

Delft University of Technology

Structured Test Development Approach for Computation-in-Memory Architectures

Fieback, Moritz; Taouil, Mottaqiallah; Hamdioui, Said

DOI
10.1109/ITCAsia55616.2022.00021
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Test Conference in Asia (ITC-Asia)

Citation (APA)
Fieback, M., Taouil, M., & Hamdioui, S. (2022). Structured Test Development Approach for Computation-in-
Memory Architectures. In C. Ceballos (Ed.), Proceedings of the 2022 IEEE International Test Conference in
Asia (ITC-Asia) (pp. 61-66). IEEE. https://doi.org/10.1109/ITCAsia55616.2022.00021

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ITCAsia55616.2022.00021
https://doi.org/10.1109/ITCAsia55616.2022.00021

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Structured Test Development Approach for
Computation-in-Memory Architectures

Moritz Fieback, Mottaqiallah Taouil, Said Hamdioui
Department of Quantum & Computer Engineering

Delft University of Technology
Delft, The Netherlands

m.c.r.fieback@tudelft.nl, m.taouil@tudelft.nl, s.hamdioui@tudelft.nl

Abstract—Testing of Computation-in-Memory (CIM) designs
based on emerging non-volatile memory technologies, such as
resistive RAM (RRAM), is fundamentally different from testing
traditional memories. Such designs allow not only for data
storage (i.e., memory configuration) but also for the execution of
logical and arithmetic operations (i.e., computing configuration).
Therefore, not only significant design changes are needed in the
memory array and/or in the peripheral circuits, but also new
fault models and test approaches are needed. Moreover, RRAM-
based CIM makes use of non-linear non-volatile devices making
the defect modeling with traditional linear resistor inappropriate
for such device defects. Hence, even the way of doing defect
modeling has to change. This paper discusses a structured test
development approach for RRAM-based CIM and highlights
the test challenges and how testing CIM dies is different from
the traditional way of testing logic and memory. Methods for
defect modeling, fault modeling, and test development will be
discussed. The paper demonstrates that unique faults can occur
in the CIM die while in the computation configuration and that
these faults cannot be detected by just testing the CIM die in
the memory configuration. Moreover, it shows that testing the
CIM die in the computation configuration reduces the overall
test time while improving the outgoing product quality. Finally,
the paper presents an outlook on the future of structured CIM
test development.

Index Terms—computation-in-memory (CIM), device-aware,
defect, fault, test, RRAM, ReRAM

I. INTRODUCTION

Traditional computing systems based on Von Neumann

architectures are unable to deliver the computing energy-

efficiencies needed for low-power applications that have high

data throughput; this is due to, for example, the power-

hungry data movement [1]. To overcome this, Computation-

in-Memory (CIM) architectures based on emerging mem-

ory technologies, such as resistive random access memory

(RRAM, or ReRAM) or spin-transfer-torque magnetic RAM

(STT-MRAM), are being developed to perform computations

directly within the memory [2, 3]. This alleviates the need to

move large amounts of data, and it thus drastically lowers

power consumption. A CIM device can then operate as a

standard memory and a computing device. However, in order

to perform computations, the standard memory hardware needs

to be modified, e.g., the sense amplifier (SA) or address

decoder (AD) needs to be redesigned to be able to perform

compute operations [2]. These architectural modifications in-

troduce new faults that are not seen in standard memories

[4–6]. Furthermore, it has been shown that emerging memory

devices suffer from new defects and failure mechanisms that

cannot be detected by standard memory tests [7–9]. Hence, in

order to realize high-quality CIM, appropriate test solutions are

required. These solutions need to take into account both the

unique properties of the architecture and those of the devices

forming the core of CIM.

There is only a limited work published on testing of

CIM. Several researchers have studied the impact of resistive

defects (e.g., an open connection, or a short-circuit to GND)

on the performance of a CIM architecture and subsequently

developed tests to detect such modeled defects [4, 10–13].

The work has shown that there are unique computation faults

that are not seen in regular memories. The proposed test

solutions consist of modified March algorithms that make use

of both configurations. In [14], a test for neuromorphic CIM is

developed based on reference trimming. Finally, in [5, 6] fault

models and tests for RRAM-based Scouting logic CIM are

developed that take into account the unique nature of defective

memory devices. Clearly research on CIM testing is still in an

early stage. For instance, although there are some approaches

to structurally testing of CIM circuits, there is not yet one

unified structured test development approach available.

This paper presents a structured device-aware test develop-

ment approach for CIM architectures. This approach results in

tests that test both the memory and computation configuration

of the CIM device in a structured manner, while also taking

into account the unique defects that can occur in emerging

memory devices. In short, this paper contributes the following:

• Structured device-aware test development approach for

CIM architectures.

• Validation of the approach on a RRAM-based CIM

architecture.

• Outlook on the future of CIM testing.

The remainder of the paper is structured as follows. Sec-

tion II presents background information on CIM and RRAM.

Section III explains the device-aware test development ap-

proach. Section IV presents the device-aware defect modeling.

Section V presents the fault modeling and analysis. Section VI

presents the test development for the CIM architecture. Finally,

Section VII presents an outlook on the future of CIM testing

and concludes the paper.

61

2022 IEEE International Test Conference in Asia (ITC-Asia)

978-1-6654-5523-7/22/$31.00 ©2022 IEEE
DOI 10.1109/ITCAsia55616.2022.00021

20
22

 IE
EE

 In
te

rn
at

io
na

l T
es

t C
on

fe
re

nc
e

in
 A

sia
 (I

TC
-A

sia
) |

 9
78

-1
-6

65
4-

55
23

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

CA
SI

A5
56

16
.2

02
2.

00
02

1

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Computer architectures [15]

II. BACKGROUND

This section classifies different computer architectures while

highlighting CIM; thereafter it details RRAM-based CIM.

A. Computer Architecture Classification

Computer architectures can be classified based on where

the computation takes place with respect to where the data

is stored; i.e., either within the memory core/IP or outside it.

In [15], the authors presented Fig. 1 that shows four possible

locations where computation can take place, resulting into two

classes, each with two subclasses: Computation-in-Memory

(CIM) with two sub-classes 1 and 2 , and computation-

outside-memory (COM) with the two sub-classes 3 and 4 .

The higher the number, the farther away from the memory

the computation takes place, which leads to lower bandwidth

(BW), longer delays, and more energy consumption.

In 1 the computation takes place directly in the memory

array and it is typically referred to as CIM-A, while in in 2

the computation takes place in the peripheral circuits of the

memory device (e.g., by using dedicated sense amplifiers) and

it is referred to as CIM-P [15, 16]. In general, CIM-A requires

major changes to the cell array design and minor changes

to the peripheral circuits, while CIM-P typically requires the

modification of the peripheral circuits only! CIM-A/P can be

further extended by taking the nature of the operands into

consideration; e.g., for two operands CIM-P, if both operands

are stored as resistance (r) in the memory array, then it is

named CIM-Pr (as is the case for scouting logic [2], which

is the focus of this paper); and if one operand is stored as

resistance and one is fed to CIM die as voltage then it is

named CIM-Ph (as is the case for vector dot product [17]).

It is worth noting that a CIM chip can operate as a regular

memory in its memory configuration (MC), or as a computing

device in its computation configuration (CC). To be able to do

this, a regular memory IP needs to be modified. On the other

hand, in 3 the computation takes place in additional hardware

placed near the memory (e.g., today’s commercialized High

Bandwidth Memories HBM); and in 4 the computation takes

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−100

0

100

VSET

VRESET

VTE [V]

I T
E

[μ
A

]

(a) RRAM switching

SL

WL

int

BL
TE

BE

(b) 1T1R cell

VR

VR

Iref Iread

OUT

SA

(c) Scouting logic [2]

Fig. 2: RRAM switching, cell, and usage in Scouting logic

place outside the memory in a dedicated computational core

(e.g., today’s commercialized CPUs).

B. RRAM-based CIM

A RRAM device is a stack of an oxide between two

electrodes (the top electrode (TE) and bottom electrode (BE)).

By applying a positive voltage on the TE so that VTE > VSET ,

the bonds between the oxygen and metal ions break, and

the oxygen ions are attracted to the TE. This is called a

SET operation. This chain of oxygen vacancies is called a

conductive filament (CF) that can carry a current. Now, by

applying a negative voltage to the TE so that VTE < VRESET ,

the oxygen ions move back into the oxide and disrupt the CF.

This is called a RESET operation. Fig. 2a shows the resulting

current-voltage graph of this switching process. The resistance

of the RRAM device in SET is lower than in RESET and

is, respectively, logically interpreted as ‘1’ and ‘0’, as shown

in Fig. 3. The state of the RRAM device can be found by

applying a low read voltage to the device and comparing the

resulting current to a reference in the SA. The resistance of a

RRAM device is analog, as such, it is possible that the device

has a resistance between ‘1’ and ‘0’. This state is called the

undefined state and is indicated in Fig. 3 with ‘U’. Similarly,

it is possible that the resistance is below ‘1’ (‘0’), this is called

the extreme high (low) state, indicated by ‘H’ (‘L’) in Fig. 3.

Fig. 2b shows a typical one transistor (1T) one RRAM device

(1R) memory cell. The cell can be accessed by opening the

transistor through the word line (WL) and applying appropriate

voltages to the bit line (BL) and select line (SL).

In Scouting logic, AND and OR logic operations can be

performed on two cells in the same column. It works by

reading two cells at once and comparing the current to a

reference that depends on the operation that is performed in

the SA, e.g., reading ‘1’ and ‘0’ while setting the reference to

OR should output an ‘1’. Fig. 3 shows the relative resistance of

62

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

R[Ω]

‘0’‘00’‘1’‘11’
‘10’/
‘01’

Rread

ROR

RAND

Fig. 3: Scouting equivalent resistance and references

Defects &
Netlist

Defect
Modeling

Fault
Modeling
&Analysis

Test
Generation

CIM
Test

Defect

Models

Verified

Fault Space

Fault Space

Fig. 4: Device-Aware Test development flow [18]

these references (Rread/OR and RAND) for the two operations

as well as the equivalent parallel resistance of the two cells for

every logic state (e.g., ‘11’, or ‘00’). The figure also shows in

red the resistance of the faulty states ‘L’, ‘H’, and ‘U’, as well

as ‘1U’ (‘1’ parallel with ‘U’) and ‘0U’ (‘0’ parallel with ‘U’).

Note that different hardware is used in both configurations; in

the MC only the Rread reference is used, while the RAND

reference is only used in the CC. Furthermore, in order to

access two cells at once, a second address decoder needs to

be included as well.

III. TESTING COMPUTATION-IN-MEMORY

We apply the Device-Aware Test (DAT) approach [18, 19]

to develop tests for CIM architectures making use of scouting

logic. DAT does not assume that a defect in a device (or a

cell) can be modeled electrically as a linear resistor (as the

state-of-the-art approach suggests), but it rather incorporates

the impact of the physical defect in the technology parameters

of the device and thereafter in its electrical parameters. Once

the defective electrical model is defined, a systematic fault

analysis is performed to derive appropriate fault models and

subsequently test solutions. In our previous work, we have

applied the DAT approach to test industrial RRAMs and STT-

MRAMs and have demonstrated that DAT sensitizes realistic

faults as well as new unique defects and faults that can never

be caught with the traditional approaches [8, 9, 20, 21]. In

addition, the results have shown how powerful is DAT for fast

diagnosis and yield learning.

The DAT approach consists of three steps: 1) defect mod-

eling, 2) fault modeling and analysis, and 3) test generation,

and is illustrated in Fig. 4 [18].

1) Defect Modeling: This first step is the core of the DAT

approach. Here, the actual physics of a defective device is

modeled and incorporated into a compact and calibrated model

that can be simulated in a netlist. This is done in three steps: 1)

physical defect modeling, 2) electrical defect modeling, and 3)

calibration. First, the defect’s effect on the physical technology

parameters (e.g., length, width, doping density, etc.) of the

device is modeled. This results in the defective technology

parameters for a device. Second, the defective technology

parameters are incorporated into an electrical model that can

be used in a SPICE simulator. This step allows studying the

effects of the defect on the electrical parameters of a device

ROp BL

BL

R
O
p

W
L

WL

R
S
h

B
L
-G

N
D
R

S
h

B
L
-V

D
D

RBr BL-int

R
S
h

in
t-
V
D

D
R

S
h

in
t-
G
N
DRBr SL-int

R
B
r
W

L
-i
n
t

R
B
r
W

L
-S

L

ROp SL

SL

R
S
h

S
L
-G

N
D

R
S
h

S
L
-V

D
D

RBr BL-SL

R
B
r
B
L
-W

L

RSh WL-GND
RSh WL-VDD

Fig. 5: All transistor and interconnection defects

(e.g., the resistance, threshold voltages, etc.). Third, the model

is calibrated to match the measurements of the defective device

to ensure that a high-quality defect model is obtained.

2) Fault Modeling and Analysis: In this second step, the

complete fault space is verified, resulting in the complete set

of faults that can occur in the circuit and which need to be

detected by a test. To do this, first, the fault space must be

defined. Then, the defect models from the previous step are

incorporated into a netlist and simulated. The resulting faults

are listed and form the verified fault space for which a test

needs to be developed.

3) Test Generation: In the third step, a test is generated

that can detect all the verified faults. These tests can be march

tests that are adapted for the specific faults. However, it is also

possible that specialized design-for-test (DFT) structures are

needed to guarantee the detection of all faults.

The core idea for applying DAT to CIM testing is to

identify which components in a normal memory are modified

to allow for CIM capabilities. Because the hardware used in

both configurations is not the same, the approach must be

applied to both configurations [6]. In the MC, the components

that are used for regular memory operations are tested; for

instance, the memory array, the SAs in the read configuration,

and row/column Address Decoders (ADs). In the CC, the

components that are used for compute operations are tested;

for instance, the memory array, the SAs in the compute

configuration (AND, OR), and the row address decoders as

they perform simultaneous access of two operands.

IV. DEVICE-AWARE DEFECT MODELING

We perform defect modeling for both CIM configurations..

A. Memory Configuration

RRAM-based CIM architectures consist of transistors, in-

terconnections, and RRAM devices. Defects in transistors

and interconnections are typically modeled as linear resistors

because they affect the resistance of a connection [22]. All

possible defects in a single 1T1R cell are shown in Fig. 5.

There exist three kinds of defects here: shorts (Sh), bridges

(Br), and opens (Op). A short defect is a connection between

a node and a supply node, e.g., a connection between the BL

and GND. A bridge is a connection between two nodes in

the circuit that are not supply nodes. An open is an increased

resistance within a line, e.g., an increase of the line resistance.

63

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−100

0

100

1

S

2

VTE [V]

I T
E

[μ
A

]

Defective BS measurements

Defective BS simulation

Fig. 6: IUSF in a RRAM device. Measurements and model [9]

In a similar way, these resistive defects manifest themselves

in ADs and SAs.

On the other hand, it has been demonstrated using industrial

devices that linear resistors fail to describe defects in the

RRAM device and their non-linear behavior [9, 20]. Therefore,

DAT defect models are needed that adequately describe the

defective behavior of the RRAM device.

In the rest of this section, we will briefly illustrate DAT

defect modeling for two RRAM defects/faults: forming defects

[20] and intermittent undefined state fault (IUSF). [9]. Forming

defects occur when the current through a RRAM device that

forms the initial CF is too high or too low, resulting in

devices switching into the ‘H’, ‘L’, and ‘U’ states; see also

Fig. 3. The IUSF is caused by a reduced oxygen ion binding

capability in the RRAM device, which causes the device to

intermittently change its switching mechanism from bipolar to

complementary switching. This leads to the device going into

‘U’ rather than ‘1’ when performing a SET operation. Note

that this fault does not happen in every cycle; its behavior

is intermittent. Fig. 6 shows the current-voltage graph of the

IUSF as it was measured, as well as the fitted and optimized

defect model; the figure shows that the device switches from

‘0’ to ‘1’ at 1 , but then immediately switches into ‘U’ at

S . A subsequent RESET operation first switches back to ‘1’

before it resets to ‘0’ at 2 .

B. Computation Configuration

The hardware components forming the CC of CIM are

similar to those forming the MC of CIM; these consist of

transistors, interconnections, and RRAM devices. Hence, the

potential defects in CC are similar to those in MC; the resulting

defects models in MC can be used for CC.

V. DEVICE-AWARE FAULT MODELING

Next, we perform fault modeling and analysis.

A. Memory Configuration

In the MC, we first define the complete memory fault space.

Then, we validate it.

1) Fault Space Definition: In the MC, faults can occur in

components contributing to the MC of the CIM chip. We will

restrict ourselves to the three main components: the memory

array, the ADs, and the SAs. We define the fault space for

each of these components.

a) Memory Array: Memory array faults are typically

described using a fault primitive (FP) concept 〈S/F/R〉 [23]:

• S denotes the sensitizing sequence that is applied to

the memory cell. These can be write (w) and read (r)
operations. For example, writing a ‘0’ to a cell that

initially stores a ‘1’ is denoted as 1w0, and reading a

cell that contains a ‘1’ is denoted as 1r1. It is possible to

have multiple operations in S, e.g., S = 0w1r1.

• F denotes the final state of the cell after the sensitizing

sequence is applied. For the RRAM device in this paper,

it holds that F ∈ {0, 1,U,H,L} [20].

• R denotes the output of the SA if the final operation

in S is a read operation. Hence, R ∈ {0, 1, ?}, where

? denotes a random read output where the SA cannot

reliably distinguish between 1 and 0. If the last operation

was a write operation, then R = −.

Using this notation, it is possible to define the complete fault

space, e.g., for single cell faults. For a single operation, there

are 52 possible different FPs [20].

b) Address Decoders: AD faults (ADFs) in a single

decoder are well studied and can be classified as static or

dynamic faults [24]. There are four static ADFs: no access,

multiple cells, multiple addresses, and other cells. These faults

always lead to errors. Dynamic ADFs affect the timing of the

AD and can be classified as Activation Delay Fault (ActD)

and as Deactivation Delay Fault (DeactD) [25]. They do not

always lead to errors.

c) Sense Amplifiers: SA faults (SAFs) can also be static

and dynamic [26]. Static SAFs always cause the SA to output

a fixed value, irrespective of the memory cell’s contents.

Dynamic SAFs are caused by slow SAs that fail to switch

to the correct output in the allotted time. These faults do not

always cause errors.

2) Fault Space Validation: Next, we validate the fault space

by including the defect models from the previous step in a

netlist and simulating it using the simulation set-up from [5],

with the addition of the IUSF model from [9].

a) Memory Array: In [6], it was shown that 17/52 FPs

are sensitized by using the traditional linear resistor defect

models and the forming defect model. From [9], it follows

that the IUSF can be described as 〈0w1/U/−〉. This FP can be

also sensitized by the forming defect [6]. However, the IUSF

is intermittent in nature, and therefore it is not known when

the fault will occur. Next, we determine the detectability of the

faults. A fault is easy-to-detect (EtD) if its detection can be

guaranteed by regular memory operations; e.g., 〈1w0/1/−〉,
or 〈1r1/U/0〉. A fault is hard-to-detect (HtD) if its detection

cannot be guaranteed by regular read/write operations; e.g.,

〈0r0/0/?〉, or 〈0w1/U/−〉. The IUSF is therefore a HtD fault

whose detection requires extra effort.

b) Address Decoders and Sense Amplifiers: In [5], we

have shown that static and dynamic ADFs and SAFs, can take

place in RRAM-based CIM making use of Scouting logic.

B. Computation Configuration

Next, we perform fault modeling and analysis for the CC.

64

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

1) Fault Space Definition: In the CC, faults can occur

in any CIM component contributing to such configuration,

including the memory array, the ADs, and the SAs. Next, we

define the fault space for each of these components.

a) Memory Array: A Scouting logic operation can be

seen as a parallel read operation on two cells (operands) at

once by a single (customized) SA, similar to how a two port-

memory operates [27]. Hence, the 〈S/F/R〉 notation needs

to be extended to 〈S1 : S2 / F1 : F2 / R〉OP [6]. Here, ’:’
indicates that two operations happen in parallel, where 1 and

2 indicate which two cells are involved, and OP indicates

which logic operation; i.e., AND or OR is performed. For

example, the FP 〈0r0 : 0r0/0 : 0/1〉AND denotes a fault where

performing an AND operation on two cells (operands) that

store a ‘0’ results in the wrong output ‘1’.

b) Address Decoders: When performing Scouting logic,

the cells/operands have to be selected simultaneously. Hence,

the row decoders of the CIM device have to operate concur-

rently; this is similar to what takes place in a memory with two

read ports. Faults in such decoders are discussed in detail and

reported in [28]; e.g., port interference can take place where

one row decoder (for one operand) can erroneously select an

additional row (additional operand) when two rows (operands)

are simultaneously selected during the CIM operation.

c) Sense Amplifiers: SAs in the CC suffer from the faults

as in the MC, except that the faults can now occur for every

logic operation, i.e., for the AND reference and for the OR

reference. For example, there can be dynamic slow SAF for

the AND reference, and not for the OR reference.

2) Fault Space Validation: Next, a brief overview is given

on some validation work done for defining the fault space.

a) Memory Array: A detailed validation of the CC fault

space for memory array is reported in [6]; it considered both

resistive defects as well as forming defects. Although this

is far from being a complete analysis (e.g., not all unique

RRAM defects are considered), it reveals quite interesting

observations:

• There are defects that sensitize faults in the CC but not in

the MC. Testing a CIM circuit only in the MC is therefore

not sufficient.

• Defects can cause HtD faults in the MC, but EtD faults in

the CC and vice versa. Hence, both configurations need

to be tested.

• Many defects sensitize faults both in the MC and the CC.

It is worth noting that the unique IUSF can only manifest itself

after a 0w1 operation; hence it is assumed that it can be only

sensitized in the MC and not in the CC.

b) Address Decoders Sense Amplifiers: The work re-

ported in [5] shows that static and dynamic ADFs and SAF

can take place in CIM chips making use of Scouting logic.

VI. DEVICE-AWARE TEST DEVELOPMENT

Next, we show how the use the results from fault modeling

and analysis can be used for test development.

A. Memory Configuration

The faults targeted in this paper for MC consist of static

single memory cell array faults (MCAFs), static and dynamic

address decoders faults (ADFs), as well as static and dynamic

sense amplifier faults (SAFs).

To detect static faults targeted in this work, one can develop

a march test solution. March test algorithms have been very

popular memory test solutions since the 1980’s [29]. The

following march test was presented in [6] for the detection

of faults in MC of scouting logic-based CIM; these consist of

static EtD MCAFs, static ADFs, and static SAFs:

March-EtD-MC = {� (w0) ;⇑ (r0,w1) ;⇓ (r1,w0) ;� (r0)} .

Here, � indicates any addressing order, and ⇑ (⇓) indicates in-

creasing (decreasing) addressing order. As already mentioned

before, typical march tests cannot guarantee the detection of

HtD faults; hence additional effort is needed. One option is

to augment the previous march test with a special weak write

operation (ŵ) supported through DFT as reported in [30],

resulting in the following:

March-HtD-MC =

{� (w0) ;⇓ (r0,w1, ŵ0) ;⇑ (r1,w0) ;� (ŵ1, r0)} .
Note the ŵ will not bring any change in the state for a

healthy/good memory cell, while this will change the state

of the weak/bad memory cell.

Covering dynamic ADFs and SAFs considered in this work

put additional requirements on the table. For dynamic ADFs,

special address transitioning orders need to be adapted; e.g.,

using addresses that have a hamming distance of 1 between

them [25]. For the detection of the dynamic SAFs, back-to-

back operations that quickly flip the SA’s output can be added

to the above algorithms [26].

Obviously, the above test cannot guarantee the detection of

the IUSF (being an HtD MCAF) due to its intermittent nature

[9]. This fault can only be probabilistically detected using, for

example, the following March algorithm:

March-IUSF-MC =
{
� (w0,w1, r1)

k
}

,

where k indicates the number of times the sequence is applied.

If we assume that reading a cell in ‘U’ state results the same

probability of getting ‘1’ or ‘0’ (i.e., 50%, due to process

variations in the SA and the reference circuit), and that the

occurrence probability of IUSF is PIUSF, then the detection

probability is: Pd=1 − (1− (PIUSF · 50%))
k
. Assuming that

PIUSF=1.068% results in k = 560 to realize a fault coverage

(FC) of FC=95%, and in k=1291 to realize FC=99% [9].

Hence, realizing high FC needs a long test time; not to mention

the potential impact of repeating memory accesses on the cell

endurance. Hence, dedicated DFTs are needed.

B. Computation Configuration

In [6], two tests for the CC are presented as well for both

EtD and HtD faults. The following march algorithm can detect

65

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

all EtD faults in the memory array in the CC:

March-EtD-CC = {� (w0) ;⇑ (r0,w1) ;⇓ (r1,w0) ;

� (w1r : n, r1r : r0r+1, r0r+1 : r1r, r1r : r0r+1,

w0r : n)AND,AND,OR

}
,

where n denotes no operation. Note that the computing op-

eration accesses two cells in the same column simultaneously
(i.e., rows r and r + 1). Again using the DFT from [30], the

following march algorithm can detect the HtD faults in the

memory array, except for the IUSF:

March-HtD-CC = {⇑ (w1) ;⇑ (r1, ŵ1, r1) ;

⇓ (w0, ŵ1) ;⇓ (r0r : n,w1r : n,

r1r : r0r+1, r0r+1 : r1r,w0r : n)R,OR,AND

}
.

This test also cannot guarantee the detection of the IUSF.

However, it is possible to use the compute operations to

increase the detection probabilities of the IUSF. From Fig. 3,

it follows that the equivalent resistance of a ‘1’ in parallel

with a cell in ‘U’ is higher than the reference for the AND

operation. Thus, this operation can be used to detect cells in

‘U’, resulting in the following probabilistic march algorithm:

March-IUSF-CC = {� (nr : w1r+1) ;

� (w0r : nr+1,w1r : nr+1, r1r : r1r+1)
k
AND

}
.

The detection capabilities of March-IUSF-CC then change to:

Pd=1− (1− PIUSF)
k
, i.e., k = 279 results in FC=95 %, and

k = 429 results in FC=99%, which is significantly higher than

that of March-IUSF-MC.

VII. DISCUSSION AND CONCLUSION

This paper introduces a structured test development ap-

proach for CIM architectures, and demonstrates it on a

RRAM-based implementation of Scouting logic. Some key

conclusions:

Usage of CIM to detect memory faults: We have demon-

strated that CIM capabilities can be used to detect cells that are

in the ‘U’ state (for example due to an IUSF). It enables the

detection of faulty cells in the ‘L’ or ‘H’ state. For example,

the equivalent resistance of a cell in ‘H’ and ‘0’ may be lower

than the AND reference; the fault can than be detected by

performing an AND operation.

Unique faults: Testing the CIM die in the MC only is

not enough. CIM in CC gives rise to new and unique faults

because the CC makes partial use of the MC hardware, but

also of unique components, e.g., simultaneous usage of ADs.

Hence, dedicated tests for this configuration need to be used.

Further, some defects sensitize EtD faults in the MC and HtD

faults in the CC. Hence, it is possible to optimize the test by

selecting the EtD faults for each configuration.

Generality of the Proposed Approach: The core of the

presented test development approach is to identify which

components have been modified to allow for CIM and to

subsequently develop test to detect faults in them. We have

demonstrated that approach for RRAM-based Scouting logic,

but it also applies to other CIM schemes, such as vector-

matrix-multiplication architectures [31]. For example, in such

an architecture, the ADs are modified, and the SAs are

replaced with analog-to-digital converters. A structured test

should be able to detect faults in these modified circuits.

REFERENCES

[1] D. A. Patterson, “Future of Computer Architecture,” in BEARS, 2006.
[2] L. Xie et al., “Scouting Logic: A Novel Memristor-Based Logic

Design for Resistive Computing,” in ISVLSI, 2017.
[3] S. Li et al., “Pinatubo: a processing-in-memory architecture for bulk

bitwise operations in emerging non-volatile memories,” in DAC, New
York, New York, USA, 2016.

[4] T.-L. Tsai et al., “Testing of In-Memory-Computing 8T SRAMs,” in
DFT, 2019.

[5] S. Hamdioui et al., “Testing Computation-in-Memory Architectures
Based on Emerging Memories,” in ITC, 2019.

[6] M. Fieback et al., “Testing Scouting Logic-Based Computation-in-
Memory Architectures,” in ETS, 2020.

[7] E. I. Vatajelu et al., “Challenges and Solutions in Emerging Memory
Testing,” IEEE TETC, 2017.

[8] L. Wu et al., “Defect and Fault Modeling Framework for STT-MRAM
Testing,” IEEE TETC, 2019.

[9] M. Fieback et al., “Intermittent Undefined State Fault in RRAMs,” in
ETS, 2021.

[10] J. F. Li et al., “Testing of Configurable 8T SRAMs for In-Memory
Computing,” in Proceedings of the Asian Test Symposium, 2020.

[11] T. L. Tsai et al., “Testing of in-memory-computing memories with 8
T SRAMs,” MR, 2021.

[12] L. Ammoura et al., “Preliminary Defect Analysis of 8T SRAM Cells
for In-Memory Computing Architectures,” in DTIS, 2021.

[13] S. M. Nair et al., “Defect Characterization and Test Generation for
Spintronic-based Compute-In-Memory,” in ETS, 2020.

[14] C. Munch et al., “Testing Resistive Memory based Neuromorphic
Architectures using Reference Trimming,” in DATE, 2021.

[15] H. A. D. Nguyen et al., “A Classification of Memory-Centric Com-
puting,” ACM JETC, 2020.

[16] M. A. Lebdeh et al., “Memristive Device Based Circuits for
Computation-in-Memory Architectures,” in ISCAS, 2019.

[17] J. Yu et al., “Memristive devices for computation-in-memory,” in
DATE, 2018.

[18] M. Fieback et al., “Device-Aware Test: A New test Approach Towards
DPPB Level,” in ITC, 2019.

[19] M. Taouil et al., Patent NL2023751B1 Device-Aware Test for Memory
Units, 2020.

[20] M. Fieback et al., “Defects, Fault Modeling, and Test Development
Framework for RRAMs,” ACM JETC, 2022.

[21] L. Wu et al., “Pinhole Defect Characterization and Fault Modeling
for STT-MRAM Testing,” in ETS, 2019.

[22] M. Syrzycki, “Modeling of Gate Oxide Shorts in MOS Transistors,”
IEEE TCADICS, 1989.

[23] S. Hamdioui et al., “Testing static and dynamic faults in random
access memories,” in VTS, 2002.

[24] A. J. van de Goor, Testing Semiconductor Memories - Theory and
Practice. 1991.

[25] S. Hamdioui et al., “Opens and Delay Faults in CMOS RAM Address
Decoders,” IEEE TC, 2006.

[26] A. van de Goor et al., “Detecting faults in the peripheral circuits and
an evaluation of SRAM tests,” in ICT, 2004.

[27] S. Hamdioui et al., “Efficient tests for realistic faults in dual-port
SRAMs,” IEEE TC, 2002.

[28] S. Hamdioui et al., “Address decoder faults and their tests for two-
port memories,” in MTDT, 1998.

[29] M. S. Abadir et al., “Functional Testing of Semiconductor Random
Access Memories,” CS, 1983.

[30] S. Hamdioui et al., “Testing Open Defects in Memristor-Based
Memories,” IEEE TC, 2015.

[31] A. Velasquez et al., “Parallel boolean matrix multiplication in linear
time using rectifying memristors,” in ISCAS, 2016.

66

Authorized licensed use limited to: TU Delft Library. Downloaded on November 18,2022 at 08:04:04 UTC from IEEE Xplore. Restrictions apply.

