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Abstract
Symmetry is a guiding principle in physics that allows us to generalize conclusions betweenmany
physical systems. In the ongoing search for new topological phases ofmatter, symmetry plays a crucial
role by protecting topological phases.We address two converse questions relevant to the symmetry
classification of systems: is it possible to generate all possible single-bodyHamiltonians compatible
with a given symmetry group? Is it possible tofind all the symmetries of a given family of
Hamiltonians?We present numerically stable, deterministic polynomial time algorithms to solve both
of these problems.Our treatment extends to all continuous or discrete symmetries of non-interacting
lattice or continuumHamiltonians.We implement the algorithms in theQsymmPython package,
and demonstrate their usefulness through applications in active research areas of condensedmatter
physics, includingMajoranawires andKekule graphene.

1. Introduction

A transformation that leaves a physical system invariant is called a symmetry, and such transformations have an
ever-important role inmodern physics. For example, symmetry breaking characterizes the classical theory of
phase transitions, and the invariance of the speed of light between reference frames is a cornerstone of special
relativity theory. Inmolecules and crystals, the symmetries of the constituent atomic orbitals determine the
character of chemical bonds. The band theory of solids uses the translational invariance of a crystal structure to
classify states into energy bands according to their crystalmomentum,where the band structure is in turn
constrained by the point group symmetries of the crystal. To describe such bands,modelHamiltonians based on
tight-binding approximations [1–5] or ·k p perturbation theory [6–8] are typically constructed byfitting a
genericHamiltonian allowed by symmetry tomatch experimental data orfirst principles-calculations.

Recent studies focused on the role of symmetry in protecting topological phases [9, 10]. Initially, analysis of
time reversal and particle–hole symmetries led to the full classification of free fermionic phases in the ten
Altland–Zirnbauer classes [11–13]. Later interest shifted to include symmetries involving transformations of
space [14–22]. Some of these phases are stable against disorder that preserves the symmetry only on average [23],
leading to a richer structure of symmetry-protected topological phases. Analysis of newly proposed symmetry-
protected topological phases is often done usingminimalmodels, such as tight-bindingHamiltonianswith
short-range hoppings, or continuumHamiltonians valid near high symmetry points in the Brillouin zone.
Although thesemodels are usually easy to solve, they are prone to having higher symmetry than intended.With
the plethora of available symmetry groups, it is a nontrivial task to constructmodels that possess the stated, but
only the stated symmetries, or to decide the complete symmetry group of a givenHamiltonian.

In this paperwe present an algorithm to generate all Hamiltonians that respect given symmetries, using an
approach similar to [24]. In addition, we develop a dual algorithm tofind all symmetries of a family of
Hamiltonians (figure 1). Our framework is applicable to all non-interacting, finite or translation invariant lattice
or ·k p Hamiltonians.We treat all possible symmetries, including continuous unitary symmetry groups,
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continuous spatial rotations, space groups, discrete onsite symmetries (such as time reversal, particle–hole and
chiral symmetries), and arbitrary combinations of these. Besides static fermionic systems, ourmethods are also
applicable to band structures in photonic crystals [25, 26], magnon spectra, classicalmechanical [27, 28] and
electronic systems [29], and driven Floquet systems [30].

The paper is structured as follows: first we review the general symmetry structure of single-particle
Hamiltonians. Thenwe present our algorithm tofindHamiltonianswith such symmetries. After that we review
the symmetryfinding algorithm,which, by factoring out onsite unitary symmetries,makes finding all other
symmetriesmore efficient and guaranteed.We implement our algorithms in theQsymmPython package
[31, 32]. Finally we provide a set of examples where ourmethodwas used on problems in active areas of research.
We show thatMajoranawire devicesmay be protected against band-tilting by amagnetic symmetry, and double
Dirac cones inKekule distorted graphene are protected by point group and sublattice symmetry.We also
constructmodelHamiltonians for transitionmetal dichalcogenides and distorted spin–orbit coupled SnTe.

2.Hamiltonian families and symmetries

2.1. Continuumand tight-bindingHamiltonians
We focus on non-interactingHamiltonians. The quadraticHamilton operator of afinite (zero-dimensional)
system can bewritten as

å=ˆ ˆ ˆ ( )†H H a a , 1
ij

ij i j

whereH is aHermitianmatrix and âi are creation or annihilation operators.We do notmake any assumptions
about bosonic or fermionic nature of these operators and also allow termswith two creation or two annihilation
operators, facilitating the study of superconducting Bogoliubov–deGennesHamiltonians. In the frameworkwe
use, all the details of the system are encoded in constraints on thematrix partH, which is the focus of our study.

Besides finite systems, we also address systemswith d-dimensional translation invariance. The associated
conserved quantity is the (lattice)momentum k , which takes values in d for continuous translations, and in the
d-dimensional Brillouin zone for discrete translations. Effective continuumHamiltonians ( ·k p models) also
arise as the long-wavelength limit of latticeHamiltonians. The conservation of k allows us to decompose the

Figure 1.Pictorial summary of themethods studied in the paper. The symmetry finder andHamiltonian generator algorithms form a
two-way connection betweenHamiltonian families and symmetry groups.
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single-particleHilbert space into independent sectors corresponding to each k , such that Ĥ does notmix
sectors, i.e.

åå=ˆ ( ) ˆ ˆ ( )†H H a ak . 2
ij

ij i j
k

k k

In the rest of this workwe focus on analyzing thematrix-valuedHamiltonian ( )H k withmatrix elements ( )H kij .
A tight-bindingHamiltonian acts on aHilbert space consisting of basis orbitals in a single translational unit

cell, and has the general form

å= +
d

d
d( ) ( ) ( )·H hk e h.c. . 3ki

The hopping vectors d connect sites on the lattice, with thematrices of hopping amplitudes dh . The ·k p
Hamiltonian provides an accurate continuum approximation near a point in the Brillouin zone, typically a high
symmetry point. It is a polynomial inmomenta ki, and has the form

å=( ) ( )H hk k , 4
n

n
n

where =  kk i i
nn i is amonomial in themulti-index notationwith = ¼( )n nn , ,1 2 , and =†h hn n. Typical

methods to construct ·k p Hamiltonians start with a series expansion of amore complete latticemodel from
e.g.ab initio calculations around the high symmetry point, or bywriting down all symmetry-allowed terms and
fitting to experimental data orfirst principles calculations [2, 3, 8, 33–35].

2.2.Hamiltonian families
A set of symmetries only defines aHamiltonian family, as opposed to one singleHamiltonian. AHamiltonian
family is the linear space ofHamiltonians

å=( ) ( ) ( )H c H ak k , 5
n

n n

with arbitrary real coefficients cn, and basis vectors

å= =
a

a a( ) ( ) ( ) ( ) ( )†H f h H H bk k k k, . 5n n n n

Here ah n are constantmatrices of identical size, and a ( )f k are linearly independent scalar functions. In the rest of
this work, whenever referring to aHamiltonian, wemean aHamiltonian family. AHamiltonian family is also the
only useful starting point to analyzing the symmetry content ofHamiltonians. For a zero-dimensional
Hamiltonian, the symmetry group is always given by independent unitary transformations in each degenerate
eigensubspace. This group, however, provides no insight beyond the degeneracies of the levels. In a family of
continuum ·k p Hamiltonians, a ( )f k is amonomial, and in a tight-bindingHamiltonian, a phase factor d·e ki

with d a hopping vector.
There is a natural inner product in the space ofHamiltonians (5).We define the product of =( ) ( )H f hk k1 1 1

and =( ) ( )H f hk k2 2 2 as á ñ = á ñá ñ( ) ( )H H f f h hk k, , , F1 2 1 2 1 2 . On thematrix part, the Frobenius inner product is
given by á ñ = ( )†A B A B, TrF . For the inner product of the k-dependent prefactors, we use the Bombieri inner
product [36] for polynomials, dá ñ = ! ∣ ∣!k k n n,n m

n m, where = ! !nn i i and = å∣ ∣ nn i i, such that different
monomials are orthogonal. For phase factors we use dá ñ =· ·e , ek a k b

a b
i i

, . Both of these inner products on the
function spaces are invariant under the isometries of k-space, and therefore all symmetry actions we consider in
this work are (anti)unitary with respect to this inner product. This structure of the space ofHamiltonians also
justifies our use of single exponentials and singlemonomials as the expansion basis.

2.3. Symmetry constraints onHamiltonian families
Weadopt the active view of symmetry action g on theHamiltonian: g(H) represents a transformedHamiltonian,
such that thematrix elements between rotatedwave functions y ñ(∣ ( ) )g k are identical. In other words, a
Hamiltonian has a symmetry if g leaves theHamiltonian invariant

=( ) ( )g H H. 6

Ageneral unitary symmetry g acts on aHamiltonian ( )H k as

=  - -( )( ) ( ) ( )g H U H R U ak k , 7g g g
1 1

and a general antiunitary symmetry as

*=  - - -( )( ) ( ) ( )g H U H R U bk k . 7g g g
1 1

Here the orthogonalmatrixRg is the real space action, and the unitarymatrixUg is theHilbert space action of g.
We include the overall±sign to treat antisymmetries—symmetries that reverse the sign of energy—on an equal
footing.We restrict our considerations to a constantUg, however, in the real space basis (see section 3.2), any
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space group operatormay only contain an overall k-dependent phase factor, which cancels in the previous
equations.

Substituting equation (7) into (6), we rewrite it in a form linear in the symmetry action:

 = ( ) ( ) ( )H H Rk k . 8

Here the symmetry action  is  = U if unitary and  = U if antiunitary, with  the real space complex
conjugation operator: *  = -( ) ( )H Hk k .

We apply the symmetry constraint (8) to theHamiltonian family (5a). The spatial action of a symmetry is a
rotation in the space of af , such that g = åa b a

b
b( ) ( )f R fk k with ga

b known for givenR and fα. Substituting
this yields

 å å å g =
a

a a
b

b
a

b
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )f h h ck 0. 9

n
n n n

Since fα are linearly independent functions, thematrix coefficients in the parenthesesmust vanish for everyα,
resulting in the systemof equations

 å å g a= "a
b

b
a

b( ) ( )h h c 0, . 10
n

n n n

When symmetries form continuous Lie groups, it is advantageous to use the symmetry generators instead of
the group elements. Consider a one parameter family of transformations fg which, for afixedf act as a unitary

symmetry in the above, and let g0 be the identity.We define the action of the generator ¢g through

f
¢ = f

f=

( ) ( ) ( )g H g H
d

d
. 11

0

Substituting (7) and using that = f-
f

U eg
Li with = †L L and = f-

f
R eg

Mi with = - = †M M MT , wefind

å¢ = +
¶
¶

( )( ) [ ( ) ] ( )g H H L
H

k
M kk ki , i . 12

ij
ij j

i

gf(H)=H for everyf is equivalent to ¢ =( )g H 0. Tight-bindingHamiltonians cannot be invariant under
continuous rotations of space, such thatM=0 and the symmetry constraint simplifies to

å =a[ ] ( )h L c, 0, 13
n

n n

where L is a local conserved quantity. Finally, if theHamiltonian is a polynomial in k , continuous rotation
invariance is also possible.With gå = åb a

b
b

¶

¶
a ( )M k f kij

f

k ij j
i

the symmetry constraint reads

å å g+ =a
b

a
b

b([ ] ) ( )h L h c, 0. 14
n

n n n

3.GeneratingHamiltonians from symmetry constraints

3.1. ConstrainingHamiltonian families
Given a symmetry  and aHamiltonian family (5), wewish tofind the subfamily ofHamiltonians that is
invariant under the symmetry transformation (8). The symmetry constraint on theHamiltonian family is a
systemof homogeneous linear equations for the coefficients cn (see equations (10), (13), and (14)).Wefind the
space of solutions numerically using singular value decomposition (SVD) or sparse eigendecomposition, which
gives the subfamily of the originalHamiltonian family (5) that satisfies the symmetry. Imposing additional
symmetry constraints on the family yields further linear equations that are identical to equation (10) in form.We
provide an implementation of this algorithm in theQsymmPython package.

The constraining algorithm allows us to generate all possible tight-binding or ·k p Hamiltonians that satisfy
symmetry constraints, by applying the algorithm to themost general representativeHamiltonian family for the
system at hand. As an illustration, we reproduce the family of two-band ·k p Hamiltonians of [33] for the
surface dispersion of the topological insulator Bi2Te3. Our starting point is the family of all 2×2 ·k p
Hamiltonians up to third order in themomentum = ( )k kk ,x y . Expanding thematrix part in terms of the
identity and Paulimatricesσ0, x, y, z, the general family consists of 40 basis vectors and is given by

 å s a= a a( ) ∣ ∣ ( )H c k kk , 0 3, 15j x y

n
n

x y

with a a a= =( ) ( )j jn , , ,x y . To obtain the surface dispersionHamiltonian, we constrain (15)with time-
reversal symmetry ( s= i y ), and the point group symmetries of the crystal, namely three-fold rotation
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( = ps-C e3
i 3z ), andmirror symmetry in x (M=iσx) [33]. Substituting the three symmetries and the family (15)

into (10) yields a homogeneous systemof 120 linear equations for the 40 coefficients cn. The null space of the
linear system is the subfamily ofHamiltonians that satisfy the symmetry constraints:

s s s s s= + - + - + -( ) ( ) ( ) ( ) ( )H c k c k k c k k k c k k k kk 3 , 16x y y x x x y x y y x0
2

0 1 2
3 2

3
2 2

with Îcn , whichmatches theHamiltonian of [33]. Here, = +k k kx y
2 2 2, andwe have relabeled the

coefficients cn for clarity.
The theory of invariants also offers a systematic way to generate ·k p Hamiltonians corresponding to a

given point group symmetry [7]. This approach produces equivalent results in simple cases. Ourmethods are,
however,more general, allowing to treat antiunitary and antisymmetry operators on the same footing. A
possible future improvement ofQsymm is to interface with representation theory databases tomake this
connectionmore explicit.

3.2. Generating latticeHamiltonians by symmetrization
Latticemodels often containmultiple sites per unit cell, but only a small number of bonds. In this case the
previous approach of generating all possible terms and constraining them is inefficient due to the large
dimension of the null-space. On the other hand, all the hopping terms on symmetry equivalent bonds are
completely determined by the hopping on one of these bonds. This allows us introduce a symmetrization
strategy to generate all symmetry-constrained latticeHamiltonians with hoppings of limited range.

To treat arbitrary space group symmetries of general crystal structures, we consider tight-binding
Hamiltonians in the real space basis that preserves information on the coordinates of the basis orbitals [37, 38].
Up to a normalization factor, the Bloch basis functions are given by c fñ = å ñ+∣ ∣( )eal al

k R
k R r

R
i a , where a indexes

the sites in the unit cell, Î ¼[ ]l n1, , a
orbs. indexes the orbitals on the site, ra is the real space position of the site

and R runs over all lattice vectors. In this basis, the hopping terms in theHamiltonian acquire a phase factor
corresponding to the true real space separation of the sites they connect, as opposed to the separation of the unit
cells towhich the sites belong. A hopping between site a at ra and site b at d= +r rb a ab enters as a term

+d
dhe h.c.abki ab

ab
wherewe suppressed the orbital indices of thematrix dh ab

ab
. Onsite terms have d = 0aa . Themain

advantage of using this gauge is that the formof theHamiltonian is independent of the choice of the real space
origin and the shape of the unit cell. As a consequence, nonsymmorphic symmetry operations only acquire
k-dependence in the formof an overall phase factor [38]. In the simplest case of a single site per unit cell, dab are
lattice vectors.

We start from a small set of terms for every symmetry unique bond dab of the form

= +d
d( ) ( )H hk e h.c., 17n n

abki ab
ab

with dhn
ab

ab
spanning all ´n na b

orbs. orbs. matrices that are invariant under the continuous onsite symmetry group.
We symmetrize thesewith respect to the discrete point groupG, i.e.

å=
Î∣ ∣

( ) ( )H
G

g H
1

, 18s
g G

where g(H) is the symmetry transformed image ofH under the transformation g (see equation (6)) and ∣ ∣G is the
number of elements inG. Because the sumover gäG can be replaced by a sumover (hg)äG, h(Hs)=Hs for all
häG. In addition,Hs is exactly the projection ofH onto the space of symmetricHamiltonians. The
symmetrized terms span all symmetry allowedHamiltonianswith the prescribed hopping vectors. This space of
Hamiltonians is generally overcomplete, wefind aminimal set of terms spanning the space using standard linear
algebra techniques.

As an example, consider graphenewith one spinless orbital per site. A three-fold rotation around a sitemaps
both sublattices onto themselves, so the unitary part of the symmetry action is  ´2 2. Let d = ( )a , 00 be a vector
connecting nearest neighbors, and the corresponding hopping term

= =
d

d- -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

·

·
H t t0 e

e 0
0 e

e 0
, 19

a k

a k

k

k

i

i

i

i

x

x

0

0

which isHermitian and only connects the two sublattices. After symmetrizationwith respect to the full
hexagonal groupwe obtain thewell knownminimal tight-bindingmodel for graphene:

=
⎡
⎣⎢

⎤
⎦⎥ ( )†H

t h
h3
0

0
20s

with = + +- + - -( ) ( )h e e ea k a k k a k ki i ix x y x y0 0
1
2

3
2 0

1
2

3
2 .
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4. Symmetryfinding

Unlikefinding a family of symmetricHamiltonians, that amounts to solving a linear system,finding the
symmetries of aHamiltonian family ismore involved.We first focus onfinite (zero-dimensional) systems and
show that the unitary symmetry group generally admits a continuous Lie group structure. Next we present an
algorithm tofind the unitary symmetries, and rewrite theHamiltonian family in the symmetry-adapted basis. In
this basis theHamiltonian takes a block diagonal form,where the blocks are guaranteed to have no unitary
symmetries, hencewe call these blocks reducedHamiltonians. Factoring out the unitary symmetries this way
simplifiesfinding the discrete (anti)unitary (anti)symmetries, see figure 2. After generalizing thesemethods to
onsite symmetries of translation invariant systems in arbitrary dimensions, wefinally include real space rotation
symmetries.

4.1. Structure of the onsite unitary symmetry group
Assume a unitary symmetry operatorU commutes with a family offiniteHamiltonians:

=[ ] ( )U H, 0. 21n

Any unitary is expressible as the exponential of aHermitian operator L

= - ( )U e , 22Li

which is unique if we restrict the spectrumσ(L)⊂ [0 , 2π) (this condition is equivalent to choosing a branch cut
for the logarithm in L=i logU). DefiningU and L this way ensures that they have exactly the same
eigensubspaces. SinceU andHn commute, they also share eigensubspaces, and equation (21) is equivalent to

=[ ] ( )L H, 0. 23n

Therefore theHamiltonian family has a continuous family of unitary symmetries f = f-( )U e Li that all
commutewithHn. Because a single unitary symmetry defines a continuous family that is connected to the
identity, the full group of unitary symmetriesmust form a single connected componentG0. This is uniquely
specified by the space of conserved quantities Î gL , the Lie algebra of the Lie groupG0.

Consider for example a system consisting of a number of spinful orbitals, which is invariant under the set of
unitary spin-flip operators s= ÄU ii i , whereσi are the Paulimatrices and the identity acts on the space of
orbitals. Taking the logarithms of these operators, wefind that they are associatedwith theHermitian conserved
spins s= ÄLi i . The Lie group generated by these conserved quantities is SU(2) acting in spin space.

Figure 2. Schematic representation of the onsite symmetry group of aHamiltonian family (top). The unitary symmetries form a
continuous connected Lie groupG0. The discrete symmetries can all be combinedwith any unitary symmetry, forming disconnected
components of the symmetry group. For example,  = Î{ }G U U G:0 0 contains all antiunitary symmetries which are
combinations of the canonical time reversal  and some unitaryU. Reducing theHamiltonian family factors out all the unitary
symmetries leaving only the identity element e, resulting in a simpler discrete group structure (bottom).
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Therefore the genericHamiltonian of such a system assumes the form = Ä´H Hr2 2 , where the reduced
HamiltonianHr acts only on the space of orbitals and the identity acts on spin space. In the basis where spin up
and spin down states are grouped together, the originalHamiltonian takes the block diagonal formwith two
identical blocks = ÅH H Hr r , reducing the problem to spinless fermions.

Consider the same system, butwith higher spins on every site instead. Let the conserved spins be = ÄL Ji i

where Ji for iä [x, y, z] form a +s2 1dimensional spin representation. The genericHamiltonian again has the
form = Ä+ ´ +( ) ( )H Hs s r2 1 2 1 , because the Ji form an irreducible representation (irrep) of the rotation group.
ThisHamiltonian, however, is invariant under any unitary transformation of the form ÄU with
Î +( )U U s2 1 .We therefore find that the symmetry group is in fact larger than the onewe startedwith,

forming a full unitary group.
The above resultmay sound surprising on physical grounds, considering thatmanywell-studiedmodels

(e.g. the transverse field Isingmodel) only have discrete onsite symmetry groups.We emphasize that this result
(andmuch ofwhat follows) is specific to single-particle systems, and does not directly apply to onsite symmetries
on themany-particle Fock space. In the single-particle case the fullHilbert space is the direct sumof the local
Hilbert spaces and therefore an onsite symmetry is the direct sumof local unitaries. Themany-particleHilbert
space is a direct product, and onsite unitary symmetries take a direct product form. The associated L is generally
not a sumof local terms, and does not correspond to a local conserved quantity. The above argument also fails
when considering spatial symmetries, because in general the logarithmof a locality-preserving operator (an
operator thatmaps a statewith localized support to onewith localized support)mixes degrees of freedom that
are far apart.

In the rest of this subsectionwe prove, using the theory of Lie groups, that the unitary symmetry groupG0 is a
direct product of unitary groupsU(N) in anyfinite system.We then show the existence of the symmetry-adapted
basis, where both the conserved quantities and theHamiltonian take a simple form, and derive properties of
reducedHamiltonians. The reader not interested inmathematical proofsmay skip to the next subsectionwhere
the algorithm forfinding unitary symmetries is discussed.

The unitary symmetry groupG0 is a subgroup of the full unitary group on theHilbert space
  ( )G U, dim0 .G0 is a connected and compactmatrix Lie group, whichmeans that all of its finite-
dimensional representations are completely reducible [39, 40]. The Lie groupG0 is generated by all the
generators in its Lie algebra Î gL for which [L,H]=0, the Lie algebra g is also completely reducible.

Reducing the representation amounts to splitting theHilbert space into a direct sumof irreducible
subspaces  ( )

j
i :

    = Å ¼ Å Å Å ¼ Å Å ¼( ) ( ) ( )( ) ( ) ( ) ( ) . 24n n1
1 1

1
2 2

1 2

Each of these subspaces is invariant under the symmetry action and contains no invariant subspace.  ( )
j
i

transforms according to irrep i, and irrep i hasmultiplicity ni.We denote the union of all irreducible subspaces
belonging to irrep i as   = Å ¼Å( ) ( ) ( )i i

n
i

1 i
.

In a symmetry-adapted basis, every symmetry generator takes the same block diagonal formof irreps:

 

= Å Å ¼ Å Å Å ¼ Å ¼

= Ä Å Ä Å ¼´ ´

     

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

L L L L L

L L , 25

n n

n n n n

1 1

times

2 2

times

1 2
1 2

1 1 2 2

where ( )L i is the representation of L in the ith irrep, each acting in a corresponding irreducible subspace  ( )
j
i

of dimension di. Irreps j and k are equivalent if there exists a unitary transformationW such that
= " Î-( ) ( ) gL WL W Lj k 1 . This guarantees that there is a basis where all operators have exactly the same

representation in every equivalent irreducible subspace.
In this basis, theHamiltonian also takes a simple block form. By Schur’s Lemma, blocks ofH between

irreducible subspaces that transform according to different irreps are zero, and blocks between irreducible
subspaces with identical irreps are proportional to the identity:

 = Ä Å Ä Å ¼´ ´( ) ( ) ( )H H H , 26d d d d1 21 1 2 2

where the reducedHamiltoniansHi are ni×niHermitianmatrices. The reducedHamiltoniansHi cannot have
any nontrivial unitary symmetries. To prove that, assume thatH1 has a conserved quantity L such that
[H1, L]=0. It implies that  Ä Å Å ¼´( )L 0d d1 1

commutes with the full Hamiltonian, which is incompatible
with the unique decomposition to irreducible subspaces, except the trivial case of µL .

It is apparent from (26) that the symmetry group ofH is a product of full unitary groups acting
independently on each block

= ´ ´ ¼( ) ( ) ( )G U d U d , 270 1 2

where the symmetry generators have the form (25), with Î ( )( ) uL di
i independently running over all ´d di i

Hermitianmatrices, and ( )u di the Lie algebra ofU(di). Because the reduction to irreducible subspaces is unique,
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this is the full group of unitary symmetries. The center of the group ( )Z G0 is formed by the abelianU(1)
subgroups generated by the set of projectors on each block, i.e. generators where one of the L( i) is the identity and
the others vanish.

To have a basis-independent characterization of the center of the Lie algebra, we compute the structure
constants ab

gf defined by

å=a b
g

ab
g

g[ ] ( )L L f L, i . 28

Using thesewe define theKilling form

å=ab
gd

ag
d
bd

g ( )K f f . 29

It can be shown [40] that the null-space of theKilling form is exactly the center of the Lie algebra, i.e. if a vector l
is a solution of å =b ab

bK l 0 then åa
a

al L commutes with every operator in g.

4.2. Finding the unitary symmetry group
Weare now ready to define the algorithmoffinding the unitary symmetry group and constructing the reduced
Hamiltonians for a given family ofHamiltonians. First wefind all symmetry generators Lα as the linearly
independent solutions of

= =a a a[ ] ( )†L H L L, 0 and . 30

This is a systemof linear equations for the unknown components of Lα, whichwe solve using the samemethods
we used for constrainingHamiltonians. After computing theKilling formKwefind all linearly independent
solutions of

å =
b

ab
b ( )K l 0 31

for l. Operators of the formåa
a

al L are the basis of conserved quantities that commutewith every other
conserved quantity.We simultaneously diagonalize all of these (see appendix A) tofind the simultaneous
eigensubspaces  ( )i (24).

We thenfind the generators ( )L i of the SU(di) symmetry group of each block. To do so, we project the
Hamiltonian onto  ( )i using the projector Pi, which is an orthonormal set of column vectors, and solve

= = =[ ] ( )( ) † ( ) ( ) † ( )L P HP L L L, 0 and and Tr 0, 32i
i i

i i i

tofind the -d 1i
2 linearly independent solutions for L( i). Thefinal step isfinding a basis within  ( )i that gives

the tensor product structure of (25) and (26) (see appendix B).We use this basis and the resulting reduced
Hamiltonians in the following.

4.3.Discrete onsite symmetries and antisymmetries
Nextwe discuss the discrete onsite symmetries:

• time reversal (antiunitary symmetries),

• particle–hole (antiunititary antisymmetries),

• chiral (unitary antisymmetries).

These symmetries also form continuous families, because combining themwith any onsite unitary symmetry
also results in a discrete onsite symmetry of the same type. Because there is no continuousway to interpolate
between unitary and antiunitary symmetries or between symmetries and antisymmetries, each type forms a
disconnected component of the onsite symmetry group (seefigure 2). Tofind one representative of each type of
the discrete onsite symmetries, we utilize the symmetry-adapted basis and the reducedHamiltonian found in the
previous subsection. The reducedHamiltonians have no residual symmetries, whichmakes the discrete onsite
symmetries unique and allows us to efficientlyfind them.

We start with time reversal symmetries offinite (zero-dimensional) systems.  is a time reversal if

 = ( )H H . 33

Writing  = U with unitaryU and complex conjugation , we obtain

* = ( )UH HU a, 34

= ( )†UU b. 34
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This is a nonlinear systemof equations, and it is in general hard to solve.We show that using the reduced
Hamiltonian simplifies it to a linear problem.

Wefirst consider aHamiltonian that has one set of identical irreducible subspaces, i.e. = ÄH H1. By (25),
all conserved quantities have the form = Ä( )L L 1 , and span the full space ofHermitianmatrices on the first
Hilbert space of the tensor product. If L is a conserved quantity, so is  -L 1, which implies =†g gU U .
Therefore the unitary part of  is a direct product of two unitaries,U=V⊗W (see appendix C), withV an
arbitrary unitarymatrix. Because =V commutes with all unitary symmetries, we call  = Ä W the
canonical time reversal symmetry. Due to the tensor product structure of  , (34a) reduces to

* = ( )WH H W . 351 1

ImportantlyH1 has no unitary symmetries. Any nonzero solutionW of (35) has =Wker 0: otherwise either
Wker is an invariant subspace of *H1 or *Hker 1 is nonzero, both incompatible withH1 having no unitary

symmetries. Considering two solutionsW and W̃ of (35)wefind

*= =˜ ˜ ˜ ( )† † †WW H WH W H WW . 361 1 1

BecauseH1 has no unitary symmetries µ˜ †WW , which proves that any solution of (35) is unique and unitary
up to a constant factor. In other words, any normalized solution of (35) automatically satisfies (34b).

As an example consider the reduced family ofHamiltonians

s s= + ( )H c c . 37x z1 3

This family has no residual symmetry, and solving (35)wefind thatWhas to commutewith bothσx andσz, so
W∝σ0. ThereforeH is invariant under  s= 0 , which is unique up to a phase factor. As a second example
consider the reduced family

t s t s t s t s t s= + + + + ( )H c c c c c , 38x z y x y y y z10 0 30 0 21 22 23

with τi the Paulimatrices. The condition (35) implies thatW commutes with τxσ0, τzσ0, τyσy and anticommutes
with τyσx, τyσz. The only solution is t sµW y0 , and  t s= y0 up to a phase factor.

In the general case ofmultiple irreps, wefind (see appendixD for details) that a time reversal can onlymix
subspaces  ( )i and  ( )j if they correspond to irreps of the same dimensionality andmultiplicity. The block
structure ofUhas to be symmetric, it can only exchange subspaces pairwise or leave subspaces invariant. In
order tofind a time reversal, we iterate over all symmetric permutations of compatible subspaces, and check if a
time reversal exists with the given block structure. Specifically we consider two reduced blocks of the
Hamiltonian that are interchanged

=
⎡
⎣⎢

⎤
⎦⎥ ( )H

H
H
0

0
. 39r

i

j

BecauseHi andHj have no unitary symmetry, the square of time reversalmust have the form




 =

f

f¢

⎡
⎣⎢

⎤
⎦⎥ ( )e 0

0 e
. 40r

2
i

i

Therefore, following appendixDwe search for a time reversal of the form

 = f

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )

W

W

0

e 0
. 41r

ij

ij
Ti

The relation  =H Hr r r r then reduces to

* = ( )W H H W . 42ij j i ij

This is the key result of this section, and it is a generalization of (35). Following the same reasoning as before, we
conclude that any nonzero solutionWij of (42) is unique and unitary up to a constant factor.

As an example of this case consider theHamiltonian family

t t t
t t t

=
+ +

+ -

⎡
⎣⎢

⎤
⎦⎥ ( )H

c c c

c c c

0

0
. 43

x z y

x z y

10 30 23

10 30 23

Solving (42) forW12 wefind that [W12, τi]=0 for i=x, y, z, soW12∝τ0 and  t s= x0 up to a phase factor.
We also confirm that (42) does not have any solutions forW11 orW22, so the block formof  is unique.

Likewise, the canonical unitary and antiunitary antisymmetries act as a tensor product = ÄU Wij ij in each
block, and either leave subspaces invariant or pairwise exchange compatible subspaces. The results analogous to
equation (42) for unitary and antiunitary antisymmetries are, respectively:
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= - ( )W H H W a, 44ij j i ij

* = - ( )W H H W b. 44ij j i ij

4.4.Onsite symmetries of k-dependentHamiltonians
The abovemethods extend to the onsite symmetries of k-spaceHamiltonians of arbitrary dimensions. An onsite
unitary symmetry acts locally in k-space and is independent of k . Given a family ofHamiltonians a( )H k, , we
treat linearly independent functions of k as additional free parameters and apply themethods of section 4.2.

We now turn to time reversal symmetry, which requires special treatment because it transforms k to-k.
Because -( )H k is a reparametrization of the sameHamiltonian family, it is reduced if ( )H k is reduced. The
generalization of (42) to the k-dependent case is

* - =( ) ( ) ( )W H H Wk k . 45ij j i ij

By the same argument as before, separating theHamiltonian to irreducible blocks guarantees that the nonzero
solutions are unique and unitary up to constant factors. The analogous results are true for particle–hole and
chiral symmetry.

4.5. Point group symmetries
The point group of a crystal is always a subgroup of thefinite point group of its Bravais lattice. Therefore we
search for point group symmetries by enumerating possible real space rotationsRg, and applyingmethods
similar to the previous subsections tofindwhether it is a symmetry with appropriateUg.

Like discrete onsite symmetries, point group symmetriesmay be combinedwith onsite unitaries, forming
continuous families. This ambiguity is again removed by using the reducedHamiltonian. The analogous result
to (42) for point group symmetries is = Ä( )U Wg ij ij where the blocksWij satisfy

=( ) ( ) ( )W H H R Wk k . 46ij j i g ij

HereW only has one nonzero block per row and column, and nonzero blocks only between compatible
subspaces. If the order of the symmetry is greater than 2, permutations which are not symmetric are also
possible. Because both ( )H kj and ( )H R ki g are reduced, the nonzero solution forWij is unique and unitary up to
normalization and a phase factor.With the knowledge of the full point group, the arbitrary phase factors
appearing inWijmay befixed such that theUg form a (double)group representation of the point group.

A similar argument applies to the case of antiunitary point group symmetries (magnetic group symmetries)
and antisymmetries that involve spatial transformations. The analogous equations for unitary antisymmetries
antiunitary (anti)symmetries are, respectively:

= -( ) ( ) ( )W H H R W ak k , 47ij j i g ij

* - = ( ) ( ) ( )W H H R W bk k . 47ij j i g ij

4.6. Continuous rotations
Tofind continuous rotation symmetries of ·k p Hamiltonianswe utilize the symmetry-adapted basis of the
onsite unitary symmetries again. Unlike discrete symmetries, the unitary action of a continuous symmetry
cannotmix different blocks, because it continuously deforms to the identity. Thereforewe treat reduced
HamiltoniansHi separately.

In order tofind a continuous symmetry generator ¢g as defined in section 2.3, we simultaneously solve

å¢ = +
¶

¶
=( )( ) [ ( ) ] ( )( )g H H L

H

k
M kk ki , i 0 48j j

j

lp

j

l
lp p

for every j, with constraints = =( )( ) ( ) † ( )L L L, Tr 0j j j and = - = †M M MT .We then expand ( )H kj in a basis
ofmonomials, and reduce (48) to a systemof linear equations for the entries of L( j) andM.

5. Applications

We implemented the symmetricHamiltonian generator and symmetryfinder algorithms of the previous
sections in theQsymmPython package [31, 32].We provide an interface to define symbolic expressions of
symmetries andHamiltonian families using Sympy [41] andKwant [42]. Efficient solving of large systems of
linear equations is achieved usingARPACK [43] (bundled for Python by Scipy [44]).We provide the source code
with instructive examples as a software repository [31, 32]. The following examples illustrate how the algorithms
were used to solve open research problems in condensedmatter physics.We also provide the Jupyter notebooks
[45] generating these results.
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5.1. Symmetries ofMajoranawire
An early version of our symmetry finding algorithmwas used in [46] tofind the symmetries of a
superconducting nanowire in an externalmagnetic field. The analysis revealed unexpected symmetries of the
model system in certain geometries that prevent band tilting and closing of the topological gap.Here we revisit
these results.

The systemunder consideration is an infinite nanowire along the x axis with a semiconducting core and a
superconducting shell covering some of the surface. In the presence of amagnetic field along thewire and a
normal electric field, thewire undergoes a topological phase transition. This ismarked by the gap closing and
reopening, withMajorana zeromodes appearing at each end of afinite wire segment [47]. A component of the
externalmagnetic field normal to thewire axis breaks the symmetry of the band structure ( ¹ -( ) ( )E Ek k ),
leading to tilting of the bands and closing of the superconducting gap atfinitemomentum.

Reference [46] studied a tight-bindingHamiltonian of thewire and observed that depending on the
geometry the band tiltingmay ormay not occur. Applying the symmetry finder algorithm towires with small
cross-sections (figure 3), we identify the key difference in symmetry. If thewire geometry has amirror plane
including its axis (My) as infigure 3(a), with externalfieldsE P z, andB P x, we find that the symmetry group
consists of 8 elements. The three generators of this group are particle–hole symmetry (), amirror plane
perpendicular to thewire axis (Mx) and the combination ofMywith time reversal  . This last symmetry My

includes both a spatial transformation and time reversal, and is easily overlooked. This operator can be further
combinedwith particle–hole to result in a chiral symmetry  ¢ = My , as pointed out in the earlier work. A
nanowire enhanced by such an effective time reversal symmetry belongs to class BDI and supportsmultiple
Majoranamodes at its end [48].

SymmetriesMx and My requireE(kx)=E(−kx) and prevent band tilting. Adding nonzeroBz to the
magnetic field breaksMx, but preserves My , still forbidding band tilting. Further reducing the symmetry by
moving the position of the superconducting cover as infigure 3(b), or by applyingBy breaks all symmetries
relating kx to−kx and enables band tilting.

5.2. Kekule distortion in graphene
TheKekule distortion of graphene is a periodic pattern of weak and strong bonds tripling the size of the unit cell.
In theKekule-O pattern, weak bonds around plaquettes resemble benzene rings, and inKekule-Y, strong bonds
formY shapes around sites (figure 4). After folding back the Brillouin zone, theK and ¢K points are both
mapped to theΓ point. A suitablemass term can nowopen a gap in the band structure. A recent work [49]
reported that unlike theKekule-O distortion [50], the Kekule-Y distortion does not open a gap: instead it
preserves a doubleDirac cone at the Brillouin zone center. Using our algorithmswe identify the symmetries
protecting this doubleDirac cone. First wefind all the symmetries of the effective four-band ·k pmodel of
Kekule-Y:

s s t t= + + +( ) ( ) ( )H v k k v k k , 49x x y y x x y yY 1 2

with v1, v2 band structure parameters.Wefind that it is symmetric under the full hexagonal point groupD6 (in
fact the linearizedmodel has a continuous rotation symmetry), time reversal and sublattice symmetry, which
results from the bipartite nature of the honeycomb lattice. Next, we systematically generate all subgroups of this
symmetry group and the corresponding symmetry-allowed four-band ·k p Hamiltonians.Wefind that at least
one antisymmetry is required to forbid a constantmass term that would open a gap atΓ. Aminimal subgroup
protecting the doubleDirac cone is generated by sublattice symmetry and three-fold rotations. Removing
sublattice symmetry, evenwhile keeping the fullD6 point group, removes the protection of the doubleDirac
cone. Sublattice symmetry is broken by adding second neighbor hopping, or a staggered onsite potential
compatible with the lattice symmetries in the tight-bindingmodel.

Figure 3. Sketch of two possible geometries for the nanowire (yellow)with a superconducting shell (red). In (a), the geometry respects
themirror symmetryMy, which gives rise to a chiral symmetry. In (b)however, the superconducting shell breaks themirror symmetry,
and hence the chiral symmetry is also absent. Although the sketches show finite segments, thewire is translationally invariant along its
axis x in both cases.
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Symmetry finding shows that the effectivemodel of Kekule-O

s s s t= + + D( ) ( )H v k k 50x x y y z xO

with D Îv, , has the same symmetry group structure. However, themass termσz τx is allowed even in the
presence of the full symmetry group. The key difference is the unitary action of rotations: the generator of
continuous rotations isσz+τz in theKekule-Y case, while it isσz in theKekule-O case. Sublattice symmetry is
 s t= z z in both cases. Therefore no constantmatrix can simultaneously anticommutewith  and commute
with the rotation generator inKekule-Y, while amass term is allowed inKekule-O.

This difference in the transformation properties stems from the differentWyckoff positions of the lattice
sites. InKekule-Y the three-fold rotation centers lie on lattice sites, while inKekule-O the three-fold rotation
centers lie at centers of hexagonal plaquettes. Using the tight-bindingHamiltonian generator, we confirm that
the representation of three-fold rotations in the low energy subspace at the center of the Brillouin zone is
different for theKekule-O andKekule-Y systems.

5.3. k·pmodel of distorted SnTe
The cubic rocksaltmaterial SnTe is the first example of topological crystalline insulators [51]. Recently, using
ourmethod, [52] proposed that structural distortions can give rise toWeyl and nodal-line semimetal phases in
the samematerial. Herewe review these results.

The band gap of the cubic phase is smallest at the L point in the face-centered cubic Brillouin zone.We
construct an effective ·k p model expanded up to second order in k around L. Themodel has two orbital
degrees of freedom, spanned by p orbitals on Sn andTe sites. The initial symmetry group of the L point isD3d

which is generated by inversion I, a three-fold rotationC3 about theΓL axis, and a reflectionMx about themirror
plane containingΓ and two Lpoints. Furthermore, themodel should be invariant under time reversal  . The
corresponding representations of the symmetry operators, listing the (anti)unitary actionfirst and the k-space
action second, are as follows

= -  - ( )M s k k ai , , 51x x x x

f f
f f= 

-
f

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )C bk ke ,

cos sin 0

sin cos 0
0 0 1

, 51s
3

i z2

s=  - ( )I ck k, , 51z

 =  - ( )s dk ki , , 51y

where f = p2

3
, and Paulimatricesσi and si act on orbital and spin degrees of freedom, respectively. k is the

momentumvectormeasured froman L point in a coordinate systemwhere the z axis is alignedwithΓL
(e.g. [111]) and the x axis is normal to amirror plane (e.g. [110]). Theσz in the unitary action of inversion is a
result of considering an L point, because the inversion center is one of the sites in the unit cell of the rocksalt
structure, the other site is translated by a lattice vector under inversion and acquires a phase factor at nonzero
momentum.

Applying the ·k p Hamiltonian generator algorithmwefind 8 symmetry-allowed terms. Ignoring the 3
terms that are proportional to the identity and do not influence band topology, we obtain the following
Hamiltonian family:

s n s n s s s= + - + + + +( ) ( ) ( ) ( )H m k s k s k ck f k kk . 52z x y y x x z y z z x y z0 3
2 2 2

Figure 4. Lattice structures of Kekule-O (left) andKekule-Y patterns (right).Weak and strong bonds aremarkedwith single and
double lines. The high symmetry unit cell ismarked in blue.
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Breaking the three-fold rotational symmetry results in 8 new terms, 6 of which are not proportional to the
identity:

dn s l s l s l s d s s= + + + + + - +( ) ( ) ( ) ( )H k s k s k s k k s f k k gk kk . 53x y y x x x z x y y z x x x y z y z z1 1 2 3
2 2

Further breaking inversion symmetry produces 22 additional terms, none of which is proportional to the
identity.

5.4. Three-orbital tight-bindingmodel formonolayer transitionmetal dichalcogenides
Monolayers of transitionmetal dichalcogenidesMX2 (M=Mo,W;X=S, Se, Te) are promisingmaterials for use
in electronics and optoelectronics [53].When doped, theMXxmonolayers also become superconducting [54].
In the H1 stacking, amonolayer consists of a layer of transitionmetal atomsM sandwiched between two layers
of chalcogen atomsX. Each layer separately is a triangular Bravais lattice, with the X atoms in the top and bottom
layers projecting onto the same position in the plane ofMatoms, forming an overall honeycomb lattice. In the
normal state, themonolayer is a semiconductor, with conduction and valence band edges at the corners of the
hexagonal Brillouin zone±K. Using that thewave functions at the band edges are predominantly composed of
d-orbitals on theMatoms, Liu et al[4] developed a three-orbital tight-bindingmodel with nearest neighbor
hopping. Thismodel satisfies the symmetry group of themonolayer, and has band edges near±K. Here, we
reproduce their spinless tight-bindingmodel using our algorithm for symmetricHamiltonian generation.

The tight-binding basis consists of three d-orbitals on theMatom, namely

y = ñ ñ ñ-[∣ ∣ ∣ ] ( )d d d, , . 54z xy x y
T2 2 2

Because themodel does not include any orbitals on theX atoms, it has a triangular lattice, with lattice vectors
= x̂a1 and = +( ˆ ˆ)x ya 3 22 . The symmetry generators are time reversal symmetry  , mirror symmetryMx,

and three-fold rotation in themonolayer planeC3 which are represented in the tight-binding basis as

= -  -( ) ( )M k k adiag 1, 1, 1 , , 55x x x

f f
f f

f f
f f

= - 
-

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥ ( )C bk k

1 0 0
0 cos sin

0 sin cos
,

cos sin

sin cos
, 553

 =  - ( )ck k, , 55

with f = p2

3
. Employing the symmetrization strategy for latticeHamiltonians described in section 3.2, we

reproduce the tight-bindingmodel of [4], given by

*

* *
=

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )H

h h h

h h h

h h h

k

k k k

k k k

k k k

, 56

00 01 02

01 11 12

02 12 22

with thematrix elements







x g x
x x g x g
x g x x g

x g x x g
x g x x g

x g x g x

= + +

= + -

= + -
= + + +

= - + -
= + + +

( )
( )

( )
( )

( ) ( )
( )

( )

h t

h t t

h t t

h t t

h t t t

h t t

2 2 cos cos cos 2 ,

2i sin 2 sin cos 2 3 sin sin ,

2i 3 cos sin 2 cos 2 cos cos ,

cos cos 2 cos 2 3 cos cos ,

3 sin sin 4i sin cos cos ,

3 cos cos cos cos 2 cos 2 ,

57

00 0 1

01 1 2

02 1 2

11 3 4 2

12 4 3 5

22 3 4 2

where ξ=kx/2 and g = k3 2y and the lattice constant is set to one.

5.5. LatticeHamiltonian ofmonolayerWTe2
MonolayerWT22was recently discovered to be a two-dimensional quantum spinHall insulator [55–58] in
accordancewith previous numerical prediction [59, 60]. Transport experiments found quantized edge
conductivity persisting up to 100 K [57]. This suggests amuch larger band gap compared to devices based on
two-dimensional quantumwells [61]. It remains an open questionwhether a simple non-interacting lattice
Hamiltonian can reproduce these findings.

We use the restricted set of orbitals in [62] to construct the spinless tight-bindingHamiltonian. The unit cell
contains four sites (labeledAd,Ap,Bd,Bp)with one orbital on each, and has a symmetry group generated by
time reversal, inversion and glide reflection.We use the permutation of the sites under the symmetries and the
onsite unitary action (in this case±1 factors) as input. Themodel includes hoppings of typeAp–Ap,Bd–Bd in
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neighboring unit cells in the x direction, andBd –Ap,Ap–Bp andAd–Bdwithin the unit cell.We reproduce the
Hamiltonian familywith 7 free parameters also found in the reference:

m

m

m
m

=

+

+ -

+
+

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( ) ( )
( ) ( )

( )H

t k t f t g

t k t g t f

t k

t k

k

k k

k k

2 cos 0 2 2i

0 2 cos 2i 2

h.c. h.c. 2 cos 0

h.c. h.c. 0 2 cos

, 58

d d x d
AB

d
AB

p p x
AB

p
AB

p

d d x

p p x

0

0

where

= - +( ) ( ) ( )f k x k xk cos e , 59l x Al x Bl
k y k yi iy Al y Bl

= - - +( ) ( ) ( )g k x k xk sin e , 60x Ap x Bd
k y k yi iy Ap y Bd

for lä[p, d] and the lattice vectors are [1, 0] and [0, 1]. ThisHamiltonian is identical to the one found previously
up to transformations of the Bloch basis.

Extending this analysis to include spin and possible spin–orbit coupling terms, wefind that there are 7
additional terms allowed by symmetry in a tight-bindingmodel with the same bonds. The detailed results will be
published elsewhere [63].

6. Summary

Analysis of condensedmatter systems is commonly based on single-particleHamiltonians, the symmetry
properties and classification of which are crucial to understanding the physical properties.We discussed the
general symmetry structure of single-particleHamiltonian families, and presentedmethods tofind the full
symmetry group of aHamiltonian, and to generate all Hamiltonians compatible with a given symmetry group.
Ourmethods extend to all continuous and discrete symmetries of single-particle continuumor lattice
Hamiltonians.

Althoughwe focused on fermionic systems, the frameworkwe presented is generally applicable whenever
the formof the symmetry action and theHamiltonians is the same, e.g.in the analysis of unconventional
superconducting pairing, or even Josephson junction arrays. Our algorithms provide a powerful tool in the
ongoing classification of symmetry protected topological phases in awide variety of physical settings ranging
from classicalmechanics to circuit QED. TheHamiltonian generator can be extended to search for nonlinear
effective field theories and interacting latticemodels respecting given symmetries. The symmetryfindermay also
be further generalized to facilitatemore involved symmetry analysis by decomposing group representations.We
leave these open questions to future work.

We implemented the algorithms in theQsymmPython package,making them easily accessible.We
demonstrated the usefulness of our approach by applying it to a number of relevantmodern research topics
including graphene, transitionmetal dichalcogenides and topological semimetals, resulting in several new
insights.
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AppendixA. Simultaneous diagonalization

Wepresent an algorithm to simultaneously diagonalize a set ofmutually commuting normalmatrices. The key
property that follows from the commutation is that thematrices share eigensubspaces. By transforming to the
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diagonalizing basis of one of thematrices, the rest of thematrices are guaranteed to be block diagonal with blocks
corresponding to the degenerate eigensubspaces of the first. Considering this, we apply the following recursive
algorithm tofind the simultaneous eigenvectors spanning the simultaneous eigensubspaces of commuting
matricesHi:

• If thematrices are 1×1, return the 1×1 identitymatrix.

• Diagonalize thefirstmatrixH0,find the orthonormal sets of eigenvectors spanning each (approximately)
degenerate eigensubspace. This results in a set of projectorsPj onto the eigensubspaces, each consisting of a set
of orthonormal column vectors, the number of columns equal to the degeneracy of the j’th eigensubspace.

• If there are nomorematrices, return this basis.

• Project the rest of thematrices into each degenerate eigensubspace j: =˜ †H P H Pij j i j for i>0.

• Perform this algorithmon the projectedmatrices H̃ij (i>0) in each eigensubspace j, this returns a set of
projectors P̃jk.

• Return the set of projectors = ˜P P Pjk j jk for every j and k.

The output is a set of projectors Pi, each consisting of a set of orthonormal column vectors spanning a
simultaneous eigensubspace of theHiʼs. Horizontally stacking the Piʼs gives a unitarymatrixU such that †U H Ui

is diagonal for all i. The algorithm is guaranteed tofinish, as at each recursion level both the number and the size
of thematrices is decreased. Themain source of numerical instability is the decisionwhether to treat two
numerically close eigenvalues as degenerate or not. The algorithm ismost stable ifmatrices that have eigenvalues
which are either well separated or degenerate tomachine precision arefirst and thosewhichmay have accidental
near-degeneracies are last. In the physical problemswe consider symmetry operators and projectors are of the
first kind, whileHamiltonians are of the second.

Appendix B. Finding the symmetry-adapted basis

Our goal in this section is tofind the symmetry-adapted basis on aHilbert space of dimension n d.We have
already ensured that the algebra of conserved quantities forms a representation of ( )su d , such that in the proper
basis the generators have the tensor product structure of Ä ´L n n where thematrices L span the space of all
traceless d×dHermitianmatrices.

We pick a generator Î ( )suL d . Given the tensor product structure, every eigenvalue of the generators has
degeneracywhich is amultiple of n. In the case when some eigenvalues of Lhave degeneracy higher than n, we
restrict the other generators to the fn-dimensional (with f�d integer) eigensubspace, where they span ( )su f .
By iterating over the other generators in this restricted space it is always possible tofind one that has eigenvalue
degeneracy lower than fn, until all degeneracies larger than n are split. This procedure results in a basis with
n-dimensional subspaces grouped together, but their bases not alignedwith each other.

In this basis L has the diagonal form



=
´

´




  

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )L

L
L

0
0 . B1

n n

n n

11

22

Wewrote thematrix in a different block form compared to (25), in this notation the symmetry adopted basis is
characterized by every block being proportional to  ´n n for every elementM of g:

 

 =
´ ´

´ ´




  

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥˜ ( )M

M M

M M . B2
n n n n

n n n n

11 12

21 22

i i i i

i i i i

Weknow that such basis exists with a selected generator Lhaving the diagonal form (B1). Every unitary basis
transformation preserving (B1) has the block diagonal form

=



  

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )U

U
U
0

0 B3
1

2
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with n×nunitariesUk. In this transformed basisM reads



= =
´

´




  

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

˜ ( )†

†

†M UMU
M M U U

M U U M . B4
n n

n n

11 12 1 2

21 2 1 22

Byfixing = ´U n n1 we can iterate over the nonzero off-diagonal blocks ofM and successively fix the basis for
each block such that =†U Ui j . It is always possible tofind a generator in ( )su d that does not have a zero block in
a given position in the diagonalizing basis of L.

By this procedure we find a symmetry-adapted basis where every generator has the tensor product structure
Ä ´L n n and theHamiltonian commutingwith these generators the structure  Ä´ Hd d r withHr the reduced

Hamiltonian. This structure is invariant under any unitary basis transformationU⊗VwithUäU(d) and
VäU(n), this is the ambiguity in the symmetry-adapted basis.

AppendixC. Lemmaon tensor product operators

Lemma1. Let ÄV V1 2 and ÄW W1 2 be complex finite-dimensional tensor productHilbert spaces. Define two
families of operators that span the space of all linear operators on the first component and leave the second component
of the tensor product invariant

= Ä Î{ ∣ ( )} ( )g L L L V , C1V1 1 12

= Ä Î{ ∣ ( )} ( )h M M L W . C2W1 1 12

Let Ä  ÄU V V W W: 1 2 1 2 be a linearmap thatmaps the two operator spaces into each other

Í
Í ( )

†

†
g h

h g

U U

U U . C3

ThenU has a tensor product form = ÄU U U1 2 with U V W:1 1 1 and U V W U: .2 2 2 is nonzero only if
=V Wdim dim2 2, in this caseU2 can always be chosen unitary.

If =g handU is unitary, the conditions (C3) are equivalent to =†g gU U .
To prove the lemma, we utilize the SVDofU, treating it as a linear operatorV1⊗W1→V2⊗W2:

å= Ä
a

a
a a ( )U s U U , C41 2

where Îa
+s are the singular values, aU1 and aU2 nonzero vectors inV1⊗W1 andV2⊗W2, respectively.

Alternatively we can view them as linearmaps  a aU V W U V W: , :1 1 1 2 2 2. They satisfy the orthogonality
condition d dµ µa b ab a b ab( ( ) ) ( ( ) )† †U U U UTr , Tr1 1 2 2 .

We rewrite (C3) as

 å
" Î $ Î

Ä = Ä = Ä
ab

a b
a b a b

( ) ( )
( ) ( ( ) ) ( ( ) ) ( )† † †

L GL V M GL W

U L U s s U L U U U M

:

C5V W

1 1 1 1

1 1 1 1 2 2 12 2

 å
" Î $ Î

Ä = Ä = Ä
ab

a b
a b a b

( ) ( )
( ) (( ) ) (( ) ) ( )† † †

M GL W L GL V

U M U s s U M U U U L

:

C6W V

1 1 1 1

1 1 1 1 2 2 12 2

The term a b( )†U L U1 1 1 cannot be zero for every L1 as it would imply that either aU1 or bU1 vanishes.

µ "a b a b¢ ¢( ) ( )† †U L U U L U L1 1 1 1 1 1 1 if a a= ¢ and b b= ¢, this is seen by treating a b( )( )†U U.1 1 as linear operators
 ( ) ( )V W1 1 and using the orthogonality condition. Analogous statements are true for a b( )†U M U1 1 1 . This
restricts µa b( )†U U W2 2 2

and µa b( )†U U V2 2 2
. Forα=β thismeans that =a( )†UKer 02 and =aUKer 02 which

is only possible if =V Wdim dim2 2 and
aU2 is invertible. As µa a -( ) ( )†U U2 2

1, bymoving a constant factor from
aU2 to aU1 it is always possible tomake aU2 unitary. For a b¹ , using the orthogonality conditionwefind

=a b( )†U U 02 2 which is impossible for invertible operators. This shows that the SVD consists of a single term and
concludes the proof.

AppendixD. Proof of block structure of symmetry operators

Weconsider the general case ofmultiple irreps and show that an antiunitary (anti)symmetry takes a simple block
structure in the symmetry-adapted basis. Explicitly writing the action * †UL U of the unitary part of  = U ,
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=



  

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )U

U U
U U D1

11 12

21 22

on the generic symmetry generator Î gL



=
Ä

Ä
´

´




  

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )

( )

( )L

L

L

0

0 D2
n n

n n

1

2
1 1

2 2

and demanding Í†g gU U and Í†g gU U .Wefind that

Í Í ( )† †g g g gU U U Uand , D3ij j ij i ij i ij j

where gi is the space of symmetry generators in block = Ä ´{ }( )gii L, i
n ni i

.
By the lemma in appendix C, ¹U 0ij only if ni=nj and factorizes as = ÄU V Wij ij ij with unitaryWij. Using

this we alsofind that =†gU U 0ki i ji ( ¹k j), whichmeans that eitherUki orUji vanishes, so there can be only one

nonzero block in every row or column. As =†UU , each block needs to be unitary and the block structure ofU
is restricted to that of a permutationmatrix. The determinant of such amatrix is only nonzero if the nonzero off-
diagonal blocks are square: ¹U 0ij implies ni=nj and di=dj. This allows =Vij to be chosen for all the
nonzero blocks.

In the case of antiunitary (anti)symmetry * µWW , ifWij is nonzero,Wji is also nonzerowith * µW Wij ji ,
the block structure ofW is restricted to that of a symmetric permutationmatrix. The analogous argument can be
made in the case of unitary antisymmetries by dropping the complex conjugations.

Appendix E. Beautification ofHamiltonian families and conserved quantities

AHamiltonian family (5) is a linear space ofHamiltonians, and applying symmetry constraints to a family
involvesmapping the constraints to a generally rectangularmatrix, such that the symmetry constrained
subfamily ofHamiltonians lives in its null space (see (10)). Numerically obtaining a basis for the null space,
namely the symmetric subfamily, is straightforward using standard linear algebramethods. However, numerical
routines generally return basis vectors that are oriented along arbitrary directions in the subspace, and the
resulting subfamily thus not necessarily as easily human readable as possible, containingmany nonzero elements
that are redundant. To give a simple example, numerically computing a basis for a two-dimensional Euclidean
planemight yield the vectors [ ]1 2 , 1 2 T , while the standard basis {[ ] [ ] }1, 0 , 0, 1T T ismore intuitive.

We take increased human readability of aHamiltonian family tomean having a smaller number of nonzero
elements in thematrix parts, and the span unchanged. Since a family spans a linear space, we can express each
family as a full rankmatrix. This is done bymapping each familymember to a row vector by flattening and
concatenating all thematrix coefficients, and vertically stacking these vectors. Obtaining a human readable
representation of the family then amounts tofinding anothermatrix with the same row space butwith as few
nonzero entries as possible. This problem is known in the literature asmatrix sparsification [64], and although
widely studied, to our knowledge no general algorithms formatrix sparsification exist.

To solve this problem,we sparsify thematrix representation of aHamiltonian family by bringing it to
reduced row echelon form. In reduced row echelon form, the first nonzero number from the left in a row is
always equal to 1, and is located to the right of the first nonzero entry in the row above. Furthermore, the first
nonzero entry per row is always the only nonzero entry in its column, and the number of nonzero entries thus
minimal. In addition, bringing amatrix to reduced row echelon formpreserves its row span.We obtain the
reduced row echelon formby performing elementary row operations on thematrix representation of the family.
Infloating point precision, this generally leads to numerical instability. However, for the applications we
consider, this is not amajor obstacle, since thematrices we consider are typically small, and usually only contain
nonzero elements that are of the order 1, such that the distinction between zero and nonzero entries is
unambiguous.

Conserved quantities, which also form a linear space spanned by a set ofmatrices, suffer from the same
ambiguity.We apply the same algorithmof bringing thematrix whose rows are theflattened generators of
conserved quantities to reduced row echelon form in order to bring the generator set to amore human
readable form.
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