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Abstract

We characterize the entries of Hofstadter’s G-sequence in terms of the lower and
upper Wythoff sequences. This can be used to give a short and comprehensive proof of
the equality of Hofstadter’s G-sequence and the sequence of averages of the swapped
Wythoff sequences. In the second part we give some results that hold when one re-
places the golden mean by other quadratic algebraic numbers. In the third part we
prove a close relationship between Hofstadter’s G-sequence and a sequence studied by
Avdivpahić and Zejnulahi.

1 Introduction

Hofstadter’s G-sequence G is defined by G(1) = 1, G(n) = n−G(G(n− 1)) for n ≥ 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G(n) 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11 11

Table 1: G(n) = A005206(n) for n = 0, . . . , 18.

It was proved in 1988, independently in the two articles [8, 9] that there is a simple
expression for Hofstadter’s G-sequence as a slow Beatty sequence, given for n ≥ 0 by

G(n) = ⌊(n+ 1)γ⌋, (1)
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where γ = (
√
5− 1)/2, the small golden mean.

The terminology ‘slow Beatty sequence’ comes from the paper [11] by Kimberling and
Stolarsky. Actually, G is not a Beatty sequence: Beatty sequences are sequences (⌊nα⌋)
with α a positive real number larger than 1. See, e.g., the papers [5, 15].

The paper by Kimberling and Stolarsky provides the following basic result.

Theorem 1. [Kimberling and Stolarsky] Suppose that γ in (0, 1) is irrational, and
let s(n) = ⌊(n + 1)γ⌋ for n ≥ 0. Let A be the set {n ≥ 0 : s(n + 1) = s(n)} and let
a(0) < a(1) < · · · be the members of A in increasing order. Similarly, let b be the sequence
of those n such that s(n+ 1) = s(n) + 1. Then a is the Beatty sequence of 1/(1− γ), and b
is the Beatty sequence of 1/γ.

When we apply this result to determine the value of s(n) for a given n, then we need
information on two entries, namely s(n) and s(n+ 1), and given this information we do not
yet know for which m s(n) will be equal to a(m), respectively b(m). The following theorem
is more useful in this respect.

Theorem 2. Suppose that γ in (0, 1) is irrational, and let s(n+1) = ⌊nγ⌋ for n ≥ 0. Define
L(n) =

⌊
1
γ
n
⌋
and U(n) =

⌊
1

1−γ
n
⌋
for n ≥ 0. Then

s(L(n)) = n and s(U(n)) =
γ

1− γ
n

for all n ≥ 0.

Proof. By definition, the sequence L satisfies

1

γ
n = L(n) + εn

for n ≥ 0 and some εn with 0 ≤ εn < 1. This leads to

s(L(n)) =
⌊
(L(n) + 1)γ

⌋
=

⌊
n+ γ(1− εn)

⌋
= n,

since obviously 0 ≤ γ(1− εn) < 1.
By definition, the sequence U satisfies for n ≥ 0

1

1− γ
n = U(n) + ε′n,

for some ε′n with 0 ≤ ε′n < 1. This leads to

s(U(n)) =
⌊
(U(n) + 1)γ

⌋
=

⌊ γ

1− γ
n+ γ(1− ε′n)

⌋
=

γ

1− γ
n,

since obviously 0 ≤ γ(1− ε′n) < 1.

It is well-known (see [5]) that if α and β are two real numbers larger than 1, and moreover
1/α+ 1/β = 1, then α and β form a complementary Beatty pair, which means that the two
sets {⌊nα⌋, n ≥ 1} and {⌊nβ⌋, n ≥ 1} are disjoint, and that their union contains every
positive integer. Note that for all γ in (0, 1) the sequences L and U form a complementary
Beatty pair, since 1

γ
> 1, 1

1−γ
> 1 and ( 1

γ
)−1 + ( 1

1−γ
)−1 = 1.
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2 Hofstadter and Wythoff

The most famous complementary Beatty pair is obtained by choosing α = φ, and β = φ2,
where φ := (1 +

√
5)/2 is the golden mean. The Beatty sequences L(n) = ⌊nφ⌋ and

U(n) = ⌊nφ2⌋ for n ≥ 1 are known as the lower Wythoff sequence and the upper Wythoff
sequence. The name has its origins in the paper [18].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
L(n) 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 29
U(n) 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39 41 44 47

Table 2: L(n) = A000201(n) and U(n)=A001950(n) for n = 0, . . . , 18.

We next turn our attention to sequence A002251, described as follows: start with the
nonnegative integers; then swap L(k) and U(k) for all k ≥ 1, where L and U are the lower
and upper Wythoff sequences.

This means that this sequence, which we call W , is defined by

W (L(n)) = U(n) and W (U(n)) = L(n) for all n ≥ 1. (2)

Regrettably, the sequence W was indexed starting with 0 in the On-Line Encyclopedia
of Integer Sequences (OEIS). One of the unpleasant consequences of the useless index 0
is that sequence A073869 is not a clean Cesaró average of A002251. Another unpleasant
consequence is that A073869 is basically a copy of A019444.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
W (n) 0 2 1 5 7 3 10 4 13 15 6 18 20 8 23 9 26 28 11

Table 3: W (n) = A002251(n) for n = 0, . . . , 18.

The sequence W has the remarkable property that the sum of the first n + 1 terms
is divisible by n + 1. This leads to the sequence A073869, defined by A073869(n) =∑n

i=0W (i)/(n+ 1).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

W (n) 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11 11

Table 4: W (n) = A073869(n) for n = 0, . . . , 18.

The following theorem is a conjecture by Murthy in [14, A073869], but is proved in the
long paper [17]. We give a new short proof.
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Theorem 3. The averaged Wythoff swap sequence W is equal to Hofstadter’s G-sequence.

Proof. The result holds for n = 0, 1. It suffices therefore to consider the sequence of differ-
ences. Subtracting G(n− 1) =

∑n−1
i=0 W (i)/n from G(n) =

∑n
i=0W (i)/(n + 1), we see that

we have to prove
(n+ 1)G(n)− nG(n− 1) = W (n) (3)

for all n ≥ 2. But we know that there are only two possibilities for the recursion from
G(n− 1) to G(n). Therefore Equation (3) turns into the following two equations.

G(n) = G(n− 1) ⇒ G(n) = W (n), (4)

G(n) = G(n− 1) + 1 ⇒ G(n) = W (n)− n. (5)

It is not clear how to prove these equalities directly. However, we can exploit Theorem 1.
According to this theorem with s = G, and γ = (

√
5−1)/2, and so 1/γ = φ, 1/(1−γ) = φ2,

G(n) = G(n− 1) ⇔ ∃M such that n = U(M), (6)

G(n) = G(n− 1) + 1 ⇔ ∃M such that n = L(M). (7)

So we first have to prove that n = U(M) implies G(n) = W (n). This indeed holds, by an
application of Theorem 2 and Equation (2):

G(n) = G(U(M) = L(M) = W (U(M)) = W (n).

Similarly, for the second case n = L(M):

G(n) = G(L(M)) = M = U(M)− L(M) = W (L(M))− L(M) = W (n)− n.

Here we applied U(M) = L(M)+M forM ≥ 1, a direct consequence of φ2M = (φ+1)M .

In the comments of A073869 there is a scatterplot by Sloane—cf. Figure 1. The points
have a nice symmetric distribution around the line y = x, since the points consists of all pairs
(L(n), U(n)) and (U(n), L(n)) for n = 1, 2, . . . . (Ignoring (0, 0).) Apparently the points are
almost lying on two lines. What are the equations of these lines? This is answered by the
following proposition.

Proposition 4. Let W be the Wythoff swap sequence, and γ = 1/φ. Then

W (U(n)) = ⌊γU(n)⌋,W (L(n)) = ⌊φL(n)⌋+ 1

for all n ≥ 1.

Proof. Equation (4) and Equation (5) yield

W (n) =

{
G(n), if G(n) = G(n− 1);

G(n) + n, if G(n) = G(n− 1) + 1.

4

https://oeis.org/A073869


Figure 1: Scatterplot of the first 68 entries of W .

Since G(n) = ⌊(n+ 1)γ⌋ by Equation (1), it follows from Equation (6) that

W (U(M)) = ⌊U(M)γ⌋.

Since all M = 1, 2, . . . will occur, this gives the first half of the proposition.
For the second half of the proposition we perform the following computation under the

assumption that n = L(M):

G(n) + n = G(n− 1) + n+ 1 = ⌊nγ⌋+ n+ 1 = ⌊n(γ + 1)⌋+ 1 = ⌊nφ⌋+ 1.

Now Equation (7) gives that W (L(M)) = ⌊φL(M)⌋+ 1.

Remark 5. Simple applications of Theorem 3 prove the conjectures in A090908 (terms a(k)
of A073869 for which a(k) = a(k + 1)), and A090909 (terms a(k) of A073869 for which
a(k − 1), a(k) and a(k + 1) are distinct). It also proves the conjectured values of sequence
A293688.
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3 Generalizations

There is a lot of literature on generalizations of Hofstadter’s recursionG(n) = n−G(G(n−1)).
In most cases there is no simple description of the sequences that are generated by such
recursions. An exception is the recursion V (n) = V (n − V (n − 1)) + V (n − V (n − 4))
analyzed by Balamohan et al. [4]. The sequence with initial values 1,1,1,1 generated by this
recursion is sequence A063882. Allouche and Shallit [2] prove that the ‘frequencies’ of this
sequence can be generated by an automaton. See the recent paper [7] for more results on this
type of Hofstadter’s recursions, known as Hofstadter Q-sequences. We consider the paper
[6], that gives a direct generalization of Hofstadter’s G-sequence.

Theorem 6. [Celaya and Ruskey] Let k ≥ 1, and let γ = [0; k, k, k, . . .]. Assume H(n) =
0 for n < k, and for n ≥ k, let

H(n) = n− k + 1−
( k−1∑

i=1

H(n− i)
)
−H(H(n− k).

Then H(n) = ⌊γ(n+ 1)⌋ for n ≥ 1.

As an example, take the case k = 2. In this case γ =
√
2− 1, the small silver mean. The

recursion for what we call the Hofstadter Pell sequence is

H(n) = n− 1−H(n− 1)−H(H(n− 2)).

Here Theorem 6 gives that

(H(n)) = ⌊γ(n+ 1)⌋ = 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, . . . .

This is sequence A097508 in the OEIS.
Let 1/γ = 1 +

√
2 and 1/(1 − γ) = 1 + 1

2

√
2 form the Beatty pair given by Theorem 1.

Let LP = (⌊n(1 +
√
2)⌋) and UP = (⌊n(1 + 1

2

√
2)⌋) be the associated Beatty sequences. One

has LP = A003151 and UP = A003152.
According to Theorem 2, with R the slow Beatty sequence A049472 given by R(n) =

⌊1
2

√
2n⌋, the following holds for the Hofstadter Pell sequence H:

H(LP(n)) = n and H(UP(n)) = R(n), for all n ≥ 1.

The sequence with LP and UP swapped is
A109250 = 2, 1, 4, 3, 7, 9, 5, 12, 6, 14, 16, 8, 19, 10, 21, 11, 24, 26 . . . .

Apparently there is nothing comparable to the averaging phenomenon that occurred in the
golden mean case.

Remark 7. See A078474, and in particular A286389 for two generalizations of Hofstadter’s
recursion, with conjectured expressions similar to Equation (1). The conjecture for A286389
was recently proved by Shallit [13].

For the recursion a(n) = n−⌊1
2
a(a(n−1))⌋ given in A138466, Cloitre proved that (a(n))

satisfies Equation (1) with γ =
√
3− 1. For generalizations of this, see A138467.
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4 Greediness

There is a more natural way to define the Wythoff swap sequence W , which at first sight has
nothing to do with Wythoff sequences. Venkatachala [17] considered the following greedy
algorithm: f(1) = 1, and for n ≥ 2, f(n) is the least natural number such that

(a) f(n) ̸∈ {f(1), . . . , f(n− 1)}; (b) f(1) + f(2) + · · ·+ f(n) is divisible by n.

Surprisingly, it follows from Venkatachala’s analysis that one has

W (n) = f(n+ 1)− 1

for all n ≥ 1. The recent paper [3] studied a sequence z defined by a similar greedy algorithm:
z(1) = 1, and for n ≥ 2, z(n) is the least natural number such that

(a) z(n) ̸∈ {z(1), . . . , z(n− 1)}; (b) z(1) + z(2) + · · ·+ z(n) ≡ 1 (mod n+ 1).

This entails that (m(n)), defined by m(n) := (z(2) + · · · + z(n))/(n + 1) for n ≥ 1, is a
sequence of integers.

These sequences have been analyzed by Shallit [12] using the computer software Walnut.
Our Theorem 9 is an improvement of [12, Theorem 6]. In the proof of Theorem 9 we need
the values of the Wythoff sequences at the Fibonacci numbers.

Lemma 8. Let L and U be the Wythoff sequences. Then

L(F2k) = F2k+1 − 1; (8)

U(F2k) = F2k+2 − 1; (9)

L(F2k−1) = F2k; (10)

U(F2k−1) = F2k+1. (11)

for all k ≥ 1.

Proof. These equations can be derived from [3, Lemma 2.D]. Another, easy, proof is based on
recalling that L(m) gives the position of the mth 0 in the infinite Fibonacci word 0100101 . . .
generated by the morphism µ : 0 7→ 01, 1 7→ 0 (see, e.g., [1, Corollary 9.1.6]). The infinite
Fibonacci word is the limit of the words µ(0) = 01, µ2(0) = 010, µ3(0) = 01001, µ4(0) =
01001010, . . ..

Let |w|, |w|0, and |w|1 denote the length, the number of 0’s and the number of 1’s of a
word w. Then it is easy to see that

|µm(0)| = Fm, |µm(0)|0 = Fm−1, |µm(0)|1 = Fm−2, (12)

for all m ≥ 1, where µm is the mth iterate of µ. Since µm(0) ends in 01 for odd m, Equation
(12) with m = 2k + 1 implies that Equation (8) holds. Similarly, since µm(0) ends in 10 for
even m, one obtains Equation (9). That Equation (10) is correct follows from Equation (12)
with m = 2k , since µm(0) ends with 0 for odd m. Similarly, since µm(0) ends with 1 for
odd m, one obtains Equation (11) with m = 2k + 1.
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Theorem 9. Let (z(n)) and (m(n)) be the Avdivpahic and Zejnulahi sequences. Let W be
the Wythoff swap sequence. Then for all n ≥ 1 we have

(a) z(n) = W (n) except if n = F2k+1−1 or n = F2k+1,

In fact, z(F2k+1−1) = F2k−1, z(F2k+1) = F2k+2,

W (F2k+1−1) = F2k+2−1,W (F2k+1) = F2k.

(b) m(n) = W (n) except if n = F2k+1−1.

In fact, m(F2k+1−1) = F2k−1,W (F2k+1−1) = F2k.

Proof. Part (a): We use the formula for z(n) proved in the paper [3]:

z(n) =


Fk−1 − 1, if n = Fk − 1;

Fk+1, if n = Fk;

L(k), if n = U(k);

U(k), if n = L(k).

So z is the swapping of L and U for indices n ̸= Fk − 1 and n ̸= Fk. We first handle the case
of the Fibonacci numbers with an odd index. Here we have to prove that

W (F2k+1 − 1) = F2k+2 − 1 (13)

W (F2k+1) = F2k. (14)

We start with Equation (13). We have to show that there exists m such that either the
pair of equations L(m) = F2k+1 − 1, and U(m) = F2k+2 − 1, or the pair of equations
U(m) = F2k+1 − 1, and L(m) = F2k+2 − 1 holds. The first pair of these swapping equations,
with the value m = F2k, is equal to the equations (8), and (9), as we see from Lemma 8.

Next, we prove Equation (14). Here Lemma 8 gives that Equation (11) and Equation
(10) solve the swapping equations.

We still have to handle the case with Fibonacci numbers with an even index. There we
have to prove that

W (F2k − 1) = z(F2k − 1) = F2k−1 − 1 (15)

W (F2k) = z(F2k) = F2k+1. (16)

We start with Equation (16). Here Lemma 8 gives that Equation (10) and Equation (11)
solve the swapping equations.

Next, we prove Equation (15). Here Lemma 8 gives that Equation (8) and Equation (9)
solve the swapping equations, both with k shifted by 1.

Part (b): The case n = 1: for k = 1, F3 − 1 = 1, and m(1) = 1 = W (1)− 1.
For n ≥ 2 we have

(n+ 1)m(n) = z(2) + · · ·+ z(n), (n+ 1)W (n) = W (1) + · · ·+W (n).
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We see that for n = 2, 3m(2) = z(2) = 3, and 3W (n) = W (1) +W (2) = 2 + 1 = 3. So also

(n+ 1)m(n) = 3 + z(3) + · · ·+ z(n), (n+ 1)W (n) = 3 +W (3) + · · ·+W (n).

Note furthermore that z(F2k+1 − 1) + z(F2k+1) = F2k − 1 + F2k+2, and W (F2k+1 − 1) +
W (F2k+1) = F2k+2 − 1 + F2k. Since these two sums are equal, the difference of 1 created at
n = F2k+1 − 1 is ‘repaired’ at n = F2k+1. This proves the first part of Part (b).

For the second part we have to see that m(F2k+1−1) = F2k − 1, or equivalently (see the
proof of the first part of Part (b)), that W (F2k+1 − 1) = F2k.

In general we have (see Theorem 3)

W (n) = G(n) = ⌊(n+ 1)γ⌋ = ⌊(n+ 1)/φ⌋ = ⌊(n+ 1)φ⌋ − (n+ 1) = L(n+ 1)− (n+ 1)

for all n ≥ 1. So, using Equation (10), we obtain

W (F2k+1 − 1) = L(F2k+1)− F2k+1 = F2k+2 − F2k+1 = F2k, (17)

which ends the proof of Part (b).

Let (a(n), b(n)) defined by the recurrences a(n) = n−b(a(n−1)), b(n) = n−a(b(n−1)) be
the “married” functions of Hofstadter given in his book [10, p. 137]. Here (a(n)) is A005378
and (b(n)) is A005379.

Theorem 10. [Stoll][16] Let γ = (
√
5− 1)/2 be the small golden mean. Then

(a) a(n) = ⌊(n+ 1)γ⌋ except if n = F2k−1 : a(F2k−1) = ⌊F2kγ⌋+ 1;

(b) b(n) = ⌊(n+ 1)γ⌋ except if n = F2k+1−1 : b(F2k+1−1) = ⌊F2k+1γ⌋ − 1

for all n ≥ 1.

It follows by combining Theorem 3, Theorem 9, Stoll’s Theorem 10, and Equation (17)
that

(b(n)) = (m(n)).

Then Stoll’s theorem also gives an expression for (a(n)). See Shallit’s paper [12] for proofs
using the computer software Walnut.

5 Acknowledgment

I thank Jean-Paul Allouche for useful remarks. Thanks are also due to one referee for
pointing out an important reference, and to the second referee for many remarks that have
resulted in an improvement of the presentation.

9

https://oeis.org/A005378
https://oeis.org/A005379


References

[1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generaliza-
tions, Cambridge University Press, 2003.

[2] J.-P. Allouche and J. Shallit, A variant of Hofstadter’s Q-sequence and finite automata,
J. Aust. Math. Soc. 93 (2012), 1–8.
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