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Abstract

Symmetry is a guiding principle in physics that allows us to generalize conclusions between many
physical systems. In the ongoing search for new topological phases of matter, symmetry plays a crucial
role by protecting topological phases. We address two converse questions relevant to the symmetry
classification of systems: is it possible to generate all possible single-body Hamiltonians compatible
with a given symmetry group? Is it possible to find all the symmetries of a given family of
Hamiltonians? We present numerically stable, deterministic polynomial time algorithms to solve both
of these problems. Our treatment extends to all continuous or discrete symmetries of non-interacting
lattice or continuum Hamiltonians. We implement the algorithms in the Qsymm Python package,
and demonstrate their usefulness through applications in active research areas of condensed matter
physics, including Majorana wires and Kekule graphene.

1. Introduction

A transformation that leaves a physical system invariant is called a symmetry, and such transformations have an
ever-important role in modern physics. For example, symmetry breaking characterizes the classical theory of
phase transitions, and the invariance of the speed of light between reference frames is a cornerstone of special
relativity theory. In molecules and crystals, the symmetries of the constituent atomic orbitals determine the
character of chemical bonds. The band theory of solids uses the translational invariance of a crystal structure to
classify states into energy bands according to their crystal momentum, where the band structure is in turn
constrained by the point group symmetries of the crystal. To describe such bands, model Hamiltonians based on
tight-binding approximations [1-5] or k - p perturbation theory [6—8] are typically constructed by fitting a
generic Hamiltonian allowed by symmetry to match experimental data or first principles-calculations.

Recent studies focused on the role of symmetry in protecting topological phases [9, 10]. Initially, analysis of
time reversal and particle-hole symmetries led to the full classification of free fermionic phases in the ten
Altland—Zirnbauer classes [11-13]. Later interest shifted to include symmetries involving transformations of
space [14—22]. Some of these phases are stable against disorder that preserves the symmetry only on average [23],
leading to a richer structure of symmetry-protected topological phases. Analysis of newly proposed symmetry-
protected topological phases is often done using minimal models, such as tight-binding Hamiltonians with
short-range hoppings, or continuum Hamiltonians valid near high symmetry points in the Brillouin zone.
Although these models are usually easy to solve, they are prone to having higher symmetry than intended. With
the plethora of available symmetry groups, it is a nontrivial task to construct models that possess the stated, but
only the stated symmetries, or to decide the complete symmetry group of a given Hamiltonian.

In this paper we present an algorithm to generate all Hamiltonians that respect given symmetries, using an
approach similar to [24]. In addition, we develop a dual algorithm to find all symmetries of a family of
Hamiltonians (figure 1). Our framework is applicable to all non-interacting, finite or translation invariant lattice
or k - p Hamiltonians. We treat all possible symmetries, including continuous unitary symmetry groups,
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Figure 1. Pictorial summary of the methods studied in the paper. The symmetry finder and Hamiltonian generator algorithms forma
two-way connection between Hamiltonian families and symmetry groups.

continuous spatial rotations, space groups, discrete onsite symmetries (such as time reversal, particle-hole and
chiral symmetries), and arbitrary combinations of these. Besides static fermionic systems, our methods are also
applicable to band structures in photonic crystals [25, 26], magnon spectra, classical mechanical [27, 28] and
electronic systems [29], and driven Floquet systems [30].

The paper is structured as follows: first we review the general symmetry structure of single-particle
Hamiltonians. Then we present our algorithm to find Hamiltonians with such symmetries. After that we review
the symmetry finding algorithm, which, by factoring out onsite unitary symmetries, makes finding all other
symmetries more efficient and guaranteed. We implement our algorithms in the Qsymm Python package
[31, 32]. Finally we provide a set of examples where our method was used on problems in active areas of research.
We show that Majorana wire devices may be protected against band-tilting by a magnetic symmetry, and double
Dirac cones in Kekule distorted graphene are protected by point group and sublattice symmetry. We also
construct model Hamiltonians for transition metal dichalcogenides and distorted spin—orbit coupled SnTe.

2. Hamiltonian families and symmetries

2.1. Continuum and tight-binding Hamiltonians
We focus on non-interacting Hamiltonians. The quadratic Hamilton operator of a finite (zero-dimensional)
system can be written as

A=Y Hja/a;, 1)

where H is a Hermitian matrix and 4; are creation or annihilation operators. We do not make any assumptions
about bosonic or fermionic nature of these operators and also allow terms with two creation or two annihilation
operators, facilitating the study of superconducting Bogoliubov—de Gennes Hamiltonians. In the framework we
use, all the details of the system are encoded in constraints on the matrix part H, which is the focus of our study.
Besides finite systems, we also address systems with d-dimensional translation invariance. The associated
conserved quantity is the (lattice) momentum k, which takes values in R? for continuous translations, and in the
d-dimensional Brillouin zone for discrete translations. Effective continuum Hamiltonians (k - p models) also
arise as the long-wavelength limit of lattice Hamiltonians. The conservation of k allows us to decompose the
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single-particle Hilbert space into independent sectors corresponding to each k, such that H does not mix
sectors, 1.e.
H=>"5 Hj®a}a. )
ik
In the rest of this work we focus on analyzing the matrix-valued Hamiltonian H (k) with matrix elements H;; (k).
A tight-binding Hamiltonian acts on a Hilbert space consisting of basis orbitals in a single translational unit
cell, and has the general form

H(k) =Y (e*°hs + h.c.). (3)
4

The hopping vectors d connect sites on the lattice, with the matrices of hopping amplitudes hs. The k - p
Hamiltonian provides an accurate continuum approximation near a point in the Brillouin zone, typically a high
symmetry point. Itis a polynomial in momenta k;, and has the form

Hk) = 3k, (4)

where k™ = [[; k/"isa monomial in the multi-index notation with n = (1, n, ...),and h;[ = h,. Typical
methods to construct k - p Hamiltonians start with a series expansion of a more complete lattice model from
e.g. abinitio calculations around the high symmetry point, or by writing down all symmetry-allowed terms and
fitting to experimental data or first principles calculations [2, 3, 8, 33-35].

2.2.Hamiltonian families
A set of symmetries only defines a Hamiltonian family, as opposed to one single Hamiltonian. A Hamiltonian
family is the linear space of Hamiltonians

Hk) = E cnH, (k), (5a)

with arbitrary real coefficients c,,, and basis vectors

H,(k) = > f, ®hey Hf (k) = H,(K). (5b)

Here h,, are constant matrices of identical size, and f, (k) are linearly independent scalar functions. In the rest of
this work, whenever referring to a Hamiltonian, we mean a Hamiltonian family. A Hamiltonian family is also the
only useful starting point to analyzing the symmetry content of Hamiltonians. For a zero-dimensional
Hamiltonian, the symmetry group is always given by independent unitary transformations in each degenerate
eigensubspace. This group, however, provides no insight beyond the degeneracies of the levels. In a family of
continuum k - p Hamiltonians, £, (k) isa monomial, and in a tight-binding Hamiltonian, a phase factor el
with & ahopping vector.

There is a natural inner product in the space of Hamiltonians (5). We define the product of H (k) = f,(k) Iy
and H,(k) = f,(k)hy as (H(k), H>(k)) = (f,, f,) (I, h2)p. On the matrix part, the Frobenius inner product is
givenby (A, B)p = Tr (A'B). For the inner product of the k-dependent prefactors, we use the Bombieri inner
product [36] for polynomials, (k®, k™) = 6, mn!/|n|! where n! = []; n;!and |n| = 3, n;, such that different
monomials are orthogonal. For phase factors we use (e?, e?) —= &, Both of these inner products on the
function spaces are invariant under the isometries of k-space, and therefore all symmetry actions we consider in
this work are (anti)unitary with respect to this inner product. This structure of the space of Hamiltonians also
justifies our use of single exponentials and single monomials as the expansion basis.

2.3. Symmetry constraints on Hamiltonian families

We adopt the active view of symmetry action g on the Hamiltonian: g(H) represents a transformed Hamiltonian,
such that the matrix elements between rotated wave functions g (|1 (k))) are identical. In other words, a
Hamiltonian has a symmetry if gleaves the Hamiltonian invariant

g(H) =H. (6)
A general unitary symmetry gacts on a Hamiltonian H (k) as
gH)I) = £UH®R; WU, (7a)
and a general antiunitary symmetry as
gH)(k) = U, H¥(—R, 'K U, . (7b)

Here the orthogonal matrix R, is the real space action, and the unitary matrix Uy is the Hilbert space action of g.
We include the overall £ sign to treat antisymmetries—symmetries that reverse the sign of energy—on an equal
footing. We restrict our considerations to a constant U, however, in the real space basis (see section 3.2), any
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space group operator may only contain an overall k-dependent phase factor, which cancels in the previous
equations.
Substituting equation (7) into (6), we rewrite it in a form linear in the symmetry action:

SH (k) = £H(RK)S. (8

Here the symmetryaction S is S = U ifunitaryand S = UK if antiunitary, with /C the real space complex
conjugation operator: H (k) = H*(—k).

We apply the symmetry constraint (8) to the Hamiltonian family (5a). The spatial action of a symmetryisa
rotation in the space of f, , such that f, (£Rk) = > ’yg f3 &) with 'yg known for given R and f,,. Substituting
this yields

STE @S (Shan F 3 245h5aS)en | = 0. )
I n B

Since f,, are linearly independent functions, the matrix coefficients in the parentheses must vanish for every o,
resulting in the system of equations

Z(Shan + Z ’73]13,18)67, =0, Va. (10)
n &

When symmetries form continuous Lie groups, it is advantageous to use the symmetry generators instead of
the group elements. Consider a one parameter family of transformations g, which, for a fixed ¢ act as a unitary
symmetry in the above, and let g, be the identity. We define the action of the generator g’ through

d
§'(H) = —¢,(H) . (11)
do o
Substituting (7) and using that U, = e ' with L = L"and Ry = e M with M = —M" = M", wefind
. .~ OH
g'(H) (k) =i[H k), L] + IZ %Mijkj- 12)
1 1

gs(H) = Hfor every ¢ is equivalentto g’(H) = 0. Tight-binding Hamiltonians cannot be invariant under
continuous rotations of space, such that M = 0 and the symmetry constraint simplifies to

Z[hnn’ Llc, =0, (13)
n
where Lisalocal conserved quantity. Finally, if the Hamiltonian is a polynomial in k, continuous rotation
invariance is also possible. With > i gikM,] ki=3%5 'yi f, (k) the symmetry constraint reads
> (Uham L1 + 35 vdhan)ew = 0. (14)
n 1)

3. Generating Hamiltonians from symmetry constraints

3.1. Constraining Hamiltonian families

Given a symmetry S and a Hamiltonian family (5), we wish to find the subfamily of Hamiltonians that is
invariant under the symmetry transformation (8). The symmetry constraint on the Hamiltonian family is a
system of homogeneous linear equations for the coefficients ¢, (see equations (10), (13), and (14)). We find the
space of solutions numerically using singular value decomposition (SVD) or sparse eigendecomposition, which
gives the subfamily of the original Hamiltonian family (5) that satisfies the symmetry. Imposing additional
symmetry constraints on the family yields further linear equations that are identical to equation (10) in form. We
provide an implementation of this algorithm in the Qsymm Python package.

The constraining algorithm allows us to generate all possible tight-binding or k - p Hamiltonians that satisfy
symmetry constraints, by applying the algorithm to the most general representative Hamiltonian family for the
system at hand. As an illustration, we reproduce the family of two-band k - p Hamiltonians of [33] for the
surface dispersion of the topological insulator Bi, Tes. Our starting point is the family ofall2 x 2k - p
Hamiltonians up to third order in the momentum k = (k,, k,). Expanding the matrix part in terms of the
identity and Pauli matrices 0y, , ,, »» the general family consists of 40 basis vectors and is given by

HK) =" cqojkiky”, 0 < |a] <3, (15)

withn = (j, a,, o) = (j, ). To obtain the surface dispersion Hamiltonian, we constrain (15) with time-
reversal symmetry (7 = io, K), and the point group symmetries of the crystal, namely three-fold rotation
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(C3 = e ™=/3), and mirror symmetryin x (M = io,) [33]. Substituting the three symmetries and the family (15)
into (10) yields a homogeneous system of 120 linear equations for the 40 coefficients c,,. The null space of the
linear system is the subfamily of Hamiltonians that satisfy the symmetry constraints:

Hk) = cok’oy + c(keo, — kyoy) + (k] — 3kxky2) + c3(kek?o, — kyk?0y), (16)

with ¢, € R, which matches the Hamiltonian of [33]. Here, k2 = kf + k2, and we have relabeled the
coefficients ¢, for clarity.

The theory of invariants also offers a systematic way to generate k - p Hamiltonians corresponding to a
given point group symmetry [7]. This approach produces equivalent results in simple cases. Our methods are,
however, more general, allowing to treat antiunitary and antisymmetry operators on the same footing. A
possible future improvement of Qsymm is to interface with representation theory databases to make this
connection more explicit.

3.2. Generating lattice Hamiltonians by symmetrization

Lattice models often contain multiple sites per unit cell, but only a small number of bonds. In this case the
previous approach of generating all possible terms and constraining them is inefficient due to the large
dimension of the null-space. On the other hand, all the hopping terms on symmetry equivalent bonds are
completely determined by the hopping on one of these bonds. This allows us introduce a symmetrization
strategy to generate all symmetry-constrained lattice Hamiltonians with hoppings of limited range.

To treat arbitrary space group symmetries of general crystal structures, we consider tight-binding
Hamiltonians in the real space basis that preserves information on the coordinates of the basis orbitals [37, 38].
Up to a normalization factor, the Bloch basis functions are given by | Xf{l> = Y pelk®+im)| gb;‘{l), where aindexes
the sites in the unitcell, I € [1, ..., nfy,, ] indexes the orbitals on the site, r, is the real space position of the site
and R runs over all lattice vectors. In this basis, the hopping terms in the Hamiltonian acquire a phase factor
corresponding to the true real space separation of the sites they connect, as opposed to the separation of the unit
cells to which the sites belong. A hopping between site a at r, and sitebat r, = r, + d, entersasa term
elkda |y 5“5 + h.c. where we suppressed the orbital indices of the matrix h g’ﬁ . Onsite terms have §,, = 0. The main
advantage of using this gauge is that the form of the Hamiltonian is independent of the choice of the real space
origin and the shape of the unit cell. As a consequence, nonsymmorphic symmetry operations only acquire
k-dependence in the form of an overall phase factor [38]. In the simplest case of a single site per unit cell, d,; are
lattice vectors.

We start from a small set of terms for every symmetry unique bond d,; of the form

H,(k) = e®aht + hec, (17)
with htfgﬂb spanningall %, x nl,. matrices that are invariant under the continuous onsite symmetry group.
We symmetrize these with respect to the discrete point group G, i.e.

= LS g, (18)

H; =
|G| geG

where g(H) is the symmetry transformed image of H under the transformation g (see equation (6)) and |G| is the
number of elements in G. Because the sum over ¢ € G can be replaced by a sum over (hg) € G, h(H,) = H,for all
h € G.Inaddition, H;is exactly the projection of H onto the space of symmetric Hamiltonians. The
symmetrized terms span all symmetry allowed Hamiltonians with the prescribed hopping vectors. This space of
Hamiltonians is generally overcomplete, we find a minimal set of terms spanning the space using standard linear
algebra techniques.

As an example, consider graphene with one spinless orbital per site. A three-fold rotation around a site maps
both sublattices onto themselves, so the unitary part of the symmetry actionis I, .. Let § = (ag, 0) be a vector
connecting nearest neighbors, and the corresponding hopping term

- 0 eik-ts _ 0 eiaokx
H= t|:eik.6 0 ]_ tl:eiuokx o [ (19)

which is Hermitian and only connects the two sublattices. After symmetrization with respect to the full
hexagonal group we obtain the well known minimal tight-binding model for graphene:

=

with b = el®ok: 4 ei“"(*%kﬁv k”) + ei“"(*%kx*%ky).

oG
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Figure 2. Schematic representation of the onsite symmetry group of a Hamiltonian family (top). The unitary symmetries form a
continuous connected Lie group G,. The discrete symmetries can all be combined with any unitary symmetry, forming disconnected
components of the symmetry group. For example, 7Gy = {7U : U € G} contains all antiunitary symmetries which are
combinations of the canonical time reversal 7 and some unitary U. Reducing the Hamiltonian family factors out all the unitary
symmetries leaving only the identity element e, resulting in a simpler discrete group structure (bottom).

4. Symmetry finding

Unlike finding a family of symmetric Hamiltonians, that amounts to solving a linear system, finding the
symmetries of a Hamiltonian family is more involved. We first focus on finite (zero-dimensional) systems and
show that the unitary symmetry group generally admits a continuous Lie group structure. Next we present an
algorithm to find the unitary symmetries, and rewrite the Hamiltonian family in the symmetry-adapted basis. In
this basis the Hamiltonian takes a block diagonal form, where the blocks are guaranteed to have no unitary
symmetries, hence we call these blocks reduced Hamiltonians. Factoring out the unitary symmetries this way
simplifies finding the discrete (anti)unitary (anti)symmetries, see figure 2. After generalizing these methods to
onsite symmetries of translation invariant systems in arbitrary dimensions, we finally include real space rotation
symmetries.

4.1. Structure of the onsite unitary symmetry group
Assume a unitary symmetry operator U commutes with a family of finite Hamiltonians:

U, H,] = 0. (21)
Any unitary is expressible as the exponential of a Hermitian operator L
U=el, (22)

which is unique if we restrict the spectrum o(L) C [0, 27) (this condition is equivalent to choosing a branch cut
for the logarithm in L = ilogU). Defining U and L this way ensures that they have exactly the same
eigensubspaces. Since U and H,, commute, they also share eigensubspaces, and equation (21) is equivalent to

[L, H,] = 0. (23)

Therefore the Hamiltonian family has a continuous family of unitary symmetries U (¢) = e ! that all
commute with H,,. Because a single unitary symmetry defines a continuous family that is connected to the
identity, the full group of unitary symmetries must form a single connected component G. This is uniquely
specified by the space of conserved quantities L € g, the Lie algebra of the Lie group Gy.

Consider for example a system consisting of a number of spinful orbitals, which is invariant under the set of
unitary spin-flip operators U; = ig; ® 1, where o; are the Pauli matrices and the identity acts on the space of
orbitals. Taking the logarithms of these operators, we find that they are associated with the Hermitian conserved
spins L; = 0; ® 1. The Lie group generated by these conserved quantities is SU(2) acting in spin space.
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Therefore the generic Hamiltonian of such a system assumes the form H = I, ® H,, where the reduced
Hamiltonian H, acts only on the space of orbitals and the identity acts on spin space. In the basis where spin up
and spin down states are grouped together, the original Hamiltonian takes the block diagonal form with two
identical blocks H = H, & H,, reducing the problem to spinless fermions.

Consider the same system, but with higher spins on every site instead. Let the conserved spinsbe L; = J; ® 1
where J;fori € [x,y,z] forma 2s + 1dimensional spin representation. The generic Hamiltonian again has the
form H = lpsi1)x@s+1) ® H,, because the J; form an irreducible representation (irrep) of the rotation group.
This Hamiltonian, however, is invariant under any unitary transformation of the form U @ 1 with
U € U(2s 4+ 1). We therefore find that the symmetry group is in fact larger than the one we started with,
forming a full unitary group.

The above result may sound surprising on physical grounds, considering that many well-studied models
(e.g. the transverse field Ising model) only have discrete onsite symmetry groups. We emphasize that this result
(and much of what follows) is specific to single-particle systems, and does not directly apply to onsite symmetries
on the many-particle Fock space. In the single-particle case the full Hilbert space is the direct sum of the local
Hilbert spaces and therefore an onsite symmetry is the direct sum of local unitaries. The many-particle Hilbert
space is a direct product, and onsite unitary symmetries take a direct product form. The associated L is generally
not a sum of local terms, and does not correspond to a local conserved quantity. The above argument also fails
when considering spatial symmetries, because in general the logarithm of alocality-preserving operator (an
operator that maps a state with localized support to one with localized support) mixes degrees of freedom that
are far apart.

In the rest of this subsection we prove, using the theory of Lie groups, that the unitary symmetry group Gy is a
direct product of unitary groups U(N) in any finite system. We then show the existence of the symmetry-adapted
basis, where both the conserved quantities and the Hamiltonian take a simple form, and derive properties of
reduced Hamiltonians. The reader not interested in mathematical proofs may skip to the next subsection where
the algorithm for finding unitary symmetries is discussed.

The unitary symmetry group G is a subgroup of the full unitary group on the Hilbert space
H, Gy < U (dim H). Gyisa connected and compact matrix Lie group, which means that all of its finite-
dimensional representations are completely reducible [39, 40]. The Lie group Gy is generated by all the
generators inits Liealgebra L € g for which [L, H] = 0, the Lie algebra g is also completely reducible.

Reducing the representation amounts to splitting the Hilbert space H into a direct sum of irreducible
subspaces Vg’):

H=0V"as ..o V)eVle.. e V))a .. (24)
Each of these subspaces is invariant under the symmetry action and contains no invariant subspace. V&i)
transforms according to irrep i, and irrep 7 has multiplicity n;. We denote the union of all irreducible subspaces
belonging toirrepias V@ = V" @ ... @V;’?.
In a symmetry-adapted basis, every symmetry generator takes the same block diagonal form of irreps:
L=1Y¢Vp .. 0PplPd..o..

n times nytimes

= (L(l) ® Jlnlxnl) b (L(z) & Jlnzxnz) ..., (25)

where L% is the representation of L in the ith irrep, each acting in a corresponding irreducible subspace Vg-i)
of dimension d;. Irreps j and k are equivalent if there exists a unitary transformation Wsuch that
LD = WI®W-! VL € g. This guarantees that there is a basis where all operators have exactly the same
representation in every equivalent irreducible subspace.

In this basis, the Hamiltonian also takes a simple block form. By Schur’s Lemma, blocks of H between
irreducible subspaces that transform according to different irreps are zero, and blocks between irreducible
subspaces with identical irreps are proportional to the identity:

H= (lgxq ® H) ® (lg,xa, ® H) ® ..., (26)

where the reduced Hamiltonians H;are n; X n; Hermitian matrices. The reduced Hamiltonians H; cannot have
any nontrivial unitary symmetries. To prove that, assume that H; has a conserved quantity L such that
[H;, L] = 0.Itimplies that (x4 ® L) & 0 & ...commutes with the full Hamiltonian, which is incompatible
with the unique decomposition to irreducible subspaces, except the trivial case of L o< 1.

Itis apparent from (26) that the symmetry group of H is a product of full unitary groups acting
independently on each block

G() = U(dl) X U(dz) X iy (27)

where the symmetry generators have the form (25), with L) € u(d;) independently runningoverall d; X d;
Hermitian matrices, and u(d;) the Lie algebra of U(d;). Because the reduction to irreducible subspaces is unique,
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this is the full group of unitary symmetries. The center of the group Z (Gy) is formed by the abelian U(1)
subgroups generated by the set of projectors on each block, i.e. generators where one of the L” is the identity and
the others vanish.

To have a basis-independent characterization of the center of the Lie algebra, we compute the structure
constants f, ;7 defined by

(Lo Lol = i) f,57L (28)
Y
Using these we define the Killing form
Kaﬂ = Zf;yy(sfgéﬂ, . (29)
6

It can be shown [40] that the null-space of the Killing form is exactly the center of the Lie algebra, i.e. if a vector [
isasolutionof 75 Ko 19 = 0then 3, I°L,, commutes with every operator in g.

4.2. Finding the unitary symmetry group

We are now ready to define the algorithm of finding the unitary symmetry group and constructing the reduced
Hamiltonians for a given family of Hamiltonians. First we find all symmetry generators L,, as the linearly
independent solutions of

(Lo, Hl=0and L, = L. (30)

This is a system of linear equations for the unknown components of L,,, which we solve using the same methods
we used for constraining Hamiltonians. After computing the Killing form K we find all linearly independent
solutions of

> Kapl? =0 (31)
16

for I. Operators of the form )~  [°L,, are the basis of conserved quantities that commute with every other
conserved quantity. We simultaneously diagonalize all of these (see appendix A) to find the simultaneous
eigensubspaces V@ (24).

We then find the generators L of the SU(d;) symmetry group of each block. To do so, we project the
Hamiltonian onto V® using the projector P;, which is an orthonormal set of column vectors, and solve

[L®, PHP;] = 0 and [ = L® and Tr L = 0, (32)

to find the d? — 1linearly independent solutions for L'”. The final step is finding a basis within V@ that gives
the tensor product structure of (25) and (26) (see appendix B). We use this basis and the resulting reduced
Hamiltonians in the following.

4.3. Discrete onsite symmetries and antisymmetries
Next we discuss the discrete onsite symmetries:

+ time reversal (antiunitary symmetries),
+ particle-hole (antiunititary antisymmetries),

+ chiral (unitary antisymmetries).

These symmetries also form continuous families, because combining them with any onsite unitary symmetry
also results in a discrete onsite symmetry of the same type. Because there is no continuous way to interpolate
between unitary and antiunitary symmetries or between symmetries and antisymmetries, each type forms a
disconnected component of the onsite symmetry group (see figure 2). To find one representative of each type of
the discrete onsite symmetries, we utilize the symmetry-adapted basis and the reduced Hamiltonian found in the
previous subsection. The reduced Hamiltonians have no residual symmetries, which makes the discrete onsite
symmetries unique and allows us to efficiently find them.

We start with time reversal symmetries of finite (zero-dimensional) systems. 7 is a time reversal if

TH =HT. (33)

Writing 7 = UK with unitary Uand complex conjugation C, we obtain
UH* = HU, (34a)
Uut = 1. (34b)
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This is a nonlinear system of equations, and it is in general hard to solve. We show that using the reduced
Hamiltonian simplifies it to a linear problem.

We first consider a Hamiltonian that has one set of identical irreducible subspaces, i.e. H = 1 ® Hj. By (25),
all conserved quantities have the form L = LV ® 1, and span the full space of Hermitian matrices on the first
Hilbert space of the tensor product. If L is a conserved quantity, sois 7 L7~ !, which implies UgU " = g.
Therefore the unitary part of 7 is a direct product of two unitaries, U = V ® W (see appendix C), with Van
arbitrary unitary matrix. Because V = 1 commutes with all unitary symmetries, wecall 7= 1 ® WK the
canonical time reversal symmetry. Due to the tensor product structure of 7', (34a) reduces to

WH* = HiW. (35)

Importantly H, has no unitary symmetries. Any nonzero solution Wof (35) has ker W = 0: otherwise either
ker W is an invariant subspace of H;* or ker H;* is nonzero, both incompatible with H; having no unitary
symmetries. Considering two solutions Wand W of (35) we find

WW'H, = WHW' = HWW, (36)
Because H, has no unitary symmetries WW " o 1, which proves that any solution of (35) is unique and unitary

up to a constant factor. In other words, any normalized solution of (35) automatically satisfies (34b).
As an example consider the reduced family of Hamiltonians

H = qo, + ;0. (37)

This family has no residual symmetry, and solving (35) we find that Whas to commute with both ¢, and 7, so
W o 0. Therefore H is invariant under 7 = ¢, /C, which is unique up to a phase factor. As a second example
consider the reduced family

H = qo7x00 + ¢07:00 + 017,0x + 0270y + 037,05, (38)

with 7; the Pauli matrices. The condition (35) implies that W commutes with 7, o, T, 0¢, T, 0, and anticommutes
with 7, o, 7, 0. The only solution is W oc 70, and 7 = 7,0, K up to a phase factor.

In the general case of multiple irreps, we find (see appendix D for details) that a time reversal can only mix
subspaces V® and V7 if they correspond to irreps of the same dimensionality and multiplicity. The block
structure of U has to be symmetric, it can only exchange subspaces pairwise or leave subspaces invariant. In
order to find a time reversal, we iterate over all symmetric permutations of compatible subspaces, and check ifa
time reversal exists with the given block structure. Specifically we consider two reduced blocks of the
Hamiltonian that are interchanged

H, = [Hi 0 ] (39)
0 H
Because H; and H;have no unitary symmetry, the square of time reversal must have the form
e’ 0
T? [ . eio,ﬂ]. (40)
Therefore, following appendix D we search for a time reversal of the form
0 W
T, = [ewwg ) ]/c. (4D
Therelation 7,H, = H,7, thenreduces to
W;H = H;W. (42)

This is the key result of this section, and it is a generalization of (35). Following the same reasoning as before, we
conclude that any nonzero solution Wj; of (42) is unique and unitary up to a constant factor.
As an example of this case consider the Hamiltonian family

43
0 QoTx + 3072 (43)

C]oTx+C3()TZ+C23Ty 0
H= :
— 03Ty
Solving (42) for Wy, we find that [Wy,, 7;] = Ofori = x,,2,50 W}, o Toand 7 = 730, K up to a phase factor.
We also confirm that (42) does not have any solutions for Wy, or W5,, so the block form of 7 is unique.
Likewise, the canonical unitary and antiunitary antisymmetries act as a tensor product U; = 1 ® Wj;ineach
block, and either leave subspaces invariant or pairwise exchange compatible subspaces. The results analogous to
equation (42) for unitary and antiunitary antisymmetries are, respectively:
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W;H; = —H; Wj;, (44a)

WiH! = —H; W (44b)

4.4. Onsite symmetries of k-dependent Hamiltonians
The above methods extend to the onsite symmetries of k-space Hamiltonians of arbitrary dimensions. An onsite
unitary symmetry acts locally in k-space and is independent of k. Given a family of Hamiltonians H (k, «), we
treat linearly independent functions of k as additional free parameters and apply the methods of section 4.2.

We now turn to time reversal symmetry, which requires special treatment because it transforms k to —k.
Because H (—k) is areparametrization of the same Hamiltonian family, it is reduced if H (k) is reduced. The
generalization of (42) to the k-dependent case is

Wy H(—k) = Hi(lk) W, (45)

By the same argument as before, separating the Hamiltonian to irreducible blocks guarantees that the nonzero
solutions are unique and unitary up to constant factors. The analogous results are true for particle-hole and
chiral symmetry.

4.5. Point group symmetries
The point group of a crystal is always a subgroup of the finite point group of its Bravais lattice. Therefore we
search for point group symmetries by enumerating possible real space rotations Ry, and applying methods
similar to the previous subsections to find whether it is a symmetry with appropriate Us.

Like discrete onsite symmetries, point group symmetries may be combined with onsite unitaries, forming
continuous families. This ambiguity is again removed by using the reduced Hamiltonian. The analogous result
to (42) for point group symmetriesis (U );; = 1 @ W; where the blocks W; satisfy

W;H;j(k) = H;(Rgk) W (46)

Here W only has one nonzero block per row and column, and nonzero blocks only between compatible
subspaces. If the order of the symmetry is greater than 2, permutations which are not symmetric are also
possible. Because both H;(k) and H;(R,k) are reduced, the nonzero solution for Wj;is unique and unitary up to
normalization and a phase factor. With the knowledge of the full point group, the arbitrary phase factors
appearing in Wj; may be fixed such that the U, form a (double)group representation of the point group.

A similar argument applies to the case of antiunitary point group symmetries (magnetic group symmetries)
and antisymmetries that involve spatial transformations. The analogous equations for unitary antisymmetries
antiunitary (anti)symmetries are, respectively:

W;H;(k) = —H;(R;k) Wj;, (47a)
W;H (—k) = £H;(R;k) W, (47b)

4.6. Continuous rotations
To find continuous rotation symmetries of k - p Hamiltonians we utilize the symmetry-adapted basis of the
onsite unitary symmetries again. Unlike discrete symmetries, the unitary action of a continuous symmetry
cannot mix different blocks, because it continuously deforms to the identity. Therefore we treat reduced
Hamiltonians H; separately.
In order to find a continuous symmetry generator g’ as defined in section 2.3, we simultaneously solve
, . b e O
¢'(H) (k) = i[H;(k), D] + i) —=Mpk, =0 (48)
» Ok
for every j, with constraints L) = (L)', TrL¥ = 0and M = —M" = M. We then expand H; (k) in a basis
of monomials, and reduce (48) to a system of linear equations for the entries of L and M.

5. Applications

We implemented the symmetric Hamiltonian generator and symmetry finder algorithms of the previous
sections in the Qsymm Python package [31, 32]. We provide an interface to define symbolic expressions of
symmetries and Hamiltonian families using Sympy [41] and Kwant [42]. Efficient solving of large systems of
linear equations is achieved using ARPACK [43] (bundled for Python by Scipy [44]). We provide the source code
with instructive examples as a software repository [31, 32]. The following examples illustrate how the algorithms
were used to solve open research problems in condensed matter physics. We also provide the Jupyter notebooks
[45] generating these results.

10



IOP Publishing New J. Phys. 20 (2018) 093026 D Varjas et al

Figure 3. Sketch of two possible geometries for the nanowire (yellow) with a superconducting shell (red). In (a), the geometry respects
the mirror symmetry M,, which gives rise to a chiral symmetry. In (b) however, the superconducting shell breaks the mirror symmetry,
and hence the chiral symmetry is also absent. Although the sketches show finite segments, the wire is translationally invariant along its
axis xin both cases.

5.1. Symmetries of Majorana wire

An early version of our symmetry finding algorithm was used in [46] to find the symmetries of a
superconducting nanowire in an external magnetic field. The analysis revealed unexpected symmetries of the
model system in certain geometries that prevent band tilting and closing of the topological gap. Here we revisit
these results.

The system under consideration is an infinite nanowire along the x axis with a semiconducting core and a
superconducting shell covering some of the surface. In the presence of a magnetic field along the wire and a
normal electric field, the wire undergoes a topological phase transition. This is marked by the gap closing and
reopening, with Majorana zero modes appearing at each end of a finite wire segment [47]. A component of the
external magnetic field normal to the wire axis breaks the symmetry of the band structure (E (k) = E(—k)),
leading to tilting of the bands and closing of the superconducting gap at finite momentum.

Reference [46] studied a tight-binding Hamiltonian of the wire and observed that depending on the
geometry the band tilting may or may not occur. Applying the symmetry finder algorithm to wires with small
cross-sections (figure 3), we identify the key difference in symmetry. If the wire geometry has a mirror plane
including its axis (M,) as in figure 3(a), with external fields E || z, and B || x, we find that the symmetry group
consists of 8 elements. The three generators of this group are particle-hole symmetry (P), a mirror plane
perpendicular to the wire axis (M,) and the combination of M, with time reversal 7 . This last symmetry M, 7"
includes both a spatial transformation and time reversal, and is easily overlooked. This operator can be further
combined with particle-hole to result in a chiral symmetry C' = M, 7P, as pointed out in the earlier work. A
nanowire enhanced by such an effective time reversal symmetry belongs to class BDI and supports multiple
Majorana modes atits end [48].

Symmetries M, and M, T require E(k,) = E(—k,) and prevent band tilting. Adding nonzero B, to the
magnetic field breaks M,, but preserves M, T, still forbidding band tilting. Further reducing the symmetry by
moving the position of the superconducting cover as in figure 3(b), or by applying B, breaks all symmetries
relating k, to —k, and enables band tilting.

5.2.Kekule distortion in graphene

The Kekule distortion of graphene is a periodic pattern of weak and strong bonds tripling the size of the unit cell.
In the Kekule-O pattern, weak bonds around plaquettes resemble benzene rings, and in Kekule-Y, strong bonds
form Y shapes around sites (figure 4). After folding back the Brillouin zone, the Kand K’ points are both
mapped to the I point. A suitable mass term can now open a gap in the band structure. A recent work [49]
reported that unlike the Kekule-O distortion [50], the Kekule-Y distortion does not open a gap: instead it
preserves a double Dirac cone at the Brillouin zone center. Using our algorithms we identify the symmetries
protecting this double Dirac cone. First we find all the symmetries of the effective four-band k - p model of
Kekule-Y:

Hy = vi(kyoy + kyoy) + valkeT + k7)), (49)

with v;, v, band structure parameters. We find that it is symmetric under the full hexagonal point group Dg (in
fact the linearized model has a continuous rotation symmetry), time reversal and sublattice symmetry, which
results from the bipartite nature of the honeycomb lattice. Next, we systematically generate all subgroups of this
symmetry group and the corresponding symmetry-allowed four-band k - p Hamiltonians. We find that at least
one antisymmetry is required to forbid a constant mass term that would open a gap at I'. A minimal subgroup
protecting the double Dirac cone is generated by sublattice symmetry and three-fold rotations. Removing
sublattice symmetry, even while keeping the full D¢ point group, removes the protection of the double Dirac
cone. Sublattice symmetry is broken by adding second neighbor hopping, or a staggered onsite potential
compatible with the lattice symmetries in the tight-binding model.
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Figure 4. Lattice structures of Kekule-O (left) and Kekule-Y patterns (right). Weak and strong bonds are marked with single and
double lines. The high symmetry unit cell is marked in blue.

Symmetry finding shows that the effective model of Kekule-O
Ho = v(keox + ky0,) + Ao, (50)

with v, A € R, has the same symmetry group structure. However, the mass term o, 7, is allowed even in the
presence of the full symmetry group. The key difference is the unitary action of rotations: the generator of
continuous rotationsis o, + 7,in the Kekule-Y case, while it is o, in the Kekule-O case. Sublattice symmetry is
C = 0,7, inboth cases. Therefore no constant matrix can simultaneously anticommute with C and commute
with the rotation generator in Kekule-Y, while a mass term is allowed in Kekule-O.

This difference in the transformation properties stems from the different Wyckoff positions of the lattice
sites. In Kekule-Y the three-fold rotation centers lie on lattice sites, while in Kekule-O the three-fold rotation
centers lie at centers of hexagonal plaquettes. Using the tight-binding Hamiltonian generator, we confirm that
the representation of three-fold rotations in the low energy subspace at the center of the Brillouin zone is
different for the Kekule-O and Kekule-Y systems.

5.3.k . pmodel of distorted SnTe

The cubic rocksalt material SnTe is the first example of topological crystalline insulators [51]. Recently, using
our method, [52] proposed that structural distortions can give rise to Weyl and nodal-line semimetal phases in
the same material. Here we review these results.

The band gap of the cubic phase is smallest at the L point in the face-centered cubic Brillouin zone. We
construct an effective k - p model expanded up to second order in k around L. The model has two orbital
degrees of freedom, spanned by p orbitals on Sn and Te sites. The initial symmetry group of the L pointis D3,
which is generated by inversion I, a three-fold rotation C; about the I'L axis, and a reflection M, about the mirror
plane containing I and two L points. Furthermore, the model should be invariant under time reversal 7 . The
corresponding representations of the symmetry operators, listing the (anti)unitary action first and the k-space
action second, are as follows

M, = —is,, ke — —ky» (51a)
) cos¢ —sing 0
C;=¢e2% k—|sing cos¢p 0]k, (51b)
0 0 1
I1=o0, k — —Kk, (51¢)
T=1is5,K, k — -k, (51d)

where ¢ = %ﬂ, and Pauli matrices 0; and s; act on orbital and spin degrees of freedom, respectively. k is the
momentum vector measured from an L point in a coordinate system where the z axis is aligned with I'L
(e.g. [111]) and the x axis is normal to a mirror plane (e.g. [110]). The o, in the unitary action of inversion is a
result of considering an L point, because the inversion center is one of the sites in the unit cell of the rocksalt
structure, the other site is translated by a lattice vector under inversion and acquires a phase factor at nonzero
momentum.

Applying the k - p Hamiltonian generator algorithm we find 8 symmetry-allowed terms. Ignoring the 3
terms that are proportional to the identity and do not influence band topology, we obtain the following
Hamiltonian family:

Ho(k) = mo, + vikes, — kyso)ox + vsk.0, + cklo, + f (ki + k))o. (52)
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Breaking the three-fold rotational symmetry results in 8 new terms, 6 of which are not proportional to the
identity:

Hik) = bv(kes, + kyso)ox + Mkes o + Mok, 0, + A3k, sco + of (k2 — kyz)oz + gkykzoz. (53)

Further breaking inversion symmetry produces 22 additional terms, none of which is proportional to the
identity.

5.4. Three-orbital tight-binding model for monolayer transition metal dichalcogenides
Monolayers of transition metal dichalcogenides MX, (M=Mo, W; X=S, Se, Te) are promising materials for use
in electronics and optoelectronics [53]. When doped, the MX, monolayers also become superconducting [54].
In the 1 H stacking, a monolayer consists of a layer of transition metal atoms M sandwiched between two layers
of chalcogen atoms X. Each layer separately is a triangular Bravais lattice, with the X atoms in the top and bottom
layers projecting onto the same position in the plane of M atoms, forming an overall honeycomb lattice. In the
normal state, the monolayer is a semiconductor, with conduction and valence band edges at the corners of the
hexagonal Brillouin zone +K. Using that the wave functions at the band edges are predominantly composed of
d-orbitals on the M atoms, Liu et al [4] developed a three-orbital tight-binding model with nearest neighbor
hopping. This model satisfies the symmetry group of the monolayer, and has band edges near +-K. Here, we
reproduce their spinless tight-binding model using our algorithm for symmetric Hamiltonian generation.

The tight-binding basis consists of three d-orbitals on the M atom, namely

"/] = [ldz2>) |dxy>) |dx27y2>]T- (54)

Because the model does not include any orbitals on the X atoms, it has a triangular lattice, with lattice vectors
ay=RXanda, = & + /3 #)/2. The symmetry generators are time reversal symmetry 7, mirror symmetry M,,
and three-fold rotation in the monolayer plane C; which are represented in the tight-binding basis as

M, = diag(1, —1, 1), ke — —ky, (55a)
1 0 0 .
C;=[0 cos¢ —sing| k— [C?S(b _Sln¢]k, (55b)
0 sing cos¢ sing  cos ¢

T=K, k — —k, (55¢)
with ¢ = %ﬂ Employing the symmetrization strategy for lattice Hamiltonians described in section 3.2, we
reproduce the tight-binding model of [4], given by

hoo(k)  ho1(k) oz (k)
H(k) = | hgyk) hyi() hi(k) |, (56)
hopk) (k) haa (k)

with the matrix elements

hoo = 2t9(2cos& cosy + cos28) + €,
hor = 2ify(sin2€ 4 sin€ cosy) — 23t sin ¢ sin+y,

hoy, = 2iV34 cos& siny + 2t,(cos 2§ — cos€ cosy), 57)
hiy = t3(cosé cosy + 2cos2€) + 3tycos cosy + €,
hi, = J3(ty — t3)sin € siny + 4its sin&(cos & — cos7y),

hy, = 3tzcos€cosy + ty(cosé cosy + 2cos2f) + €,

where ¢ = k,/2and vy = /3 k, / 2 and the lattice constant is set to one.

5.5. Lattice Hamiltonian of monolayer WTe,

Monolayer WT2, was recently discovered to be a two-dimensional quantum spin Hall insulator [55-58] in
accordance with previous numerical prediction [59, 60]. Transport experiments found quantized edge
conductivity persisting up to 100 K [57]. This suggests a much larger band gap compared to devices based on
two-dimensional quantum wells [61]. It remains an open question whether a simple non-interacting lattice
Hamiltonian can reproduce these findings.

We use the restricted set of orbitals in [62] to construct the spinless tight-binding Hamiltonian. The unit cell
contains four sites (labeled A4, A, By, B,) with one orbital on each, and has a symmetry group generated by
time reversal, inversion and glide reflection. We use the permutation of the sites under the symmetries and the
onsite unitary action (in this case 31 factors) as input. The model includes hoppings of type A,—A,,, B;—B4in
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neighboring unit cells in the x direction, and B;—A,, A,~B,, and A;—B,; within the unit cell. We reproduce the
Hamiltonian family with 7 free parameters also found in the reference:

gy + 2tg cosk, 0 2618 £, (k) 2itg* g (k)
.. AB AB
Ho — 0 Wy + 2tp cOs ke —2itg7g(k) 2t fp(k) ’ (58)
h.c. h.c. g + 2tgcosky 0
h.c. h.c. 0 fp F 2tp cOs ky
where

fi&) = cos(kyexa — kyxp)elhrrat ik, (59
g(k) = sin(kyxap — kyexpg) e krVaptikyVpa, (60)

for!l € [p, d] and thelattice vectors are [1, 0] and [0, 1]. This Hamiltonian is identical to the one found previously
up to transformations of the Bloch basis.

Extending this analysis to include spin and possible spin—orbit coupling terms, we find that there are 7
additional terms allowed by symmetry in a tight-binding model with the same bonds. The detailed results will be
published elsewhere [63].

6. Summary

Analysis of condensed matter systems is commonly based on single-particle Hamiltonians, the symmetry
properties and classification of which are crucial to understanding the physical properties. We discussed the
general symmetry structure of single-particle Hamiltonian families, and presented methods to find the full
symmetry group of a Hamiltonian, and to generate all Hamiltonians compatible with a given symmetry group.
Our methods extend to all continuous and discrete symmetries of single-particle continuum or lattice
Hamiltonians.

Although we focused on fermionic systems, the framework we presented is generally applicable whenever
the form of the symmetry action and the Hamiltonians is the same, e.g. in the analysis of unconventional
superconducting pairing, or even Josephson junction arrays. Our algorithms provide a powerful tool in the
ongoing classification of symmetry protected topological phases in a wide variety of physical settings ranging
from classical mechanics to circuit QED. The Hamiltonian generator can be extended to search for nonlinear
effective field theories and interacting lattice models respecting given symmetries. The symmetry finder may also
be further generalized to facilitate more involved symmetry analysis by decomposing group representations. We
leave these open questions to future work.

We implemented the algorithms in the Qsymm Python package, making them easily accessible. We
demonstrated the usefulness of our approach by applying it to a number of relevant modern research topics
including graphene, transition metal dichalcogenides and topological semimetals, resulting in several new
insights.
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Appendix A. Simultaneous diagonalization

We present an algorithm to simultaneously diagonalize a set of mutually commuting normal matrices. The key
property that follows from the commutation is that the matrices share eigensubspaces. By transforming to the
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diagonalizing basis of one of the matrices, the rest of the matrices are guaranteed to be block diagonal with blocks
corresponding to the degenerate eigensubspaces of the first. Considering this, we apply the following recursive
algorithm to find the simultaneous eigenvectors spanning the simultaneous eigensubspaces of commuting
matrices Hj:

+ Ifthe matricesare1 x 1,returnthel X 1identity matrix.

+ Diagonalize the first matrix Hy, find the orthonormal sets of eigenvectors spanning each (approximately)
degenerate eigensubspace. This results in a set of projectors P; onto the eigensubspaces, each consisting of a set
of orthonormal column vectors, the number of columns equal to the degeneracy of the j'th eigensubspace.

+ Ifthere are no more matrices, return this basis.

+ Project the rest of the matrices into each degenerate eigensubspace j: H; = P) H;Pifori > 0.

+ Perform this algorithm on the projected matrices H;; (i > 0) in each eigensubspace j, this returns a set of
projectors lsjk.

+ Return the set of projectors Py = P, Py for everyjand k.

The output is a set of projectors P;, each consisting of a set of orthonormal column vectors spanning a
simultaneous eigensubspace of the H;'s. Horizontally stacking the p;’s gives a unitary matrix U such that UTH; U
is diagonal for all i. The algorithm is guaranteed to finish, as at each recursion level both the number and the size
of the matrices is decreased. The main source of numerical instability is the decision whether to treat two
numerically close eigenvalues as degenerate or not. The algorithm is most stable if matrices that have eigenvalues
which are either well separated or degenerate to machine precision are first and those which may have accidental
near-degeneracies are last. In the physical problems we consider symmetry operators and projectors are of the
first kind, while Hamiltonians are of the second.

Appendix B. Finding the symmetry-adapted basis

Our goal in this section is to find the symmetry-adapted basis on a Hilbert space of dimension n d. We have
already ensured that the algebra of conserved quantities forms a representation of su(d), such thatin the proper
basis the generators have the tensor product structure of L ® 1, , where the matrices L span the space of all
traceless d x d Hermitian matrices.

We pick a generator L € su(d). Given the tensor product structure, every eigenvalue of the generators has
degeneracy which is a multiple of . In the case when some eigenvalues of L have degeneracy higher than n, we
restrict the other generators to the fn-dimensional (with f < d integer) eigensubspace, where they span su( f).
By iterating over the other generators in this restricted space it is always possible to find one that has eigenvalue
degeneracy lower than fn, until all degeneracies larger than n are split. This procedure results in a basis with
n-dimensional subspaces grouped together, but their bases not aligned with each other.

In this basis L has the diagonal form

Lllﬂnxn 0
0 LZZ]lnxn R (Bl)

L

We wrote the matrix in a different block form compared to (25), in this notation the symmetry adopted basis is
characterized by every block being proportional to 1,, ., for every element M of g:
Mll]ln,vx n; MZ}lnix n;
M = MZlJlnixn, Mzzﬂnixni [ O (B2)

We know that such basis exists with a selected generator L having the diagonal form (B1). Every unitary basis
transformation preserving (B1) has the block diagonal form

U o0
u=|o U, - (B3)
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with n X nunitaries Uy. In this transformed basis M reads

Mily, MpUU; -
M= UMU' = M21U2U1-‘- Mylysn | (B4)

By fixing Uy = 1,,,, we can iterate over the nonzero off-diagonal blocks of M and successively fix the basis for
each block such that U; U]I = 1.Itis always possible to find a generator in su(d) that does not have a zero block in
a given position in the diagonalizing basis of L.

By this procedure we find a symmetry-adapted basis where every generator has the tensor product structure
L ® 1, «x, and the Hamiltonian commuting with these generators the structure 1,4 ® H, with H, the reduced
Hamiltonian. This structure is invariant under any unitary basis transformation U ® Vwith U € U(d) and
V € U(n), this is the ambiguity in the symmetry-adapted basis.

Appendix C. Lemma on tensor product operators

Lemmal.Let Vi ® V;and Wy @ W, be complex finite-dimensional tensor product Hilbert spaces. Define two
families of operators that span the space of all linear operators on the first component and leave the second component
of the tensor product invariant

g={L®ly|Lie LW} (ChH
h={M ® Iy, | My € L(W)}. (C2)
LetU: Vi @ V, — W) ® W, bea linear map that maps the two operator spaces into each other
UgUT Ch
U'hU C g. (C3)

Then U has a tensor product formU = Uy @ Uy with Uy : Vi — Wyand U, : V5 — W, U isnonzero only if
dim V; = dim W, in this case U, can always be chosen unitary.

If g = hand Uis unitary, the conditions (C3) are equivalent to UgU " = g.
To prove the lemma, we utilize the SVD of U, treating it as a linear operator V; @ W, — V, ® W,:

U=YsUf® Us, (C4)

where s, € R* are the singular values, U} and U;' nonzero vectorsin V; ® W, and V, ® W,, respectively.
Alternatively we can view them as linear maps U*: Vi — W, Us": V, — W;. They satisfy the orthogonality
condition Tr (U (UP)") o 6%, Tr (Us' (U)') o 65.

We rewrite (C3) as
VL € GL(W) dM;, € GL(W):
UL @ 1)Ut =Y s,s5(US Li(UPY) @ (US(UD) = My @ L, (C5)
af
VM, € GL(Wy)) dL; € GL(W):
UT(M @ L) U = sass(UPMUY) @ (USTUY) = L @ 1y, (C6)

af

The term U L (U{) cannot be zero for every L, as it would imply that either U or U} vanishes.

u? Ll(Ufe)"' o Ul"/Ll(Ulﬂ ’)+ VL ifa = o and 8 = @, thisis seen by treating U;* (.)(Ulﬂ )" as linear operators
L(V}) — L(W,) and using the orthogonality condition. Analogous statements are true for (U") M, UI‘B. This
restricts Us' (UP)' o< 1y, and (US) UY o lly,. For @ = Bthis means that Ker(Us')" = 0 and Ker Us* = 0 which
is only possible if dim V5 = dim W; and U;' is invertible. As (Us')" o< (Us")~!, by moving a constant factor from
U;' to U} it is always possible to make U;' unitary. For o = (3, using the orthogonality condition we find
(UM'UY = 0 which is impossible for invertible operators. This shows that the SVD consists of a single term and
concludes the proof.

Appendix D. Proof of block structure of symmetry operators

We consider the general case of multiple irreps and show that an antiunitary (anti)symmetry takes a simple block
structure in the symmetry-adapted basis. Explicitly writing the action UL*U of the unitary part of 7= UK,
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Un Ui
U=|Un Up - (DD
on the generic symmetry generator L € g
LD @ by, 0

L= 0 [O® 1., (D2)

and demanding UgU" C gand UTgU C g. We find that
Ujg; Ui C g; and Ufg, Uy C g) (D3)

i &
where g; is the space of symmetry generatorsin block i, g; = {L? ® 1,5}

By the lemma in appendix C, U; = 0 onlyifn; = n;and factorizes as U; = Vj; @ W with unitary Wj;. Using
this we also find that Uy; g, U]Ti = 0 (k = j), which means that either Uy; or Uji vanishes, so there can be only one
nonzero block in every row or column. As UU " = 1, each block needs to be unitary and the block structure of U
is restricted to that of a permutation matrix. The determinant of such a matrix is only nonzero if the nonzero off-
diagonal blocks are square: Uj; = 0 implies n; = njand d; = d;. Thisallows V;; = 1 tobe chosen for all the
nonzero blocks.

In the case of antiunitary (anti)symmetry WW* o< 1, if Wj;is nonzero, Wj; is also nonzero with Wj; W;'; x 1,
the block structure of Wis restricted to that of a symmetric permutation matrix. The analogous argument can be
made in the case of unitary antisymmetries by dropping the complex conjugations.

Appendix E. Beautification of Hamiltonian families and conserved quantities

A Hamiltonian family (5) is a linear space of Hamiltonians, and applying symmetry constraints to a family
involves mapping the constraints to a generally rectangular matrix, such that the symmetry constrained
subfamily of Hamiltonians lives in its null space (see (10)). Numerically obtaining a basis for the null space,
namely the symmetric subfamily, is straightforward using standard linear algebra methods. However, numerical
routines generally return basis vectors that are oriented along arbitrary directions in the subspace, and the
resulting subfamily thus not necessarily as easily human readable as possible, containing many nonzero elements
that are redundant. To give a simple example, numerically computing a basis for a two-dimensional Euclidean
plane might yield the vectors [1/~/2, +1/~/2 17, while the standard basis {[1, 0]7, [0, 1]7 } is more intuitive.

We take increased human readability of a Hamiltonian family to mean having a smaller number of nonzero
elements in the matrix parts, and the span unchanged. Since a family spans a linear space, we can express each
family as a full rank matrix. This is done by mapping each family member to a row vector by flattening and
concatenating all the matrix coefficients, and vertically stacking these vectors. Obtaining a human readable
representation of the family then amounts to finding another matrix with the same row space but with as few
nonzero entries as possible. This problem is known in the literature as matrix sparsification [64], and although
widely studied, to our knowledge no general algorithms for matrix sparsification exist.

To solve this problem, we sparsify the matrix representation of a Hamiltonian family by bringing it to
reduced row echelon form. In reduced row echelon form, the first nonzero number from the left in a row is
always equal to 1, and is located to the right of the first nonzero entry in the row above. Furthermore, the first
nonzero entry per row is always the only nonzero entry in its column, and the number of nonzero entries thus
minimal. In addition, bringing a matrix to reduced row echelon form preserves its row span. We obtain the
reduced row echelon form by performing elementary row operations on the matrix representation of the family.
In floating point precision, this generally leads to numerical instability. However, for the applications we
consider, this is not a major obstacle, since the matrices we consider are typically small, and usually only contain
nonzero elements that are of the order 1, such that the distinction between zero and nonzero entries is
unambiguous.

Conserved quantities, which also form a linear space spanned by a set of matrices, suffer from the same
ambiguity. We apply the same algorithm of bringing the matrix whose rows are the flattened generators of
conserved quantities to reduced row echelon form in order to bring the generator set to a more human
readable form.
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