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We numerically investigate nonlocal effects on inhomogeneous flows of soft athermal disks close to
but below their jamming transition. We employ molecular dynamics to simulate Kolmogorov flows, in
which a sinusoidal flow profile with fixed wave number is externally imposed, resulting in a spatially
inhomogeneous shear rate. We find that the resulting rheology is strongly wave-number-dependent, and
that particle migration, while present, is not sufficient to describe the resulting stress profiles within a
conventional local model. We show that, instead, stress profiles can be captured with nonlocal constitutive
relations that account for gradients to fourth order. Unlike nonlocal flow in yield stress fluids, we find no
evidence of a diverging length scale.
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Predictive descriptions of the rheology of soft athermal
particles, e.g., emulsions, foams, colloidal suspensions, and
granular materials, are frequently needed in the context of
food, pharmaceutical, personal care products, and other
process technologies [1]. Recently, physicists have studied
the constitutive relations of these out-of-equilibrium
systems in the context of jamming or yielding transitions
[2–10]. However, nearly all effort to date has addressed
homogeneously flowing systems, and the resulting local
constitutive relations [11], even if they are generalized to
tensorial forms [12], are blind to so-called nonlocal effects
[13] that are relevant to spatially inhomogeneous flows of
disordered materials [14,15].
Phenomenologically, nonlocality in flow refers to con-

stitutive relations that are sensitive to spatial gradients in
the shear rate. In dense amorphous matter, the effect is
presumed to result from plastic events triggered by distant
stress fluctuations [16–21]. In recent years, there has been
substantial interest in the nonlocal continuum model of
Bocquet and co-workers [22] and several related models
[23–27]. They take the usual local constitutive relation,
determined under homogeneous flow conditions, and
introduce it as a source term in a diffusion equation for
the fluidity (inverse viscosity). A so-called “cooperativity
length” is required to quantify the range of nonlocal effects.
These models successfully describe inhomogeneous flow
profiles in emulsions [28,29], foams [30], and granular
materials [23–26,31] under conditions where local models
fail dramatically.
Despite these successes, important questions remain

regarding how and when nonlocal effects are significant.
The original fluidity model incorporated a cooperativity
length that vanishes as the volume fraction ϕ approaches
the jamming volume fraction ϕJ from above [22]. In sharp

contrast, more recent efforts call for a length scale that
diverges at a critical stress [16,23–27]. Hence, while the
concept of nonlocality does not require a yield stress, these
approaches suggest a relation. De Cagny et al. probed
granular suspensions without a yield stress and found that
velocity profiles can also be fit with the fluidity model,
albeit with a cooperativity length proportional to the
rheometer’s gap width [32]. They argued the length scale
is merely a proxy for particle migration effects, and showed
that a local model can describe the profiles if one accounts
for spatial variations in the viscosity. Hence, the added
value of nonlocal models below jamming remains
uncertain.
In this Letter, we study nonlocal effects in “Kolmogorov

flow,” in which the system flows steadily under forcing that
varies sinusoidally in space. This method builds on prior
work in liquids [33], granular materials [34,35], and foams
and emulsions [36]. We simulate dense systems of soft,
viscous, athermal disks [37], the canonical model of
jamming. Prior studies of this system have focused on
homogeneous flows, i.e., zero wave number, and have
evidenced a sensitive (critical) dependence of the homo-
geneous flow curves on both the proximity to jamming,
Δϕ ¼ ϕJ − ϕ, and the shear rate _γ [2–4]. From our own
simulations of simple shear flows, we have verified that
both the shear stress and normal stress, i.e., σLxy ¼ ηsðϕ; _γÞ_γ
and σLyy ¼ ηcðϕ; _γÞ_γ, can be described with the viscosity,

ηoðϕ; _γÞ ¼
�
η̄oð_γao þ coΔϕboÞ−1 ðϕ < ϕJÞ
σoðϕÞ_γ−1 þ η̄o _γ

−ao ðϕ > ϕJÞ
ð1Þ

(o ¼ s, c), where we summarize the yield stress σoðϕÞ and
fitting parameters η̄o, ao, bo, and co, in the Supplemental
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Material [38]. Our focus here is primarily on the case
without a yield stress, ϕ < ϕJ ≃ 0.842. We find (i) con-
stitutive relations depend on gradients of the strain rate,
(ii) particle migration modifies the predictions of local
models, but cannot account for the observed stress profiles,
(iii) nonlocal models correctly capture the resulting stress
profiles, while (iv) the cooperativity length remains small
for all simulated flow parameters.
Numerical methods.—We use molecular dynamics (MD)

simulations of soft athermal disks. First, we randomly
distribute an equal number of small and large disks
(diameters dS and dL ¼ 1.4dS) in a L × L periodic box.
The total number of disks isN ¼ 131 072. Repulsive forces
between contacting disks are modeled by linear elastic
forces, i.e., felij ¼ kðRi þ Rj − rijÞnij for Ri þ Rj > rij and
felij ¼ 0 otherwise, where Ri labels the radius of disk i and
rij is the center-to-center distance between the disks i and j.
Here, k represents the stiffness and nij ≡ rij=rij is the
normal unit vector formed from the relative position
rij ≡ ri − rj. We also add viscous forces to every disk
as fvisi ¼ −ηfvi − uðriÞg, where η, vi, and uðrÞ are the bulk
viscosity, velocity of disk i, and external flow field,
respectively. Then, we numerically integrate overdamped
dynamics [2–4], i.e., 0 ¼ P

j≠if
el
ij þ fvisi , with a time step

Δt ¼ 0.1t0, where t0 ≡ η=k and the disk velocity is given
by vi ¼ uðriÞ þ η−1

P
j≠if

el
ij. In the following, we scale

length, time, and stress by d0 ≡ ðdL þ dSÞ=2, t0, and k,
respectively.
To simulate Kolmogorov flow, we impose external flow

fields uðrÞ ¼ ðunðyÞ; 0Þ with the x component

unðyÞ ¼ A sin qny; ð2Þ

where A and qn ≡ 2πn=L (n ¼ 1; 2;…) are an amplitude
and wave number, respectively. We use periodic boundary
conditions to avoid nonlocal effects due to boundaries [41]
and take time averages over the interval 20 ≤ At=d0 ≤ 50,
which we have verified to be in steady state [38]. We have
examined MD simulations of different system sizes (L=2,
L=4, L=8, and L=16 with L ≃ 360d0) and confirmed that
the results are insensitive to the size (data not shown).
Breakdown of local rheology.—We first examine

the local rheology of Kolmogorov flows. Figure 1(a)
shows a steady-state flow with n ¼ 2. In this figure,
force chains (solid lines) develop around nodes of the
sinusoidal flow field [Eq. (2)] so that the elastic forces do
not vanish and velocities of the disks can deviate from the
external flow field. Therefore, the local shear rate _γðyÞ is
different from∇yunðyÞ ¼ Aqn cos qny and the stress σxyðyÞ
will show nontrivial local profiles [38] in contrast with
studies where the stress profiles are statically determinate
[21–23,25,26,28,29].
If the constitutive relations (1) are applicable to inho-

mogeneous flows, the shear stress σxyðyÞ must respond to

the local shear rate _γðyÞ in the same way as σLxy. Figure 1(b)
shows parametric plots of σxyðyÞ and _γðyÞ, where the wave
number increases from n ¼ 1 to 20 (arrow). The dotted
line is the response of σLxy, which we consider as the limit
of n ¼ 0. Clearly, variations of the flow fields are signifi-
cant and the flow curves are wave-number-dependent.
Therefore, the local constitutive relations (1) fail to describe
Kolmogorov flow.
Particle migration.—What is the origin of the wave

number dependence seen in Fig. 1? As suggested by de
Cagny et al. [32], we now examine the role of particle
migration. Figure 2 displays the profiles of (a) velocity
vxðyÞ, (b) shear rate, and (c) shear stress, where the y
coordinate is scaled by the wavelength λn ≡ L=n.
Increasing the wave number, we find that the velocity
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FIG. 1. (a) Snapshot of Kolmogorov flow with wave number
n ¼ 2. Colors represent the velocity, −1 ≤ vix=A ≤ 1, and solid
lines have width proportional to the elastic forces between the
disks (circles). (b) Flow curves obtained from Kolmogorov flow.
Lines represent wave numbers increasing from n ¼ 1 to 20
(arrow) and the dotted line is given by Eq. (1). In both (a) and (b),
ϕ ¼ 0.82 and A ¼ 10−3d0=t0 are used.
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FIG. 2. Profiles of (a) vxðyÞ=A, (b) _γðyÞ=A, (c) σxyðyÞ=A, and
(d) ϕðyÞ, where A, ϕ, and n are as in Fig. 1(b). Wave numbers
increase in the direction of the arrows. Dotted circles in (b) indicate
shear localization and the red solid line in (d) represents ϕJ .
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around antinodes is flattened [Fig. 2(a)] and, accordingly,
the shear rate becomes small [dotted circles in Fig. 2(b)];
i.e., Kolmogorov flow with high wave numbers exhibits
“shear localization.” Figure 2(d) shows area fraction
profiles that vary significantly in the vicinity of shear
localization. Hence, particle migration is indeed present.
To determine if particle migration accounts for wave

number dependence in the flow curves, we assume that the
local stress is described as σLxyðyÞ ¼ ηs½ϕðyÞ; _γðyÞ�_γðyÞ and
σLyyðyÞ ¼ ηc½ϕðyÞ; _γðyÞ�_γðyÞ and numerically solve the
force balance equations

∇yσ
L
xyðyÞ ¼ −fexx ðyÞ; ð3Þ

∇yσ
L
yyðyÞ ¼ 0; ð4Þ

where fexx ðyÞ ¼ −ð4η=πd20ÞϕðyÞfvxðyÞ − A sin qnyg repre-
sents the viscous force acting on the disks [38]. The dotted
line in Fig. 3(a) is the measured local shear stress, while
the profiles _γðyÞ≡∇yvxðyÞ and ϕðyÞ are given by the

numerical solutions of Eqs. (3) and (4). The local shear
stress exhibits discontinuities around the shear-localized
regions and significantly deviates from the results of MD
simulation [open pentagons in Fig. 3(a)]. The discontinu-
ities are due to the increase of ϕ above ϕJ in the shear-
localized regions [Fig. 2(d)], generating a local yield stress.
Because the local model fails even if we take _γðyÞ and ϕðyÞ
from simulation data [closed diamonds in Fig. 3(a)] [42],
particle migration alone cannot account for the flow curves
of Fig. 1(b).
Nonlocal constitutive relations.—We now formulate

nonlocal constitutive relations to describe shear localization
and wave-number-dependent flow behavior. We introduce
a general nonlocal constitutive relation as

σxyðyÞ ¼
Z

dy0Θðy; y0Þ_γðy0Þ; ð5Þ

where Θðy; y0Þ represents nonlocal shear viscosity. If the
system is isotropic, the nonlocal shear viscosity can be
normalized as Θðy; y0Þ≡ αðy − y0Þηs½ϕðy0Þ; _γðy0Þ�, where
the propagator αðlÞ is introduced as a symmetric func-
tion of the distance l≡ y − y0 and is normalized asR
∞
−∞ dlαðlÞ ¼ 1 [13]. The shear stress [Eq. (5)] is then
given by a weighted integral of the local shear stress,
i.e., σxyðyÞ ¼

R
dy0αðy − y0ÞσLxyðy0Þ ¼

R
dlαðlÞσLxyðy − lÞ.

Because the local model is recovered if the propagator is
replaced with Dirac’s delta function, i.e., σxyðyÞ ¼ σLxyðyÞ if
αðlÞ ¼ δðlÞ, nonlocal effects can be quantified by a finite
width of the propagator.
Taking the Fourier transform of Eq. (5), we find that

the propagator is given by α̂ðqÞ ¼ σ̂xyðqÞ=σ̂LxyðqÞ, where
σ̂xyðqÞ and σ̂LxyðqÞ are wave-number-dependent Fourier
coefficients of the shear stress σxyðyÞ and local model
σLxyðyÞ ¼ ηs½ϕðyÞ; _γðyÞ�_γðyÞ, which we obtain from the
results of MD simulations. Figure 4(a) displays semilog-
arithmic plots of the propagator (symbols) as a function of
the imposed wave number [43]. We see that, if the flow
amplitude is small enough, the propagator exhibits a small
peak before sharply decreasing (reminiscent of the “dip” in
the excess compliance of nonlocal elasticity [36]).
Moreover, double-logarithmic plots [Fig. 4(a), inset] imply
a linear increase of the propagator for slow flows (dotted
line). This result is surprising because the propagator must
be symmetric in qn, and so the presence of a linear term
implies that α̂ is nonanalytic at zero wave number. For
small wave numbers, the propagator can be expanded as

α̂ðqnÞ ≃ α̂ð0Þ þ ψ jqnj − ðξqnÞ2; ð6Þ

where ψ and ξ are introduced as length scales encoding
nonlocality. Note that the linear term ψ jqnj is necessary to
capture the peak for slow flows [44]. The solid lines in
Fig. 4(a) plot the expansion, Eq. (6), where we establish
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FIG. 3. Stress profiles divided by A ¼ 10−3d0=t0, where open
symbols result from MD simulations and solid lines represent the
nonlocal constitutive relations. We increase (a) n and (b) ϕ as
listed in the legends and indicated by the arrows, where
(a) ϕ ¼ 0.82 and (b) n ¼ 20 are used. Dotted line in (a) is the
local constitutive relation σLxyðyÞ for n ¼ 20, where _γðyÞ and ϕðyÞ
are given by numerical solutions of Eqs. (3) and (4). Closed
diamonds in (a) represent σLxyðyÞ using _γðyÞ and ϕðyÞ from MD
simulations.
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good agreement with numerical data by adjusting ψ and ξ
(see Supplemental Material [38] for the dependence on ϕ).
In previous studies [22–26,28–30], a cooperative length

was introduced to represent the range of nonlocality.
Because this length depends sensitively on the system’s
proximity to a jamming or yielding transition, it has been
widely accepted that nonlocality has links to critical
phenomena. For our systems below jamming, the range
of nonlocal effects is quantified by the length scales ψ and
ξ, which we have quantitatively estimated by fitting Eq. (6)
to numerical results. As shown in Fig. 4(b), these length
scales vary little with ϕ and never exceed a few particle
diameters for the range of area fractions accessed here.
Hence, we find no evidence of a diverging length scale
below jamming. In Fig. 4(c), we show that ψ and ξ
approach a finite value as the flow amplitude A → 0.
Therefore, the nonlocal length scales can reasonably be
approximated as constants over a range of ϕ and A near
jamming, and we expect Eq. (6) to be transferable to other
forms of forcing besides Kolmogorov flow.
Stress profiles.—We demonstrate that the stress profiles

from MD simulations can be captured within a nonlocal
framework. Inverting Eq. (6) is complicated by the non-
analytic term. If we neglect the peak in α̂, or if the forcing

amplitude is sufficiently large that the peak vanishes,
ψ ≃ 0, then Eq. (6) can be inverted to obtain
f1þ ðξqÞ2gσ̂xyðqÞ ≃ σ̂LxyðqÞ. In real space, this nonlocal
constitutive relation becomes

ð1 − ξ2∇2
yÞσxyðyÞ ≃ σLxyðyÞ: ð7Þ

Equation (7) is the inhomogeneous Helmholtz equation,
where σLxyðyÞ plays a role of the “source.” Its solution is

σxyðyÞ ¼
1

2ξ

Z
e−

jy−y0 j
ξ σLxyðy0Þdy0: ð8Þ

This is an approximate form of the nonlocal constitutive
relation (5), where the propagator αðlÞ is replaced with the
exponential Green function e−ðjlj=ξÞ=2ξ, and ξ is defined as
the width of the propagator.
We find that in order to describe stress profiles accu-

rately, Eq. (7) must be generalized to fourth order as
f1 − ξ2∇2

y þ ðξ4 − ζ4Þ∇4
ygσxyðyÞ ≃ σLxyðyÞ, where ζ4 ≡R ðl4=4!ÞαðlÞdl is the fourth moment of the propagator.

In the Supplemental Material [38], we present the solution
for the fourth-order propagator, analogous to Eq. (8), along
with an approximate method to incorporate the influence of
the peak in α̂ at low A. As seen in Fig. 3, the stress profiles
are in excellent agreement with the nonlocal constitutive
relation (solid lines), regardless of the wave number and
area fraction, where the profiles ϕðyÞ and _γðyÞ, for the
source σLxyðyÞ ¼ ηs½ϕðyÞ; _γðyÞ�_γðyÞ, are provided by MD
simulations. Reassuringly, the ϕ and A dependence of the
nonlocal fitting parameters [Figs. 4(b) and 4(c), filled
symbols] are compatible with the results of fitting
Eq. (6) to the propagator.
Summary.—We have studied nonlocal effects in inho-

mogeneous Kolmogorov flows of soft athermal disks. The
rheology is strongly affected by the period of sinusoidal
flow fields, and local constitutive relations fail even if
particle migration is considered. By introducing a general
nonlocal constitutive relation as a convolution of the shear
viscosity and strain rate, we quantitatively estimated the
range of nonlocality from the propagator. Our method
contrasts with fluidity models because the shear viscosity
can implement inhomogeneous densities and is more
relevant to the jamming transition. Solutions for the stress
profiles are in good agreement with simulations, provided
the nonanalytic first-order correction is taken into account
and the nonlocal constitutive relation is generalized to
fourth order—typical diffusion-type models fail to capture
profiles for higher wave numbers. Since most models for
nonlocal effects [22–26,28–30] or shear bands [45,46] are
diffusion type, our approach is an important step towards
nonlocal continuum modeling of disordered materials [13].
We find no evidence for critical divergence of the range
of nonlocality as jamming is approached from below—
nonlocal length scales remain on the order of the particle
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FIG. 4. (a) Semilogarithmic plots of α̂ðqnÞ for varying A (see
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ulations, while solid lines are Eq. (6). (Inset) The double-
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the slope 1. (b),(c) Nonlocal length scales ψ , ξ, and ζ for varying
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used. Open symbols are obtained by fitting Eq. (6), while filled
symbols are found by fitting the stress profiles with a nonlocal
constitutive model.
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diameter for all sampled area fractions and flow rates. We
also note that the range of nonlocal elastic effects does not
diverge under shear (though it does under compression)
[36]. As all studies reporting a diverging cooperativity
length treated yield stress fluids [16,23–26], our results
suggest that such divergence is associated with proximity to
yielding, rather than jamming.
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