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Chapter 1

Introduction

The vast majority of problems encountered in physics and engineering are described by

partial differential equations. Since solutions in closed form are available only for a very

small subset of problems, many strategies have been developed to obtain numerical ap-

proximations to describe the problem in an efficient and reliable way. Great advances in

the field of computer engineering, together with the development of refined numerical tech-

niques, have allowed in recent years high fidelity simulations of complex systems. However,

due to the enormous computational cost required by such calculations, the time required

for high-fidelity simulations remains extremely high.

In this framework, the aim of reduced-order modelling is to find techniques to simulate

very complicated systems in a more compact way. The main idea is to construct simpler

models which capture the main features of the original complex system, avoiding the com-

plete characterisation of all the states in the problem. In the literature several methods are

available to construct Reduced-Order Models (ROM) either from numerical simulations,

or experimental data sets. Often these methods rely upon projection frameworks, in which

the governing equations are projected onto suitably chosen basis functions.

In this context a method that has been successfully used over the last decades to con-

struct an optimal set of basis functions is the Proper Orthogonal Decomposition (POD).

The POD, also known in the literature as Karhunen-Loéve decomposition, Principal Com-

ponent Analysis (PCA) or Singular Value Decomposition (SVD), is a procedure for extract-

ing a basis for a modal decomposition from an ensemble of reference data. Its mathematical

properties illustrate that the error introduced by projecting a set of reference data in a

reduced-space is minimised upon choosing the POD basis functions. This makes the POD

MSc. Thesis S. Mattei



2 Introduction

particularly attractive for the construction of reduced-order models, and has been suc-

cessfully applied in many fields, e.g fluid dynamics and turbulence (1; 2; 3), structural

vibrations (4), biology (5), meteorology (6), just to name a few. Its limitations, however,

arise in the fact that the POD is purely data-driven and no explicit reference is made to

the underlying governing equations. In other words, being the solution of a reduced-order

model a different procedure than the projection of reference data in a reduced-space, we

have no guarantee that the POD optimality holds in such circumstances. Furthermore,

often we might not be interested in the full description of a system, but rather we would

only like to know how our system responds to a specific input change, a different ini-

tial/boundary condition and so on. Targeting different outputs requires a re-definition

of optimality and there is therefore a need to seek basis functions specifically built for

accurate ROM-solutions.

In particular, a relevant approach is to seek reduced-order models to optimally represent

a specific output functional, a class that falls under the name of Goal-Oriented Reduced-

Order Model (GO-ROM). These models provide an accurate description of the quantity of

interest using a minimum number of degrees of freedom, making them attractive for use

in the design of control systems or as a part of a larger simulation.

Recently, Bui-Thanh et al. (7) proposed an optimisation method to generate a set of

goal-oriented ROM-targeted basis functions, in which the satisfaction of the reduced-order

model is imposed as an explicit constraint of the problem. This improves on a data-driven

approach by bringing additional knowledge in the construction of the basis, allowing the

modes to be specifically constructed to best represent the goal-oriented outputs. Their

results showed a clear improvement upon the POD. Due to its fully discrete nature, we

will refer to the approach employed by reference (7) as the Fully-Discrete Formulation

(FDF).

Several issues, however, limit its applicability. First of all, the method proposed has

a fully-discrete character and its implementation requires as input matrices with the di-

mension of the reference data, which represent in fact a discretisation of the governing

equations. If the reference data comes from CFD simulations one might be able to con-

struct these matrices from the CFD method employed to generate the data, but this is not

always possible since in some circumstances, numerical schemes do not have the required

form. Even when possible, the choice of the matrices used by the original CFD method are

not necessarily optimal, as their characteristics influence the final behaviour of the ROM

S. Mattei M.Sc. Thesis
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which might have to operate under quite different requirements. In case that the reference

data comes from experiments, no obvious choice exists, yet the implications for the find

performance of the ROM remain. Furthermore, the derivation proposed is limited to linear

PDE’s and linear functionals, restricting considerably the span of applicability.

To overcome these drawbacks, we consider the definition of the reduced-order model,

as well as the optimisation technique, in a continuous setting. The reference data, on the

other hand, being generated by numerical simulations or experiments, is always defined in a

discrete space. In addition, the most straight-forward option is to consider the ROM basis

functions to be defined in the same discrete space as that of the reference data. We will

therefore refer to the combined approach considered in this work as the Semi-Continuous

Formulation (SCF). Using the SCF we can accommodate any differential equation and we

also avoid the ambiguities associated with choosing the input matrices arbitrarily at the

beginning of the optimisation process. Furthermore, we clarify the treatment of arbitrary

functionals in the optimisation process and are no longer limited to be in a linear form,

but can now be any function.

The structure of this report is organised as follows: In chapter 2 we give a definition of

the POD, highlight its optimality conditions and give a recipe to construct reduced-order

model based on the POD. Chapter 3 is devoted to the presentation of discrete method

of ref. (7) and the optimisation algorithm. We will describe how the goal-orientation can

lead to improved ROM for specific functionals and derive a procedure to determine a set

of optimal basis functions. Chapter 4 exemplifies the benefits of moving to the semi-

continuous setting, describing its implementation and giving several results. Finally, we

give our conclusions and recommendations for future work.
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Chapter 2

Reduced-Order Modelling using the POD

2.1 Motivation

One strategy to construct reduced-order models is to rely upon projection frameworks, in

which the underlying governing equations are projected onto suitably-chosen basis func-

tions. When dealing with fluid dynamics, we are often required to solve problems in a

4-dimensional world, accounting for three spatial coordinates and a temporal one. In

such cases it is handy to expand the solution, here referred as y, as a finite series in the

separated-variables form:

y(x, t) ≈
M�

i=1

ai(t)φi(x), (2.1)

with the hypothesis that as M approaches infinity our solution becomes exact. While in

equation (2.1) there is no fundamental difference between t and x, we refer x as a space

coordinate, usually a vector, and t as time.

The representation of equation (2.1) is not unique, in fact φi(x) can be chosen for

instance as a Fourier series, Legendre polynomials, Chebyshev polynomials and so on.

Recalling that we are interested in a finite-series expansion, which rapidly approaches the

exact solution using a small number of terms, we may like to determine φi(x) such that

the approximation for each M is optimal in a L
2-norm sense. That means that we will

try to find a sequence of φi(x) in which the first three terms of the expansion are the best

possible three-term approximation to the exact solution, the first seven terms the best

seven-term approximation and so on. In addition, to simplify the calculations, it would be

convenient to have an orthonormal basis since the formula for a vector space projection is

MSc. Thesis S. Mattei



6 Reduced-Order Modelling using the POD

much simpler.

To summarise, one approach to construct a ROM is to use a set of orthonormal basis

functions which can best represent the solution in a L2-norm measure. Such basis functions

can be found using a POD.

In this chapter we describe the procedure to determine the POD modes and developing

a ROM based on them. We will explain in what terms the POD modes are optimal and

give a recipe to construct POD based ROM.

2.2 Discrete POD

As mentioned in the preamble of this chapter, the idea underlying the POD is to determine

φi(x) such that the approximation for each M is as good as possible in a L
2-norm sense.

In this context, we can think to the POD as an optimisation problem for determining the

basis functions such that the projected equations are as close as possible to the original

system. For convenience we will omit indication of the space and time dependence of y, φ

and a throughout this section. However keep in mind that a is only time-dependent, and

φ is only space-dependent. Furthermore we will use the notation ỹ for the reduced-order

solution.

Our goal is to express the solution as an approximation in the form:

y =
M�

i=1

aiφi, (2.2)

with y ∈ RN .

We require φi to be a set of orthonormal basis functions, (see appendix A.4), such that

φi · φj = δij or equivalently in the finite dimensional case φ
T
j φi = δij, where δij represents

the Kronecker delta. In this case, we notice the following: if we pre-multiply each side of

the equation (2.2) by φ
T
j we have:

φ
T
j y = φ

T
j

M�

i=1

aiφi (2.3)

since ai is simply a coefficient, we can plug in φ
T
j , obtaining:

φ
T
j y =

M�

i=1

aiφ
T
j φi (2.4)

S. Mattei M.Sc. Thesis



2.2 Discrete POD 7

by orthogonality all terms with i �= j vanish, leading to:

φ
T
j y = aj (2.5)

which shows the important result that for orthonormal basis functions, the determination

of the coefficient function aj depends only on φj and not on the other φ’s.

Substituting this result into our expansion, the approximation in the basis representation

becomes:

ỹ =
M�

i=1

(yTφi)φi, (2.6)

in which we have rewritten φ
T
j y as yTφj.

When dealing with data from numerical simulations, or experiments, we usually do not

have a single vector, but rather a set of vectors yj containing the state of the system at

each time step. In this case our series expansion can be written as:

L�

j=1

ỹj =
L�

j=1

M�

i=1

(yTj φi)φi (2.7)

Our goal is to minimise the difference between the original system and the projected

equations in the L2-norm sense. Therefore we seek a set of orthonormal vectors Φ ∈ RN×M

such that:

Φ = argmin
Φ

E(Φ) (2.8)

with the error measure:

E(Φ) =
L�

j=1

�����yj −
M�

i=1

(yTj φi)φi

�����

2

(2.9)

where �y� =
�

yTy.

This is a so-called constrained minimisation problem, in which the error E must be min-

imised subject to constraints on the possible values of the independent variables. In our

case this means minimising E with the constraint that the φ’s are orthonormal.

min
Φ

E(φ1, ..., φM) subject to: φ
T
j φi =

�
1 if i = j

0 otherwise
(2.10)

MSc. Thesis S. Mattei



8 Reduced-Order Modelling using the POD

The most frequently used method for constrained problems is to employ Lagrange multi-

pliers (8). This entails the construction of a Lagrange functional containing the original

functional plus the constraints expressed in the form g(·, ·) = 0, each multiplied by a La-

grange multiplier λij.

For our specific case this results in:

L(φ1, ..., φM , λ11, ..., λMM) = E(φ1, ..., φM) +
M�

i,j=1

λij(φ
T
j φi − δij) (2.11)

According to the classical theory of minimisation, a necessary condition for the existence

of an extrema is that the first partial derivatives of the function to be optimised are zero

at the extrema.

Therefore a minimum can be found by differentiating L with respect to the independent

variables φi and λij and setting their derivatives equal to zero.

∂L(φ1, ..., φM , λ11, ..., λMM)

∂φi
= 0 for i = 1..M (2.12)

∂L(φ1, ..., φM , λ11, ..., λMM)

∂λij
= 0 for i, j = 1..M (2.13)

From this it follows that:

∂L

∂φi
=

L�

j=1

yj(y
T
j φi) = λiiφi and λij = 0 for i �= j (2.14)

∂L

∂λij
= φ

T
i φj = δij (2.15)

Arranging y in matrix form, such that each yj is a column of the matrix Y :

Y =





...
...

...

y1 y2 · · · yL

...
...

...





and setting λii = λi, we have:

Y Y
T
φi = λiφi (2.16)

S. Mattei M.Sc. Thesis



2.3 POD-ROM 9

in which the matrix Y Y
T ∈ RN×N implying that the minimisation conditions can be

expressed by the N ×N eigenvalue problem.

Solving equation (2.16) for φi and λi is equivalent to performing a singular value de-

composition. As shown in appendix B we can decompose the matrix Y such that

U
T
Y V = Σ (2.17)

Furthermore, since the matrices V and U are orthogonal, their transposes are equivalent

to their respective inverses. This results in the following two equations:

Y V = UΣ (2.18)

Y
T
U = V Σ (2.19)

For any 0 < i < M this can be rewritten as;

Y vi = σiui (2.20)

Y
T
ui = σivi (2.21)

Multiplying equation (2.21) by Y and then using (2.20) we have:

Y Y
T
ui = Y σivi = σ

2
i ui (2.22)

Comparing (2.22) with (2.16) we see that φi = ui and λi = σ
2
i . This means that, in a

L
2-norm measure, the modes derived with the SVD procedure represent an optimal set

of basis functions, implying that any reduced order approximation is the best possible

approximation of that rank in a L
2-norm sense.

2.3 POD-ROM

In order to generate the reference data on which the ROM will be based, we solve the

model equations using a finite difference method on a relatively fine mesh. This results in

a N -by-L matrix Y in which the columns represent the state of the solution at a given time

step. There are a number of ways to construct ROM. Perhaps the most natural way is by

MSc. Thesis S. Mattei



10 Reduced-Order Modelling using the POD

variational projection. However, to facilitate comparison with results in the next chapter,

we will generate the ROM with a method similar to that used by ref. (7).

The procedure for the construction of the reduced-order models can be summarised in

the following lines:

1. Construct the POD basis by taking the SVD of the data matrix Y . The decomposi-

tion leads to Y = UΣV T in which U is the set of basis functions.

2. Set the dimension of the reduced-order model by choosing the first M basis vectors

of the matrix U . This results in the matrix Φ ∈ RN×M .

3. Substitute u =
�M

j=1 αjφj = Φα into the governing equation, and project in a reduced

space by premultiplying the equation by ΦT . This leads to the a differential equation

in the α unknowns. The solution α = α(t) represents the modal amplitudes as

function of time and
�M

j=1 αjφj is the solution of the reduced-order model.

In order to assess the described procedures, we carried out a preliminary analysis using

three linear one-dimensional equations: the heat equation, the pure convection equation

and the convection-diffusion equation.

2.3.1 Heat Equation

The heat equation, also known as diffusion equation, is a linear parabolic partial differential

equation that describes the distribution of heat (or variation in temperature) in a given

region over time. We investigate the temperature distribution in a constant area rod of

unitary length. The heat equation reads as:

∂u

∂t
− k

∂
2
u

∂x2
= 0 (2.23)

where u is the temperature in the rod, k > 0 is the diffusion coefficient and where we have

neglected any source or sinks. To solve this equation a boundary condition is needed at

each end of the rod, plus an initial condition describing the temperature distribution in

the rod at t = 0. We have analysed the prescribed boundary temperature case (Dirichlet

boundary conditions), in which we have set u(0) = 1 and u(1) = 0. The heat equation

allows steady state solutions, and in our particular case it is represented by a straight line

connecting the boundary conditions, namely u = 1− x for 0 ≤ x ≤ 1. As initial condition

we chose a Fourier sine series of order 3 added to the steady state solution (Fig. 2.1).

S. Mattei M.Sc. Thesis
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Figure 2.1: Initial temperature distribution

Reference data

We provide the reference data used to construct the ROM by solving the partial differential

equation (2.23) numerically, using a finite difference technique. We use a uniform grid with

N subintervals (N+1 nodes). The spatial derivative is central in space, and we integrate in

time using a third-order Runge-Kutta explicit multistage method. The discretised equation

can be written as:

du
n

dt
− k

u
n
i−1 − 2un

i + u
n
i+1

∆x2
= 0 (2.24)

where the superscript indicates the time step, and the subscript the spatial position.

The time integration is performed using a third order Runge-Kutta explicit method,

where the new time level (un+1) is computed as a linear combination of solutions at inter-

mediate stages. By writing u̇ = F (u(t)) the stages have the form:

MSc. Thesis S. Mattei



12 Reduced-Order Modelling using the POD

u
(1) = u

n
,

u
(2) = u

n +∆tF (u(1)),

u
(3) = u

n +∆t
�
1
4F (u(1)) + 1

4F (u(2))
�
,

u
n+1 = u

n +∆t
�
1
6F (u(1)) + 1

6F (u(2)) + 2
3F (u(3))

�
(2.25)

POD-ROM results

The POD basis is constructed upon decomposing the matrix A by the SVD procedure. As

we have seen in section 2.2 the vectors ui represent the basis functions when the matrix A

is organised taking as columns the state vectors for each time step.

1 2 3 4 5 6 7 8 9
10−15

10−10

10−5

100

105

Singular value number

Si
ng

ul
ar

 v
al

ue

Figure 2.2: First nine singular values

The singular values in the matrix Σ represent the energy carried by each mode and in

this simple case, over 99% of the energy was contained in the first four modes (Fig. 2.2).

The associated modes presented the shape illustrated in Fig. 2.3:

To investigate the performance of the reduced-order model, we compare POD-ROM

and reference data at a chosen instant of time (t=0.005 in our case) and at steady state.
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2.3 POD-ROM 13

The ROM equations are advanced in time using the Runge-Kutta time march described by

(2.25). The reduced-order model is very close to the numerical solution, with the difference

being practically unrecognisable when four modes are used. For this particular case, we

are able to reproduce the solution while reducing the size of the problem from 50 (our

chosen N) to 4. For the final solution (Fig. 2.5) we see a fairly good agreement with 2 and

3 modes, and a perfect match with 4 modes. The final solution time is taken as the time

required by the numerical solution to converge to a given tolerance (t=0.0843).
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Figure 2.3: Modes shape
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14 Reduced-Order Modelling using the POD
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Figure 2.5: Comparison of reference data with ROM at the final solution time (t=0.0843)
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2.3 POD-ROM 15

2.3.2 Pure convection

The second example analysed is the linear convection case. The linear convection equation,

a hyperbolic partial differential equation describing wave propagation in a medium, can be

written as:

∂u

∂t
+ a

∂u

∂x
= 0 (2.26)

where u represents the transported quantity and a is the convection speed. We consider

the transport of a wave as shown in Fig. 2.6 with speed a = 1 (right running wave) and

periodic boundary conditions, running in time for a full cycle.
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Figure 2.6: Wave form (initial condition)

Reference data

We follow the same procedure as for the heat equation, namely discretising the partial

differential equation central in space and integrating in time with a third order Runge-
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16 Reduced-Order Modelling using the POD

Kutta explicit method. The semi-discretised equation is:

du
n

dt
+ a

u
n
i+1 − u

n
i−1

2∆x
= 0 (2.27)

POD-ROM results

In the case of the heat equation, we have seen that four modes contained over 99% of the

total energy. Here things are a bit more complicated. Physically now we are trying to

track the movement of a wave only using space dependent modes, which is impossible in

the case of a single mode and not trivial with very few modes. As we can see in the plot

of the singular values (Fig. 2.7), in this case the energy is distributed over several more

modes.
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Figure 2.7: First twenty-five singular values

The singular values seem to be disposed in pairs (2-3, 4-5, ...) and their respective

shapes reflect this observation. As can be seen in Fig. 2.8 mode 2 has the same shape as

mode 3 but with a different phase. This can be ascribed to the energy transport phenomena.

Since the modes are fixed in space, one mode alone is not able to carry the energy to a

different location. Therefore the energy transport takes place using pairs of modes. The
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2.3 POD-ROM 17

exception is the first mode, which is constant and is responsible for representing the average

of the wave in the domain. If the wave shape has average zero, this first mode disappears

and the pairs are formed 1-2, 3-4 and so on. It is worth mentioning that the construction

of the POD modes could have been performed by using a centred reference data, in which

the average of the solution is subtracted from the snapshots. The expansion would then

be written as: u = ū +
�M

j=1 ajφj, with ū the average solution. This would allow the

elimination of one mode, in case the POD-ROM would be used to reproduce the reference

data.

We compare the reference data with different number of modes in a chosen instant of

time (t=0.5). As anticipated, the solution improves when a pair of modes is added to the

reduced-order model and it is practically unnoticeable when a single one is added. The

difference between three and four modes is basically unnoticeable, but when the fifth mode

is added to the solution (forming the pair with number four), the solution rapidly improves.

The same is noted for the other pairs
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Figure 2.8: Pure convection modes shape
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Figure 2.9: Comparison of the reference data with POD-ROM results for lower number of

modes
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Figure 2.10: Comparison of the reference data with POD-ROM results for higher number of

modes
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2.3 POD-ROM 19

2.3.3 Convection Diffusion

The convection-diffusion equation is often used as a model for the incompressible Navier-

Stokes equations, since both admit boundary layer development at the wall. The

convection-diffusion equation reads as:

∂u

∂t
+ a

∂u

∂x
= k

∂
2
u

∂x2
(2.28)

where u represents the flow velocity, a is the convection speed and k the diffusion con-

stant. We investigated the Dirichlet boundary condition case, where we take u(0) = 1 and

u(1) = 0. These conditions are physically representative in the case of wall flow, where the

“left” boundary condition u(0) = 1 is the asymptotic velocity and the “right” boundary

condition u(1) = 0 is the no-slip condition. As initial condition we take a linear velocity

distribution, as in Fig. 2.11. The final solution depends on the convection and diffusion

constant values. If a >> k we will have a steep boundary layer development and if k >> a

the solution will tend towards a straight line connecting the boundary conditions. In Fig.

2.11 an intermediate case is shown (a = 2 and k = 0.1) with dominant convection. The

development of the boundary layer at the wall is clearly visible.
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Figure 2.11: Initial condition and steady state solution
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20 Reduced-Order Modelling using the POD

Reference data

Once again we use central finite differences in space, and integrate in time with a Runge-

Kutta explicit method. The semi-discretised equation reads as:

du
n

dt
+ a

u
n
i+1 − u

n
i−1

2∆x
= k

u
n
i+1 − 2un

i + u
n
i−1

∆x2
(2.29)

POD-ROM results

We want to investigate the ability of the POD to represent such a solution. As before we

analyse the distribution of energy on the singular values and the shape of the dominant

modes. In this case the energy is regularly distributed over several modes, as Fig. 2.12

indicates.
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Figure 2.12: First twenty-five singular values
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Figure 2.13: Convection-diffusion modes shape

In the convection-diffusion case we are mainly interested in the steady-state solution,

since the boundary layer is then fully developed and it represents the real wall flow. In Fig.

2.14 we compare the steady state solution with reduced-order models of different order.

Although the total energy is distributed over several modes, a very good representation

can be obtained with only 3 modes, and with 4 the difference is almost unnoticeable.
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Figure 2.14: Steady state solution
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Chapter 3

Goal-Oriented Model-Order Reduction

In the previous chapter we have seen how the POD provides a procedure for the recon-

struction of the system states which can be considered optimal in a certain sense, since

the error between the reduced space solution and the reference data (see equation 2.9) is

minimised in the L
2-norm by choosing the POD basis functions. However, it is important

to note that the POD is a purely data-driven procedure and no reference is made to the

underlying governing equations. Therefore we have no guarantee that the same optimality

holds for the output of reduced-order models constructed using the POD modes. In the

following sections we will present a different method to derive basis functions for reduced-

order models, rigorously tied to the ROM solution and in particular by targeting a specific

output functional. This Goal-Oriented approach has been recently proposed by T. Bui-

Thanh, K. Willcox, O. Ghattas, B. van Bloemen Waanders (7), We will refer to it as the

Fully Discrete-Approach (FDF).

3.1 Overview of the method

The procedure of Bui-Thanh et al. starts from a discrete representation of the governing

equations. For a general Linear Time-Invariant (LTI) dynamical system:

Mu̇+Ku = f (3.1)

g = Cu (3.2)

with initial condition:
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24 Goal-Oriented Model-Order Reduction

u(0) = u0

where u(t) ∈ RN is the system state, u̇(t) is the time derivative of u. f(t) defines the

input to the system and the matrix C ∈ RQ×N defines the Q output of interest, which

are contained in the output vector g(t). M ∈ RN×N and K ∈ RN×N are often referred in

the literature as Mass matrix and Stiffness matrix respectively. These can be derived by

considering a particular discretisation scheme for the original partial differential equations.

The choice of this discretisation scheme is not inconsequential, as we will see that it will

ultimately be incorporated in the definition of the reduced-order model. Furthermore, it

is not clear how one would choose M and K if one wanted to use reference data from

experiments or unknown numerical methods. We will ignore these issues for the moment,

however, and assume that a suitable discretisation (i.e finite difference or finite elements)

can be defined.

A reduced-order model can be constructed by approximating the states u as:

û = Φα

in which we recognise Φ ∈ RN×M to be the projection matrix containing as columns the

basis vectors and where M << N . û is the reduced model approximation of the state

u, and the vector α(t) contains the corresponding modal amplitudes. Upon substitut-

ing this expression into the governing equations, and taking the Galerkin projection by

premultiplying by ΦT we have:

M̂α̇ + K̂α = f̂ (3.3)

ĝ = Ĉα (3.4)

M̂α0 = ΦT
Mu0 (3.5)

where M̂ = ΦT
MΦ, K̂ = ΦT

KΦ, f̂ = ΦT
f, Ĉ = CΦ and α0 = α(0).

Expressions (3.3-3.5) represent the reduced-order model in the α unknowns of the LTI

system (3.1).

We now pose the problem of determining the set of basis functions Φ, such that the goal

functional predicted by the reduced-order model ĝ is as close as possible to the reference

one. Before proceeding with the derivation, it is important to note that this procedure
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3.1 Overview of the method 25

differs from the derivation for the POD since we are now considering errors in the solution

of the ROM, û, rather than those of the state projection in the reduced space (ũ). In other

words û �= ũ, since û is the solution of the reduced-order model (3.3-3.5), while ũ is the

representation of a known state in the reduced space, namely ũ = ΦΦT
u, or equivalently

ũ =
�M

i=1(u
T
φi)φi. Furthermore, we will consider more general definitions for the error

in û, namely ĝ. This brings additional knowledge into the construction of the basis, and

therefore ensures reliability of the reduction technique.

Once again we can formulate the problem in an optimisation framework in which we

seek an optimal set of orthonormal basis functions, but now with a more general error

measure:

Φ = argmin
Φ

E(Φ) (3.6)

E(Φ) =

� tf

0

(g − ĝ)T (g − ĝ)dt (3.7)

(3.8)

which is the L2-norm error of the output functional with respect to the reference data. By

simultaneously imposing orthonormality in the basis functions and the satisfaction of the

reduced-order model, the constrained error minimisation problem can be written:

min
Φ,α

G =
1

2

� tf

0

(g − ĝ)T (g − ĝ)dt+
β

2

m�

j=1

(1− φ
T
j φj)

2 +
β

2

m�

i,j=1
i �=j

(φT
i φj)

2 (3.9)

subject to: ΦT
MΦα̇ + ΦT

KΦα = ΦT
f (3.10)

subject to: ΦT
MΦα0 = ΦT

Mu0 (3.11)

subject to: ĝ = CΦα (3.12)

In case of linear relationship between outputs and states the objective function, this can

be rewritten as:

min
Φ,α

G =
1

2

� tf

0

(u− û)TH(u− û)dt+
β

2

m�

j=1

(1− φ
T
j φj)

2 +
β

2

m�

i,j=1
i �=j

(φT
i φj)

2 (3.13)
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26 Goal-Oriented Model-Order Reduction

whereH = C
T
C can be interpreted as a weighting matrix that defines the states relevant to

the specified output. In equation (3.13) we notice the following: the first term is similar to

that encountered in the minimisation process we used for determining the POD. However

the matrix H, now focuses the reduction of the error on the specific functional. If H = 1

or equivalently if H is the identity matrix I, this procedure would tend to optimise the

same error as the POD, although the results is still not equivalent since (û �= ũ).

Before describing the details of the optimisation algorithm, it is important to notice

that the optimisation problem (3.9-3.12) is non-linear and nonconvex. This has several

implications. First of all, we have no guarantees that a purely local optimisation will

converge to the global optimum, since algorithms usually tend to be “trapped” at local

minima. The choice of the initial guess will play a crucial role in the behaviour of the

algorithm. Furthermore, the size and complexity of the problem indicate that general

search routines are likely to fail without specifically-targeted modifications. It is therefore

crucial to employ a robust and reliable optimisation algorithm, as described in the next

section.

3.2 Optimisation algorithm

This section is devoted to the description of the algorithm we used to solve the optimisation

problem for the determination of the reduced-order model basis function. We will present

the methodology for an unconstrained optimisation problem, illustrating latterly ways to

handle the additional constraints of the problem.

3.2.1 Line search and trust-region

Most optimisation algorithms are iterative in nature. This means that beginning at an

initial guess x0, algorithms try to generate a sequence of iterates xk that terminate when

either no more progress can be made or when it seems that a solution point has been

approximated with sufficient accuracy. Although algorithms that do not require monotone

descent have been successfully implemented (see for instance (9)), usually one requires

that the value of the function at the next iteration has to be lower than at the current

one, hence f(xk+1) < f(xk). In deciding how to move efficiently from one iterate to the

next, one generally applies a so-called globalisation strategy. This can be viewed as an
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3.2 Optimisation algorithm 27

enhancement which increases the set of initial guesses for which the method will converge.

There are mainly two strategies we can follow, line search and trust region algorithms.

Generally, both ones approximate the objective function around the current iterate by a

quadratic model mk:

mk(xk + p) = fk + p
T∇fk +

1

2
p
T∇2

fkp (3.14)

where fk = f(xk), p is a candidate step, ∇fk is the gradient of the objective function at

the current iterate xk and ∇2
fk is the Hessian matrix (or when not readily available, some

approximation of it). As we will see however, line search and trust region algorithms use

this information in different ways to generate the next step.

In the line search method, the algorithm chooses a direction dk and searches along this

direction for a new iterate with a lower function value. Given a direction, the step length

is calculated such that we (approximately) minimise the function along this direction. In

other words, given dk we choose α such that:

min
α>0

mk(xk + αdk) (3.15)

If we could solve (3.15) exactly, we would derive the maximum benefit from the direction

dk. The exact procedure is usually expensive, however, and most of the time it is enough to

move closer to the minimum. Therefore line search algorithms generate a limited number

of trial step lengths until one that loosely approximates the solution of the minimisation

subproblem (3.15) is found. At the new point, a new search direction and step length are

computed, and the process is repeated.

In contrast, trust region algorithms define a region around the current iterate in which

it is understood that the model function is a good approximation of the objective function.

Since the model might only be accurate in a close neighbourhood of the current iterate,

we restrict the search for a minimiser of mk to a limited region around xk, the so-called

trust region. In other words, we find the candidate step p by approximately solving the

following subproblem:

min
p

mk(xk + p) where xk + p lies inside the trust region. (3.16)

Contrary to the line search method, here we impose a maximum step length and then

minimise the model function subject to this constraint, which in turn can imply a different
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search direction. If the candidate solution does not produce a sufficient decrease in f, we

conclude that the trust region is too large, and therefore we shrink it and re-solve (3.16).

Usually, the trust region is a ball defined by ||p||2 ≤ ∆, with ∆ the trust region radius.

Although both methods can be efficiently applied to complex optimisation problems

like (3.9-3.12), we choose to implement a trust region algorithm since it has been shown

to outperform the line-search algorithm for large-scale ill-conditioned problems. When

the Hessian matrix ∇2
fk is nearly singular, for example, the line search algorithm requires

many iterations and gives only a small reduction in the objective function. The trust region

method deals more effectively with this situation and is therefore preferable. In particular

we will implement a trust-region inexact-Newton-conjugate-gradient method, as described

in the coming section.

3.2.2 Trust-region inexact-Newton method

Trust region methods compute the next iterate by solving a much easier handled model

function, which represents with good approximation the objective function at the cur-

rent iterate. Since the necessary condition for stationarity of a function is that the first

derivative vanishes at the extrema, we have:

m
�
k(xk + pk) = ∇fk +∇2

fkpk = 0 (3.17)

where ∇fk and p are vectors and ∇2
fk a matrix. The basic Newton step pk is chosen by

solving the symmetric linear system:

∇2
fkpk = −∇fk (3.18)

and a new iterate xk+1 can be computed since the step p = xk+1 − xk. Newton methods

have the advantage of being rapidly convergent to the solution, provided that we start

with a “close enough” initial guess x0. However, in large scale algorithms, the direct

factorisation of the Hessian matrix might be intractable. We are therefore forced to find

approximations of pk that are inexpensive to calculate but that still represent good steps.

This can be done by solving equation (3.18) iteratively. Since the Newton step is not

directly computed by inverting ∇2
fk, this family of methods are generally referred to in

the literature as inexact-Newton methods. In particular, we will use the conjugate-gradient

method with modifications to handle negative curvature in the Hessian ∇2
fk to solve
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eq.(3.18) and we will globalise the algorithm by a trust-region scheme. These two aspects

are described in detail in the next sections.

The trust-region main loop

A key part of trust-region algorithms is the strategy used to choose the trust-region radius

∆k at each iteration. Since we want to define ∆k as a region in which the model function is a

good approximation of the objective function, we base our choice on the agreement between

the two functions in previous iterations. For the remainder of this section we will consider

the model function to be centred around the current iterate, expressing dependence only

with respect to p:

mk(p) = fk + p
T∇fk +

1

2
p
T∇2

fkp (3.19)

Given the step pk we define the gain factor ρk to be:

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(3.20)

where the numerator is called the actual reduction and the denominator the predicted

reduction. The latter represents the reduction in f predicted by the model function mk,

being mk(0) = f(xk). Since pk is obtained by minimising the model mk over a region

that includes p = 0, the denominator will always be nonnegative. Hence, if ρ happens

to be negative, it follows that the objective function at xk+1 has a higher value than at

xk, implying that the step must be rejected. On the other hand, if ρ is nonnegative we

can distinguish the following cases: if ρ is close to 1, we infer that the model function

adequately approximates the objective function and therefore we can allow the algorithm

to take larger steps in the next iteration by expanding the trust region. Contrarily, if ρ is

close to 0, the model is behaving poorly and therefore the region must be shrunk. Lastly,

when ρ is “safely” between 0 and 1 we do not alter the trust region. In the literature it

is suggested to reduce ∆ for ρ <
1
4 , not alter it for 1

4 ≤ ρ ≤ 3
4 and expand it for ρ >

3
4 .

Denoting the maximum bound for the step lengths by ∆̂, the algorithm can be summarised

as:
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Algorithm 1 - Trust Region

Given: ∆̂ > 0,∆0 ∈ (0, ∆̂), and η ∈ [0, 14):

for k = 0, 1, 2, ... do

Obtain the step pk by approximately solving (3.19)

Evaluate the gain factor ρk from Eq. (3.20)

if ρk <
1
4 then

∆k+1 =
1
4∆k

else if ρk >
3
4 and ||pk|| = ∆k then

∆k+1 = min(2∆k, ∆̂)

else

∆k+1 = ∆k

end if

if ρk > η then

xk+1 = xk + pk

else

xk+1 = xk

end if

end for

It is important to notice that the trust region is only expanded when two conditions

are satisfied: first the gain factor needs to be larger than 3
4 , and second the actual step has

to reach the trust region bound. If pk stays strictly within the region, we infer that the

region bound is not interfering with the progress of the algorithm, so we leave it unchanged.

Furthermore with the parameter η we only accept the step when the reduction is at least

higher than a minimum threshold.

To practically implement algorithm 1 we have to focus our attention in solving (3.19),

which is called the trust-region subproblem. The trust region subproblem can be regarded

as a constrained optimisation problem in which we attempt to minimise mk by imposing

that the step length does not exit the trust region.
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min
p

fk + p
T∇fk +

1

2
p
T∇2

fkp (3.21)

such that: ||p||2 ≤ ∆k (3.22)

As we have seen, by Newton’s method, the optimality condition is given by imposing

stationarity of the model function and by solving the linear system (3.18) for pk. A very

efficient way to solve large linear systems iteratively is to use the conjugate gradient (CG)

method, described in appendix D. This is used to generate the results in this report.

The complete algorithm

Now that all the machinery is in place we can construct the complete algorithm, globalising

the conjugate gradient method by trust region scheme. The idea is as follows: at each step

xk we approximate the objective function by the corresponding quadratic form mk(p). By

imposing stationarity of mk(pk) and by applying the trust-region constraint on the step

lengths, we generate the Newton’s equations which give the problem in the form ∇2
fkpk +

∇fk = 0 such that ||pk|| ≤ ∆k. This set of equations can be solved by the conjugate-

gradient method provided that ∇2
fk is symmetric and positive definite. Symmetry is

not an issue since the Hessian matrix is symmetric by definition, but unfortunately the

positive definiteness is not guaranteed. Therefore we need to modify the CG algorithm

(Alg. 3 in the appendix) to be able to handle this situation. Furthermore we have the

constraint of the trust region bound, which limits us on the step length to be taken. As

was previously explained, the conjugate-gradient method constructs the step iteratively as

linear combination of search directions. In the algorithm we identify this sequence as zj.

Starting with z0 = 0, we construct the step pk by CG until one of the following conditions

is encountered:

• The residual at zj is lower than a given tolerance, meaning that the algorithm has

reached the minima of the model function.

• The sequence exits the trust region bound, in which case we determine the minima

along dj such that ||pk|| = ∆k

• We find a direction of negative curvature, namely d
T
j ∇2

fkdj ≤ 0. In this case we

move to the boundary since, being the function upwardly convex, a minima cannot

be found.
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This is more clearly explained with the aid of Fig. 3.1. Fig. 3.1(a) shows the first

iteration: starting at xk we construct the step pk (initially pk = 0) by first moving in the

direction d0 = −r0. This leads to pk = z1. At this point, if the residual of mk(z1) is lower

than the tolerance �k the step is complete and we return pk = z1, otherwise we continue

iterating.
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Figure 3.1: Trust-region conjugate gradient

In Fig. 3.1(b) this leads to z2 which lies outside the trust-region. Since the constraint

is violated we calculate the sub-step length τ such that we reach the trust bound along d2,

hence pk = z1+τd2 with ||pk|| = ∆k and we return the step pk. Yet a last possibility would

be to encounter a negative curvature. In this case, similarly, we move to the boundary and

calculate pk = zj + τdj such that ||pk|| = ∆k and it minimises mk along dj.

Once the step is constructed we update xk+1 = xk + pk, we calculate the gain factor,

verify that we had a descent in the objective function and continue with the update of the

trust region.
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The algorithm just described is due to Steihaug (10). In practice we will use Algorithm

2 in combination with algorithm 1, in which CG-Steihaug solves the step “Obtain the step

pk by approximately solving (3.19)”.

When we terminate by exiting the trust-region bound or by encountering negative

curvature, the evaluation of τ is required. This can be computed by taking the positive

root of the quadratic equation:

||zj + τdj|| = ∆k (3.23)

(zj + τdj)
T (zj + τdj) = ∆2

k (3.24)

τ
2
d
T
j dj + 2τzjdj = ∆2

k − z
T
j zj (3.25)

For further details and proofs of convergence of the method, the reader can consult Stei-

haug (10). For further information regarding trust-region methods and PDE-constrained

optimisation, the reader is referred to (11; 12; 13; 14)
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Algorithm 2 - CG-Steihaug
Given tolerance �k > 0;

Set z0 = 0, r0 = ∇fk, d0 = −r0;

if ||r0|| < �k then

return pk = z0 = 0

end if

for k = 0, 1, 2, ... do

if δ
T
k Hkdk ≤ 0 then

Find τ such that pk = zj + τdj minimizes mk(pk)

and satisfies ||pk|| = ∆k;

return pk;

end if

Set αj = r
T
j rj/d

T
j Hdj

Set zj+1 = zj + αjdj

if ||zj+1|| ≥ ∆k then

Find τ such that pk = zj + τdj satisfies ||pk|| = ∆k;

return pk;

end if

Set rj+1 = rj + αjHdj

if ||rj+1|| < �k then

return pk = zj+1

end if

Set βj+1 = r
T
j+1rj+1/r

T
j rj

Set dj+1 = −rj+1 + βj+1dj

end for
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3.3 Solution of the Optimisation Problem 35

3.3 Solution of the Optimisation Problem

Now that we have defined the algorithm we will implement, we can focus our attention

on the actual solution of the optimisation problem (3.9-3.12). This represents a so-called

PDE-constrained optimisation problem. The term indicates that the objective function

(3.9) needs to be minimised subject to constraints on the possible values of the indepen-

dent variables, and these constraints can in general have the form of Partial-Differential

Equations (PDE). In our particular case this differential equation has the form of an

Ordinary-Differential Equation (ODE) since the only dependence is time. Hereinafter we

will refer to the ODE constraint as the state equation. In the previous section we have

derived an algorithm that can efficiently solve unconstrained optimisation problems. We

will now show that it is possible to convert a constrained optimisation problem to an

unconstrained one by segregation.

As we have previously seen, a classical way to solve constrained optimisation problems

is to introduce Lagrange multipliers and form a Lagrangian functional L that incorporates

the constraints in the form of inner product with the multipliers. In our case this leads to:

L (Φ, α, λ, µ) =
1

2

� tf

0

(u− û)TH(u− û)dt+
β

2

m�

j=1

(1− φ
T
j φj)

2

+
β

2

m�

i,j=1
i �=j

(φT
i φj)

2 +

� tf

0

λ
T (ΦT

MΦα̇

+ ΦT
KΦα− ΦT

f)dt+ µ
T (ΦT

MΦα0 − ΦT
Mu0) (3.26)

where λ = λ(t) ∈ RM and µ ∈ RM are the Lagrange multipliers, that respectively enforce

the state equation and initial conditions. The optimality conditions can be derived by

imposing stationarity of the Lagrangian with respect to Φ, α, λ, µ.

Setting the first variation of the Lagrangian with respect to λ to zero and arguing that

the variation of λ is arbitrary in [0, tf ], and setting the derivative of the Lagrangian with

respect to µ to zero, simply recovers the state equation and initial conditions (3.10-3.11).

Setting the first variation of the Lagrangian with respect to α to zero, and arguing that

the variation of α is arbitrary in [0, tf ], at t = 0, and at t = tf , yields the so called adjoint

equation, final condition and definition of µ:
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− ΦT
MΦλ̇+ ΦT

K
TΦλ = ΦT

H(u− Φα), (3.27)

λ(tf ) = 0, (3.28)

µ = λ(0) (3.29)

where, without loss of generality, M is assumed to be symmetric. Finally, taking the

derivative of the Lagrangian with respect to the basis vector Φ yields the following matrix

equation:

δLΦ =

� tf

0

H(Φα− u)αT
dt+ 2βΦ(ΦTΦ− I)

+

� tf

0

[MΦ(λα̇T + α̇λ
T ) +K

TΦλαT +KΦαλT − fλ
T ]dt

+MΦµαT
0 +M(Φα0 − u0)µ

T = 0. (3.30)

The trick to re-express the constrained optimisation (3.9-3.12) to an unconstrained one is

by eliminating the dependence on α from the objective function (3.9). This can be done by

segregating the solution of the state equation from the optimisation problem, solving them

sequentially. More specifically we first solve (3.10-3.11) to determine α, and substitute this

result into the objective function (3.9). Secondly, since α does not represent a dependent

variable in the optimisation process anymore, the optimisation problem is converted to an

unconstrained one, which can be solved for only the Φ variables. The original problem is

thus approximated by the segregated approach where we require that for small steps in Φ,

and particularly at the limit ∆Φ → 0, the two approaches converge to the same result.

Having rewritten the optimisation problem to an equivalent unconstrained one, it is now

possible to apply the algorithm previously developed in the determination of the optimal

Φ. To construct the Newton set of equations we need the evaluation of the gradient and of

the Hessian matrix at the current iterate. The gradient of the unconstrained function Ĝ is

given by δLΦ in equation (3.30) when α satisfies the state equation and (λ, µ) satisfy the

adjoint equation. Hence the procedure to calculate the gradient can be summarised by the

following steps: first we solve the state equation to determine α, this allows the solution

of the adjoint equation, leading to the determination of λ and µ. With the computed (α,

λ, µ) we have all the information to evaluate the gradient at the given iterate Φk.
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In the conjugate gradient method used in algorithm 2, we notice that the Hessian

matrix is always multiplied by the search direction dj. Therefore it is actually not required

to compute the exact Hessian matrix, but we can approximate the Hessian-vector product

on-the-fly. Consider a Taylor expansion of the gradient g(x) of a given function:

g(x+∆x) ≈ g(x) +H(x)∆x (3.31)

with H(x) the Hessian matrix. Now consider the Hessian vector we want to compute. For

small h we have:

g(x+ hdj) ≈ g(x) + hH(x)dj (3.32)

And hence:

H(x)dj =
g(x+ hdj)− g(x)

h
(3.33)

The Hessian-vector product is then approximated by the directional derivative of the gra-

dient with respect to the search direction. In our case this means calculating another set of

state and adjoint equations to define g(x+hdj), where x for us represents Φ. This because

modifying Φ leads to a different solution of the state equation, thus different α’s, which

in turn changes the definition of λ and therefore of the gradient. The complete algorithm

requires consequently the solution of a pair of state and adjoint equations at each iteration.

As a last note, we mentioned in section (3.1) that as the problem is nonconvex, we are

not guaranteed to reach a global minima. Accordingly, the choice of the initial guess plays

an important role, since being “close enough” at the beginning of the algorithm assures

better convergence properties of the Newton’s method. For this reason we choose Φ derived

by the POD procedure to be our candidate initial guess. Firstly, the POD is understood

to perform relatively well in the determination of an optimal set of basis functions, which

will also be shown in the preliminary results section. And secondly the determination of

the POD basis is relatively cheap.
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38 Goal-Oriented Model-Order Reduction

3.4 Results

3.4.1 Heat Equation

To write this system in the LTI formulation (3.1), we have to define mass matrix, stiffness

matrix and input vector. For the finite difference case the mass matrix corresponds to

the identity matrix (M = I); the stiffness matrix K, as we can see in the second term of

Eq. (2.24) is a tridiagonal matrix containing 2 on the main diagonal and -1 on the upper

and lower diagonals, multiplied by k
∆x2 . This except first and last line which contain the

equations corresponding to the boundary conditions. The vector f contains the input to

the system (forcing terms, sources, sinks, etc.), which in our case are zero. The only terms

will then be the known boundary values moved to the right hand side. In this way we

re-express the problem in the LTI system:

Mu̇+Ku = f (3.34)

where M,K ∈ RN+1×N+1 and u, f ∈ RN+1

The first functional we will consider using the FDF-ROM approach is the average

temperature in the region towards the end of the rod 0.8 ≤ x ≤ 1 (hereinafter referred as

FDF-ROMAve). The matrix C specifying the functional has to be constructed such that,

once applied to the solution vector u, it returns the average over the targeted domain.

To illustrate this, imagine for a moment that our rod is discretised in 5 subintervals. In

this case starting from the left end, each node corresponds to the position 0, 0.2, 0.4,...,1

respectively. The region we are interested in is spanned by the last 2 nodes and therefore

to obtain the average over this region (g = Cu), we have to construct C as:

g =
�
0 0 0 0 1

2
1
2

�





u0

u1

u2

u3

u4

u5





=
u4 + u5

2

which is the average of the last two nodes.

Fig. (3.2) presents a comparison between POD-ROM and FDF-ROM for both the
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average solution case just described (FDF-ROMAve) and for the full domain reconstruction

(FDF-ROMFull). Although small, we notice an improvement for every dimension of the

reduced-order model when the goal-oriented approach for the rod-end average is used. For

the complete domain the difference is basically unrecognisable, being in the order of 10−4

for the first mode and lower than 10−7 for the other cases. Furthermore, since over 99% of

the energy is contained in the first 4 modes, the reduced-order model of order 4 resolves

the temperature distribution very accurately and almost no improvement can be achieved

by adding extra modes. The error is evaluated by the error measure (3.13).
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Figure 3.2: Objective function POD and goal-oriented errors

For completeness we present the difference brought by the optimisation procedure in

the mode shape. Only the order 1 case is presented since in the other cases the difference

is not recognisable in the plot. Since in the reconstruction of the full domain the POD

basis performs well, the difference brought by the optimised basis is very limited. On the

other hand choosing the rod-end average as a functional results in a higher modification

of the mode shape.
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Figure 3.3: Comparison of differently optimised modes

3.4.2 Pure convection

In this case the stiffness matrix will be bi-diagonal with entries only on the upper and lower

diagonal, plus entries in the north-east and south-west corners accounting for the periodic

boundary conditions. f is the zero vector and M the identity matrix once again.

As indicated, the pure convection case has a specific physical constraint in the deter-

mination of the mode shapes since the energy transport is only possible by using shifted

modes which span the complete domain. As shown in Fig. 3.4 (bottom) the new approach,

in the case of full domain goal, only leads to a very small improvement over the POD. On

the other hand Fig. 3.4 (top) shows a comparison between POD and the new method in

case we target only half of the solution domain (FDF-ROMPart). In particular we have

chosen the solution in 0.5 ≤ x ≤ 1.
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Figure 3.4: Objective function POD and goal-oriented errors

3.4.3 Convection-Diffusion

For the convection-diffusion equation the stiffness matrix will be tri-diagonal, with the

following entries:

• On the main diagonal ( 2k
∆x2 )

• On the upper diagonal ( a
2∆x − k

∆x2 )

• On the lower diagonal (− a
2∆x − k

∆x2 )
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42 Goal-Oriented Model-Order Reduction

M the identity matrix once again and f the zero vector with only entries accounting for

the boundary conditions.

We investigated the behaviour of the POD-ROM and FDF-ROM in both the full state

reconstruction and with a specific functional. The targeted functional is the solution in half

of the domain, 0.5 ≤ x ≤ 1. Fig.(3.5) presents a comparison between the POD-ROM and

the FDF-ROM approach for the full domain representation and for the second functional.

The advantages of the new methodology are much clearer in this case, both for the full

domain and for a local target.
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Figure 3.5: POD and goal oriented objective function errors
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Chapter 4

Semi-Continuous formulation

The method presented in the preceding section however, poses several limitations in terms

of applicability. First of all the discrete nature of the equations implies that the reduced-

order model can only be constructed when mass and stiffness matrices are readily available.

How these are to be constructed is not always obvious. If the reference data comes from

a detailed computational fluid dynamics simulation a natural choice might be the corre-

sponding mass and stiffness matrices of the discretisation used to generate the data. If the

reference data comes from experiments, then no obvious choice for M and K exists. In

any case, the choice of the matrices affects the speed and performance of the find ROM

in a hard-to-predict way. A second limitation is the strictly linear character of the deriva-

tion proposed, limiting the span of governing equations considered and the choice of the

goal-functional. Lastly, an important issue in the construction of the reduced-order model

is the treatment of the boundary conditions. In the derivation it is implicitly understood

that the boundary conditions are handled by direct substitution, but other possibilities are

available and clarifications must be addressed.

To overcome these drawbacks, we have generalised the approach of ref. (7) by con-

sidering the generation of the reduced-order model, and the optimisation process, in a

continuous setting. This implies coupling the discrete nature of the modes (derived from

numerical simulations or experiments), with the continuous setting of the governing equa-

tions. The reduced-order model is then constructed by projecting the governing equation

into each mode according to Galerkin method. Note, however, that since the reference

data are either generated by numerical simulations or experiments, they always have a

finite character. It is most-straight forward to define the modes in the same discrete space
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44 Semi-Continuous formulation

and thus the generalisation we consider here couples the discrete data with a continuous

representation of the governing equations, functionals, and optimisation process. We refer

to this as a semi-continuous formulation (SCF).

Using the SCF, we are no longer limited to the LTI formalism, but we can accommodate

any differential equation and we also avoid the ambiguities associated with choosing mass

and stiffness matrices arbitrarily at the beginning of the optimisation process. Furthermore,

we clarify the treatment of arbitrary functionals in the optimisation process and are no

longer limited to be g = Cu. g can now take any form, e.g. sin(u), u2. For clarity of

exposition we will refer to the LTI algebraic approach propose by Bui-Thanh as the fully-

discrete formulation FDF, and the semi-continuous formulation as SCF.

4.1 Derivation

To exemplify the SCF, we first consider the construction of the reduced-order model for

two test cases, the 1D heat equation with homogeneous Dirichlet boundary conditions and

the convection-diffusion equation with non-homogeneous Dirichlet boundary conditions.

Heat Equation

We will consider the following equation:

∂u

∂t
= k

∂
2
u

∂x2
(4.1)

u(0, t) = u(1, t) = 0; (4.2)

To construct a reduced-order model, we approximate u by
�n

j=1 αjφj, where φ’s are now

continuous functions of x, and we employ Galerkin projection. This leads to:

� 1

0

n�

j=1

α̇jφjφkdx− k

� 1

0

n�

j=1

αjφ
��
jφkdx = 0 (4.3)

where ˙ indicates a time derivative, and � a spatial derivative. Rearranging and integrating

the second integral by parts we obtain:

n�

j=1

α̇j

� 1

0

φjφkdx− k

n�

j=1

αj[φ
�
jφk

��1
0
] + k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx (4.4)
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For homogeneous BC φ must be 0 at x = 0 and x = 1. The second term in equation (4.4)

vanishes and we are left with:

n�

j=1

α̇j

� 1

0

φjφkdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx = 0 (4.5)

which represents the weak form of the heat equation.

Remark: it is important to notice that the assumption of continuity in the interval of

definition plays a crucial role. If a discontinuity is present, the derivative of the mode is

not defined at the jump and therefore specific adaptations must be addressed, details of

which are beyond the scope of this work.

Convection-diffusion equation

We now consider the convection-diffusion equation for the case of non-homogeneous Dirich-

let boundary conditions (NH-BC). When treating NH-BC, special attention must be paid

to evaluating the boundary terms. Different formulations are possible. We will present two

different cases, namely direct substitution and the penalty method.

The convection-diffusion equation and boundary conditions to be considered are:

∂u

∂t
+ a

∂u

∂x
= k

∂
2
u

∂x2
(4.6)

u(0, t) = 1 (4.7)

u(1, t) = 0; (4.8)

As before, we approximate the solution by u =
�n

j=1 αjφj, and employ Galerkin projection:

� 1

0

n�

j=1

α̇jφjφkdx+ a

� 1

0

n�

j=1

αjφ
�
jφkdx = k

� 1

0

n�

j=1

αjφ
��
jφkdx (4.9)

which can be rearranged as:

n�

j=1

α̇j

� 1

0

φjφkdx+ a

n�

j=1

αj

� 1

0

φ
�
jφkdx = k

n�

j=1

αj

� 1

0

φ
��
jφkdx (4.10)

To reduce the order of the derivatives we integrate by parts, leading to:
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n�

j=1

α̇j

� 1

0

φjφkdx− a

n�

j=1

αj

� 1

0

φjφ
�
kdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

+ a

n�

j=1

αj[φjφk

��1
0
]− k

n�

j=1

αj[φ
�
jφk

��1
0
] = 0 (4.11)

which represents the weak form of the convection diffusion equation.

The first method to enforce the boundary conditions, is to substitute the exact value

at the boundary when required. Specifically, we know that at the boundary u(0) = 1 and

hence
�n

j=1 αjφj(0) = 1, while u(1) = 0 meaning that
�n

j=1 αjφj(1) = 0. Furthermore

φ = 0 at x = 1 being the boundary condition homogeneous at x = 1. This leads to:

n�

j=1

α̇j

� 1

0

φjφkdx− a

n�

j=1

αj

� 1

0

φjφ
�
kdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

− au(0)φk(0) + k

n�

j=1

αj[φ
�
j(0)φk(0)] = 0 (4.12)

where the final flux term therefore remains unknown.

The second method we consider for treating boundary conditions is a so-called penalty

method. The key idea of the method is to leave undetermined the boundary fluxes arising

from the weak formulation, and enforce the satisfaction of the boundary conditions by

adding a penalty term in the form σ(u − γ)
��1
0
, with γ the boundary value. As σ goes to

infinity the deviation from the exact solution is increasingly penalised, and the solution

converges to the solution of the original problem. Furthermore, particularly for diffusive-

dominated problems, a second term should be added to the formulation to increase stability.

This is the so-called adjoint-consistency term and has the form k[φ�(u − γ)]
��1
0
(see (15))

. Notice that the addition of these extra terms does not influence the consistency of the

system, since upon substitution of the exact solution, penalty and adjoint consistency terms

vanish and we are left with the original problem.
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n�

j=1

α̇j

� 1

0

φjφkdx− a

n�

j=1

αj

� 1

0

φjφ
�
kdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

+ a

n�

j=1

αj[φjφk

��1
0
]− k

n�

j=1

αj[φ
�
jφk

��1
0
]

+ [σ(u− γ) + kφ
�(u− γ)]

��1
0
= 0 (4.13)

The penalty parameter must be chosen depending on the specific need of the application.

If we are interested in having a high fidelity of the solution close to the boundary we would

increase the penalty term to bring the weak formulation the closest possible to the exact

solution. On the other hand, allowing jumps in the boundary terms, allows for a better

representation of the interior solution, as will be illustrated by the numerical tests.

4.2 Optimisation

Having seen the derivation of the SCF-ROM for two examples of interest, we are now ready

to move one step forward and set up the optimisation procedure in the continuous setting.

As for the discrete setting, we now seek a set of model-constrained optimised modes in

the continuous framework such that the L2-norm is minimised. However, in the current

formulation we no longer wish to be limited in choosing g to be linear, g = CΦ, but desire

to be free to pick whichever function suits our needs. We will indicate this as g = f(u).

For ease of presentation we will derive the method for a specific example, the convection-

diffusion equation analysed in Sec. 4.3 with direct substitution. The optimisation problem

can be stated as, find Φ ∈ RN where:

Φ = argmin
Φ

E(Φ) (4.14)

E(Φ) =

� tf

0

� 1

0

(g − ĝ)2dxdt (4.15)
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Applying the model constraint and orthonormality, the problem becomes find Φ ∈ RN

where:

min
Φ,α

G =
1

2

� tf

0

� 1

0

(g − ĝ)2dxdt+
β

2

m�

j=1

�
1−

� 1

0

φ
2
jdx

�2

+
β

2

m�

i,j=1
i �=j

�� 1

0

(φiφj)dx

�2

(4.16)

subject to:
n�

j=1

α̇j

� 1

0

φjφkdx− a

n�

j=1

αj

� 1

0

φjφ
�
kdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

subject to: − au(0)φk(0) + k

n�

j=1

αj[φ
�
j(0)φk(0)] = 0 (4.17)

subject to:
n�

j=1

αj(0)

� 1

0

φjφkdx =

� 1

0

u0φkdx (4.18)

subject to: ĝ = f(u) (4.19)

We again construct the gradient using an adjoint method. The first step is to define the

Lagrangian by taking the inner product of each constraint with its respective Lagrange

multiplier. Since each projected state equation has to be satisfied, there will be λk for

k = 1..n for which:

L (Φ, α, λ, µ) =
1

2

� tf

0

� 1

0

(g − ĝ)2dxdt+
β

2

m�

j=1

�
1−

� 1

0

φ
2
jdx

�2

+
β

2

m�

i,j=1
i �=j

�� 1

0

(φiφj)dx

�2

+

� tf

0

n�

k=1

λk

� n�

j=1

α̇j

� 1

0

φjφkdx

− a

n�

j=1

αj

� 1

0

φjφ
�
kdx+ k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

− au(0)φk(0) + k

n�

j=1

αjφ
�
j(0)φk(0)

�
dxdt

+
n�

k=1

µk

�
n�

j=1

αj(0)

� 1

0

φjφkdx−
� 1

0

u0φkdx

�
= 0 (4.20)

We now impose stationarity of the Lagrangian to define the optimality conditions. This

implies taking a set of Fréchet derivatives with respect to each defining function. Setting

the variation of the Lagrangian with respect to each λk and µk to zero simply recovers
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the respective projected state equation and the initial condition, respectively. Setting the

variation with respect to each α (which we will denote αq) to zero yields the corresponding

adjoint equation, final condition and definition of µ.

−
n�

j=1

λ̇j

� 1

0

φqφjdx+
n�

j=1

λj

�
k

� 1

0

φ
�
qφ

�
jdx− a

� 1

0

φqφ
�
jdx+ kφj(0)φ

�
q(0)

�

=

� 1

0

�
f(u)− f

� n�

j=1

αjφj

��
f
�
� n�

j=1

αjφj

�
φqdx (4.21)

λq(tf ) = 0, (4.22)

µq = λq(0) (4.23)

The last step is to differentiate the Lagrangian with respect to the each basis vector

φq. For clarity, we split the derivation for each term, denoted with Fi.

1st term

δF1[φq]

δφq(x)
=

δ

δφq(x)

�
1

2

� tf

0

� 1

0

�
f(u)− f

� n�

j=1

αjφj

��2
dxdt

�
=

=

� tf

0

�
f

� n�

j=1

αjφj

�
− f(u)

�
f
�
� n�

j=1

αjφj

�
αqdt (4.24)

2nd term

δF2[φq]

δφq(x)
=

δ

δφq(x)

�
β

2

m�

j=1

�
1−

� 1

0

φ
2
jdx

�2
�

=

= 2βφq

�� 1

0

(φq)
2
dx− 1

�
(4.25)

3rd term

δF3[φq]

δφq(x)
=

δ

δφq(x)

�
β

2

m�

i,j=1
i �=j

�� 1

0

(φiφj)dx

�2
�

=

= 2β
m�

j=1
j �=q

φj

�� 1

0

(φqφj)dx

�
(4.26)
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4th term

δF4[φq]

δφq(x)
=

δ

δφq(x)

�� tf

0

n�

k=1

λk

� n�

j=1

α̇j

� 1

0

(φjφk)dx

�
dt

�
=

=

� tf

0

�
2λqα̇qφq + λq

n�

j=1
j �=q

α̇jφj + α̇q

n�

j=1
j �=q

λjφj

�
dt (4.27)

5th term

δF5[φq]

δφq(x)
=

δ

δφq(x)

�� tf

0

−a

n�

j=1

αj

� 1

0

φjφ
�
kdx

�
dt

�
=

= −a

� tf

0

�
λq

n�

j=1
j �=q

αjφ
�
j − αq

n�

j=1
j �=q

λjφ
�
j

�
dt (4.28)

6th term

δF6[φq]

δφq(x)
=

δ

δφq(x)

�� tf

0

n�

k=1

λk

�
k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

�
dt

�
=

= −k

� tf

0

�
2λqαqφ

��
q + λq

n�

j=1
j �=q

αjφ
��
j + αq

n�

j=1
j �=q

λjφ
��
j

�
dt (4.29)

7th term

δF7[φq]

δφq(x)
=

δ

δφq(x)

�� tf

0

n�

k=1

λk

�
k

n�

j=1

αj

� 1

0

φ
�
jφ

�
kdx

�
dt

�
=

= −
� tf

0

�
2λqαqφ

��
q + λq

n�

j=1
j �=q

αjφ
��
j + αq

n�

j=1
j �=q

λjφ
��
j

�
dt (4.30)

8th term

δ

δφq(x)

�
− au(0)φk(0)

�
= −au(0) (4.31)

9th term

δ

δφq(x)

�
k

n�

j=1

αjφ
�
j(0)φk(0)

�
= k

n�

j=1

αjφ
�
j(0) (4.32)
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10th term

δF10[φq]

δφq(x)
=

δ

δφq(x)

�
n�

k=1

µk

�
n�

j=1

αj(0)

� 1

0

φjφkdx

��
=

= 2µqαqφq + µq

n�

j=1
j �=q

αjφj + αq

n�

j=1
j �=q

µjφj (4.33)

11th term

δF11[φq]

δφq(x)
=

δ

δφq(x)

�
n�

k=1

µk

�
−
� 1

0

u0φkdx

��
=

= −µqu0 (4.34)

Putting all together we have the expression for the gradient:

δLΦq =

� tf

0

�
f

� n�

j=1

αjφj

�
− f(u)

�
f
�
� n�

j=1

αjφj

�
αqdt+ 2βφq

�� 1

0

(φq)
2
dx− 1

�

+ 2β
m�

j=1
j �=q

φj

�� 1

0

(φqφj)dx

�
+

� tf

0

��
2λqα̇qφq + λq

n�

j=1
j �=q

α̇jφj + α̇q

n�

j=1
j �=q

λjφj

�

− a

�
λq

n�

j=1
j �=q

αjφ
�
j − αq

n�

j=1
j �=q

λjφ
�
j

�
− k

�
2λqαqφ

��
q + λq

n�

j=1
j �=q

αjφ
��
j + αq

n�

j=1
j �=q

λjφ
��
j

��
dt

− au(0)λq + k

n�

j=1

αjφ
�
j(0)λq + 2µqαqφq + µq

n�

j=1
j �=q

αjφj + αq

n�

j=1
j �=q

µjφj − µqu0 (4.35)

All the ingredients are now in place to implement the procedure computationally. Al-

though the base formulation is continuous, the reference data is discrete. We are therefore

forced to evaluate operators such as g− ĝ in a discrete way. Correspondingly, the solutions

to the equation (4.35) will live in the same discrete space as the reference data. Specifically,

the basis vectors Φ will have the dimension of the reference data in space, while the mode

amplitudes, α, have the dimension of the reference data in time. As a consequence, in the

solution of (4.35) we require discrete operators for integration in space and time, and for

differentiation in space the choice of these operators will be discussed in the results section

which follows. In the next sections we will give results computed with the SCF for several

different cases.
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4.3 SCF Results

As mentioned in the previous section, the evaluation of integrals and derivatives in equation

(4.35) must be carried out discretely. We choose to approximate the spatial derivatives by

central differences and integrate over the domain by the trapezoidal rule as follows:

� 1

0

f(x)g(x)dx ≈
N�

i=1

f̄iḡih

where f̄i and ḡi represent the average values of the function f and g on each interval,

f̄ = fi+fi+1

2 , and h is the length of the subinterval of integration. This can be organised

in matrix form, by taking f = [f̄1 · · · f̄N ]T , g = [ḡ1 · · · ḡN ]T , and ∆ as a matrix containing

only h on the diagonal. The integration therefore takes the form:
� 1

0 f(x)g(x)dx ≈ f̄T∆ḡ.

We are now in a position to compare the final discretisation arising from FDF and SCF.

The n equations arising in (4.5) can also be expressed as:

M α̇ + K α = 0; (4.36)

Where M = Φ̄T∆Φ̄ and K = Φ̄�T∆Φ̄�

In FDF, one might have constructed M and K using an arbitrary discretisation method

for the governing equations. This might have been of high order, and included complex

stabilisation operators, for example. In the case of experimental data, it might not have

been possible to choose K and M at all. In contrast, in the SCF M and K are clearly

associated with the process of integration and differentiation required for the reduced-order

model. They can be chosen based on the final operating requirements of the ROM.

Looking more carefully at the M-matrices, we see that in case of SCF-ROM the matrix

M is equal to the identity matrix. This because, by definition of orthonormal basis, the

inner product
� 1

0 φiφkdx = δik and therefore only terms on the diagonal (i = k) contribute.

For BT-ROM the situation is slightly different, since M̂ is dependent on the discretisation

scheme chosen. If the numerical simulation is constructed by finite differences, the matrix

M of the LTI formulation is also the identity matrix and therefore M = M̂ = I. On the

other hand, if a finite element approach is used, M is no longer identical and leads to a

different result.

The following results will be generated by similar finite difference schemes for FDF

and SCF, which results in a similar but not identical structure for the matrices M and
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K. To solve equation (4.36) we need to supplement the equation by an appropriate initial

condition. In our case we choose a triangular distribution as illustrated in Fig. 4.1. The

reduced order model is integrated in time by a third-order explicit Runge-Kutta method.

In Fig. 4.4 we compare the two formulations at a chosen instant of time t=0.025. As

expected, the results from the FDF-ROM and SCF-ROM are similar to each other. For

comparison, we consider the relative error as the number of modes increases, calculated as:

� =
||U − Ur||∞

||Ur||
where U and Ur are the matrices containing the set of snapshots of the numerical solution

and of the reduced-order model respectively. As we can see the difference is practically

unnoticeable, although the continuous one is slightly lower.
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Figure 4.1: Initial condition for the Continuous POD
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Figure 4.2: Comparison Discrete and Continuous POD of order 3 in a randomly chosen

instant of time (t=0.0025)
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Figure 4.4: Comparison error continuous and discrete formulations
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Convection Diffusion with NH-BC

In a similar fashion as the the heat equation, to implement the convection-diffusion equation

we discretise the governing equations to allow numerical implementation. By applying the

same differentiation and integration techniques we arrive at a similar result. Particularly,

by defining the vector Φ0 = [φ1(0), ..., φn(0)], as well as Φ�
0 = [φ�

1(0), ..., φ
�
n(0)], also in this

case we can set up the numerical counterpart, gathering the equations in matrix form for

compactness. This gives:

M α̇ + (Ka + Kp)α = b (4.37)

Where M = Φ̄T∆Φ̄, Ka = −a(Φ̄�T∆Φ̄) + k(Φ̄�T∆Φ̄�), Kp = kΦT
0Φ

�
0 and b = kΦT

0 u0.

To solve numerically (4.37) we employ a third order explicit Runge-Kutta method. At

steady state the performance of the reduced-order model is shown in Fig. 4.5 for order

1 to 4 in case of the direct substitution method. Since the penalty method is strongly

dependent of the σ value, it is worthwhile comparing how this affects the accuracy of the

solution. As can be seen in Fig. 4.6 for the one mode case, the adoption of a high penalty

term enforces the boundary conditions in a stronger manner, but the price to pay is a lack

of optimality in the interior domain. On the other hand reducing σ to lower values, thus

allowing bigger jumps at the boundary, shows a better representation of the boundary

layer. Depending on one needs, the choice of σ plays an important role and should be

ultimately be incorporated as an additional optimisation variable.
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Figure 4.5: Steady state solution of convection diffusion equation. Comparison between

different order of ROM
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Figure 4.6: Comparison of different boundary condition implementation
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4.4 Optimisation - Non linear functional

In a similar way as we did for the state equations, to implement the optimisation for the

SCF derived in Sec. 4.2, adjoint equation and gradient expression need to be brought in

matrix form. Since the goal-oriented term depends on the function we choose to optimise,

for sake of clarity we take as example the identity function f(u) = u. The adjoint equation

can be rewritten as:

−M T
λ̇+ (Ka

T + Kp
T )λ = b (4.38)

With M ,Ka ,Kp as previously defined and b = Φ̄T∆(u− Φα)

And similarly, in matrix form the gradient reads as:

δLΦ =

� tf

0

(Φα− u)αT
dt+ 2βΦ(Φ̄T∆Φ̄− I) +

� tf

0

�
Φ(λα̇T + α̇λ

T )

− aΦ�(λαT − αλ
T )− kΦ��(λαT + αλ

T )− au0λ
T + kΦ�

αλ
T
�
dt

+ Φ(µαT
0 + α0µ

T )− u0µ
T = 0 (4.39)

It is worth contrasting (4.39) with expression (3.30) here recalled:

δLΦ =

� tf

0

H(Φα− u)αT
dt+ 2βΦ(ΦTΦ− I)

+

� tf

0

[MΦ(λα̇T + α̇λ
T ) +K

TΦλαT +KΦαλT − fλ
T ]dt

+MΦµαT
0 +M(Φα0 − u0)µ

T = 0. (4.40)

The matrices M and K no longer appear. These have been replaced by expressions which

correspond to the Galerkin projection of the continuous governing equations, and the goal-

functional has assumed a general functional g = f(u).

To validate the formulation we carried out a numerical test for the convection-diffusion

equation in which we target the functional g = ||u||2. As we can see in Fig. 4.7 for each

mode we obtain a substantial improvement with respect to the POD-ROM. In addition,

especially for the 1-mode case, we notice a considerable change in the mode shape, reflecting

the adaptation of the system to the goal-orientation.
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Chapter 5

Conclusions

We have considered a number of approaches to the development of reduced order models.

Firstly we described the commonly-applied POD approach and then reviewed the much

more useful fully-discrete approach introduced by (7) which allows for model constraint

and goal orientation. The FDF, however, is limited to LTI systems and linear functionals.

To address these limitations, we have introduced a semi-continuous approach, which is

completely independent of the method used to generate the reference data, avoiding cou-

pling of sub-optimal defining matrices and being applicable in case of experimental data as

well. Furthermore the approach is no longer limited to linear PDE and linear functionals,

but any governing equation or goal-orientation can be considered.

We have designed the method to be applicable to large-scale simulations by using

an inexact-globalised-Newton-method. The construction of the gradient by the adjoint

method remains tractable, requiring exclusively state and adjoint solution of the ROM and

not of the full system. However, depending on the size of the problem, the computational

cost of the complete procedure might still represent an issue and further investigations

are required. Furthermore, improvements could be achieved by including a goal-oriented

adaptive ROM penalty term in the optimisation process.

Results have shown important improvements compared to the POD. We have consid-

ered the convection-diffusion equation with non-linear goal functional. The mode adapta-

tion brought by the SCF showed improved ROM solutions, allowing a much better repre-

sentation of the output of interest and clearly outperforming the POD-ROM.

The general framework provided by the method, together with encouraging results

obtained for the linear convection-diffusion equation, make the SCF attractive for future
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works, such as applications to nonlinear governing equations and implementation in control

systems.
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Appendix A

Mathematical definitions

A.1 Notions on vector spaces

• Linear Independence: A set of vectors {a1, ..., an} in Rm is linearly independent

if the only solution of the problem
�n

j=1 αjaj = 0 is the zero solution α(1 : n) = 0.

In other words the n vectors are linearly independent if the only linear combination

equal to the 0-vector is the one with all coefficients equal to 0.

• Subspace: A subspace of Rm is a subset that is also a vector space.

• Span: Given a set of vectors {a1, ..., an} the set of all linear combinations of these

vectors is a subspace referred to as the span of {a1, ..., an}.

span{a1, ..., an} =

�
n�

j=1

βjaj : βj ∈ R
�

• Basis: The subset {ai1 , ..., aik} is called a maximal linearly independent subset

of {a1, ..., an} if it is linearly independent and is not properly contained in any

linearly independent subset of {a1, ..., an}. Furthermore if {a1, ..., an} is maxi-

mal, the span{a1, ..., an} = span{ai1 , ..., aik} and {ai1 , ..., aik} is called a basis for

span{a1, ..., an}.

• Dimension: If S ⊆ Rm is a subspace, then it is possible to find independent basic

vectors {ai1 , ..., aik} such that S =span{a1, ..., ak}. All bases for a subspace S have

the same number of elements and this number is called the dimension of S, denoted

by dim(S).
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A.2 Range, Null Space and Rank

• Range: the range of a matrix A is defined by:

range(A) = {y ∈ Rm : y = Ax for some x ∈ Rn}

In other words the range of A is the set of all vectors v for which the equation

Ax = y has a solution. Still another equivalent definition: the range of A is the span

of columns of A.

• Ker or Null Space: the ker or null space of a matrix A is defined by:

ker(A) = {x ∈ Rn : Ax = 0}

In other words the ker of A is the set of all the solutions to the equation Ax = 0.

• Rank: the rank of a matrix A is defined by:

rank(A) = dim(range(A))

A.3 Norms

Norms provide measures of distance. They are indicated with a double bar notation and

subscripts to distinguish between various norms, the most common of which is the 2-norm.

• Vector Norm: a useful class of vector norms are defined by the p-norm:

||x||p = (|x1|p + ...|xn|p)1/p p ≥ 1

In particular we distinguish:

1-norm ||x||1 = |x1|+ ...|xn|,

2-norm ||x||2 = (|x1|2 + ...|xn|2)1/2 = (xT
x)1/2,

∞-norm ||x||∞ = max
1≤i≤n

|xi|.
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• Function Norm: similarly to vector norms, for a function f(x) we can define:

||f ||p =
�� 1

0

|f(x)|pdx
�1/p

In particular we distinguish:

L1-norm ||f ||1 =

� 1

0

|f(x)dx

L2-norm ||f ||2 =

�� 1

0

|f(x)|2dx
�1/2

L∞-norm ||f ||∞ = max
0≤x≤1

|f(x)|.

• Matrix Norm: are defined using the vector norm above defined. The matrix p-norm

reads as:

||A||p = sup
x �=0

||Ax||p
||x||p

In other words the Matrix p-norm is the p-norm of the largest vector obtained by

applying A to a unit (p-norm) vector.

||A||p = sup
x �=0

||Ax||p
||x||p

= max
||x||p=1

||Ax||p

A.4 Orthogonality

• Vectors: a set of vectors {x1, ..., xp} in Rm is orthogonal if xT
i xj = 0 whenever i �= j

and orthonormal if xT
i xj = δij. So in particular orthonormality requires ||xT

i xj|| = 1

whenever i = j.

• Matrices: a matrix Q ∈ Rm is said to be orthogonal if Q
T
Q = I, where I is

the identity matrix. Consequently for an orthogonal matrix Q
T = Q

−1. If Q is

orthogonal, then the qi form an orthonormal basis for Rm.
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Appendix B

Singular Value decomposition (SVD)

In 1965 G. Golub and W. Kahan introduced the Singular Value Decomposition (SVD)

as a technique for calculating the singular values, pseudo-inverse and rank of a matrix.

We begin by stating, without proof, the SVD theorem (interested readers can refer to (16)):

Theorem 1:

If A is a real m-by-n matrix, then there exist orthogonal matrices:

U = (u1, ..., um) ∈ Rm×m
and V = [v1, ..., vn] ∈ Rn×n

such that:

U
T
AV = diag[σ1, ..., σp] ∈ Rm×n

p = min{m,n} (B.1)

where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0.

The σi are denoted as the singular values of A and the vectors ui and vi are the ith

left singular vector and the ith right singular vector. There is an important relationship

between the SVD of the the matrix A and the matrix itself:

• U is a matrix whose columns are the eigenvectors of the AAT matrix, termed the left

eigenvectors.

• V is a matrix whose columns are the eigenvectors of the A
T
A matrix, termed the

right eigenvectors.
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• the squares of the singular values are the p = min(m,n) largest eigenvalues of AAT

or AT
A, since the p right and left eigenvalues are equivalent.

It is convenient to introduce the following notation to refer to singular values:

σi(A) = the ith largest singular value of A,

σmax(A) = the largest singular value of A,

σmin(A) = the smallest singular value of A.

If the SVD of A is given by Th. 1 and we define r as the index of the last positive singular

value:

σ1 ≥ ... ≥ σr ≥ σr+1 = ... = σp = 0,

then:

rank(A) = r (B.2)

ker(A) = span{vr+1, ..., vn} (B.3)

range(A) = span{u1, ..., ur} (B.4)

and we have the SVD expansion:

A =
r�

i=1

σiuiv
T
i

and in particular the matrix 2-norm is given by:

||A||2 = σ1

B.0.1 Geometrical interpretation

The SVD of a matrix has a nice geometric interpretation. An n×m matrix A is a linear

operator that maps vectors from an m-dimensional space to an n-dimensional space. When

applying a matrix to a vector, the latter can undergo rotation and scaling. As an example

we describe the effect of a matrix on a two-dimensional vector.
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Figure B.1: Rotating Vector

Take a rotating vector, which describes a circle. Now suppose that when rotating the

vector we stretch and squeeze it in a variable manner and up to a maximum and minimum

length (application of the matrix). Instead of a circle the arrow now describes a two-

dimensional ellipsoid. As said the multiplication of a vector x with a matrix A results

in a new vector Ax = y and the matrix performs two operations on the vector: rotation

(the vector changes coordinates) and scaling (the length of the vector changes). In terms

of SVD, the maximum stretching and squeezing are determined by the singular values

of the matrix. In Fig.(B.2) the effect of the two largest singular values, s1 and s2 has

been labeled. The important thing to notice is that singular values describe the extent by

which the matrix modifies the original vector and, thus, can be used to highlight which

dimension(s) is/are affected the most by the matrix. Evidently, the largest singular value

Figure B.2: Application of a matrix to a vector
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has the greatest influence on the overall dimensionality of the ellipsoid.

This idea can be easily extended to an M-dimensional vector space. As we found, the

greatest influence on the system is represented by the largest singular values. In fluid

mechanics, by taking velocity measurements, the square of the singular values represent

the kinetic energy of the associated modes, and therefore keeping the first singular values

corresponds to keep the most energetic modes in the flow.

B.0.2 Why the SVD?

Recalling from the introduction, we are interested in constructing an approximation of the

form y(x, t) =
�M

i=1 ai(t)φi(x) which approximates our data in the best possible way. This

raises two questions: what is the relation between the SVD and the approximation? And

why did we introduce the SVD?

Let’s first answer the first of these questions. From Th. 1 we know that it is possible to

decompose A such that UT
AV = diag[σ1, ..., σp]. Furthermore we know that U and V are

orthogonal matrices, implying that their inverses exist and are equal to their respective

transposes. We can therefore decompose the matrix A in the following way:

A = UΣV T (B.5)

where Σ is the diagonal matrix containing the singular values σi.

Now let UΣ = Q in Eq.(B.5). The matrix Q is then N ×M and A = QV
T . Taking qi as

the i-th column of Q and vi the i-th column of V , we can write

A = QV
T =

M�

i=1

qiv
T
i . (B.6)

In this form Eq.(B.6) can be referred as the discrete form of Eq.(2.1) where we recognize

y(x, t) to be the matrix A, ai(t) the column matrix qi and φi(x) the row matrix v
T
i .

The answer to the second question requires the relationship between SVD and POD,

which will be treated in the next section. However, we can have a first idea by looking

more in detail at the matrix Σ containing the singular values. Σ is constructed in such

a way that the singular values are placed in the main diagonal in descending order. The

singular values are an indication of the energy carried by the associated mode. Therefore

it is very easy to construct a lower-rank approximation of the matrix A, by choosing only
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the first k values of σi, meaning to select the most energetic features in the system. For

any k < r the matrix Σk is obtained by setting σk+1 = σk+2 = ... = σp = 0.

Since the singular values σi are ordered in decreasing order along the diagonal of Σ and

this ordering is preserved when constructing U and V
T , keeping the first k singular values

is equivalent to keeping the first k rows of V T , the first k columns of U and replacing Σ by

the submatrix containing its first k rows and k columns. It follows that the the lower-rank

approximation of A is

Ak = UkΣkV
T
k (B.7)

This process is termed dimensionality reduction, and Ak is referred to as the Rank k

approximation of A or the “Reduced SVD” of A. Why is this dimensionality reduction

useful will become more clear in the next section, where the POD and the concept of

optimality will be introduced.
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Appendix C

SVD vs. Eigenvalue decompostion (ED)

The SVD of a matrix has several advantages with respect to the Eigenvalue decomposition.

First of all the SVD can be computed for non-square matrices, while the ED cannot since

it requires the evaluation of the inverse of a non-orthogonal, non-square matrix, which is

not defined. Furthermore the SVD remains real when A is real, while eigenvalues and

eigenvectors of unsymmetric real matrices can be complex valued. Last but not least, the

left and right singular vectors (columns of U and of V respectively) are each orthogonal,

while eigenvectors of unsymmetric matrices need not to be orthogonal. The SVD allows

therefore the choice of an optimal orthonormal basis (rows of V T
i ), while the ED does not.

However a strong connection between the two methods exist. As described in appendix

B we know that U is a matrix whose columns are the eigenvectors of the AA
T matrix,

V is a matrix whose columns are the eigenvectors of the A
T
A matrix and the squares of

the singular values are the r = min(n,m) largest eigenvalues of AAT . If A is symmetric

and positive definite, then its eigenvalues are also its singular values, and U = V . If A

is symmetric with some negative eigenvalues (they will be real, because A is symmetric),

then the singular values are the magnitudes of the eigenvalues, and U and V are the same

up to multiplication by minus one for the columns corresponding to negative eigenvalues.
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Appendix D

The conjugate gradient method

The conjugate gradient method was introduced by Hestenes and Stiefel in the 1950’s as a

technique to solve large sparse systems of linear equations in the form Ax = b with A a

n-by-n positive definite coefficient matrix. The problem can also be seen equivalently as

the minimization problem:

minφ(x) =
1

2
x
T
Ax− b

T
x+ c (D.1)

In fact solution of Eq.(D.1) is obtained by setting φ
�(x) = 0 and therefore retrieving:

φ
�(x) =

1

2
A

T
x+

1

2
Ax− b = Ax− b = 0

since A is symmetric. This allows us to see the conjugate-gradient method either as an

algorithm for solving linear systems or as a technique for minimizing convex quadratic

functions.

Since it is more easily understood in terms of optimization, we pose the problem as the

determination of the minima of the quadratic function (D.1). As previously said, starting

at an initial point, we choose a search direction and we require that the new iterate satisfies

f(xk+1) < f(xk). The search direction can be chosen in several different ways, the most

obvious would be the direction of steepest descent, corresponding to the negative of the

gradient at xk. This choice, however, is generally inefficient since the algorithm finds

itself taking steps in the same direction as earlier steps. The conjugate-gradient method

overcomes this drawback by using a set of search directions with the property of conjugacy.

Two vectors are said to be conjugate (or A-orthogonal), if
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d
T
i Adj = 0 for all i �= j

Before illustrating the method, we introduce the following notation

• Iterate: we choose the new point to be xk+1 = xk + αkdk, with αk the step length

and dk the search direction.

• Error: the difference between the value of the current iterate xk and the exact solution

x, namely ek = xk − x.

• Residual: indicates how well the current iterate approximates the solution, namely

rk = Axk − b. It is important to notice that the residual is also equal to rk = φ
�(xk),

which represents the gradient at the current iterate. Furthermore with a simple

substitution we can also write the residual as rk = Aek.

Consider now the contours of a given function (Fig. D.1), in which x0 represents the

initial guess, d0 the first search direction, x1 the new iterate and e1 the error after the first

step.

x0 x1d0

e1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Figure D.1: CG iteration
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What we require is that the error ek+1 has to be A-orthogonal to the previous search

direction, hence d
T
kAek+1 = 0. This is equivalent to finding the minimum point along the

search direction dk. In fact, setting the directional derivative of φ(xk+1) with respect to αk

to zero we have:

d

dα
φ(xk+1) = 0 (D.2)

φ
�(xk+1)

T d

dα
xk+1 = 0 (D.3)

r
T
k+1dk = 0 (D.4)

d
T
kAek+1 = 0 (D.5)

with this condition αk can be calculated as:

d
T
kAek+1 = 0 (D.6)

d
T
kA(ek + αkdk) = 0 (D.7)

αk = −d
T
kAek

d
T
kAdk

= − d
T
k rk

d
T
kAdk

(D.8)

To demonstrate that this procedure actually works, we can express the error e0 as a linear

combination of search directions, and show that after n iterations all components of the

error term have been cut away. Writing the error term as:

e0 =
n−1�

k=0

δkdk (D.9)

we can find the values of δk by exploiting the conjugacy property of the search directions.

Upon premultiplying Eq.(D.9) by d
T
j A we get:

d
T
j Ae0 =

n−1�

k=0

δkd
T
j Adk (D.10)

= δjd
T
j Adj (D.11)

since d
T
j Adk = 0 for all j �= k. Each δj can then be rearranged as:
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δj =
d
T
j Ae0

d
T
j Adj

(D.12)

=
d
T
j A(e0 +

�j−1
i=0 αidi)

d
T
j Adj

(D.13)

=
d
T
j Aej

d
T
j Adj

(D.14)

where we are allowed to add
�j−1

i=0 αidi since by conjugacy this is equal to zero. From the

result in Eq.(D.14) we notice that αj = −δj. Since the error term at a given iteration can

be seen as the initial error e0 plus the progress already made by the algorithm (Fig. D.2),

we can rearrange the expression as:

ei = e0 +
i−1�

k=0

αkdk (D.15)

=
n−1�

k=0

δkdk −
i−1�

k=0

δkdk (D.16)

=
n−1�

k=i

δkdk (D.17)

(D.18)

Therefore after n iterations every component of the error vanishes and en = 0, which proves

the effectiveness of the procedure.

The only thing now missing is a procedure for computing the next search direction.

This turns out to be a very special feature of the conjugate-gradient method, because it

can generate a new search direction only with information regarding the previous search

direction dk and residual rk, avoiding storage of the whole history of data. Other methods,

such as the conjugate Gram-Schmidt process require all the old search vectors to be kept

in memory, leading them to be computationally expensive.

To construct a new direction, dk+1, we take:

dk+1 = −rk+1 + βk+1dk (D.19)

where the scalar βk+1 is determined by imposing dk+1 and dk to be conjugate with respect

to A. By premultiplying (D.19) by d
T
kA and imposing the condition d

T
kAdk+1 = 0 we obtain:
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x0 x1

x2

d0

d1

e2

e0

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Figure D.2: Error at different iterations: e2 = e0 + α0d0 + α1d1 = e0 +
�1

k=0 αkdk

d
T
kArk+1 = βk+1d

T
kAdk (D.20)

βk+1 =
d
T
kArk+1

d
T
kAdk

(D.21)

The method would be complete as defined above, but with a little modification we can

simplify the computations a bit. If we premultiply (D.17) by d
T
j A we have:

d
T
j Aei =

n−1�

k=i

δkd
T
i Adk (D.22)

d
T
j ri = 0 for allj < i (D.23)

Which shows that the residual is orthogonal to every previous search direction. Now by

premultiplying Eq.(D.19) by r
T
k+1, and using the orthogonality property of (D.23) we have:

r
T
k+1dk+1 = −r

T
k+1rk+1 + βk+1r

T
k+1dk (D.24)

r
T
k+1dk+1 = −r

T
k+1rk+1 (D.25)
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Hence at each iteration we have that −r
T
k dk = r

T
k rk and therefore αk in Eq.(D.8) can be

rewritten as:

αk =
r
T
k rk

d
T
kAdk

(D.26)

As a last step we can simplify the evaluation of β by, first noticing that:

rk+1 = Aek+1 (D.27)

= A(ei + αkdk) (D.28)

= rk + αkAdk (D.29)

and secondly, in the same fashion as we did for α, we premultiply (D.29) by r
T
k+1 and we

use orthogonality condition (D.23). This leads to:

r
T
k+1rk+1 = r

T
k+1rk + αkr

T
k+1Adk (D.30)

r
T
k+1rk+1 = r

T
k+1rk+1 (D.31)

And therefore the expression for β can be simplified as:

βk+1 =
r
T
k+1rk+1

r
T
k rk

(D.32)

which completes the required calculations. Setting the first direction to be the negative of

the residual and putting all together, the Conjugate gradient method can be summarized

as:

Algorithm 3 - Conjugate Gradient
Set initial residual and search direction: r0 = Ax0 − b, d0 = −r0

while ||rk|| > � do

- Calculate αk = r
T
k rk/d

T
kAdk

- Update x: xk+1 = xk + αkdk

- Update r: rk+1 = rk + αkAdk

- Calculate βk+1 = r
T
k+1rk+1/r

T
k rk

- Update d: dk+1 = −rk+1 + βk+1dk

end while
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Functional derivative

The derivation of the gradient by means of the adjoint-method requires the use of functional

derivatives, i.e. the differentiation of a functional with respect to its argument. In this

section we give a brief overview of the concept, stating the main properties. For a detailed

analysis see (17; 18)

Functional: A functional F [φ] is defined as a mapping from a normed linear space of

functions (a Banach space) M = {φ(x) : x ∈ R} to the field of real or complex numbers,

F : M → R or C.

Differential: The differential of a functional is the part of the difference F [f + δf ]−F [f ]

that depends of δf linearly. Each δf(x) may contribute to this difference, and for very

small δf we write:

δf =

�
δF [φ]

δf(x)
δf(x)dx

where the quantity δF [φ]/δf(x) is the functional derivative of F with respect to f at the

point x.

Functional derivative: The functional derivative (also known as Fréchet derivative) is

the quantity δF [φ]/δφ(x) measuring how the value of the functional changes if the function

φ(x) is changed at the point x. In other words, δF [φ]/δφ(x) is explicitly defined by the

process:

lim
�→0

�
F [f + �φ]− F [f ]

�

�
=

�
d

d�
(F [f + �φ])

�

�=0

=

�
δF

δf(x)
φ(x)dx

where φ(x) is arbitrary.
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Most of the rules of ordinary differential calculus also apply to functional derivatives.

• Product of two functionals F [φ] = G[φ]H[φ]

δF [φ]

δφ(x)
=

δG[φ]

δφ(x)
H[φ] = G[φ]

δH[φ]

δφ(x)

• Functional of a functional F [G[φ]]

δF [G[φ]]

δφ(y)
=

�
δF [G]

δG(x)

δG[φ]

δφ(y)
dx

In the special case g(φ) is an ordinary function, we have a similar expression but the

integral disappears. Hence we have:

δF [g(φ)]

δφ(y)
=

δF [g]

δg(φ(y))

δg(φ)

δφ(y)
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