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Abstract

Cardiovascular diseases (CVDs) are the top cause of death worldwide, and their diagnosis
can be quickly and painlessly achieved through Electrocardiogram (ECG). The diagnosis
of electrocardiogram has gradually evolved from manual diagnosis by doctors to one that
can be realized using Artificial Intelligence (AI). Early AI still required manual extraction of
features for ECG classification, but later Deep Neural Network (DNN) could automatically
extract features during the learning process. With this technology, people can monitor heart
movements in real-time through wearable devices. If there are any abnormalities, they can
seek medical treatment in time to prevent death from sudden severe heart disease. However,
for the wearable device, the energy consumption per classification by the traditional AI is so
high that a limited battery cannot work for a long time.

To address this issue, this thesis adopts Spiking Neural Network (SNN) to do classification
and implement the inference on the hardware. Compared with traditional Artificial Neural
Network (ANN), SNN is highly energy efficient. According to the needs of SNN and its
event-driven characteristics, the multi-threshold-based encoding scheme is proposed, which
encodes the heartbeat into 54 spikes on average with less information loss. The SNN model
is trained by ANN-SNN conversion with an accuracy of 97.42%. After RTL coding, synthesis,
and back-end implementation, the chip with encoding and inference functions achieves an
energy consumption of only 57.88 nJ per heartbeat classification.
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1 Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) encompass a collection of disorders that impact the heart
and blood vessels, particularly the arteries and veins. In 2020, cardiovascular diseases
(CVDs) were documented as the leading global cause of mortality [40, 4]. Cardiovascu-
lar disease includes ischaemic heart disease and stroke. According to the World Health
Organization (WHO), as shown in Figure 1.1, ischaemic heart disease and stroke account for
16% and 11% of the world’s total deaths respectively [2]. It can be seen from the figure, that
each of these are far outnumbered compared to the other causes of death. CVDs are respon-
sible for 27% of total deaths. The world heart federations has forecasted that the number
of deaths from heart diseases may reach a staggering 22.3 million in 2030 [3]. High blood
pressure, high cholesterol, unhealthy diet, physical inactivity, and more are the primary risk
factors for CVDs.

Cardiac arrhythmia, one of the most prevalent issues in cardiology, frequently accompanies
the majority of cardiovascular disease patients. It refers to the issue of the pace or pat-
tern of heartbeat, which performs as too quick, too slow, or irregular rhythm. In modern
medical science, detection techniques for heart disease have undergone significant advances.
Electrocardiogram (ECG) is the most commonly used and very effective cardiac arrhythmia
detection method. The ECG records the electrical activity of the heart and provides medical
professionals with rich information that can be used to diagnose abnormal heart rhythms
and study problems with the heart’s electrical conduction.

Early detection of cardiac abnormalities provides individuals with the opportunity to get
appropriate treatment that potentially prevents the patient from entering a dangerous sit-
uation. At the same time, early intervention also helps reduce healthcare costs, as simpler
treatment options tend to be more effective earlier in the disease. As a result, detecting
cardiac arrhythmia in time by monitoring ECG in real-time is very meaningful.

A long time ago, ECG diagnosis relied on doctors. Patients must first go to the hospital
to obtain ECG graphics through professional equipment and then submit them to doctors
for diagnosis. Due to the doctors’ enormous workloads, the diagnosis may be made many
days after the submission of the ECG recording. This is inconvenient and delays the time for
the patient to discover the abnormality, which might lead to the emergence of severe heart
conditions.

To solve the above problems, currently, ECG can be obtained through wearable devices
[15, 7, 47]. Patients can complete the acquisition of ECG in their daily lives, and with the
real-time analysis system, the acquired ECG can be diagnosed in time. In the first stage,
automatic computer-based ECG classification can do investigation using Support Vector Ma-
chine (SVM) [53], random forest [36], and Naive Bayes [44] as pattern recognition techniques.
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1 Introduction

Figure 1.1: The leading causes of death based on data from WHO, 2019 and 2020 [2]

However, the drawback of those techniques is that manual preprocessing is required to ex-
tract the ECG signal features before processing in the AI model. The feature extraction has
high precision requirements; otherwise, it damages the accuracy of classification.

In recent years, many projects have adopted Deep Neural Networks (DNN) to address this
problem. The neural network automatically learns features through training to make accu-
rate inferences about heartbeat arrhythmia. Using such automation, the step of manually
extracting information is eliminated. Many works have tried different architectures for ECG
arrhythmia detection. For example, Wang et al [55] and Hannun et al [26] use Convolu-
tional Neural Network (CNN), Chauhan et al [12] uses Long Short Term Memory Network
(LSTM), He et al [27] uses Temporal Convolutional Network (TCN), etc. Even though some
of them achieve good accuracy through sophisticated neural network model design, the
energy consumption is high in hardware [55, 32, 48].

For wearable devices, there is a requirement that the power should be as low as possible.
Because the battery volume of wearable devices is limited, frequent charging will affect the
user experience. It will reduce customers’ desire to use it. It is also possible that frequent
charging may cause patients to occasionally forget to put it back on, resulting in missed
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1.2 Problem statement

monitoring. Reduced power consumption extends the device’s post-charging usage dura-
tion, which is a goal of wearable devices. How to further reduce AI energy consumption
has become the focus.

Recently, Spiking Neural Network (SNN) began to receive wide attention because of its
high energy efficiency. SNN neurons are closer to biological neurons. Biological cells have
evolved over the years and can complete biological activities using very little energy. For
example, the chip ODIN achieves 15 nJ/inference for image classification[21].

As for ECG classification using SNN, although some of them achieve very low energy con-
sumption, the accuracy drops a lot [39, 57], which is only about 90%. Since arrhythmia
detection is related to health, high accuracy is the most important requirement. The reduced
accuracy means that some danger signs are not detected in time, which will cause patients
to miss early treatment. Moreover, if the normal heartbeat is analyzed as severe abnormality,
the patient will go to the hospital in panic, wasting time and medical resources. Some other
works have high accuracy, but some encoding has low energy efficiency [6, 14]. Most of
them need preprocessing in software [6, 41]. Chu et al’s [14] work claims that their encod-
ing can be implemented in hardware, but they have not achieved it yet, so the outcome is
unknown.

In view of the above situation, in this thesis, we have implemented the complete inference
flow in hardware, including the encoding module, achieved high accuracy, and fully ex-
plored the low energy consumption of SNN.

1.2 Problem statement

• As a medical device, it aims to monitor the electrocardiogram (ECG) in real-time to
detect arrhythmia in time. When abnormal heartbeats are detected, it guides patients
to seek medical treatment in time and reduces the death caused by acute severe heart
disease. Therefore, the accuracy is highly important.

• This chip is embedded into the wearable device. Due to the limited volume of the
battery, the power of the chip should be as low as possible. In terms of the energy
consumption per classification, the lower, the better, as well.

• Encoding is very important in SNN because it influences the calculation time and ac-
curacy. The hardware implementation of the encoding module is ignored by previous
works; preprocessing needs to be done externally, like CPU. It makes the total classifi-
cation time long and the system on chip complex, accompanied by energy loss when
transferring data.

1.3 Contributions

This thesis presents a complete solution of ECG classification in a chip using SNN with
high accuracy and ultra-low energy consumption. We make full use of the low energy
consumption characteristics of SNN to prolong the use time of the device after a single
charge and improve the user experience. The key contributions of this thesis are as follows:

3
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• Multi-threshold-based encoding scheme, a new encoding scheme for ECG signal
As a critical step in SNN, the new encoding scheme saves most of the original ECG in-
formation, which maintains the high accuracy of classification. Meanwhile, it produces
a small number of spikes and is area-saving in hardware, which leads to ultra-low en-
ergy consumption in Hardware calculation.

• Design space exploration for an optimal SNN model
The baseline ANN model and ANN-SNN conversion tool are carefully selected. Dur-
ing the training in software, CrossEntropyLoss and Scheduler are adopted to acquire
the optimal SNN model for high accuracy. Moreover, weights are quantized for proto-
typing.

• Hardware prototyping to reproduce inference in an energy-efficient way
A chip is designed with an encoding module and a classifier inference module on
it. A special design is made to resolve the issue of increased calculation time due to
repeated calculations caused by the conversion tool. After RTL design, verification is
conducted to ensure that the inference result and process values are exactly the same
as those in the software. Next, synthesis and back-end layout and routing are carried
out to generate the chip layout.

The proposed encoding scheme encodes each heartbeat into 64 spikes on average. The
designed chip achieves 97.42% accuracy in classifying 11 types of heartbeats. On average,
the energy consumption for each classification is 57.88 nJ. Compared to the state-of-art [41],
it saves 80.67% energy consumption per classification.

1.4 Organization

Except for this chapter, chapters are organized as follows:

• Chapter 2 explains the background information of cardiac arrhythmia and the basic
conception of Spiking Neural Network, including the working principle, the encoding
scheme, and training methods.

• Chapter 3 discusses three ECG encoding schemes of state-of-art works. Their advan-
tages and disadvantages are analyzed.

• Chapter 4 first shows the new encoding scheme. Then, how the SNN model is obtained
is revealed. After that, the implementation in hardware from RTL design to physical
layout is present.

• Chapter 5 begins with the simulation setups, followed by the simulation results in
software and hardware.

• Chapter 6 summarises the thesis. Some suggestions for future work are given.
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2 Background

This Chapter introduces the background of this thesis, including cardiac arrhythmia and the
Spiking Neural Network, which are helpful for later design explanation.

2.1 Cardiac arrhythmia

2.1.1 Basic concept

The ECG signal, electrocardiogram, is a common medical diagnostic tool that has been used
extensively for decades as a test of cardiac function. It detects different movements of the
heart by collecting changes in electrical signals through electrodes attached to the surface of
the skin.

Figure 2.1 shows an ECG graph of a normal heartbeat. The x-axis represents time, and the
y-axis represents detected voltage. The ECG signal for one heartbeat contains three parts:

• The P wave: it represents the atria depolarization.

• The QRS complex: it represents ventricles depolarization.

• The T wave: it represents the repolarization of the ventricles.

Figure 2.1: The ECG pattern for a normal heartbeat from MIT-BIH Arrhythmia Database [42]

5



2 Background

Every normal heartbeat has an orderly depolarization process. In terms of the performance
of ECG, P wave, QRS complex, and T wave show appropriate shapes and time intervals
[51, 37, 8]. If the shape of the ECG pattern changes, it indicates that the movement of
the heart has been changed. QRS complex gathers the main information of the heartbeat
and is a key factor in identifying arrhythmias, such as amplitude, distance, duration, angle,
slope, and a few other characteristics. Some pathological changes have common features in
ECG. Learning the features of different arrhythmia on ECG performance can help doctors
or machines to make quick diagnoses. Those features are universal for all human beings.

2.1.2 Arrhythmia classes

In this thesis, the database of ECG is the MIT-BIH Arrhythmia Database [42], which can
be downloaded from PhysioNet [23]. This database is collected from Beth Israel Deaconess
Medical Center, which was named Boston’s Beth Israel Hospital in 1975. Scientists recorded
the ambulatory ECG signal of 47 subjects. Then, they digitalized the data to an 11-bit reso-
lution and 360 samples per second. It has been widely used in published ECG arrhythmia
classification studies and thus serves as an excellent reference for comparison with other
studies.

For heartbeats used in this work, they are segmented into 250 samples for each heartbeat,
and the amplitude is 10 mV. In total, there are approximately 110,000 heartbeats labeled with
types.

The MIT-BIH Arrhythmia classifies heartbeats into 15 types, shown in Table 2.1. According
to the Association for the Advancement of Medical Instrumentation (AAMI) [52], the 15
types of arrhythmia in the MIT-BIH database can be grouped into five superclasses, also
shown in Table 2.1.

AAMI Class MIT-BIH Arrhythmia Class

Normal (N)

Normal Beat (N)
Left Bundle Branch Block Beat (L)

Right Bundle Branch Block Beat (R)
Atrial Escape Beat (e)

Nodal (junctional) Escape Beat (j)

Supraventricular
Ectopic Beat (SVEB)

Atrial Premature Beat (A)
Aberrated Atrial Premature Beat (a)

Nodal (junctional) Premature Beat (J)
Supraventricular Premature Beat (S)

Fusion Beat (F) Fusion of Ventricular and Normal Beat (F)
Ventrciular

Ectopic Beat (VEB)
Premature Ventricular Contraction (V)

Ventricular Escape Beat (E)

Unknown Beat (Q)
Paced Beat (/)

Fusion of Paced and Normal Beat (f)
Unclassifiable Beat (Q)

Table 2.1: AAMI classes [52] and MIT-BIH Arrhythmia Classes [42] for ECG arrhythmia

6



2.2 Spiking Neural Network architecture

2.2 Spiking Neural Network architecture

2.2.1 Working principle

Compared to traditional Artificial Neural Network (ANN) neurons, SNN neurons are more
biologically plausible. There are some types of SNN neurons proposed, such as the Leaky-
Integrate-and-Fire (LIF) [33], the Hodgkin–Huxley model (HH model) [28], the Izhikevich
model [29]. Due to its computational simplicity, the LIF model is now one of the most com-
monly used models for analyzing the behavior of the nervous system [18, 30]. For further
simplification, sometimes the leaky part calculation is discarded, and only the integrate and
fire are reserved; this creates a new LIF subtype called the Integrate-and-Fire (IF) neuron.
The schematic of the IF neuron is shown in Figure 2.2.

Figure 2.2: The illustration of SNN IF neuron[10]. (a) A standard spike; (b) Weighted input
spikes; (c) The membrane potential of a spiking neuron and its threshold (the dotted line).

As shown in the schematic, the input and output of IF neurons are spikes. After the input
spikes are received by the synapse, they will be multiplied by a certain weight to become
weighted input spikes. Those weighted input spikes get integrated into the membrane po-
tential of the spiking neuron. Once the membrane potential is large enough and exceeds the
threshold, the IF neuron fires and sends a spike to the synapse of the next neuron.

The working method of an IF neuron is very close to that of a biological neuron. Neurotrans-
mitters (spikes) are transmitted between neurons, received by neurons through synapses,
and information (the membrane potential) is gradually accumulated. When a certain level
(threshold) is reached, this neuron is triggered (fires), and neurotransmitters are sent to the
next neuron (output spikes).

2.2.2 Training methods

There are three ways to train the SNN model: spike-time dependent plasticity (STDP), ANN-
SNN conversion, and Backpropagation [46]. Their characteristics are discussed as follows:

7



2 Background

• Spike-time dependent plasticity (STDP)
This is a method of unsupervised learning based on dependencies between presynaptic
and postsynaptic spikes [22, 9, 50]. Like other unsupervised learning, the accuracy of
STDP is not very high, usually under 90%.

• ANN-SNN conversion
ANN-SNN conversion is supervised learning, so the accuracy is high compared to un-
supervised learning. First, an ANN model is required; then, by using some conversion
techniques, the ANN model is transformed into an SNN model. This training method
is suitable for the existing ANN model, and the training of the ANN model is now
very mature and common. In the process of converting ANN to SNN, accuracy may
be lost. The loss of accuracy may be a bit large before. With the deepening of its
research, the loss of this accuracy is gradually getting smaller. Now, there are various
methods to reduce the accuracy loss, such as threshold rescaling [49], soft-reset [25],
weight normalization [19], and threshold shift [17].

• Backpropagation
Backpropagation [58] is also a supervised learning method with high accuracy. Be-
cause the membrane potential of SNN neurons is a step function, which is nondiffer-
entiable, the Backpropagation method suffers from a problem that the gradient cannot
be calculated during backpropagation. Subsequently, some researchers proposed the
surrogate function so that the gradient can be calculated in SNN backpropagation
[43, 34, 56], but the number of layers of the neural network is limited because if the
number of layers is large, gradient explosion will occur. In order to solve the prob-
lem of gradient explosion, more special processing needs to be used, making the SNN
training method of Backpropagation particularly complicated.

2.2.3 Encoding methods

Since the inputs of the SNN model are spikes, the original data need encoding to be con-
verted into spikes, which is a 1-bit high-level signal in electrical signals. The majority of
SNN works use rate encoding, and temporal encoding is adopted because some scientists
believe in biological neurons, some information is encoded in a temporal way [54].

• Rate encoding
Rate encoding is a method of randomly generating a series of spikes, but the proba-
bility of spike generation is proportional to the value of the original data, as shown
in Figure 2.3a. For example, Poisson encoding is a kind of rate encoding, and the
probability of a random spike generation satisfies the Poisson distribution.

• Temporal encoding
The time when Temporal encoding generates a spike is related to the value of the
original data. For example, in Time-to-First Spike encoding (TTFS) [45], as shown in
Figure 2.3b, the larger the value, the earlier the spike will be generated. Conversely,
the earlier the spike represents, the larger the original data.

Besides rate encoding and temporal encoding, there are also some other ways to encode the
data, like phase coding [31], burst coding[24], and so on.
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(a) Rate encoding example: the probability to gen-
erate random spikes is proportional to original
value. The larger value generates more spikes.

(b) Temporal coding example: Time-to-first spike cod-
ing. The larger value generates a spike at an earlier
time. Each data is encoded into one spike at differ-
ent time.

Figure 2.3: Examples of different encoding schemes with original data and encoded data [24]

2.2.4 Connection layers of Artificial Neural Network

The spiking neural network has the same connection structure as the traditional ANN. Be-
tween the input layer, output layer, and the hidden layer, those layers could be connected
by the convolution layers, fully connected layers, max-pooling layers, and so on. The big
difference between SNN and traditional ANN lies in the activation layer. Commonly used
activation layers of Traditional ANN are sigmoid function and Rectified Linear Unit (ReLu)
function. For SNN, as introduced in Section 2.2.1, the common activation layer is LIF or IF.

Figure 2.4 shows the structure of one fully connected layer. Each output neuron is connected
to the input neuron by a different weight.
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2 Background

Figure 2.4: The fully connected layer[5]

The value of jth neuron is calculated in the following way:

yj = ∑
i

Di × Wij + Bias (2.1)

Where i represents the serial number of the previous neuron. D and W represent the data
and weight, respectively.

2.2.5 The concept of time-step

Time-step refers to a discrete unit of time used to simulate dynamic neural activity. In
the mathematic model, it refers to the number of input vectors. Traditional ANN uses
continuous-valued activation; there is usually one input vector, and the inference result is
based on the output of that input vector. Events in SNN are represented as discrete spikes
or events that occur at specific points in time. Therefore, SNN needs multiple timesteps or
vectors of input and accumulates their output to do inference [38, 13, 35].

For example, if the model adopts Poisson encoding, which is rate encoding, to encode the
values 0.2 and 0.8, only one vector of random number generation can not tell the difference.
Value 0.8 could generate no spike in one time-step, while value 0.2 could generate one
spike. Only after multiple time-steps, when random spikes are generated following Poisson
distribution, can it be clearly seen that the number of spikes generated by value 0.8 is 4
times that of 0.2. Therefore, the neural network can acquire enough information to make the
right decision. Figure 2.5 is another example of time-steps. As the time-step increases, the
encoded image is more close to the original image.
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2.2 Spiking Neural Network architecture

Figure 2.5: An example of rate coding effect in different time-steps [35]
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3 Related Work

Encoding performs an essential role in spiking neural networks. It converts the raw data into
spikes. And it profoundly affects the computational performance of SNN. A large number
of spikes leads to a large calculation load. If the number of timesteps is large, the calculation
time will be long, leading to significant energy consumption as well. Moreover, compared
with raw data, the encoded data suffers from information loss, reflected in the decline in
accuracy. As for ECG classification using SNN, most of them use Poisson encoding. In
this chapter, Poisson encoding, Dual-purpose binary encoding, and LC sampling will be
introduced in detail, and their advantages and disadvantages will be analyzed.

3.1 Poisson encoding for ECG signal

Poisson encoding is one kind of rate encoding. The possibility of spike generation fits
Poisson distribution. The larger the value, the higher the probability of generating spikes,
and after accumulating a certain timestep, the greater the total number of spikes generated.
Because its accumulated spike number is proportional to the original value, it can be directly
applied to the model converted from ANN. It is easy for the existing neural network to be
trained with the original data. Amirshahi et al archives an SNN model for ECG classification
in analogue circuits [6]. The accuracy is 97.9% and it consumes 1.78 µJ per classification.

To test the Poisson encoding’s effect, we have done an experiment. The original data of
Poisson encoding should be within the range of 0 and 1, but the ECG data from the MIT-BIH
dataset ranges from about -5 mV to 5 mV. So, the first step is to normalize the original data.
Then, we use the normalized data to train the ANN model. In this process, normalization
has made the accuracy drop from 98.30% to 96.24%.

Next, the ANN model is converted to an SNN model. The input is encoded through Poisson
coding. The SNN model is tested with encoded spikes, and the relationship between the
accuracy of the SNN model and timestep is shown in Figure 3.1. The orange line is the
accuracy of the ANN model; the blue line shows the change in the SNN accuracy with
timesteps increasing. From the figure, we can see, in the beginning, the accuracy of the SNN
model is very low, lower than 40%. It approaches the accuracy of the ANN model until 1000
timesteps. Such a large number of timesteps will result in a very long calculation time. This
also means that the total energy consumption will be large. Even though the SNN consumes
less power than the ANN, the final effect may not be very good if the calculation time is too
long.

We also have done an experiment on the MNist dataset [16]; the number of timesteps is
much smaller. The reason for the large number of timesteps for the ECG dataset with
Poisson encoding might be that diagnosis of the ECG signal requires high precision. The
longer the spikes accumulate, the closer the shape of encoded data is to the shape of the
original data.
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Figure 3.1: The change of SNN accuracy with the time-step increasing, and the relative
relation between it and the accuracy of ANN

According to our experiment, the Poisson encoding is not ideal for ECG classification, not
only because of the accuracy loss during original data normalization but also because of the
large timesteps it needs to take, leading to extremely long calculation time.

3.2 Dual-purpose binary encoding scheme

Mao et al [41] propose a specific encoding scheme for ECG signal, named dual-purpose
binary encoding scheme. This encoding scheme encodes each heartbeat into 96 bits in total,
of which the amount is tiny. The detailed steps are shown in Figure 3.2.

The dual-purpose binary encoding scheme works in the following steps:

• Step 1: Record the time interval from the current R peak to the previous R peak and
subsequent R peak, respectively. These two time intervals occupy 10 bit, respectively.
Another 2 bits are utilized for the change of the R peak intervals.

• Step 2: Discard the flat part of ECG signals.

• Step 3: Encode the rest of the changing part with ”1” representing increase and ”0”
representing decrease.

• Step 4, combine the above encoded data in a special order as shown in Figure 3.2.

The advantage of this encoding scheme is the data width, and the number of spikes is small.
Therefore, the energy consumption will be small with this encoding scheme. Meanwhile,
their SNN model achieves an accuracy of 98.6% with this encoding scheme, which means
most of the important information is preserved during encoding. However, this encoding
scheme is relatively complex. The original data needs to be preprocessed in software. If
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Figure 3.2: The specific steps of dual-purpose binary encoding proposed by Mao et al [41]

we look at the overall system, complex coding is done in software and then passed to the
hardware chip of SNN for reasoning. This coding preprocess still consumes energy and
requires an additional software processor. For wearable devices, it is better that energy
consumption can be further reduced.

3.3 LC sampling

Chu et al [14] proposed the LC sampling. This belongs to the threshold-based encoding. The
threshold-based encoding is very suitable for continuous signals like ECG. In the top figure
of Figure 3.3, the red horizontal lines are the threshold. When the ECG signal increases
above a threshold, a rising spike will be generated; conversely, if the ECG signal falls below
a threshold, a falling spike will be generated. If there are neither rising spikes nor falling
spikes for a while, it means the signal remains almost unchanged. Dense spikes mean the
signal changes rapidly during this time (see QRS peak in Figure 3.3).

Although their SNN model has an accuracy of 98.22% and the LC sampling can be realized
by two comparators in the circuit, this encoding scheme is not simple in hardware imple-
mentation and has low energy efficiency to some extent. One reason is that the spikes are
sampled from two leads; each rising or falling channel contains 480 data points, and half of
the encoded data is reused in time step 2 in Figure 3.3(c). Therefore, the encoded data of
each heartbeat is 2880 bits. This large number of encoded data will result in a considerable
calculation time. Another reason is the threshold gap is 0.1 mV. In hardware implementa-
tion, the calculation is in binary. If we convert it to a binary number, it is:

(0.1)10 = (0.0001100110011001100110011001100110011001100110011001101)2
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Figure 3.3: LC sampling by Chu et at [14]

The value 0.1 is short in decimal but has a long fraction part in binary. It makes the threshold
adjust circuit complex and more resource cost.

Therefore, LC sampling is complex in hardware implementation and has low energy effi-
ciency.

3.4 Summary

In conclusion, Poisson encoding and LC sampling make the calculation time long, leading
to much energy consumption. Dual-purpose binary encoding needs to be processed in soft-
ware because of its complexity, and LC sampling consumes many resources even though it
is achievable in hardware. In view of this situation, we hope to develop an encoding scheme
that can shorten the calculation time and save resources on hardware while maintaining
high accuracy. So, the ECG classification chip can run longer on wearable devices with the
same size of battery.
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This chapter will explain our contributions from the design aspects in this thesis. The design
flow of our proposed work is shown in Figure 4.1; the description order of this chapter will
follow the data processing flow. In general, the SNN model is trained on the software, and
then the inference process of the trained SNN model is implemented in the hardware. In
the software training phase, the data are encoded first, and the encoded data are used for
ANN training, and then the ANN model is converted to the SNN model. So, this chapter will
introduce the multi-threshold-based encoding scheme, followed by design space exploration
where the SNN model is trained, and then the hardware implementation is introduced.

Figure 4.1: The design flow of this thesis work

4.1 Multi-threshold encoding scheme

As we discussed before, the inputs of SNN are spikes form, where we need a specific en-
coding module to convert the raw data into spikes. Because the ECG signal is continuous,
threshold-based encoding is very suitable for it.

For continuous signals, the value of each data point relates to the previous data point.
Threshold-based encoding can record the change of this continuous signal. It mainly has
two channels. One channel is the incremental channel, and the other is the decremental
channel. If the signal increases by a certain value, which is the threshold value, it gener-
ates an incremental spike. On the other hand, if the signal decreases by a certain value, a
decremental spike is generated. In this way, the change of the continuous signal is recorded.
In turn, if we want to resume the ECG signal when there is a spike, it can be achieved by
adding or subtracting the threshold from the value of previous data points where there was
the last spike. If there is no spike, the value does not change much during this empty time.

Therefore, the threshold-based encoding scheme can generate a small number of spikes, and
the encoded data contains both temporal and spatial information. In this work, we proposed
the multi-threshold-based encoding scheme that encodes the ECG signal with as few spikes
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as possible while maintaining accuracy. Moreover, this encoding scheme is simple to achieve
in hardware, which can encode data in real-time.

4.1.1 Analysis of ECG signal

Figure 4.2 shows a randomly selected normal heartbeat from MIT-BIH Arrhythmia database
[42]. As we see carefully, between data 80 and 110, the value in QRS peak changes rapidly,
and there are small vibrations on the two sides.

Figure 4.2: A randomly selected normal heartbeat from MIT-BIH Arrhythmia database [42]

If the threshold gap is small, the changes in the ECG signal are recorded. It causes less
information loss during the encoding. Meanwhile, for each data point, more bits of data
are required to record significant changes in the QRS peak. This leads to more spikes,
more storage space, and long computation time, which ultimately leads to higher energy
consumption.

If the threshold gap is large, the advantage is that fewer bits are required. However, the
vibration on the two sides is ignored to some extent. It results in a lower accuracy. According
to our experiment, if the threshold gap is 0.2 mV, there is a sharp drop in the accuracy, which
can go down to 90.81%.

4.1.2 Encoding logic

According to the characteristic of ECG signal, the multi-threshold-based encoding is pro-
posed to combine the advantages of the large threshold gap and the small threshold gap.
There are two threshold gaps. The large one, Vth L, is 0.1875 mV; in binary, it is 0.0011 mV.
The other smaller one, Vth S, is 0.0625 mV; in binary, it is 0.0001 mV. The large threshold
applies to data between the 60th and 119th, where the QRS peak lies; The small threshold
applies to data between the 40th and 229th. As for the data before the 40th and after the
229th, they are discarded.

As shown in Figure 4.3, there will be four channels, inc L, dec L, inc S, and dec S. Inc L,
dec L will have 60 bits respectively, and inc S, dec S will have 190 bits respectively. The
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encoded data is 500 bits in total. Because the number of input neurons is 250, the 500 bits
of encoded data will be sent into them in two time-steps. The address mapping is shown in
Figure 4.4.

The multi-threshold-based encoding scheme combines the advantage of a large threshold
gap and a small threshold gap. It generates a small number of spikes during the QRS peak
and has high resolution among small vibrations. Apart from that, the thresholds are 4-bit
decimal fractions, making implementation simple in hardware. One comparator is used for
one channel, and the precision of comparators is 2−4 mV, which is not high. The base value
adjust circuit is also simple because the number of bits in the adder is small.

In practical applications, this encoding module can encode ECG data in real-time. After the
ADC module samples each ECG data, it can be directly sent to the encoding module for
encoding. The encoded data is cached in SRAM, which greatly reduces the amount of data
storage by eliminating the need to store the original data.

Figure 4.3: The spikes generated by the multi-threshold-based encoding scheme

For this database, the detailed work principle of the multi-threshold-based encoding scheme
is as follows:

1. Set the first input data as the initial base value.

2. For data 0-39 and 230-249, no operation will be executed;

3. For data 60-119, the large threshold gap (Vth L) is applied first; otherwise, go to the
next step: If the input data is larger than (base + Vth L), an incremental spike (inc L) is
generated. If the input data is smaller than (base - Vth L), a decremental spike (dec L)
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Figure 4.4: The arrangement of the four channels mapping for 250 input neurons of the
model

is generated. Then the new base value will be adjusted: (plus sign for inc L, minus
sign for dec L)

base value new = base value old ± Vth L (4.1)

Then go to Step 4.

4. Within range 40th to 229th, the small threshold gap (Vth S) works: If the input data is
larger than (base + Vth S), an incremental spike (inc S) is generated. If the input data
is smaller than (base - Vth S), a decremental spike (dec S) is generated. Then the new
base value will be adjusted: (plus sign for inc S, minus sign for dec S)

base value new = base value old ± Vth S (4.2)

5. If any spike is generated, map it to the address as shown in Figure 4.4 according to the
channel type and data input sequence.

For wearable devices, there is no need to set the base value at the beginning of each heart-
beat. The encoding module can work continuously to detect changes in the ECG. Only some
of the required ECG data is kept for caching, while some of the unwanted data is discarded.
Furthermore, the cached data is a single-bit instead of an 11-bit fixed-point number, which
greatly reduces the amount of storage.

In summary, the multi-threshold-based encoding scheme can reduce the number of spikes
while retaining information. This helps to achieve high accuracy and reduce subsequent
calculation time, thereby reducing energy consumption. Moreover, this module is simple to
implement in the circuit, the resolution of comparators is not high, and the circuit is very
resource-saving, eliminating the need for data pre-processing on other software-based chips
achieving high energy efficiency.

4.2 Design space exploration

This section aims to acquire an SNN model with good accuracy and suitable architecture for
hardware. As discussed in Section 2.2.2, we choose ANN-SNN conversion to train the SNN
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model due to its high accuracy and ease of execution features. Firstly, we need to choose a
baseline model, then choose a conversion tool, followed by the model training.

4.2.1 Baseline model

A three-stage ANN model [20] is selected as the baseline model. Three states represent three
severity levels: normal&mild, moderate, and severe. The architecture of this model is shown
in Figure 4.5 with an extra encoding module.

Figure 4.5: The chip architecture with the encoding module and the three-state baseline
model (modified from [20])

This baseline ANN model can do 11 types of arrhythmia detection based on MIT-BIH classes
[42], while most other ANN models can only do 4 or 5 types of classification based on AAMI
classes [52]. More detailed classification not only expands the scope of monitoring but also
provides valuable information for doctors to speed up diagnosis during follow-up medical
treatment.

This model has high energy efficiency. Most of the types in our daily life and MIT-BIH
database are normal and mild, while moderate abnormal and severe types happen very
rarely. When the input heartbeat is classified as normal or mild in Classifier-1, inference
stops here, and the next two classifiers do not work. Only when the inference type of
Classifier-1 is the last type, Abnormal, will this model enter Classifier-2. Similarly, Classifier-
3 will only start when Classifier-2 classifies Severe type. Therefore, most of the time, only
Classifier-1 is working, and only a small part of the time, the latter two classifiers will be
activated.
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(a)

(b)

Figure 4.6: The same model implemented in ANN and SNN with 250 input neurons and
two fully connected layers. (a) The ANN model (b) The SNN model

Another reason for the high energy efficiency is that these three classifiers share the same
architecture, so they can use the same circuit to calculate with different weights. Each
classifier has 250 input neurons and two fully connected layers with one ReLu activation
layer in between. The first fully connected layer has 100 neurons. The number of neurons
in the second fully connected layer depends on its number of types. It could be three, or
six, or four. In hardware implementation, the generic classifier can be designed as input250-
fc100-fc6. For Classifier-1 and Classifier-3, it is assumed that the extra output neurons are
not used.

Figure 4.6a shows the structure of a single classifier. Figure 4.6b is the converted SNN
model: ReLu neurons are replaced by IF neurons, and an encoding module is added before
the input layer.

Here, an analysis is conducted to compare the resources of these two neural networks.
Assume the input is quantized to 8 bits and weights are quantized to 8 bits as well.

Layer 1st FC 2nd FC
Type of NN ANN SNN ANN SNN
Multiplier 8*8-bit \ 24*8-bit \
Adder 24-bit 16-bit 39-bit 15-bit
Sum (bits) 8+8+8=24 8+8=16 24+8+7=39 8+7=15

Table 4.1: The resource estimation based on the computation requirements and comparison
between ANN and SNN for the same model

Because the input of the SNN model is either 1 or 0, no multiplier is needed. If the input is
1, add weight; otherwise, add 0, which means no operation.
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After this processing, the bit width of the sum of each layer becomes smaller, and the bit
width required by the adder also becomes smaller. For the second fully connected layer, the
input of ANN is a 24-bit number, while the input of SNN is still 1 bit, so the bit width gap
of the sum is even larger. After converting to the SNN model, the bit width of the sum is
reduced from 39 bits to 15 bits.

Through this comparison table, we can see that under the same structure, SNN is more
energy-efficient than ANN because SNN model calculation does not require a multiplier,
requires fewer operations, and the bit width of adders is much smaller.

4.2.2 ANN-SNN Conversion tool

To convert the ANN model to the SNN model, we choose the tool developed by Bu et al[11].
This tool can generate the SNN model with high accuracy and ultra-low latency. High
accuracy means the accuracy loss during ANN-SNN conversion is small. They propose a
new surrogate function to replace the ReLu function in the activation layer and prove that
the conversion loss is close to zero. Ultra-low-latency means the number of time-steps to
reach the maximum accuracy is small, which makes the calculation time short and energy
consumption low.

We import the ECG database, including the training dataset, validation dataset, and test
dataset, the model mentioned in Section 4.2.1, and the encoding function to train an opti-
mum SNN model. Because they have special operations on the activation layer, the ANN
model needs to be trained again in their tool, then conversion is executed.

4.2.3 Optimization for accuracy

During the training phase, several techniques are adopted to optimize the accuracy of the
SNN model.

• CrossEntropyLoss: Unlike the MNist dataset, the type distribution in the ECG dataset
is uneven. Among the types within the classifier, sometimes the severe type takes less
proportion. If all the input heartbeats have the same weight in the loss function, during
backpropagation, severe type proportion in the loss function is not high. Gradually, in
order to improve the overall accuracy, the system pays more attention to optimizing
the accuracy of the types that account for large spots. The accuracy of those types
with a small proportion is slightly lower. However, the accuracy of minority types is
also very important, especially the classification of severe types, which is related to the
early warning of ischaemic heart disease or stroke. So CrossEntropyLoss is adopted to
adjust the weight in the loss function. More weight is given to the minority types. This
measure can improve the local accuracy with sacrificing part of the overall accuracy.

• Scheduler: Training the best model is a process of finding the minimum value of the
loss function. The learning rate is related to the step size in the way of finding the
minimum loss value. If it is small in the beginning, the model is easy to be stuck in the
local optimum solution instead of the global optimum solution. If the learning rate is
large in the final stage, it is hard for the model to reach the optimum solution because
the adjusting step is too large. Therefore, the variable learning rate is desired, relatively
large in the beginning and relatively small in the end. The scheduler can achieve this.
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We have tried several different kinds of schedulers, such as LinearLR, MultiStepLR,
and CosineAnnealingLR. The effect of them is similar, and CosineAnnealingLR wins
over a little bit, so it is used in subsequent training.

4.2.4 Optimization for later hardware design

The weights and biases of the well-trained SNN model are 32-bit float point numbers by
default. Calculations with 32-bit float point numbers in hardware implementation are com-
plex. To simplify it, the weights and biases need to be quantized to fixed-point numbers,
and the influence on accuracy is expected to be as small as possible.

Because the range of weights is (-2, 2), two bits are needed for the integer part. As for the
decimal part, we did some experiments to find the suitable length, of which the result is
shown in Table 7.1 in the Appendix. The 8-bit word length, 2 bits in the integer part and 6
bits in the decimal part, is the most suitable quantization length, which has trivial accuracy
loss. Quantization shorter than that has obvious accuracy loss.

4.3 Hardware architecture implementation

After the SNN model is determined, the inference calculation is going to be implemented in
hardware to achieve a real-time calculation and energy saving. Both the encoding module
and classifier module are implemented, so data can be processed directly after sampling
from ADC, with no additional software reprocessing.

We follow the flow described in Figure 4.7 to implement the trained and quantized SNN
model to the GDSII file that is ready to be manufactured by the foundry.

Figure 4.7: The hardware design flow to convert the quantized SNN model to GDSII file

Figure 4.8 is the top-level architecture of the SNN inference chip, Figure 4.9 and Figure 4.10
are the more detailed architecture of the encoding module and classifier module, respec-
tively.

The inputs of the SNN classifier chip are ECG data directly from the sensor, one clock,
and one reset. The input data is encoded into spikes and then sent to the neural network
classifier module and gets buffered in the memory. When the last data of a heartbeat is
encoded, the classifier module will automatically start classification. After the classification
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Figure 4.8: The top architecture of the classification chip

is finished, a pulse in the Result valid port indicates the 5-bit result is ready to be read. The
5-bit result includes a 2-bit number of the classifier and a 3-bit number of the type.

Figure 4.9: The detailed architecture of the encoding module

The encoding module is very simple. There are four comparators, the threshold adjust
circuit, and the write logic module. One of the comparator inputs is the data, and the other
one is the threshold. Once there is a spike in the output of any comparator, four thresholds
are refreshed by the threshold adjust circuit. The encoded data will be sent to the memory
classifier module with the address and enable signal. The address and enable signal are
generated by the write logic module.

The neural network classifier module can be activated automatically once the encoded data
of one heartbeat is all buffered in the memory. This module mainly contains two parts: part
one is SRAMs to store weights, data, and interim data, and the other part is the computing
unit shared by all three classifiers. The computing unit has one adder that is shared for
the two fully connected layers and IF membrane potential update. Because those steps are
executed at different times, the adder can be reused to save area and power.

Every time the chip boots up, the first thing to do is load weights from Flash memory to
the on-chip SRAM. Since the weights are reloaded every time it boots, the model can also
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Figure 4.10: The detailed architecture of the neural network classifier module

be customized by training with the client’s own ECG signal which can further improve
accuracy.

The specific calculation implementation will be explained in detail in the following section.

4.3.1 Hardware-aware optimization design

Even though the conversion tool claims the number of time-steps is small, calculating the
heartbeat only once cannot provide the best accuracy. Take one SNN model in Figure 4.11a
as an example. If the encoded heartbeat is provided in once, the accuracy is 96.88%; If
sending the encoded heartbeat once again, the accuracy is 97.62%, increased by 0.74%. After
that, continuing to send the encoded heartbeat data improves very little. So, we decided to
use the calculation of sending the heartbeat twice, as shown in Figure 4.11a.

(a) The original calculation
sequence

(b) Swith the order of time-
step 2 and time-step3

(c) Merge the adjacent
same input vector

Figure 4.11: The optimization steps for redundant calculation caused by the conversion tool

Sending the same heartbeat twice causes some redundant calculations and makes the cal-
culation time longer. Assume Din 0 and Din 1 form the encoded data of one heartbeat. In
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time-step 1 and time-step 3, the input is Din 0. For the first fully connected layer, the sum is
related to the input only; now that the inputs are the same, the sums of the fully connected
layer are the same. Meanwhile, the first fully connected layer takes most of the calculation
time in the whole flow. If the calculation of these two time-steps of the same input vector
can be combined, it will save a lot of calculation time.

Different from ANN calculation, the membrane potential of IF neurons has the memory of
previously computed procedures. So, it is not possible to merge discontinuous time steps
without changing the final result. The first attempt is to exchange the order of time-step 2
and time-step 3, as shown in Figure 4.11b. The final accuracy does not change much, which
means this attempt is acceptable.

Then, we merge time-steps 1 and 2 into one time-step, and merge time-steps 3 and 4 into
one time-step, like Figure 4.11c. To maintain the output sums the same as Figure 4.11b after
merging time-steps, some special processes need to be done:

• Since two time-steps are merged into one, the sum of the first fully connected layer
should be doubled. In digital circuits, multiplying by two can be done by left-shifting
one bit.

SUM f c1 new = SUM f c1 × 2 = {SUM f c1, 1′b0} (4.3)

• IF neuron fires at most once per time-step before merging. Now, the two time-steps are
mixed into one calculation, so the number of IF neuron fires can be 0 , 1, and 2 times.
Instead of comparing with Vth, now the membrane potential needs to be compared
with both Vth and {Vth, 1′b0}, which is double Vth, to get fire times.

• As for the second fully connected layer, the addition of weights depends on the number
of fires in the IF neuron.

– If the IF neuron[i] does not fire, there is no impact on the output sum.

– If the IF neuron[i] fires once, add the weight to the final sum [j]:

SUM output newj = SUM output previous + weightij (4.4)

– If the IF neuron[i] fires twice, add the weight to the final sum [j] twice. This
process can be simplified in hardware as follows:

SUM output newj = SUM output previous + weightij × 2

= SUM output previous + {weightij, 1′b0}
(4.5)

Both Din 0 and Din 1 need to go through the above calculations; adding their output sums
together is the final output sum, and the largest type with the largest accumulated sum is
the output result of the inference. The output sum and reasoning result of this optimized
model are the same as the model in Figure 4.11b because the optimization step only reduces
the amount of calculation, but the algorithm remains the same.

In this way, the calculation time is halved at the cost of a little more complex circuit.
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4.3.2 Computation flow in hardware

Since the inference calculation flow become simpler, this subsection will introduce the hard-
ware implementation’s detailed flow. Figure 4.12 shows the top-level calculation’s finite state
machine. It contains sub-FSM for FC1 and IF FC2, which are depicted in Figure 4.13 and
Figure 4.14, respectively.

Figure 4.12: The top-level computation flow of SNN inference in hardware

An overview of how the ECG arrhythmia detection on hardware is calculated is provided
below:

• The system starts in the IDLE state. It remains in the IDLE state until a trigger pulse
occurs. The circuit automatically generates this trigger pulse when the final bit of
encoded data is stored in the on-chip SRAM.

• Upon receiving the trigger signal, the circuit initializes the neural network. The mem-
brane potential and the accumulated sum of the second fully connected layer are set
to their initial values.

• As there are two time-steps, implying two inputs for input neurons, the network ab-
sorbs the first input. This input traverses through the two fully connected layers,
yielding a sum. Subsequently, the second input is processed. The accumulated sum
of these two inputs is then compared to determine the output neuron with the highest
value. This completes one cycle of model computation and yields the result.

• After the calculation of the current classifier is completed, compare all the output sums
and the type with the maximum value is the inferred heartbeat type.

• For Classifier-1 and Classifier-2, if the inference result corresponds to the final type
within that model, it does not represent the ultimate outcome. Instead, it progresses
to the calculation of the subsequent model. The MODEL SWITCH state is utilized to
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4.3 Hardware architecture implementation

facilitate this transition. Furthermore, the input is processed within the same sequence
but with distinct weights.

• Once the final result is obtained, the FSM goes to the OUTPUT VALID state for one
cycle before reverting to the IDLE state, awaiting the next heartbeat classification. In
the OUTPUT VALID state, the model number and type number are valid for reading
at the output port, indicated by the assertion of a one-bit valid signal.

The above is the top control flow; FC1 and IF FC2 have more detailed calculation flow, of
which their FSM are described in Figure 4.13 and Figure 4.14. On the top level, if the state
transits to FC1 from either INIT or MODEL SWITCH state, it means the new FC1 flow is
about to start. There will be an FC1 trigger pulse to activate FC1 FSM, and the top-FSM
stays in the FC1 state until the sub-FSM calculation is finished and sends back an FC1 finish
pulse. This signal triggers the top FSM transiting from FC1 state to IF FC2 state, resulting
in IF FC2 sub-FSM starting to work and top FSM stay in this state until the finish signal
from the sub-FSM. In this way, the top-FSM and sub-FSMs are switched back and forth to
complete the whole computation flow. The following is how the sub-FSM of the first fully
connected layer works:

Figure 4.13: The computation flow of the first fully connected layer, which is state FC1 in the
top-FSM

• The subsystem begins from the IDLE state; when it receives a trigger pulse from top-
FSM, it starts to work.

• The First thing to do is initialize the FC1 calculation system, such as clear the sum that
might be left from the previous calculation.

• The bottom triangle is the main calculation part. There are 250 input neurons, which
will be checked individually.

• According to the definition of the fully-connected layer, as shown in Equation 4.6,
because the input of SNN is either 0 or 1, only ones have an impact on the sum. So,
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data will be read from data SRAM one by one, then check whether it is one or zero.

sum = ∑ weight × data (4.6)

– If data[i] = 1: all the sum of 1st FC neurons need to be updated. Therefore, the
weight of that input neuron and the previous sum of the first hidden layer are
read out from memory one by one, then added up, and the new sum will be
restored into memory. When all the sum is updated, we need to get the next
data[i+1].

– If data[i] = 0: This data has no impact on the sum of the first hidden layer, so no
operation will be executed. We need to check the next data[i+1].

– after all 250 input neuron’s data is checked, the calculation of the first fully con-
nected layer is finished.

• When the calculation process of the first fully connected layer is completed, the sub-
FSM goes through one cycle of the FINISH state and returns to the IDLE state.

Figure 4.14: The computation flow of IF neurons and the second fully connected layer, which
is state IF FC2 in the top-FSM

In general, state IF FC2 comprises two major processes in Figure 4.12: IF neuron and the
second fully connected layer calculation. The reason to combine them together is for resource
saving. If they are addressed in two separate steps, a memory is needed to store the output
spike. For the IF neuron, once it fires, this spike is stored in that memory. Then, in the
second fully connected layer, the system needs to fetch and check the data one by one, just
like FC1 does. It is time-consuming and needs an extra memory.

If these two steps are combined, once there is a spike coming from the IF neuron, it triggers
the sum of the second fully connected layer to be updated. The output of the IF is directly
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4.3 Hardware architecture implementation

processed without being cached into memory. This saves computation time and reduces
circuit resource usage. Here is the description of the sub-FSM of IF+FC2:

• After being triggered, first initialize some related circuits.

• Then fetch the sum of the first FC layer and the membrane potential of the correspond-
ing IF neuron. Add the newly calculated sum to the previous membrane potential to
get the new membrane potential.

• Compare the new membrane potential with the threshold of that neuron. If the mem-
brane potential exceeds the Vth, that neuron fires and the membrane potential gets
soft-reset. As described in Section 4.3.1, add weight or doubled weight to the output
sum.

• Store the membrane potential back to memory.

• After all the neurons are cycled in the above way, add bias to the output sum. Then,
this sub-FSM sends out a finish pulse and goes back to the IDLE state.
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5 Simulation Results

This chapter introduces the software and hardware setup details that are used in this thesis
work. Then, the result will be presented, discussed, and compared with related works.

5.1 Simulation setups

Simulation setups include the dataset used in this thesis, software simulation environment,
and hardware simulation environment.

5.1.1 Dataset

In this thesis, MIT-BIH Arrhythmia Dataset [42] is adopted for both training and testing.
This dataset can be downloaded for free in PysioNet [23]. The data in the database is
randomly divided: 60% is used for training, 20% is used for validation during training, and
the remaining 20% is used for testing after the model is well-trained.

To judge the effect of the trained model, both accuracy and critical accuracy are used. Ac-
curacy is the proportion of the correct inferred heartbeats among all the tested heartbeats.
Critical accuracy refers to the accuracy of the most severe type in the current classifier, which
will trigger the work of the next stage (please see Figure 4.5). In Classifier-1, the critical accu-
racy is the accuracy of the abnormal type. In Classifier-2, the critical accuracy is the accuracy
of the server type. As for Classifier-3, there is no critical accuracy because it is the last stage
of the whole classifier.

5.1.2 Software Setup

The first step is to train the SNN model in software. Because the newly proposed encoding
scheme is not rate encoding, the ANN model training should use the encoded data instead
of the original data. Moreover, the conversion tool used in this thesis performs special
treatment on ReLu activation neurons so that it has the characteristics of ReLu and reduces
the loss of accuracy during the conversion of ANN-SNN. Therefore, it is mandatory to train
the ANN model with the new encoding scheme in this tool in the first place.

The training setups are shown in Table 5.1. The model is trained in the PyTorch platform
using a conversion tool developed by Bu et al [11]. The baseline ANN model is from Diware
et al [20]. During training, stochastic gradient descent (SGD) optimizer, CosineAnnealingLR
scheduler, and CrossEntropyLoss are adopted to acquire an optimal ANN model. Then, the
well-trained ANN model is converted into an SNN model in the same tool, and the weights
are quantized to 8 bits for saving area in hardware implementation.
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Parameters Specification/Source
Weights 8-bit

Baseline model architecture [Diware-TBioCAS’2023] [20]
ANN-SNN conversion tool [Bu-ICLR’2022] [11]

Dataset MIT-BIH ECG arrhythmia dataset [42]
Model training PyTorch

Optimizer Stochastic gradient descent (SGD)
scheduler CosineAnnealingLR

Table 5.1: The software setups for model training

5.1.3 Hardware Setup

After the SNN model is determined, weights, bias, and threshold are exported from the
software, now the model is ready to be implemented on hardware. Firstly, the hardware
circuit is described in Verilog. Then, the design is synthesized in Genus with TSMC 40 nm
technology, 1.1 V Vdd, and a 100 MHz clock. After that, the netlist generated by synthesis is
implemented into the layout in Innovus. At each step, simulation in QuestaSim with timing
is necessary to confirm that the delay will not cause the function to be different from the
expected design in the actual application. The circuit is tested in three cases: Worst case
(WC), best case (BC), and typical case (TC). The hardware setups are concluded in Table
5.2.

Parameters Specification
Technology node TSMC 40 nm

Vdd 1.1V
Clock 100 MHz

PVT corner
Best case (BC)
Worst case (WC)
Typical case (TC)

EDA tool - Simulation QuestaSim
EDA tool - Synthesis Genus

EDA tool - Place and route Innovus

Table 5.2: The hardware setups for circuit design and implementation

5.2 SNN training

The accuracy and critical accuracy of the SNN model and of the corresponding baseline
ANN model are listed in Table 5.3.

The SNN model achieves 97.42% accuracy for classifying normal and mild types of heart-
beats, 96.69% accuracy for classifying moderate types of heartbeats, and 96.65% accuracy
for severe types of heartbeats. As for the critical accuracy, for Classifier-1, it is 90.07% and
98.60% for Classifier-2. That means the newly proposed multi-threshold-based encoding
scheme maintains almost all the ECG information, and the trained SNN model has an ex-
cellent effect on heartbeat arrhythmia detection.
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Model Classify type Accuracy Critical accuracy
Baseline ANN SNN Baseline ANN SNN

Classifier-1 Normal+mild 98.30% 97.42% 95.69% 90.07%
Classifier-2 Moderate 98.30% 96.69% 98.99% 98.60%
Classifier-3 Severe 97.26% 96.65% N/A N/A

Table 5.3: The accuracy and critical accuracy of the baseline model [20] and the trained SNN
model

Compared with the baseline ANN model, the overall accuracy is close. The average accuracy
loss is 1.0%. The accuracy loss results from encoding, conversion, weight quantization, and
input data quantization. On classifier-1, the critical accuracy has a relatively large loss,
reaching 5.62%. This large accuracy loss is caused by the encoding scheme, according to our
experiment. If we use the original data to do training and inference, the critical accuracy
is not that large. But this accuracy loss is acceptable because when the heart is unhealthy,
the arrhythmia does not happen only once; instead, it repeats. During the occurrence of
abnormal heartbeats, as long as abnormal heartbeats can be correctly detected several times,
early warning can be provided to the patient, so even a 5.62% loss of critical accuracy on
Classifier-1 will not affect its function.

5.3 Hardware implementation

The inference in hardware has the same weights, bias, and threshold as that in software, and
the structure of the model is still the same, so the inference result in hardware is the same
as that in software. It is verified in simulation that not only the final inference result is the
same as that of the software, but even the calculation results of the intermediate steps are
the same as the software. So, the accuracy of hardware is identical to the software result
shown in Table 5.3. In this section, the result of hardware implementation focuses more on
energy consumption.

Since the SNN model is event-driven, the number of input spikes plays a decisive role in
energy consumption. The first thing we need to do is count the number of spikes generated
after encoding. All heartbeats in the dataset are counted, and the result is shown in Table
5.4.

Heartbeat type Number Percentage Average
no. of spikes

Min
no. of spikes

Max
no. of spikes

Normal+mild 97619 89.19% 53 1 206
Moderate 2887 2.64% 42 15 134

Severe 8946 8.17% 73 2 208
Total 109452 100% 54 \ \

Table 5.4: The spike count after encoding the whole MIT-BIH Arrhythmia database [42]

In the MIT-BIH Arrhythmia Database, 89.19% are normal or mild heartbeats, of which the
encoded spikes range from 1 to 206. The average number of spikes per heartbeat is 53. Only
2.64% are moderate abnormal heartbeats, and they are encoded into 42 spikes per heartbeat
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on average. 8.17% of the heartbeats in the dataset are severe abnormal types, and the average
number of encoded spikes is 73. The overall weighted average is 54 spikes per heartbeat.

Assuming people have 200 heartbeats per minute at most, the time interval for those heart-
beats is 300 ms. To achieve real-time processing, the inference time of each heartbeat should
be shorter than 300 ms. The longest calculation time in MIT-BIH Arrhythmia Dataset comes
from the heartbeat of a severe type, which needs to go through three classifiers and it is en-
coded into 208 spikes. If the inference result of every stage is correct (it means the inference
does not stop at the first two stages due to wrong inference), it takes 680 µs to calculate in
hardware, much shorter than 300 ms. It proves that even the most time-consuming inference
can meet real-time computing requirements. For heartbeats in all these three categories, the
calculation time is greatly shorter than the time interval of one heartbeat, and the slack is
pretty sufficient for real-time calculations in a wearable device.

Because the minimum number and the maximum number of spikes deviate too much from
the average and are rare cases, they will not be used in the subsequent calculation and
analysis. The average values are considered in this work. It can be seen from these statistics
that each heartbeat originally contained 250 11-bit fixed-point data, but after encoding, there
are only 54 spikes on average, and the encoding compression rate is very high.

Next, the calculation time needs to be obtained. We first find the heartbeats with the average
number of encoded spikes in these three categories. Then, perform hardware simulation on
them. We find the start time and end time of the classification in the hardware simulation
and calculate the inference time of each category. The result of average computation time and
average energy consumption is shown in Table 5.5. Because normal or mild heartbeats only
go through one stage in the model, the average classification time is the shortest, 71.60 µs,
with the clock frequency at 100 MHz. The average calculation for moderate types and severe
types are 123.58 µs and 280.20 µs, respectively. Because they go through more classifiers, the
calculation time is longer accordingly. By timing the proportion in the dataset, the weighted
average calculation time is 90.02 µs. The average energy consumption is obtained in the
latter steps.

Heartbeat type Number No. of
classifiers

Average cal.
time (µs)

Average energy
consumption (nJ)

Normal+mild 97619 1 71.60 46.03
Moderate 2887 2 123.58 79.45

Severe 8946 3 280.20 180.14
Total/Average 109452 90.02 57.88

Table 5.5: The average computation time and their average energy consumption

Because we do not have SRAM Macros, memories are not implemented in the hardware yet; 
only computing units of encoding and classifier modules are achieved. After going through 
synthesis, placement, and routing, the layout is generated, as shown in Table 5.6. Ports 
connected to memories are extracted to the pin so that SRAM Macros can be added and 
connected manually in the layout later.

After placement and routing, information about the layout can be reported by Innovus, such 
as the area, power, setup/hold time slack. Apart from that, the area and power of memories 
need to be calculated and estimated from the documents provided by the foundry [1] (please 
see Table 7.2 in Appendix). The area in the layout is measured to be 9409 µm2, and six 
SRAMs should take 674832 µm2 according to TSMC documents. Therefore, the total area
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5.3 Hardware implementation

of the chip containing the required SRAMs should be 0.68 mm2. The area distribution is
described in Figure 5.1. The pie chart shows that memories take 98.62% of the area, which is
surprisingly large, and only 1.38% is occupied by the computing unit. Among the computing
units, the classifier takes up 77.13%, and encoding takes up the remaining area.

Figure 5.1: The area distribution of the chip in simulation

Figure 5.2: The energy consumption distribution of the chip in simulation

The power of memories is also estimated from the document. The quick reference table
provides the leakage current, read current, and write current, from which we can approxi-
mately calculate the dynamic power and static power. The power reported by Innovus with
a more realistic activation factor is 208.83 µW. Combining the power of the computing unit
from Innovus, estimated power of memories in Table 7.2 and the average calculation time
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from Table 5.5, the average energy consumption per heartbeat classification is estimated to 
be 57.88 nJ. The energy consumption distribution is shown in Figure 5.2. Since memories 
occupy more than 98% of the area, it’s not surprising that most energy consumption comes 
from memories, which take up 67.52% of the total energy consumption. Among memories, 
the dynamic energy consumption is 27.98 nJ, and the static energy consumption is 11.10 nJ. 
Only 18.80 nJ is caused by the computing unit.

On the left of Table 5.6 is the layout of the computing unit with input ports on the left 
edge and output ports on the right edge. Pins on the top side and bottom side should be 
connected to SRAMS.

Process TSMC 40 nm CMOS
Clock frequency 100 MHz

Area (mm2) 0.68
Core Area (mm2) 0.0094

Energy /classification
(nJ) (on average) 57.88

Time /classification
(µs) (on average)} 90.02

Operation type Spiking

Table 5.6: The layout of the computing unit and the summary result of the chip after place-
ment and routing

5.4 Comparison with other works in ECG classification

Since the proposed multi-threshold-based encoding and LC sampling proposed in [14] are
both threshold-based encoding, Table 5.7 compares these two works in different aspects.

LC sampling needs to use the signal from two leads, while this work only uses the signal
from one lead. After encoding, their data amount is 2880 bits in the actual calculation,
including 0 and 1, while the data amount of this work is 500 bits in total, and 54 of them
are 1. And because we use dynamic threshold gaps, the number of spikes generated by the
same heartbeat data will be less than LC sampling, so the calculation time will be shorter and
less energy consumption, not to mention that they use more raw data than ours. Besides,
their encoding scheme is complex to be implemented into hardware, while ours is simple in
hardware because the threshold gap width is short in binary.

In summary, multi-threshold-based encoding has more advantages than LC sampling in
energy efficiency and hardware implementation.
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LC sampling
[Chu-TBioCAS’2022]

Multi-threshold-based encoding
[This work]

Both are threshold-based encoding
Number of Lead Two leads One lead

Number of encoded data bits (/beat) 2880 bits 500 bits
Threshold gap Fixed threshold gap Dynamic threshold gaps

Threshold adjust circuit complex simple

Table 5.7: The comparison between LC sampling [14] and multi-threshold-based encoding
proposed in this work

This work is compared with four recent ECG classification works. One of them is the baseline
ANN model, Diware et al’s work, and the remaining three are SNN models. The comparison
is listed in Table 5.8. In the table, we can see that the accuracy of those works is very close.

These three SNN models are all classified based on AAMI, so the number of their classifi-
cations is only 5 or 4. The baseline ANN model has a more detailed classification, based
on the 11 classifications of MIT-BIH, which provided more information for doctors, and this
work is also carried out with such a detailed classification.

Diware et al’s work is implemented in computing-in-memory (CIM), which has already
kept energy consumption per heartbeat very low compared to other digital realizations.
When this model is converted to the SNN model and achieved in digital circuits, energy
consumption per heartbeat gets further lower, approximately 52.73% of the ANN model. It
shows that the SNN model is more energy efficient than the traditional ANN model.

The four SNN works in this table adopt different encoding schemes and they have different
model structures. Benefiting from the encoding scheme with very few spikes, the excellent
three-layer classifier structure, and the sophisticated circuit design, this work consumes less
energy consumption than other works. Not to mention that their encoding is done off-chip,
and the extra consumption of this part is not counted.

[Diware-TBioCAS’2023]
[20]

[Chu-TBioCAS’2022]
[14]

[Mao-TBioCAS’2022]
[41]

[Amirshahi-TBioCAS’2019]
[6] This work

Technology —— 40 nm 28 nm —— 40 nm
Computing unit type CIM Digital Digital Analogue Digital
Neural network type ANN SNN SNN SNN SNN

Spike encoding method —— LC sampling Dual-purpose
binary encoding Poisson encoding Multi-threshold-based

encoding
Learning rule —— STBP ANN-SNN Conv R-STDP ANN-SNN Conv

Accuracy 98.29% 98.22% 97.36% 97.9% 97.42%
Chip area(mmˆ2) 0.11 0.3246 0.54 —— 0.68

Energy /classification (µJ) 0.11 20.51 - 0.75 0.3 1.78 0.058 (on average)
Number of classification 11 5 5 4 11

Table 5.8: The comparison of the state-of-the-arts with our work
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6 Conclusion

This chapter concludes the thesis and gives some suggestions for future work.

6.1 Conclusion

To reduce deaths from cardiovascular disease, in this thesis, the ECG classifier on the hard-
ware is designed for wearable devices to detect cardiac arrhythmia in real-time. Patients
can catch abnormal signals at an early stage and seek medical treatment in time to avoid
worsening or severe attacks of cardiovascular disease. The Spiking Neural Network (SNN)
is adopted in this work for automatic feature extraction and inference for its low energy
consumption feature.

Since the inputs of SNN are spikes, the encoding module is required to transfer the origi-
nal data into spikes. Considering the importance of the encoding effect in the final result
and the shortcomings of existing encoding schemes, we propose a new encoding scheme,
Multi-threshold-based encoding. This new encoding scheme encodes the ECG data from 250
numbers to 54 spikes on average. Meanwhile, this new encoding scheme is easy to achieve
in hardware with a small area, avoiding data preprocessing on another chip and realizing
continuous processing on the same chip, which is helpful for energy saving.

The training method of the SNN model is ANN-SNN conversion because of the high accu-
racy and the easy way to achieve it. We have selected the three-state classifier from Diware
et al [20] and the ANN-SNN conversion tool from Bu et al [11] to train the SNN model.
After adjusting hyperparameters and doing some training optimizations, the obtained SNN
model has 97.42% accuracy. Except for the 5% loss of the critical accuracy of Classifier-1,
most of the other accuracy is very high and close to the baseline ANN model, indicating
that the proposed encoding scheme retains most of the information of the ECG signal.

The inference and encoding modules are implemented into hardware through RTL design,
simulation, synthesis, placement, and routing. As we have analyzed, SNN is simpler in
hardware compared with traditional ANN because it does not need a multiplier, and the
width of the calculation result is smaller. With sophisticated designs in this thesis to reuse
the calculation unit, improve memory utilization, and compress calculation time, the hard-
ware chip achieves an average calculation time of 90.02 µs and 57.88 nJ energy consumption
per classification. The hardware contains both the encoding module and the inference mod-
ule. Because the number of operations of SNN in hardware is related to the number of input
spikes, this work also shows a suitable encoding scheme is essential to the SNN model for
accuracy, calculation time, and energy consumption.
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6.2 Future works

• ANN-SNN conversion is a convenient way to train SNN model because the training
method of ANN is very common now, and the conversion way avoids complex surro-
gate functions in SNN backpropagation. Even though Bu et al’s tool [11] declares the
time-steps are shortest compared to other tools, in this thesis, the inputs need to be
sent in the model at least twice for higher accuracy. Therefore, it would be better if the
conversion tool could be further improved by reducing the time-steps to shorten the
calculation time.

• From the result of the layout, memories take up most of the energy consumption.
If energy consumption is expected to be lower, memory should be the main point,
either reducing the memory power or reducing the number of reading and writing
operations.
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7 Appendix

7.1 The table of weight quantization

WL
(word length)

FL
(decimal length)

Classifier-1
ANN Acc(%)

Classifier-2
ANN Acc(%)

Classifier-3
ANN Acc(%)

32-bit float number 97.51 97.08 97.21
10 8 97.50 97.04 97.15
9 7 97.49 97.00 96.93
8 6 97.44 96.91 97.04
7 5 97.36 97.04 96.53
6 4 97.07 96.62 95.36

Table 7.1: The accuracy and critical accuracy of different widths of weights

7.2 The table of area and power estimation of SRAMs
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