
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Image Reconstruction
for Dynamic
Multi-Pinhole
SPECT-imaging using
Kernelised
Expectation
Maximisation
Hanna den Hertog

Image
Reconstruction for

Dynamic
Multi-Pinhole

SPECT-imaging
using Kernelised

Expectation
Maximisation

by

Hanna den Hertog
Student Name Student Number

H. den Hertog 5146461

Supervisors: Dr. M.C. Goorden
Dr. H.N. Kekkonen

Committee members: Dr. Y. van Gennip
Dr.ir. R. de Kruijff

Project Duration: December 2022 – May 2023

Abstract

Background Dynamic SPECT scanning provides a non-invasive way to image the time-dependent
distribution of radio-labelled tracers inside living tissue. Beside human medicine, dynamic SPECT also
finds its applications in pre-clinical research on small animals. In pre-clinical research, multi-pinhole
collimators are used to enable high-resolution sub-millimeter imaging. Conventional iterative recon-
struction methods, such as Maximum Likelihood Expectation Maximisation (MLEM) perform poorly in
reconstructing the noisy and low-count scans in dynamic SPECT. This limits the temporal resolution
that can be achieved.
Method The reconstruction of noisy, low-count time-frames can be aided by incorporating informa-
tion from earlier and later time-frames. Wang and Qi (2015) published the paper ’PET Image Recon-
struction Using Kernel Method’, with a proposed method entitled Kernelised Expectation Maximisation
(KEM) for dynamic PET, a method that uses principles from Machine Learning, such as Support Vector
Machines and the ’kernel trick’ to incorporate prior information in the reconstruction algorithm. This
method is highly adjustable due to a number of input parameters of the method. In this paper, KEM
is implemented for dynamic multi-pinhole SPECT. The effects of the KEM parameters are explored in
computer simulations. Two different dynamic phantoms are used, one of the striata in a mouse brain
which were adapted from a paper by Vastenhouw et al. (2007) and one of the hepatobiliary system
adapted from Vaissier et al. (2012). The results of KEM are benchmarked against conventional MLEM
with a Gaussian post-filter.
Results In high-count simulations, the MLEM reconstructions had a lower mean-squared-error than
the KEM image, while the signal-to-noise ratio of KEM was better than MLEM. The images produced
after 200 iterations were indistinguishable, however. In the low-count regime, KEM was shown to be
more resistant to noise than MLEM. Varying the input parameters of KEM gave rise to differences in
performance, such as (over-)smoothing effects and a different level of noise-suppresion in the recon-
structed image.
Conclusions In the simulations used in this paper, KEM was shown to outperform conventional MLEM
with a Gaussian post-filter from low-count projections. The optimal input parameters of the KEM algo-
rithm, however, need to be found ad hoc by searching the parameter space. Further research should
look into finding a set of rules or guidelines for finding the optimal parameters.

i

Contents

Summary i

Nomenclature iii

1 Introduction 1

2 Background 3
2.1 SPECT . 3

2.1.1 Dynamic SPECT . 3
2.2 SPECT scanners . 4

2.2.1 Gamma-camera . 4
2.2.2 Pinhole collimator . 4

2.3 Mathematical basis . 6
2.3.1 Variable definitions . 6
2.3.2 Forward model . 6
2.3.3 Image reconstruction . 7

3 Reconstruction Methods 9
3.1 Analytical methods . 9
3.2 Iterative methods . 9

3.2.1 Maximum Likelihood Expectation Maximisation 9
3.2.2 Kernelised Expectation-Maximisation . 17

4 Practical Implementation 22
4.1 Simulated Scanner . 22
4.2 Simulated Phantoms . 22

4.2.1 Striatum phantom . 23
4.2.2 Hepatobiliary phantom . 24

4.3 Simulated Projections . 24
4.4 Constructing the Kernel Matrix . 25
4.5 Simulation parameters . 26
4.6 Performance Metrics . 26
4.7 Computational Specifications . 27

5 Results 28
5.1 Striatum phantom with high counts . 28
5.2 Striatum phantom with low counts . 30
5.3 Striatum phantom with k=576 . 32
5.4 Striatum phantom with k=4 . 34
5.5 Hepatobiliary phantom with high counts . 36
5.6 Hepatobiliary phantom with low counts . 38
5.7 Hepatobiliary phantom with T=10 . 40
5.8 Hepatobiliary phantom with T=1 . 42
5.9 Discussion . 44

6 Conclusion 45

References 46

A Source Code 49

ii

Nomenclature

Abbreviations

Abbreviation Definition

SPECT Single-Photon Emission Computed Tomography
U-SPECT Ultra-high resolution SPECT
KEM Kernelised Expectation Maximisation
MLEM Maximum Likelihood Expectation Maximisation
RBF Radial Basis Function
kNN k-Nearest Neighbours
PET Positron Emission Tomography
PMT Photo-multiplier tube
SVM Support Vector Machine
DAT Dopamine Transporter

Symbols

Symbol Definition Unit Space/Domain

f Activity vector [Bq] RJ

g Projection vector [counts] RN

i Pixel index [-] 0, 1, . . . , N
j Voxel index [-] N
P System matrix [-] RN×J

K Kernel matrix [-] RJ×J

κ Kernel function [-]
ϕj Feature vector of voxel j [-] RB

iii

1
Introduction

The scientific field of medical imaging has made major advancements in the last centuries. Since the
invention of the X-ray in 1895, it has grown to be a multi-billion dollar industry, with institutions and
companies worldwide working on improving existing techniques and developing new ones[26]. Due to
the non-invasive nature of these techniques, they are widely used for diagnosing diseases in various or-
gans of the body, localising tumorous tissues and for conducting pre-clinical research on small animals.

Nuclear imaging is a sub-field of medical imaging which studies processes within organs and tis-
sues though radioactive tracers that are administered to the subject in (preferably) small dosages. By
performing multiple consecutive scans, one can even gain insight in the dynamics and interactions of
the tracer as a function of time[21]. Examples of nuclear imaging include Positron Emission Tomogra-
phy (PET) and Single Photon Emission Computed Tomography (SPECT). PET tracers are proton-rich
isotopes which decay via positron emission. After emission, the positron will quickly encounter an elec-
tron along its trajectory and annihilate under the emission of a photon pair [12]. The photons travel
in opposite directions and are detected on the gamma-cameras surrounding the subject. Since the
photons’ trajectories were antiparallel, it is possible to trace a line between the two detection points
and find the line along which the annihilation took place. When many photon-pairs are detected, this
provides valuable information on the three-dimensional distribution of the PET-tracer. SPECT, as the
name suggests, uses tracers that emit just a single photon upon decay. The photon is also detected
on a gamma-camera, but since there is just one photon per decay, it is not possible to retrace its tra-
jectory like in PET. To resolve this issue, pinhole collimators can be added between the subject and
the detectors. A collimator is a thick slab of radiation-hard material with narrow channels penetrating
from one side to the other [18]. Collimators ’filter’ the incoming radiation, since rays that are not trav-
elling straight through the channel are attenuated. By shaping the channel like a small pinhole, the
images are magnified on the gamma-camera. When a photon is detected on the gamma-camera, it
can be traced back, though the aperture of one of the pinholes in the collimator, to a single line in the
scanner volume. This enables the tracer distribution to be recovered through a process called image
reconstruction.

Medical image reconstruction is an intricate process. It belongs to the domain of inverse mathemat-
ical problems, where one computes from a set of measurements the unknown factors that produced
these measurements[2]. In the case of nuclear imaging, the goal is to determine the volumetric ra-
dioactive activity in the subject from the collected photon-counts on the detector pixels. This proves
to be challenging for all nuclear imaging techniques, but additional challenges are posed for dynamic
SPECT especially. This is caused by the low-count and high noise projection data. The low counts are
in part caused by attenuation of photons inside the collimator. Moreover, a higher temporal resolution
in dynamic SPECT causes the number of counts per time-frame to decrease. The collected detector
data is also contaminated with noise, due to the statistical nature of radioactive decay of the tracer.
This noise causes the problem of image reconstruction for SPECT to be ill-conditioned, implying that
a small perturbation in the observed counts may cause large deviations in the reconstructed image[2].

1

2

Various techniques can be employed to estimate the activity distribution. These can be partitioned
into two categories; analytical and iterative methods. The choice for one or the other may be based
on (a combination of) the available computational power, the amount of collected data and the desired
image quality. Analytical methods are computationally less demanding, hence their popularity in the
earlier days of nuclear imaging [3]. One of the major downsides of these techniques, however, is that
the approximations and interpolations employed in analytical methods tend to give rise to artefacts in
the reconstruction. An artefact is an object that is not present in the real image, but is caused by the
reconstruction. In medical applications, such artefacts may have severe effects, for example when
such a non-existent object is misdiagnosed as a tumour[24]. Furthermore, analytical reconstruction is
usually not achievable for scans with complex geometries, such as those performed with multi-pinhole
collimators.

Iterative algorithms make use of the physical and statistical models that underlie the SPECT scan-
ner. This reduces the sensitivity to noise in the projection and decreases the chances of artefacts
appearing in the reconstructed image. As the name suggests, iterative methods use a repeating al-
gorithm to update the estimated activity distribution before it arrives at the final reconstructed image.
This requires significant computational power, since each iteration involves a forward and backward
projection of the current estimate[3]. Since computers have evolved remarkably since the invention
of SPECT, iterative reconstruction methods have gained popularity over the last decades and are ex-
pected to spread even further in the upcoming years. Nonetheless, iterative methods may still require
long computations, especially since the desired resolution is ever-increasing and convergence of the
image tends to require many iterations.

Maximum Likelihood Expectation Maximisation (MLEM) is a fundamental method, that takes into
account the Poisson statistics that underlie radioactive decay and models the scanner’s geometry us-
ing a system matrix. This matrix encapsulates the physical laws that dictate how the tracer distribution
is projected onto the detectors. Specifically, this matrix allows one to compute the expected number
of detected counts for each detector pixel, given an activity distribution. MLEM employs expectation
maximisation to find the tracer distribution that caused the recorded scanner data with the greatest
likelihood, in an iterative manner. The MLEM algorithm is relatively easy to implement and intuitive
to understand, but it is sensitive to noise and the images tend to converge slowly[31]. Moreover, it
performs poorly at reconstructing singular low-count timeframes for dynamic SPECT.

The reconstruction of these singular time-frames can be aided by incorporating information from
earlier and/or later time-frames in their reconstruction. Wang and Qi (2015) [35] provided such an al-
gorithm for dynamic PET image reconstruction in their paper ’PET Image Reconstruction Using Kernel
Method’. For their novel method, they were inspired by some well-established principles from the field
of machine learning. Using these ideas, they were able to construct a second matrix, the ’kernel matrix’,
which contains information from the projections in all time-frames of the scan. Wang and Qi applied
their proposed method to PET patient datasets and found promising results that outperformed a num-
ber of other methods, including MLEM. Therefore, KEM has the potential to enables a higher temporal
resolution for dynamic PET or allow for more low-dose SPECT scanning, which decreases a patient’s
exposure to harmful radiation[23].

In this paper, KEM is implemented for dynamic multi-pinhole SPECT in order to discover whether
the method yields better reconstructions than conventional MLEM. Before pitching into the image re-
construction methods, some background on dynamic SPECT scanning is provided in Chapter 2. After
that, the two iterative algorithms will be deduced and introduced in Chapter 3. Moreover, this chapter
includes the phantoms that are used in the simulations in this paper. The results of the simulations are
presented in Chapter 5. Conclusions on the performance of KEM in comparison to MLEM for dynamic
SPECT are drawn in the last chapter.

2
Background

In this chapter, some background of dynamic SPECT scanning and image reconstruction is provided.

2.1. SPECT
Single Photon Emission Computed Tomography (SPECT) is a non-invasive method used for diagnosis
of diseases and medical research. Unlike many other nuclear imaging techniques, the radiation is not
emitted by the scanning apparatus itself, but by radioisotopes that are inside the patient. Depending
on the design of the research and the half-life of the radio-isotope, doctors inject the patient with radio-
labelled drugs or ligands a fixed amount of time ahead of the scan. During the SPECT-scan, the emitted
photons are collected on gamma-detectors that surround the patient. The collected data is commonly
referred to as the projection. Ultimately, the goal of a SPECT scan is to obtain a three-dimensional
image of the ligand-concentration in the patient. This enables scientists to analyse an abundance of
biological processes inside the body as a whole or in specific organs.

The most popular isotope used for SPECT is metastable Technetium-99 (99mTc). It decays to
Technetium-99 under the emission of a gamma-photon with an energy of 140keV . This photon en-
ergy is just high enough to be detected by common gamma-cameras, thus limiting the negative side
effects of the radiation on the subject. Thanks to its short half-life of 6.0058 hours, 99mTc allows fast
data collection due to its high activity. The cumulative patient radiation exposure still remains low, since
over 95% of the isotopes decay within a 24-hour time-frame [25].

99m
43 Tc → 99

43Tc+ γ140keV (2.1)

An example of a scan that is often ordered by medical professionals is a bone scan using 99mTc-
labelled diphosphonates (99mTc-DPs). This specific radioactive tracer is absorbed by newly formed
bone tissue and is therefore a useful marker for increased bone metabolism[22]. The presence of sites
with high tracer concentration can be an indicator for cancer or other bone diseases. In many cases,
the results of the SPECT-scan eliminate the further need to take a biopsy.

2.1.1. Dynamic SPECT
As mentioned, SPECT scans are useful for imaging a variety of biological processes inside the body.
These processes can be imaged statically, where the images show only the spatial location and con-
centration of the tracer during the entirety of the scanning-time, or dynamically, which provides spatial
as well as temporal information[21]. The choice for one of either techniques depends on the clinical
applications, but it is important to bear in mind that there is a trade-off between temporal resolution and
image quality. This is caused by the fact that reducing the scanning time per image frame also reduces
the number of decays within the time-frame.

3

2.2. SPECT scanners 4

Figure 2.1: Schematic of a gamma-camera consisting of a parallel-hole collimator (a), a scintillating crystal (b) and an array of
photo-multiplier tubes (c).

2.2. SPECT scanners
2.2.1. Gamma-camera
The SPECT scanner studied in this paper is the three-headed Ultra-high resolution Single Photon Emis-
sion Computed Tomography (U-SPECT/CT) system jointly developed by the commercial company MI-
Labs B.V. and the research group at the TU Delft. It is used by institutions worldwide for pre-clinical
studies on rodents[17]. The photons are detected on three large-area, stationary gamma-detectors by
means of a process known as scintillation detection. In Figure 2.1, a schematic of a single gamma-
camera is shown. The collimator (a) is a slab of radiation-hard material with parallel holes in it. This
collimator ensures that only the gamma-rays hitting the camera at a 90◦ angle are projected onto the
crystal underneath it. This, in turn, allows the rays that strike the crystal to be traced back to their
originating position in the phantom during reconstruction.

Due to the presence of the collimator, only a minor selection of photons reaches the scintillating
crystal (b). Upon impact with the crystal, the gamma-photon is absorbed by an electron inside the crys-
tal, which causes it to move from the conduction band to the valence band. If this happens, the electron
is free to move through the lattice. It leaves a net positive charge (’hole’) behind, which is attracted to
the moving electron through Coulomb forces. The electron-hole pair moves through the crystal until it
is trapped by a defect in the lattice. In the case of NaI(Tl), the electron-hole pairs are captured by the
Thallium atoms where the electron decays and subsequently thousands of lower-energy photon, in the
visible range, are emitted[10].

After the high-energy gamma-photons are converted to light flashes by the scintillator, they must be
recorded in a way that also keeps track of the position on the gamma-camera where the gamma-ray
hit the camera. This is done by an array of photo-multiplier tubes (PMTs) (c). When a light flash strikes
the top of a PMT (the photo-cathode), it causes the cathode to release an electron. The electron is
then accelerated towards the first dynode due to an electric field. It then enters a cascade of emission,
acceleration and absorption, where, at each dynode, the number of emitted electrons increases ex-
ponentially[16]. Finally, the amplified stream of electrons strikes the anode, which results in an easily
detectable current pulse. The pulses on the detector plate are counted during the scanning-time for
each detector pixel separately, and this data is used to reconstruct the tracer distribution inside the
scanner.

The detector as displayed in figure 2.1 has a finite resolution, due to the limitations in the density of
channels in the collimator and the photon-yield of the scintillator. A typical gamma-camera nowadays
is able to achieve a spatial resolution of 3.5 mm for rays of 140 keV (corresponding to the rays emitted
by 99mTc)[18].

2.2.2. Pinhole collimator
In order to retrace the location where the recorded photon was emitted, a pinhole collimator is placed
between the object of interest and the gamma-camera. The channels in this collimator are shaped
like pinholes and essentially behave as small apertures, which magnify and invert the image that is
projected onto the detectors (see Figure 2.2). This results in a superior spatial resolution, without the
need to further increase the resolution of the gamma-camera itself, which can be very costly[5]. The
magnification factor is proportional to the distance between the distance between the object and the
centre of the pinhole, thus making it especially applicable in imaging of small animals, where only a
small field of view is required.

The full layout of the SPECT scanner is depicted in Figure 2.4. As shown, the stationary gamma-
detectors are placed in an equilateral triangular set-up to collect data from multiple angles. The pinhole
collimator is cylindrical, such that all pinholes focus on a central scan volume. In order to scan structures

2.2. SPECT scanners 5

Figure 2.2: Schematic of the projection of a mouse by means of a parallel-hole collimator only (left-hand side) and by means of
a combination of a parallel-hole collimator and a pinhole collimator (right-hand side).

Figure 2.3: A cylindrical multi-pinhole collimator with 75 pinholes. Image taken from Van der Have [27].

2.3. Mathematical basis 6

detector 3
de

te
ct

or
 1

detector 2

Figure 2.4: Schematic of a three-headed SPECT-scanner with a phantom placed inside of a collimator.

that do not fit within the central field of view of the converging pinholes, the object is sequentially
stepped through the scanner to collect photons from all parts of the structure. Following this method,
a sub-millimeter resolution can be achieved[5].

2.3. Mathematical basis
The naming conventions used in this paper are summarised in the Nomenclature on page iii for easy
reference.

2.3.1. Variable definitions
Let f(x, y, z) denote the unknown number of photons emitted at each point (x, y, z) inside the scanner.
This number corresponds one-to-one with the number of radioactive decays at that position. Moreover,
we assume that this quantity is directly proportional to the tracer activity in (x, y, z).

Next, g represents the expected projection of f on the detector plates. In the case of a three-
headed scanner, g comprises three two-dimensional images, each corresponding to another detector-
plate. The g value for each pixel on a gamma-camera is given by the expected number of detected
gamma-photons in that pixel within a given time-frame.

To enable the computations that are involved with the reconstruction, the projection on the gamma-
camera is discretised into I square, two-dimensional pixels, each labelled by an index. In the remainder
of this paper, the pixel index will be labelled by the letter i. Similarly, the scanner volume is discretised
into J three-dimensional, cubic voxels, each labelled by a different j-index. Thus, we can conveniently
represent the tracer distribution as the column vector

f = (f1, f2, ..., fJ) ∈ RJ

and, likewise, the counts can be packed into the vector
g = (g1, g2, ..., gN) ∈ NI

2.3.2. Forward model
It goes without saying that the measured projection depends on the tracer distribution and on the geom-
etry of the scanner system. More precisely, the number of counts in detector pixel i (gi) is a weighted
sum over the activities in all voxels inside the field of view of the SPECT scanner (see Eq. 2.2).

gi = pi,1f1 + pi,2f2 + ...+ pi,mfm =

J∑
j=1

pi,jfj (2.2)

The weights pi,j represent the probability that a photon emitted in voxel j is detected in pixel i. The
summation notation suggests we may summarise Eq. 2.2 for all pixels as a matrix product,

g = Pf, (2.3)

2.3. Mathematical basis 7

voxel j

pixel i

Pij

Pi, j

Figure 2.5: The matrix element Pi,j denotes the probability that a gamma-ray emitted from voxel j in the activity volume
(left-hand side) is detected in pixel i on the detector plate (right-hand side).

where P is an I × J matrix and the (i, j)th element of P is equal to pi,j . This matrix is referred to
as the system matrix. The elements and size of the system matrix depend on the characteristics of the
scanner, such as its geometry and the type of collimator that is used. The construction of the system
matrix can be performed in numerous ways, both experimentally and using simulations. In the former
case, one would sequentially step a point source (radioactive bead) along the voxels in the scanner’s
field of view and record the counts on the detector for each position[6]. Not surprisingly, this process
takes a lot of time, especially when the scanner volume is large or when the voxel size is reduced.
Oftentimes, fewer measurements are taken and interpolation is used to compute the matrix elements
for all J voxels. Alternatively, advanced software toolkits such as GATE are available to simulate the
physics behind complex pinhole geometries and absorption in collimators numerically. It uses Monte
Carlo simulations to compute the matrix elements[28].

2.3.3. Image reconstruction
The system matrix allows us to calculate the expected projection using Eq. 2.3, given the tracer dis-
tribution. During image reconstruction, we want to do the opposite, namely find the unknown tracer
distribution f from the recorded projection g. This makes image reconstruction for SPECT an inverse
mathematical problem[2]. Theoretically, this can be solved directly by multiplying both sides of Eq. 2.3
with the left-inverse of P−1. In practice, however, this is not feasible, due to a number of reasons.
Firstly, the computational complexity of calculating an inverse matrix scales rapidly with its dimensions.
Moreover, it is important to note that real-life SPECT reconstruction is an ill-posed problem by the
definition of Hadamard[15].

Definition 1 (Well-posedness (Hadamard)). The problem of determining a solution g = Pf in a metric
space G (with distance ρG(·, ·)) from initial data f in a metric space F (with distance ρF (·, ·)) is well-
posed if all three criteria are satisfied:

• Existence For any g ∈ G there exists a solution f ∈ F ;
• Uniqueness For any g ∈ G there exists exactly one solution f ∈ F ;
• Stability The problem is stable with respect to the spaces (G,F): For any ϵ > 0 there exists
a δ(ϵ) > 0 such that, for any f1, f2 ∈ F , the inequality ρF (f1, f2) < δ(ϵ) implies ρG(g1, g2) < ϵ,
where g1 = R(f1), g2 = R(f2).

Problems that are not well-posed, are called ill-posed.

In real-world SPECT-scans, the measurement data that is collected is not a perfect forward pro-
jection as described in equation 2.3. The projections are corrupted by random scatters and missing
counts due to attenuation photons within the object of interest. These effects undermine the existence,
uniqueness and stability of a solution.

Apart from noise and attenuation, another complicating factor for SPECT reconstruction is the low
counting statistic. Due to the pinhole collimator in the system, almost all radiation is absorbed before it
could even reach the detector. This property is described by the sensitivity of the scanner, which refers
to the ratio of emitted photons that reach the detector plates. This ratio may be expressed as the number
of counts per second per Becquerel or as a percentage. In a previous paper on multi-pinhole SPECT,
the photon-sensitivity has been shown to be in the order of 250 cps/MBq, or equivalently, 0.025%[7].
The number of recorded counts can be increased by simply increasing the acquisition time, but this is
undesirable when using live animals and is inefficient when scanner-time is precious. Injecting more

2.3. Mathematical basis 8

tracer to increase the activity is also not preferable, as this increases the radiation dose absorbed by
the patient.

3
Reconstruction Methods

A variety of reconstruction techniques for nuclear imaging exist. Throughout the years since the inven-
tion of SPECT scans, different techniques gained and lost popularity due to developments in comput-
ing power, size of the projection data and the desired image quality, amongst other factors. There are
broadly two categories of techniques; analytical and iterative algorithms.

3.1. Analytical methods
For a long time, analytical methods, such as Filtered Backprojection, used to be the industry-standard
for SPECT reconstruction. It uses mathematical techniques to calculate the tracer distribution from
the acquired projection data directly and in a single step, which makes analytical reconstruction a
computationally efficient method[29].

Unfortunately, analytical methods rely on a number of underlying assumptions. The data is assumed
to be free of noise, attenuation and scatter. Needless to say, these conditions are violated in real-life
SPECT scans. Another assumption, namely that projections are collected from an unlimited number
of detection angles, is also not met. As a consequence, the uniqueness of the analytical solution is
not guaranteed. Small deviations from the noise-free projection may also cause unphysical negative
values for the activity in some voxels and may give rise to artefacts in the reconstruction. This can have
severe effects when such artefacts are misinterpreted in clinical diagnoses[24]. These factors make
analytic methods inadequate for pinhole SPECT[31].

3.2. Iterative methods
Iterative methods have been around since the very invention of SPECT, however, their application in
clinical practise was delayed due to lacking computational capacity[29]. They are more demanding
because, as the name suggests, multiple repeating steps are needed to arrive to an image of sufficient
quality. The advantage of iterative methods is their reduced sensitivity to noise compared to ana-
lytic methods. Moreover, iterative methods include the underlying laws of physics and the collimator
geometries in the reconstruction algorithm. This makes iterative reconstruction preferable for multi-
pinhole SPECT. This paper will explore a number of these methods, which all branch from Maximum
Likelihood Expectation Maximisation.

3.2.1. Maximum Likelihood Expectation Maximisation
The most elemental iterative method considered in this paper is Maximum Likelihood Expectation Max-
imisation (MLEM). It was first proposed by Shepp and Vardi in 1982, and it incorporates the statistical
nature of radioactive decays. This makes MLEM more robust than analytical methods when it comes
to noise[5]. Instead of trying to find a solution in one step, MLEM iteratively updates the reconstruction
to find the tracer distribution that produced the projection data with the highest likelihood.

Similarly to many other counting experiments, the observed number of counts in projection pixel i
(gi) is modelled as a draw from a Poisson distribution. The discrete random variable gi has probability
mass function Eq. 3.1, where gi is the observed number of counts in the projection pixel and ⟨gi⟩ is the

9

3.2. Iterative methods 10

expectation of gi.

P(gi) =
⟨gi⟩gie−⟨gi⟩

gi!
(3.1)

The expected number of counts in the projection depends on the unknown tracer distribution f via
the system matrix that was introduced in section 2.3.2.

⟨gi⟩ = E [gi|f] =
J∑

j=1

pijfj (3.2)

To find the probability that some trace distribution f produced the observed projection in i, we define
the partial likelihood function L(gi).

L(gi|f) = P(gi|f) (3.3)
To compute the likelihood of the whole image, we use that the gi are independent random variables.

This results in the ensemble likelihood function L(f), which is simply the product of the partial likelihood
functions.

L(g|f) =
I∏

i=1

L(gi|f) =
I∏

i=1

⟨gi⟩gie−⟨gi⟩

gi!
(3.4)

Maximum Likelihood Expectation-Maximisation, fittingly, is aimed at finding a tracer distribution
fMLEM that maximises the expectation of the likelihood above. In order to obtain physically valid so-
lutions only, the solution space is limited to F = {f ∈ RJ |fj ≥ 0, ∀j = 1, ..., J}, i.e. the space where
the activity in all voxels is non-negative.

f̂MLEM = argmax
f∈F

L(g|f) (3.5)

As per usual, this can be done by differentiating the likelihood with respect to f and equating to
zero. A common trick in statistical analysis is to minimise the negative natural logarithm of the likelihood
function, rather than the likelihood function directly. This facilitates easier differentiation, while resulting
in the same optimiser[11].

l(g|f) = − ln(L(g|f))

=

I∑
i=1

(−gi ln(⟨gi⟩) + ⟨gi⟩+ ln(gi!))

=

I∑
i=1

−gi ln

 J∑
j=1

pijfj

+

 J∑
j=1

pijfj

+ ln(gi!)

(3.6)

The last term in Eq. 3.6 is independent of f and therefore does not affect the values of vector f at
which l(g|f) attains its extreme values. Thus, this term is omitted from the equation in the remainder
of this paper. Differentiating Eq. 3.6 pixel-wise yields Eq. 3.7.

∂l(g|f)
∂fj

=

I∑
i=1

pij −
I∑

i=1

pijgi∑J
j=1 fjpij

= 0 (3.7)

This lead Shepp and Vardi to the update equation that makes up every iteration of MLEM.

f̂j
new

=
f̂j

old∑I
i=1 pij

 J∑
j=1

pij
gi∑I

i=1 pij f̂j
old

 (3.8)

Eq. 3.8 can be vectorised for the entire tracer distribution. Here, 1N is a vector of length N with
all entries equal to one, n resembles the iteration number and the superscript T denotes the matrix
transpose. The division g

P f̂n
is to be performed component-wise.

3.2. Iterative methods 11

image domain projection domain

project

backproject

compareupdate and normalise

Figure 3.1: The MLEM iterations displayed in separate steps. The inputs are f̂0 and g, the initial guess for the activity and the
recorded projection, respectively.

f̂n+1 =
f̂n

PT1I

(
PT g

P f̂n

)
(3.9)

Intuitively, the update equation can be dissected into four successive steps. These are displayed
graphically in Fig. 3.1. Firstly, the current estimate f̂ is projected using the system matrix. Next, the
ratio between this projection and the measured data g from the scan is computed. This ratio is a
measure of the error in the current estimate. The error ratio is projected back to the image domain,
after which the estimate is normalised and updated before entering a new iteration. The normalisation
ensures that the number of counts in the forward projection of the estimates are the same as the counts
in the measured projection[36].

It is important to note that the updates in the MLEM algorithm are multiplicative. This means that if
a certain voxel has zero activity in estimate n, i.e. f̂j

n
= 0, it will remain zero in all following estimates.

Therefore, it is of great importance to choose an appropriate f̂0, where only voxels which are known a
priori to have no tracer are set to zero. Oftentimes, f̂0 is set to be uniform inside the field of view of the
pinhole collimator and zero outside.

Furthermore, the images produced by MLEM are guaranteed to be non-negative, unlike with ana-
lytical reconstruction. To see this, observe that pij and ggi are greater than or equal to zero for all i and
j. If f̂0 has only non-negative values, then all subsequent estimates will be non-negative.

Convergence of the MLEM algorithm
The MLEM algorithm is guaranteed to converge to a maximum likelihood solution. A short proof of this
statement was written by Iusem (1992) [19]. This section follows this proof and elaborates some steps
that were skipped over in the proof by Iusem. In order to prove the converge to a maximum likelihood
solution, a few definitions and assumptions are used.

The following assumptions are made regarding the observed data and the system matrix.

Assumption 1. Without loss of generality, assume
∑I

i=1 gi = 1, that is, assume that the sum of counts
is normalised.

Assumption 2. Assume
∑I

i=1 pij = 1, that is, assume the probability of detection of an event is equal
to one.

3.2. Iterative methods 12

Assumption 3. Assume
∑J

j=1 pij ̸= 0, that is, assume that there are no all-zero rows in P i.e. there
are no ’blind’ pixels. This assumption can be justified by observing that ’blind’ pixels can safely be
omitted from the model.

Moreover, some sets are defined as follows.

Definition 2 (R+). Let R+ denote the set of all non-negative real numbers.

Definition 3 (R++). Let R++ denote the set of all positive real numbers (this does not include 0).

Definition 4 (∆̄). Let ∆̄ denote the set {f ∈ RJ
+ :
∑J

j=1 fj = 1}.

Definition 5 (∆). Let ∆ denote the set {f ∈ RJ
++ :

∑J
j=1 fj = 1}.

Definition 6 (Γ). Let Γ denote the set {f ∈ RJ : Af > 0}. Here, the comparison ’>’ is understood to
be element-wise, i.e. x > y if xj > yj for all j.

Recall that the MLEM update equation is given by fk+1
j =

fk
j∑I

i=1 pij

∑I
i=1

gipij∑J
j=1 pijfk

j

. Using assump-

tion 2, this simplifies to fk+1
j = fk

j

∑I
i=1

gipij∑J
j=1 pijfk

j

. To further shorten notation, we define the function
U .

Definition 7 (U). Let U : ∆̄ ∩ Γ → ∆̄ ∩ Γ be given by U(f)j = fj
∑I

i=1
gipij∑J

j=1 pijfj
.

Using this notation, the update equation in can be conveniently written as fk+1
j = U(fk)j . Note

that the update equation is multiplicative. If the activity in some voxel is set to zero in f0, it will remain
zero in all subsequent iterations. Hence, the following assumption on the domain of f0 is necessary to
guarantee convergence.

Assumption 4. The initial activity f0 is in ∆.

This assumption leads to two useful properties of the sequence of estimates {fk}, which are written
up in the next two lemmas.

Lemma 1. fk is in ∆ for all k.

Proof. This can be shown through mathematical induction. By assumption 4, f0 is in∆. Now, suppose
fk is in ∆. Then

∑J
j=1 f

k
j = 1. We need to show that fk+1 is in ∆, i.e. that

∑J
j=1 f

k+1
j = 1. To see this,

use the update equation:

J∑
j=1

fk+1
j =

J∑
j=1

[
fk
j

I∑
i=1

gipij∑J
j=1 pijf

k
j

]
=

I∑
i=1

J∑
j=1

[
fk
j

gipij∑J
j=1 pijf

k
j

]
=

I∑
i=1

gi
1∑J

j=1 pijf
k
j

J∑
j=1

[
fk
j pij

]
=

I∑
i=1

gi = 1.

(3.10)
The last equality is a consequence of assumption 1. This proves the induction step.

Lemma 2. The sequence {fk} is bounded.

Proof. From Remark 1, all fk are in ∆. Then
∑J

j=1 f
k
j = 1 and the fj are in R++. This implies that the

fj are bounded below by zero and above by 1. Therefore, ∥fk∥2 ≤ 1·J for all k, so {fk} is bounded.

Recall that the negative log-likelihood function l : ∆̄∩ Γ → R was derived in Eq. 3.6. For this proof,
the domain of l is extended to ∆̄ as follows:

l(f) =

{∑I
i=1

(
−gi ln

(∑J
j=1 pijfj

)
+
∑J

j=1 pijfj

)
, iff ∈ ∆̄ ∩ Γ

+∞, iff ∈ ∆̄ \ Γ
(3.11)

Thus, the negative log-likelihood of activity data that results in zero or negative observed counts in
a projection pixel, is set to approach infinity.

Remark 1. The set ∆ is a convex set.

3.2. Iterative methods 13

Theorem 1. The negative likelihood function l is convex, and it attains its minimum at points in ∆.

Proof. The twice differentiable negative log-likelihood function of several variables is convex on a con-
vex set if and only if its Hessian matrix of second order partial derivatives is negative semi-definite on
the interior of the convex set. Recall that ∆ is a convex set (Remark 1).

The Hessian matrix of l is given by

Hl =

∂2l

∂f2
1

· · · ∂2l

∂f1 ∂fJ
...

. . .
...

∂2l

∂fJ ∂f1
· · · ∂2l

∂f2
J

 (3.12)

P =

 p11 · · · p1J
...

. . .
...

pN1 · · · pNJ

 (3.13)

K =

κ(ϕ1, ϕ1) · · · κ(ϕ1, ϕJ)
...

. . .
...

κ(ϕJ , ϕ1) · · · κ(ϕJ , ϕJ)

 (3.14)

The second order partial derivatives are computed as follows:

∂2l

∂fa∂fb
=

∂

∂fa

(
I∑

i=1

pib −
gipim∑J
j=1 pijfj

)
= −

I∑
i=1

gipiapib(∑J
j=1 pijfj

)2 =
∂2l

∂fb∂fa
(3.15)

Clearly, Hl is a symmetric matrix. To check that Hl is negative semi-definite, we need to show
that uTHlu ≤ 0 for all u ∈ RJ . To this end, let u ∈ RJ be arbitrary. The product uTHl results in a J
dimensional row-vector:[∑J

j=1 uj
∂2l

∂f1∂fj
,
∑J

j=1 uj
∂2l

∂f2∂fj
, . . . ,

∑J
j=1 uj

∂2l
∂fJ∂fj

]
(3.16)

Multiplying by u gives a scalar

uTHlu =
∑
j′

uj′

 J∑
j=1

uj
∂2l

∂fj′∂fj

 (3.17)

Substituting the partial derivatives from Eq. 3.15 and rearranging the (now triple) summation yields

uTHlu = −
I∑

i=1

gi

 J∑
j′=1

uj′pij′∑J
j”=1 pij”fj”

J∑
j=1

ujpij∑J
j”=1 pij”fj”

 (3.18)

The two summations between square brackets are mutually independent, and identical up to the
naming of the index. Thus, we can combine the factors into a square term, which gives the desired
result; uTHlu ≤ 0 for all u ∈ RJ .

uTHlu = −
I∑

i=1

 √
gi∑J

j=1 pijfj

J∑
j=1

pijuj

2

≤ 0 (3.19)

We can close the gap between the likelihood equation and the update equation by examining the
minimisers of the likelihood function and the fixed points of the update equations.

Definition 8 (G). Let G denote the set of minimisers of l.

3.2. Iterative methods 14

Definition 9 (F). let F denote the set of fixed points of U . Fixed points of U are the points fn ∈ ∆̄ ∩ Γ
where f = U(f).

Theorem 2 (G ⊆ F). The set G is contained in the set F.

Proof. For differentiable convex functions l : RJ → R, a necessary and sufficient condition for a vector
f in its domain to be a minimiser is that ∇l(f) = 0.

∂l

∂fj
=

I∑
i=1

pib −
gipim∑J
j=1 pijfj

= 0 (3.20)

Rearranging this expression and using assumption 2 gives:

I∑
i=1

pijgi∑J
j=1 pijfj

− 1 = 0 (3.21)

Multiplying both sides by fj ,

fj

I∑
i=1

pijgi∑J
j=1 pijfj

− fj = 0 (3.22)

U(f)j − fj = 0 (3.23)

Thus, f is a fixed point of U .

The bivariate function d denotes the Generalised Kullback-Leibner divergence (GKLD) in ∆. The
GKLD computes the expectation of the logarithmic difference between the probability of the observed
data in the first distribution (x) with the second distribution (y)[20].

Definition 10 (Generalized Kullback-Leibler divergence). Define δ : R+ × R++ → R as

δ(a, b) =

{
a ln a

b , if a > 0

0, if a = 0.
(3.24)

Define d : ∆̄×∆ → R as

d(x, y) =

J∑
j=1

δ(xj , yj). (3.25)

The functions δ and d have some well-known properties, four of which are of importance in this
proof. Proofs of these, and more properties of the GKLD, can be found in [1].

1. δ(a, b) is continuous and jointly convex in a and b

2. d(x, y) ≥ 0 for all x in ∆̄ and y in ∆

3. d(x, y) = 0 if and only if x = y

4. For x in ∆̄, {yk} ⊂ ∆, limk→∞ d(x, yk) = 0 if and only if limk→∞ yk = x

Using property 1 in definition 10, the joint convexity of δ, the inequality in theorem 3 can be derived.

Theorem 3. For all z ∈ ∆̄ ∩ Γ, x ∈ ∆ we have d(U(z), U(x)) ≤ d(U(z), x)− d(U(z), z) + l(z)− l(x).

Proof. See [19].

The last function that is used to prove our final theorem, that the MLEM estimates converge to a
maximum likelihood solution, is ϕz.

Definition 11. For some fixed z in ∆̄ define ϕz : ∆̄ ∩ Γ → R as

ϕz(x) =

J∑
j=1

zj ln

(
I∑

i=1

gipij∑J
j=1 pijxj

)
(3.26)

3.2. Iterative methods 15

Theorem 4. ϕz(x) has the following properties:

1. ϕz(x) is continuous
2. ϕz(x) = d(z, x)− d(z, U(x)) for x in ∆

3. ϕz(x) ≥ 0 for all x in ∆̄ ∩ Γ

4. if ϕz(x) = 0 then x is in G

Proof. 1. Trivial
2. To show this, start from the right-hand side:

d(z, x)− d(z, U(x)) =

J∑
j=1

δ(z, x)−
J∑

j=1

δ(z, U(x)) =

J∑
j=1

zj ln
zj
xj

−
J∑

j=1

zj ln
zj

U(x)j
(3.27)

Combining the two summations and splitting the logarithms yields

d(z, x)− d(z, U(x)) =

J∑
j=1

[zj ln(zj)− zj ln(xj)− zj ln(zj)− zj ln(U(x)j)] (3.28)

Filling in the definition of U(x)j , cancelling like-terms and recombining the logarithms gives

d(z, x)− d(z, U(x)) =

J∑
j=1

zj ln

xj

∑I
i=1 gipij∑J
j=1 pijxj

xj

 = ϕz(x) (3.29)

3. This can be derived from Theorem 3 and taking z in G and x in ∆. From Theorem 2, we know
that z is a fixed point. Thus U(z) = z. Plugging this into 3 gives:

d(z, U(x)) ≤ d(z, x)− d(z, z) + l(z)− l(x) (3.30)

Rearranging and applying the third GKLD property yields

d(z, x)− d(z, U(x)) = ϕz(x) ≥ l(x)− l(z) ≥ 0 (3.31)

Where the last inequality follows from the fact that z is a minimiser of l, implying that l(z) ≤ l(x)
for x in ∆.

4. This also follows from Eq. 3.31,

ϕz(x) = 0 ≥ l(x)− l(z) ≥ 0 (3.32)

Therefore, we conclude that l(x) = l(z). Since z minimises l, this implies that x also minimises l,
hence x in also in G

Finally, we are able to prove the convergence of the MLEM algorithm to a maximum likelihood
solution.

Theorem 5. The sequence {fk}, defined by

• fk+1
j = fk

j

∑I
i=1

gipij∑J
j=1 pij

fj = U(fk)j

• f0 ∈ ∆

converges to a point f∗ in G.

3.2. Iterative methods 16

Proof. To prove the convergence, fix z inG. Combining properties 2 and 3 fromTheorem 4 and plugging
in fk for x, we find that the sequence {d(z, fk)} is decreasing and bounded from below by zero.

0 ≤ ϕz(f
k) = d(z, fk)− d(z, U(fk)) = d(z, fk)− d(z, fk+1) (3.33)

Since {d(z, fk)} is decreasing and bounded below by zero, this sequence converges. Consequently,
the sequence {ϕz(f

k)} goes to zero. To see this, use part 2. of Proposition 2,

lim
k→∞

ϕz(f
k) = lim

k→∞

(
d(z, fk)− d(z, U(fk))

)
= lim

k→∞

(
d(z, fk)− d(z, fk+1)

)
= 0 (3.34)

Recall from Remark 2 that the infinite sequence {fk} is bounded. By the Bolzano–Weierstrass
theorem, {fk} has a convergent subsequence. Let {fkm} denote a subsequence with limit point f∗,
such that limk→∞ fkm = f∗.

From Eq. 3.33, we find that

d(z, f∗) ≤ d(z, f0) (3.35)

Since z is a minimiser of l, f0 is in ∆̄ and by property 2 of the function d, we know that the right-hand
side of Eq. 3.35 is finite. Consequently, the left-hand side must also be finite. Since d(z, f) approaches
infinity for f in ∆̄− Γ, the limit point f∗ must be in ∆̄ ∩ Γ

Combining the converging subsequence {fkm} with the result in Eq. 3.34 gives

0 = lim
k→∞

ϕz(f
km) = ϕz(f

∗) (3.36)

By part 4. of Proposition 4, this implies x∗ is in G. Thus, we may apply part 3. of Proposition 4,

0 ≤ ϕf∗(fk) = d(f∗, fk)− d(f∗, U(fk)) = d(f∗, fk)− d(f∗, fk+1) (3.37)

The above implies that {d(f∗, fk)} is decreasing and bounded below by zero. Therefore, {d(f∗, fk)}
converges. Earlier, we noted that {fk} has subsequence {fkm}which converges to f∗. Thus {d(f∗, fkm)}
goes to zero by property 4 of GKLD. Since the limit of a convergent sequence equals the limit of any of
its subsequences, we must have that the sequence {d(f∗, fk)} as a whole goes to zero. Again, using
property 4 of GKLD, but now the other way, proves that limk→∞ fk = f∗, where f∗ was shown to be in
G.

Bare MLEM is notorious for its slow convergence, especially in low activity (’cold’) regions. Many
accelerating modifications to MLEM have been proposed during the last decades, but convergence of
the image usually is often not preserved for these variations.

Figure 3.2: A smooth ground truth activity (left) is reconstructed using MLEM (right) and shows the checkerboard effect.

Interestingly, though, convergence to a maximum likelihood solution does not actually imply that the
estimates are closer to the ground truth after every iteration. Initially, the images converge to the ground
truth, but at later iterations, the image start to degrade due to the non-idealities, such as noise, in the
projections. The images at high iteration numbers are dominated by high spatial frequencies and are
thereby too noisy to be used for diagnosis. This is referred to as the chessboard or checkerboard effect,
because the images show sharp edges with higher pixel values alternating with lower pixel values[9].
Early-stopping rules and low-pass post-filtering are used in order to obtain a smooth and accurate
reconstruction[36]. The most commonly used filter is the Gaussian filter. The amount of blurring caused
by the filter can be adjusted by tweaking the standard deviation σ of the applied filter. The best value
of σ, one that reduces noise yet does not remove too much detail, needs to be determined ad hoc[4].

3.2. Iterative methods 17

Figure 3.3: Examples of linearly separable datasets. The hollow and solid dots represent the two classes of data to be
separated, the green line is the decision hyperplane and the green region is the margin. (I): dataset in R1. (II): dataset in R2.

3.2.2. Kernelised Expectation-Maximisation
MLEM image reconstruction for short time-frames in dynamic SPECT scanning is troublesome, due to
low-counts and relatively high noise. Wang and Qi addressed this challenge for PET reconstruction
in their paper “PET Image Reconstruction Using Kernel Method” (2015). Their proposed Kernelised
Expectation-Maximisation (KEM) incorporates prior information about the activity in each voxel in the
projection model to aid the reconstruction of a low-count time-frames. For the implementation of KEM,
Wang and Qi took inspiration from several machine learning techniques, which are explained in the
next sections.

Support Vector Machines
The Support Vector Machine (SVM) is a popular classification algorithm. It classifies new data points
based on the position of the data point with respect to a so-called decision hyperplane. A hyperplane
is an (n − 1)-dimensional subspace that divides an n-dimensional space into two half-spaces. Thus,
a hyperplane in one-dimension is a single point, in two-dimensions it is a line, in three dimensions it
is a plane, etc. Defining the decision hyperplane is essentially an optimisation problem. The SVM will
try to find a hyperplane which separates the data points of opposite labels and maximises the margin
between the two subsets[8]. The margin is defined as the distance between the decision hyperplane
and the data point closest to it. This data point is called the support vector, hence the name SVM.

In mathematical terms, let (x1, y1), (x2, y2), . . . , (xN , yN) denote a dataset. xi ∈ Rn is the feature
vector of a data point and yi ∈ {+1,−1} is the target, i.e. the label that the SVM tries to fit. The optimal
decision hyperplane can be written as in Eq. 3.38, where w ∈ Rn is the normal vector to the hyperplane.

wT · x = 0 (3.38)

To decide on the label y∗ of a feature x∗, the decision rule in Eq. 3.39 is in place.

y∗ =

{
+1, if wT · x∗ + b > 0

−1, if wT · x∗ + b < 0
(3.39)

An example of a one dimensional dataset is depicted in Fig. 3.3.I. This dataset contains points in R1

which are either labelled by a hollow (+1) or by a solid marker (−1). The green line marks the optimal
decision hyperplane. Points on the left side of the decision-point are solid, the other points are hollow.
The same principle extends to R2 (Fig. 3.3.II.) and higher dimensions alike.

3.2. Iterative methods 18

'Lifting trick'1
The datasets shown in 3.3 are not very representative of real-life datasets, since they are linearly
separable, whereas most datasets are not. A rudimentary example of a linearly inseparable dataset in
plotted in Fig. 3.4.I. Here, the points near the centre of the data cluster are of the hollow class, while
the points further away are solid. Thus, we cannot define a point that separates the data points into
the two distinct classes, let alone optimise its margin.

To solve the problem of linear inseparability, the original features in Rn are ’lifted’ to a higher-
dimensional space RN by a feature map Φ, such that the data points from the two different classes
become linearly separable in the RN . The SVM will now be able to find the decision-hyperplane in this
higher-dimensional space. The expression for this hyperplane is given in Eq. 3.40, where v ∈ RN is a
normal vector to the decision hyperplane in the higher dimensional space[14].

vT · ϕ(x) = 0 (3.40)

To decide on the label y∗ of a feature ϕ(x∗), the modified decision rule in Eq. 3.41 is in place.

y∗ =

{
+1, if vT · ϕ(x∗) > 0

−1, if vT · ϕ(x∗) < 0
(3.41)

The linear decision hyperplane can be mapped back to the original data space, resulting in a non-
linear decision boundary.

The feature map used in Fig. 3.4 is Eq. 3.42. Unfortunately, however, in general it is not obvi-
ous what feature maps will enable the SVM to separate the data. Moreover, the data may require an
extremely complex and high (or even infinite) dimensional mapping to facilitate support vector clas-
sification. Consequently, optimising the hyperplane will require heavy computations on polynomial
combinations of feature vectors in RN . The computational costs of this may become rampant.

ϕ

([
X1

X2

])
=

 X1

X2

X2
1 +X2

2

 =

X1

X2

X3

 (3.42)

'Kernel trick'
The kernel trick avoids the need to perform computations in the high-dimensional feature space explic-
itly. Instead, only a simple kernel function κ : Rn × Rn → R is used. An example of a kernel function
is the radial basis function (RBF) in Eq. 3.43.

κ(ϕ1, ϕ2) = exp
(
−γ∥ϕ1 − ϕ2∥2

)
= exp

(
−γ
(
ϕ2
1 + ϕ2

2 − 2ϕ1ϕ2

))
(3.43)

Due to the norm that appears in the exponent, we can quickly deduce that feature vectors with a
small distance between them result in a larger value of κ. Thus, in a sense, the kernel function is a
measure of similarly between features. The kernel parameter γ scales the values of κ; decreasing
γ means that the kernel function of feature-pairs returns larger values. For mathematical simplicity,
assume γ = 1

2 .
To see how this simple formula implicitly performs computations in high-dimensional feature space,

we use a Taylor expansion of the factor exp(ϕ1ϕ2). Recall that the general Taylor series expansion of
exp(x) at x = 0 is given by Eq. 3.44.

exp(x) = 1 +
1

1!
x1 +

2

2!
x2 +

3

3!
x3 + ... (3.44)

Plugging in ϕ1ϕ2 in the place of x yields

exp(ϕ1ϕ2) = 1 +
1

1!
(ϕ1ϕ2)

1 +
2

2!
(ϕ1ϕ2)

2 +
3

3!
(ϕ1ϕ2)

3 + ... (3.45)

This expression can be written as the inner product between two rather fiddly vectors:
1The term ’lifting trick’ was taken from the blogposts and dissertation by Dr. Gregory Gundersen

3.2. Iterative methods 19

(I) (II)

X1

X2

X1

X2

X3

(III)

X1

X2

Figure 3.4: Demonstration of the ’lifting trick’. The hollow and solid dots represent the two classes of data to be separated, the
green line is the decision hyperplane and the green region is the margin. (I): A linearly inseparable dataset in the input space.
(II): The same dataset as in (I), mapped to R2 (the feature space), where the dataset is linearly separable by a hyperplane. The
feature map is described by X3 = X2

1 +X2
2 . (III): The same dataset and hyperplane mapped back to the input space, where
the decision hyperplane is non-linear.

exp(ϕ1ϕ2) =

1√
1
1!ϕ1√
1
2!ϕ

2
1√

1
3!ϕ

3
1

...

·

1√
1
1!ϕ2√
1
2!ϕ

2
2√

1
3!ϕ

3
2

...

(3.46)

Thus, we can actually rewrite the last factor of the kernel function in Eq. 3.43 as a dot product of
infinite dimensional vectors. To write the entire kernel function as a dot product, we must include the
square root of the first factor exp

(
− 1

2

(
ϕ2
1 + ϕ2

2

))
into the vectors in Eq. 3.46. For readability, define

c =
√
exp

(
− 1

2 (ϕ
2
1 + ϕ2

2)
)
. The full dot-product representation for the kernel function then becomes

κ(ϕ1, ϕ2) =

c

c
√

1
1!ϕ1

c
√

1
2!ϕ

2
1

c
√

1
3!ϕ

3
1

...

·

c

c
√

1
1!ϕ2

c
√

1
2!ϕ

2
2

c
√

1
3!ϕ

3
2

...

(3.47)

From this form, it becomes clear that the kernel function implicitly calculates the dot product be-
tween features in the high-dimensional space. Thus, the great advantage of the kernel trick is that the
mapping to the high-dimensional space in not performed explicitly, hence does not require the enor-
mous computational power that the lifting trick does. Moreover, we do not even need to know the
mapping that is needed to transform the dataset to the higher-dimensional space, since we use infinite
dimensional dot-products[30].

Feature extraction
The KEM method defines a set of feature vectors {ϕj}Jj=1, where every vector is related to a single
voxel. The feature vectors contain prior information about the activity in that specific voxel. This prior
information could come from projections from earlier or later time-frames in case of dynamic SPECT,
or from for example the data of a simultaneous MRI-scan in case of multi-modal imaging.

Kernel function
The label corresponding to feature vector ϕj is the unknown activity fj . KEM assumes that every fj
can be described as some function Γ of its corresponding feature vector ϕj (Eq. 3.48).

3.2. Iterative methods 20

feature domain

compute kernel coefficients

kernel matrix

coefficient domain projection domain

image domain

prior information

Pij
Pij

Pij

project

compare

backproject

update and normalise

reconstructed image

Figure 3.5: The KEM algorithm displayed in separate steps. The inputs are time-binned MLEM reconstructions (used to
construct the kernel matrix), α̂0 (the initial guess for the coefficient image) and g (the recorded projection).

3.2. Iterative methods 21

fj = Γ(ϕj) (3.48)
Generally, a highly complex and non-linear function Γ is needed to describe the activities accurately.

Thus, a simple linear model in the feature space, such as Γ(ϕj) = wTϕj is usually not adequate. In the
same spirit as for Support Vector Machines, the ’lifting trick’ can be used on the features to find a linear
expression for Γ. The vector-valued function Φ : RB → RN maps the feature vectors from their original
low-dimensional space to a high or even infinitely dimensional feature space RN . The feature mapping
is chosen such that Γ becomes a linear function of the feature vectors in the higher-dimensional feature
space.

fj = Γ(ϕj) = vTΦ(ϕj) (3.49)
In Eq. 3.49, v ∈ RN is a vector in the higher-dimensional feature space, which can be written as a

weighted sum of all j higher-dimensional features Φ(ϕj).

v =

N∑
l=1

αlΦ(ϕl) (3.50)

Substituting 3.50 into 3.49 results in a formula that shows that the activity in voxel j can be written
as a weighted sum of high-dimensional dot products.

fj = Γ(ϕj) =

N∑
l=1

αlΦ(ϕl)
TΦ(ϕj) (3.51)

The feature mapping Φ is unknown, however, and additionally it tends to be very high dimensional.
This makes the computations very computationally demanding. In the same way as shown earlier, this
problem is averted by applying the ’kernel trick’. The inner products of the unknown high-dimensional
features are then replaced by a kernel function of the original features.

fj =

N∑
l=1

αlκ(ϕl, ϕj) (3.52)

This summation can be summarised for the whole set of voxels in the vector-matrix product 3.53.

f = Kα (3.53)
In this equation, K ∈ RJ×J is the kernel matrix, where element (l, j) is equal to κ(ϕl, ϕj), and α ∈ RJ

is the kernel coefficient vector. Using this expression in the forward model that was introduced in Eq.
2.3 yields the kernel-based forward model.

g = PKα (3.54)

Update equation for KEM
In a similar fashion to MLEM, the KEM algorithm is aimed at finding a kernel coefficient vector α̂KEM that
maximises the expectation of the Poisson-likelihood of the observed data. In order to obtain physically
valid solutions only, the solution space is limited to A = {α ∈ RJ |αj ≥ 0, ∀j = 1, ..., J}.

α̂KEM = argmax
α∈A

L(g|Kα) (3.55)

Once again, an iterative update formula is used to estimate α̂KEM:

α̂n+1 =
α̂n

KTPT1I

(
KTPT g

KPα̂n

)
(3.56)

In order to find the KEM-estimate of the activity f̂KEM from the αKEM, the following equation is used.

f̂KEM = Kα̂KEM (3.57)
It is interesting to note that the KEM algorithm reduces to theMLEM algorithm if theK-matrix is replaced
by the J-dimensional identity matrix.

4
Practical Implementation

The implementation of the reconstruction methods was done in Python 3. An annotated excerpt of the
source code that was written for this paper is included in the appendix.

4.1. Simulated Scanner
The three-headed U-SPECT scanner with a multi-pinhole collimator as described in Section 2.2 was
used in the simulations. Its system matrix, which is used for real experimental purposes, was provided.
In this matrix, the scanner volume is discretised into 105 by 105 by 79 cubic voxels of size 0.75mm. The
three detector plates each measure 464 by 383 pixels, where a pixel is 1.1 by 1.1 mm. This implies that
there are over 4.5 · 1011 possible voxel-pixel pairs. Storing all the elements of the system matrix in the
memory of a computer and performing matrix-multiplications with it impractical and impossible at worst
in many cases due to memory issues. The full (’dense’) representation is redundant, since the majority
of emitted photons are blocked by the pinhole collimator. This is shown in Fig. 4.2, which displays
the simulated projection of the phantom in Fig. 4.1. This leads to many zero-elements in the matrix,
making it a natural choice to save P in a sparse format. Oftentimes, also a threshold is used to further
decrease the matrix size, by eliminating voxel-pixel combinations which have a detection probability
below the threshold between them[5]. The probabilities in this matrix take into account penetration of
the pinholes, but scatters are not included in the model.

4.2. Simulated Phantoms
Two dynamic phantoms were simulated to test the performance of the reconstruction algorithms. The
difference between the two phantoms lies in the type of dynamic behaviour. The striatum phantom
keeps the same relative shape throughout all time-frames, but decreases in total intensity as time
progresses. In the hepatobiliary phantom, the tracer moves from one organ to the next, which causes
changes in shape and total intensity of the activity inside the phantom.

X

0
20

40
60

80
100

Y

0
20
40
60
80
100

Z

0

20

40

60

Figure 4.1: Example of a small spherical tracer distribution inside the U-SPECT scanner.

22

4.2. Simulated Phantoms 23

Figure 4.2: The projection of the spherical tracer distribution shown in Fig. 4.1.

4.2.1. Striatum phantom
This phantom is based on the paper ’Movies of dopamine transporter occupancy with ultra-high reso-
lution focusing pinhole SPECT’ by Vastenhouw et al.[33]. In this paper, U-SPECT was used to study
the dynamics of dopamine transporter (DAT), a neurotransmitter which is suspected to play a key role
in the degeneration in Parkinson’s disease. The binding of DAT takes place in the striatum, a cluster
of neurons in the forebrain, which is responsible for the reward system and the motor system[13].

striatum

olfactory tubercle

Figure 4.3: A labelled two-dimensional slice of the striatum phantom, including the olfactory tubercles. Adapted from
Vastenhouw et al[33].

The method used was as follows: a small dosage of radiolabelled DAT was administered to labo-
ratory mice. The researchers waited four hours to allow the tracer to spread evenly before injecting
the mice with a dosage of cocaine. In order to observe the effects of the cocaine on the DAT binding,
45 second-long SPECT acquisitions were performed from 17 minutes before the cocaine-injection up
to 28 minutes after the injection. MLEM was used to reconstruct each of these images, to create the
movie that is featured in the title of their paper. The olfactory tubercle, a small sub-structure of the
striatum, was of particular interest for the study.

For this paper, 3D series of dynamic phantoms with a similar anatomy were generated to compare
the performance of the MLEM and KEM algorithm for SPECT image reconstruction. To this end, the
autoradiographic image was taken from the paper by Vastenhouw et al. and traced using automatic
tracing software. This created an image of the brain slice, including the olfactory tubercle, in six discrete
intensity-levels. The activity-level was adjustable to enable both high-count and low-count simulations
and to simulate the time-dependent decrease in DAT binding. A two-dimensional slice of the striatum
phantom is shown in Fig. 4.3.

The dynamic series of phantoms used in this paper were made on the basis of the results displayed
in Figure 1 [p. 985] of the aforementioned research. Here, it was noted that:

• The total activity in the left and right striatum fluctuated between 90% and 100% of its maximum
value during the 17 minutes leading up to the cocaine injection until 3 minutes after the adminis-
tration

• The total activity in the left and right striatum decreased approximately linearly from 100% at the
20-minute mark to 50% at the last frame at 45 minutes.

One hundred consecutive 45-second frames were simulated, a small selection with time-stamps
and a graph with their respective total activities is shown in Fig. 4.4.

4.3. Simulated Projections 24

0 5 10 15 20 25 30 35 40 45

60

80

100
A
ct
iv
it
y
[%
]

Figure 4.4: Top: Total activity in the left and right striatum, expressed as the percentage of the maximum activity over all
frames. The dashed vertical line denotes the moment when the cocaine was administered. Bottom: Ten temporal frames of the

simulated phantom, where the activity in each phantom corresponds to the time indicated straight above it.

Time [s]
0 100 200 300 400 500 600

20

40

60

80

100

A
ct

iv
it
y
[%
]

Figure 4.5: Top: Total activity in the phantom. Bottom: Thirteen temporal frames of the simulated phantom, where the activity
in each phantom corresponds to the time indicated straight above it.

4.2.2. Hepatobiliary phantom
The second phantom was adapted from the paper ’Fast Spiral SPECT with Stationary γ-Cameras and
Focusing Pinholes’ by Vaissier et al.[32]. This research used in vivo dynamic scans of the thorax and
abdomen of a mouse. For this, the radioligand 99mTc-mebrofenin was injected in the tail vein. From
there, it circulated to the liver and subsequently secreted to the bowel. The goal of this scan was to
create a series of images that show the hepatobiliary tracts that connect the liver, gallbladder and bile.
As opposed to the striatum phantom, this phantom is highly-dynamic in shape due to the excretion of
the tracer.

The scanning started at the instant that the tracer was injected and finished 5 minutes later. The
time-frames lasted 15 seconds each, resulting in a total of 20 frames. The reconstructions for a set of
time-frames is shown in 4.5. These reconstructions were traced similarly to the striatum phantom to
create phantoms that can be adjusted and used in the simulations in this paper.

4.3. Simulated Projections
The phantoms introduced in the previous section were used to create time-series of projections. This
was done by taking each time-frame of the phantom and performing a forward projection using the
system matrix. These are the expectations of the detected counts. The projections used for the recon-

4.4. Constructing the Kernel Matrix 25

structions in the simulations were obtained by taking a Poisson realisation of the forward projection.
For the source code of this step, see the function SimulateProjections in line 236 in the Appendix.

4.4. Constructing the Kernel Matrix
To compile the kernel matrix, the prior information first needs to be packed into feature vectors. After
that, the features are used to compute the coefficients in the kernel matrix using the kernel function.

Extracting feature vectors
To define the feature vectors for dynamic SPECT, Wang and Qi use MLEM reconstructions of summed
dynamic data. To this end, they rebinned the full dataset, consisting of many timeframes, into T suc-
cessive bins. For each bin of projections, the counts in each detector pixel are summed along the
time-axis, resulting in T relatively high-count projections (left-hand side of Eq. 4.1).

{grebt }Tt=1
MLEM−−−→ {f̂reb

t }Tt=1 (4.1)

These composite images are then reconstructed using MLEM, which is expected to return accept-
able reconstructions due to the increased number of counts (right-hand side of Eq. 4.1). The number
of bins that will, in the end, result in the best KEM reconstruction is highly dependent on the dynamics
of the tracer within the body. Selecting a high T will reduce the number of counts per rebinned MLEM
reconstruction, which increases the noise present in the feature vectors. Choosing a low T , on the
other hand, will not capture the temporal dynamic behaviour of the tracer, since the projections are
summed over extended periods of time.

Each feature vector ϕj contains prior information about the activity in voxel j. The set of features
{ϕj}Jj=1 consists of T -dimensional vectors whose values are the MLEM-reconstructed activities during
each of the three time-bins for voxel j. The source code that is responsible for obtaining the feature vec-
tors is included in the Appendix in the functions RebinProjections and ReconstructRebinnedProjections.

ϕj =

f̂reb
1,j

f̂reb
2,j
...

f̂reb
T,j

 (4.2)

Kernel function
As mentioned, the (j, l)-th element of K is κ (ϕj , ϕl). A variety of kernel functions κ exist, the most
popular one being the Radial Basis Kernel. This kernel is a measure for similarity between two features.
Using the formula for the RBK (Eq. 4.4) directly, however, would result in a very large, dense matrix.
This would make it infeasible to perform the update equations.

κ(ϕj , ϕl) = exp
(
−∥ϕj − ϕl∥2

2σ2

)
(4.3)

For this reason, the k-nearest-neighbour (kNN) model is employed to make the K-matrix sparse
and thereby reduce computation time and required memory. The k-nearest-neighbour model finds, for
a feature ϕj , the k features that are closest in terms of Euclidean distance. These nearest neighbours
are incorporated in the RBK for KEM, where the value zero is assigned to any feature that is not within
the kNNs.

κ(ϕj , ϕl) =

{
exp

(
−∥ϕj−ϕl∥2

2σ2

)
, if ϕl ∈ kNN of ϕj

0, otherwise
(4.4)

The choice of k in the construction of the kernel matrix is important. Choosing a value that is too
small will diminish the advantages that KEM offers over MLEM for reconstruction of noisy, low-count
projection. Making k too large, on the other hand, will oversmooth small structures in the image that
actually have less than k similar pixels.

Finding the k-nearest-neighbours for some feature vector and its kernel with each neighbour is quite
a heavy and time-consuming computation. Fortunately, this step is an independent process for each of
the J features vectors. Thus, parallel computing could be used to accelerate this step. To do this, the

4.5. Simulation parameters 26

set of feature vectors was split up in smaller batches. The Multiprocessing package was used to assign
each batch to a different core of the computer’s processor. The results of each core are combined then
to construct the kernel matrix.

4.5. Simulation parameters
In each simulation, some parameter is adjusted to study its effects on the MSE and SNR of the re-
construction. The resulting KEM-images are benchmarked against MLEM with a three-dimensional
Gaussian post-filter of standard deviation of 1 voxel.

A series of eight simulations was performed, using the inputs displayed in Table 4.1. Simulations 3,
4, 7 and 8 serve to show the effects of choosing a different k or T , whereas simulations 1, 2, 6 and 7
show the method’s robustness to noise, since the relative noise is much lower in high-count projections.

Phantom Description Counts k T
1 Striatum High count 1012 48 3
2 Striatum Low count 107 48 3
3 Striatum High k 107 576 3
4 Striatum Low k 107 4 3
5 Hepatobiliary High count 1012 48 3
6 Hepatobiliary Low count 107 48 3
7 Hepatobiliary Many bins 107 48 10
8 Hepatobiliary Few bins 107 48 1

Table 4.1: The simulations presented in this chapter. The description denotes the parameter that is changed from the values
used by Wang and Qi. The Counts reflect the total number of counts recorded in all time-frames.

4.6. Performance Metrics
In present-day literature in the field of nuclear imaging, a variety of metrics are employed to quantify the
quality of an image. Since in this research only simulations are used, the ground truth image is known.
Thus, it is possible to use the Mean-Squared Error (MSE) as a performance metric. The formula to
compute the MSE between the ground truth image f and the reconstruction f̃ is displayed in Eq. 4.5.
The MSE is computed at every iteration of the reconstruction algorithm to also monitor the convergence
to or divergence from the ground truth image.

MSEdB(f̂ , f) = 10 log10

(
∥f−f̃∥2

Nn

)
(dB) (4.5)

It is interesting to look at the signal-to-noise ratio (SNR), since MLEM is known to converge more
slowly in regions with low activity. By monitoring the SNR, it is possible to study the convergence rate
of a reconstruction algorithm in hot and cold parts of the phantom. The SNR is computed by selecting
a large number of voxels in a cold region and finding the mean activity N̂ . The same is done to find the
average activity Ŝ for a set of voxels in a hot region. The regions used for the computation are shown
in Fig. 4.6 The SNR is computed with the formula in Eq. 4.6. The SNR is also computed at every
iteration of the algorithm.

SNRdB(f̂) = 10 log

(
Ŝ

N̂

)
(dB) (4.6)

Naturally, the quality of a reconstruction can also be judged by simply inspecting the image produced.
While the reconstructions are three-dimensional, it is customary to view two-dimensional slices rather
than a volumetric render. In the next chapter, the central slice of MLEM and KEM from three different
time-frames are displayed for every simulation alongside the ground truth activity of the time-frame.
This gives a general idea of how well each region was recovered, however it is difficult to distinguish
the differences between images quantitively.

For this reason, it is also useful to inspect the (reconstructed) activity along a single line through the
scanner. These so-called profile lines give more insight into the differences and similarities between

4.7. Computational Specifications 27

Figure 4.6: The two regions of the 50th frame of hepatobiliary phantom (left) and the striatum phantom (right). Yellow areas
denote the hot regions and purple areas denote cold regions.

Figure 4.7: An example of the striatum phantom (left) and the hepatobiliary phantom (right) with the location of the profile line
marked in white.

the reconstructions and the ground truths. The profile lines shown in the Results are drawn through
the middle of the central slice, as depicted in Fig. 4.7.

In order to assess the performance of KEM and compare it to MLEM with a Gaussian post-filter, it
is important to note that KEM is an adaptable method, in the sense that the algorithm uses a number
of parameters as inputs. These parameters can be adjusted depending on the scan, by looking for
example at the dynamics and shape of the phantom or the amount of counts recorded. The next
section describes the simulations that were performed to assess KEM with a variety of inputs.

4.7. Computational Specifications
Due to the sheer size of the system matrix P and kernel matrix K, computations involving them are
computationally demanding, even when performed using only sparse matrices. The sizes and densities
of P andK are summarised in Table 4.2. The time it takes to calculate a forward or backward projection,
operations which are both executed in every iteration of MLEM and KEM, increases rapidly with the
number of pixels and voxels. Therefore, the high-performance computing cluster (HPC) of the TU Delft
was used to execute the code that contains image reconstructing algorithms.

Dimensions Elements Density
P 533136 by 870975 141647390 3.1 · 10−2 %
Kk=4 870975 by 870975 3483900 4.6 · 10−4 %
Kk=48 870975 by 870975 41806800 5.5 · 10−3 %
Kk=576 870975 by 870975 501681600 6.6 · 10−2 %

Table 4.2: The dimensions, number of non-zero elements and density of the matrices used in the simulations.

For sparse matrix computations, the SciPy Sparse module was used. This module offers a range
of sparse data formats, such as Compressed Sparse Column, Compressed Sparse Row and List of
Lists, each with their own advantages and disadvantages. Choosing the appropriate format can lead to
significant speed-ups for matrix construction and matrix multiplications[34]. Nonetheless, constructing
the kernel matrix can be a lengthy process, especially when k is large.

A simple method to reduce computation-time is by using that matrix multiplication is associative.
While computing the KEM updates, the product (PK)α̂ takes much longer to execute than P (Kα̂).
This is due to the fact that it is more demanding to calculate the matrix-matrix product followed by a
matrix-vector product than it is to perform two consecutive matrix-vector products. The iterations of
both MLEM and KEM are also accelerated by computing the normalisation factors KTPT

1N (KEM)
and PT

1N (MLEM) only once instead of at every iteration, since it doesn’t change unless P andK do.

5
Results

In this chapter, the results of the simulations described in 4.5 are presented. For each simulation, the
MSE and SNR are plotted alongside the converged reconstructions and a profile line. The simulations
are followed by a Discussion.

5.1. Striatum phantom with high counts
Simulation 1 used the default parameters of Table 4.1 on the striatum phantom in the high-count limit.

0 25 50 75 100 125 150 175 200
niter

20

15

10

5

M
SE

 [d
B]

MLEM
KEM

Figure 5.1: [Simulation 1] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.The line indicating noise-free KEM coincides with the line for noisy KEM. The line indicating noise-free MLEM

coincides with the line for noisy MLEM.

0 25 50 75 100 125 150 175 200
niter

10

5

0

5

10

15

SN
R

[d
B]

MLEM
KEM

Figure 5.2: [Simulation 1] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

28

5.1. Striatum phantom with high counts 29

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.3: [Simulation 1] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

2

4

6

Ac
tiv

ity

Ground truth
MLEM
KEM

Figure 5.4: [Simulation 1] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

Simulation 1 shows KEM and MLEM reconstructions of the striatum phantom in the high-count
limit. The images an dprofile line after 200 iterations (Fig. 5.3) look almost identical. The MSE of
the MLEM reconstruction decreases gradually with the iterations, whereas the KEM image initially
converges rapidly in terms of MSE and stabilises after roughly 20 iterations. The final MSE of MLEM
is lower than that of KEM. The SNR, on the other hand, is higher for KEM.

5.2. Striatum phantom with low counts 30

5.2. Striatum phantom with low counts
Simulation 1 used the default parameters of Table 4.1 on the striatum phantom in the low-count limit.

0 25 50 75 100 125 150 175 200
niter

120

115

110

105

M
SE

 [d
B]

MLEM
KEM

Figure 5.5: [Simulation 2] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

SN
R

[d
B]

MLEM
KEM

Figure 5.6: [Simulation 2] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.2. Striatum phantom with low counts 31

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.7: [Simulation 2] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

1

2

3

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.8: [Simulation 2] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

The final MLEM reconstructions are dominated by noise, both inside and outside the phantom. Its
contour is visible, but the hot regions and the olfactory tubercle are not clearly distinguishable. The
KEM image has very little noise outside the phantom and shows the tubercle and the hot spots in the
left striatum. This is also reflected in the SNR, which is higher for KEM. The profile line of MLEM shows
the checker-board effect, whereas the KEM line follows the ground truth more closely. The MSE of the
KEM image degraded compared to the high count simulation, but is still lower than MLEM.

5.3. Striatum phantom with k=576 32

5.3. Striatum phantom with k=576
Simulation 3 used 576 nearest-neighbours for the K-matrix.

0 25 50 75 100 125 150 175 200
niter

125

120

115

110

105

M
SE

 [d
B]

MLEM
KEM

Figure 5.9: [Simulation 3] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

10

5

0

5

10

SN
R

[d
B]

MLEM
KEM

Figure 5.10: [Simulation 3] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.3. Striatum phantom with k=576 33

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.11: [Simulation 3] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

1

2

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.12: [Simulation 3] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

Increasing k resulted in a smoother image than Simulation 2. The background noise that was visible
on the right side of the right striatum is no longer present in the KEM reconstruction. The SNR increased
and the MSE does not degrade as much as in the previous simulation.

5.4. Striatum phantom with k=4 34

5.4. Striatum phantom with k=4
Simulation 4 used only 4 nearest-neighbours.

0 25 50 75 100 125 150 175 200
niter

10.0

7.5

5.0

2.5

0.0

2.5

5.0

SN
R

[d
B]

MLEM
KEM

Figure 5.13: [Simulation 4] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

120.0

117.5

115.0

112.5

110.0

107.5

105.0

M
SE

 [d
B]

MLEM
KEM

Figure 5.14: [Simulation 4] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.4. Striatum phantom with k=4 35

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.15: [Simulation 4] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

1

2

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.16: [Simulation 4] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

Where KEM was able to accurately reconstruct the hot regions in both striata in Simulation 2 and
3, the image produced by Simulation 4 is more speckled in the high-activity areas and also along the
perimeter of the field of view. In the profile line, it is clear that KEM and MLEM both show the checker-
board effect. Thus, KEM lost some of its noise-reducing strength.

Despite the low number of nearest-neighbours, the K-matrix still caused KEM to result in images
with a higher SNR and lower MSE.

5.5. Hepatobiliary phantom with high counts 36

5.5. Hepatobiliary phantom with high counts
Simulation 5 used the default parameters of Table 4.1 on the hepatobiliary phantom in the high-count
limit.

0 25 50 75 100 125 150 175 200
niter

14

12

10

8

6

4

2

M
SE

 [d
B]

MLEM
KEM

Figure 5.17: [Simulation 5] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

7.5

5.0

2.5

0.0

2.5

5.0

7.5

SN
R

[d
B]

MLEM
KEM

Figure 5.18: [Simulation 5] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.5. Hepatobiliary phantom with high counts 37

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.19: [Simulation 5] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

2

4

Ac
tiv

ity

Ground truth
MLEM
KEM

Figure 5.20: [Simulation 5] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

The images after 200 iterations (Fig. 5.19 once again look identical. The MSE of the MLEM recon-
struction converges slowly and has not reached its limit after 200 iterations. The KEM image initially is
constant after roughly 70 iterations. The fast MSE of MLEM is lower than that of KEM. The SNR, on
the other hand, is higher for KEM.

5.6. Hepatobiliary phantom with low counts 38

5.6. Hepatobiliary phantom with low counts
Simulation 6 used the default parameters of Table 4.1 on the hepatobiliary phantom in the low-count
limit.

0 25 50 75 100 125 150 175 200
niter

115.0
112.5
110.0
107.5
105.0
102.5
100.0
97.5

M
SE

 [d
B]

MLEM
KEM

Figure 5.21: [Simulation 6] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

8
6
4
2
0
2
4
6

SN
R

[d
B]

MLEM
KEM

Figure 5.22: [Simulation 6] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.6. Hepatobiliary phantom with low counts 39

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.23: [Simulation 6] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

1

2

3

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.24: [Simulation 6] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

The MLEM image in the low-count limit looks speckled and shows a lot of noise along the perimeter
of the field of view. The hot-regions are over-estimated and the structures in the low-activity regions
are not visible in the final image. The KEM reconstruction is speckled, but the hot and cold regions are
identifiable. The background noise is low, which is also reflected in the high SNR. KEMalso outperforms
MLEM in terms of MSE.

5.7. Hepatobiliary phantom with T=10 40

5.7. Hepatobiliary phantom with T=10
Simulation 7 used 10 time-bins for the K-matrix.

0 25 50 75 100 125 150 175 200
niter

112

110

108

106

104

102

100

98

M
SE

 [d
B]

MLEM
KEM

Figure 5.25: [Simulation 7] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

10

5

0

5

SN
R

[d
B]

MLEM
KEM

Figure 5.26: [Simulation 7] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.7. Hepatobiliary phantom with T=10 41

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.27: [Simulation 7] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0

2

4

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.28: [Simulation 7] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

The KEM image degraded compared to the KEM image in simulation 6. The noise outside the
phantom is still suppressed compared to MLEM and the silhouette of the phantom is reconstructed
better.

5.8. Hepatobiliary phantom with T=1 42

5.8. Hepatobiliary phantom with T=1
Simulation 1 used 1 time-bin for the K-matrix.

0 25 50 75 100 125 150 175 200
niter

115.0

112.5

110.0

107.5

105.0

102.5

100.0

97.5

M
SE

 [d
B]

MLEM
KEM

Figure 5.29: [Simulation 8] Mean Squared Error as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

0 25 50 75 100 125 150 175 200
niter

7.5

5.0

2.5

0.0

2.5

5.0

7.5

SN
R

[d
B]

MLEM
KEM

Figure 5.30: [Simulation 8] Signal-to-noise ratio as a function of iteration number for KEM and MLEM reconstructions of the
50th frame.

5.8. Hepatobiliary phantom with T=1 43

Fr
am

e
25

MLEM KEM Ground truth

Fr
am

e
50

Fr
am

e
10

0

Figure 5.31: [Simulation 8] The MLEM and KEM reconstruction of frames 25, 50 and 100 after iteration 200, alongside the
ground truth activities.

0 20 40 60 80 100
Voxel position

0
1
2
3

Ac
tiv

ity

1e 5
Ground truth
MLEM
KEM

Figure 5.32: [Simulation 8] A profile line showing the (reconstructed) activity along the central horizontal line in frame 50 after
iteration 200.

Simulation 8 shows that summing all projection into one bin causes small structures within the cold
regions of the phantom to be over-smoothed. Nevertheless, KEM outperforms MLEM in both metrics.

5.9. Discussion 44

5.9. Discussion
In the high-count simulations 1 and 5, the images from MLEM and KEM reconstructions look identical.
KEM converged faster, but also starts to degrade, whereas MLEM has still not converged after 200
iterations. In the six low-count simulations, KEM outperforms MLEM in terms of MSE, SNR and by
examining the produced images.

Decreasing k diminished the noise-suppresion of KEM, but has benefits when computations need
to be fast or less intensive. The computing times are listed in Table 5.1. Assembling the sparse matrix
takes roughly 70 times as long, and the full 200 iterations of the KEM reconstruction time is increased
almost tenfold.

k=4 k=48 k=576
Finding nearest-neighbours 214.4 217.6 273.7
Assembling matrix 31.6 141.4 2133.1
Saving matrix to disk 3.0 21.2 311.4
200 MLEM iterations 92.8 92.2 103.6
200 KEM iterations 112.1 162.1 1060.2

Table 5.1: Comparison of computation times in seconds for k=4, k=48 and k=576 for constructing theK-matrix and performing
the KEM-update equation.

The value k=48 found optimal by Wang and Qi for their PET reconstruction does not yield the best
results in these simulations. The over-smoothing effects they encountered in their study were also not
observed in this research, though simulations with values of k over 576 were not performed.

The number of bins T did, however, affect the smoothing that occurred in the KEM images. Using
many bins deteriorated the MLEM reconstructions of the separate time-bins, since each bin contains
fewer counts. This caused the KEM reconstructions to become noisier. When only one bin is used, the
MLEM reconstruction of the single bin contains little noise, but also lacks the temporal behaviour of the
activity. In the final KEM reconstruction, the noise is suppressed nicely, but the specific shapes that are
characteristic to the time-frame are smudged. Moreover, increasing the dimensionality of the feature
vectors by increasing the number of bins causes the assembly of the K-matrix to be prolonged.

T=1 T=3 T=10
Finding nearest-neighbours 186.9 217.6 553.6
Assembling matrix 137.2 141.4 198.8
Saving matrix to disk 25.2 21.2 27.5
200 MLEM iterations 91.7 92.2 96.3
200 KEM iterations 163.8 162.1 179.8

Table 5.2: Comparison of computation times in seconds for T=1, T=3 and T=10 for constructing the K-matrix and performing
the KEM-update equation.

6
Conclusion

In this paper, the Kernelised Expectation Maximisation algorithm proposed for dynamic PET by Wang
and Qi (2015) was implemented for dynamic multi-pinhole SPECT. A series of computer simulations
of dynamic phantoms were performed to study the mean-square error to the ground truth and signal-
to-noise ratio of KEM reconstructions. The results for KEM were compared to conventional Maximum
Likelihood Expectation Maximisation reconstructions of the same frame with Gaussian post-filter.

When high-count projections were used, the significance of noise is smaller, hence the quality of
the MLEM reconstruction improves. MLEM performed better in the high-count regime than KEM with
regard to MSE, but the KEM images have a better SNR. The differences between the images after 200
iterations are marginal and are invisible to the naked eye.

The simulations from low-counts projections show that KEM can outperform MLEM with a post-
filter both in terms of MSE and SNR. The quality of the KEM images depends on a number of input
parameters of the algorithm. Future research could perform a more exhaustive search of the KEM-
parameter space to find a set of decision rules for choosing the optimal parameter values. Moreover,
experiments with real experimental data could show whether KEM indeed has the potential to either
increase the temporal resolution or decrease the tracer dosage needed to obtain dynamic SPECT
images.

45

References

[1] “3. Tomography”. In: Mathematical Methods in Image Reconstruction. Society for Industrial and
Applied Mathematics, Jan. 2001, pp. 41–62.

[2] Jingke Zhang et al. “A General Framework for Inverse Problem Solving using Self-Supervised
Deep Learning”. In: Department of Biomedical Engineering, School of Medicine, Tsinghua Uni-
versity, Beijing, China (2021).

[3] Marcel Beister, Daniel Kolditz, and Willi A. Kalender. “Iterative reconstruction methods in X-ray
CT”. In: Physica Medica 28.2 (Apr. 2012), pp. 94–108. DOI: 10.1016/j.ejmp.2012.01.003.
URL: https://doi.org/10.1016/j.ejmp.2012.01.003.

[4] Nicolai Bissantz, Bernard A. Mair, and Axel Munk. “A multi-scale stopping criterion for MLEM
reconstructions in PET”. In: 2006 IEEE Nuclear Science Symposium Conference Record. IEEE,
2006. DOI: 10.1109/nssmic.2006.353726. URL: https://doi.org/10.1109/nssmic.2006.
353726.

[5] Woutjan Branderhorst et al. “Targeted multi-pinhole SPECT”. In: European journal of nuclear
medicine and molecular imaging 38 (Nov. 2010), pp. 552–61. DOI: 10.1007/s00259-010-1637-
4.

[6] Chia-Lin Chen et al. “Integration of SimSET photon history generator in GATE for efficient Monte
Carlo simulations of pinhole SPECT”. In:Medical Physics 35.7Part1 (June 2008), pp. 3278–3284.
DOI: 10.1118/1.2940159. URL: https://doi.org/10.1118/1.2940159.

[7] Yuan Chen et al. “Optimized sampling for high resolution multi-pinhole brain SPECT with station-
ary detectors”. In: Physics in Medicine & Biology 65.1 (Jan. 2020), p. 015002. DOI: 10.1088/
1361-6560/ab5bc6. URL: https://dx.doi.org/10.1088/1361-6560/ab5bc6.

[8] Corinna Cortes and Vladimir Vapnik. In: Machine Learning 20.3 (1995), pp. 273–297. DOI: 10.
1023/a:1022627411411. URL: https://doi.org/10.1023/a:1022627411411.

[9] Jianan Cui et al. “Deep reconstruction model for dynamic PET images”. In: PLOS ONE 12.9
(Sept. 2017). Ed. by Li Zeng, e0184667. DOI: 10.1371/journal.pone.0184667. URL: https:
//doi.org/10.1371/journal.pone.0184667.

[10] Steven J. Duclos. Scintillator Phosphors for Medical Imaging. Summer. The Electrochemical So-
ciety, 1998.

[11] Alexander Etz. “Introduction to the Concept of Likelihood and Its Applications”. In: Advances in
Methods and Practices in Psychological Science 1.1 (2018), pp. 60–69. DOI: 10.1177/2515245
917744314. eprint: https://doi.org/10.1177/2515245917744314. URL: https://doi.org/10.
1177/2515245917744314.

[12] Ronald Sumida Farhad Daghighian and Michael E. Phelps. “PET Imaging: An Overview and
Instrumentation”. In: Journal of Nuclear Medicine Technology 18.1 (1990), pp. 5–13.

[13] H. Gray.Anatomy of the human body. 20th ed. ISBN: 1-58734-102-6. Philadelphia: Lea & Febiger,
1918.

[14] Gregory Gundersen. Implicit lifting and the kernel trick. 2021. URL: https://gregorygundersen.
com/.

[15] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. English.
New York: Dover Publications V, 316 p. (1952). 1952.

[16] Hamamatsu. Photomultiplier Tubes | Basics and Applications. 4th ed. 2017.
[17] Frans van der Have et al. “U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-

Animal Imaging”. In: Journal of Nuclear Medicine 50.4 (Mar. 2009), pp. 599–605. DOI: 10.2967/
jnumed.108.056606. URL: https://doi.org/10.2967/jnumed.108.056606.

46

https://doi.org/10.1016/j.ejmp.2012.01.003
https://doi.org/10.1016/j.ejmp.2012.01.003
https://doi.org/10.1109/nssmic.2006.353726
https://doi.org/10.1109/nssmic.2006.353726
https://doi.org/10.1109/nssmic.2006.353726
https://doi.org/10.1007/s00259-010-1637-4
https://doi.org/10.1007/s00259-010-1637-4
https://doi.org/10.1118/1.2940159
https://doi.org/10.1118/1.2940159
https://doi.org/10.1088/1361-6560/ab5bc6
https://doi.org/10.1088/1361-6560/ab5bc6
https://dx.doi.org/10.1088/1361-6560/ab5bc6
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1023/a:1022627411411
https://doi.org/10.1371/journal.pone.0184667
https://doi.org/10.1371/journal.pone.0184667
https://doi.org/10.1371/journal.pone.0184667
https://doi.org/10.1177/2515245917744314
https://doi.org/10.1177/2515245917744314
https://doi.org/10.1177/2515245917744314
https://doi.org/10.1177/2515245917744314
https://doi.org/10.1177/2515245917744314
https://gregorygundersen.com/
https://gregorygundersen.com/
https://doi.org/10.2967/jnumed.108.056606
https://doi.org/10.2967/jnumed.108.056606
https://doi.org/10.2967/jnumed.108.056606

References 47

[18] Ken Herrmann Hojjat Ahmadzadehfar Hans-Jürgen Biersack. Clinical Applications of SPECT-CT.
2nd ed. ISBN 978-3-030-65850-2. Deptartment of Nuclear Medicine Universitätsklinikum Essen:
Publisher, 2022.

[19] Alfredo N. Iusem. “A SHORT CONVERGENCE PROOF OF THE EM ALGORITHM FOR A SPE-
CIFIC POISSON MODEL”. In: Brazilian Journal of Probability and Statistics 6.1 (1992), pp. 57–
67. ISSN: 01030752, 23176199. URL: http://www.jstor.org/stable/43601445 (visited on
04/28/2023).

[20] JamesM. Joyce. International Encyclopedia of Statistical Science. Ed. byMiodrag Lovric. Springer
Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-04898-2. URL: https://doi.org/10.1007/
978-3-642-04898-2.

[21] H.S. Khare et al. “Comparison of static and dynamic cardiac perfusion thallium-201 SPECT”. In:
IEEE Transactions on Nuclear Science 48.3 (June 2001), pp. 774–779. DOI: 10.1109/23.940162.
URL: https://doi.org/10.1109/23.940162.

[22] Torsten Kuwert. “Skeletal SPECT/CT: a review”. In: Clinical and Translational Imaging 2 (2015),
pp. 505–517.

[23] Siqi Li et al.Neural KEM: A Kernel Method with Deep Coefficient Prior for PET Image Reconstruc-
tion. 2022. DOI: 10.48550/ARXIV.2201.01443. URL: https://arxiv.org/abs/2201.01443.

[24] Alireza Sadremomtaz Mahsa Noori Asl. “Analytical image reconstruction methods in emission
tomography”. In: Journal of Biomedical Science and Engineering 6.1 (2013). Department of
Physics, Faculty of Sciences, University of Guilan, Rasht, Iran.

[25] Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging. “Single
Photon Emission Computed Tomography”. In:Mathematics and Physics of Emerging Biomedical
Imaging 5 (1996). Available from: https://www.ncbi.nlm.nih.gov/books/NBK232492/.

[26] Medical imaging market size, share and growth analysis (Report ID: 978-1-68038-139-9). URL:
https://www.grandviewresearch.com/industry- analysis/medical- imaging- systems-
market.

[27] M Rentmeester, F Have, and Freek Beekman. “Optimizing multi-pinhole SPECT geometries us-
ing an analytical model”. In: Physics in medicine and biology 52 (June 2007), pp. 2567–81. DOI:
10.1088/0031-9155/52/9/016.

[28] D Strul S Jan G Santin. “GATE: a simulation toolkit for PET and SPECT”. In: Physics in Medicine
& Biology (2004). DOI: 10.1088/0031-9155/49/19/007.

[29] A. Seret and J. Forthomme. “Comparison of different types of commercial filtered backprojection
and ordered-subset expectation maximization SPECT reconstruction software”. In: Journal of
Nuclear Medicine Technology 37.3 (2009), pp. 179–187. DOI: 10.2967/jnmt.108.061275.

[30] Shai Shalev-Shwartz and Shai Ben-David. “Kernel Methods”. In: Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014, pp. 179–189. DOI: 10.1017/
CBO9781107298019.017.

[31] Pieter E. B. Vaissier. Image acquisition and reconstruction in multi-pinhole emission tomography.
2014.

[32] Pieter E.B. Vaissier et al. “Fast Spiral SPECT with Stationary γ-Cameras and Focusing Pinholes”.
In: Journal of Nuclear Medicine 53.8 (June 2012), pp. 1292–1299. DOI: 10.2967/jnumed.111.
101899. URL: https://doi.org/10.2967/jnumed.111.101899.

[33] B Vastenhouw et al. “Movies of dopamine transporter occupancy with ultra-high resolution focus-
ing pinhole SPECT”. In: Molecular Psychiatry 12.11 (July 2007), pp. 984–987. DOI: 10.1038/sj.
mp.4002028. URL: https://doi.org/10.1038/sj.mp.4002028.

[34] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[35] GuobaoWang and Jinyi Qi. “PET Image Reconstruction Using Kernel Method”. In: IEEE Transac-
tions on Medical Imaging 34.1 (Jan. 2015), pp. 61–71. DOI: 10.1109/tmi.2014.2343916. URL:
https://doi.org/10.1109/tmi.2014.2343916.

http://www.jstor.org/stable/43601445
https://doi.org/10.1007/978-3-642-04898-2
https://doi.org/10.1007/978-3-642-04898-2
https://doi.org/10.1007/978-3-642-04898-2
https://doi.org/10.1109/23.940162
https://doi.org/10.1109/23.940162
https://doi.org/10.48550/ARXIV.2201.01443
https://arxiv.org/abs/2201.01443
https://www.grandviewresearch.com/industry-analysis/medical-imaging-systems-market
https://www.grandviewresearch.com/industry-analysis/medical-imaging-systems-market
https://doi.org/10.1088/0031-9155/52/9/016
https://doi.org/10.2967/jnmt.108.061275
https://doi.org/10.1017/CBO9781107298019.017
https://doi.org/10.1017/CBO9781107298019.017
https://doi.org/10.2967/jnumed.111.101899
https://doi.org/10.2967/jnumed.111.101899
https://doi.org/10.2967/jnumed.111.101899
https://doi.org/10.1038/sj.mp.4002028
https://doi.org/10.1038/sj.mp.4002028
https://doi.org/10.1038/sj.mp.4002028
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/tmi.2014.2343916
https://doi.org/10.1109/tmi.2014.2343916

References 48

[36] Gengsheng L. Zeng. “The ML-EM algorithm is not optimal for poisson noise”. In: 2015 IEEE
Nuclear Science Symposium andMedical Imaging Conference (NSS/MIC). IEEE, Oct. 2015. DOI:
10.1109/nssmic.2015.7582178. URL: https://doi.org/10.1109/nssmic.2015.7582178.

https://doi.org/10.1109/nssmic.2015.7582178
https://doi.org/10.1109/nssmic.2015.7582178

A
Source Code

This excerpt of the source code is included to show the steps that are taken in the reconstruction. Some
functions, such as those responsible for the performance metrics and plotting the results, are omitted.

1 #CONSTANTS
2 J = 105 * 105 * 79 #number of voxels
3 N = 464 * 383 * 3 #number of pixels
4 sigma = 1
5

6 #SIMULATION SETTINGS
7 phantom_name = 'striatum'
8 k = 48
9 T = 3
10 counts = 10**7
11

12 #IMPORTS
13 import numpy as np
14 from scipy.sparse import csr_matrix, coo_matrix, load_npz
15 from scipy.ndimage import gaussian_filter
16 from multiprocessing import Pool, cpu_count
17 import matplotlib.pyplot as plt
18 import os
19 import scipy
20 from itertools import repeat
21 from sklearn.metrics import mean_squared_error
22 from sklearn.neighbors import NearestNeighbors
23

24

25 def MLEMIteration(x_n, y):
26 """
27 Parameters
28 ----------
29 x_n : numpy-array of length J
30 estimate of the activity after n iterations.
31 y : numpy-array of length N
32 observed projection.
33

34 Returns
35 -------
36 numpy-array of length J
37 estimate of the activity after n+1 iterations.
38 """
39 return x_n/PT1N*((P.T).dot(y/P.dot(x_n)))
40

41 def ReconstructMLEM(N_iter, y, x_0):
42 """
43 Parameters
44 ----------
45 N_iter : integer
46 number of MLEM iterations to be performed.
47 y : numpy-array of length N

49

50

48 observed projection.
49 x_0 : numpy-array of length J
50 initial estimate of the activity.
51

52 Returns
53 -------
54 x_n : numpy-array of length J
55 estimate of the activity after N_iter iterations.
56 """
57 x_n = x_0
58 for n in range(N_iter+1):
59 x_n = MLEMIteration(x_n, y)
60 return x_n
61

62 def KEMIteration(a_n, y):
63 """
64 Parameters
65 ----------
66 a_n : numpy-array of length J
67 estimate of the coefficient image after N_iter iterations.
68 y : numpy-array of length N
69 observed projection.
70

71 Returns
72 -------
73 numpy-array of length J
74 estimate of the coefficient image after n+1 iterations.
75 """
76 return a_n/KTPT1N*(K.T).dot((P.T).dot((y)/(P.dot(K.dot(a_n)))))
77

78 def ReconstructKEM(N_iter, y, a_0):
79 """
80 Parameters
81 ----------
82 N_iter : integer
83 number of KEM iterations to be performed.
84 y : numpy-array of length N
85 observed projection.
86 a_0 : numpy-array of length J
87 initial estimate of the coefficient image.
88

89 Returns
90 -------
91 x_n : numpy-array of length J
92 estimate of the activity after N_iter iterations.
93 """
94 a_n = a_0
95 for i in range(N_iter+1):
96 a_n = KEMIteration(a_n, y)
97 x_n = K.dot(a_n)
98 return x_n
99

100 def kNNPool(X1, X, k = k):
101 """
102 Parameters
103 ----------
104 X1 : numpy-array of size (B,10000)
105 subset of the feature vectors.
106 X : numpy-array of size (B,J)
107 set of all feature vectors.
108 k : integer
109 number of nearest-neighbors to be found. The default is sigma.
110

111 Returns
112 -------
113 distances : numpy-array of size (10000,k)
114 euclidean distance between a feature vector in X1 and its k nearest-neighbors.
115 indices : numpy-array of size (10000,k)
116 indices of the k nearest-neighbors of the feature vectors in X1.
117 """
118 nbrs = NearestNeighbors(n_neighbors=k).fit(X)

51

119 distances, indices = nbrs.kneighbors(X1)
120 return distances, indices
121

122 def SimulateProjections(phantom_name, counts):
123 """
124 Parameters
125 ----------
126 phantom_name : string
127 name of the phantom, 'striatum' or 'hepatobiliary'.
128 the file phantom_name.npy contains 100 frames of the phantom. the phantoms in the

file are normalised, in such a way that the projection of all 100 frames results
in an expected total projection of 1 count.

129 counts : int
130 desired number of counts in all 100 projections.
131

132 Returns
133 -------
134 projections : numpy-array of size (100,N)
135 the simulated projections of the desired phantom with the desired number of counts.
136 """
137 phantoms = np.load(phantom_name+'.npy', allow_pickle = True)
138 phantoms = phantoms * counts
139 projections = np.empty(len(phantoms), dtype = 'object')
140

141 for i in range(len(phantoms)):
142 expected_projection_i = P.dot(phantoms[i])
143 projections[i] = np.random.poisson(expected_projection_i)
144

145 return projections
146

147 def RebinProjections(T, projections):
148 """
149 Parameters
150 ----------
151 T : integer
152 number of time-bins.
153 projections : numpy-array of size (100, N)
154 simulated projections of the phantom.
155

156 Returns
157 -------
158 rebinned_projections : numpy-array of size (B, N)
159 rebinned projections of the phantom.
160 """
161 bin_indices = np.linspace(0,100,T+1, dtype = 'int')
162 rebinned_projections = np.empty(T, dtype = 'object')
163

164 for i in range(T):
165 start_ind = bin_indices[i]
166 end_ind = bin_indices[i+1]
167 rebinned_projections[i] = np.sum(projections[start_ind:end_ind], axis = 0)
168 return rebinned_projections
169

170 def GaussianFilter(image, sigma = sigma):
171 """
172 Parameters
173 ----------
174 image : numpy-array of size J
175 activity data.
176 sigma : float, optional
177 desired standard deviation of the gaussian filter that is applied. The default is

sigma.
178

179 Returns
180 -------
181 numpy-array of size J
182 filtered activity data.
183 """
184 image = image.reshape((ActDimZ, ActDimY, ActDimX))
185 return np.ravel(gaussian_filter(image, sigma = sigma, mode = 'constant', cval = 0))
186

52

187 def ReconstructRebinnedProjections(rebinned_projections , N_iter):
188 """
189 Parameters
190 ----------
191 rebinned_projections : rebinned_projections : numpy-array of size (B, N)
192 rebinned projections of the phantom.
193 N_iter : integer
194 number of MLEM iterations to be performed.
195

196 Returns
197 -------
198 features : numpy-array of size (J, T)
199 the set of feature vectors.
200 """
201 #parallel MLEM reconstruction of the rebinned projections
202 with Pool(cpu_count()-1) as p:
203 features = np.array(p.starmap(ReconstructMLEM, zip(rebinned_projections , repeat(

N_iter))))
204

205 #apply gaussian filter to reconstructions
206 for i in range(len(features)):
207 features[i] = GaussianFilter(features[i], sigma = 1)
208

209 #normalise the features
210 features = np.array(features)
211 features = np.nan_to_num(features)
212 std_features = np.std(features, axis=1)
213 features = np.dot(features.T , np.diag(1/std_features))
214

215 return features
216

217 def ParallelkNNSearch(features):
218 """
219 Parameters
220 ----------
221 features : numpy-array of size (J, T)
222 the set of feature vectors.
223

224 Returns
225 -------
226 kNN_ind : numpy-array of size (J, k)
227 indices of the k nearest-neighbors per feature vectors.
228 kNN_dist : numpy-array of size (J, k)
229 euclidean distance to its k nearest-neighbors per feature vector.
230 """
231 features_batched = np.split(features, 10000)
232

233 with Pool(cpu_count() - 1) as p:
234 features_kNN = np.array(p.starmap(kNNPool, zip(features_batched, repeat(features))))
235

236 kNN_dist = features_kNN[:,0,:,:].reshape((J,k))
237 kNN_ind = features_kNN[:,1,:,:].reshape((J,k))
238 kNN_ind = np.array(kNN_ind, dtype = int)
239

240 return kNN_ind, kNN_dist
241

242 def κ(dist):
243 return np.exp�(-*np.linalg.norm(dist)**2)
244

245 κ = np.vectorize(κ)
246

247 def ConstructKMatrix(kNN_ind, kNN_dist):
248 """
249 Parameters
250 ----------
251 kNN_ind : numpy-array of size (J, k)
252 indices of the k nearest-neighbors per feature vectors.
253 kNN_dist : numpy-array of size (J, k)
254 euclidean distance to its k nearest-neighbors per feature vector.
255

256 Returns

53

257 -------
258 K : sparse.csr_matrix
259 compressed sparse row (csr) matrix representation of the kernel matrix.
260 """
261 kNN_dist_radial = np.array(list(map�(, kNN_dist)))
262 row = np.repeat(np.arange(0,J), k)
263 col = kNN_ind.ravel()
264 data = kNN_dist_radial.ravel()
265 K=coo_matrix((data, (row, col)),shape=(J,J))
266 K = K.tocsr()
267 return K
268

269 if __name__ == '__main__':
270 #LOAD SYSTEM MATRIX
271 P = load_npz('system_matrix.npz'))
272

273 #PRECOMPUTATIONS FOR MLEM
274 PT1N = (P.T).dot(np.ones(N))
275

276 #CONSTRUCT K-MATRIX
277 projections = SimulateProjections (phantom_name, counts)
278 rebinned_projections = RebinProjections(T, projections)
279 features = ReconstructRebinnedProjections (rebinned_projections , N_iter)
280 kNN_ind , kNN_dist = ParallelkNNSearch (features)
281 K = ConstructKMatrix(kNN_ind , kNN_dist)
282

283 #PRECOMPUTATIONS FOR KEM
284 PT1N = (P.T).dot(np.ones(N))
285 KTPT1N = (K.T).dot(PT1N)
286

287 #RECONSTRUCTIONS
288 frame_nr = 50
289

290 x_MLEM = ReconstructMLEM(N_iter, projections[frame_nr], x_0)
291 x_KEM = ReconstructKEM(N_iter, projections[frame_nr], a_0)

	Summary
	Nomenclature
	Introduction
	Background
	SPECT
	Dynamic SPECT

	SPECT scanners
	Gamma-camera
	Pinhole collimator

	Mathematical basis
	Variable definitions
	Forward model
	Image reconstruction

	Reconstruction Methods
	Analytical methods
	Iterative methods
	Maximum Likelihood Expectation Maximisation
	Kernelised Expectation-Maximisation

	Practical Implementation
	Simulated Scanner
	Simulated Phantoms
	Striatum phantom
	Hepatobiliary phantom

	Simulated Projections
	Constructing the Kernel Matrix
	Simulation parameters
	Performance Metrics
	Computational Specifications

	Results
	Striatum phantom with high counts
	Striatum phantom with low counts
	Striatum phantom with k=576
	Striatum phantom with k=4
	Hepatobiliary phantom with high counts
	Hepatobiliary phantom with low counts
	Hepatobiliary phantom with T=10
	Hepatobiliary phantom with T=1
	Discussion

	Conclusion
	References
	Source Code

