktop systems using floating point datatypes. Deploying such a model to an FPGA often requires con-
verting the model to fixed point, or even binary and ternary representation. This quantization step could
possibly lead to a decrease in accuracy of the model. For both the custom implementation and hls4ml, Qk-
eras is used to train a neural network using fixed point numbers. Since Qkeras already uses quantized weights
and operations, the FPGA implementation should achieve a similar accuracy. In other words the accuracy or

39
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other classification metrics of the Qkeras network can be considered as a reference for the FPGA implemen-
tation.

5.2. Test setup

All tests described in this chapter are performed using a Xilinx ZCU104 evaluation board, which contains
an Zynq UltraScale+ MPSoC FPGA (part number: xczu7ev-ffvc1156-2-€e). In terms of software, the following
versions are used:

¢ Vivado HLS version: 2019.2
¢ Vivado Version: 2019.2

5.2.1. Evaluation CNN Models

As described in Chapter 3, the first step in deploying a neural network for inference on an FPGA using the
custom implementation, is to train a network on the CPU. Qkeras is used to train a network on a custom
dataset developed by TNO. This dataset contains 17 different modulation types. Each sequence is 1024 1Q
samples long.

The goal of this evaluation is to evaluate whether the custom implementation is suitable for FPGA high
throughput deep learning acceleration. To optimize the neural network itself, is not the main scope of the
report. However the neural network should be a realistic model in the sense that it can be used for modulation
classification. Two neural networks are trained for the evaluation. In Table 5.1a Model A is shown. This
network uses 7 bit weights, and consist in total of 3765 trainable parameters. The model A accuracy is 62.37%
for the complete TNO validation dataset. Model B is shown in 5.1b, this model is larger and contains 12041
trainable parameters. This models accuracy is 69.82%. This model contains 5 stacks, where each stack is
built according to table 5.2. The accuracy obtained by Model A and B are regarded sufficient to consider the
models realistic.

(a) Model A (b) Model B
Number of Number of
Layer Output shape Layer Output shape
parameters parameters
Convolution 1D  [1024, 16] 112 Stack [1024, 16] 1616
ReLU [1024, 16] Max Pooling 1D [512, 16]
Max Pooling 1D [512, 16] Stack [512, 16] 1840
Convolution 1D  [512, 16] 784 Max Pooling 1D [256, 16]
ReLU [512, 16] Stack [256, 16] 1840
Max Pooling 1D [256, 16] Max Pooling 1D [128, 16]
Convolution 1D  [256, 16] 784 Stack (128, 16] 1840
ReLU [256, 16] Max Pooling 1D [64, 8]
Max Pooling 1D [128, 16] Stack (64, 8] 536
Convolution 1D  [128, 16] 784 Max Pooling 1D [32, 8]
ReLU [128, 16] Flatten [256]
Max Pooling 1D [32, 4] Dense [17] 4369
Convolution 1D  [32, 4] 196
ReLU (32, 4]
Max Pooling 1D [16, 4]
Flatten [64]
Dense [17] 1105

Table 5.1: Two neural networks used for evaluation. Model A has a total of 3765 trainable parameters, and model B has a total of 12041
trainable parameters. Both Model A and B are quantized neural networks constructed using QKeras. All the weights are fixed point
numbers between -1 and 1, 1 bit is used for the sign and 6 bits are used for fractional part.
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Convolution 1D, kernel size = 1
ReLU
Convolution 1D, kernel size = 3
ReLU
Convolution 1D, kernel size = 3
ReLU

Table 5.2: Stack buildup, as used in Model B.

5.3. Construct CNN FPGA Accelerator

The next step is to implement this neural network, in order to deploy it on an FPGA. There is not yet a tool
or script to automatically convert a Qkeras network to the custom implementation’s HLS code. Therefore,
the implementation is manually constructed using the layer building blocks. The weights and biases in the
Qkeras model are saved to a C++ header file, and the header file is imported in the custom implementation.

5.3.1. Specifying Precision

The number of bits that is used for the operations should be specified for every layer. The range of values that
are possible in the model can be determined, such that the appropriate number of bits can be chosen. There
are three methods considered in this thesis:

1. The minimum and maximum values that can occur in every layer in the neural network can be calcu-
lated. Consequently, this method does not take into account the actual values of the input and trainable
parameters, but simply only the minimum and maximum value of the fixed point data type they use.
Therefore, if the inputs or trainable parameters change, the implementation does not have to change.

2. The needed precision can be determined according to the actual inputs and trainable parameters
(weights and biases), as such that this method results in an implementation that is specifically con-
structed for a certain set of inputs and weights. Consequently, if these inputs or weights change, then
the implementation may not be able to correctly represent the values that can occur in the layer.

3. Itis also possible to choose the number of bits in such a way that a trade-off is made between accuracy
and resources. By specifying less bits, not all values in the neural network will be correctly represented,
but it may be possible that the accuracy drop is limited. In other words, the other two methods results
in an implementation that is guaranteed to achieve the same accuracy as the QKeras model. While this
method makes a trade-off between accuracy and resources.

To construct a baseline for the evaluation, the number of bits in each layer is specified according to
method 1. In the next two sections, the required precision is determined based on method 1 and 2.
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5.3.2. Method 1: Baseline

All the trainable parameters, inputs and operations are using Vivado HLS and its fixed point datatype. In
Figure 5.1, all the configuration options of this Vivado HLS fixed point datatype are illustrated. In the next
paragraphs the fixed point configuration for all the separate layers are determined.

ap_fixed<W, |, Q, O, N>

N: Number of bits in overflow wrap
modes
Default: 0

W: the total number of bits used
O: Overflow Modes

Saturation (AP_SAT)

Saturation to zero (AP_SAT_ZERQ)
Symmetrical Saturation (AP_SAT_SYM)
Wrap-around (AP_WRAP)

Convergent to rounding
(AP_WRAP_SM)

I: the number of bits used for _
the integer part (including a sign
bit) =

L T

Default: AP_WRAP

Q: Quantization Modes

= Rounding to plus infinity (AP_RND)

= Rounding to zero (AP_RND_ZERO)
Rounding to minus infinity
(AP_RMND_MIN_INF)

Rounding to infinity (AP_RND_INF)
Convergent to rounding (AP_RND_CONV)
Truncation (AP_TRN)

Truncation to zero (AP_TRN_ZERQO)

-

Y

LI

Default: AF_TRN

Figure 5.1: Vivado HLS fixed point datatype.

ReLU Layer The number of bits for ReLU layer are specified in the Qkeras model, so the implementation
can use the same amount of bits. Furthermore, the ReLU operation in the QKeras model saturates to the
maximum value of the fixed point number. Since, both QKeras models A and B use 1 bit for integer part and
6 bits for the fractional part, the maximum value is 0.984375 2714272423 4+2744+2754276),

The values for the ReLU activation are clipped in the implementation by means of the Vivado HLS fixed
point saturation option (AP_SAT). Another possibility would be to program this clipping behavior in the HLS
code of the activation function itself, but this option led to an excessive increase in the resources for the ReLU
activation.

The clipping behavior of the QKeras ReLU activate layer ensures that the maximum value cannot con-
tinue to increase, as is the case with a floating point model. Therefore, the maximum input value of both the
subsequent pooling and convolution layers is always defined.

Max Pooling Layer The max pooling layer does not do any operation which changes the values of the nodes,
so it can have the same number of bits as its preceding layer. Which in this case is the ReLU activation func-
tion. However, the max pooling layer, don’t need the Vivado HLS fixed point saturation option.

Convolution Layer The number of bits for the convolution layer depends on the kernel size, because that
determines how many values are multiplied and accumulated. Since, the number of bits of the inputs to the
convolution layer and the number of bits for the weights are known. The minimum/maximum values that can
occur in this layer can be calculated. The convolution operation is simply the multiplication of these inputs
with the corresponding weights and accumulate all the multiplications. The range of the multiply operation
is lower than from the accumulate operation. And since the multiplication and accumulation variables are
split into two separate variables, the number of bits for these two variables can be specified separately.

In this case of all convolution layer have a kernel size of 3, and the input and weights are 7 bit numbers
(1 integer bit, 6 fractional bits). Since, the inputs only use 1 bit the integer part, this is actually just a sign
bit. Therefore, the results of the multiplication are all below 1, which means that the multiplication only
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needs 1 bit instead of 2 bits. Thus the multiplication operation needs 12 (2*6) fractional bits and 1 integer bit
(ap_fixed<13, 1>).

The accumulator sums up all the input channels with the result of the multiplication with the kernels.
In the case of 16 input channels, the accumulator sums up 16 channels with each 3 values. Therefore, the
maximum value can be calculated with Equation 5.1. In this case the input channels are 16 for the first 4
convolution layers, kernel size is 3, and maximum fixed point value is 0.984375. Hence, the maximum value
for the accumulator is 47.5, thus 7 integer bits are needed. The number of fractional bits can be equal to the
multiplier, which uses 12 fractional bits.

max value accumulator = input channels - kernel size - (maximum fixed point value)? + bias (Eq. 5.1)

Dense Layer In worst case the dense layer sums all the input nodes containing all the minimum or maxi-
mum value. The number of integer bits can specified to be able to accommodate this situation. The dense
layer in Model A, receives 64 input nodes, therefore the maximum value is 63. Hence, 7 integer bits would be
needed to represent this maximum value.

Input Layer The first convolution layer operates directly on the input data. The other convolution layers
operate on data from the preceding max pooling layer. Therefore, the number of bits differs for first convolu-
tion layer and should be specified according to the range of the input values.

The samples in the TNO dataset are floating point single-precision number. In Figure 5.2 two different
frames (1024 samples) are shown. From this figure it is clear that between frames there is a large difference
in amplitude. The minimum and maximum amplitude are approximately -490 en 482 respectively. These
floating point numbers must be represented as fixed point numbers. To determine this, the entire dataset
is converted to fixed point numbers and the mean absolute error (MAE) is determined with the reference
floating point numbers. The result of this is shown in Figure 5.3. Firstly, the amount of integer bits are deter-
mined, by varying the number of integer bits and keeping the number of fractional bits constant (15 in this
case). Figure 5.3(a) clearly shows that the MAE reaches a plateau from 10 or more integer bits. This result cor-
responds to the minimum (-490) and maximum (482) values found in the TNO dataset. Secondly, the number
of fractional bits can be determined. Figure 5.3(b) shows the MAE for varying amount of fractional bits, and
10 integer bits. From these results, 7 fractional bits (MAE of 0.0039) is deemed a good enough representation.

— | Samples
O Samples

0 200 400 600 800 1000
Sample Number

Figure 5.2: IQ samples example from TNO dataset. Note the difference in amplitude between the upper and lower plot.
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Figure 5.3: Input values from dataset converted from floating point to fixed point. The mean absolute error is is shown as a function of
the amount of integer and fractional bits.

5.3.3. Method 2: Improvement over baseline

In this section the precision of each layer is determined based on the actual value of the trainable parameters
and inputs. The validation dataset, which is also used to determine the accuracy, is provided as input to the
model. It is important to realize that this dataset does not contain all the possible inputs. As a consequence,
it might be possible that a certain input to the model might result in values that cannot be represented by the
implementation. Therefore, it is important to have a validation dataset, that reflects the target distribution as
much as possible.

In Table 5.3 the minimum and maximum output values per layer of Model A are tabulated. Likewise, Table
5.4 tabulates these values for Model B. These results are obtained by feeding all the frames of the validation
dataset to the model. In appendix A, table 5.3 is shown in more detail where the minimum and maximum
values are obtained per 10k frames.

Table 5.3 and 5.4 also show the required fixed point configurations, to correctly represent all the mini-
mum and maximum values. As a result, the implementation with these datatypes, should achieve the same
accuracy as the reference QKeras Model A and B.

Output Value .
Layer Required Datatype
Min Max
Input -490.73  482.97 ap_fixed<17,10>
Convld -71591 731.30 ap_fixed<24,11>
ReLU 0.0 0.9844 ap_fixed<7,1, AP_RND, AP_SAT>
Conv 1d -6.95 10.23 ap_fixed<17,5>
ReLU 0.0 0.9844 ap_fixed<7,1, AP_RND, AP_SAT>
Convld -341 7.73 ap_fixed<16,4>
ReLU 0.0 0.9844 ap_fixed<7,1, AP_RND, AP_SAT>
Convld -7.78 4.93 ap_fixed<16,4>
RelLU 0.0 0.9844 ap_fixed<7,1, AP_RND, AP_SAT>
Conv 1d -5.38 4.62 ap_fixed<16,4>
ReLU 0.0 0.9844 ap_fixed<7,1, AP_RND, AP_SAT>

Table 5.3: The minimum and maximum output values per layer in Model A. These values are obtained by using the validation dataset as
input.
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Output Value .
Layer . Required Datatype
Min Max
Input -490.73  482.97 ap_fixed<17,10>
Convld -735.8 747.25 ap_fixed<24,11>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Stack 1 Conv 1d -5.28 3.97 ap_fixed<16,4>
ac
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -3.81 7.35 ap_fixed<16,4>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -2.51 2.85 ap_fixed<15,3>
RelLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Convld  -4.62 4.00 ap_fixed<16,4>
Stack 2
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -4.27 2.68 ap_fixed<15,3>
RelLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Convld  -3.32 2.59 ap_fixed<15,3>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -6.08 2.81 ap_fixed<16,4>
Stack 3
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Convld  -4.55 3.54 ap_fixed<15,3>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Convld  -2.53 2.57 ap_fixed<15,3>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -4.94 2.72 ap_fixed<15,3>
Stack 4
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -4.68 3.15 ap_fixed<15,3>
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -2.72 2.05 ap_fixed<15,3>
RelLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Convld -4.36 4.32 ap_fixed<16,4>
Stack 5
ReLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>
Conv 1d -1.69 6.75 ap_fixed<16,4>
RelLU 0.0 0.9844 ap_fixed<7,1,AP_RND,AP_SAT>

Table 5.4: The minimum and maximum output values per layer in Model B. These values are obtained by using the validation dataset as

input.
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5.4. Results

In the previous section, the process of determining the required precision for all the separate layers was dis-
cussed, such that there are multiple implementations of the same model. This section reviews the results
of the various implementations. First, the results of Model A are reviewed. The various implementations of
Model A are tabulated in Table 5.5. The baseline implementation is obtained by specifying the datatypes ac-
cording to method 1 from Section 5.3.2. Next, method 2 is used in implementation 2, Finally, implementation
3,4 and 5 are attempts for making a compromise between accuracy and resources.

Implementation
1.
) 2. 3. 4. 5.
Layers Baseline
(Method 2) (Method 3) (Method 3) (Method 3)
(Method 1)
Input ap_fixed<17,10> ap_fixed<17,10> ap_fixed<16,10> ap_fixed<16,10> ap_fixed<17,10>
Conv 1D Mult ap_fixed<23,10> ap_fixed<23,10> ap_fixed<22,10> ap_fixed<22,10> ap_fixed<23,10>
\%
Acc  ap_fixed<26,13> ap_fixed<24,11> ap_fixed<25,13> ap_fixed<25,13> ap_fixed<24,11>
Conv 1D Mult ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<9,1>
v
ap_fixed<14,2,
Acc ap_fixed<20,7>  ap_fixed<17,5>  ap_fixed<16,4> P ap_fixed<13,5>
AP_RND, AP_SAT>
Conv 1D Mult ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<9,1>
v
ap_fixed<14,2,
Acc  ap_fixed<20,7>  ap_fixed<16,4>  ap_fixed<16,4> ap_fixed<12,4>
AP_RND, AP_SAT>
Conv 1D Mult ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<9,1>
\'
ap_fixed<14,2,
Acc  ap_fixed<20,7>  ap_fixed<16,4>  ap_fixed<16,4> ap_fixed<12,4>
AP_RND, AP_SAT>
Conv 1D Mult ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<13,1> ap_fixed<9,1>
\'
ap_fixed<14,2,
Acc ap_fixed<18,5>  ap_fixed<16,4>  ap_fixed<16,4> ap_fixed<12,4>
AP_RND, AP_SAT>
Dense ap_fixed<19,7>  ap_fixed<16,7>  ap_fixed<16,7>  ap_fixed<16,7> ap_fixed<16,7>

Table 5.5: The various implementations of Model A. This table show the specified datatype for every layer for all the implementations.
The baseline is constructed by specifying the datatype for each layer according to method 1.

The results of all the implementations are depicted in Table 5.6. As indicated in Section 5.3.1, the accuracy

of the implementations obtained with method 1 and 2, achieve the same accuracy as the Qkeras model. The
results from Table 5.6 confirm this statement. Furthermore, from these results it can be concluded that there
is a significant difference between the Vivado HLS resource estimate and the actual resources as reported by
Vivado. This difference is mainly between the amount of FF and LUTs. The difference in resources between
the baseline and implementation 2 quite minor. Implementation 4 results in a bad design, because of the use
of the vivado HLS fixed point saturation option for the accumulator. Implementation 5 could potentially be
an interesting trade-off between accuracy and resources, although an accuracy drop of almost 3 % is consid-
erable. All these results show implementing larger neural networks on a ZCU104 board is easily possible.
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Implementation
Baniine 2. 3, 4. 5.
(Method 1) (Method 2) (Method3) (Method3) (Method 3)
Accuracy 62.37% 62.37% 62.34% 58.63% 59.59%
Vivado BRAM 0 2 2 2 2
HLS DSP 90 111 111 74 65
resource FF 30644 30074 30232 63173 27124
estimate LUT 108214 99490 99361 278295 99609
Actual BRAM 0 0 0 0 0
Vivado DSP 111 115 115 133 65
LeSOUICes FF 22972 22407 22564 40576 20580
LUT 36626 36687 36434 80206 32294
Table 5.6: Model A implementation results
Implementation
1. 2
Layers Baseline ’
(Method 1) (Method 2)
Input ap_fixed<17,10> ap_fixed<17,10>
Mult ap_fixed<23,10> ap_fixed<23,10>
Conv 1d
Acc  ap_fixed<24,11> ap_fixed<24,11>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Stack1l  Convld Acc  ap_fixed<20,7>  ap_fixed<16,4>
Mult ap_fixed<13,1> ap_fixed<13,1>
Conv1d Acc ap_fixed<20,7> ap_fixed<16,4>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Conv1d Acc  ap_fixed<17,5>  ap_fixed<15,3>
Mult ap_fixed<13,1> ap_fixed<13,1>
Stack2  Conv1d Acc ap_fixed<20,7> ap_fixed<16,4>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Conv1d Acc  ap_fixed<20,7>  ap_fixed<15,3>
Mult ap_fixed<13,1> ap_fixed<13,1>
Conv1d Acc  ap_fixed<17,5>  ap_fixed<15,3>
Mult  ap_fixed<13,1> ap_fixed<13,1>
Stack3  Convld Acc  ap_fixed<20,7>  ap_fixed<16,4>
Mult ap_fixed<13,1> ap_fixed<13,1>
Conv1d Acc ap_fixed<20,7> ap_fixed<15,3>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Conv1d Acc  ap_fixed<17,5>  ap_fixed<15,3>
Mult ap_fixed<13,1> ap_fixed<13,1>
Stack4  Conv1d Acc ap_fixed<20,7> ap_fixed<15,3>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Conv1d Acc ap_fixed<20,7> ap_fixed<15,3>
Mult ap_fixed<13,1> ap_fixed<13,1>
Conv1d Acc  ap_fixed<17,5>  ap_fixed<15,3>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Stacks  Convld Acc  ap_fixed<20,7>  ap_fixed<16,4>
Mult ap_fixed<13,1>  ap_fixed<13,1>
Conv 1d Acc ap_fixed<20,7> ap_fixed<16,4>
Dense ap_fixed<21,9> ap_fixed<21,9>

Table 5.7: Model B implementations
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For Model B, only two implementations are evaluated, which are depicted in Table 5.7. The results of
these implementations are shown in Table 5.8. The accuracy is the same as the Qkeras model. As with Model
A, there is again a large discrepancy between the resource utilization estimate of vivado HLS and the actual
resources in Vivado. In comparison with Model A, Model B is 3.2 times larger in terms of parameters. Fur-
thermore, in terms of resource utilization of the baseline implementation, Model B uses 2.6 times more DSPs,
2.5 times more FFs and 2.7 times more LUTs. These results indicate that it would be possible to implement
larger models than Model B using the ZCU104 platform.

Implementation
1.
. 2.
Baseline
(Method 2)
(Method 1)
Accuracy 69.82% 69.82%
Vivado BRAM 2 2
HLS DSP 243 300
resource FF 77169 77106
estimate LUT 306153 297276
BRAM 0 (0%) 0 (0%)
Actual
. DSP 293 (17%) 357 (20.7%)
Vivado
FF 57346 (12.4%) 55501 (12%)
resources

LUT 99835 (43.3%) 98414 (42.7%)

Table 5.8: Model B implementation results

5.5. FPGA Deployment

The FPGA IP is integrated in a Vivado project, in order to deploy the CNN accelerator to an FPGA. Figure
5.4 shows the FPGA CNN accelerator IP integrated in a Vivado block diagram. The CNN accelerator consist
of AXI stream interfaces for both the input stream and output stream, furthermore there is a debug stream
that can be used for debugging purposes. The Stream Input Generator streams the input data to the CNN
accelerator. And the Stream Output Capture IP, captures the output of the CNN IP. Both IPs are also developed
using Vivado HLS. The input generator has a number of options which can be configured using the AXI4-Lite
interface. For example, the input values that are streamed to the CNN IP can be chosen, such as a sequence
with all ones or zeroes. The AXI4-Lite interface is controlled in Python by means of the PYNQ framework. All
the inputs and outputs of the CNN IP are monitored by using the Xilinx Integrated Logic Analyzer (ILA) IP
core. An example of signals monitored by the ILA is shown in Figure 5.5. Here the IP is provided with a known
input, in this case all zeros. In this way it can be checked whether the design runs correctly on the FPGA. Since
the TNO modulation dataset consist of 17 classes, the output of the CNN IP also consist of 17 values. Figure
5.5 shows it takes 17 clock cycles to stream all the output values. By comparing these FPGA results with the
C++ and RTL level simulations, the design is proven to function correctly on the FPGA.
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Figure 5.4: Vivado block design of the CNN accelerator.

ILA Status: Idle
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Figure 5.5: Output of custom CNN FPGA accelerator captured by ILA.

5.5.1. Throughput & Latency Measurement

One of the design objectives, as described in Section 4.1, is to fully pipeline the design. In this way the design
can directly interface with an ADC running on the same clock frequency, making a high throughput possible.
As already described in Section 4, the throughput of this design is constant and determined by the design
itself. Since, the FPGA implementation of Model A runs on a clock of 300MHz, the throughput is almost
293k classifications per second. The latency is measured in Figure 5.6. The input user signal, indicates the
start of a new frame. For example in Figure 5.6, the user signal is active at clock cycle 200 and 1224, which
correctly corresponds to a frame length of 1024 samples. Furthermore, this figure shows that the output is
produced every 1024 clock cycles, in this case cycle 290 and 1314. The output that is produced at cycle 1314
belongs to the frame with the first sample at cycle 200. Therefore, the latency of Model A implementation
is 1314 — 200 = 1114 cycles, which is 3.7 us at 300MHz. Furthermore, Model B runs on a clock frequency of
250MHz which results in a throughput of 244k classifications per second and the latency is 4.6 us.

ILA Status: Idle

Name

> W Input: TDATA

® Input: TUSER

> W Qut

Figure 5.6: Throughput and latency measurement of custom CNN FPGA accelerator of Model A. Measured on the FPGA itself with ILA.
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5.6. Comparison Hls4ml
5.6.1. Differences

HIs4ml version v0.5.0 (bartsia) implements some significant changes. These changes are described in refer-
ence [45]. The first change is that the AXI Streaming interface is used for the input and output of the accel-
erator. Secondly, the data between layers is also done in a streaming fashion. At a high level this is the same
strategy as the implementation we developed in this master thesis project. However, there are important
differences, which are now explained in this section.

Convolution implementation Both the 1D and 2D convolution operation in hls4ml are implemented based
on the general matrix multiplication (GEMM) method [45]. This is different to custom implementation de-
veloped in this master thesis project, which implements the direction convolution operation. For GEMM
different possible algorithms exist, such as im2col and kn2row [46]. These algorithms are mainly targeted
at 2D convolution operations. Hls4ml’s implementation uses an approach similar to the im2col algorithm,
which is illustrated in Figure 5.7 for 2D convolution. In the im2col algorithm a part of the input is copied and
unrolled into columns of a new intermediate matrix, called input-patch-matrix [46]. Furthermore, a kernel-
patch-matrix is constructed by unrolling all kernels into row vectors and concatenate all the rows from each
kernel. Now the convolution operation can be performed by the matrix multiplication between the input-
patch-matrix and the kernel-patch-matrix. Important to note is that hls4ml does not build the entire input-
patch-matrix, but instead considers one column vector at a time.

1 2 3 Direct Convolution
1 2
* 41516 = 37 a7 |67 | 77
314
718129
Kernel
(2x2) Input
(3x3)
A 4

im2col convolution algorithm

—_— 37 | 47 | 67 | 77

Kernel-patch
5 6 | 8 9

Input-patch

Figure 5.7: The im2col algorithm shown for 2D data, which is used in hls4ml’s convolution implementation.

Streaming FIFO buffer implementation HIs4ml inserts FIFO buffers between between the layers in the
neural network, such that that input and output values between the layers can be streamed. As an example,
the HLS code of the first convolution, activation and pooling operation are depicted in Figure 5.8. All the FIFO
buffers between the layers are inserted by Vivado HLS automatically by means of the HLS STREAM pragma.
The first function, zeropadld_cl is meant to add the zero padding to its output stream, therefore the depth of
this output FIFO buffer is 1024 + 2. Apart from the FIFO buffers between the layers, hls4ml also employ buffers
inside the convolution and pooling layers itself. For example, Figure 5.9 list part of the conv1d_1d_cl function,
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it shows the variable data_window which are 16 FIFO buffer of depth 1024 for the first convolution layer.
These FIFO buffers are significantly deeper than in the custom implementation. This is because in hls4ml the
FIFO buffer depth is determined according to the input length while in the custom solution the FIFO buffer
depth is determined by the filter width. As a result, the FIFO buffer depth is reduced from 1024 to 3. Moreover,
hls4ml inserts FIFO buffers between all layers, while the custom solution only inserts FIFO buffers into layers
that actually need multiple samples to produce an output, such as the convolution layer and pooling layer.
In addition hls4ml inserts layers that are not actually in the QKeras model, such as zeropadld_cl and linear,
which also increases the amount of FIFO buffers.

hls::stream<layer24 t> layer24 out("layer24 out");
#pragma HLS STREAM variable=layer24 out depth=1026
nnet::zeropadld cl<input t, layer24 t, config24=(q convld input, layer24 out); // zpld g convld

hls::stream<layer2 t> layer2 out("layer2 out");
#pragma HLS STREAM varilable=layer2 out depth=1824
nnet::conv_1d cl<layer24 t, layer2 t, config2>(layer24 out, layer2 out, w2, b2); // q convld

hls::stream<layer3 t> layer3 out("layer3 out");
#pragma HLS STREAM variable=layer3 out depth=1824
nnet::linear<layer2 t, layer3 t, linear config3=(layer2 out, layer3 out); // g convld linear

hls::stream<layer4 t> layerd out("layerd out");
#pragma HLS STREAM variable=layer4 out depth=1824
nnet::relu<layer3 t, layerd4 t, relu config4=(layer3 out, layerd4 out); // act 1

hls::stream<layer5 t> layer5 out("layer> out");
#pragma HLS STREAM variable=layer5 out depth=512
nnet::poolingld cl<layer4 t, layer3 t, config5=(layer4 out, layer3 out); // max poolingld

Figure 5.8: Code snippet of hls4ml’s implementation of first convolution, relu and pooling layer of Model A.

hls::stream<typename data_T::value type> data window[CONFIG_T::filt width * CONFIG_T::n_chan];
const int win depth = CONFIG_T::out width;
for {unsigned i out = ©; i out < CONFIG_T::filt width * CONFIG_T::n chan; i out++) {

#pragma HLS STREAM variable=data window[i out] depth=win depth

Figure 5.9: Code snippet of hls4ml’s data_window variable used in the convld_1d_cl function.

5.6.2. Comparison

This section describes the comparison between the custom implementation and hls4ml. Since the custom
implementation is similar to hls4ml, a direct comparison is possible. By keeping as many parameters as
possible the same, a good quantitative comparison can be made. The two neural networks (model A and
B) as used in the evaluation of the custom implementation are also in the comparison between the custom
implementation and hls4ml.

As described in Section 3.2 hls4ml can automatically convert a deep learning model to an HLS project.
Firstly, hls4ml is used to create a HLS project for Model A with the datatypes configured according to im-
plementation 3 in Table 5.5. This hls4ml correctly synthesizes and achieves the same accuracy of 62.34% as
the custom accelerator. The RTL simulation of the hls4ml implementation is depicted in Figure 5.10. In this
figure two markers are placed to measure the throughput, in this case a single frame (1024 samples) is pro-
cessed after 2058 cycles. Another point of attention is the amount of input and output streams generated by
hls4ml. The hls4ml implementation constructs a separate AXI streaming interface for each input and output
channel. Therefore the input consist of 2 AXI streaming interfaces, and the output consist of 17 AXI streaming
interfaces. In Figure 5.10 only 2 of the total 17 of such output streams are shown in the simulation. A wrapper
is added to the hls4ml IB, such that the input and output can be provided by a single AXI Streaming Interface,
in order to integrate the hls4ml IP into Vivado in a similar way as the custom accelerator (Figure 5.4).
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Figure 5.10: Output of CNN accelerator as generated with the hls4ml tool. All the 17 output classes are generated as a separate AXI
streaming interface. A wrapper is constructed to use a single AXI streaming interface for the input as well as the output.

The next step is to directly compare hls4ml implementation of Model A and B to the custom implemen-
tation. The results of this comparison for Model A are tabulated in table 5.9.

Implementation
Custom Hsl4ml Custom Hls4ml
Model A Model A Model B Model B
Accuracy 62.34% 62.34% 69.82% 69.82%
Vivado BRAM 2 565 2 1225
HLS DSP 111 34 300 6
Resource FF 30232 61139 77106 154620
Estimation LUT 99361 171060 297276 507215
0 218.5 0 .
Actual BRAM (0%) (70.0%) (0%) VIR
Vivado 115 35 357 .
Resources DSP (6.7%) 2.0%) (20.7%) | mplementation
22564 48617 55501 .
FF (4.9%) (10.5%) (12.0%) Sl
LUT 36435 79317 98414
(15.8%) (34.5%) (42.7%)

Vivado Clock Frequency 300 MHz 250 MHz 250 MHz

Timing WNS 0.002 ns 0.081 ns 0.045 ns
Performance Throughput 292.97k 121.48k 244.14k
Latenc 1114 cycles 2183 cycles 1153 cycles
Y 3.71 us 8.55 us 4.61 us

Table 5.9: Results of direct comparison custom and hls4ml Model A implementation

From these results it can be concluded that the amount of resources of the hls4ml implementation is sig-
nificantly higher. For example, the hls4ml implementation of Model A has a 70% BRAM utilization, due to the
inserted FIFO buffers. Whereas the custom implementation does not use BRAM. This large amount of BRAM
forms a limitation for hls4ml to be able to synthesize larger networks. For instance, implementing Model B
using hls4ml fails. Besides the lower BRAM utilization in the custom implementation, also the amount of FFs
and LUTs are 2.15 times and 2.18 times lower. The only resource that hls4ml uses less of are the DSPs, but
in percentage terms this is still a small difference. From these results it can be concluded that the custom
implementation has a significantly smaller footprint, while still achieving the same accuracy. Therefore, the
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custom solution allows to make various design choices, such as FPGA deployment of larger neural network
or the use of an FPGA in a more more efficient way.

In terms of latency and throughput, the custom solution also achieves better results. For Model A, the
throughput is 2.4 times higher and the latency is 2.3 times lower. Since a key design goal of hls4ml is low
latency, these results are not only interesting for RF use cases, but also for use cases where hls4ml is used.

5.7. Comparison with TNN FPGA accelerator from [36]

As described in Section 2.4 the implementation in [36] is claimed to be the fastest, open-source, FPGA-based
modulation classification implementation. In this section we compare the results from this paper with the
results obtained in this master thesis project. In [36] various ternary weights CNNs are trained using the
RadioML 2018.01A DeepSig dataset [23]. Therefore Model A and Model B are also trained using the same
dataset, such that a direct comparison is possible. In [37] the accuracy of the models are specified at +30dB
SNR. The results from the comparison are tabulated in 5.10. A number of observations can be made. Firstly,
the number of parameters for the ternary weights models are significantly larger. Model B uses almost 53
times less parameters than the largest models from [36]. This difference in parameters is logical since binary
weights and ternary weights networks require more parameters compared to a fixed point or floating point
model to achieve comparable accuracy. Still, the accuracy of Model B is greater than the accuracy of the best
performing ternary weight model TW-128. Next, the resources of the FPGA accelerator implementation are
compared. It should be noted that the target device in [36] is the Xilinx Zynq Ultrascale+ RFSoC (part number
xczu28dr-ffvg1517-2-e). However, the Zynq UltraScale+ MPSoC as used in this master thesis, employs the
same FPGA technology, therefore a fair comparison can be made. Both Model A and B have a lower resource
utilization in every aspect compared the ternary weights models. Model B compared to TW-128 uses almost
3.2 times less LUTs, more than 9 times less FFs, 4 times less DSP units and uses no BRAM. Moreover, the
implementation of TW-128 could not be successfully implemented in [36], because it failed to route.

Nevertheless, the implementations from [36] can process two input samples at once at a frequency of
250MHz, such that the accelerator can effectively process samples at a frequency of 500MHz. While the
Model A processes samples at a frequency of 300MHz and Model B at a frequency of 250MHz. Still the la-
tency of Model A and B is 3.7us and 4.6 us respectively, while the ternary weights networks have a latency of
8 us. In order to increase the throughput of the custom solution, the implementation is modified to also pro-
cess two input samples in a single clock cycle. Due to time constraints in this master thesis project, this has
only been done for Model A. Table 5.10 shows the result of this modification. It can be observed that this ad-
justment does not have much impact on the number of resources while the data rate that this accelerator can
be process in real-time is increased from 300MHz to 600MHz. To the best of our knowledge this modification
results in the fastest FPGA-based automatic modulation classification.

In conclusion, in this section we demonstrate that the FPGA implementation of large ternary neural net-
works (in terms of trainable parameters) does not result in a more efficient design in terms of accuracy, re-
sources, throughput and latency when compared to custom implementation developed in this master thesis
which targets the fixed point models. This is an interesting result, as much research is being performed in the
literature on binary/ternary neural networks, especially in the context of the FPGA implementations.
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Accuracy
Model Name # parameters LUTs FFs BRAMs  DSPs
+30dB SNR
320k 506k 524 1431
Tw-128! 636k 81.7%
(75.3%) (59.5%) (48.5%) (33.5%)
232k 369k 524 1207
TW-96 490k 81.1%
(54.7%) (43.4%) (48.5%) (28.3%)
124k 217k 524 1496
TW-64 381k 78.7%
(29.1%) (25.5%) (48.5%)  (35%)
211k 324k 512.2 1407
TW-INCRA-128 636k 80.2%
(49.6%) (38.1%) (48.3%) (32.9%)
234k 333k 523 1408
TW-BA-128 636k 75.9%
(65.1%) (39.2%) (48.4%) (33.0%)
80k 108k 521 1471
TW-BA-64-512 381k 67.4%
(18.8%) (12.7%) (48.2%) (34.4%)
58k 92k 76 704
TW-BA-64 102k 63.1%
(13.7%) (10.8%) (7.0%)  (16.5%)
36k 23k 0 115
Model A 3765 62.2%
(8.5%) (2.7%) (0%) (2.7%)
98k 56k 0 357
Model B 12041 82.3%
(23.0%)  (6.6%) (0%) (8.4%)
37k 21k 0 127
Model A 2 samples in single clock cycle 3765 62.2%
(8.7%) (2.5%) (0%) (3.0%)

Table 5.10: Comparison between results from [36] and the results from this master thesis.! Failed to route in [36]
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5.8. Conclusion

To evaluate the custom accelerator two CNN models are trained using QKeras on a custom dataset devel-
oped by TNO. The first model, Model A, has approximately 3.7k trainable parameters (7-bit fixed point) and
achieves an accuracy of 62.37%. The second model, Model B, has approximately 12k trainable parameters
(7-bit fixed point) and achieves an accuracy of 69.82%. Both models are implemented using the custom de-
veloped building blocks and the FPGA implementation is quantitatively evaluated according to the following
metrics: throughput, latency, resources and accuracy. Different methods for determining the required preci-
sion of each layer are used to construct multiple implementations. In the baseline implementation of Model
A and B, the precision is determined in such a way to guarantee correct results for all the possible inputs.
Hence, the accuracy of baseline implementations achieves exactly the same accuracy as the QKeras model
running on the CPU. The Model A implementations can run on a clock frequency of 300MHz, which results
in a throughput of almost 293k classifications per second and a latency of 3.7us. And the throughput and
latency of implementation of Model B running on 250MHz is 244k and 4.6us respectively. Furthermore, the
resource utilization of the FPGA implementation of Model B, indicate that larger neural networks are possible.

Additionally, the custom accelerator is also compared to the hls4ml [39] tool and the results from paper
[36]. During this master thesis project a new version of hls4ml was released which addresses the issue of being
able to only run very small CNNs. This version of the hls4ml tool can successfully implement Model A, but the
implementation of Model B results in too large resource utilization for the ZCU104 platform. The implemen-
tation of hls4ml Model A has a throughput of 121k classifications per second and a latency of 8.6 us. Moreover,
the resource utilization of the hls4ml implementation is significantly higher compared the implementation
developed in this master thesis. An important difference between the hls4ml and custom implementation is
that the custom implementation does not use BRAM, and that the excessive BRAM utilization of hls4ml poses
a limit to be able to implement larger networks.

Finally, the custom accelerator is also compared to the FPGA modulation classifier implementation de-
scribed in paper [36]. The models implemented in this paper are all ternary weights neural networks, which
means that the weights can have the value -1, 0 or 1. From the comparison between the ternary weights mod-
els and fixed point models A and B, it appears that the ternary weights models from [36] have a significantly
higher resource utilization in order to achieve a comparable accuracy. This is a very interesting result, be-
cause binary and ternary neural networks are mainly researched in the context of FPGA implementation, be-
cause the operations in these networks can be efficiently implemented. Hence, we demonstrate that ternary
weights neural networks does not necessarily lead to a better FPGA implementation.






Demonstration

Chapter 5 evaluates the custom FPGA CNN accelerator. Part of this evaluation was the integration of the CNN
accelerator into an FPGA design, which verified that the design is functionally correct. However, Chapter 5
did not integrate the FPGA CNN accelerator IP into an FPGA based Software Defined Radio (SDR) platform.
Therefore, the purpose of this chapter is to demonstrate a deep learning modulation classifier deployed to an
FPGA based Software Defined Radio.

6.1. Setup
This demonstration runs on a Xilinx Zyng-7000 SoC ZC706 evaluation platform. This evaluation platform
consist of a Zynq-7000 FPGA (part number: XC7Z045-FFG900-2).

To capture the RF signals, an AD-FMCOMMS3-EBZ RF transceiver evaluation board is used. This evalua-
tion board is based on the Analog Devices AD9361 RF transceiver [47]. The RF-ADC has a resolution of 12-bit I
and Q data and works at a maximum sample frequency of 61.44MHz, with a maximum bandwidth is 56 MHz.
The AD-FMCOMMS3-EBZ evaluation board complies with the FPGA Mezzanine Card (FMC) standard [48],
which means that it can be connected to the ZC706 board with a standardised connector, which is depicted
in Figure 6.1.

AD-FMCOMMS2-EBZ

Figure 6.1: FPGA based software defined radio. The ZC706 evaluation platoform is used in combination with the FMCOMMS3 RF
transceiver. Figure is from [49] and shows the AD-FMCOMMS?2 RF tranceiver instead of the FMCOMMS3.

The samples are transmitted and received by the same FMCOMMS3 and TX and RX are connected by a
loopback cable. A Matlab script is used to control the settings of the RF transceiver, such as gain and sample
rate, and to transmit the samples and receive the output from the classifier.

57
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6.2. Results

The FPGA modulation classifier is directly fed with input signals originating from the TNO dataset. For ex-
ample, Figures 6.2(a) and 6.3(a) depicts the transmitted signal with QPSK modulation and 4ASK modulation
respectively. Both signals have a length of 1024 samples. The output of the classifier is depicted in Figure
6.2(b) and Figure 6.3(b). The x-axis lists all the 17 modulation types, and both the QPSK and 4ASK input
signals are correctly classified.

Based on the test performed, it has been found that the 12-bit ADC/DAC has a negative influence on the
accuracy of the classifier. This is as expected since the FPGA IP has an input of 16 bit which is specifically
determined according to the training dataset and therefore by using a 12 bit ADC/DAC information is lost.
Unfortunately, in the current demonstration platform, the I and Q signals are frequently interchanged. This
behaviour is also present in the provided base application by analog devices [50], which is used as a base when
integrating the modulation classifier IP. Hence, due to this behaviour it is not possible to correctly determine
the accuracy of the classifier running on this demonstration platform using the entire dataset. However, by
capturing the signals that feed into the classifier it is concluded that the classifier is functionally correct.
Therefore, the results of this demonstration proves that FPGA CNN accelerator of a model for the modulation
classification use case can be used in a SDR system.
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Figure 6.2: Prediction of FPGA modulation classifier with a QPSK signal.
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Figure 6.3: Prediction of FPGA modulation classifier with a 4ASK signal.

6.3. Conclusion

In this chapter a demonstration is given of a functional deep learning modulation classifier running on an
FPGA based Software Defined Radio platform. This demonstration proves that a DL model can run on the
FPGA in a SDR platform and process RF data in real-time.



Conclusion

7.1. Conclusions

In Chapter 1 an introduction of the assignment was provided. In brief, deep learning for RF applications is
emerging and the goal is to actually use these deep learning models in communication systems. Because,
FPGAs are often used in software defined radio systems, it is useful to be able deploy these models to FP-
GAs. Since the applications of RF deep learning are endless, this thesis specifically deals with the modulation
classification use case.

Next, Chapter 2 provides a more in-depth background study into the research fields involved in this thesis,
which are deep learning for modulation classification and FPGA acceleration of deep learning models. Also
an introduction to software defined radios is given. The next two paragraphs summarise the most important
conclusions about deep learning for modulation classification and deep learning FPGA acceleration.

Deep learning for modulation classification is a new research field and only a limited amount of publi-
cations on this topic exist. Existing deep learning models for modulation classification are often based on
Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN). Both models achieve promising
results and there is not yet a clear consensus as to which models are best suited for modulation classification.
However, convolutional neural networks are used more often and may be easier to train. Furthermore, TNO
already has experience with CNNs for modulation classification. Therefore, in this thesis CNNs are used for
the modulation classification use case.

A reasonable amount of research has already been done into the use of FPGAs for deep learning accel-
eration, but many of these studies are fully focused on vision tasks. Therefore it is useful to test some of
these solutions for RF deep learning applications. There are mainly two different FPGA architecture for deep
learning acceleration.

¢ Streaming architecture in which the data samples are ‘streamed’ through the neural network. The ac-
celerator is specific to a particular network. This means that the accelerator has to change to run a
different network.

¢ Computation unit architecture which executes instructions. The resulting accelerator does not have to
change for different networks, as long as these networks can be converted to compatible instructions.

In the evaluation of existing solutions a number of aspects are of particular importance for FPGA based DL
acceleration for RF applications. First, the latency and throughput are important because of the communi-
cation context. Second, the use of FPGA resources determines whether one or more neural networks can be
deployed on an FPGA to run in coexistence with other DSP functions in an FPGA-based SDR.

Chapter 3 discusses the preliminary tests, in which the suitability of existing FPGA deep learning for RF
applications is evaluated. Two relatively mature tools for deploying deep learning models to FGPAs are eval-
uated. Firstly, Vits Al is tested and secondly hls4ml is tested. Vitis Al is based on a computation unit architec-
ture, and hls4ml is based on a streaming architecture. The preliminary tests show that Vitis Al can be useful
for TNO in certain cases. These are cases where large neural networks are required and a high throughput/low
latency is not a requirement. It is important to mention that vitis Al currently only supports 8-bit data input.
This forms a limitation for RF deep learning, since RF ADCs are often 12 to 16 bit. Perhaps this will change in
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the future, because of the rapid developments in FPGA deep learning accelerators. Tests with hls4ml proves
that hls4ml can only be used for very small networks, because of this limitation hls4ml is not useful for TNO.
However, its fully pipelined streaming architecture still has advantages, such as a high throughput and low la-
tency. Therefore, a custom CNN FPGA accelerator is developed based on such a streaming architecture. This
accelerator should support larger networks than hls4ml currently supports, and provide a high throughput
and low latency accelerator.

Chapter 4 describes the implementation of a CNN FPGA accelerator that is based on a streaming archi-
tecture. The most common building blocks of a 1D CNN are implemented namely: 1D convolution layer,
activation function, pooling layer and a dense layer. These building blocks are designed using Vivado HLS. To
construct a neural network, these building blocks can be configured and connected to each other. All build-
ing blocks use fixed point numbers, and the precision of every building block can be configured individually.
The quantized neural network itself can be trained using the QKeras framework. Subsequently, this model
can be converted to a FPGA accelerator using the developed HLS building blocks. This conversion is not yet
done automatically, by means of a tool, instead the building blocks are configured and connected in order to
construct the network.

The most important aspect of the accelerator is that each building block is not executed sequentially
with all its inputs available, but instead each building block processes part of the whole input as soon as it
is available. Therefore, the convolutional and pooling layer contains FIFO buffers to buffer all the necessary
inputs in order to calculate a single output. Furthermore, the input of the accelerator is streaming input, such
that the samples of an ADC can directly be fed to the accelerator.

In Chapter 5, the custom accelerator is evaluated. In order to evaluate the custom accelerator, two quan-
tized CNN models are trained using QKeras on a custom dataset developed by TNO. The first model, model A,
has approximately 3.7k trainable parameters (7-bit fixed point) and achieves an accuracy of 62.37%. The sec-
ond model, model B, has approximately 12k trainable parameters (7-bit fixed point) and achieves an accuracy
of 69.82%. Both models are implemented using the custom developed building blocks and the FPGA imple-
mentation is quantitatively evaluated according to the following metrics: throughput, latency, resources and
accuracy. Different methods for determining the required precision of each layer are used to construct multi-
ple implementations. In the baseline implementation of model A and B, the precision is determined in such a
way to guarantee correct results for all the possible inputs. Hence, the accuracy of baseline implementations
achieves exactly the same accuracy as the QKeras model running on the CPU. The model A implementations
can run on a clock frequency of 300MHz, which results in a throughput of almost 293k classifications per
second and a latency of 3.7us. And the throughput and latency of implementation of model B running on
250MHz is 244k and 4.6us respectively. Furthermore, the resource utilization of the FPGA implementation of
model B, indicate that larger neural networks are possible.

Additionally, the custom accelerator is also compared to the hls4ml [39] tool and the results from paper
[36]. During this master thesis a new version of hls4ml was released which addresses the issue of being able
to only run very small CNNs. This version of the hls4ml tool can successfully implement model A, but the
implementation of model B results in too large resource utilization for the ZCU104 platform. The implemen-
tation of hls4ml model A has a throughput of 121k classifications per second and a latency of 8.6 us. Moreover,
the resource utilization of the hls4ml implementation is significantly higher compared the implementation
developed in this master thesis. An important difference between the hls4ml and custom implementation is
that the custom implementation does not use BRAM, while the excessive BRAM utilization of hls4ml poses a
limit to be able to implement larger networks.

Finally, the custom accelerator is also compared to the FPGA modulation classifier implementation de-
scribed in paper [36]. The models implemented in this paper are all ternary weights neural networks, which
means that the weights can have the value -1, 0 or 1. From the comparison between the ternary weights mod-
els and fixed point models A and B, it appears that the ternary weights models from [36] have a significantly
higher resource utilization in order to achieve a comparable accuracy. This is a very interesting result, be-
cause binary and ternary neural networks are mainly researched in the context of FPGA implementation, be-
cause the operations in these networks can be efficiently implemented. Hence, we demonstrate that ternary
weights neural networks does not necessarily lead to a better FPGA implementation.

Chapter 6 provides a demonstration of the fully functional deep learning modulation classifier running
on an FPGA based Software Defined Radio platform. This offers new possibilities for further research into
deep learning algorithms for RF applications.
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7.2. Main contributions
As described in the introduction in Chapter 1, the intent of this thesis is provide a new research initiative
for utilizing FPGAs in RF deep learning applications. This intent translates to the following main research
question:

How can FPGAs be efficiently utilized to implement deep learning models for modulation classifica-
tion in a Software Defined Radio (SDR)?

In this thesis an FPGA CNN accelerator for deep learning has been developed, which makes it possible to
deploy deep learning modulation classification models to an FPGA in a Software Defined Radio (SDR).
The main contributions of this thesis are listed below:

* Implementation of a custom FPGA CNN accelerator using reusable and configurable building blocks.
The accelerator employs a streaming architecture and is fully pipelined, such that it accepts new input
data every clock cycle. A key design aspect is that all building blocks in the accelerator are designed to
be able to work on a portion of its input data. The implication is that the building blocks can produce an
output as soon as enough input data is available. As a result, the work that the building blocks have to
perform is spread out over time and the memory required for storing data is also reduced. Moreover, the
precision of the fixed point parameters and operations is configurable. Therefore there is no limitation
of only specifically supporting binary or ternary operations.

¢ To the best of our knowledge, the fastest FPGA-based automatic modulation classification implemen-
tation. This implementation is capable of real-time processing data at a frequency of 600MHz, which
results in a throughput of almost 586k classifications per second for a frame consisting of 1024 samples.

¢ Evaluation of custom accelerator using two CNN models, Model A and Model B. These models are im-
plemented using the in this master thesis project developed FPGA CNN accelerator. When compared to
similar initiatives that exist also outside the area of RF applications, the implementation strategy devel-
oped in this research has shown to yield a more compact FPGA implementation in terms of resources,
while achieving a higher throughput, lower latency and higher model accuracy.

— In comparison with hls4ml, the resulting accelerator achieves 2.4 times higher throughput and 2.3
times lower latency for Model A, while also achieving the same accuracy and significantly lower
resource utilization. In particular, the significant BRAM utilization of hls4ml limits the scalability
of the accelerator to support larger neural networks. The custom accelerator uses no BRAM for
both Model A and Model B. Unlike the custom accelerator, the Model B hls4ml implementation
cannot be successfully deployed.

— The implementation described by Tridgell et al. [36] for implementing a ternary neural network
FPGA based automatic modulation classification achieves a significantly higher resource utiliza-
tion. For example, when compared to the custom Model B implementation the accelerator pro-
posed by Tridgell et al. [36] results in 3.3 times more LUTs, 9 times more FFs, 4 times more DSPs
and a significant amount of BRAM. Moreover, the accuracy of the best performing model from
[36] is 0.6% lower.

* Demonstration of a functional modulation classifier deployed to an FPGA in a Software Defined Radio
(SDR).

7.3. Future Work

We presented a fully functional implementation enabling the deployment of deep learning models to FPGAs
for RF applications as well as beyond the RF domain. A number of proposals for future work are provided in
the list below, building on the work of this thesis.

¢ Develop an end-to-end tool, such that the network can be trained in Qkeras on the CPU and the tool
automatically generates the HLS implementation of the accelerator. Furthermore, all the configuration
options should be easily configurable in the tool itself and the simulation and synthesis results can
be automatically generated in order to facilitate the design exploration. The goal should be that deep
learning engineers could use FPGAs to accelerate deep learning models, without extensive or specific
knowledge of FPGAs. In this way the barrier is lowered to deploy deep learning models to FPGAs.
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Expand the available building blocks to support other types of neural networks such as Residual Neural
Networks and Recurrent Neural Networks. Furthermore, the current implementation only supports 1D
operations, so the support of 2D allows for applications that require 2D operations.

The current implementation works especially well for high throughput and/or low latency applications,
because of its fully pipelined design. However, this implementation is not suitable for large neural
networks in the order of hundreds of thousands or millions of trainable parameters. Therefore, the
possibility can be investigated to customize the implementation, so that the implementation can be
specifically configured for certain resources, throughput or latency requirements. Hence, a trade-off
between performance and resources could be made.

In Section 5.7 the result of processing multiple input samples per clock cycle has already been dis-
cussed. It is future work is to explore this aspect more in-depth. Also related to this is throughput
matching, in which the implementation takes into account the differences in throughput that exist in
different layers of the neural network. By utilizing throughput matching, it could be possible to con-
struct or configure a building block for each layer in the neural network that support a specific through-
put, which ideally results in an optimized implementation in terms of resources.

Further evaluate the implementation of the custom accelerator. For example the maximum neural
network size that can be deployed using the custom FPGA accelerator can be investigated.
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